THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the
AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

1957
Thirty-fourth Edition

THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur': Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permistion of the publisher. All rights of translation are reserved. Printed in U. S. A.

Ouedan reservados todos los derechos

Library of Congress Catalog Card Number: 41 -3345

Thirty-fourth Edition
\$3:80 in U. S. A. proper
$\$ 4.00$ in U. S. Possessions and Canada $\$ 4.50$ else where

Buckram Edition \$6.00 Everywhere

THERUMFORD PRESS
Concord, Now Hampshire, U. S. A.

Foreword

In over thirty years of continuous publication The Radio Amateur's Handbook has become as much of an institution as amateur radio itself. Produced by the amateur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, it has earned universal acceptance not only by amateurs but by all segments of the technical radio world. This wide dependence on the Iandbook is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion.

Virtually continuous modification is a feature of the IIandbool - always with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its annual revision, a major task of the headquarters group of the League, is participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.
'The IIandbook is printed in the format of the League's monthly magazine, QST. This, together with extensive and useful catalog advertising by manufacturers producing equipment for the radio amateur and industry, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

The IIandbook has long been considered an indispensable part of the amateur's equipment. We earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

A. L. Bedlong

General Manager, A.R.R.L.
West Hartford, Comm.

CONTRNTS

The Amateur's Code 8
Chapter 1-Amateur Radio 9
2 - Electrical Laws and Circuits 15
3 - Vacuum-Tube Principles 60
4-Semiconductor Devices 80
5-High-Frequency Receivers 85
6-High-Frequency Transmitters 143
7-Power Supplies 215
8-Keying and Break-In 237
9 -Speech Amplifiers and Modulators 247
10-Amplitude Modulation 275
11 - Frequency and Phase Modulation 294
12 - Single Side Band. 300
13-Transmission Lines 318
14-Antennas 343
15-Wave Propagation 376
16-V.H.F. Receivers 384
17-V.H.F. Transmitters 405
18-V.H.F. Antennas 435
19-Mobile and Portable-Emergency Equipment. 447
20 - Construction Practices 484
21 - Measurements 493
22 - Assembling a Station 525
$23-\mathrm{BCI}$ and TVI 532
24 -Operating a Station 553
25-Miscellaneous Data 568
26 - Vacuum Tubes and Semiconductors. V1
Catalog Section
Index

THE
 AMATEUR'S
 CODE

- ONE -

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

- TWO •

The Amateur is Loyal. . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE•

The Amateur is Progressive . . . He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

- FOUR •

The Amateur is Friendly... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and cooperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE -

The Amateur is Balanced... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

- SIX •

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

- Paul M. Segal

Amateur Radio

Amateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronics and an opportunity to communicate with fellow citizens by private shortwave radio. Scattered over the globe are over 200,000 amateur radio operators who perform a service defined in international law as one of "self-training, intercommunication and technical in vestigations carried on by . . . duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."

From a humble beginning at the turn of the century, amateur radio has grown to become an established institution. Today the Amercan followers of amateur radio number over 150,000, trained communicators from whose ranks will come the professional communist tons specialists and executives of tomorrowjust as many of today's radio leaders were first attracted to radio by their early interest in amateur radio communication. A powerful and prosperous organization now provides a bond between amateurs and protects their interests; an internationally-respected mayazine is published solely for their benefit. The military services seek the cooperation of the amateur in developing communications reserves. Amateur radio supports a manufactureing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production techniques - in itself a national asset. Amateurs have won the gratitude of the nation for their heretic performances in times of natural disaster; traditional mater skills in emergency communication are also the standby system for the nation's civil defense. Amateur radio is, indeed, a magnificently useful institution.

Although as old ate the art of radio itself, amateur radio did not always enjoy such prestige lis first enthusiasts wry private citizens of an experimental turn of mind whom imaginations went wild when Maremi first proved that messages actually could be son by wireless. They set about learning enough about the new scientific marvel to build homemade spark transmitters. By 1912 there were numerous Government and commercial stations, :ard hundreds of amateurs; regulation was needed, so laws, licenses and wavelength specifications appeared. There was then no amateur organizatimon nor spokesman. The official viewpoint toward :amateurs was something like this:
"Amateurs". . . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and I)N (distance) jumped from local to 500 -mil land even occasional 1,000 -mile twoway contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile [. S. sate ours began to wonder if there were amateurs in other conntries across the seas and if. some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay Ideagoe. the amateur radio organization whose name Was to be virtually symomymons with subsequant amateur progress and shortwave dovelopment. Conceived and formed by the famous inventor, the late Hiram Percy Maxim, ARR L, was formally launched in carly 1914. It had just begun to exert its full fore e in amateur activities when the I niter States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There wore then over 6000 amateurs. Over 4000 of them served in the armed fores during that war.

Today, few amateurs realize that World War I not only marked the close of the first phase of amateur development but came very

HIRAM PERCY MAXIM
President ARRL, 1914-1936
and for all time. The fate of was in the balance in the days $n_{\text {e }}$,y following the signing of the Armi${ }_{g}$. C e (iovernment, having had a taste of , reme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Repeated representations to Washington met only with silence. The League's offices had been elosed for a vear and a half, its records stored away. Most of the former amateurs had gone into service: many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was discouraging: amateur radio still banned by law, former members scattered, no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be located, hired kenneth B. Warner as the League's first paid secretary, floated a bond issue among old League members to obtain money for immediate running expenses, bought the magazine Qs'T' to be the League's oflicial organ. started activities, and dunned officialdom until the wartime ban was lifted and anateur radio resumed again, on October 1, 1919. There was a headlong rush by amatcurs to get back on the air. Giangway for King spark! Manufacturers were hard put to supply radio apparatus fast enough. Each night saw additiomal dozens of stations crashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new gear to 200 -meter work. Ranges promptly increased and it became possible to bridge the continent with but one intermediate relay.

TRANS-ATLANTICS

As DX became 1000, then 1500 and then 2000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921, ARRIL sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were run, and thirty American-stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across
the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers.' They had superheterodynes. Another wave length.' What about those undisturbed wave lengths below 200 meters? The engineering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, AlRRL-sponsored tests on wave lengths down to 90 meters were successful. Reports indicated that as the wave length dropped the results were better. Excitement began to spread through amateur ranks.
Finally, in November, 1923, after some months of careful preparation, two-way amateur trans-Atlantic communication was accomplished, when Schnell, 1MO, and Reinartz, 1XAM (now W9UZ and K613., respectively) worked for several hours with Deloy, 8AB, in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!
By 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League oflicials at the first of these frequency-determining conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40, 20, and even 5 meters.
Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters." This new band revealed entirely unexpected possibilities when 1XAM worked 6 T s on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.

PUBLIC SERVICE

Amatcur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the military atad civil defense authorities of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "public service."

About 4000 amateurs had contributed their skill and ability in '17-18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next few years and, in gradual steps, grew into cooperative activities which resulted, in 1925, in
the establishment of the Naval Communications Reserve and the Army-Amateur Radio System (now the Military Affiliate Radio Fystem). In World War II thousands of amateurs in the Naval Reserve were called to active duty, where they served with distinction, while many other thousands served in the Army, Air Forces, Coast Guard and Marine Corps. Altogether, more than 25,000 radio amateurs served in the armed forces of the United States. Other thousands were engaged in vital civilian electronic research, development and manufacturing. They also organized and manned the War Emergeney Radio Service, the rommunications section of OCD.

The "public-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with experditions began in 1923 when a League member, Jon Mix, 1 TS , of Bristol, Conn. (now assistant technical editor of $Q 心 T$), accompanied MacMillan to the Aretic on the schooner Bowdoin with an amateur station. Amateurs in Canada and the U.S. provided the home contacts. The success of this venture was so outstanding that other explorers followed suit. During subsequent years a total of perhaps two hundred voyatges and expeditions were assisted by amateur radio, the several explorations of the Antaretic being perhaps the best known.

Since 1913 amateur radio has been the principat, and in many cases the only, means of outside communication in several hundred storm, flood and arthquake emergencies in this country. The 1933 and 1937 eastern states floods, the Southern Californith flood and Long Island-New lingland hurricane disuster in 1938 , the Florida-(iulf Coast hurricanes of 1947, and the 1955 flood distasters called for the amaterur's greatest emergeney effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major role in the relief work and earned wide commendition for their resourcefulnese in effecting commanication where all other means had failed. Juring 1938 ARRL, inaugurated a new emer-gency-preparedness program, registering personnol and equipment in its Einergeney Corps and putting into effect a comprohensive program of cooperation with the Red Cross, and in 1947 a National limergeney ('oordinator was appointed to full-time duty at league headquarters.

The amateur's outstanding record of organized preparation for emergeney communications and performance under fire has been largely responsible for the decision of the Federal Giovernment to set up special regulations and set aside special frequencies for use by amatcurs in providing auxiliary communications for eivil defense purpases in the event of war. C'nder the banare, " Radio Amateur ('ivil Emergency Sorvice," amateurs are setting up and manning community and area notworks integrated with civil defense functions of the municipal governments. Should a war cause the shat-down of routine amateur activi-
ties, the RACES will be immediately available in the national defense, manned by amateurs highly skilled in emergeney communication.

TECHNICAL DEVELOPMENTS

Throughout these many yoars the amateur was careful not to slight experimental development in the enthusiasm incident to international D. . The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and loarning how to cram several stations where previously there was room for onty one! In particular, the amateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 1924, first amateur experiments in the vicinity of 50 Mc . indicated that band to be practically worthless for DX. Nonetheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant experimenter, hoss Hull (later QST'seditor), developed the theory of v.h.f. wave-bending in the lower atmosphere and led amateurs to the attaimment of better distances; while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely erratic performance. By l'earl Harbor thousands of amateurs were sponding much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles. Transeontinental i meter 1)N is not uncommon; during solitr peatis, even the oceans have been bridged! It is at tribute to these indefatigable amate urs that tolay's eoncept of v.h.f. propagation was developed largely through amateur researeh.

The amateur is constantly in the forefront of technical progress. His incessant curiosity, his eagerness to try anything new, are wo reasons. Another is that ever-growing amateur radio continually overcrowds its frequency assignments, spurring amateurs to the development and adoption of new techniques to permit the

A anrner of tha ARRL laboratory.
accommodation of more stations. For examples, amateurs turned from spark to c.w., designed more selective receivers, adopted erystal control and pure d.c. power supplies. From the ARRL's own laboratory in 1032 rame James Iamb's "single-signal" superheterodyne - the world's most advanced high-frequeney radiotelegraph receiver and, in $1!936$, the "noise-silencer" circuit. Amateurs are now turbing to speroch "elip)pers" to reduce bandwidthe of 'phone transmissions and "singlo-sideband suppresised-a arrier" systems as well an even more selertivity in reociving equipment for greater effienem in speetrum use.

During World War II, thousands of skilled amateurs contributed their knowledge to the development of serret radio devices, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the matss cooperation of the amatear body in Government projects such as propagation studies; cach participating station is in reality a separate field laboratory from which reports are made for correlation and analysis. An outstanding example is varied amateur participation in several activities of the 1957-1058 International Gicophysical Year program. ARRL, with Air Foree sponsorship, is conducting an intensive study of v.h.f. propagation phenomena - INX transmissions via little-understood methods such as meteor and auroral reflections, and transequatorial scatter. ARRL-affiliated cluls and groups are sotting up precision receiving antemas and apparatus to help track the earth satellite via radio. For volunteer astronomers searching visually for the satellite, other amatteurs are manning networks to provide instant radio reports of sightings to a central ageney so that an orbit mat be computed.

Energency relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacotime national life. The importance of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that amatcur radio is vital to our national existence

THE AMERICAN RADIO RELAY LEAGUE

The ARIRL is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and las no stockholders. The members of the League are the owners of the ARRL and QST.

The operating room at Wlaw.
The I a ague is pledged to promote interest in two-way amateur commmication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. It represents the amateur in legislative matters.

One of the League's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of responsibilities - the maintenance of high standards. a eoopmorative loyalty to the traditions of amateur ridio, a dedication to its ideals and principles, so, that the institution of amateur radio may continue to operate "in the public interest, convenience and necessity."

The operating territory of ARIRL is divided into one Canadian and fiftern V^{T}. S. divisions. The affairs of the League are managed by a Board of Directors. One director is clected every two years by the membership of each C. S. division, and one by the Canadian membership. Thase directors then choose the president and viee-president, who are also mombers of the Board. The secretary and treasurer are also appointed by the Board. The directors, as representatives of the amateurs in their divisions, meot ammally to examine current amateur problems and formulate ARRI. policies thereon. The direators appoint a general manager to supervise the operations of the league and its headquarters, and to carry out the polieies and instructions of the Board.

ARIRI owns and publishes the monthly magazine, QsT'. Acting as a bulletin of the League's organized activities, QST also serves as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radin magazines in the world. Membership dues include a subseription to Q.ST.

ARRL maintains a model headquarters amateur station, known as the Hiram Percy Maxim Memorial Station, in Newington, Conn. Its call is W1AW, the call held by Mr. Maxim until his death and later transferred
to the League station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world. More important, W1AW transmits on regular schedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the I.eague in West Hartford, Conn., is a well-equipped laboratory to assist staff members in preparation of technical material for QST and the Radio Amateur's Hundbook. Among its nther activities, the League inaintains a Communications Department concerned with the operating activities of League members. A large field organization is headed by a Section Communications Manager in each of the League's sevent y-three sections. There are appoint ments for qualified members in various fields, as outlined in chapter 24 . Special activities and contests promote operating skill. A special section is reserved each month in QST for amateur news from every section of the country.

AMATEUR LICENSING IN THE UNITED STATES

Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly authorized person interested in radio technique solely with a personal aim and without pecuniary interest. Amateur operator licenses are given to U.S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code. There are four available classes of amateur license - Novice, Technician, General (ralled "Conditional" if exam taken by mail), and Amateur Extra Class. Lach has different requirements, the first two being the simplest and consequently conveying limited privileges as to frequencies available. Exams for Novice, Technician and Conditional classes are taken by mail under the supervision of a volunteer examiner. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposcs, i.e., for personal noncommercial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadcasting. Narrow bands of frequencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy; some are available for radiotelephone, others for special forms of transmission such as teletype, facsimile, amateur television or radio control. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Mc. must be ade-quately-filtered direct current. Emissions must be free from spurious radiations. The licensee must
provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy code at the required speed, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serions thought to securing the Government amateur licenses which are issued you, after examination by an FCC engineer (or by a volunteer, depending on the license class), through FCC at Washington. A complete up-to-the-minute discussion of license requirements, and study guides for those preparing for the examinations, are to be found in an ARRL publication, The Radio Amateur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for 50 e, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of conveying

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	\mathbf{S} dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	\checkmark didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dahdahdeshdahdit
5 dididididit	0 dahdahdahdahdah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdit.
Fig. 1-1 - The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Learning the code is as easy - or as difficult - as loarning to type.

The important thing in beginning to study rode is to think of it as a language of sound, never as combinations of dots and dashes. It is easy to "speak" code equivalents by using "dit" and "dah," so that I would be "didah" (the " 1 " is dropped in such combinations). The sound "di" should be staccato: a code character such as " 5 " shouhd sound like a machinegun burst: dididididit! Stress each "dah" equally; they are undertined or italicized in this text breause they should be slightly accented and drawn out.

Take a few characters at a time. learn them thoroughly in didah language before going on to new ones. If someone who is familiar with code ran be found to "send" to rou, either by whistling or by means of a buzzer or code oscillator, entist his coöporation. Learn the code by listening to it. Jon't think about speed to start; the first requirement is to learn the characters to the point where you can recognize each of them without hesitation. Concentrate on any diffecult leters. Learning the code is not at all hard; a simple booklet treating the subject in detail is another of the begimer publications available from the League, and is entitled, Learning the Radiotelegraph Code, 50e postpaid.

THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate harmonic intervals throughout the spertrum. Like assignmonts to all sorvices, they are subject to modifieation to fit the changing picture of world communications needs. Modifications of rules to provide for domestic needs are also occasionally issued by FCC , and in that respect each amatenr should keep himself informed by WhAW bulletins, QST roports, or by communiation with ARIRL IIq. concerning a specific point.

In the adjoining table is a summary of the l^{-}. S. amateur bands on which operation is permitted as of our press date. Figures are megat recles. A0 means atn ummodulated rartier, Al means c.w. telegraphy, 12 is tone-modulated c.w. telegraphy, A: is amplitude-modulated phone, At is facsimile, $A 5$ is telovision, n.f.m. designates narrow-band frequens: or phase-modulated radiotelephons, f.m. means frequency modutation, phone (including n.f.m.) or telegraphy, and Fl is frequency-shift keying.

${ }^{1}$ Input fowor must not exceed 50 watts.
In iuddition, A1 and A3 on portions of 1.800-2.(4) , as follows:

		Power (twatts)	
Area	Band, kc.	Day	Night
	1800-1825	500	200
Md., Del. and states to north	1875-1900		
N.D., S.D., Vebr., Colo., N,	1900-1925	500*	$200 *$
Mex., andstates west. induding Hawailan Ids.	1975-2000		
Okla., Kans., Mo., Ark., III.,	1800-1825	200	50
Ind., Ky.. Tem., Ohio, W:	1875-1900		
Ya., Va, S. Cb, S. Co, and			
Texas (west of $99^{\circ} \mathrm{W}$ or north of $32^{\circ} \mathrm{N}$)			

* Except in state of Washington, 200 watts day, 50 watts night.

Novice lirensees may use the following frequencies, transmitters to be crystal-controlled and have a maximum power input of 75 watts.

$3.700-3.750$	11	$21.100-21.250$	A1
7.1507 .200	11	$14 . j-147$	A1, A2,
			$A 3, f . m$.

Terhnician lisensees are permitted all amateur privilegrs in 50 Mc . and in the bands 220 Mc . and above.

Electrical Laws and Circuits

\author{

- ELECTRIC AND MAGNETIC FIELDS
}

When something occurs at one point in space because something else happened at another point, with no visible means by which the "cause" can be related to the "effect," we say the two events are connected by a field. The fields with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic field.

A field has two important properties, intensity (magnitude) and direction. The field exerts a force on an object immersed in it; this force represents potential (ready-to-be-used) energy, so the potential of the field is a measure of the field intensity. The direction of the field is the direction in which the object on which the force is exerted will tend to move.

An electrically-charged object in an electric field will be acted on by a force that will tend to move it in a direction determined by the direction of the field. similarly, a magnet in a magnetie field will be subject to a force. Fveryone has seen demonstrations of magnetic fields with pocket magnets, so intensity and direction are not hard to grasp.

A "static" field is one that neither moves nor changes in intensity. Such a field can be set up by a stationary elestric charge (electrostatic field) or by a stationary magnet (magnetostatic field). Ibut if either an electric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing electric field sets up a magnetic field, and a changing magnetic field genrates an electric field. This interrelationship between magnetic and electric fields makes possible such things as the electronagnet and the electric motor. It also makes possible the electromagnetic waves by which radio eommunication is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetie fields.

Lines of Force

Although no one knows what it is that composes the field itself, it is useful to invent a picture of it that will help in visualizing the forces and the way in which they act.

A field can be pietured as being made up of lines of force, or flux lines. These are purely imaginary threads that show, by the direction in which they lif, the direction the object on
which the force is exerted will move. The number of lines in a chosen cross section of the field is a measure of the intensity of the fores. The number of lines per square inch, or per square centimeter, is called the flux density.

ELECTRICITY AND THE ELECTRIC CURRENT

Everything physical is built up of atons, particles so small that they cannot be seen even through the most powerful microscope. But the atom in turn consists of several different kinds of still smaller particles. One is the electron, essentially a small particle of electricity, The quantity or charge of electricity represented by the electron is, in faet, the smallest quantity of electricity that can exist. The kind of electricity associated with the electron is called negative.

An ordinary atom consists of a central core called the nucleus, around which one or more electrons circulate somewhat as the earth and other planets circulate around the sun. The nucleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exaetly equal to the sum of the negative charges on all the electrons associated with that nucleus.

The important fact about these two "opposite" kinds of electricity is that they are strongly attracted to each other. Aso, there is a strong force of repulsion between two charges of the same kind. The positive nucleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei.

While in a normal atom the positive charge on the nucleus is exactly balanced by the negative charges on the electrons, it is possible for an atom to Iose one of its electrons. When that happens the atom has a little less negative charge than it should - that is, it has a net positive charge. Such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra electron, as it sometimes does, it has a net negative charge and is called a negative ion. A positive ion will attract any stray electron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or electrons constitutes the electric current.

The amplitude of the current (that is, its intensity or magnitude) is determined by the rate at which electric eharge - an arcumulation of elec-
trons or ions of the same kind - moves past a point in a circuit. Since the charge on a single electron or ion is extremely small, the number that must move as a group to form evien a tiny current is almost inconceivably large.

Conductors and Insulators

Atoms of some materials, notably metals and acids, will give up an electron readily, but atoms of other materials will not part with any of their electrons even when the electric force is extremely strong. Materials in which electrons or ions can be moved with relative ease are called conductors, while those that refuse to permit such movement are calied nonconductors or insulators. The following list shows how some common materials divide between the conductor and insulator classifications:

Conductors	Insulators
Metals	Dry Air
Carbon	Wood
Acids	Porcelain
	Textiles
	Glass
	Rubber
	Resins

Electromotive Force

The electric force or potential (called electromotive force, and abbreviated e.m.f.) that caises current flow may be developed in several wä̀s. The action of certain chemical solutions on dissimilar metals sets up an e.m.f.; such a combination is called a cell, and a group of cells forms an electric battery. The amount of current that such cells can carry is limited, and in the course of current flow one of the metals is caten away. The amount of electrical energy that can be taken from a battery consequently is rather small. Where a large amount of energy is needed it is usually furnished by an electric generator, which develops its e.m.f. by a combination of magnétic and mechanical means.

In picturing current flow it is natural to think of a single, constant force causing the electoris to move. When this is so, the electrons always move in the same direction through a path or circuit made up of conductors connected together in a continuous chain. Such a current is called a direct current, abbreviated d.c. It is the type of current furnished by batteries and by certain types of generators. IIowever, it is also possible to have an e.m.f. that periodically reverses. With this kind of e.m.f. the current flows first in one direction through the circuit and then in the other. Such an e.m.f. is called an alternating e.m.f., and the current is called an alternating current (abbreviated a.c.). The reversals (alternations) may occur at any rate from a few per second up to several billion per second. Two reversals make a cycle; in one cycle the force acts first in one direction, then in the other, and then returns to the first direction to begin the next cycle. The number of cycles in one second is called the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, increasing toward the right away from the vertical axis. The vertical axis represents the amplitude or strength of the current, increasing in either the up or down direction away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the circuit (indicated by the + sign) and if it is below the horizontal axis the currẹnt is flowing in the reverse direction through the circuit (indicated by the - sign). Fig. 2-1A shows that, if we close the circuit - that is, make the path for the current complete - at the time indicated by X, the current instantly takes the amplitude indicated by the height A. After that, the current continues at the same amplitude as time goes on. This is an ordinary direct current. \because

In Fig. 2-1B, the current starts flowing with the amplitude A at time X, continues at that amplitude until time Y and then instantly ceases. After an interval $Y Z$ the current again begins to flow and the same sort of start-and-stop performance is repeated. This is an intermittent direct current. We could get it by alternately closing and opening a switch in the circuit. It is a direct current because the direction of current flow does not change; the graph is always on the + side of the horizontal axis.

In Fig. 2-1C the current starts at zero, increases in amplitude as time goes on until it reaches the amplitude A_{t} while flowing in the + direction, then decreases until it drops to zero amplitude once more. At that time (X) the

Fig. 2.1-Three types of current flow. A - direct current; \mathbf{B}-- intermittent direct current; \mathbf{C} - alternat. ing current.
direction of the current flow reverses; this is indicated by the fact that the next part of the graph is below the axis. As time goes on the amplitude increases, with the current now flowing in the direction, until it reaches amplitude A_{2}. Then the amplitude decreases until finally it drops to zero (Y) and the direction reverses once more. This is an alternating current.

Waveforms

The type of alternating current shown in Fig. $2-1$ is known as a sine wave. The variations in many a.c. waves are not so smooth, nor is one half-cycle necessarily just like the preceding one in shape. However, these complex waves can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-number) multiples of some lower frequency. The lowest frequency is called the fundamental frequency, and the higher frequencies (2 times, 3 times the fundamental frequency, and so on) are called harmonics.

Fig. 2-2 shows how a fundamental and a second harmonic (twice the fundamental) might add to form a complex wave. Simply by changing the relative amplitudes of the two waves, as well as the times at whirh they pass through zero amplitude, an infinite number of waveshapes can be constructed from just a fundamental and second harmonic. Waves that are still more complex can be constructed if more harmonics are used.

Electrical Units

The unt of electromotive force is called the volt. An ordinary flashlight rell generates an e.m.f. of about 1.5 volts. The e.m.f. commonly supplied for domestic lighting and power is 115 volts, usually a.c. having a frequency of 60 cycles per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.c.) for filament heating to as high as a few thousand d.c. volts for the operation of power tubes.

The flow of electric current is measured in amperes. One ampere is equivalent to the movement of many billions of electrons past a point in the circuit in one second. Currents in the neighborhood of an ampere are required for heating the filaments of small power tubes. The direst currents used in amateur radio equipment usually are not so large, and it is customary to measure such currents in milliamperes. One milliampere is equal to one one-thousindth of ampere, or 1000 milliamperes equals one ampere.

I "d.c. ampere" is a measure of a stecty current, but the "a.c. ampere" must measure a current that is continually varying in amplitude and periodically reversing direction. To put the two on the same basis, an a.c. ampere is defined as the amount of current that will cause the same heating effect (sce later section) as one ampere of steady direct current. For sine-wave a.c., this effective (or r.m.s.) value is equal to the maximum amplitude (A_{1} or A_{2} in Fig. 2-1C) multiplied by 0.707 . The instantaneous value is the value

Fig. 2.2-A complex waveform. A fundamental (top) and second harmonic (center) added together, point by point at each instant, result in the waveform shown at the bottom. When the two components have the same polarity at a selected instant, the resultant is the simple sum of the two. When they have opposite polarities, the resultant is the difference: if the negative-polarity component is larger, the resultant is negative at that instant.
that the current (or voltage) has at any selected instant in the cycle.

If all the instantaneous values in a sine wave are averaged over a half-cycle, the resulting figure is the average value. It is equal to 0.636 times the maximum amplitude. The average value is useful in connection with rectifier systems, as described in a later chapter.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 cycles per second are called audio frequencies, hecause the vibrations of air particles that our ears recognize as sounds occur at a similar rate. Audio frequencies (abbreviated a.f.) are used to artuate loudspeakers and thus create sound waves.

Frequencies above about 15,000 cycles are ralled radio frequencies (r.f.) because they are useful in radio transmission. Frequencies all the way up to and beyond $10,000,000,000$ rycles have been used for radio purposes. It radio frequencies the numbers become so large that it becomes convenient to use a larger unit than the cyele. Two such units are the kilocycle, which is equal to 1000 cycles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ cycles or 1000 kilocycles and is abbreviated Mc.

The various radio frequencies are divided off into classifications for ready identification. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

Frequency
10 to 30 kc . 30 to 300 kc . 300 to 3000 ke . 3 to 30 Mc , 30 to 300 Mc . 300 to 3000 Mc . 3000 to $30,000 \mathrm{Mc}$.

Classification Very-low frequencies Low frequencies Medium frequencies High frequeneies Viry-high frequencies I'ltrahigh frequencies Superhigh frequencies

Abbreviation
r.l.f.
1.f.
m.f.
h.f.
r.h.f.
u.h.f.
s.h.f.

Wavelength

1:adio waves travel at the same sured as light $-300,000,000$ meters or about 186,000 miles a second in space. They can be set up by a radiofrequency eurrent flowing in a circuit, because the rapidly-changing current sets up a magnetie field that changes in the same way, and the varying magnetic field in turn sets up a varying electrie field. And whenever this happens, the two fields move outward at the speed of light.

Suppose an r.f. current has a frequency of $3,000,000$ cyeles per second. The fields will go through eomplete reversals (one cycle) in $1 / 3,000,000$ second. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. By the time the wave has moved that distance
the next cycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the begiming of the next, and so on. This distance is the wavelength.

The longer the time of one eycle - that is, the lower the frequency - the greater the distance orcupied by each wave and hence the longer the wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
or

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wavelength in moters $f=$ Frequency in megaryeles
Example: The wavelength corresponding to a frequency of 3650 tilocyeles is

$$
\lambda=\frac{300,000}{3650}=8.2 .2 \text { meters }
$$

Resistance

Given two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given e.m.f. is applied will be found to wary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.
Revistance is neasured in ohms. I circuit has a rexistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each edge. One of the best conductors is copper, and it is frequently convenient. in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape. Table 2-I gives the ratio of the resistivity of various conductors to that of copper.
The longer the path through which the current flows the higher the resistance of that conductor. For direct current and low-frequeney alternating

TABLE 2-I Relative Resistivity of Metals	
Material	Resistirity Compared to Capper
Aluminum (pure)	1.70
Brass.......	3.38
Cadmium	5.26
C.lıremium	1.82
Copper (hard-drawn)	1.12
Copper (annealed)...	1.00
Iron (pure) . .	5.65
lead.	14.3
Nickel.	6.25 118.33
Whosphor Bronze	2.78
Silver.....	0.94
Tin	7.70
Zinc.	3.54

murrents (up to a fen thousand eveles per seomed) the resistance is inversely proportional to the cross-seetional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cros-sertional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the rexistance of a round wire of given diameter and length - or its opposite, finding a suitable size and length of wire to supply a desired amount of rosistancecan be easily solved with the help of the eopperwire table given in a later chapter. This table gives the resistance, in ohms per thousithd feet, of each standard wire size.

Example: Suppose a rosistance of 3.5 whns is needed and some No. 28 wire is on hand. '1the
 a resistance of 66.17 ohnis per thousand fert. Since the desired resistance is 3.5 ohms, the length of wire required will be

$$
\frac{3.5}{66.17} \times 1000=32.80 \text { feet }
$$

Or, suppose that the rosistance of the wire in the rircuit must not exced 0.05 ohm and that the length of wire required for making the conneetions totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.03 \text { oltan }
$$

where R is the maximum allowable resistance in ohms per thousand feet. learranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistance less than this value.
When the wire is not apper, the resistance values given in the wire table should be multi-

Types of resistors used in radio equipment. 'Those in the foreground with wire leads are carhon typere, ranging in size from $1 / 2$ watt at the left to? watts at the right. 'Mae larger resistors use resistance wire wound on ceramic tubes: sizes shown range from $\overline{3}$ wats to 100 watts. Three are of the ad. justable typr, having a sliding conlact on an exposed acrtion of the resistance winding.

plied by the ratios given in Table 2-1 to obtain the resistance.

> Example: If the wire in the first example were iron instrad of copper the length reapired for 3.5 ohms would be

$$
\begin{gathered}
\frac{3.5}{661.17 \times 5.65} \times 1000=9.35 \text { fcet. } \\
\text { Temperature Effects }
\end{gathered}
$$

The resistance of a conductor changes with its temperature. . Ithough it is seldom necessary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temporature. Carbon, however, acts in the opposite way; its rexistance dereases when its temperature rises. The temperature effect is important when it is necessary to maintain a constant resistance under all conditions. Suecial materials that have tittle or no change in resistance over a wide temperature range are used in that case.

Resistors

A "packare" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. The flow of current through resistance causes the conductor to become hoated; the higher the resistance and the larger the current, the greater the amount of heat developed. Resistors intended for carrying large currents must be physically large so the heat can be radiated quirkly to the surrounding air. If the resistor does not get rid of the heat quirkly it may reach a temperature that will canse it to nelt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the current is alternating there are internal efferts that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistaice інегсиноя,

For low audio frequencies the increase in resistance is unimportant, but at radio frequencies this skin effect is so great that practically all the current flow is confined within a few thousandths of an inch of the conductor surface. The r.f. resistance is conserucutly many times the d.e. resistance, and increases with increasing frequency. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practionlly no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually represented by the symbol (i. . circuit having large conductance has low resistance, and vice versa. In radio work the term is used chiefly in connection with vacuum-tube rharacteristirs. The unit of conductance is the mho. A resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of 0.001 niho, and so on. A unit frequently used in commection with vacuum tubes is the micromho, or one-milionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance connected to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current

Fig. 2.3-A simple circuit consisting of a hattery and resistor.

can flow out of the battery, through the apparatus comerted to it, and back into the battery. The circuit is broken, or open, if a connection is removerl at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing eurrent to flow or prevanting it from flowing.

Conversion Factors for Fractional and			
Multiple			

The values of current, voltage and resistance in a circuit are by no means independent of each other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Expressed as an equation, it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are known. It may be transposed so that each of the three quantities may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

All three forms of the equation are used almost constantly in radio work. It must be remembered that the quantities are in volts, ohms and amperes; other units cannot be used in the equations without first being converted. For example, if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-II shows how to convert between the various units in common use. The prefixes attached to the basic-unit name indicate the nature of the unit. These prefixes are:

$$
\begin{aligned}
& \text { micro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } k \text {) } \\
& \text { mega - one million (abbreviated } M \text {) }
\end{aligned}
$$

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ microvolts in one volt, and 0.000001 megohm in one ohm.

The following examples illustrate the use of Ohm's Law:

The current flowing in a resistance of 20,000 ohms is 150 milliamperes. What is the voltage? Since the voltage is to be found, the equation to use is $E=I R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is necessary to divide by 1000. Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltage of 150 is applied to a circuit the current is measured at 2.5 amperes. What is the resistance of the circuit? In this case R is the unknown, so

$$
R=\frac{E}{I}=\frac{150}{2.5}=60 \text { ohms }
$$

No conversion was necessary because the voltage and current were given in volts and amperes.
How much current will flow if 250 volts is applicd to a 5000 -ohn resistor? Since I is unknown

$$
I=\frac{E}{R}=\frac{250}{5000}=0.05 \text { amperc }
$$

Milliampere units would be morc convenient for the current, and 0.05 amp. $\times 1000=50 \mathrm{mil}$. liamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found connected in a

Fig. 2-4-Resis-
 tors connected in series and in parallcl.

variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current flows from the source of e.m.f. (in the direction shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These resistors are connected in series. The current everywhere in the circuit has the same value.

In the lower drawing the current flows to the common connection point at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through R_{2}. At the lower connection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this case the two resistors are connected in parallel.

Resistors in Series

When a circuit has a number of resistances connected in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etc., then $R \quad($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+. . .$. where the dots indicate that as many resistors as necessary may be added.

Example: Suppose that three resistors are
connected to a source of e,m,f. as shown in Fig.
$2-5$. . The e.m.f. is 250 volts, R_{1} is 5000 ohnis,
R_{2} is 20,000 ohms, and R_{3} is 8000 ohms. The
total resistance is then
$R=R_{1}+R_{2}+R_{3}=5000+20,000+8000$
$=33,000$ ohms
The current flowing in the circuit is then

$$
I=\frac{E}{R}=\frac{250}{33,000}=0.00757 \mathrm{amp} .=7.57 \mathrm{ma}
$$

(We need not carry calculations beyond three significant figures, and of ten two will suffice because the accuracy of measurements is seldom better than a few per cent.)

Voltage Drop

Ohm's Law applies to any part of a circuit as well as to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides among them. The voltage appearing across each resistor (the voltage drop) can be found from Ohm's Law.

$$
\begin{aligned}
& \text { Example: If the voltage across } R_{1} \text { (Fig, 2-5) } \\
& \text { is called } E_{1} \text {, that across } R_{2} \text { is called } E_{2} \text {, and that } \\
& \text { across } R_{3} \text { is called } E_{3} \text {, then } \\
& E_{1}=I R_{1}=0.00757 \times 5000=37.9 \text { volts } \\
& E_{2}=I R_{2}=0.00757 \times 20,000=151.4 \text { volts } \\
& E_{3}=I R_{3}=0.00757 \times 8000=60.6 \text { volts } \\
& \text { The applied voltage must equal the sum of the } \\
& \text { individual voltage drops: } \\
& E=E_{1}+E_{2}+E_{3}=37.9+151.4+60.6 \\
& =249.9 \text { volts }
\end{aligned}
$$

The answer would have been more nearly exact if the current had been calculated to more decimal places, but as explained above a very high order of accuracy is not necessary.
In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

resistance is expressed in kilohnis rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is becnuse the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula becomes

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a $\mathbf{5 0 0}$-ohun resistor is paralleled with one of 1200 ohins, the total resistance is

$$
\begin{aligned}
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} & =\frac{500 \times 1200}{500+1200}=\frac{600,000}{1700} \\
& =353 \mathrm{ohms}
\end{aligned}
$$

It is probably easier to solve practical prollems by a different method than the "reciproral of reciprocals" formula. Suppose the three re-

Fig. 2-6 - An example of resistors in parallel. The solution is worked out in the text.
sistors of the previous example are connected in parallel as shown in Fig. 2-6. The same e.m.f., 250 volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenience, the resistance will be expressed
in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{250}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{250}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{250}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=50+12.5+31.25 \\
=0.3 .75 \mathrm{ma} .
\end{gathered}
$$

The total resistance of the circuit is therefore $\mathrm{JR}=\frac{E}{I}=\frac{2.50}{93.75}=2.66$ kilohms $(=2660 \mathrm{ohms})$

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving a circuit such Fig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple series circuit, as shown at the right in Fig. 2-7.

Fög. 2-7- In example of resistors in series-parallel. The equis alent cireuit is at the right. 'The solution is worked out in the text.

Fximple: The first step is to find the erbivalent resistance of R_{2} and R_{3}. l.rom the formula for two resistanees in parallel,

$$
\begin{aligned}
R_{\text {eq. }}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohms }
\end{aligned}
$$

The total resistance in the rircuit is then

$$
\begin{aligned}
\mathrm{R}=R_{1} & +R_{\text {ral }}=5+i .71 \text { kilolums } \\
& =10.71 \text { kilohms }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.4 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {eq }}$. are
$E_{1}=I R_{1}=23.4 \times 5=117$ volts
$E_{2}=I R_{\text {eq. }}=23.4 \times 5.71=133$ volts
with sufficient accurary. These total 250 volts, thus checking the ealculations so far, bectuse the sum of the voltame drons anst ental the applied voltage. Nince E appears arross both he and R3.

$$
\begin{aligned}
& I_{2}=\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.75 \mathrm{ma} \\
& I_{3}=\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{ma}
\end{aligned}
$$

where $I_{2}=$ Current through R_{2}
$I_{3}=$ Current through R_{3}
The total is 23.35 nat, which checks elosely enough with 23.4 ma., the eurrent through the whole circuit.

POWER AND ENERGY

Power - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is cqual to one volt multiplied by one ampere. The equation for power therefore is

$$
I^{\prime}=E I
$$

where $P=$ Power in watts
$E=1 \%$ m.f. in wolts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousandth of a watt, and the kilowatt, or one thousand watts.

Example: The phate voltare on a transmitting varum tube is 200) volts and the pate current is 350 millianmeres. (The murbent must be changed to amperes lufere suhatitution in the formuls, and so is 0.3 .5 :tmp.) Then

$$
P=E l=2000 \times 0.35=700 \mathrm{watts}
$$

By substituting the Ohm's I.aw equivalents for E and I, the following formulas are ohtained for power:

$$
\begin{aligned}
& P=\frac{E^{\prime 2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power calculations
when the resistance and either the eurrent or voltage (but not both) are known.

> Example: How much power will be used up in a 4000 -ohm rewistor if the voltage applied to it is 200 volts? From the equation

$$
r=\frac{E^{2}}{R}=\frac{(200)^{2}}{40,0}=\frac{40,000}{4000}=10 \mathrm{watts}
$$

Or, suppose a current of 20 milliamperes flows through a 300 -ohm resistor. Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \text { watt }
\end{gathered}
$$

Note that the current was changed from milliamperes to amperes before substitution in the formula.
Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for madio work are mude in many sizes, the smallest bring rated to "dissipate" (or carry safely) about 1/4 watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Electrical power is not always tumed into heat. The power used in ruming a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. l'ower applied to a loudspeaker is changed into sound waves. But in every case of this kind the jower is completely "used up" - it cannot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristios of resistance, so it can be said that any device that dissipates power has a definite value of "resistance." This concept of resistance as something that absorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple resistance for the load or power-consuming part of the device receiving power, often with considerable simplification of calculations. Of course, every electrical deviec hats some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be eonvertad to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to he a loss, because it is not the usefil power. The efficiency of a devier is the useful power output (in its converted form) divided by the power input to the devier. In a vacuum-tube transmitter, for cxample, the object is to convert power from a d.e. solure into a.e power at some radio frequeney. The ratio of the r.f. power output to the d.e. input is the efficiency of the tube. That is,

$$
E d f=\frac{P_{0}}{P_{1}}
$$

where Eff. = Efficiency (as a decimal)
$P_{0}=$ Power output (watts)
$P_{i}=$ Power input (watts)

Example: If the d.e. input to the tube is 100 watts and the r.f. power output is 60 watts, the efficiency is

$$
E f f .=\frac{P_{0}}{P_{1}}=\frac{60}{100}=0,6
$$

Efficiency is usuatly expressed as a percentame; that is, it tells what per cent of the input power will be available as usefol output. The efficiency in the abrove example is 60 per cent.

Energy

In residences, the power company's bill is for clectric energy, not for power. What you pay for is the work that electricity does for you, not the rute at which that work is dome.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
\|^{\prime}=r^{\prime} \eta
$$

where $W^{*}=$ Energe in watt-lours
$I^{\prime}=$ Power in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.
lanergy units are seldom used in amateur practire, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance

Suppose two flat metal plates are phated close to each other (but not touching) as shown in Fig. ©-8. Normally, the plates will be clectrically "ucutral"; that is, no electrical charge will he evident on either plate.
Now suppose that the plates are comnected to a battery through a switeh, as shown. At the

instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative hattery terminal. This electron move ment will continue until enough electrons move into one plate and out of the other to make the e.m.f. betwern them the same as the e.m.f. of the battery.

If the switch is opened after the plates have beon charged, the top plate is left with a deficiency of electrons and the bottom plate with an excess. In other words, the plates remain charged despite the fart that the battery no longer is connerted. However, if a wire is tow hed between the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality to both plates... The blates have then been discharged.

The two plates constitute an electrical capacitor or condenser, and from the discussion above it should be clear that a capacitor possesses the property of storing electricity. It should also be clear that during the time the electrons are moving - that is, while the eapacitor is being charged or discharged - a current is flowing in the circuit even though the circuit is "broken" ly the gap between the caparitor plates. However, the current flows only during the time of
charge and discharge, and this time is usually very short. There can be no continuous flow of direet eurrent "through" a eapacitor.

The charge or quantity of electricity that ran be phaced on a capacitor is proportional to the applied voltage and to the capacitance or capacity of the condenser. The larger the plate area and the smaller the sparing between thr pates the greater the capacitance. The caparitance also depends upon the kind of insulating material between the pates; it is smallest with air insulation, but substitution of other insulating materiak for air may incrowe the abatitancer many times. The ratio of the caparitance with some material other than air between the pates. to the caparitance of the same eondenser with air insulation, is called the specific inductive capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials eommonly used as dielectrics in

(apacitors are given in Table 2-H1, If a sheet of photographic glass is substituted for air between the plates of a capacitor, for example, the caparitance will be increased $\overline{7}, 5$ times.

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work, (aparitance is usually measured in microfarads (abbreviated $\mu \mathrm{f}$.) or micromicrofarads ($\mu \mu \mathrm{f}$.). The microfarad is one-millionth

Fig. 2.9 - A multiple-plate cajaeitor. Mlternate plates are connected together.
of a farad, and the micromicrofand is one-millionth of a mionofarad. Capacitors nearly always have more than two plates, the alternate plates being connected together to form two sets as shown in Fig. 2-9. This makes it possible to attain a fairly large gapatituce in a small space, since several plates of smaller individual area can be stacked to form the equivalent of a single large plate of the same total area. Aso, all plates, except the two on the ends, are exposed to plates of the other group on both sides, and so are twice as effective in increasing the vapacitance,

The formula for calculating capacitance is:

$$
C=0,2 \cdot 2 \frac{K .1}{d}(n-1)
$$

Where $C^{\prime}=$ (Aiptcitance in $\mu \mu$.
$K=$ Dielectric constant of material between plates
$A=$ Area of one side of one phate in square inches
$d=$ Reparation of plate surfaces in inches
$u=$ Number of plates

If the plates in one group do not have the same area as the plates in the other, use the area of the smaller plates.

Example: A " variable" rapacitor has 7 semicircular plates on its rotor, the diameter of the semicircle being 2 inches. The stator has 6 rectangular mates, with a semiecirealar cut-out to clear the rotor shaft. but otherwise larme enough to face the entire area of a rotor mate, the dianeter of the cut-out is $1 / 2$ inch. The distance between the adjacent surfares of rotor and stator plates is $1 / 8 \mathrm{inch}$. The dielectric is air. What is the capacitance with the plates fully meshed?

In this case, the "effertive" area is the area of the rotor plate ninus the area of the cut-out in the stator plate. The arca of cither smicicle is $\pi r^{2} / 2$, where r is the radius. The arna of the rotor plate is $x^{\prime} / 2$, or 1.57 square inches (the radius is 1 inch). The area of the eut-our is $\pi(1 / 4)^{2 / 2}=\pi / 32=0.10$ square inch, upproximately. The "effective" area is therefore 1.077 $0.10=1.47$ square inches. The eapabitance is therefore
$C=0.224 \frac{K .1}{d}(n-1)=0.224 \frac{1 \times 1.17}{0.125}(13-1)$

$$
=0.224 \times 11.76 \times 12=31.6 \mu \mu \mathrm{dd} .
$$

(The answer is only approximate, hecause of the difficulty of accurate measurement, plus a "fringing' effect at the edges of the plates that makes the actual capacitance a little higher.)
The usefulnces of a apacitor in electrical circuits lies in the fart that it can be charged with electricity at one time and then discharged at a later time. In other words, it is capable of storing electrical energy that can be released later when it is needed; it is an "electrial reservoir,"

Capacitors in Radio

The types of rapuitors used in radio work differ considenably in physical size, construction, and capacitance, some representative types are shown in the phatograph. In variable capacitors (almost alwaye ronstructed with air for the dielectric) oneset of plates is made movable with respect to the other set so that the capacitance can be varied. Fixed condensers - that is, having fixed capacitance - also can be made with metal phates and with air as the dielectric, but usually

Fined ands sariable caparitorw. 'The bottom row includes, left to rixht, a high-volrage miara lixell eapaeitor. a tubular ele'ctrolytio. tulular paprer. two sizen of "pmetage-stathp" micas. a small reramic tome (temperature rompensatimg) an adjustable ca-
 neutralizing in transmitters), a "Intton" ceramic rapacitor. and an adjustalbe "padding" eaparitor. frour sizes of variable eapacitors are shown in the second row. The twoplate capaeitor with the micrometor adjustument is used in transmitter-. 'The eapacitor enclosed in the metal case is a hiph-voliage paper typu used in power-supply filters.
are constructed from plates of metal foil with a thin solid or liquid dielectric sandwiched in between, so that a relatively large capacitance can be secured in a small unit. The solid dielectrics commonly used are mica, paper and special ceramics. An example of a liquid dielectric is mineral oil. The electrolytic capacitor uses alumi-num-foil plates with a semiliquid conducting chemical compound between them; the actual dielectric is a very thin film of insulating material that forms on one set of plates through electrochemical action when a d.c. voltage is applied to the capacitor. The capacitance obtained with a given plate area in an electrolytic rapacitor is very large, compared with capacitors having other dielertries, because the film is so cxtremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a capacitor, a considerable force is exerted on the electrons and nuclei of the dielectric. Because the dielectric is an insulator the electrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in Table $2-11$. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or are between the plates, but if the voltage is removed the arc ceases and the capacitor is ready for use again. Breakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the capacitance for a given plate area, a high-voltage capacitor must have more plate area than a low-voltage one of the same capacitance. High-voltage high-capacitance condensers are physically large.

- CAPACITORS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to capacitors have the same circuit meaning as with resistances. When a number of rapacitors are connected in parallel, as in Fig. $2-10$, the total capacitance of the group is equal to the sum of the individual capacitances, so

$$
C^{\prime}(\mathrm{total})=C_{1}+C_{2}+C_{3}+C_{4}+\cdots \cdots
$$

However, if two or more capacitors are connected in series, as in the second drawing,

the total capacitance is less than that of the smallest capacitor in the group. The rule for finding the capacitance of a number of seriesconnected capacitors is the same as that for finding the resistance of a number of parallelconnected resistors. That is,

$$
C(t \text { (utal })=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}}+\cdots \ldots \ldots \ldots
$$

and, for only two capacitors in series,

$$
f^{\prime}(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}^{\prime}}
$$

The same units must be used throughout; that is, all capacitances must be expressed in either μ. or $\mu \mu$ f.; you cannot use both units in the same equation.

Capacitors are connected in parallel to olstain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of capacitors in parallel is the voltage that can be applied safely to the one having the lowest voltage rating.

When capacitors are connected in series, the applied voltage is divided up among them; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each capacitor of a group connected in series is in inverse proportion to its capacitance, as compared with the caparitance of the whole group.

Example: Three capacitors having capaci-
tances of 1,2 and $4 \mu \mathrm{fd}$., respectively, are con-

Fig. 2.11 - An example of capacitors connected in series. 'The solution to this arrangement is worked out in the text.
neeted in series as shown in Fig. 2-11. The total camaritance is

$$
C=\frac{1}{\frac{1}{c_{1}}+\frac{1}{C_{2}}+\frac{1}{c_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{1}}=\frac{1}{\frac{6}{4}}=\frac{1}{\frac{1}{4}}
$$

$$
=0.571 \mu \mathrm{f} .
$$

The voltage across each capacitor is proportional to the total capacitance divided by the capacitance of the condenser in quastion, so the ooltage across C_{1} is

$$
E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts }
$$

Situilarly, the voltages across C2 and C3 are

$$
E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts }
$$

Inductance

It is possible to show that the How of curront through acondurtor is aroompanied by magnetic effects; a compass needle brought near the conductor, for example, will be deflected from its normal north-south position. The current, in other words, sets up a magnetic ficld.

If a wire conductor is formed into a coil, the same current will set up a stronger magnetio field than it will if the wire is straight. Also, if the wire is wound around an iron or steel core the field will be still stronger. The relationship) between the strength of the field and the intensity of the current causing it is expressed by the inductance of the conductor or coil. If the same current flows through two coils, for example, and it is found that the magnetic fied set up by one eoil is twioe as strong as that set up be the other, the first coil has twice as mum inductance as the seromed. Indertance is a property of the eomductor or coil and is determined by its shape and dimomsions. The unit of inductance (orresponding to the ohm for resistance and the farad for (apacitance) is the henry. The general temm for a component having inductance as its prinoipal property is inductor.

If the current through a conductor or coil is made to vary in intensity, it is found that an
e.m.f. will appear across the terminals of the conductor or coil. This e.m.f. is entirely separate from the e.m.f. that is rawsing the curront to fow. The strength of this induced e.m.f. beoomes greater, the greater the intensity of the mannetic field and the more rapidly the current (and hence the field) is made to vary. Fince the intensity of the mannetic field depends upon the inductance, the induced voltage (for a given current intensity and rate of variation) is proportional to the inductanme of the conductor or coil.

The indued e.m.f. (sometimes ralled back e.m.f.) tends to send is current through the circuit in the opposite direction to the current that flows because of the external e.m.f. so long as the latter eurrent is increasing. Howevor, if the current caused by the applied e.m.f. decrases, the induced e.m.f. tends to send current through the circuit in the same direction as the courrent from the applied e.m.f. The effect of inductance, thorefore, is to oppose any chonge in the current flowing in the circuit, regardless of the natume of the change. It accomplishos this by storingenergy in its magnetic field when the current in the eisenit is being increased, and by relasing the stored energy when the eurrent is being decreased.

Imductors for power and radio fre quencies. The two iron-core eroils at the upper loft are "chooks" far power-supply filters. "The thre" "pice" woand coils at the lower risht are "ised as diskers in radio-fraineto's rircuits. 'The oulate coils are for r.f. thned circuits ranging in power frotn 2.5 watts to a hilowatt.

The values of inductance used in radio equipment vary over a wide range. Inductance of several henrys is required in power-supply circuits (see chapter on Power Supplies) and to obtain such values of inductance it is necessary to use coils of many turns wound on iron eores. In radio-frequency cireuits, the inductance values used will te measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. Although coils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils made and used by amateurs are of the "air-core" type; that is, wound on an insulating support consisting of nonmagnetic material.

- Every conductor has inductance, even though the ronductor is not formed into a coil. The inductance of a short length of straight wire is small - but it may not be negligible, becuse if the current through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the case in even a few inches of wire when an alternating current hoving a frequency of the order of 100 Me or higher is flowing. Ilowever, at much lower frequencies the inductance of the same wire could be left out of any calculations hecause the induced voltage would be negligibly small.

Calculating Inductance

The inductance of air-core coils may be calculated from the formula

$$
L\left(\mu h_{.}\right)=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c}
$$

where $L=$ Inductance in microhenrys
$a=$ Average diameter of coil in inches
$b=$ Length of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The
fïg. 2-12-Cail dimensions uied in the inductance formula.

guantity loc may be neglected if the eoil only has one layer of wire.

$$
\begin{aligned}
& \text { Example: Assume a coil having } 3 \text {. turns of } \\
& \text { No. } 30 \text { d.s.e. wire on a form } 1.5 \text { inches in diam. } \\
& \text { eter. Consulting the wire table, } 35 \text { turns of No. } \\
& 30 \text { d.s.c. will oceuny } 0.5 \text { inch Therefore. } \\
& a=1.5, b=0.5, n=3.5 \text {, and } \\
& \qquad L=\frac{0.2 \times(1.5)^{2} \times(35)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h} .
\end{aligned}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

Example: Suppose an inductance of 10 microhenrys is reguired. The form on which the eoil is
to be wound has a diameter of one inch and is long enough to accommodate a coil length of $11 / 4$ iuches. Then $a=1, b=1.25$, and $L=10$. Substituting.

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(9 \times 1.25)}{0.2 \times 1^{2}} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =26.6 \text { turns. }
\end{aligned}
$$

A 27 -turn coil would be close enough to the required value of inductance, in practical work. Since the coil will be 1,25 inches long, the number of turns per inch will be $27 / 1,25=21.6$. Consulting the wire table, we find that No, 18 enameled wire (or any smaller size) can be used. The proper inductance is obtained by winding the required number of turns on the form and then adjusting the spacing between the turns to make a uniformly-spaced coil 1.25 inches long.

Inductance Charts

Most inductance formulas lose accuracy when applied to small coils (such as are used in v.h.f. work and in low-pass filters built for reducing harmonic interference to television) because the conductor thickness is no longer negligible in comparison with the size of the coil. f'ig. 2-1:3 shows the measured inductance of v.h.f. coils, and may be used as a basis for circuit design. Two curves are given: curve A is for coils wound to an inside diameter of $1 / 2$ inch; curve B is for coils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding pitch 8 turns to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads $1 / 2$ inch long.

The charts of Figs. 2-14 and 2-15 are useful for rapid determination of the indectance of coils of the type commonly used in radio-frequeney circuits in the range $3-30 \mathrm{Mc}$. They are bised on the formula above, and are of sufficient accuracy for most practical work. Given the coil length in inches, the curves show the multiplying factor to be applied to the inductance value given in the table below the curve for a coil of the same diameter and number of turns per inch.

Fig. 2.13 - Measured inductance of coils woond with No. 12 bare wire, 8 turns to the inch. The values include half-inch leads.

Example: A coil 1 inch in diameter is $11 / 4$ inches long and has 20 turns. Therefore it has 16 turns per inch, and from the table under Fig. $2-15$ it is found that the reference inductance for a coil of this diameter and number of turns per inch is $16.8 \mu \mathrm{~h}$. From curve B in the figure the multiplying factor is 0.35 , so the inductance is

$$
16.8 \times 0.35=5.9 \mu \mathrm{~h}
$$

The charts also can be used for finding suitable dimensions for a coil having a required value of inductance.

Example: A coil having an inductance of 12 $\mu \mathrm{h}$, is required. It is to be wound on a form having a diameter of I inch, the length a vailable for the winding being not more than $11 / 1$ inches. From Fig. 2-15, the multiplying factor for a 1 -inch diameter coil (curve B) having the maximum. possible length of $11 / 4$ inches is 0.35 . Hence the

Fig. 2-14-I'actor to be applied to the inductance of coils listed in the table belon, for coil lengths up to 5 inches.

Coil diameter. Inches	No. of turns per inch	Inductance in μh.
11/4	4	2.75
	6	6.3
	8	11.2
	10	17.5
	16	42.5
$11 / 2$	4	3.9
	6	8.8
	8	15.6
	10	24.5
	16	63
18/4	4	5.2
	6	11.8
	8	21
	10	33
	16	85
2	4	6.6
	6	15
	8	26.5
	10	42
	16	108
21/2	4	10.2
	6	23
	8	41
	10	64
3	4	14.
	6	31.5
	8	Si
	10	$8:$

number of turns yer inch must be chosen for a reference inductance of at least $12 / 0.35$, or $34 \mu \mathrm{~h}$. F'rom the Table under Fig. 2.15 it is seen that 16 turns wer inch (reference inductance $16.8 \mu \mathrm{~h}$.) is too small. T'sing 32 turns per inch, the multiplying factor is $12 / 68$, or 0.177 , and from curve B this corresponds to a coil length of $3 / 4$ inch.
There will be 24 turns in this length, since the winding "pitch" is 32 turns per inch.

Fig. 2.15 - Factor to be applied to the inductance of coils listed in the table below, as a function of coil length. I'se curve A for coils marked A, curve 13 for coil marked J.

Coil diameter, Inches	No. of lurns per inch	Induclance in μh.
$\begin{aligned} & 1 / 2 \\ & (A) \end{aligned}$	4	0.18
	6	0.40
	8	0.72
	10	1.12
	16	2.9
	32	12
$\begin{aligned} & 5 / 8 \\ & (A) \end{aligned}$	4	0.28
	6	0.62
	8	1.1
	10	1.7
	16	4.4
	32	18
$\begin{aligned} & 3 / 4 \\ & (A) \end{aligned}$	4	0.39
	6	0.87
	8	1.57
	10	2.4 .5
	16	6.4
	32	26
$\stackrel{1}{(\mathrm{~B})}$	4	1.0
	6	2.3
	8	4.2
	10	6.6
	16	16.8
	32	68

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-16 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2 square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 50 lines per square inch. The ratio of the flux density with the given core
material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core, therefore.

The permeability of a magnetic material varies with the flux density. At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, but at very high flux densities, increasing the current may cause no appreciable change in the flux. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in permeability, because it decreases the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core inductor is highly dependent upon the current flowing in the coil. In an air-core coil, the inductance is independent of current because air does not "saturate."

In amateur work, iron-core coils such as the one sketched in Fig. 2-16 are used chiefly in power-supply equipment. They usually have direct current flowing through the winding,

Fig. 2.16- Typical construction of an iron-core inductor. The small air gap prevents magnetic saturation of the iron and thus maintains the inductanec at high currents.
and the variation in inductance with current is usually undesirable. It may be overcome by keeping the flux density below the saturation point of the iron. This is done by cutting the pore so that there is a small "air gap," as indicated by the dashed lines. The magnetic "resistance" introduced by such a gap is so large - even though the gap is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, controls the flux density. This naturally reduces the inductance compared to what it would be without the air gap, but the inductance is practically constant regardless of the value of the current.

Eddy Currents and Hysteresis

When alternating current flows through a coil wound on an iron core an e.m.f. will be induced, as previously explained, and since iron is a conductor a current will flow in the core. Such currents (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating. Eddycurrent losses can be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellac.

There is also another type of energy loss in an iron core: the iron tends to resist any change in its magnctic state, so a rapidly-changing
current such as a.c. is forced continually to supply energy to the iron to overcome this "inertia." Losses of this sort are called hysteresis losses.

Eddy-current and hysteresis losses in iron increase rapidly as the frequency of the alternating current is increased. For this reason, we can use ordinary iron cores only at power and audio frequencies - up to, say, 15,000 cycles. Even so, a very good grade or iron or steel is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

For radio-frequency work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores can be made that will function satisfactorily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Mc . Because a large part of the magnetic path is through a nonmagnetic material, the permeability of the iron is low compared with the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construction, the major portion of the magnetic path for the flux is in the air surrounding the coil, the slug is quite effective in increasing the coil inductance. IBy pushing the slug in and out of the coil the inductance can be varied over a considerable range.

- inductances in series and parallel

When two or more inductors are connected in series (Fig. 2-17, left) the total inductance is

equal to the sum of the individual inductances, provided the coils are sufficiently separated so that no coil is in the magnetic feld of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots \ldots
$$

If inductors are connected in parallel (Fig. 2-17, right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}+\ldots \ldots}
$$

and for two inductances in parallel,

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallel are the same as for resistances, if the coils are far enough apart so that each is unaffected by another's magnetic field. When this is not so the formulas given above camnot be used.

- mUTUAL INDUCTANCE

If two coils are arranged with their axes on the same line, as shown in Fig. 2-18, a current sent through Coil 1 will cause a magnetic field which "cuts" Coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.f. of self-induction, but since it appears in the second coil because of current flowing in the first, it is a "mutual" effect and results from the mutual inductance between the two coils.

If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a small part of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could theoretically be obtained with two given coils is called the coefficient of coupling between the coils. It is

Fig. 2-18 - Mutual inductance. When the switch, S, is closed current flows through eoil No. I, setting up a magnetic field that induces an e.m.f. in the turns of coil No. 2.
frequently expressed as a percentage. Coils that have nearly the maximum possible (coefficient $=$ 1 or 100%) mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said said to be loosely coupled. The degree of coupling depends upon the physical spacing between the coils and how they are placed with respect to earh other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of coupling is closely approached only when the two coils are wound on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.8 if one coil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

In Fig. 2 -19A a buttery having an e.m.f., E, a switch, S, a resistor, R, and mpacitor, (", are connected in series. Suppose for the monent that R is short-circuited and that there is no other resistance in the circuit. If S is now closed, condenser C will charge instumily to the battery voltage; that is, the electrons that constitute the charge redistribute themselves in a time interval so small that it can be considered to be zero. For just this instant, therefore, a wory large current flows in the circuit, because all the electricity needed to charge the capacitor has

Fig. 2.19-schematics illustrating the time constant of an $R C$ cirenit.
moved from the battery to the capateitor at an extremely high rate.

When the resistance l is put into the rircuit the capacitor no longer can be chatged instantaneously. If the battery e.m.f. is 100 volts, for exanmpe, and R is 10 ohms, the maxinum courrent that can flow is 10 amperos, and even this much can flow only at the instant the switeh is closed. But as soon as any current flows, eapatitor C begins to acquire a charge, which mouns that the voltage between its plates rises. Since the upper plate (in Fig. 2-19A) will be positive and the lower negative, the voltage on the capacitor tries to send a current through the circuit in the opposite direction to the current from the battery. Immediately after the switeh is closed, therefore, the current drops below its initial Ohm's Law value, and as the caphator continues to acquire charge and its potential or e.m.f. rises, the current becomes smaller and smaller.

The length of time required to complete the charging process depends upon the capacitano and the resistance in the circuit. Theoretically, the charging process is never really finished,
but eventually the charging current drops to a value that is smaller than anything that can be measured. The time constant of such a circuit is the length of time, in seconds, required for the voltage across the capacitor to reach 603 per eent of the applied e.m.f. (this figure is chosen for mathematical reasons). The voltage aross the rapacior rises logarithmically, as shown bẹ lig. 2 -20.

The formula for time constant is

$$
T=(' R
$$

where $T=$ Time constant in seconds $C^{\prime}=$ (:upacitance in farads $R=$ Resistinne it ohms

If \boldsymbol{C}^{\prime} is in microfarads and R in megohms, the tinue constant also is in seconds. These units usually are nore eonvenient.
fixample: The time constant of a $2-\mu \mathrm{f}$, capacitor and a 250,000 -ohm (0,25 megohm) resistor is

$$
T=C R=2 \times 0.25=0.5 \text { second }
$$

If the applied e.m.f. is 1000 volts, the voltage across the capacitor plates will be 630 volts at the end of $1 / 2$ second.
If a charged caparitor is discharged through a resistor, as indieated in lig. $9-193$, the same time constant applies. If there were no resistance, the capacitor would discharge instantly when

Fig. 2.20-How the voltage arross a capacitor rises, with time, when charged through a resistor. The lower curve shows the way in which the woltage derreases aerose the rapacitor terminals on discharging through the same resistor.
S was closed. However, since R limits the current flow the capacitor voltage camot instantly go to zero, but it will decrease just as rapidly as the caparitor can id itself of its charge through R. When the caparitor is discharging through a resistance, the time constant (calculated in the same way as above) is the time, in seconds, that
it takes for the capacitor to lose 63 per cent of its voltage; that is, for the voltage to drop to 37 per cent of its initial value.

> Example: If the caparitor of the example above is eharged to 1000 volts, it will diseharge to 370 volts in $1 / 2$ seeond through the 250,000 ohm resistor,

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In Fig. $2-21$, first consider L to have no resistance and also assume that R is zero. Then closing S would tend

Fig. 2-21 - Time constant of an $L R$ circuit.
to send a current through the circuit. However, the instantaneous transition from no current to a finite value, however small, represents a very rapid change in current, and a back e.n.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial current is very small.

The back e.m.f. depends upon the change in current and would cease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely-large current, by Ohm's Law) the current would increase forever, always growing just fast enough to keep the e.m.f. of self-induction equal to the applied e.m.f.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. In such a circuit the current is small at first, just as in the ease without resistance. But as the current grows the voltage drop across R becomes larger. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaehes the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (that is, the current never quite reaches the Ohm's Law value) but practically it becomes unmeasurable after a time. The difference between the actual current and the Ohm's Law value also becomes undetectable. The time constant of an inductive rircuit is the time in seconds required for the current to reach 63 per cent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L=$ Inductance in henrys
$R=$ Resistance in ohms

Fig. 2-22-Voltane acrows capacitor terminals in a discharging $C R$ circuit, in terms of the initial charged voltage. T's obtain time in seconds, multiply the factor $t / C R$ by the time constant of the circuit.

The resistance of the wire in a coil acts as though it were in series with the indurtance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohms has a time constant of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { sccond }
$$

if there is no other resistance in the circuit. If a d.c. e.m.f. of 10 roits is applied to such a coil, the final current. by Ohm's law, is

$$
I=\frac{E}{R}=\frac{10}{100}=0.1 \mathrm{amp}, \text { or } 100 \mathrm{~ms}
$$

The current would rise from zero to 63 milliamperes in 0.2 second after closing the switch.

An inductor camot be discharged in the same way as a condenser, because the magnetic field disappears as soon as rurrent flow ceases. Opening S does not leave the inductor "charged." The energy stored in the magnetic field instantly returns to the circuit when is is opened. The rapid disappearance of the field causes a very large voltage to be induced
in the coil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field changes. The common result of opening the switch in a circuit such as the one shown is that a spark or arc forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great deal of energy is released in a very short period of time. It is not at all unusual for the switch contacts to burn or melt under such circumstances.
Time constants play an important part in numprous devices, such as electronic keys, timing and control circuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters. In nearly all such applications a capacitance-resistance ($C R$) time constant is involved, and it is usually necessary to know the voltage across the capacitor at some time interval larger or smaller than the actual time constant of the circuit as given by the formula above. Fig. 2-22 can be used for the solution of such problems, since the curve gives the voltage across the capacitor, in terms of percentage of the initial charge, for percentages between 5 and 100 , at any time after discharge begins.

Example: A 0.01- $\mu \mathrm{f}$. capacitor is charged to 150 volts and then allowed to discharge through a $0.1-m e g o h n$ resistor. How long will it take the voltage to fall to 10 volts? In percentage, $10 / 150=6.7 \%$. From the chart, the factor corresponding to 6.7% is 2.7 . The time constant of the eircuit is equal to $\mathrm{CR}=0.01 \times 0.1=$ 0.001 . The time is therefore $2.7 \times 0.001=$ 0.0027 second, or 2.7 milliseeonds.

Example: An $R C$ circuit is desired in which the voltage will fall to 50% of the initial value in 1 second. From the chart, $t / C R=0.7$ at the 50%-voltage point. Therefore $C R=t / 0.7$ $=1 / 0.7=1.43$. Any combination of resistance and capacitance whose product $(R$ in merohms and C in microfarads) is etpual to 1.43 can be used; for example, C could be 1μ. and h 1.43 megohnas.

Alternating Currents

PHASE

The term phase essentially means "time," or the time interval between the instant when one thing occurs and the instant when a second related thing takes place. When a baseball pitcher throws the ball to the catcher there is a definite interval, represented by the time of flight of the ball, between the act of throwing and the act of catching. The throwing and catching are "out of phase" because they do not occur at exactly the same time.

Simply saying that two events are out of phase does not tell us which one occurred first. To give this information, the later event is said to lag the carlier, while the one that occurs first is said to lead. Thus, throwing the ball "leads" the catch, or the catch "lags" the throw.

In a.c. circuits the current amplitude changes continuously, so the concept of phase or time becomes important. Thase can be measured in

Fig. 2-2.3 - An a.c. cycle is divided off into 360 degrees that are used as a measure of time or phase.
the ordinary time units, such as the second, but there is a more convenient method: Since each a.c. cycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. Using

Fig. 2-24-When two waves of the same frequency start their cyeles at slightly different times, the time difference or thase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth eycle) later than wave A, and so lags 45 degrees behind A.
the cycle as the time unit makes the specification or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cyele. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length of time - from the instant the cycle began. There is no actual "angle" associated with an alternating current. Fig. 2-23 should help make this method of measurement elear.

Measuring Phase

To compare the phase of two currents of the same frequency, we measure between corresponding parts of cyeles of the two currents. This is shown in Fig. 2-24. The current labeled A leads the one marked B by 45 degrecs, since A 's cycles begin 45 degrees sooner in time. It is equally correct to say that B lags A by 45 degrees.

Two important special cases are shown in Fig. $2-25$. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just onequarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completely out of phase.

The waves shown in Figs. $2-2 \cdot 4$ and $2-25$ could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage while B represented
current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, because adding any number of sine waves of the same frequency always gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next section. Practically, it is often difficult to obtain a purely resistive circuit at radio frequencies, because the

Fig. 2-25-1 Two important special cases of phase difference. In the upper drawing, the phase difference between A and B is 90 degrees; in the lower drawing the phase differenee is 180 degrees.
reactive effects become more pronounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.c. of any frequency as it is for d.c.

REACTANCE

Alternating Current in Capacitance

Suppose a sine-wave a.e. voltage is applied to a capacitor in a circuit containing no resistance, as indicated in Fig. 2-26. In the period OA, the applied voltage increases from zero to 38 volts; at the end of this period the capacitor is charged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, 33 volts additional. In this interval a smaller quantity of charge has been added than in $O .1$, because the voltage rise during interval $A B$ is smaller. Consequently the average current during $A B$ is smaller than during 0.1 . In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase during $I B$, so the quantity of eleetricity added is less: in other words, the average current during interval $B C$ is still smaller. In the fourth interval, CD, the voltage inereases only 8 volts; the
charge added is smatler than in any preceding interval and therefore the current also is smaller.

Thus as the instantaneous value of the applied voltage increases the current decreases.

By dividing the first quarter evele into a very large number of intervals it could be shown that the current charging the capacitor has the shape of a sine wave, just as the applied voltage does. The current is largest at the beginning of the cycle and beoomes zero at the maximum value of the voltage (the capacitor cannot be charged to a higher voltage than the maximum applied, so no further current can flow) so there is a phase

Fif. 2.26 - Voltage and current phase relationships when an alternating voltage is applied to a condenser.
difference of 90 degrees between the voltage and current. During the first quarter rycle of the applied voltage the current is flowing in the normal direction through the cireuit, since the catpacitor is being charged. Hence the eurrent is positive during this first quarter cyele, as indicated by the dashed line in Fig. 2-26.

In the second quarter eyele - that is, in the time from l) to H, the voltage applied to the eapacitor decreases. During this time the capacitor loses the charge it acequired during the first quarter eyele. Applying the same reasoning, it is plain that the current is small in interval $D E$ and continues to increase during each succeeding interval. However, the current is flowing against the applied voltage because the rapacitor is discharging into the circuit. Hence the eurrent is negative during this quarter eyele.

The third and fourth quarter cycles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an allernating current flous "through" a capacitor when all a.c. voluge is applied to it. (Actually, current never flows "through" a condenser. It flows in the associated circuit because of the alternate charging and discharging of the caparitance.) As shown by Fig. 2-26, the current starts its cycle 90 degrees before the voltage, so the current in a capacitor leads the applied veltuge by 90 deyrees.

Capacitive Reactance

The amount of charge that is alternately stored in and released from the capacitor is proportional to the applied voltage and the capacitance. Consequently, the current in the circuit will be proportional to both these quantities, since current is simply the rate at which charge is moved. The
current also will be proportional to the frequency of the a.c. voltage, because the same charge is being moved hark and forth at a rate that is proportional to the number of ceveles per second.

The fact that the current is proportional to the applied voltage is important, becanse it is the same thing that Ohm's Law says about current flow in a resistive circuit. That being the case, there must be something in the caparitor that corresponds in a general way to resistance something that tends to limit the current that can flow when a given voltage is applied. The "something" clearly must include the effects of eapacitance and frequeney, since these ilso affect the amount of current that flows. It is called reactance, and its relationship to capacitance and frequency is given by the formula

$$
X_{C}=\frac{1}{2 \pi f C}
$$

where $\lambda_{0}=$ (apacitive reartance in ohms
$f=$ Frequency in cycles per second
$C^{\prime}=$ Capacitance in farads
$\pi=3.14$
Reartance and resistance are not the same thing, but because they have a similar currentlimiting effect the same unit, the ohm, is used for both. Cinlike resistance, reactance does not consume or dissipate power. The energy stored in the eapacitor in one quarter of the cyele is simply returned to the circuit in the next.

The fundamental units (cycles per second, farads) are too large for practical use in radio eircuits. However, if the caparitance is in microfartuds and the frequency is in mogucycles, the reactance will eome out in ohms in the formula.

Example: The reactance of a capacitor of 470
 (7.15 Mc .) is

$$
X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.000 .47}=47.4 \mathrm{ohms}
$$

Inductive Reactance

When an alternating voltage is applied to a circuit containing only inductance, with no resistance, the current always changes just rapidly enough to induce a back e.m.f. that equals and opposes the applied voltage. In Fig. 2-27, the evele is again divided off into equal intervals. dsuming that the eurrent has a maximum value of 1 ampere, the instantaneous current at the end of meh interval will be as shown. The value of the induced voltage is proportional to the rate at which the current changes. It is therefore greatest in the intervals 0.1 and $G H$ and least in the intervals (D) and $D E$. The induced voltage actually is a sine wave (if the current is a sine wave) as shown by the dashed eurve. The applied voltage, because it is always equal to and opposed by the induced voltage, is equal to and 180 degrees out of phase with the induced voltage, as shown by the second dashed curve. The result, therefore, is that the current flowing in an inductunce is 90 degrecs out of phase with the applied voltage, and lags behind the applied
voltage. This is just the opposite of the capacitive case.
Since the value of the induced e.m.f. is proportional to the rate at which the current changes, a small current changing rapidly (that is, at a high frequency) can generate a large back e.m.f.

Fig. 2.27 - Phase relationships hetwen voltage and current when an alternating voltage is applied to an inductance.
in a given inductance just ats well as a large current changing skwly (low frequency), (Bonsequently, the rurrent that flows through a given inductance will derrease as the frequency is ratised, if the applied e.m.f. is held eonstant. Also, when the applied voltage and frequency are fixed, the value of current required beoomes less as the inductance is made larger, berause the induced e.m.f. also is proportional to inductance.

When the frequency and indurtance are constant but the applied e.m.f. is varied, the necessary rate of current change (to induce the proper back e.m.f.) can be ohtained only if the amplitude of the current is directly proportional to the voltage. This is Ohm's Law again, and again the current-limiting effect is similar to, but not identical with, the effect of resistance. It is called inductive reactance and, like caparitive rouctance, is measured in ohnos. There is no energy loss in inductive roartance; the energy is stored in the magnetic field in one quarter eycle and then returned to the circuit in the next.

The formula for inductive reactance is

$$
X_{\mathrm{L}}=2 \pi f L
$$

where $X_{L}=$ Inductive reartance in ohms
$f=$ Frequency in eveles per second
$L=$ Inductance in hensys

$$
\pi=3.14
$$

Example: The reactance of a eoil having an inductanee of 8 henrys, at a frequency of 120 cyeles, is

$$
X_{\mathrm{L}}=2 \pi f L=6.28 \times 120 \times 8=6029 \text { ohms }
$$

In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenys and the frequency in kilocyrles, the conversion fartors for the two units cancel, and the formula for reactance may be used without first converting to fundamental units, similarly, no conversion is necessary if the inductance is in microhenrys and the frequency is in megacycles.

Example: The reactance of a 15 -mierohenry coil at a frequency of 14 Mc . is

$$
X_{L}=2 \pi f L=6.28 \times 14 \times 15=1319 \text { ohms }
$$

The resistance of the wire of which the coil is wound has no effect on the reactance, but simply arts as though it were a separate resistor connected in series with the coil.

Ohn's Law for Reactance

Ohm's Law for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$X=$ Reartance in ohms
The reartance may be either inductive or caparitive.

$$
\begin{aligned}
& \text { Example: If a current of } 2 \text { amperes is flowing } \\
& \text { through the capacitor of the previous example } \\
& \text { reactance }=47.4 \text { whms) at } 7150 \mathrm{ke} \text {, the volt- } \\
& \text { age drop across the eapacitor is } \\
& \qquad E=I X=2 \times 47.4=94.8 \text { volts }
\end{aligned}
$$

If 400 volts at 120 cyrles is applied to the 8 heury inductor of the previous example, the current through the roil will be

$$
I=\frac{E}{X}=\frac{400}{6029}=0.06 i 63 \mathrm{amp} .(66.3 \mathrm{ma} .)
$$

When the circuit consists of an inductance in series with a capacitance, the same current flows through both reactances. However, the voltage across the inductor leads the current by 90 de-

Fig. 2.28-Current and voltages in a circuit having inductive and capacitive reactances in series.
grees, and the voltage across the capacitor lags behind the current by 90 degrees. The voltages therefore are 180 degrees out of phase.

I simple circuit of this type is shown in Fig. 2-28. The same figure also shows the eurrent
(heavy line) and the voltage drops across the indurtance (E_{L}) and setparitance (E_{C}). It is assumed that X_{L} is larger than X_{C} and so has a larger voltage drop. Since the two voltages are completely out of phase the fold voltage (that is, the applied voltage $E_{\text {ac }}$) is equal to the difference between them. This is shown in the drawing as $E_{1}-E_{\mathrm{C}}$. Notice that, because E_{L} is larger than E_{C}, the resultant voltage is exactly in phase with E_{L}. In other words, the circuit as a whole simply acts as thongh it were am inductance -an inductance of smaller value than the actual inductance present, since the effert of the actual inductive reactance is reduced by the capacitive reactance in serios with it. If X_{c} is larger than X_{L}, the arrangement will bohave like a capacitance - again of smaller reactance than the actual capacitive reactance present in the circuit.
The "equivalent" or total reactance of any circuit rontaining inductive and capacitive re-
actances in series is equal to $X_{\text {L }}-X_{\text {c }}$. If there are several coils and condensers in series, simply add up, all the inductive reartances, then add np, all the capacitive reactancos, and then subtract the latter from the former. It is customary to call inductive ractance "positive" and rapacitive reartance "negative." If the equivalent or net reartane is positive, the voltage leads the current by 90 degrees: if the net reactance is negative, the voltage lags the current by 90 degrees.

Reactance Chart

The arcompanying chart, Fig. 2-29, shows the reactance of capacitanes from $1 \mu \mu \mathrm{f}$. to $100 \mu \mathrm{f}$. and the reactance of inductinces from $0.1 \mu \mathrm{~h}$. to 10 henrys, for frequencies between 100 eveles and 100 megacyeles per second. The approximate value of reactance can be read from the chart or where more exact values are needed, the chart will sorve as a check on the order of magnitude of

Fir. 2 -29 - Inductive and Caparitive Reactance \boldsymbol{z}. Frequency. Heavy lines represent multiples of 10 , intermediate fight lines multiples of $5:$ e.g.. the light line lietween $10 \mu h$, and $100 \mu \mathrm{~h}$. represents $50 \mu \mathrm{~h}$., the light line hetween 0.1 $\mu \mathrm{f}$, and $1 \mu \mathrm{f}$. ropresents $0.5 \mu \mathrm{f}$., etc. Intermediate values can le estimated with the help of the interpolation scale shown.

Jeartances outside the range of the ehart may be found by applying appropriate factork to values within the chart rance. For example. the reartance of 10 henrys at 6 t cyeles ran be found loy taking the reactance of 10 henrys at oti0 cycles and dividing by 10 for the 10 -times decrease in frequarnes.
reactances calculated from the formulas given ahove, and thus avoid "decimal-point errors".

Reactive Power

In Fig. 2-28 the voltage drop across the inductor is larger than the voltage applied to the circuit. This might seem to be an impossible condition, hut it is not; the explanation is that while energy is being stored in the inductor's magnetic field, energy is being returned to the circuit from the caparitor's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across reactances in series can be larger than the voltage applied to them.

In a resistance the flow of current causes heating and a power loss equal to $I^{2} R$. The power in a reactance is equal to $l^{2} X$, but is not a "loss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere instead of the watt. Reactive power is sometimes called "wattless" power.

IMPEDANCE

The fare that resistance, inductive reactance and eaparitive reactance all are measured in ohns does not indicate that they can be combined indiscriminately. Voltage and current are in phase in resistance, but differ in phase by a quarter eycle in reactance. In the simple circuit shown in F'ig. 2-30, for example, it is not possible simply to add the resistance and reactance together to obtain a quantity that will indicate the opposition offered by the combination to the flow of current. Inasmuch as both resistance and reactance

Fig. 2-30-Resistance and inductive reactance con. nected in series.
are present, the total effect can obviously be neither wholly one nor the other. In circuits containing both reactance and resistance the opposition effect is called impedance (Z). The unit of impedance is also the ohm.

The term "impedance" also is generalized to include any quantity that can be expressed as a ratio of voltage to current. l'ure resistance and pure reactance are both included in "impedance" in this sense. A circuit with resistive impedance is either one with resistance alone or one in which the efferts of any reactance present have been climinated. Similarly, a reactive impedance
is one having reactance only, A complex impedance is one in which both resistance and reactance effects are observable.

It can be shown that resistance and reactance can be rombined in the same way that a rightangled triangle is constructed, if the resistance is laid off to proper scale as the base of the triangle and the reactance is laid off as the altitude to the same seale. This is also indicated in Fig. 2-30. When this is done the hypotenuse of the triangle represents the impedance of the circuit, to the same scale, and the angle between Z and R (usually called θ and so indicated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. By geometry,

$$
Z=\sqrt{R^{2}+X^{2}}
$$

In the case shown in the drawing,

$$
Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{15,625}=125 \text { ohms. }
$$

The phase angle can be found from simple trigonometry. Its tangent is equal to X / R; in this case $X / R=100 / 75=1.33$. From trigonometric tables it can be determined that the angle having a tangent equal to 1.33 is approximately 5.3 degrees. In ordinary amateur work it is seldom necessary to give much consideration to the phase angle.

A circuit containing resistance and capacitance in series (Fig. 2-31) can be treated in the same way. The difference is that in this case the current

Fig. 2-31 - Resistance and capacitive reactance in series.
leads the applied e.m.f., while in the resistanceinductance case it lags behind the voltage.

If either X or R is small compared with the other (say 1/10 or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $R=1 \mathrm{ohm}$ and $X=10 \mathrm{ohms}$,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.05 \mathrm{ohms}
\end{aligned}
$$

Hence if either X or R is at least 10 times as large as the other, the error in assuming that the inpedance is equal to the larger of the two will not exceed $1 / 2$ of 1 per cent, which is usually negligible.

Since one of the components of impedance is reactance, and since the reactance of a given coil or capacitor changes with the applied frequency, impedance also changes with frequency. The change in impedance as the frequency is changed may be very slow if the resistance is considerably larger than the reactance. However, if the impedance is mostly reactance a change in frequeney will cause the impedance to change practically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Ohm's Law ean be applied to circuits containing impedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E. m.f. in volts
$I=$ Current in amperes
$Z=$ Impedance in ohms
lixample: Assume that the empr applied to the eircuit of $1 \mathrm{ig}, 2-30$ is 250 volts. Then

$$
I=\frac{E}{Z}=\frac{250}{125}=2 \text { amperes. }
$$

The same current is flowing in both R and X_{L}, and Ohm's Law as applied to either of these puantitie's says that the voltage drop across k *hould extual $/ h$ and the voltage drop aeross I_{2} should equal $/ X_{\text {L }}$. Nubstituting.

$$
\begin{aligned}
& E_{\mathrm{R}}=/ R=2 \times 75=1.50 \mathrm{volts} \\
& E_{\mathrm{K}_{\mathrm{L}}}=I \mathrm{~N}_{\mathrm{L}}=2 \times 100=200 \mathrm{volts}
\end{aligned}
$$

The arithmetical sum of these voltages is preater than the applied voltage. However, the actual sum of the two when the phase relationship is taken into aceount is erual to 250 volts r.m.s., as shown by l"ig. 2-32, where the instantaneous values are added thromghout the eyele. Whenever resistance and reactance are in series. the individual voltage drops always add un, arithmetically, to more than the applied voltage. There is nothing fietitions about these voltare Irons; they ean le measured readily by suitable instruments. It is simply an illustration of the importane of whase in a.e. cirenits.

Fig. 2-32 - Voltage drops aromod the circuit of Fig. -3-30. Beranse of the phase relationships, the applied voltage is lest than the arithmetical sum of the drops aeross the resistor and inductor.

A more complex series rirruit, containing resistance, inductive reactance and capacitive reactance, is shown in Fig. 2-33. In this rase it is necessary to take into arcount the fact that the phase angles between current and voltage differ in all three elements. Sine it is a series cireuit, the current is the same throughout. Considering first just the inductance and eapacitance and neglecting the resistance, the net reatance is $X_{\mathrm{L}}-X_{\mathrm{C}}=150-50=100$ ohms (inductive)

Fig. 2-33 - Resistance, inductive reactance, and capactive reactance in series.

Thus the impedance of a circuit containing resistance, inductance and mateitance in serios is

$$
Z=\sqrt{R^{2}+\left(X_{1}-X_{c}\right)^{2}}
$$

Fxamsle: In the circuit of Fig. 2-33. the impedanee is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{\mathrm{L}}-N_{C} \cdot\right)^{2}} \\
= & \sqrt{\left(2(0)^{2}+(150-50)^{2}\right.}=\sqrt{(2(1))^{2}+(100)^{2}} \\
& =\sqrt{10,400}=10)^{2} \text { ohms }
\end{aligned}
$$

The phase angle cat be found from \bar{N} / R, where $X=N_{L}-N_{c}$

Parallel Circuits

Nuppose that a resistor, cabacitor and coil are comected in parallel as shown in Fig. 2-3t and

Pig. 2-3: - R sisistance, inductance and capacitance in parallel. Instruments emmered as atown will read the total current, I, and the individual currents in the three branches of the circouit.
an a.e. voltage is applied to the combination. In any one brameh, the current will be unchanged if one or both of the other two branches is discommerted, so long as the applied voltage remains turchanged. Hence the earrent in each branch ean be calculated quite simply by the Ohm's Law formulas given in the preceding sections. The total current, I, is the sum of the currents through all three branches - not the arithmetical sum, but the sum when phase is taken into aroount.

The currents through the various branches will be as shown in Fig. 2-30, assuming for purposes of illustration that λ_{1} is smaller than λ_{0} and that Y_{C} is smaller than R, thus making I_{L} larger than I_{C}, and I_{C} larger tham $/_{R}$. The comrent through i leads the woltage by 90 deyrees and the current through L lags the voltage ly 90 degrees, so these two currents are 1 No degrees out of phase. Is shown at l , the total reative current is the difference letween $/ \mathrm{C}$ and I_{L}. This resultant current lags the voltage by 90 degrees, berause I_{i}, is larger than I_{C}. When the reartive current is added to $/ \mathrm{I}$, the total current, I, is as shown at F . It ean be seen that / lage the applied
voltage by an angle smaller than 90 degrees and that the total current, while loss than the simple arithnutioal sum (meglereting phase) of the three branch rurrents, is larger than the current through $I f$ alone.
The impedance looking into the parallel circuit from the source of volt age is equal to the applied voltage divided by the total or line current, I.

Fig, 2. 35- I'hage relationshipa between tranch corrents and applied voltage for the circuit of lig. 2 -3 3 . The total current through $L_{\text {, and }} \mathrm{C}$ in parallel ($/ \mathrm{L}+/ \mathrm{I}^{\circ}$) and the total current it the entire circuit (I) atso are shown.

In the case illustrated, I is greater than I_{k}, so the impedince of the circuit is less than the resistance of R. How much less depends upon the net reactive current flowing through L and (' in parallel. If X_{1}, and X_{c} are very nearly equal the not reactive current will be quite small hecause it is equal to the difference betwem two nearly equal currents. In such a case the impedance of the circuit will be almost the same as the resistance of R alone. On the other hand, if X_{L} and Nic are quite different the net reartive current can be relatively large and the total current also will be appreciably larger than I_{R}. In such a case the circuit impedance will be lower than the resistance of $l a$ alone.

Power Factor

In the circuit of Fig. 2-30 an applied e.m.f. of 250 volts results in a current of 2 amperes. If the circuit were purely resistive (rontaining no reactance this would mean a power dissipation of $2.50 \times 2=500$ watts. However, the cilcuit actually consists of resistance and reactance,
and only the resistance consumes power. The power in the resistance is

$$
I^{\prime}=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be $300,600=0.6$. Power factor is frequently expressed as a percentage; in this ease, the power factor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and amperes and has no direct relationship to the power artually used up or dissipated unless the power fartor of the circuit is known. The power factor of a purely resistive circuit is 100 per cent or 1 , while the power factor of a pure reartance is zero. In this illustration, the reactive power is

$$
\begin{aligned}
&\text { I'A (volt-amperes })=I^{2} X=(2)^{2} \times 100 \\
&=4(0) \text { volt-anuperes. } \\
& \text { Complex Waves }
\end{aligned}
$$

It was pointed out early in this chotpter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonie frequencies. When such a romplex voltage wave is applied to a cireuit containing reactance, the current through the cirenit will not have the same wave shape as the applicd voltage. This is because the reatatuce of an inductor and capacitor depend upon the applied frequency. For the second-hamonice component of a complex wave, the reactance of the inductor is twice and the reactance of the capacitor onehalf their respeetive values at the fundamental frequeney: for the third harmonic the inductor reuctance is three times and the capacitor reate ance one-third, and w on. Thus the eirenit impedance is different for each harmonic component.

Just what happens to the current wave shape depends upon the values of resistance and reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in series, the amplitudes of the harmoniss will be redured because the indurtive reactance increases in proportion to frequency. When capacitance and resistance tre in series, the harmonic current is likely to be atcentuated beatuse the capacitive reactane heromes lower as the frequency is raised. When both inductive and rapacitive reactance are present the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "ronstants," or the rolative values of L, C, and R. solected.

This property of nonuniform behavior with respect to fundamental and hamonies is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

Two coils having mutual inductance eonstitute a transformer. The coil connerted to the source of energy is called the primary coil, and the other is called the secondary coil.
The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. A transformer can be used only with a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in Fig. 2-36, the primary and secondary coils of a transformer may le wound on a core

Fig: 2-36 - The transformer. Power is transferred from the primary coil to the sccondary by means of the mak. netic field. The upper symbol at right indicates an ironcore transformer, the lower one an air-core transformer.
of magnetic material. This increases the inductance of the coils so that a relatively small number of turns may be used to induce a given value of voltage with a small current. I closed core (one having a contimuous magnetic path) such as that shown in Fig. $2-36$ also tends to insure that practically all of the field set up by the current in the primary coil will eut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this sertion is confined to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns on each coil. In the primary the induced voltage is
practically equal to, and opposes, the applied voltage, as deseribed in the section on inductive reactance. Hence,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{s}}} E_{\mathrm{p}}
$$

where $E_{s}=$ Secondary voltage
$E_{\mathrm{p}}=$ Primary applied voltage
$n_{\mathrm{s}}=$ Number of turns on secondary
$n_{\mathrm{p}}=$ Number of turns on primary
The ratio n_{k} / n_{p} is called the turns ratio of the transformer.

$$
\begin{aligned}
& \text { Example: A transformer has a primary of } 400 \\
& \text { turns and a secondary of } 2800 \text { turns, and } 115 \\
& \text { volts is applied to the primary, The secondary } \\
& \text { voltage will be } \\
& \qquad E_{s}=\frac{n_{*}}{n_{p}} E_{p}=\frac{2800}{400} \times 115=7 \times 115 \\
& \qquad=805 \text { volts } \\
& \text { Also. if } 805 \text { volts is applied to the } 2800-\mathrm{turn} \\
& \text { winding (which then becomes the primary) the } \\
& \text { output voltage from the to0-turn winding will } \\
& \text { be } 115 \text { volts. } \\
& \text { Either winding of a transformer can be used } \\
& \text { as the primary, providing the winding has } \\
& \text { pough turns (enough inductance) to induce a } \\
& \text { voltage equal to the applied voltage without } \\
& \text { requiring an excessive current flow, }
\end{aligned}
$$

Effect of Secondary Current

The current that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary inductance will be so large that the magnetizing current will be quite small, The power consumed by the transformer when the serondary is "open" - that is, not delivering power - is only the amount necessary to supply the losses in the iron core and in the resistance of the wire with which the prinary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetic field that opposes the field set up by the primary current. But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary must draw enough additional eurrent to set up a field exactly equal and opposite to the field set up by the secondary current.

In practical calculations on transformers it may be assumed that the entire primary current is caused by the secondary "load." This is justifiable because the magnetizing current should be very small in comparison with the primary "load" current at rated power output.

If the magnetie fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns must equal the secondary current multiplied by the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{s}}
$$

where $I_{\mathrm{n}}=$ Primary current
$I_{\mathrm{s}}=$ Secondary current
$n_{p}=$ Number of turus on primary
$u_{8}=$ Number of turns on serondary
Example: suppose that the secondary of the transformer in the previous example is delivering a current of 0,2 ampere to a load. Then the primary current will be
$I_{\mathrm{P}}=\frac{n_{8}}{n_{\mathrm{s}}} I_{n}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$. Althourlh the scondary voltage is higher than the primary voltagc, the secondary current is lower than the primary current, and by the same ratio.

Power Relationships; Efficiency

A transformer cambot create power; it can only transfer it and change the e.m.f. Hence, the power taken from the secondary cannot exced that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the coils and in the iron core, so in all practical cases the power taken from the souree will exceed that taken from the sccondary. Thus,

$$
P_{\mathrm{o}}=n I_{\mathrm{i}}
$$

where $P_{0}=$ Power output from secondary
$I_{\mathrm{i}}=$ Power input to primary
$n=$ Efficiency factor
The efficiency, n, always is less than 1. It is usually expressed is a percentage; if n is $0.6 \overline{3}$, for instance, the efficiency is $6 \overline{0}$ per cent.

Example: A transformer has an efficieney of $8 i^{\circ}{ }^{\prime}$ c at its full-load output of 150 watts. The power input to the primary at full secondary load will be

$$
P_{\mathrm{i}}=\frac{P_{\mathrm{o}}}{n}=\frac{150}{0.85}=176.5 \text { watts }
$$

A transformer is usually designed to have its highest efliciency at the power output for which it is rated. The efficiency decreases with cither lower or higher outputs. (In the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined by its own losses, because these heat the wire and core and raise the operating temperature. There is a limit to the temperature rise that can be tolerated, hecause too-high temperature either will melt the wire or cause the insulation to break down. A transformer alwass can he operated at reduced output, even though the efficiency is low, berause the actual loss also will be low under such conditions.

The full-load efficiency of smatl power transformers such as are used in radio receivers and transmitters usually lies between about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small percentage of the total flux. This leakage flux causes an e.m.f. of self-induction; conse-
quently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit.

Fig. 2-37 - The equivalent cireuit of a transformer includes the effects of leakage inductance and resistance of hoth primary and secondary windings. The resistaner R_{c} is an equivalent resistance representing the eare losses, which are essentially constant for any given applied voltage and frequency. Since these are eomparatively small, their effect may be neglected in many approximate calculations.

It has, therefore, a certain reactance, depending upon the amount of leakige inductance and the frequency. This reactance is called leakage reactance.
Current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing current, hence it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the transformer windings also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably well-tesigned transformer, should not drop more than about 10 per cent from open-circuit conditions to full load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies because the leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{\mathrm{p}}=Z_{\mathrm{B}} N^{2}
$$

where $Z_{\mathrm{p}}=$ Impedance looking into primary terminals from source of power
$Z_{8}=$ Impedance of lond connected to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance comnected to the secondary of the transformer will be: transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (primary has $6 / 10$ as many turns as the secondary) and a load of 3000 ohms is connected to the secondary. The impedance looking into the primary then will be

$$
Z_{p}=Z_{0} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36
$$

$$
=1080 \text { ohms }
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.
The above relationship may be used in practical work even though it is based on an "ideal" trinsformer. Aside from the normal design requirements of reasomably low internal losses and low leakage reartance, the only requirement is that the primary have enough inductance to operate with fow magnetizing current at the voltage applied to the primary:

The primary impedance of a transformer as it appears to the sourse of power - is determined wholly by the load connerted to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the trinsformer is either poorly designed or is mot suited to the voltage and frerguenery at which it is leing used. Most transformers will operate guite well at voltages from slightly above to wedl below the design figure.

Impedance Matching

Many deviese require a specific value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transformer is used to change the actual load into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{p}}}}
$$

where $. V=$ Recuired turns ratio, secondary to primary
$Z_{8}=1$ mpedance of load connected to secondary
$Z_{\mathrm{p}}=$ Impedance required
Example: A vacmum-tube arf. amplifier reduires a load of soow ohms for optimum performance, and is to be connected to a londsuraker having an impedaner of 10 ohms. The turns ratio, secondary to primary, required in the coupling transformer is

$$
N=\sqrt{\frac{\overline{Z_{5}}}{\%_{0}}}=\sqrt{\frac{10}{5000}}=\sqrt{\frac{1}{5(n)}}=\frac{1}{22.2 .4}
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in general, idjusting the load impedance - by means of a transformer or otherwise - to a desired value. However, there is also another meaning. It is possible to show that any source of power will deliver its maximum possible output when the impedance of the load is equal to the internal imperdance of the souree. The impedance of the source is satid to be "matched" under this condition. The efficiency is only 50 per cent in such
a case; just as much power is used up in the souree as is delivered to the load. Because of the porm efficieney, this type of impedance matehing is limited to cases where only a small amount of power is available and heating from power loss in the source is not important.

Transformer Construction

Transformers usually are desirned so that the magnetic path around the core is as shot tos possible. A short magnetic path mems that the transformer will oprate with fewer turns, for a given applied voltage, than if the path were long. It also helps to reduce flux leakage and therefore minimizes leakage reactance. The number of turns required also is inversely proportional to the eross-sectional area of the core.

Two core shapes are in eommon use, as shown in Fig, 2-38. In the shell type both windings are placed on the imer leg, while in the sore typ.

Fig. 2-3B - Two common types of transformer construction. Core piofes are interleaved to provide a continuons magnetic path
the primary and secondary windings may be placed on separate logs, if desired. This is sometimes done when it is necessary to minimize capacitive effects between the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually silieon steel, called "transformer iron." The core is built up of laminations, insulated from ach other (by a thin coating of shellare, for example) to prevent the flow of eddy currents. The lamimations are interleaved at the ends to make the magnetic path as continuous as possible and thus reduce flux leakage.

The number of turns required on the primary for a given applied e.m.f. is determined by the size, shape and type of core material used, and the frequency, As a rough indication, windings of small power transfomers frefurntly have about six to eight turns per volt on a core of 1 -square-inch ross section and have a manotic path 10 or I' 2 inches in length. A longer path or smaller cross section requires more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin sheet of treated-paner insulattion between each laver. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-39; the principles just discussed apply equally well. A one-winding transformer is called an autotransformer. The current in the common section (A) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common sertion of the winding may be wound with comparatively small wire. This will be the ease only when the primary (line) and

Fig. 2.39-'The autotransformer is based on the trans. former principle, fut uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, so that the resultant current is the difference between them. The voltage across A is proportional to the turns ratio.
 scoondary (Ioad) voltages are not very different. The autotransformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts.

The Decibel

In most ratio communication the received signal is converted into sound. This being the ciser, it is useful to appraise signal strengths in torms of relative loudness as registered by the ear. A peruliarity of the ear is that an increase or decrease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is increased from 10 watts to 40 watts, he will also estimate that a 400 -watt signal is twice as loud as a 100 -watt signal. In other words, the human ear has a logarithmic response.

This fact is the hasis for the use of the rolative-power unit called the decibel. A change of one decibel (abbreviated db.) in the power levol is just detuetable as a change in loudness under ideal conditions. The mumber of decibels corresponding with a given power ratio is given by the following formula:

$$
D b_{.}=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithms (base 10) are used.

Voltage and Current Ratios

Note that the decibel is based on power ratios. Voltage or current ratios can be used, lout only when the impedance is the same for both values of voltage, or current. 'The gain of an amplifier camot be expressed correctly in db. if it is based on the ratio of the output voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or current ratios:

$$
\begin{aligned}
& I l_{.}=20 \log \frac{\Gamma_{2}}{\Gamma_{1}} \\
& \text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{aligned}
$$

Decibel Chart

The two formulas are shown graphically in Fig. 2-40 for ratios from 1 to 10 . Gains (increases) expressed in decibels may be added arithmetically; losses (decreases) may be subtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , while -6 db. means that the power has been divided by 4.

Fig. 2-40- Decibel chart for power, voltage and current ratios for power ratios of $1: 1$ to $10: 1$. In determining decibels for current or voltage ratios the currents (or voltages) being compared must he referred to the same value of impedance.

The chart may be used for other ratios by adding (or subtracting, if a loss) 10 dth . cach time the ratio scale is multiplied by 10, for power ratios: or by adding (or subtracting) 20 dt . each time the scale is multiplied by 10 for voltage or current ratios. For example, a power ratio of 2.5 is 4 db . (from the chart). A power ratio of 10 times 2.5 , or 25 , is 14 db$)$. $(10+4)$, and a pow(or ratio of 100 times 2.5 , or 250 . is $24 \mathrm{db} .(20+4)$. I voltage or current ration of 4 is 12 db ., a voltage or current ratio of 40 is $32 \mathrm{db} .(20+12)$, and a voltage or current ratio of 400 is 52 db . $(40+12)$.

Radio-Frequency Circuits

RESONANCE

Fig. 2-4l shows a resistor, capacitor and inductor connected in series with a source of alternating current, the frequeney of which can be varied over a wide range. At some lou frequency the capacitive reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance

$F \mathrm{ig}$. 2-11-A series circuit containing L, C and R is "resonant" at the applicd frequency when the reactance of C is equal to the reactance of L.
of C or the resistance of R. (R is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of (${ }^{\prime}$ will be very small and the reartance of L will he very large. In either of these cases the current will be small, because the reactance is large at either low or bigh frequencies.

At some intermediate frequency, the reactances of C and L will be equal and the voltage drops arross the coil and capacitor will be equal and 180 degrees out of phase. Therefore they cancel cach other completely and the current flow is determined wholly by the resistance, R. It that frequency the current has its largest possible value, assuming the source voltage to be constant regardless of frequency. A series circuit in which the inductive and capacitive reactances are equal is said to be resonant.

Although resonance is possible at any frequency; it finds its most extensive application in radio-frequency cireuits. The reactive effects associated with even small inductances and capacitances would place drastic limitations on r.f. circuit operation if it were not possible to "cancel them out" by supplying the right amount of reartance of the opposite kind - in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X_{L}=X_{C}$. Substituting the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in cycles per second
$L=$ Inductance in henrys
C = Capacitance in farads
$\pi=3.14$
These units are inconveniently large for radio-
frequency circuits. A formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (ke.)
$L=$ Indurtance in microhenrys ($\mu \mathrm{h}$.)
${ }^{\prime}$ ' = Capacitance in micromicrofarads ($\mu \mu \mathrm{f}$.)
$\pi=0.14$
Example: The resonant frepuency of a scrics circuit containing a $\bar{j}-\mu \mathrm{h}$. inductor and a $3 \boldsymbol{j}$ $\mu \mu \mathrm{f}$. caparitor is

$$
\begin{aligned}
& =\frac{106}{2 \pi \sqrt{1 . C}}=\frac{10^{6}}{6.28 \times \sqrt{5 \times 35}} \\
& =\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{6}}{83}=12.050 \mathrm{kc} .
\end{aligned}
$$

The formula for resonant frequency is not afferted by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the rircuit of Fig. $2-41$ as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-42. The shape of the resonance curve at frequencies near resonance is determined by the ratio of reactance to rexistance.

If the reatance of either the coil or capacitor is of the same order of magnitude as the resistance, the current decreases rather slowly as the fre-

Fig. $2-42$ - Current in a serics ressonant circuit with various values of serics resistance. The valucs are arbitrary and would not apply to all eircuits, but represent a typical ease. It is assumed that the reactances (at the resenamt frequency) are 1000 ohms ((ninimumı $Q=10$). Note that at frequencies more than plus or minus ten per cent away from the resonant frequency the current is substantially unaffected by the resistance in the circuit.

Fi\&, 2-1.3 - Current in series-resonant circuits having different $0_{\text {s. }}$. In this graph the current at resonance is assumed to be the sanm in all cases. The lower the O, the more slowly the curront derreases as the applied frequency is moved away from resonance.
queney is moved in either direction away from resonance. Such a curve is said to be broad. On the other hand, if the reactance is considerably larger than the resistance the eurrent decreases rapidly as the frequency moves away from resonance and the circuit is said to be sharp. A sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite close to resonance; a broad circuit will respond almost equally well to a group or band of frequencies contering around the resonant frequency.

Both types of resonance curves are useful. A sharp circuit gives good selectivity - the ability to respond strongly (in terms of current amphitude) at one desired frequency and discriminate against others. I broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Most diagrams of resonant circuits show only inductance and capacitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 Ne this resistance is mostly in the wire of the coil. Lhove this frequeney energy loss in the rapacitor (principally in the solid dielectric which must be used to form an insulating support for the capacitor plates) becomes appreciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design is to reduce the inherent resistance to the lowest possible value.

The value of the reactance of either the indurtor or capacitor at the resonant frequency of a series-resonant cireuit, divided by the resistance
in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

Where $Q=$ Quality factor
$X=$ Reactance of either coil or condenser, in ohms
$R=$ Resistance in ohms
Example: The inductor and capacitor in a series circuit each have a reactance of $3 \overline{0} 0$ ohms at the resonant fremency. The resistance is $\overline{5}$ olims. Then the Q is

$$
Q=\frac{V}{R}=\frac{350}{5}=70
$$

The effect of () on the sharpness of resonance of a circuit is shown by the courves of Fig. 2-43. In these curves the frequency change is shown in percentage above and below the resonant frequency. (\&s of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resonant frequency is inserted in series in a resonant circuit, the voltage that appears across either the inductor or rapacitor is considerably higher than the applied voltage. The eurrent in the cirouit is limited only hy the resistance and may have a relatively high value; however, the same current flows through the high reactances of the inductor and capacitor and causes large voltage drops. The ratio of the reactive voltage to the applied voltage is equal to the ratio of reactance to resistance. This ratio is the Q of the circuit. Therefore, the voltage across cither the inductor or capacitor is equal to ? times the voltage inserted in series with the circuit.

Example: The inductive reactance of a circuit is 200 ohms, the eapacitive reactane is 200 ohns, the resistance $\overline{5}$ ohns, and the applied voltage is 00 . The two reactances eancel and there will be but 5 ohnis of pure rasistanee to limit the current flow. Thus the current will be $50 / 5$, or 10 amperes. The voltage developed across cither the inductor or the capacitor will be equal to its reactance times the current, or $200 \times 10=2000$ volts. An alternate method: The Q of the circuit is $X / R=200 / 5=40$. The reactive voltage is ellual to $\&$ times the applied voltage, or $40 \times 50=2000$ volts.

Parallel Resonance

When a variable-frequeney source of constant voltage is applied to a parallel circuit of the type shown in Jig. 2-44 there is a resonance effeet similar to that in a series cirenit. I lowever, in this case the "line" current (measured at the point indicated) is smallest at the frequency for which the inductive and capacitive reactances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through C, so that only the current taken by R flows in the line. At frequencies belou resonance the eurrent through L is larger than that through ($\%$, becanse the reattance of L is smaller and that of C higher at low frequencies; there is only partial cancellation of the two reactive
currents and the line current therefore is larger than the current taken by R alone. At frequencies above resonance the situation is reversed and more current flows through (than through L, so the line current again incretses. The current at resonance, being determined wholly by R, will be small if R is large and large if R is smatl.

Fig. 2-44 - Circuit illustrating parallel resonance.
The resistance R shown in Fig. $2-44$ is not nepessarily an actual resistor. In most cases it will be an "equivalent" resistance that represents the energy loss in the cirruit. This loss can be inherent in the coil or caparitor, or may represent energy transferred to a load by means of the resonant circuit. (For example, the resonant circuit inay be used for transferring power from a vacuum-tube amplifier to an antenna system.)

Parallel and serios resonant circuits are quite alike in some respects. For instance, the eircuits given at A and B in Fig. 2-45 will behave identically, when an external voltage is applied, if (1) L and C are the same in both cases; and (2) R_{p}

Fig. 2.45-Series and parallel equivalents when the two circuits are resonant. The series resistor, R., in in can be replaced lyy an equivalent parallel resistor, R_{3}, in B, and vice versa.
multiplied by R_{s} equals the square of the reactance (at resonance) of either L or C. When these conditions are met the two circuits will have the same (2s. (These statements are approximate, but are quite accurate if the Q is 10 or more.) The circuit at A is a series circuit if it is viewed from the "inside" - that is, going around the loop formed by L, C and R - so its (Can be found from the ratio of N to R_{s}.

Thus a circuit like that of Fig. 2-45A has an equivalent parallel impedance (at resonance) equal to R_{p}, the relationship between R_{s} and R_{p}, being as explained above. Although R_{p} is not an actual resistor, to the source of voltage the parallel-resonant circuit "looks like" a pure resistance of that value. It is "pure" resistance because the induetive ind capmeitive eurrents are 180 degrees out of phase and are equal: thus there is no reactive current in the line. At the resonant
frequency the parallel impedance of a resonant. circuit is

$$
Z_{\mathrm{r}}=Q X
$$

where $Z_{r}=$ Resistive impedance at resonance
$Q=$ Quality factor
$X=$ Reactance (in ohms) of either the inductor or capacitor

Example: The parallel impedance of a circuit having a Q of 50 and having inductive and capacitive reactances of 300 ohms will be

$$
Z_{r}=Q . Y=50 \times 300=15,000 \text { ohms }
$$

At frequencies off resonance the impedance is no longer purely resistive because the indurtive

Fig. 2.46 - Relative impedance of parallel-resonant circuits with different $O s$. These curves are similar to those in Fig. --12 for current in a seriesoresonant circuit. The effect of Q on impedance is most marked near the: resonatut frequency.
and capacitive currents are not equal. The offresonant impedance therofore is complex, and is low or than the resonant impedance for the reasons previously outlined.

The higher the Q of the cireuit, the higher the parallel impedanere. (urves showing the variation of impedaner (with frequeney) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-46 is a set of such curves.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for Qs of 10 or more. When the (d is below 10 , resonance in a paraliel circuit having resistance in series with the coil, as in lig. $2-45.1$, is not so easily defined. There is a set of values for L and (' that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Another set of values for L and C will make the parallel impedance a maximum, but this maximum value is not a pure resistance. Wither
condition could be called "resonance," so with low-(Q eircuits it is necessary to distinguish between maximum impedance and resistive impedance parallel resonance. The difference hetween these L and r ' values and the equal reactandes of a series-resonant circuit is appreciable when the Q is in the virinity of 5 , and becomes more marked with still lower Q values.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the circuit itself, It frequencies below : 30 Mc . most of this resistance is in the coil. Within limits, increasing the number of turns on the coil increases the reactance fastor than it raises the resistance, so roils for circuits in which the () must be high may have reartances of 1000 ohms or more at the frequency under consideration.
llowever, when the rimonit delivers energy to a load (as in the case of the resonant rireuits used in transmitters) the energy consumed in the circuit itself is usually negligible eompared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-47. A , where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is at least ten times as great as the power lost in the inductor and caparitor, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedinne of the combined circuit is equal to the load resistance. Inder these conditions the Q of a parallelresonant circuit loaded by a resistive impedance is

$$
Q=\frac{R}{X}
$$

where $Q=$ Quality factor
$R=$ Parallel load resistance (ohms)
$\lambda=$ Reactance (ohms) of either the inductor or capacitor
Example: A resistive Joad of 3000 ohtus is connected across a resonant circuit in which the inductive and caparitive reactances are each 2.50 chms. The circuit Q is then

$$
Q=\frac{k}{X}=\frac{30000}{250}=12
$$

Fig. $2.47 \ldots$ The equivalent circuit of a resonant circuit delivering power to a load. The resistor K represents the load resistance. It 13 the load is tapped across part of L, which ley transformer action is equivalent to using a higher load resistance acrosis the whole circuit.

The "effertive" Q of a cireuit loaded by a parallel resistane beromes higher when the reantances are decreased. I cirrouit lowded with a relatively fow resistance (a few thousand ohmes) must have low-reactance elements (large capaci-
tance and small inductance) to have reasonably high Q.

Impedance Transformation

An important application of the parallelresonant circuit is as an impedance-matching device in the output circuit of a vacuum-tube r.f. power amplifier. As described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and set of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is considerably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may be tapped across part of the coil, as shown in Fig. $2-4713$. This is equivalent to connecting a higher value of load resistance across the whole circuit, and is similar in principle to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux lines do not cut every turn of the coil. I desired reflected impedance usually must be obtained by experimental adjustment.

When the load resistance has a very low value (say below 100 ohms) it may be connected in series in the resomant circuit (as in Fig. 2-45.1, for example), in which case it is transformed to an equivalent parallel impedance as previously deseribed. If the Q is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{\Lambda^{2}}{R}
$$

where $Z_{r}=$ Resistive impedince at resonance
$X=$ Reactance (in ohms) of either the coil or condenser
$R=$ Loud resistance inserted in series
If the Q is lower than 10 the reactance will have to he aljusted somewhat, for the reasons given in the discussion of low-() circuits, to obtain a resistive impedance of the desired value.

Reactance Values

The charts of Figs. 2-48 and 2-49 show reactance values of inductances and eapacitances in the range commonly used in r.f. tuned circuits for the amateur bands. With the exception of the $3.0-4$ Me. hand, limiting values for which are shown on the charts, the change in reatetance over a band, for either inductors or capacitors, is small enough so that a single curve gives the reactance with sufficient accuracy for most practical purposes.

L/C Ratio

The formula for resonant frequency of a circuit shows that the same frequency always will be olvained so long as the product of L and C^{\prime} is constant. Within this limitation, it is evident that L can be large and ('small, L small and ('large, ete. The relation between the two for a fixed frequency is called the L / C ratio. A high- C circuit

Fig. 2-AB - Keactance chart for inductance values commonly used in amateur bands from 1.75 to 290 Mc .
is one that has more capacitance than "normal" for the frequence; a low-C eireuit one that has less than normal capacitance. These terms depend to a considerable extent upon the particular application considered, and have no exart numerical meaning.

LC Constants

It is frequently convenient to use the numerical value of the $L C$ constant when a number of caleu-

Fig. $2-19$ - Reactance chart for capacitance values commonly used in amateur hands from 1.65 to 220 Mc .
lations have to be made involving different L / C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C^{\prime}=\frac{2 \pi, 3,30}{f^{2}}
$$

where $L=$ Inductance in micohenrys (μ h.)
$C=$ (apacitance in micromicrofarads ($\mu \mu \mathrm{f}$.)
$f=$ Frequency in megarycles
Example: Find the inductance reguired to resonate at 3650 ke . (3.6 .5 Mc .) with capacitances of $25,50,100$, and $500 \mu \mu$. 'The $/ . C$ constant is

$$
L C^{\prime}=\frac{2.5 .3330}{(3.65)^{2}}=\frac{2.5 .330}{13.3 .7}=1900
$$

With $\quad 2 i \mu \mu \mathrm{f}, L_{0}=1900 / \mathrm{C}=1900 / 25$

$$
=76 \mu \mathrm{~h} .
$$

$50 \mu \mu \mathrm{f}, ~ L=1900 / \mathrm{C}=1900 / 30$
$=38 \mu \mathrm{~h}$,
$100 \mu \mu \mathrm{f}, L=1900 / C=1900 / 100$
$=19 \mu \mathrm{~h}$.
$500 \mu \mu \mathrm{f} . L=1900 / \mathrm{C}=1900 / 500$ $=3.8$ ulı.

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferred from one to the other. The circuit delivering power is called the primary cirruit: the one receiving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the ease in receiver circuits) or the scoondary may simply act as a medium through which the power is transferred to a load. In the latter case, the coupled circuits may ant as a radio-frequency impedance-matching device. The matching can be accomplished by adjusting the loarling on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling between two resonant circuits is through a circuit element common to both. The three variations of this type of couphing shown at 1,13 and C of Fig. $2-50$, utilize a common inductance, wapitance and resistance, respectively, Current circulating in one $L C^{\prime}$ branch flows through the eommon element ($L_{\mathrm{c}},\left({ }_{\mathrm{c}}^{\mathrm{c}}\right.$ or R_{c}) and the voltage developed arross this element causes current to flow in the other L L' branch.

If both circuits are resonant to the same frequency, as is usually the case, the value of coupling reartance or resistance required for maximum energy transfer is generally quite small compared with the other reactances in the circuits. The common-circuit-element method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at l) the coupling increases as the eapacitame of (c, the "coupling capacitor," is made greater (reartance of C_{e} is decreased).

Fig. 2.50 - Four methods of circuit coupling.
When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the Q of the sece ondary circuit is at all high. For example, if the parallel impedance of the secondary dircuit is 100,000 ohms, a reactance of 10,000 ohms or so in the capacitor will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

Figs. 2-51 and 2-52 show indurtive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the

Fig. 2.51 - Single-tuned inductively acouphed circuits.
iron-core transformer, but because only a part of the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Two types of inductively-coupled circuits are shown in Fig. 2-51. Only one circuit is resonant. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit B is used prin-
cipally in transmitters, for coupling a radiofrequency amplifier to a resistive load.

In these eircuits the coupling between the primary and secondary coils usually is "tight" that is, the cocflicient of coupling between the coils is large. With very tight coupling either circuit operates nearly as though the device to which the untumed coil is connected were simply tapped across a corresponding number of turns on the tuned-circuit coil, thus either circuit is approximately equivalent to Fig. 2-47B.

By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected. In any case, the maximum energy transfer possible for a given coefficient of coupling is obtained when the reactance of the untuned coil is equal to the resistance of its load.

The Q and parallel impedance of the tumed circuit are reduced by coupling through an untuned coil in much the same way as by the tapping arrangement shown in Fig. 2-47B.

Coupled Resonant Circuits

When ihe primary and secondary circuits are both tuned, as in Fig. $2-52$, the resonance effects

Fig. 2-52 - Inductively-coupled resonant circuits. Circuit A is used for high-resistance loads (reactance of either L_{2} or (C2 conparable with the load resistance at the resonant frequency). Circuit \mathbf{B} is suitable for low resistance loads where the reactance of either L_{2} or C_{2} is of the same order as the toad resistance.
in buth rircuits make the operation somewhat more eomplicated than in the simpler circuits just considered. Inagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of each will be purely resistive. If the primary cireuit is comected to a source of r.f. energy of the resonant frequency and the secondary is then loosely coupled to the primary, a current will flow in the secondary circuit. In flowing through the resistance of the secondary circuit and any load that may be connected to it, the current causes a power loss. This power must come from the energy source through the primary circuit, and manifests itself in the primary as an increase in the equivalent resistance in series with the primary coil. Hence the Q and parallel impedance of the primary circuit are decreased by the
coupled secondary. As the coupling is made greater (without changing the tuning of either eircuit) the coupled resistance becomes larger and the parallel impedance of the primary continues to decrease. Also, as the coupling is made tighter the amount of power transferred from the primary to the secondary will increase to a maximum at one value of coupling, called critical coupling, but then decreases if the coupling is tightened still more (still without changing the tuning).

Critical eoupling is a function of the Qs of the two eircuits. A highor eoefficient of roupling is required to reath aritical coupling when the (as are low; if the Q s are high, as in receiving applicttions, a coupling coefficient of a few per cent may give critical conpling.

With loaded circuits sueh as are used in transmitters the () maty be too low to give the desired power transfer even when the coils are coupled as tightly as the physical construetion permits. In such case, inereasing the () of either circuit will be helpful, although it is generatly better to increase the () of the lower-() circuit rather than the reverse. The Q of the parallel-tuned primary (input) cireuit can be increased by decreasing the L / C ratio because, as shown in connertion with fig. 2-47, this circuit is in effect loaded by a parallel resistance (effect of coupled-in resistance). In the parallel-tuned secondary circuit, rig. $2-52.1$, the (Q can be increased, for a fixed value of load resistance, either by decreasing the L/C' ratio or by tapping the load down (see Fig. 2-49). In the series-tuned secondary circuit, Fig. 2-5213, the Q may be increased by increasing the $L_{\text {, (' ratio. There will generally be no difficulty in }}$ securing sufficient coupling, with practicable coils, if the product of the $Q s$ of the two tuned cireuits is 10 or more. A smaller product will suffice if the coil construction permits tight eoupling.

Selectivity

In Fig. 2-51 only one circuit is tuned and the selectivity eurve will be essentially that of a single resonant circuit. As stated, the effective Q depends upon the resistance comected to the untuned eoil.

In Fig. '2-52, the selectivity is the same as that of a single tuned cireuit having a (equal to the profluct of the Qs of the individual circuits - if the coupling is well below eritical (this is not the condition for optimum power transfer diseussed immediately above) and both circuits are tuned to resonance. The Qs of the individual circuits are affected by the degree of coupling, because each couples resistance into the other; the tighter the coupling, the lower the individual Qs and therefore the lower the over-all selectivity.

If both circuits are independently tuned to resonance, the over-all selectivity will vary about as shown in Fig. 2-5.3 as the coupling is varied. With loose coupling, A, the output voltage (across the secondary circuit) is small and the selectivity is high. Is the coupling is increased the secondary voltage also increases until critieal

Fig. 2.53 - Showing the effert on the oulput voltage from the serondary cireuit of changing the coefficient of coupling between two resmant eirenits independently tuned to the same frequeney. The voltage applied to the primary is held constant in anplitude while the fre. quency is varied, and the output voltage is measured across the secondary.
coupling, B, is reached. It this point the output voltage at the resonant frequency is maximum but the selectivity is Iower than with looser coupling. At still tighter eoupling, C, the output voltage at the resonant frefuency deereases, but as the frequency is varied rither side of resonance it is found that there are two "humps:" to the curve, one on either side of resonance. With very tight coupling, D, there is a further derease in the output voltage at resonance and the "humps" are farther away from the resomant frequency. Curves such as those at ($'$ and $/ 5$ are called flattopped because the output valtage does not change: much over an appreciable band of frequencies.

Note that the off-resoname humps have the same maxinum value as the resonant out put voltage at critioal coupling. These humps are caused by the fact that at frequencies off resonanee the seeondary cirenit is reactive and couples reactance as well as resistance into the primary. The coupled resistance decreases off resonanoe, and each hump represents a new eondition of critical coupling at a frequency to which the primary is tuned by the additional oopledin reactanee from the secondary.

Band-Pass Coupling

Over-toupled resonant circuits are useful where substantially uniform output is desired over a continuous band of frequencies, without readjustment of tuning. The width of the flat top of the resonance curve depends on the (2s of the two rimuits as well as the tight ness of coupling; the frequency separation between the humps, will increase, and the eurve beeome more flat-lopped, as the ()s are lowered.

Band-pass opetation also is secured by tuning the two cireuits to slightly different frequencies, which gives a double-humped resonance curve even with loose eoupling. This is called stagger tuning. However, to secure adequate power transfer over the frequeney band it is usually necesisary to use tight eoupling and experimentally adjust the circuits for the desired performance.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in Iיig. e-j.t. This gives the effect of indurtive coupling between two coils
that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two coils coupled by a link comnot be made as great as if the coils themselves were coupled. This is because the crefficient of coupling between aircore coils is considerably less than 1 , and since there are two coupling points the over-all coupling

Fig. 2-54 - link coupling. The mutual inductances at both ends of the link are equivalent to mutual inductance between the tuned circuits, and serve the same purpose.
coefficient is less than for any poir of coils. In practice this need not be disadvantageous because the power transfer can be made great enough by making the tuned circuits sufficiently high-(). link coupling is convenient when ordinary inductive coupling would be impracticable for constructional reasons.

The link coils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the cocfficient of coupling is relatively independent of the number of turns on either coil; it is more important that both link coils should have about the same inductance. The length of the link between the coils is not critical if it is very small compared with the wave length, but if the length is more than about one-twentieth of a wave length the link operates more as a tranmission line than as a means for providing mutual inductance. In such case it should be treated by the methods described in the chapter on Transmission Lines.

IMPEDANCE-MATCHING CIRCUITS

The coupling circuits discussed in the preceding section have been based either on inductive coupling or on coupling through a common circuit element between two resonant circuits. These are not the only circuits that may be used for transferring power from one device to another. There is, in fact, a wide variety of such circuits available, all of them being classified generally as impedance-matching networks. Two such net-
(A)

$$
\begin{aligned}
& x_{L}=\sqrt{R R_{i n}-R^{2}} \\
& x_{C}=\frac{R R_{i n}}{x_{L}}
\end{aligned}
$$

(B)

$$
x_{c}=R \sqrt{\frac{R_{\text {in }}}{R-R_{\text {in }}}}
$$

$$
X_{L}=\frac{R R_{i n}}{X_{c}}
$$

Fig. 2-55 - The I. network for transforming a desired resistive load, K, into a desired value of resiatance. R_{N}. (A) is for transforming to a higher value of resistance, (iB) for transforning to a lower valuc.
works frequently used in amateur equipment are the L network and the pi network, shown in the form commonly used in Figs. 2-55 and 2-56.

The L Network

The L network is the simplest possible in-pedance-matching circuit. It closely resembles an ordinary resonant circuit with the load resistance, R, Fig. 2-55, either in series or parallel, The arrangement shown in Fig. 2-55A is used when the desired impedance, R_{IN}, is larger than the actual load resistance, R, while Fig. 2-5515 is used in the opposite case. The design equations for each case are given in the figure, in terms of the circuit reactances. The reactances may be converted to inductance and capacitance by means of the formulas previously given or taken directly from the charts of Figs. 2-48 and 2-49,

When the impelance transformation ratio is large - that is, one of the two impedances is of the order of 100 times (or more) larger than the other - the operation of the circuit is exactly the same as previously discussed in connection with impedance transformation with a simple $L C$ resonant circuit.

The Q of an L network is found in the same way as for simple resonant circuits. That is, it is equal to X_{L} / R or $R_{1 N} / N_{C}$ in Fig. 2-55A, and to $X_{\mathrm{L}} / R_{\mathrm{LN}}$ or $R / \mathrm{X}_{\mathrm{C}}$ in Fig. 2-55B. The value of Q is determined by the ratio of the impedances to be matched, and cannot be selected independently. In the equations of Fig. 2-55 it is assumed that both R and $R_{\text {in }}$ are pure resistances.

The Pi Network

The pi network, shown in Fig. 2-56, offers more flexibility than the L since the operating Q may

$$
\begin{aligned}
& X_{C_{1}}=\frac{R_{1}}{Q} \\
& X_{C_{2}}=R_{2} \sqrt{\frac{R_{1} / R_{2}}{Q^{2}+1-\left(R_{1} / R_{2}\right)}} \\
& X_{L}=\frac{Q R_{1}+\left(R_{1} R_{2} / X_{C_{2}}\right)}{Q^{2}+1}
\end{aligned}
$$

Fip. 2-56 - The pi network, for matching any two values of purely resistive impedances, R_{1} and K_{2}. In the definition of the O of the network it is assumed that R_{1} is the higher of the two resistances, and should be so chosen in using the equations.
be chosen practically at will. The only limitation on the circuit values that may be used is that the reactance of the serics arm, the inductor L in the figure, must not be greater than the square root of the product of the two values of resistive impedance to be matched. As the circuit is applied in amateur equipment, this limiting value of reactance would represent a network with an undesirably low operating (Q, and the circuit values ordinarily used are well on the safe side of the limiting values.

In its principal applieation as a "tank" eircuit matching a transmission line to a power amplifier tube, the load R_{2} will generally have a fairly low value of resistance (up to a few hundred ohms) while R_{1}, the required load for the tube, will be of the order of a few thousand ohms. In such a case the Q of the circuit is defined as $R_{1 /} X_{\mathrm{Cl}}$, so the choice of a value for the operat$\operatorname{ing} Q$ immediately sets the value of X_{Cr} and hence of C_{1}. The values of $X_{C_{2}}$ and X_{L} are then found from the equations given in the figure.

Craphical solutions of these equations for the most important practical cases are given in the chapter on transmitter design in the discussion of plate tank circuits. The L and C values may be calculated from the reactances or read from the charts of Figs, 2-48 and 2-19.

- PIEZOELECTRIC CRYSTALS

A number of erystalline substances found in nature have the ability to transform mechanical strain into an electrical charge, and vice versa. This property is known as piezoelectricity. A small plate or bar cut in the proper way from a quartz crystal and plared betwen two conducting electrodes will be meehanieally straned when the electrodes are eonnected to at source of voltage. Conversely, if the erystal is squeezed between two electrodes a voltage will be developed between the dectrodes.

Piezoclentric crystals can be used to transform mechanical energy into electrical energy, and vice versa. They are used in mierophones and phonograph piek-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystals of loochelle salts are used for these purposes.

Crystal Resonators

Crystalline plates also are mechanical resonators that have matural frequencies of vibration ranging from a few thousand oyeles to several megaeycles per seeond. The vibration frequency depends on the kind of erystal, the way the plate is cut from the natural crystal, and on the dimensions of the plate. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from 5 to 10 times the $Q s$ obtainable with good L (' resonant circuits.

Anatogies can be drawn between various mechanical properties of the erystal and the electrical characteristics of a tuned circuit. This leads to an "equivalent circuit" for the coystal. The electrical coupling to the crystal is through the electrodes between whieh it is sandwiched; these electrodes form, with the crystal as the dielectric, a small capacitor like any other catpacitor constructed of two plates with a dielectric between. The crystal itself is equivalent to a series-resonant cireuit, and together with the capacitance of the electrodes forms the equivatent circuit shown in Fig. 2-57. At frequencies of the order of 450 kc ., where erystals are widely used is resonators, the equivalent L may be several
henrys and the equivalent C only a few hundredths of a micromicrofarad. Although the

Fig. 2.57-Equivalent circuit of a crystal resonator. L, C and R are the clectrical equivalents of mechanieal properties of the erystal; C_{b} is the capacitance of the electrodes with the crystal plate between them.

equivalent R is of the order of a few thousind ohms, the reatance at resonance is so high that the () of the erystal likewise is high.

A circuit of the type shown in Fig. $2-57$ has a series-resonant frequeney, when viewed from the circuit terminals indicated by the arrowheads, determined by L and C only. At this frequency the cireuit impedance is simply equal to R, providing the reactance of C_{h} is lange compared with R (this is generally the case). The circuit also has a parallel-resonant frequency determined by L and the equivalent capacitance of C and \dot{C}_{1} in series. Since this equivalent capacitance is smaller than (${ }^{(}$alone, the parallel-resonant frequency is higher than the series-resonant frequency. The separation between the two resonant frequencies depends on the ratio of C_{b} to C, and when this ratio is large (as in the case of a crystal resonator, where (b will be a few $\mu \mu$. in the average case) the two frequencies will be quite close together. I separation of a kilocycle or less is typical of a quartz crystal.

Fig. 2.58- Reactance and resistance vs. frequency of a circuit of the type shown in Fig. 2-37. Actual values of reatance, resistance and the separation between the series. and parall-l-resonant frequencies, f_{1} and f_{2}, respectively, depend on the circuit constants.

Fig. 2-58 shows how the resistance and reactance of such a cireuit vary as the applied frequeney is varied. The reactance passes through zero at both resonant frequencies, hut the resistance rises to a large value at parallel resonance, just as in any tuned cireuit.

Quartz crystals may be used either as simple resonators for their selective properties or as the frequency-controlling elements in oseillators as described in later chapters. The series-resonant frequency is the one principally used in the former case, while the more common forms of oscillator circuit use the parallel-resonant frequency.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio circuits are built around vacuum tubes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents moct somewhere in the rircuit.

In this mecting, the a.c. and d.c. are actually combined into a single current that "pulsates" (at the a.c. frequency) about an average value equal to the direct current. This is shown in Fig. 2-59. It is convenient to consider that the alter-

Fig. 2.59 - 1'ul. sating d. c., composed of an alter. nating current or voltage superime phesed on a steady direct current or voltage.
nating current is superimposed on the direct current, so we may look upon the actual current as having two components, one d.c. and the other a.ce.

In an alternating current the positive and negative alternations have the same average amplitude, so when the wave is superimposed on a direct current the latter is alternately increased and decreased by the same amount. There is thus no average change in the direct current. If a d.c. instrument is being used to read the current, the reading will be exartly the same whether or not the a.e. is superimposed.

However, there is actually more power in such a combination current than there is in the direct current alone. This is hecause power varies as the square of the instantaneous value of the current, and when all the instantaneous squared values are averaged over a cycle the total power is greater than the d.c. power alone. If the a.c. is a sine wave having a peak value just equal to the d.e., the power in the circuit is $1 . \overline{5}$ times the d.e. power. An instrument whose readings are proportional to power will show such an increase.

Series and Parallel Feed

Fig. 2-ti0 shows in simplified form how d.c. and a.c. may he combined in a vacuum-tube circuit. In this case, it is assumed that the a.e. is at radio frequency, as suggested by the coil-andeapacitor tuned circuit. It is also assumed that r.f. current can easily flow through the d.c. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tuned circuit, and d.c. supply all are connected in series. The
direct current flows through the r.f. coil to get to the tube; the 1.f. current generated by the tube flows through the d.c. supply to get to the tuned circuit. This is series feed. It works because the impedance of the d.c. supply at radio frequencies is so low that it does not affert the flow of r.f. current, and because the d.c. resistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead goes to the tube through a second coil, RFC (radio-frequency choke). Direct current cannot flow through L because a blocking capacitance, C, is placed in the circuit to prevent it. (Without C, the d.c. supply would be shortcircuited by the low resistance of L.) On the other hand, the r.f. current generated by the tube can easily flow through C to the tuned circuit because the capacitance of C ' is intentionally chosen to have low reactance (compared with the impedance of the tuned circuit) at the radio frequency. The r.f. current cannot flow through the d.e. supply because the inductance of $R F C$ is intentionally made so large that it has a very high reartance at the radio frequency. The resistance of $R F C$, however, is too low to have an appre-

Fig. 2-60 - Illustrating series and parallel feed.
ciable effect on the flow of direct current. The two currents are thus in parailel, hence the name parallel feed.

Either type of feed may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes - are dangerous. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is often preferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

Bypassing

In the series-feed circuit just discussed, it was assumed that the d.c. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply, partly
hecause the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long comnecting wires oi leads. At radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" connection.

An actual circuit would be provided with a by-pass capacitor, as shown in Fig. 2-61. Cipacitor ${ }^{\prime}$ is chosen to have low reaptance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short connerting wires. Hence the r.f. current will tend to flow through it rather than through the d.e. supply.

To be effective, the reactance of the by-pass eapacitor should not be more than one-tenth of the impedance of the by-passed part of the cireuit. Very often the latter impedance is not known, in which ense it is desirable to nse the largest capacitance in the bypass that circumstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. cireuit such ats a power supply, an r.f. choke may be comnerted in the lead to the latter, as shown in Fig. 2-61.
The same type of bypassing is used when audio, froquencies are present in addition to r.f. Berause the reatance of a capacitor changes with frequency, it is readily possible to choose a capacitance that will represent a very low reactance at

Fig. 2.61-Typiral use of a by-pase capacitor in a series.feed eircuit.

radio frequencies but that will have such high reatance at andio frequencies that it is practically an open circuit. I caparitance of $0.001 \mu \mathrm{f}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of capacitance that is usable will be modified by the impedances concerned.) Br-pass capacitors also are used in audio circuits to carry the audio frequencies around a d.e. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was assumed that a capacitor hats only caparitance and that an inductor has only inductance. ['nfortunately, this is not strictly true. There is always a certain amount of inductunce in a conductor of any length, and a capacitor is bound to have a little inductance in addition to its intended capacitance. .Ilso, there is always capacitance between two conductors or between
parts of the same conductor, and thus there is appreciable capacitance between the turns of an inductance coil.

This distributed inductance in a celpanitor and the distributed capacitance in an inductor have important practical effects. Actually, every capacitor is a tuned eircuit, resonant at the frequency where its caparitance and distributed inductance have the same reactance. The same thing is true of a eoil and its distributed capacitance. At frequencies well below these natural resonances, the eapacitor will art like a normal capacitance and the coil will act like a normal inductance. Near the natural resonant points, the coil and capacitor act like self-tumed circuits. Ahove resonance, the capacitor ants like an inductor and the inductor acts like a capacitor. Thus there is a limit to the amount of eapacitane that can be used at a given frequency. There is a similar limit to the inductance that can be used. It audio frequencies, capacitances metsured in microfarads and inductances measured in henrys are practicable. . It low and medium radio frequencies, inductances of a few millihenrys and eapacitances of a few thousand micromicrofarads are the largest practicable. . It high ratio frequencies, usable inductance values drop to a few mierohenrys and capacitances to a few hundred micromicrofarads.
Distributed eapacitance and inductance are important not only in r.f. tuned circuits, but in bypassing and choking as well. It will be appreciated that a by-pass eapacitor that actually arts like an inductance, or an r.f. choke that acts like a low-reactance capacitor, eamot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a comnertion is said to be "grounded" it does not neressarily mean that it actually goes to earth. What it means is that an actual carth connection to that point in the eireuit should not disturb, the operation of the circuit in any way. The term also is used to indicate a "common" point in the circuit where power supplies and metallic; supports (such as a metal chassis) are electrically. tied together. It is general practice, for example, to "ground" the negative terminal of a d.e. powar supply, and to "ground" the filament or heater power supplies for vatuum tubes. since the cathode of a vacuum tube is a junction point for grid and plate voltage supplies, and since the various circuits connected to the tube elements: have at least one point comneeted to eathode. these points also are "returned to ground." "(iround is therefore a common reference point in the radio circuit. "(iromed potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may be either single-ended (unbalanced) or balanced.

In a single-ended circuit, one side of the circuit is comnected to ground. In a balanced circuit, the clectrical midpoint is connected to ground, so that the circuit has two ends each at the same voltage "above" ground.

Typical single-ended and balanced circuits are shown in lig. 2-62, R.f. circuits are shown in the upper row, while iron-core transformers (such

Balanceo Output
Fig. 2.62 - Single-ended and balanced circuits.
as are used in power-supply and audio circuits) are shown in the lower row. The r.f. cireuits may be balanced either by connerting the center of the coil to ground or by using a "balanced" or "split-stator" rapacitor and comecting its rotor to ground. In the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground connection.

Shielding

Two circuits that are physically near each other usually will be coupled to each other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Also, the magnetic field about the coil or wiring of one circuit can couple that circuit to a second through the latter's coil and wiring. In many
cases these unwanted couplings must be prevented if the circuits are to work properly.

Caparitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electrie field from the cireuit components does not penetrate the shield. A metallic plate, called a baffle shield, inserted between two components also may suffice to prevent electrostatic coupling botween them. It should be large cough to make the components invisible to each other.
similar metallic shielding is used at radio frequencies to prevent magnetic coupling. The shielding effect increases with frequeney and with the conductivity and thickness of the shielding material.

I rlosed shield is required for good magnetic shielding; in some rases separate shields, one about each eoil, may be required. The baffle shield is rathor ineffective for magnetio shielding, although it will give partial shielding if plared at right angles to the axes of, and between, the coils to be shielded from each other

Shielding a coil reduces its inductance, because part of its field is canceled by the shieid. Also, there is always a small amount of resistance in the shicld, and there is therefore an energy loss. This loss raises the effertive resistance of the coil. The decrease in inductance and increase in resistance lower the (Q) of the coil, but the reduction in inductance and Q will be small if the spacing between the sides of the coil and the shield is at least half the coil diameter, and if the spacing at the ends of the coil is at least equal to the coil diameter. The higher the conductivity of the shield material, the less the effect on the inductance and Q. Copper is the best material, but aluminum is quite satisfactory.

For good magnetic shielding at audio frequencies it is necessary to enclose the coil in a container of high-permeability iron or steel. In this case the shield can be quite close to the coil without harming its performance.

U.H.F. Circuits

RESONANT LINES

In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. The fact that an inductor has a certain amount of selforapacitance, as woll as some resistance, while a capacitor also possesses a small selfindurtance, can usually be disregarded.

At the very-high and ultrahigh frequencies it is not readily possible to separate these components. Also, the connecting leads, which at lower frequencios would serve merely to join the caparitor and coil, now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire,
yet even this single turn may have dimensions comparable to a wave length at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss be radiation may represent a major portion of the total energy in the rircuit.

For these reasons it is common practive to utilize resonant sections of transmission line as tuned circuits at frequencies above 100 Mc , or so, A quarter-wave-length line, or any odd multiple thereof, shorted at one end and open at the other exhibits large standing waves, as described in the ehapter on transmission lines. When a voltage of the frequency at which such a line is resonant is applied to the open end, the re-
sponse is very similar to that of a parallel resonant circuit. The equivalent relationships are shown in Fig. 2-6i3. At frequencies off resonance the line displays qualities comparable with the

ドig. 2.03 - Equivalent coupling cireuits for parallalline, coasial-line and conventional resonant circuits.
inductive and capacitive reactances of a conventional tuned circuit, so sections of transmission line can be used in much the same manner as inductors and capacitors.

To minimize radiation less the two conductors of a parablel-conductor line should not be more than about one-tenth wave length apart, the spacing being measured between the conductor aties. On the other hand, the spacing should not be less than about twice the conductor diameter bexause of "proximity effect," which eatuses eddy currents and an increase in loss. Above 300 Mr. it is difficult to satisfy both these requirements simultaneously, and the radiation from an open line tends to become excessive, reducing the $(Q$. In such case the coaxial type of line is to be preferred, since it is inherently shielded.
lepresentative methods for adjusting coaxial lines to resonance are shown in lig. 2 -64. At the left, a sliding shorting disk is used to reduce the

Fig, 2.6.t - Metaods of tuning roasial resonant lines.
effertive length of the line by altering the position of the short-cireuit. In the center, the same effect is arcomplished by using a telescoping tube in the end of the inmer conductor to vary its length and therehy the effective length of the line. At the right, two possible methods of using parallelplate caparitors are illustrated. The arrangement with the loading capacitor at the open end of the line has the greatest tuning effect per unit of capacitance; the alternative method, which is equivalent to tapping the condenser down on the line, has less effect on the Q of the circuit. Lines with eaparitive "loading" of the
sort illustrated will be shorter, physically, than an unloaded line resonant at the same frequener.

Two methods of tuning parallel-conductor lines are shown in Pig. 2-60. The sliding shortcircuiting strap can be tightened by means of screws and nuts to make good clectrical contact. The parallel-plate eapacitor in the werend drawing may be placed anywhere along the line, the tuning effect becoming less as the capacitor is located nearer the shorted end of the line. Although a low-capacitance variatble eapacitor of ordinary construction can be used, the circular-plate type shown is symmet-

rical and thus dues not unbalance the line. It also has the further advantage that no insulating material is required.

- wave guides

A wave guide is a conducting tube through which energy is transmitted in the form of clect romagnetic waves. The fube is not eonsidered as carrying a current in the same sonse that the wires of a two-conductor line do, but rather as a boundary which confines the waves to the enclosed spare. Skin effeet provents any clectromagnetic effects from being evident outside the guide. The energy is injeeted at one end, either through capacitive or inductive coupling or by radiation, and is reeceived at the other end. The wave guide then merely confines the energy of the fields, which are propagated through it to the receiving end by means of reflections against its inner walls.

Analysis of wave-guide operation is based on the assumption that the guide material is a perfect conductor of electricity. Typical distributions of electric and magnetio fields in a rectangular guide are shown in Fig, "- Z (6). It will be olserved that the intensity of the electric field is greatest (as imdionted by rloser sbaring of the lines of force) at the center along the x dimension, Fig. ?-6i613, diminishing to zero at the end walls. The latter is a necessary condition, since the existence of any electric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Modes of Propagation

Fig. 2-66 represents a rulatively simple distribution of the clectric and magnetic ficlds. There is in general an infinite number of ways in which the ficlds can arrange themselves in a
guide so long as there is no upper limit to the frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general groups. One group,

(A)
(B)

Fig. 2.66 - Fichd distribution in a rectangular wave gaide. The This, mode of propagation is depicted.
designated TM (transverse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of clectric field in that direction. The other type, designated TE (transverse electric) has the electric field entirely transverse, but has a component of magnetic fiold in the direction of propagation. TM waves are sometimes called E waves, and $T E$ waves are sometimes called $I /$ waves, but the $T M$ and $T E$ designations are preferred.

The particular mode of transmission is identified by the group, letters followed by two subseript numerals; for example, $T E_{1,0}$, $T M I_{1,1}$, etc. The number of possible modes inreases with frequency for a given size of guide. There is only one possible mode (catled the dominant mode) for the lowest frequency that can be transmitted. The dominant mode is the one generally used in practical work.

Wave-Guide Dimensions

In the rectangular guide the critical dimension is x in Fig. 2-66; this dimension must be more than one-half wave length at the lowest frequency to be transmitted. In practice, the y dimension usually is made about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same considera-
tions apply as in the rectangular case.
Wave-length formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectanyular	Circular
Cut-off wave length.	$2 x$	$3.41 r$
Longest wave length transmitted with little attenuation.	- $1.6 x$	$3.2 r$
Shortest wave length before next mode becomes possible.	- $1.1 x$	$2.8 r$

Cavity Resonators

Another kind of circuit particularly applicable at wave lengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

Typical shapes used for resonators are the eylinder, the rectangular box and the sphere, as shown in Fig. :-67. The resonant trequeney depends upon the dimensions of the cavity and the mode of owillation of the waves (rompar-

Fig. 2-67-Forms of cavity resonators.
able to the transmission modes in a wave guide). For the lowest modes the resonant wavelengths are as follows:

```
Cylinder.
2.61r
Square box
```



```
Sphere. ............................... . 2.28r
```

The resonant wave lengths of the eylinder and square box are independent of the height when the height is less than a half wave length. In other modes of oseillation the height must be a multiple of a half wave length as measured inside the cavity. A cylindrical cavity can be tuned by a sliding shorting disk when operating in such a mode. Other tuning methods include plaring adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the electric and magnetic fields can be varied.

A form of cavity resonator in practical use is the re-entrant cylindrical type shown in Fig. $2-68$. In construction it resembles a concentric line elosed at both ends with capacitive loading at the top, but the actual mode of oscillation may differ considerably from that occurring in
conxial lines. The resonant frequency of such a eavity depends upon the diameters of the two 'glinders and the distance d between the ends of the inner and outer eylinders.

CROSS-SECTIONAL VIEW
Fig. 2-68- Recentrant cylindrical cavity remonator.
Compared with ordinary resonant eircuits, cavity resonators have extremely high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can be secured with good design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coasial line, two methods for coupling to which are shown in Fig. 2-69. The probe shown at A is simply a short extension of the inner con-
ductor of the coavial line, so oriented that it is parallel to the electric lines of force. The loop shown at 13 is arranged so that it encloses some of the magnetic lines of foree. The point at which maximum coupling will be secured depends upon the particular mode of propatgation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

fig. 2-69 - Compling to wave guides and resonator-
Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the cleotric lines the coupling will be minimum; similarly, when the plane of the loop is parallet to the magnetic lines the coupling will have its least possible value.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frefurmedes is the transmission of sperech and musir, it would be very convenient if the audio spectrum to be tramsmitted could simply be shifted up to some radio freguency, transmitied ats radio waves, and shifted back down to the audio speretrum at the recoiving point. Suppose the audio signal to be tramsmitted by atdio is a pure 1000evele tonc, and we wish to transmit it at some frequeney around 1 Mc. ($1,000,(0) 0$ remes). Ohe bossible way might be to add $1,000,000$ curles and 1,000 reveles togethor, therebe ohtaining a radio frequency of $1,001,000$ eveles. No simple method for doing such a thing directly has ever been devised, although the rafect is ohtained and used in advanced communications technigues.

Actually, when two different frequencies are present simultaneously in an ordinary circuit (sperifically, one in which Ohm's Law holds) each hehaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will be the sum of the instantaneous values of the two at every instant. This is because there can be only one value of current or voltage at anv single point in a circuit at any instant. Fig. $9-70.1$ and I3 show two surh frequencies, and C shows the resultant. The antplitude of the $1,000,000$-eycle rurrent is not afferted be the presence of the 1000 -cycle current, hat merely has its axis shifted back and forth at the 1000 -cycle rate. In attempt to transmit such a combination as a radio wave would result simply
in the transmission of the $1,000,000-$ cyele fregueney, since the 1000 -eyole frequency retains its identity as an audio frequency and hence will not be radiated.

There are devieres, however, which make it possible for one frequency to control the amplitude of the other. If, for example, a 1000 -cyele tone is used to control a l-Me. signal, the maximum r.f. output will be obtained when the 1000-ryele signal is at the patk of one altermation and the minimum will oreur at the peak of the next alternation. The process is called amplitude modulation, and the effect is shown in Fig. Z - f (0)). The resultant signal is now entirely at radio frequency, but with its amplitude varying at the modulation rate (1000 (eydes). Rereiving equip)ment adjusted to reowe the $1,000,000-$ - rale ref. signal can reproduce these rhanges in amplitude, and thus tell what the audio signal is, through a process called detection or demodulation.

It might be assumed that the only radio frequency present in such a signal is the original $1,000,000$ eveles, but surh is not the rase. It will be found that two new frequencies have appeared. These are the sum $(1,000,0000+1000)$ and difference $(1,000,000-1000)$ frequencies, and henee the radio frequencios appearing in the eircuit after modulation are $999,000,1,000,000$ and 1,001,000 cycles.

When an audio frequency is used to control the amplitude of a radio frequency, the process is generally called "amplitude modulation," as

Fig. 2-70 - Annplitude-rs.-time and amplitude-rs.frequency plots of various signals. (1) $11 / 2$ cyeles of a I(K)O-cycle signal. (13) A $1,000,000$-eyele signal plotted to the same scale as A. Because there are 1500 cycles during this time, they cannot be shown aceurately. (C) 'The signals of A and 13 flowing in the same circuit. (I) The signals of A and B combined in a circuit where A can control the amplitude of $13 .{ }^{\circ}$ The $\left.1,(0) 0,000\right)$-cycle signal is modutated by the 1000 -cycle signal. (F), (F^{\prime}), (i), (II) Amplitude-vs.-frequency plots of the signals in $\mathrm{A}, \mathrm{B},(\mathrm{C}$ and I$)$.

>

mentioned previously, but when a radio frequeney modulates another radio frequeney it is ('alled heterodyning. However, the processes are identical. A general term for the sum and differenee frequencies generated during heterodyning or amplitude morlulation is "beat frequencies," and a more specific one is upper side frequency, for the sum frequeney, and lower side frequency for the difference frequency.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a band of frequencies making up speech or musie. In this rase, the side frequencies are grouped into what are called the upper side band and the lower side band. In any (:tse, the frequency that is modulated iscalled the carrier frequency.

In A, I3, C' and D of Fig. 2-70, the sketches are obtained by plotting amplitude against time. IIowever, it is equally helpful to be able to visualize the spertrum, or what a plot of amplitude v s. frequency looks like, at any given instant of time. L\&, F, Gi and II of Fig. 2-70 show the signals of lig. $2-70.1, \mathrm{I}, \mathrm{C}$ and D on an amplitude-vs.-

frequency basis. Any one frequency is, of course, represcoted by a vertical line. Fig. 2-701I shows the side frequencies appearing as a result of the modulation process.

Amplitude modulation (a.m.) is not the only possible type nor is it the only one in use. This and other types of modulation are treated in detail in later chapters.

CHAPTER 3

Vacuum-Tube Principles

- CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrical devices is that the electric current does not flow through a conductor but through empty space - a vacuum. This is onty possible when "free" electrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. Free elertrons in an evaruated space will be attracted to a positivelycharged object within the same spare, or will be repelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a suffi-(iently-large number of electrons into the evanuated space is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to inrandescence in a vacuum, electrons near the surfare are given enough energy of motion to fly off into the surrounding spare. The higher the temperature, the greater the number of electrons emitted. I more general name for the tilament is cathode.

If the cathode is the only thing in the varuum, most of the emitted electrons stay in its immediate vicinity, forming a "cloud" about the "athode. The reason for this is that the electrons in the space, being negative eleetricity, form a nogative charge (space charge) in the region of the cathode. The space charge repels

Representative tulbe types. The miniature, metal. envelope and small ghass tubes in the foreground are roceiving types. The two tubes with connections at the top of the hulh, lying down, are tramsitting triodes of monderate peower ratings. Those in the rear are trans. mittingetype beam tetrodes.
those electrons nearest the rathode, tending to make them fall back on it.

Now suppose a second ronductor is introduced into the vacuum, but not comnerted to anything else inside the tube. If this second conductor is given a positive charge by connecting a source of e.m.f. between it and the

Fig. 3.1-Conduction by thermionic emission in a vacusum tuhe. One hattery is used to heat the bilament to a temperature that will catuse it to emit deretrons, "Ithe other hattery makes the plate positive with respect to the filament, thereby cansing the emitted electrons to be attraeted to the plate. Wilcetrons mptured by the plate flow hack throngh the battery to the filament.
eathode, as indicated in Fig. 3-1, electrons emitted by the athode are attracted to the positivelycharged condurtor. An electric rurrent then flows through the circuit formed by the cathode, the charged conductor, and the soure of e.m.f. In Fig. :3-1 this e.m.f. is supplied be a battery ("B" battery); a second battery ("A" battery) is also indiated for heating the rathode or filament to the proper operating temperature.

The positively-rharged conductor is usually. a metal plate or celinder (surrounting the (athode) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in lig. : 3 -1 is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or plate.

Since electrons are negative electricity, they will be attrated to the plate ouly when the plate is positive with respect to the cathode. If the plate is given a negative charge, the electrons will be repelied back to the cathode and no current will flow. The vacuum tube therefore can conduct onl! in one lirection.

Cathodes

Before electron emission can orrur, the eathode must be heated to a high temperature. However, it is not essential that the hating cur-

Fig. 3.2 - Types of cathorle construction, Directly-heated cathodes or filaments are shown at A, B, and C. 'The inverted V filament is used in small receiving tubes, the M in both receiving and transmitting tubes. The spiral filament is a transmittingtube type. The indirectly-hrated cathonles at 1) and E show two types of heater construction, one a twisted loop and the other bunched heater wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
rent flow through the artual material that does the emitting; the filament or heater can be electrically separate from the emitting cathode. Such a cathode is called indirectly heated, while an emitting filament is called directly heated. Fig. 3-2 shows both types in the forms in which they are commonly used.

Much greater electron enission can be obtained, at relatively low temperatures, by using special cathode materials rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efficiency is achieved in the oxide-coated cathode, a cathode in which rare-earth oxides form a coating over a metal base.

Although the oxide-coated cathode has much the highest efficiency, it can be used successfully only in tubes that operate at rather low pate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small because the space charge (which is negative) prevents those electrons nearest the cathode from being attracted to the plate. As the plate voltage is increased, the effect of the space charge is increasingly overcome and the number of electrons attracted to the plate becomes larger. That is, the plate current increases with increasing plate voltage.

Fig. 3-3 shows a tupical plot of plate current vs. plate voltage for a two-element tube or diode. A curve of this type (an be obtained with the circuit shown, if the plate voltage is increased in small steps and a current reading taken (by means of the current-indicating instrument - a milliammeter) at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has sul)stantially overcome the space charge and
almost all the electrons are going to the plate. At higher voltages the plate current, stays at practically the same value.

The plate voltage multiplied by the plate current is the power input to the tube. In a circuit like that of Fig. 3-3 this powor is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value (the plate may become red or even white hot). The heat developed in the plate is radiated to the bulb of the tube, and in turn radiated by the bulb to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change alternating current into direct current. It does this by permitting current to flow when the plate is positive with respert to the cathode, but by shutting off current flow when the plate is negative.
Fig. 3-4 shows a representative circuit. Alternating voltage from the secondary of the transformer, T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but current flows through the tube and R only when the plate is positive with respert to the athode - that is, during the half-cycle when the upper end of the transformer winding is positive. During the negative half-cycle there is simply a gap in the current flow. This rectified alternating current therefore is an intermittent direct current.

The load resistor, l, represents the actual circuit in which the rectified alternating current does work. All tubes work with a load of one type or another; in this respect a tube is much like a generator or transformer. A circuit that did not provide a load for the tube would be like a short-circuit across a transformer; no useful purpose would be accomplished and the only result would be the gencration of heat in the transformer. So it is with vacuum tubes; they must cause power to be developed in a load in order to serve a useful purpose. Also, to be efficient most of the power must do useful work in the oad and not be used in heating the plate of the tube. This means that most of the voltage should appear as a drop across the load rather than as a drop between the plate and cathode.

Fig. 3.3-The diode, or two-element tube, and a typical curve showing how the plate current depends upon the voltage applied to the plate.

With the diode ronnerted as shown in Fig. 3-4, the polarity of the voltage drop across the load is such that the end of the load nearest the cathode is positive. If the comnections to the diode elements are reversed, the direction of rectified current flow also will be reversed through the load.

Fig. 3-1 - Rectification in a dionde. Current flows only when the plate is positive with resperet to the cathode, so that only half-cycles of current flow through the load resistor, R.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the cathode and plate as in Fig. 3-5, it can be used to control the effert of the space charge. If the grid is given a positive voltage with respeet to the rathode, the positive charge will tend to neutralize the negative space eharge. The

Fig. 3-5 - (ionstruction of an elementary triode vacumm tule, showing the filament, grid (with an end view of the grid wires) and plate. The relatise density of the spare charge is indicated roughly by the dot density.
result is that, at any selected plate voltage, more electrons will flow to the plate than if the grid were not present. ()n the other hand, if the grid is made negative with respect to the cathole the negative charge on the grid will add to the space charge. This will reduce the number of elertrons that can reach the plate at any selected plate voltage.
The grid is inserted in the tube to control the space charge and not to attract elertrons to itself, so it is made in the form of a wire mesh or spiral. lilectrons then ean go through the open spaces in the grid to reach the plate.

Characteristic Curves

For any particular tube, the effeet of the grid voltage on the plate current can be shown by a set of characteristic curves. I typical set of curver is shown in Fig. 3-6, together with the cireuit that is used for getting them. For each value of plate voltage, there is a value of negative grid voltage that will reduce the plate current to zero; that is, there is
a value of negative grid voltage that will cut off the plate current.

The curves could be extended by making the grid voltage positive as well as negative. When the grid is nogative, it repels electrons and therefore none of them rearhes it; in other words, no current flows in the grid eircuit. However, when the grid is positive, it attrates electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid current there is an acompanying power loss in the grid circuit, but so long as the grid is negative no power is used.

It is obvious that the gride can act as a valve to control the flow of plate current. . Ictually, the grid has a much greater effect on plate curment flow than does the plate voltage. A small change in grid voltage is just as effertive in bringing about a given change in plate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large woltage arting on the plate indicates the possibility of amplification with the triode tule. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified output is not obtained from the tube itself, but from the source of e.m.f. connerted between its plate and rathode. The tube simply controls the power from this sourec, changing it to the desired form.

To utilize the controlled power, a load must be ronnerted in the plate or "ontput" aircuit, just as in the diode case. The load may be

Fis 3-6-Grid-voltage-rs,-plate-rurrent rurves at varions fixed valnes
 this type ran be taken loy varying the hattery voltages in the cirruit at the right.
either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely renistive.

Tube Characteristics

The physical construction of a trioxle determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the phate current as a very large change in plate voltage, the tube is said to have a high amplification factor. Anplificttion factor is commonly designated by the (ireck letter μ. In amplification factor of 20 , for example, means that if the grid voltage is changed by 1 volt, the effect on the phate current will be the same as when the pate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to 100 or so. 1 high- μ tube is one with amplification factor of perhaps 30 or more; medium- μ tubes have amplification factors in the approximate range 8 to 30 , and low- μ tuhes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifier, but to ohtain a high μ it is necessary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for electrons to go through to reach the plate, so it is difficult for the plate to attract large numbers of elertrons. Quite a large change in the plate voltage must be made to effoct a given change in plate current. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Nince this resistance acts in series with the load, the amount of rurrent that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low.

The hest all-around indication of the effectiveness of the tube as an amplifier is its grid-plate transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a figure of merit for the tube. Transeonductance is the change in plate current divided by the change in grid moltage that causes the platecurrent change (the plate voltage being fixed at a desired value). Nine current divided by voltage is conductance, transconductance is measured in the unit of conductance, the mho. Practical values of transeonductance are very small, so the micromho (one-millionth of a mho) is the eommonly-used unit. Different types of tubes have transconductances ranging from a few humdred to several thousand. The higher the transconduetance the greater the possible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph called the dynamic characteristic. Sueh a graph, together with the
circuit used for obtalning it, is shown in Fig. :3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this eircuit and the one shown in lig. : $3-6$ is that in Fig, :3-7 a load resistance is comnected in series with the plate of the tube. Fig. 3-7 thus shows how the plate current will vary, with different grid voltages, when the plate current is made to flow through a lowed and thas do useful work.

Fig. 3.7- Iynamic characteristics of a small triodc with various load rexistance. from $\overline{3000}$ to $100,1 \mathrm{MN}$ ohms.

The several curves in Fig, 3-7 are for various values of load resistance. When the resistance is small (as in the case of the 5000 -ohm load) the phate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small; also, the curve tends to be straighter.

Fig. : $3-8$ is the same type of eurve, but with the circuit arranged so that a souree of alternating voltage (signal) is inserted between the grid and the grid battery (" C " battery). The voltage of the grid battery is fixed at -5 volts, and from the curve it is seen that the phate current at this grid voltage is 2 miliiamperes. This current flows when the load resistance is 50,000 ohnis, as indicated in the circuit diagram. If there is no a.c. signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts hetween the plate and cathode.

When a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum phate current will occur at the instant the grid voitage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 ma . At intermediate values of grid voltage, intermediate plate-current values will oecur.
The instantaneous voltage between the plate

Fig. 3-8 - Amplifier operation. When the plate current varies in response to the signal applied to the grid, a varying voltage drop appears across the load, R_{p}, as shown by the dashed curve, $E_{\mathrm{p}} . I_{\mathrm{p}}$ is the plate current.
and cathode of the tube also is shown on the graph. When the plate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.0026 .5=132.5$ volts; when the plate rurrent is minimum the instantaneous voltage drop in R_{p} is $30,000 \times 0.00135=67.5$ volts. The actual voltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The phate-to-cathode voltage is therefore 167.5 volts at maximum pate current and 232.5 volts at minimum plate current.
This varying plate voltage is an a.e. voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.c output voltage is the difference between either the maximum or minimum plate-cathode voltage and the no-signal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-$ 167.5 ; that is, 32.5 volts in either case. Since the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $33.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is obtained from the plate circuit as is applied to the grid circuit.

Is shown by the drawings in Fig. :3-8, the alternating component of the plate voltage swings in the negative direction (with reference to the mo-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in IFig. :3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selected. The curve must be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth over a part of the curve that is not straight, as in Fig. 3-9, the shape of the a.c. Wave in the plate circuit will not be the same as the shape of the grid-signal wave. In such a case the output wave shape will be distorted.

A second reason for using negative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot cause grid current to flow. With no current flow there is no power consumption, so the tube will amplify without taking any porer from the signal source. (Ilowever, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Distortion of the output wave shape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of harmonics. In other words, distortion from nonlinearity causes the generation of harmonic frequencies-frequencies that are not present in the signal applied to the grid. IIarmonic distortion is undesirable in most amplifiers, although

Fif. 3.9 - Ilarmonic distortion resnlting from ehoice of an operating point on the curved part of the tube characteristic. 'The lower half-cycle of plate current does not have the same shape as the upper half-eycle.
there are occasions when harmonics are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential for the tube's operation, but it almost invariahly would cause difficulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.r. is transferred to the load but the d.c. is not.

Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.

In the resistance-coupled circuit, the a.e. voltage developed across the plate resistor R_{p} (that is, the voltage betwen the plate and cathode of the tube) is applied to a second resistor, R_{g}, through is coupling capacitor, Ce. The capacitor "blocks off" the d.c. voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube las negative grid bias supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.e. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor, R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling rapacitor, C_{0}, must be low enough compared with the resistance of R_{g} so that the a.e. voltage drop in C_{c} is negligible at the lowest frequency to be amplified. If R_{g} is at least 0.5 megohm, a $0.1-\mu$. capacitor will be amply large for the usual runge of audio frequencies.

So far as the alternating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why K_{g} is made as high in resistance as possible; then it will have the least effert on the load represented by $\boldsymbol{R}_{\mathrm{p}}$.

The impedance-coupled rircuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the pate resistor. The advantage of using in inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thus permits obtaining a high value of load impedance for a.c. without an excessive d.c. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate

Fig. 3.10-Three basic forms of coupling between vachum-tube amplifiers.
circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube B. The trans-former-coupled amplifier has the same advantage as the impedance-coupled circuit with respert to loss of voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over' a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the
other hand, transformor coupling in voltage amplifiers (see below) is best suited to triodes having amplification factors of about 20 or less, for the reason that the primary inductance of a practicable transformer cannot be made large cnough to work well with a tube having high plate resistance.

In amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Foltare amplifiers belong to a group called Class A amplifiers. A Class it amplifier is one operated so that the wave shape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifior is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Foltage amplifiers are always Class λ_{1} amplifiers, and their primary use is in driving a following Class A_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some rom For example, an audio-frequency amplifier usually drives a londspeaker that in turn produces sound waves. The greater the amount of a.f. porer supplied to the speaker, the louder the sound it will produce.

Fig. 3-1l - An elenentary mwer-amplifier circuit in which the power-consuming load is conpled to the plate cirenit throngh an impelanee-matiohing transformer.

Fig. 3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the load connerted to the secondary. Aithough the load is shown as a resistor, it actually would be some device, such as a loudspeaker, that employs the power usefully. Every power tube requires a specific value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the a.c. signal in the gride circuit. There is no power lost in the grid circuit of a Class Λ_{1} amplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a Chas A amplifier in such a way that eurrent flows in its grid circuit during at least part of the cycle. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class \mathbf{A}_{2} amplifier. It is necessary to use a power amplifier to drive a Class.$_{2}$ amplifier, because a voltage amplifier cannot deliver power without serious distortion of the wave shape.

Another term used in connection with power amplifiers is power sensitivity. In the case of a Class Λ_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid eurrent flows, the term usually means the ratio of plate power output to grid power input.

The a.c. power that is delivered to a load by an amplifier tube has to he paid for in power taken from the source of plate voltage and eurrent. In fact, there is always more power going into the plate circuit of the tube than is eoming out as useful output. The difference between the input and output power is used up, in heating the plate of the tube, as explained previously. The ratio of useful power output to d.e. plate input is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connerted in parallel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to eonsume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

An increase in power output also can be secured by connecting two tubes in push-pull. In this case the grids and plates of the two tubes are connected to opposite ends of a balanced circuit as shown in Fig. 3-12. It any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. IIence, in any push-pull-connected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

Fig. 3.12 - Parallel and push•pull a.f. amplifier circuits.
In push-pull operation the even-harmonic (second, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tuhe. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a.signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. Lach amplifier is called a stage, and stages used successively are said to be in cascade.

Class B Amplifiers

Fig. 3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the plate current is just cut uff, then a signal can cause plate current to flow in either tube only when the signal voltage applied to that partieular tube is positive with respert to the cathode. Since in the balanced grid circuit the signal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induce a half-cycle of voltage in the secondary. In the secondary of T_{2}, the original wave form is restored. This type of operation is called Class B amplification.

The Class Bamplifier has considerably higher plate efficiency than the Class A amplifier. Fur-
thermore, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum d.c. plate input that can be applied to a Class A amplifier is equal to the rated plate dissipation of the tube or tubes. Two tubes in a Class B amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class A amplifier.

A Class B amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of plate current, and to obtain them the signal voltage must completely overcome the grid bias during at least part of the cycle, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the cycle means that the load on the preceding amplifier or driver stage varies in magnitude during the cycle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifically for Class 13 service and can be operated without fixed or other form of grid bias (zero-bias tubes). The amplification factor is so high that the plate current is small without signal. Because there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuous throughout the cycle. This makes the load on the driver much more constant than is the case with tubes of lower μ biased to platecurrent cut-off.

Class 13 amplifiers used at radio frequencies are known as linear amplifiers because they are

Fig. 3.13 - Class B amplifier operation.
adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. Pushpull is not required in this type of operation; a single tube can be used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure Class A operation, but less than the cut-off bias required for Class 13. At low signal levels the tubes operate practically as Class A amplifiers, and the plate current is the same with or without signal. At higher signal levels, the plate current of one tube is cut off during part of the negative cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed Class . IB amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure Class 1 operation. A Class AB amplifier can be operated either with or without driving the grids into the positive region. A Class $A B_{1}$ amplifier is one in which the grids are never positive with respert to the cathode; thercfore, no driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-current flow during part of the cycle if the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class NB_{1} amplifier avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

lnspection of Fig. 3-1:3 shows that either of the two tubes actually is working for only half the a.c. cycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig. 3-133 earh tube has "180-degree" excitation, a half-rycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360 -degree excitation, because plate current flows during the whole cycle. In a Class AB amplifier the operating angle is between 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce even a half-cycle of the signal on its grid. ['sing two tubes in push-pull, as in Fig. : $3-1: 3$, woukd merely put together two distorted half-cycles. An operating angle of less than 180 degrees
therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. wave form is relatively unimportant. For reasons described later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selectivity of such eircuits "filters out" the r.f. harmonies resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, berause the loss in the plate is proportional, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class C amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tuned-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate efficiency, and power output usually results when the minimum plate voltage (at the peak of the driving eycle, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. (Inder these conditions the operating angle is usually between 150 and 180 degrees and the plate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class () amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as described in the chapter on amplitude modulation.

- FEEDBACK

It is possible to take a part of the amplified energy in the plate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feedback.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feedback is called negative, or degenerative. On the other hand, if the voltage is fedback in phase with the grid signal, the feedback is called positive, or regenerative.

Negative Feedback

With negative feedback the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of redueing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feedback (when properly applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This tends to make the frequency-response characteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Hso, any distortion generated in the pate circuit of the tube tends to "buck itself out." Amplifiers with negative feedback are therefore comparatively free from harmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

Fis. 3-14 - Simple circuits for producing feedback.
In the circuit shown at A in Fig. $3-14$ resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{c}. However, R_{c} also is connected in series with the grid cireuit, and so the output voltage that appears arcross R_{c} is in series with the signal voltage. The output voltage aeross R_{c} opposes the signal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at B in Fig. 3-14 can be used to give either negative or positive feedback. The secondary of a transformer is connected back into the grid circuit to insert a desired amount of feed-back voltage. Reversing the terminals of either transformer winding (but not both simultaneously) will reverse the phase.

Positive Feedback

Positive feedback increases the amplification because the feed-back voltage adds to the original
signal voltage and the resulting larger voltage on the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (which depends upon the particular circuit arrangement) and harmonie distortion is inereased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid can be supplied from the plate circuit; no external signal is needed because any small irregularity in the plate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Positive feedback finds a major application in such "oscillators," and in addition is used for selective amplification at both audio and radio frequencies, the feedback being kept below the value that causes self-oscillation.

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube forms a small capacitor, with each element acting as a capacitor "plate." There are three sueh capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and eathode. The capacitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.c. plate voltage of amplifier having a resistive load are 180 degrees out of phase, using the eathode of the tube as a reference print. Iowever, these two voltages are in phase going around the rireuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate capacitance of the tube.

As a result, a capacitive current flows around the cireuit, its amplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate capacitance. The source of grid signal must furnish this amount of current, in addition to the capacitive current that flows in the grid-cathode capacitance. Hence the signal source "sees" an effective capacitance that is larger than the grid-cathode capacitance. This is known as the Miller Effect.

Fig. 3.15 - The a.c. voltage appearing between the grid and plate of the amplitier is the sum of the signal voltage and the output voltage, as slawn by this sim. plified circnit. Instantaneous polarities are indicated.

The greater the voltage amplification the greater the effective input capacitance. The input oppacitance of a resistance-coupled amplifier is given by the formula

$$
C_{\text {input }}=C_{\mathrm{gk}}+C_{\mathrm{kp}}(A+1)
$$

where $C_{\text {kk }}$ is the grid-to-cathode capacitance, $C_{x p}$ is the grid-to-plate capacitance, and A is the voltage amplification. The input capacitance may be as much as several hundred mieromicrofarads when the voltage amplification is large, even though the interelectrode capacitances are quite small.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual plate-tocathode caparitance of the tube. The output capacitance usually need not be considered in audio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at R.F.

At radio frequencies the reactances of even very small interelectrode capacitances drop to very low values. A resistance-coupled amplifier gives very little amplification at r.f., for example, because the reactances of the interelectrode "capacitors'" are so low that they practically shortcircuit the imput and output circuits and thus the tube is unable to amplify. This is overcome at radio frequencies by using tuned circuits for the grid and plate, making the tube capacitances part of the tuning eapacitances. In this way the circuits can have the high resistive impedances necessary for satisfactory amplification.

The grid-plate capacitance is important at radio frequencies because its reactance, relatively low at r.f., offers a path over which energy can be fed back from the plate to the grid. In practically every case the feedthack is in the right phase and of sufficient amplitude to cause self-oscillation, so the circuit hecomes useless as an amplifier.

Special "neutralizing" circuits can be used to prevent feedback but they are, in general, not too satisfactory when used in radio receivers. They are, however, used in transmitters.

SCREEN-GRID TUBES

The grid-plate capacitance can be reduced to a negligible value by inserting a second grid between the control grid and the plate, as indicated in Fig. 3-16. The second grid, called the screen grid, arts as an electrostatic shield to prevent capacitive coupling between the control grid and plate. It is made in the form of a grid or coarse screen so that electrons can pass through it.

Because of the shielding artion of the screen grid, the positively-charged plate camot attract electrons from the cathode as it does in a triode. In order to get clectrons to the plate, it is necessary to apply a mositive voltage (with respect to the cathode) to the screen. The screen then attracts electrons much as does the plate in a triode tube. In traveling toward the screen the electrons acequire such velocity that most of them

Fig. 3-16- Representative arrangement of elements in a screen. grid tube, with front part of plate and sereen grid cut away. In this draw. ing the control-grid eonnection is made through a cap on the top of the tube, thus climinating the rapacitanee that would exist hetween the plate-and grid-lead wires if looth passed through the base. "Single eended" tubes that have both leads going through the base use special shielding and construction to climinate interlead ca. pacitance.
shoot between the screen wires and then are attracted to the plate. I certain proportion do strike the screen, however, with the result that some current also flows in the screen-grid cirenit.

To be a good shield, the screen grid must be connected to the eathode through a circuit that has low impedance at the frequency boing amplified. A by-pass eapacitor from sereen grid to cathode, having a reactance of mot more than a few hundred ohms, is generally used.

A tube having a cathode, control grid, sereen grid and plate (four elements) is called a tetrode.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary electrons hack into the plate and they cause no disturbance. In the sereen-grid tube, however, the positively-charged sereen attracts the secondary electrons, causing a reverse current to flow between screen and plate.

To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the screen and plate. This grid acts as a shield between the screen grid and plate so the secondary electrons cammot be attracted by the sereen grid. They are hence attracted back to the plate without appreciably obstructing the regular plate-current flow. A five-element tube of this type is called a pentode.

Although the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it does in a triode. Consequently, the grid-phate transconductince (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of cor-
responding structure. On the other hand, since a change in plate voltage has very litile effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.3 to 1 or more megohms. Because of the high plate resistance, the act ual voltage amplification possible with a pentode is very much less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

In practical screen-grid tubes the grid-plate capacitance is only a small fraction of a micromicrofarad. This capacitance is too small to cause an apprectable increase in input capacitance as described in the preceding section, so the input eaparitance of a screen-grid tube is simply the sum of its grid-eathode capacitance and control-grid-to-screen eapacitance. The output capacitance of a screon-grid tube is equal to the capacitance botween the plate and screen.

In addition to their applications as radiofrequeney amplifiers, pentodes or tetrodes also are used for adio-frequency power amplification. In tubes designed for this purpose the chief function of the screen is to serve as an accelerator of the elertrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared with triodes of the same power output, although harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Idditional design features overcome the effects of secondary emission so that a suppressor grid is not needed. The "beam" construction makes it possible to draw large plate currents at relatively low plate voltages, and increases the power sensitivity.
For power amplification at both audio and radio frequencies beam tetrodes have largely supplanted the pentode type because large power outputs can be secured with very small amounts of grid driving power.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases when its grid bias is made more negative, assuming that the other electrode voltages are hold constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers.

The ordinary type of tube has what is known as a sharp-cutoff characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased. The amount of signal voltage that such a tube can handle without causing distortion is not sufficient to take care of
very strong signals. To overcene this, some tubes are made with a variable- μ charateristic - that is, the amplification factor decreases with increasing grid bias. The variable- μ tube can handle a much larger signal than the sharp-cutoff type before the signal swings either beyond the zero grid-bias point or the plate-current cutoff point.

INPUT AND OUTPUT IMPEDANCES

The input impedance of a vacuum-tube amplifier is the impedance "seen" by the signal source when connected to the input terminals of the amplifier. In the types of amplifiers previously discussed, the input impedance is the impedance measured between the grid and eathode of the tulee with operating voltages applied. At audio frequencies the input impedane of a Class A_{1} amplifier is for all practical purposes the input capacitance of the stage. If the tube is driven into the grid-current region there is in addition a resistance component in the input impedance, the resistance having an average value equal to E^{2} / P, where E is the r.m.s. driving voltage and P is the power in watts consumed in the grid. The resistance usually will vary during the a.c. cycle because grid current may flow only during part of the cycle; also, the grid-voltage/grid-current characteristic: is seldom linear.
The output impedance of amplifiers of this type consists of the plate resistance of the tube shunted by the output eaparitance.
At radio frequencies, when tuned circuits are employed, the input and output impedanees are usually pure resistances; anv reactive components are "tuned out" in the process of adjusting the circuits to resonance at the operating frequency.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the meeting point for the input and output circuits. However, it is possible to use any one of the three principal elements as the common point. This leads to two additional kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.
These two circuits are shown in simplified form in Fig. 3-17. In both circuits the resistor R represents the load into which the amplifier works; the actual load may be resistance-capacitancecoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The

Fig. 3.17-In the upper circuit, the grid is the junction point between the input and ontput circuits. In the lower drawing, the plate is the junction. In either case the ontput is developed in the losad resistor, R, and may be coupled to a fillowing amplifier hy the usual methods.
grid is thus the common element. The asc. component of the plate current has to flow through the signal source to reach the cathode. The source of signal is in series with the load through the plate-to-enthode resistanee of the tube, so some of the power in the load is supplied by the signal source. In transmitting applications this fed-through power is of the order of 10 per cent of the total power output, using tubes suitable for grounded-grid service.

The input impedince of the grounded-grid amplifier consists of a capacitance in parallel with an equivalent resistance representing the power furnished by the driving source to the grid and to the load. This resistance is of the order of a few hundred ohms. The output impedance, neglecting the interelectrode capmititnces, is equal to the phate resistance of the tube. This is the same as in the case of the grounded-cathode amplifier.

The grounded-grid amplifier is widely used at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of operation, an r.f. amplifier can be built that is free from the type of feedback that causes oseillation. This requires that the grid act as a shield between the cathode and plate, reducing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligible impedance in the batterios) and the output is taken between cathode and phate. This rircuit is degenerative; in fact, all of the output voltage is fed back into the imput circuit out of phase with the grid signal. The input signal therefore has to be larger than the output voltage; that is, the cathode follower gives a loss in voltage, although it gives the same power gain as other circuits under equivalent operating conditions.

An important feature of the cathode follower is its low output impedance, which is given by the formula (neglecting interelectrode eapacitances)

$$
Z_{\text {out }}=\frac{r_{\mathrm{p}}}{1+\mu}
$$

where r_{p} is the tube plate resistance and μ is the amplification factor. Low output impedance is a valuable characteristic in an amplifier dosigned to cover a wide band of frequencies. In addition, the input capacitance is only a fraction of the grid-to-cathode capacitance of the tube, a feature of further benefit in a wide-band amplifier. The cathode follower is useful as a step-down impedance trinsformer, since the input impedance is high and the output impedance is low.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is powered by the a.c. line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give pure d.c. - that is, direet curront that is constant and without a superimposed a.c. component - the relatively large currents required by filaments and heaters usually make a rectifier-type d.c. supply impracticable.

Filament Hum

Alternating current is just as good as direct current from the heating standpoint, but some of the a.c. voltage is likely to get on the grid and cause a low-pitched "a.c. hum" to be superimposed on the output.

IIum troubles are worst with directly-heated cathodes or filaments, because with such eathodes there has to be a direct connection between the source of hating power and the rest of the circuit. The hum can be minimized by either of the connections shown in Fig. 3-18. In both cases the grid- and plate-return circuits are commerted to the electrical midpoint (center tap) of the filament supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are batanced by an equal and opposite voltage and current on the other side. The balance is never quite perfert, however, so filament-type tubes are never completely hum-

Fig. 3-18 - Vilament center-tapping methods for use with directly. heated tubes.
free. For this reason directly-heated filaments are employed for the most part in power tubes, where the amount of hum introduced is extremely small in comparison with the poweroutput level.

With indirectly-heated cathodes the chief problem is the magnetic field set up by the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small a.c. voltage to get to the grid. If hum appears, grourding one side of the heater supply usually will help to reduce it, although sometimes better results are obtained if the heater supply is center-tapped and the center-tap grounded, as in Fig. 3-18.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid bias has been supplied by a battery. However, in equipment that operates from the power line cathode bias is very frequently. usel.

The cathode-bias method uses a resistor (cathode resistor) connected in series with the cathode, as shown at R in Fig. 3-19. The direction of platecurrent flow is such that the end of the resistor nearest the rathode is positive. The voltage drop

Fig. 3.19 -..-Cathode biasing. R is the cathode resis. tor and C is the cathode by-pass capacitor.
across R therefore places a negative voltage on the grid. This negative bias is oltained from the steady d.e. plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degenerative (note the similarity between this rircuit and that of Fig. (3-141). To prevent this the resistor is bypassed by a capacitor, C, that has very low reactance compared with the resistance of \dot{R}. Depending on the type of tube and the particular kind of operation, R may be between about 100 and 3000 ohms. For good bypassing at the low audio frequencies, (' should be 10 to 50 microfarads (electrolytic capacitors are used for this purpose). It radio frequencies, capacitances of about $100 \mu \mu \mathrm{f}$. to $0.1 \mu \mathrm{f}$. are used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacycles a capacitance of 0.01μ f. is satisfactory.

The value of cathode resistor for an amplifier having negligible d.c. resistance in its plate circuit (transformer or impedance coupled) can easily be calculated from the known operating conditions of the tube. The proper grid bias and phate current aways are specified by the manufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

Example: It is found from tube tables that the tube to be used should have a negative grid hias of 8 volts ant that at this bias the plate current will be 12 millianperes (0.012 amp .). The required cathode resistance is then

$$
R=\frac{F}{I}=\frac{8}{0.012}=667 \mathrm{ohms}
$$

The nearest standard value, 680 ohms, would be close enough. The power used in the resistor is

$$
P=E I=8 \times 0.012=0.096 \text { watt }
$$

A $1 / 4$-watt or $1 / 2$-watt resistor would have ample rating.

The current that flows through R is the total cathode current. In an ordinary triode amplifier this is the same as the plate current, but in a screen-grid tube the cathode current is the sum of the plate and screen currents. Hence these two currents must be added when calculating the value of cathode resistor required for a screengrid tabe.

Example: A receiving nentorle reruires 3 volts negative bias. At this bias and the remmanended plate and screen voltages, its plate current is 9 mat and its sereen current is 2 ma. The cathode current is therefore 11 ma. (0.011 amp .). The rexuired resistanee is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohms. }
$$

A 270 -ohm resistor would be satisfactory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.033 \text { watt. }
$$

The cathode-resistor method of biasing is selfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the bias will increase if the plate current is slightly high, or deerease if it is slightly low. This tends to hold the pate current at the proper value.

Calculation of the cathode resistor for a re-sistance-coupled amplifier is ordinarily not practicable by the method described above, because the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. Iowever, representative data for the tubes commonly used as resistance-coupled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

"Contact Potential" Bias

In the absence of any negative bias voltage on the grid of a tube, some of the electrons in the spare charge will have enough velocity to reach the grid. This causes a small current (of the order of microamperes) to flow in the external circuit between the grid and cathode. If the current is made to flow through a high resistance - a megohm or so - the resulting voltage drop in the resistor will give the grid a negative bias of the order of one volt. The bias so obtained is called contact-potential bias.

Contact-potential bias can be used to advantage in circuits operating at low signal levels (less than one volt peak) since it eliminates the cath-ode-bias resistor and by-pass capacitor. It is principally used in low-level resistance-coupled audio
amplifiers. The bias resistor is connected directly between grid and eathode, and must be isolated from the signal source by a blocking capacitor.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the screen frequently is taken from the plate supply through a resistor. A typical circuit for an r.f. amplifier is shown in Fig. 3-20. Resistor R is the screen dropping resistor, and C is the screen by-pass capacitor. In flowing through R, the screen current causes a voltage drop in R that reduces the plate-supply voltage to the proper value for the screen. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's Law.

> Example: An r.f. recciving pentode has a rated serepn current of 2 millianperes (0,002 amp.) at normal operating conditions. The rated sereen voltage is 100 volts, and the plate supply gives 250 volts. To put 100 volts on the screen, the drop across R must be equal to the difference between the phatesupply voltage and the sereen voltage; that is. $250-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{150}{0.002}=75,000 \text { ohms. }
$$

The power to be dissipated in the resistor is

Fig. 3.20-Screen-voltage supply for a pentode tube through a dropping resistor, R. The screen by -pass capacitor, (., must have low enough reactance to bring the screen to ground potential fur the frequency or frequencies being amplified.

$$
P=E I=150 \times 0.002=0.3 \text { watt. }
$$

A $1 / 2$ - or 1 -watt resistor would be satisfactory.
The reactance of the screen by-pass capacitor, C, should be low compared with the screen-tocathode impedance. For radio-frequency applications a capacitance in the vicinity of $0.01 \mu \mathrm{f}$. is amply large.

In some vacuum-tube circuits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of voltage dividers is discussed at length in the chapter on Power Supplies.

Oscillators

It was mentioned earlier in this chapter that if there is enough positive feedback in an amplifier circuit, self-sustaining oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.
Oscillations normally take place at only one frequeney, and a desired frequency of oseillation can be obtained by using a resonant circuit tuned to that frequency. For example, in Fig. 3-21. the circuit $L C$ is tuned to the desired frequency of oscillation. The cathode of the tube is connected to a tap on coil L and the grid and plate are connected to opposite ends of the tuned circuit. When an r.f. current flows in the tuned circuit there is a voltage drop across L that increases progressively along the turns. Thus the point at which the tap is connected will be at an intermediate potential with respect to the two ends of the coil. The amplified current in the plate circuit, which flows through the bottom section of L, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive feedback.

The amount of feedback depends on the position of the tap. If the tap is too near the grid end the voltage drop between grid and cathode is too small to give enough feedback to sustain oscillation, and if it is too near the plate end the impedance between the cathode and plate is too small to permit good amplification. Maximum feedback usually is obtained when the tap is somewhere near the center of the eoil.

The circuit of Fig. 3-21.1 is paralled-fed, ('b, being the blocking eapacitor. The value of C_{b}, is not critical so long as its reactance is low (not more than a few hundred ohms) at the operating frequency.

Condenser C_{g} is the grid capacitor. It and R_{g} (the grid leak) are used for the purpose of ob-

Fig. 3.21 - Basic oscillator circuits. Ferd-hank voltage is obtained by tapping the grid and cathode across a portion of the thncd eircuit. In the Ilartley circuit the tap is on the coil, but in the Colpitts circuit the voltage is obtained from the drop across a capacitor.
taining grid bias for the tube. In practically all oseillator circuits the tube generates its own bias. During the part of the cycle when the grid is positive with respect to the cathode, it attracts electrons. These electrons cannot flow through L back to the cathode because C_{g} "blocks" direct current. They therefore have to flow or "leak" through l_{k} to cathode, and in doing so cause a voltage drop in R_{g} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of $R_{\text {б }}$ (Olim's Law). The value of gridleak resistance required depends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The rapacitance of C_{g} should be large enough to have low reactance (a few hundred ohms) at the operating frequency.
The circuit shown at B in Fig. 3-21 uses the voltage drops across two capacitors in series in the tuned circuit to supply the feedback. Other than this, the operation is the same as just described. The feedlack can be varied by varying the ratio of the reartances of C_{1} and C_{2} (that is, by varying the ratio of their capacitances).

Another type of oscillator, called the tunedplate tuned-grid circuit, is shown in Fig. 3-22.

Fig. 3-22 - The tuned-plate tuned-grid oscillator.
lesonant circuits tuned approximately to the same frequency are connected between grid and cathode and between plate and cathode. The two coils, L_{1} and L_{2}, are not magnetically coupled. The feedback is through the grid-plate capacitance of the tube, and will be in the right phase to be positive when the plate circuit, $C_{2} L_{2}$, is tuned to a slightly higher frequency than the grid circuit, $L_{1} C_{1}$. The amount of feedback can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined by the tuned circuit that has the higher Q. The grid leak and grid capacitor have the same functions as in the other circuits. In this case it is convenient to use series feed for the plate circuit, so C_{b} is a by-pass capacitor to guide the r.f. current around the plate supply.

There are many oscillator circuits (examples of others will be found in later chapters) but the Inasic feature of all of them is that there is positive feedlack in the proper amplitude to sustain oscillation.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feedbaek will depend on how heavily the oscillator is loaded -- that is, how nuch power is being taken from
the circuit. If the feedback is not large enough grid excitation too small - a small increase in load may tend to throw the circuit out of oscillation. On the other hand, too much feedback will make the grid current excessively high, with the result that the power loss in the grid circuit becomes larger than necessary. Since the oscillator itself supplies this grid power, excessive feedback lowers the over-all efficiency because whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oscillator design is frequency stability. The principal factors that cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (t) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or the tuning capacitor will alter the inductance or capacitance slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small amount, an effect called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective Q. The energy taken from the circuit to supply grid losses, as well as energy supplied to a load, represent an increase in the effective resistance of the tuned circuit and thus lower its Q. For highest stability, therefore, the coupling between the tuned circuit and the tube and load must be kept as loose as possible. Preferably, the oscillator should not be required to deliver power to an external circuit, and a high value of grid leak resistance should be used since this helps to raise the tube grid and plate resistances as seen by the tuned circuit. Lonse coupling can be effected in a variety of ways - one, for example, is by "tapping down" on the tank for the connections to the grid and plate. This is done in the "serics-tuned" Colpitts circuit widely used in variable-frequency oseillators for amateur transmitters and described in a later chapter. Alternatively, the L / C ratio may be made as small as possible while sustaining stable oscillation (high C) with the grid and plate connoeted to the ends of the circuit as shown in Figs. 3-21 and 3-22. Using relatively high plate voltage and low plate current also is desirable.

In general, dynamic stability will be at maximum when the feedback is adjusted to the least value that permits reliable oscillation. The use of a tube having a high value of transconductance is desirable, since the higher the transconductance the looser the permissible coupling to the tuned eircuit and the smaller the feedback required.

Load variations act in much the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Mechanical variations, usually caused by
vibration, cause changes in inductance and/ or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of mininizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-21 and $3-22$ the eathode is connerted to ground. It is not actually essential that the radiofrequency circuit should be grounded at the rathode; in fact, there are many times when an $r . f$. ground on some other point in the rircuit is desirable. The r.f. ground can be placed at any point so long as proper provisions are made for feeding the supply voltages to the tube elements.

Fig. 3-23 shows the LIartley cireuit with the plate end of the rircuit grounded. Nor.f. choke is needed in the plate circuit because the plate already is at ground potential and there is no r.f. to choke off All that is necessary is a by-pass (eat ancitor, C_{b}, across the phate supply. Direct

Fip. 323 - Showing how the plate may be grounded for r.f. in a typical oseillator circuit (Hartley).
current flows to the cathode through the lower part of the tuned-circuit coil, L. . In advantage of such a circuit is that the frame of the tuning capacitor can be grounded.

Tubes having indirectly-heated cathodes are more easily adaptable to circuits grounded at other points than the cathode than are tubes having directly-heated filaments. With the latter tubes special precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

Clipping Circuits

Vacuum tubes are readily adaptable to other types of operation than ordinary amplification (without substantial distortion) and the genera-

SHUNT
plate is negative and there is no conduction. Thus part of the negative half eycle is clipped as shown in the drawing at the right. The level at which elipping oceurs depends on the bias voltage, and the proportion of signal clipping depends on the signal strength in relation to the bias voltage. If the peak signal voltage is below the bias level there is no clipping and the output wave shape is the same as the input wave shape, as shown in the lower sketch. The output voltage results from the current flow through the load resistor R.

In the shunt-type diode clipper megative bias is applied to the plate so the diode is normally nonconducting. In this case the signal voltage is fed through the series resistor l to the output circuit (which must have high impedance compared with the resistance of R). When the negative half of the signal voltage exceeds the bias voltage the diode conducts, and berause of the voltage drop in R when current flows the output voltage is reduced. By proper choice of R in relationship to the load on the output circuit the clipping can be made equivalent to that given by the series circuit. There is no clipping when the peak signal voltage is below the bias level.

Two diode circuits can be combined so that both the negative and positive peaks of the signal are clipped.

Triode Clippers

The cireuit shown at A in Fig. $3-25$ is capable of clipping both negative and positive signal peaks. (In positive peaks its operation is similar to the shunt diode clipper, the clipping taking place when the positive prak of the signal voltage

Fig. 3-25-Triode clippers. A-Single triode, using shunt-type diode clipping in the grid circuit for the positive peak and plate-current cut-off clipping for the nequtive peak. 13-Cathode-coupled elipper, using plate-current eut-off slipping for both positive and negative peaks.
is large enough to drive the grid positive. The positive-clipped signal is amplified by the tube as a resistance-coupled amplifier. Negative peak clipping occurs when the negative prak of the signal voltage exereds the fixed grid hias and thus cuts off the plate current in the output circuit.

In the cathode-roupled elipper shown at B in Fig. 3-25 V_{1} is a cathode follower with its output circuit direetly connected to the cathode of V_{2}, which is a grounded-grid amplifier. The tubes are biased the the voltage drop across R_{1}, which carries the d.e. plate currents of both tubes. When the negative peak of the signal voltage ex-
ceeds the d.c. voltage across R_{1} clipping occurs in V_{1}, and when the positive peak exceeds the same value of voltage $V 2$ s phate current is cut off. (The bias developed in R_{1} tends to le constant because the plate current of one tube increases when the plate current of the other decreases.) Thus the circuit clips both positive and negative peaks. The elipping is symmetrical, providing the d.e. voltage drop in K_{2} is small enough so that the operating conditions of the two tubes are substantially the same. For signal voltages below the elipping level the circuit operates as normal amplifier with low distortion.

U.H.F. and Microwave Tubes

At ultrahigh froquencies, interelectrode capatances and the inductance of internal leads determine the highest possible frequency to which a vacuum tube can be tuned. The tube usually will not oscillate up to this limit, however, berause of dielectrie losses, transit time and other efferets. In low-frequency operation, the actual time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the evele, At 1000 kc , for eximple, transit time of 0.001 microsecond, which is typieal of conventional tubes, is only $1 / 1000$ cycle. But at 100 Mc., this same transit time represents $1 / 10$ of a rycle, and a full cyele at 1000 Mc. These limiting factors establish about 3000 Mc. as the upper frequeney limit for negative-grid tubes.

With most tubes of conventional design, the upper limit of useful operation is around 150 Me. For higher frequencies tubes of sperial construction are required. About the only means available for reduring interelectrode capacitances is to reduce the physical size of the elements, which is practical only in tubes which do not have to handle appreciable power. However, it is possible to reduce the internal lead inductance very materially by minimizing the lead length and by using two or more leads in parallel from an electrode.

In some types the clectrodes are provided with up to five separate leads which may be connected in parallel externally. In double-lead types the plate and grid elements are supported by heavy single wires which run entirely through the envelope, providing terminals at either end of the
bulth. With linear tank cireuits the leads become a part of the line and have distributed rather than lumped constants.

In "lighthouse" tubes or disk-seal tubes, the plate, grid and cathode are assembled in parallel

Fig. 3-26 - Sectional view of the "lighthouse" tube's construction. Close electrode spacing reduces transit time while the disk electrode connections reduce lead inductance.
planes, as shown in Fig. 3-26, instead of coaxially. The disk-seal terminals practically eliminate lead inductance.

Velocity Modulation

In conventional tube operation the potential on the grid tends to reduce the elertron velocity during the more negative half of the cycle, while on the other half cycle the positive potential on the grid serves to accelerate the electrons. Thus the electrons tend to separate into groups, those leaving the cathode during the negative halicycle being collectively slowed down, while those
leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the clectron stream follows the original form of the oscillation cyele, the remainder traveling to the plate at differing velorities. Since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cyrle.

This effect is turned to advantage in velocitymodulated tubes in that the input signal voltage on the grid is used to change the velority of the electrons in a constant-surrent electron beam, mather than to vary the intensity of a constantvelocity current flow as is the method in ordinary tubes.

The velocity modulation principle may be used in a number of ways, leading to several tube designs. The major tulne of this type is the "klystron."

The Klystron

In the klystron tube the electrons emitted by the cathode pass through an elertric field estab)lished by two grids in a cavity resonator called the buncher. The high-frequency eloetric field between the grids is parallel to the electron stream. This field acelerates the electrons at one moment and retards them at another, in arcordance with the variations of the r.f. voltage applied. The resulting velocity-modulated heam travels through a field-free "drift space," where the slower-moving electrons are gradually overtaken by the faster ones. The electrons emerging from the pair of grids therefore are separated into groups or "bunched" along the direction of motion. The velocity-modulated electron stream then goes to a catcher cavity where it again passes through two parallel grids, and the r.f. current created by the bunching of the elec-

Fig. 3-27-Cirruit diagram of the klystron oscillator, showing the feed-bach loop coupling the frequency-controlling cavities.
tron beam induces an r.f. voltage between the grids. The catcher cavity is made resonant at the frequency of the velocity-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two cavities, as shown in Fig. $3-27$, oseillations will occur. The resonant frequeney depends on the electrode voltages and on the shater of the cavities, and maty le adjusted by varying the supply voltage and altering the dimensions of the cavitics. Although the bunched beam current is rieh in harmonies the output wate form is remarkably pure because the high Q of the ateher cavity suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentally a diode with aylindrical electrodes placed in a uniform magnotie field, with the lines of magnetic force parallel to the axes of the elements. The simple eylindrical magnetron consists of is cathode surrounded by a concentric cylindrical anode. In the more efli-

Fig. 3-28 - Conventional magnetrons, with equivalent schematic symbels at the right. A, simple eylindrical magnetron, B, aplit anode negative-resistance magnetron.
rient split-anode magnetron the eylinder is divided lengthwise.

Magnetron oscillators are operated in two different ways. Flectrically the circuits are similar, the difference being in the relation between eletron transit time and the frequency of oscillation.

In the negative-rosistance or dynatron type of magnetron oscillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation frequency. Electrons emitted from the cathode are driven toward both halves of the anode. If the potentials of the two halves are unequal, the effect of the magnetic field is such that the majority of the electrons travel to the half of the anode that is at the lower potential. That is, a decrease in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnetron conserfuently axhibits negative-resistance charruteristics. Negat tive-resistance magnetron oscillators are useful beween 100 and 10 MO Mc. Under the best operating conditions efficiencies of 20 to 25 per cent may be obtained.

In the transit-time magnetron the frequency is determined primarily by the tube dimensions and by the elfectric and magnetic field intcosities rather than by the tuning of the tank circuits. The intensity of the magnetic field is adjusted so that, under static conditions, electrons leaving the cathode move in curved paths which just fail to reach the anode. All electrons are therefore deflected back to the cathode, and the anode current is zero. An alternating voltage applied between the two hatves of the anode will cause the

potentials of these halves to vary about their average positive values. If the period (time required for one cycle) of the alternating voltage is made equal to the time required for an electron to make one complete rotation in the mangetic field, the a.ce. component of the anode voltage reverses direction twice with each electron rotation. Some clectrons will lose energy to the electric field, with the result that they are unable to reach the eathode and continue to rotate about it. Meanwhile other electrons gain energy from the field and are
assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the anode structure into 4 to 16 or more segments, the resonant cavities for each anode being coupled to the common cathode region by slots of eritical dimensions.

The efficieney of multisegment magnetrons reaches 65 or 70 per cent. Slotted-anode magnetrons with four segments function up to 30,000 Mo. (1 em .), delivering up to 100 watts at effiriencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Traveling-Wave Tubes

Gains as high as 23 d b. over a band width of 800 Me . at a center frequency of 3600 Me. have been obtained through the use of a travelingwave amplifier tube shown schematically in lig. 3-30. An electromagnetic wave travels down the helix, and an electron beam is shot through the helix parablel to its axis, and in the direction of propargation of the wave. When the clectron velocity is about the same as the wave velocity in the absonce of the electrons, turning on the eleretron beam causes a power gain for wave propagation in the direction of the electron motion.

The portions of Fig. 3-30 marked "input" and

Fiя, 3-30-Schematic drawing of a travelingwave amplifier tube.

returned to the cathode. Since those electrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effeet is a transfer of energy from the electrons to the electric field. This energy can be used to sustain oscillations in a resonant transmission line connected between the two halves of the anode.

Split-amode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 3-29. The
"output" are wave-guide sections to which the ends of the helix are coupled. In practice two electromagnetic focusing coils are used, one forming a lens at the electron gun end, and the other a solenoid rumning the length of the helix.

The outstanding features of the traveling-wave amplifier tube are its great bandwidth and large power gain. However, the efficiency is rather low. Typical power output is of the order of 200 milliwatts.

Semiconductor Devices

Certain materials whose resistivity is not high enough to classify them as good insulators, but is still high rompared with the resistivity of common metals, are known as semiconductors. These materials, of which germanium and silicon are examples, have at atomis structure that normally is assoriated with insulators. However, it is possible for free electrons to exist in them and to move through them under the influence of the certric field. It is also possible for some of the atoms to be deficient in an clectron, and these electron deficiencies or holes ran move from atom to atom when urged to do so by an applied electrie force. (The movement of a hole is actually the movement of an electron, the electron becoming detached from one atom, making a hole in that atom, in order to move into ath existing hole in another atom.)

Electron and Hole Conduction

Material which conducts by virtue of a deficiency in electrons - that in, hy hole conduction - is called P-type material. In N-type material, which has an excess of electrons, the condurtion is termed "electronic." If a piese of l'type material is joined to a piece of N-type material as at A in Fig. +-1 and a voltage is applied to the pair as at 13 , current will flow aeross the boundary or junction between the two (and also in the external circuit) when the battery has the polarity indieated. Flectrons, indicated by the minus symbol, are attrated across the junction from the N material through the P material to the positive terminal of the battery, and holes, indieated by the plus symbol, are attranted in the opposite direction across the junction by the negative potential of the hattery. Thus eurrent flows through the circuit by means of electrons moving one way and holes the other.

If the battery polarity is reversed, as at C, the exoess electrons in the X materiat are attracted anay from the junction and the holes in the P' material are attracted by the nogabtive potential of the hattery away from the junction. This leaves the junction region without any eurrent rarriers, consequently thore is no conduction.

In other words, a junction of P- and N-type materials constitutes a rectifier. It differs from the tube diode rectifier in that there is a measurable, although compara-
tively very small, reverse current, since the operation of the device is not as perfect is assumed in this simplified deseription.
blectrons and holes do not move as rapidly through the solid materials as electrons do in at varuum. Also, the holes move more slowly than the electrons. This, together with the fact that the junction forms a capacitor with the two phates separated by practically zero spacing and hence hats relatively high capacitance, plates a limit on the upper frequency at which semientductor devices of this construction will operate, as compared with vacuum tubes. Also, the number of excess electrons and holes in the material depends upon temperature, and since the conduetivity in turn depends on the number of excess holes and eleetrons, the device is more temperature sensitive than is at vacum tube.

Capacitance may be reduced by making the contact areat very smath. This is done be means of a point contact, a ting l'type region being formed under the contact point during manufacture when N-type material is used for the main body of the device.

SEMICONDUCTOR DIODES

Diodes of the point-eontaret type are used for many of the same purposes for which tube diodes are used. The construction of such it diode is shown in Fig. 4-2. (iermanium and silicon are the most widely used materials, the latter principally in the u.h.f. region.

As compared with the tube diode for r.f. applications, the crystal diode has the advantages of very small size, very low intereleetrode capacitance (of the order of $1 \mu \mu$ f. or less) and requires no heater or filament power.

Fig. 4.1 - A P.N junction (1) and its behavior when conducting (13) and nonconducting (C).

SYMBOL

Fig. 4.2-Construction of a germanium-point-contact diode. In the cirruit symbol for a contact rectifier the arrow points in the dircction of minimum resistance meanured by the conventional method - that is, going from the positive terminal of the voltage souree thromgh the rectifier to the neqative terminal of the souree. 'The arrow thus corresponds to the plate and the bar to the cathode of a tube diode.

Characteristic Curves

The germanium crystal diode is characterized by relatively large current flow with small applied voltages in the "forward" direction, and small, although finite, current flow in the reversic or "back" direction for much larger applied voltages. A typical characteristic curve is shown in Fig, 4-3. The dynamic resistance in cither the forward or laack direction is determined by the change in current that orcurs, at any given point on the curve, when the applied voltage is changed by a small amount. The forward resistance shows some variation in the region of very small applied voltares, but the curve is for the most part quite straight, indicating fairly constant dynamic resistanee. For small applied voltages, the forward resistance is of the order of 200 ohms in most such diodes. The batek resistance shows considerable variation, depending on the particular voltage chosen for the measurement. It may run from a fow hundred thousand ohms to over is megohm. In applieations surh as meter rectifiers for r.f. indicating instruments (r.f. voltmeters, watvemeter indirators, and so on) where the load resistance may be small and the applied voltage of the order of several volts, the resistances vary with the value of the applied voltage and are considerably lower.

Junction Diodes

Junction-type diodes made of germanium are employed principally as power rectifiers, being useful for applieations similar to those in which solenium rectifiers are used. Depending on the design of the particular diode, they are eatuable of rectifying currents up to several hundred milliamperes. The safe inverse poak voltage of a jumetion is relatively low, so an appropriate number of rectifiers must be connected in serios to operate safely on a given a.e. input voltage.

Ratings

Crystal diodes are rated primarily in terms of maximum safe inverse voltage and maximum average rectified current. Invorse voltage is a voltage applied in the direction opposite to that which causes maximum current flow. The average current is that which would be read by a d.e. moter connected in the current path.

It is also customary to specify standards of performance with respect to forward and back current. A minimum value of forward current is usually sperefied for one volt applied. The voltage at which the maximum tolerable back current is specified varies with the type of diode.
Fig. 4-3-'Typical germaniunt diode charaeteristic curve. Because the hack current is much smaller than the forward eurrent, for much larger applied voltages, a different seale is used for hach voltage and current than for forward

Transistors

Fig. 4-4 shows a "sandwich" mate from two layers of P -type semiconductor material with a thin haver of N-type between. There are in effect two ${ }^{1}-N$ junctions back to bark. If a

Fig. 4.4- The basie arrangement of a transistor. 'l'his reprements a junction-type P-N.P unit.
positive bias is applied to the P-tupe material at the left as shown, current will How through the left-hand junction, the holes moving to the right and the chertrons from the N-type material moving to the left. Some of the holes moving into the N-type material will rombine with the electrons there and be neutralized, but some of them also will travel to the region of the righthand junction.

If the P -N combination at the right is biased negatively, as shown, there would normally be no current flow in this circuit (see Fig. 4-1 (). However, there are now additional holes available at the junction to travel to point B and electrons can travel toward point A, so a current can flow even though this section of the sandwich
considered alone is biased to prevent conduction. Most of the current is between A and B and does not flow out through the common connection to the N-type material in the sandwich,

A semiconductor combination of this type is called a transistor, and the three sections are known as the emitter, base and collector, respectively. The amplitude of the collector current depends principally upon the amplitude of the emitter current; that is, the collector current is controlled by the emitter current.

Power Amplification

Because the collector is biased in the back direction the collector-to-base resistance is high. On the other hand, the emitter and collector currents are substantially equal, so the power in the collector circuit is larger than the power in the emitter circuit ($I^{\prime}=I^{2} R$, so the powers are proportional to the respective resistances, if the current is the same). In practical transistors emitter resistance is of the order of a few hundred ohms while the collector resistance is hundreds or thousands of times higher, so power gains of 20 to 40 dh, or even more are possible.

Types

The transistor may be either of the pointcontact or junction type, as shown in Fig. 4-5. Also, the assembly of P- and N-type materials may be reversed; that is, N-type material may be used instead of 1'type for the emitter and collector, and P'type insteal of N-type for the base. The type shown in Fig. $4-4$ is known as a P-N-P transistor, while the opposite is the N-P-N.

Point-Contact Transistors

The point-contact transistor, shown at the left in Fig. 4-5, has two "eat whiskers" placed very close together on the surface of a germanium wafer, usually N-type material. Small l'-type areas are formed under each point during manufacture. This type of construction results in quite low interelectrode capacitances, with the result that some point-contact transistors have been used at frequencies up to the v.h.f. region.

The point-contact transistor was the first type invented, but is now practically superseded by the junction type. It is difficult to manufacture, since the two contact points must be extremely close together if good characteristics are to be secured, particularly for high-frequency work.

The Junction Transistor

The junction tramsistor, the essential construction of which is shown at the right in Fig. 4- $\overline{5}$, has higher capacitances and higher powerhandling capacity than the point-contact type. The "electrode" areas and thickness of the intermediate layer have an important effect on the upper frequency limit. At the present time junction transistors having cut-off frequencies (see next section) up to 20 Mc . or so are available, and the frequency limit is constantly being extended. The types used for andio and low radio frequencies usually have cut-off frequencies ranging from 500 to 1000 kc .

Experimental work now under way with "diffused" junctions indicates that junction-type transistors capable of satisfactory operation in the v.h.f. region are possible. It is to be expected that further development will make the construction of such transistors commercially practicable.

TRANSISTOR CHARACTERISTICS

An important characteristic of a transistor is its current amplification factor, usually designated by a. This is the ratio of the change in collector current to a small change in emitter current, and is comparable with the voltage amplification factor (μ) of a vacuum tube. The current amplification factor is almost, but not quite, 1 in a junction transistor. It is larger than 1 in the point-contact type, values in the neighborhood of 2 being typical.

The a cut-off frequency is the frequency at which the current amplification drops 3 db . below its low-frequency value. Cut-off frequencies range from 500 kc . to frequencies in the v.h.f. region. The cut-off frequency indicates in a general way the frequency spread over which the

Fin, f-J - I'oint-contaet and junction-type transistors: with their circuit symbols, "The plus and minus signs asseociated with the symbots indirate polarities of voltages. with respect to the hase, to tue applied to the elenuents.
transistor is useful.
Wach of the three elements in the transistor has a resistance associated with it, the emitter and collector resistances having heen diseussed earlier. There is also a certain amount of resistance associated with the base, a value of a few hundred to 1000 ohms heing tapical of the base resistance.
The values of all three resistances vary with the type of transistor and the operating voltages. The collector resistance, in particular, is sensitive to operating conditions.

Characteristic Curves

The operating characteristics of transistors cam be shown hy a series of characteristic curves. One such set of curves is shown in Fig. 4-6. It

F'ig. 4.6- A typical collector-current es, collectorvoltage characteristic of a junction-type transistor, for various emitter-current values. The cireuit shows the setup for tahing such measurements. Since the emitter resistance is low, a current-limiting resistor, R, is connected in series with the source of current. The cmitter current can be set at a desired value by adjustment of this resistanee.
shows the collector current is. collector voltage for a number of fixed values of emitter current. Practically, the collector current depends almost entirely on the enitter current and is independent of the collector voltage. The separation between curves representing equal steps of emitter current is quite uniform, indicating that almost distortionless output can be obtained over the useful operating range of the transistor.

Another type of curve is shown in Fig. 4-7, together with the circuit used for ohtaining it. This also shows collector current us. collector voltage, but for a number of different values of base current. In this case the emitter element is used as the common point in the circuit. The collector current is not independent of collector voltage with this type of comertion, indicating that the output resistance of the device is fairly low. The bise current also is quite low, which

Fig. 4.7 - Collector current is . collector voltage for various values of hase current. for a junction-type transistor. The values are determined by means of the circuit shown.
means that the resistance of the base-emitter circuit is moderately high with this method of connection. This may be contrasted with the high values of collector current shown in Fig. 4-6.

Ratings

The principal ratings applied to transistors are maximum collector dissipation, maximum collector voltage, maximum collector current, and maximum emitter current. Wexept possibly for collector dissipation, the terms are self-explanatory.

The collector dissipation is the power, usually expressed in milliwatts, that can safely be dissipated by the transistor as heat. With some types of transistors provision is made for transforing heat rapidly through the container, and such units usually require installation on a heat "sink" or mounting that can absorb heat from the transistor.

The amount of undistorted output power that can be obtained depends on the collector voltage, although the collector current is pratically independent of the voltage, Increasing the collector voltage extends the range of linear operation with a given swing in collector current, but camot be carried beyond the point where either the voltage or dissipation ratings are exceeded.

TRANSISTOR AMPLIFIERS

Amplifier circuits used with transistors fall into one of three types, known as the groundedbase, grounded-emitter, and grounded-collector circuits. These are shown in Fig. $4-8$ in elementary form. The three circuits correspond approximately with the grounded-grid, grounded-cathode and cathode-follower circuits, respectively, used with vac:uum tubes.

Grounded-Base Circuit

The input circuit of a grounded-base amplifier must be designed for low impedance, since the emitter resistance is of the order of a few hundred ohms. The optimum output load impedance, however, is high, and may range from at few thousand ohms to 100,000 or so, depending upon the requirements.

The resistor R_{1} in the grounded-hase circuit is used to limit the emitter current to a desired value and thus establish the operating point. It is bypassed by C_{1}, the capacitance of which should meet the usual requirements for bypassing. The limiting resistor is necessary in this circuit to prevent damaging the transistor, since without such limiting, relatively large currents will flow with quite small voltages on the emitter.

In this circuit the phase of the output (collector) current is the same as that of the input (emitter) current. The parts of these currents that flow through the base resistance are likewise in phase, so the circuit tends to he regenerative and will oscillate if the current amplification factor is greater than 1. A junction transistor is stable in this circuit since a is less than 1 , but a point-contact transistor will oscillate.

Grounded-Emitter Circuit

The grounded-emitter circuit shown in Fig. 4-8 corresponds to the ordinary grounded-cathode vacuum-tule amplifier and is the basic circuit most frequently used. As indicated by the curves of Fig. 4-7, the lase current is small and the input impedance is therefore fairly high several thousand ohms in the average case. The collector resistance is of the same order, or somewhat higher than, the base resistance in this circuit. The grounded-emitter eircuit gives the highest power gain of any and, as indicated in Fig. +7 by the fact that a base current of a few hundred microamperes results in collector current of several milliamperes, gives a rather large current gain as well.

In the grounded-emitter circuit shown the base bias is obtained through R_{2} and only a single current source is needed. R_{2} may be of the order of 100,000 ohms.

In this circuit the phase of the output (collector) current is opposite to that of the input (hase) eurrent so such feed-back as oceurs through the small emitter resistance is negative and the amplifier is stable with either junetion or pointcontact transistors.

Fig. 4.8- Masic transistor amplifier circuits. T_{1}, T_{2} and T_{3} are transformers having turns ratios suitable for the impedances involved; these impedances are dis. cussed in the text. Other types of coupling may be substituted.

Fig. 4.9 - 'I'ransistor oscillator circuits. Component values are discussed in the text.

Grounded-Collector Circuit

Like the cathode follower, the grounded-ollector transistor amplifier has high input impertance and low output impedance. The latter is approximately equal to the impedance of the signal input source multiplied by ($1-a$). The input resistance depends on the load resistance, being approximately equal to the load resistance divided by $(1-a)$. The fact that imput resistance is directly related to the load resistance is a disadvantage of this type of amplifier if the load is one whose resistance or impedance varies with frequency.

- TRANSISTOR OSCILLATORS

Since more power is available from the output circuit than is necessary for its generation in the imput circuit, it is possible to use some of the output power to supply the input circuit and thus sustain self-oscillation. Two representative oscillator circuits are shown in Fig. 4-9. The circuit at A uses inductive coupling to supply a feed-back current in the proper phase, the grounded-emitter arrangement being used. The resistor R usually will be in the $50,000-100,000-$ ohm region. The frequency is determined by $L_{1}\left(C_{1}\right.$. In order to sustain oseillation, the current fed back through C_{2} to the base must be larger than the nonoscillating hase current.

The circuit at 13 uses capacitive voltage division for feed-back with a grounded-hase transistor. The resonant frequency is determined by $L C_{1}^{\prime} C_{2}$. (The battery in the collector circuit is assumed to have negligible impedance.) The ratio of C_{1} to C_{2} for self-sustaining oscillation depends on the current amplification and must be greater than $(1-a) / a$, approximately.

High-Frequency Receivers

A good receiver in the amateur station makes the difference between mediocre contarts and solid (2NOs, and its importance camot be overemphasized. In the uncrowded v.h.f. bands, sensitivity (the ability to bring in weak signals) is the most important factor in a reveiver. In the more rowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated by only a small frequency difference). To receive weak signals, the receiver nust furnish enough amplification to amplify the minute signal power delivered by the antenna up to a useful amount of power that will operate a loudspeaker or set of headphones. Before the amplified signal can operate the spazker or phones, it must be eonverted to andio-frequmery power by the process of detection. The sequence of amplification is not too important - some of the amplification can take plare (and usually does) before detertion, and some can be nsed after detection.

There are major differences bet ween receivers for phone reception and for code reception. An a.m. phone signal has side bands that make the signal take up about 6 or 8 kc , in the band, and the audio quality of the received signal is impaired if the bandwidth is less than half of this. A code signal orrupies only a few hondred cyeles at the most, and consequently the bandwidth of a code reeciver can be small. A single-side-hand phone signal takes up 3 to 4 ke ., and the audio quality can be impaired if the bandwidth is much less than 3 ke. although the intelligibility will hold up down to around 2 kc . In any case, if the bandwidth of the receiver is more than nec-
essary, signals adjacent to the desired one can be heard, and the selectivity of the receiver is less than maximum. The detection process delivers directly the audio frequencies present as modulation on an a.m. phone signal. There is no modulation on a code signal, and it is necessary to introduce a second radio frequeney, differing from the signal frequency by a suitable audio frequency, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat note, is generally made on the order of 500 to 1000 cycles, since these tones are within the range of optinum response of both the ear and the headset. There is no carrier frequency present in an s.s.b. signal, and this frequency must be furnished at the receiver before the audio can be recovered. The same source that is used in code reception can be utilized for the purpose. If the souree of the locally-generated radio frequency is a separate oscillator, the system is known as heterodyne reception; if the detector is made to oscillate and produce the frequency, it is known as an autodyne detector. Modern superheterodyne receivers generally use a separate oscillator (beat oscillator) to supply the locally-generated frequency. Summing up the differences, phone roceivers can't use as much selectivity as code recoivers, and code and s.s.b. receivers require some kind of locally-generated frequency to give a readable signal. Broadcast receivers can receive only a.m. phone signals because no beat oscillator is included. Communications receivers include beat oscillators and often some means for varying the selectivity. With high selectivity they often have a slow tuning rate.

Receiver Characteristics

Sensitivity

In commercial circles "sensitivity" is defined as the strength of the signal (in mirrovolts) at the input of the recejver that is required to produce a specified audio power output at the speaker or headphones. This is a satisfactory definition for broadeast and rommunications receivers operating below about 20 Mc., where atmospheric and man-made electrical noises normally mask any noise generated by the receiver itself.

Another commercial measure of sensitivity defines it as the signal at the input of the receiver required to give an audio output some stated amount (generally 10 db .) above the noise output of the receiver. This is a more useful sensitivity measure for the amateur, since it indicates how well a weak signal will be heard and
is not merely a measure of the over-all amplification of the receiver. However, it is not an ahsolute method for comparing two receivers, because the bandwidth of the receiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltages. The frequency of this noise is random and the noise exists across the entire radio spectrum. Its amplitude increases with the temperature of the circuits. Only the noise in the antenna and first stage of a receiver is normally significant, since the noise developed in later stages is masked by the amplified noise from the first stage. The only noise that is amplified is that which is accepted by the receiver, so the
noise appearing in the receiver output is less when the bandwidth is reduced. Noise is also generated by the current flow within the first tube itself; this effect can be combined with the thermal noise and called receiver noise.

The limit of a receiver's ability to detect weak signals is the thermal noise generated in the input circuit. Even if a perfect noise-free tube were developed and used throughout the receiver, the limit to reception would be the thermal noise. (.Itmospheric- and man-made noise is a practical limit below 20 Mc.) The degree to which a receiver approaches this ideal is called the noise figure of the receiver, and it is expressed as the ratio of noise power at the input of the receiver required to increase the noise out put of the receiver 3 db . Since the noise power passed by the receiver is depender t on the bandwidth, the figure shows how far the receiver departs from the ideal. The ratio is generally. expressed in db., and runs around 6 to 12 db . for a good receiver, although figures of 2 to 4 db , have been obtained. Comparisons of noise figures can be made by the amateur with simple equipment. (See QST', August, 1919, p. 20.)

Selectivity

Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned eircuits and the number of such eireuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type is shown in Fig. 5-1. The bandwidth is the width of the resonance curve (in cycles or kilocyeles) of a receriver at a specified ratio; in Fig. $\dot{5}-1$, the bandwidths are indicated for ratios of response of 2 and 10 (" 6 db). down" and " 20 db . down").

The bandwidth at 6 db. down nust oe sufficient to pass the signal and its sidebands if fathful reproduction of the signal is desired. However, in the crowded amateur bands, it is generally advisable to sacrifice fidelity for intelligibility. The ability to reject adjacent-chamel signals depends upon the skirt selectivity of the receiver, which is determined by the bandwidth at high attenuation. In a receiver with good skirt selectivity, the

Fig. 5.1-Typical selectivity curve of a modern superheterodyne receiver. Relative response is plotted against deviations above and below the resonance frequency. The scale at the left is in terms of voltage ratios, the corresponding decibel steps are shown at the right.
ratio of the $6-\mathrm{db}$. bandwidth to the $60-\mathrm{db}$. bandwidth will be about 0.25 for code and 0.5 for phone. The minimum usable bandwidth at 6 d). down is about 150 cycles for code reception and about 2000 cycles for phone.

Stability

The stability of a receiver is its ability t o "stay put" on a signal under varying conditions of gain-control setting, temperature, supplyvoltage changes and mechanical shock and distortion. The term "unstable" is also applied to a receiver that breaks into oscillation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the receiver to reproduce in its output the modulation carried by the incoming signal. For perfect fidelity, the relative amplitudes of the various components must not be changed by passing through the receiver. However, in antiteur communication the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

Detection is the process of recovering the modulation from a signal (see "Modulation, Heterodyning and leats"). (ny device that is "nonlinear" (i.e., whose output is not exactly proportional to its input) will act as a detector. It can be used as a detertor if an impedance for the desired modulation frequency is connected in the output circuit.
Detector sensitivity is the ratio of desired
detector output to the input. Detector linear. ity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signat. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is connerted to. The input resistance is mportant in receiver design, since if it is relatively low it means that the detector will consume nower,
and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a.m. is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a erystal is similar to that in a vacuun-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. 5-2. The simplified half-wave circuit at $5-2.1$ includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, D, with its load resistance, R_{1}, and bypass condenser, C_{2}. The flow of rectified r.f. current causes a d.c. voltage to develop across the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation

Fig. 5-2 - Simplified and practical diode detcetor cirmits. A, the elementary half-wave diode detector; IS, a practical eireuit, with r.f. filtering and audio outpot roupling: C, full-wave diode detector, with out put eoupling indicated. The circuit, $L_{2} C_{1}$, is tuned to the signal frequeney; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu$ f and 250,000 ohms. respectively; in $13, C_{2}$ and (s) are $100 \mu \mu$ f. cach: $R_{1} .50,000$ ohms: and $K_{2}, 250,000$ ohms. Cat is $0.1 \mu \mathrm{f}$, and R_{3} may be 0.5 to 1 megohm.
causes corresponding variations in the value of the de. voltage across R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small rectified-eurrent flow.

The progress of the signal through the detector or rectifier is shown in Fig. $5-3$. A typical modulated signal as it exists in the tuned

circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle when the plate is positive with respect to the cathode, so that the output of the rectifier consists of half-rycles of r.f. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that C_{2} charges to the peak value of the rectified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. C_{2}^{\prime} thus acts as a filter for the radio-frequency component of the output of the reatifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a coupling capacitor (C_{4} in Fig. $5-213$), only the variations in voltage are transferred, so that the final output sigual is a.c., as shown in 1).

In the circuit at $5-213, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeeding amplifier tube. The audiofrequency variations can be tramsferred to another circuit through a coupling eaparitor, C_{4}, to a load resistor, K_{3}, which usually is a "potentiometer" so that the audio volume can be adjusted to a desired level.

Coupling to the potentiometer (volume control) through a capacitor also avoids any flow of d.c. through the control. The How of d.e. through a high-resistane volume control often
tends to make the control noisy (scratchy) after a short while.

The full-wave diode cireuit at i-2C differs in operation from the half-wave circuit only in that both halves of the r.f. cyele are utilized. The full-wave eireuit has the advantage that r.f. filtering is easier than in the half-wave cireuit. As a result, less attenuation of the higher audio frequencies will be obtained for any given degree of r.f. filtering.

The reaetance of C_{2} must be small compared to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large compared to R_{1}. If the capacity of C_{2} is too large, response at the higher audio frequencies will be lowered.
Compared with other detectors, the sensitivity of the diode is low, normally rumning around 0.8 in audio work. Sinee the diode consumes power, the Q of the tuned cireuit is reduced, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good, and the signal-handing capability is high.

Plate Detectors

The plate detector is arranged so that rectifieation of the r.f. signal takes place in the plate

Fig. $5 \cdot 4$ - (iireuit: for plate detection, A. triode: B, pentode. The input eircuit, $I .16$, , is tuned to the signal frequency. T'ypical values for the other eomponents are: Com-

ponent	1 Cirruil A	Circuit 13
Ci_{2}	0.5μ f. or larger.	0.5) μ f. or larger.
Ci_{3}	0.001 to 0.002 μ f.	250 to $500 \mu \mu \mathrm{f}$.
Ci_{4}	0.1μ f.	$0.1 \mu \mathrm{f}$.
C.5		0.5 ¢ 0 . or larger.
R_{1}	25,000 to 150,000 ohms.	10,000 to 20,000 ohms.
$\mathbf{R 2}_{2}$	50,000 to $100,000 \mathrm{ohms}$.	1(0),(00) to 250,000 ohms.
R_{3}		$50,(\mathrm{O}) 0$ nhms.
R_{4}		20,000 ohms.
H $\mathrm{HC}^{\text {C }}$	2.5 mh .	2.5 mh .

Plate voltages from 100 to 250 volts may be nsed. Effective sereen voltage in IS should be about 30 volts.
eireuit of the tube. Sufficient negative bias is applied to the grid to bring the plate eurrent nearly to the eut-off point, so that application of a signal to the grid circuit causes an increase in average plate eurrent. The average plate current follows the ehanges in signal in a fashion similar to the rectified eurrent in a diode detector.

Cireuits for triodes and pentodes are given in Fig. 5-4. C_{3} is the plate by-pass capacitor, and, with $R F C$, prevents r.f. from appearing in the output. The eathode resistor, R_{1}, provides the operating grid bias, and C_{2} is a bypass for both radio and audio frequencies. R_{2} is the plate load resistance and C_{4} is the output coupling apacitor. In the pentode circuit at I, R_{3} and R_{4} form a voltage divider to supply the proper screen potential (about 30 volts), and C_{5} is a by-pass capacitor. (C2 and C's must have low reartance for both radio and audio frequencies.

In general, transformer coupling from the phate circuit of a plate detector is not satisfartory, because the plate impedance of any tube is very high when the bias is near the platecurrent eut-off point. Impedance coupling may be used in place of the resistance coupling shown in Fig. is-4. I'sually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle large signals, but is not so tolerant in this respect as the diode. linearity, with the self-biased circuits shown, is good. ('p) to the overload point the detertor takes no power from the tuned circuit, and so does not affert its Q and selectivity.

Infinite-Impedance Detector

The eireuit of Fig. $)^{-5}$ - combines the high signal-handling eapabilities of the diode detector with low distortion and, like the phate detector, does not load the tuned cirruit it eomnects to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is comnected between cathode and ground and thus is common to both grid and plate circuits, giving negative foodbaek for the adodio frequencies. The cathode resistor is bypassed for r.f. but not for audio, while the plate eircuit is bypassed to

Fig. 5 -5 - The infinite-impredance detector. 'The inmot cireuit, $L_{2}(i$, is tuned to the signal frequency. I'ypical values for the other compronents are:
$\begin{array}{ll}C_{2}-250 \mu \mu & \mathrm{R}_{1}-0.15 \text { mogohm. } \\ \left(3-0.5 \mu f_{0}\right. & \mathrm{R}_{2}-2.5 .000 \text { ohms. }\end{array}$
Ci4-0.1 μ. $\quad R_{3}-0.25-m e g u h m$ volume control. A tube having a medium amplifieation factor (about 20) should be used. Plate voltage should he 250 vilts.

tional bias for the output tube is derived from rectified b.f.o. voltatge across the 100,000 -ohm resistor. More elaborate r.f. filtering is shown in the plate of the output tube ($2-\mathrm{mh}$. choke and the $220-\mu \mu$. capacitors), and the degree of plate filtering in cither circuit will depend upon the frequencies involved. At low intarmediate frequencies more claborate filtering is required.

REGENERATIVE DETECTORS

By providing controllable r.f. feedback (regeneration) in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detertor. Regeneration also increases the effective (? of the circuit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig. 5-7, the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The d.e. voltage from rectified-current flow through the grid leak, R_{1}, biases the grid negatively, and the audiofrequency variations in voltage across l_{1} are amplified through the tube as in a normal a.f. amplifier. In the plate circuit, T_{1}, L_{4} and L_{3} are the plate load resistances, C_{4} is a by-pass capacitor and $R F\left(\begin{array}{c} \\ \text { an } \\ \text { r.f. choke to eliminate r.l. }\end{array}\right.$ in the output circuit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further increased by using a sereen-grid tube instead of a triode, as at $5-7 \mathrm{~B}$ and C . The operation is equivalent to that of the triode circuit. The screen bypass capacitor, C_{5}, should have low reactance for both radio and audio frequencies. R_{2} and R_{3} constitute a voltage divider on the plate supply to furnish the proper screen voltage. In both circuits, C_{2} must have low r.f. reactance and high a.f. reactance eompared to the resistance of K_{1}.

Athough the regenerative grid-latk detertor is more sensitive than any other type, its many distudantages eommend it for use only in the simplest receivers. The linearity is rather poor, and the signalhondling capability is limited. The signal-handling capability can be improved by reducing R_{1} to 0.1 megohm, but the sensitivity will be derreased. The degree of antenna coupling is often critical.

The circuits in Fig. 5-7 are regenerative, the fiedbatek being oltained be foeding some signal to the grid back from the plate cirruit. The amount of regeneration must be controllable, because maximum regenerative amplification is secured at the critical point where the circuit is just about to oseillate. The critical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned. In the oscillating condition, a regenerative detector can be detuned slightly from an incoming e.w. signal to give autolyne rereption.

The ripeuit of lig. 5 -iA uses a variabla bypass caparitor, C_{4}^{4}, in the plate circuit to control regeneration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until there is sufficient ferdback to rause oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate comnection is to the outside of the plate or "tickler" coil, L_{3}, when the grid connertion is to the outside of L_{2}.

The circuit of $\overline{2}-\mathrm{d} 13$ is for a pentode tube, regeneration being controlled by adjustment of the sereen-grid voltage. The tiekler, L_{3}, is in the plate rircuit. The portion of the control resistor between the rotating contact and ground is bypased be a large rapacritor (0.5 $\mu \mathrm{f}$. or more) to filter out seratching noise when the arm is rotated. The feedlack is adjusted by varring the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a sereen potential of approximately 30 wolts.

Circuit (C is identical with 13 in principle of operation. Since the sareen and plate are in parallel for ref. in this cireuit, only a small amoment of "tickler" - that is, relatively few turns between the (athode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effert on the frequency of ascillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In practice, the effects of loading, particularly the loading that orcurs when the detector circuit is coupled to an antenna, are difficult to overome. Likewise, the regeneration is usually affected by the frequency to which the grid circuit is tuned.

In all circuits it is best to wind the tickler at the ground or cathode end of the grid coil, and to use as few turns on the tiekler as will allow the detector to oscillate easily over the whole
tuning range at the plate (and screen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oseillation suddenly as the regeneration control is advanced, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong value of grid leak plus too-high plate and sereen voltage are also frequent causes of lack of smoothness in going into oseillation.

Fip. 5.7 - Triode and pentode regenerative detector cireuits. 'The input cirenit, $L_{2} C_{1}$, is tumed to the signal frequency. "I'he grid capacitor, (i2, should have a balue of about 100 , μ f. in all cirenits: the urid leak. R_{1}, may range in value from 1 to 5 megohms, The tickler ewil, L.3, ordinarily will have from lo to 25 per cent of the mmalar of turns on L_{2} : in (8 , the cathode tap is abont 10 per cent of the number of tirns onl $/ 2$ above pround. Regeneration-control caparitor C_{3} in A should have a maximum capacity of 100 unf. or more: hy patses raparitors C_{3} in $I 3$ and C are likewise $100 \mu \mu f$. ($C 5$ is ordinarily $1 \mu \mathrm{f}$, or more; R_{2}, a $50,($ Holoohm potentiometer: R_{3}, 50,0010 to 100,000 ohms. $L .4$ in 13 (L_{3} in (0) is a 500 . henry indurtance, C_{4} is $0.1 \mu \mathrm{f}$, in troth circuits. T_{1} in 1 is a conventional audio transformer for couphling from the plate of a tule to a following urid. $R I C$ is $2 . \overline{6}$ mh. In , the plate voltage should the about 50 volt- for best sensitivity. Pentode circuite reutire about 30 volts on the acreen; plate potential may le 100 to 2.50 volts.

Antenna Coupling

If the detector is coupled to an antenna, slight changes in the antenna (as when the wire swings in a breeze) affeet the frequency of the oscillations generated, and thereby the beat frequeney when code signals are being received. The tighter the antenna coupling is made, the greater will be the feedback reguired or the higher will be the voltage necessary to make the detector oscillate. The antenna coupling should be the maximum that will allow the detector to go into escillation smoothly with the correct voltages on the tube. If eapacity coupling to the grid end of the coil is used, generally only a very small amount of capacity will be needed to couple to the antenna. Increasing the caparity increases the coupling.

At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regencration is needed. In extreme cases it may not be possible to make the dotector oscillate with normal voltages. The remedy for these "dead spots" is to loosen the antenna coupling to a point that pormits normal oseillation and smooth regeneration control.

Body Capacity

A regenerative detector occasionally shows: a tendency to change frequency slightly ats the hand is moved near the dial. This condition (body capacity) can be correededby better shielding, and sometimes by ref. filtering of the phone leads. A good, short ground connection and loosoning the coupling to the antenna will help.

Hum

IIum at the power-supply frequency, even when using battery plate supply, may result from the use of a.c. ou the tube heater. Effects of this type normally are troublesome only when the circuit of $\mathrm{Fig} . \overline{\mathrm{j}}-\mathrm{C}$ is used, and then only at 1.1 Me, and higher. Comecting one side of the heater supply to ground, or grounding the centertap of the heater-transformer winding, will reduce the hum. The heater wiring should be kept as far as possible from the r.f. cireuits.
llouse wiring, if of the "open" type, may cause hum if the detector tube, grid lead, and grid condenser and leak are not shielded. This type of hum is easily recognizable because of its rather high piteh.

Tuning

For e.w, reception, the regeneration control is advanced until the dotector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the deteretor is deereasing.

The proper adjustment of the regeneration control for best reception of code signals is where the detector just starts to oscillate. Then
code signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally disappearing at a very high pitch. This behavior is shown in Fig. 5-8. A low-pitched beat-note cannot be oltained from a strong signal because

Fig. 5-8 - As the tuming dial of a receiver is turned past a code signal, the leat-mote varies from a high tone down through "zero brat" (no audible frequency differ-- nere) and hack up to a high tone, as show at 1,13 and C. The curve is a graphical representation of the action. The beat exists past 800 or or $(0,0 \%)$ cydes but usually is not heard lecause of the limitations of the andiosystem.
the detector "pulls in" or "blocks"; that is, the signal forces the detector to oscillate at the signal frequeney, even though the circuit may not the tuned exactly to the signal. This phenomenon, is also called "locking in"; the more stable of the t wo frequencies assumes control over the other. It usually can be corrected ly advancing the regeneration control until the beat-note is heard again, or by reducing the input signal.

The point just after the detector starts oscillating is the most sensitive condition for code reception. Further advaneing the regeneration control makes the receiver less susceptible to blocking by strong signals, but also less sensitive to weak signals.

If the detector is in the oscillating condition and a phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to phone if the recoiver can be tuncd to exact zero beat, it is more satisfactory to reduce the regencration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Single-side-band phone signals can be received with a regenerative detector by advancing the regeneration eontrol to the point used for code reception and tuning carefully across the s.s.b. signal. The tuning will be very critical, however, and the operator must he prepared to just "creep", across the sigmal. A strong signal will pull the detector and make reception impossible, so either the regeneration must be advanced far enough to prevent this condition, or the signal must be reduced by using loose antenna coupling.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a sperial problem in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spaced intervals. The same coil and tuning caparitor cannot be used for, say, 14 Mc. to 3.5 Mc., because of the impracticable maxi-mum-to-minimum capacity ratio required, and also because the tuning would be excessively criticul with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of convenience the same tuning capacitor usually is retained, but new coils are inserted in the circuit for each band.
One method of changing inductances is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnects the others. The unused coils are sometimes short-circuited by the switch, to avoid the possibility of undesirable self resonances in the unused coils. This is not necessary if the coils are separated from each other by several coil diameters, or are mounted at right angles to each other.
Another method is to use coils wound on forms with contacts (usually pins) that can be plugged in and removed from a socket. These plug-in coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when considerable experimental work is involved, because they are easier to work on than coils clustered around a switch.

Bandspreading

The tuning range of a given coil and variable capacitor will depend upon the indurtame of the coil and the change in tuning capacity. For case of tuning, it is desirable to adjust the tuning range so that practically the whole dial seale is oreupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give the corrert maximumminimum capacity ratio on each band. Several of these methods are shown in Fig. 5-9.
(A)

(B)

Fig. 5.9-Eissentials of the three basic band. spread tuning sysitems.
(C)

In A, it small bandspread capacitor, Co (15to $25-\mu \mu \mathrm{f}$. maximum eaparity), is used in par-
allel with a capacitor, C_{2}, which is usually large enough (100 to $140 \mu \mu$.) to cover a 2 -to-1 frequency range. The setting of C_{2} will determine the minimum capacity of the circuit, and the maximum eapacity for bandspread tuning will be the maximum caparity of C_{1}^{\prime} plus the setting of ('2. The inductance of the coil ram be adjusted so that the maximumminimum ratio will give adequate bandspread. It is almost impossible, bectuse of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of capacitors. C_{2} is variously called the band-setting or main-tuning rapacitor. It must be reset each time the band is changed.

The method shown at I3 makes use of capacitors in series. The tuning capacitor, C_{1}, may have a maximum capacity of $100 \mu \mu \mathrm{f}$, or more. The minimum capacity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of $(\underset{2}{ }$, which is of the order of 25 to $50 \mu \mu$. This method is capable of close adjustment to practically any desired degree of bandspread. Wither C_{2} and \dot{C}_{3} must be adjusted for eath hand or separate preadjusted capacitors must be switched in.

The circuit at \mathbf{C} also gives complete spread on each band. Co, the bandspread capacitor, maty have any convenient value: $50 \mu \mu \mathrm{f}$. is satisfactory, C_{2} may be used for continuous frequency coverage ("general coverage") and as a bandsetting eapacitor. The effertive maximum-minimum capacitance ratio depends upon Co and the point at which C_{1} is tapped on the eoil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if C_{2} is set at higher eapacitance. (2 may be connerted permanently aross the individual inductor and preset, if desired. This requires a separate capacitor for each band, but climinates the neressity for resetting C_{2} each time.

Ganged Tuning

The tuning eaparitors of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and mechanically. It beromes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

True tracking can be obtained only when the inductance, tuning capacitors, and cireuit inductances and minimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding capacitor may be connected across the coil, so that variations in minimum capacity can be compensated. The fundamental circuit is shown in F'ig, $\bar{j}-10$, where C_{1} is the trimmer and C_{2} the tuning capmitor. The use of the trimmer necessarily increases the
minimum circuit capacity, but it is a necessity for satisfactory tracking. Midget capacitors having maximum capacities of 15 to $30 \mu \mu$ f. are commonly used.

Fig. 5-10-Showing the use of a trimmer capacitor to set the minimum circuit capacity in order to obtain true tracking for gang-tuning.

The same methods are applied to bandspread circuits that must be tracked. The circuits are identical with those of Fig. 5-9. If both general-coverage and bandspread tuning are to be available, an additional trimmer capacitor must be connected across the coil in each circuit shown. If only amateur-band tuning is desired, however, then C_{3} in Fig. 5-913, and C_{2} in Fig. 5-9C, serve as trimmers.

The coil inductance can be adjusted by starting with a larger number of turns than
necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil.

Another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass core acts like a single shorted turn, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effect, and increases the inductance as it is moved into the coil. The Q of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will raise the Q of a coil, provided the iron is suitable for the frequency in use. Good pow-dered-iron cores can be obtained for use up to about 50 Mc .

The Superheterodyne

For many years (until about 1932) practically the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them casily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i.f."), then amplified, and finally detected. The frequency is changed by modulating the output of a tunable oscillator (the high-frequency, or local, oscillator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective circuits. The audiofrequency signal is obtained at the second detector. Code signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of $4 \overline{55} \mathrm{kc}$. is chosen and that the incoming signal is at 7000 kc . Then the high-frequency oscillator frequency may be set to 7455 kc ., in order that one side frequency (7455 minus 7000) will be 455 ke . The high-frequency oscillator could also be set to 6545 kc . and give the same difference frequency. To produce an audibie code signal at the second detector of, say, 1000 cycles, the autodyning or heterodyning oscillator would be set to either 454 or 456 ke .

The frequency-conversion process permits
r.f. amplification at a relatively low frequency, the i.f. High selectivity and gain can be obtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for good stability and, since they are working at frequencies considerably removed from the signal frequencies (percentage-wise), they are not normally "pulled" by the incoming signal.

Images

Each h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 745.5 kc . to tune to a ro00-kc. signal, for example, the receiver can respond also to a signal on 7910 ke., which likewise gives a 450 -ke. beat. The undesired signal is called the image. It can cause unneressary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those used before the signal is heterodyned to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input circuits. Most receiver designs represent a compromise between economy (few r.f. stages) and inage rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is mot ostensibly tuned may be heard. Ilarmonies of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antenna. When a strong signal is received, the harmonics generated by rectification in the second detector may, by stray coupling, be introduced into the r.f. or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shielding.

Harmonies of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shielding the beat oscillator and operating it at a low power level.

The Double Superheterodyne

At high and very-ligh frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of $4 \overline{5} \mathrm{ke}$. To reduce image response the signal frequently is converted first to a rather high ($1: 000,5000$, or even $10,000 \mathrm{ke}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-chamel selectivity can be obtained. such a receiver is called a double superheterodyne.

FREQUENCY CONVERTERS

A circuit tuned to the intermediate frequency is placed in the plate circuit of the miser, to offer a high impedance load for the i.f. voltage that is developed. The signal- and owillator-frequency voltages appearing in the plate circuit are rojected by the selectivity of this circuit. The i.f. tuned circuit should have low impedance for these frequencies, a condition easily met if they do not approw he the intermediate frequency.
The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. IIigh conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tuhe in the receiver.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. P'ulling should be minimized, because the stability of the whole recciver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high in-
termediate frequencies. Another type of pulling is caused by regulation in the power supply. Strong signals cause the voltage to change, which in turn shifts the oseillator frequency.

Circuits

If the first detector and high-frequency oscillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or efficiency), the first detector is called a "converter." In either case the function is the same.

Typical mixer circuits are shown in Fig. $\overline{0}-11$, The variations are chiefly in the way in which the oscillator voltage is introduced. In $5-11 . A$, a pentode functions as a plate detector; the oscillator voltage is capacity-coupled to the grid of the tube through (${ }_{2}$. Inductive coupling may be used instead. The conversion gain and imput selectivity generally are good, so long as

Fig. 5.1l - Typical cireuits for separately-evcited mixers. Grid injection of a pentode mixer is shown at \boldsymbol{A}, cathode injection at 13 , and separate excitation of a pentagrid converter is given in C. Typical values for C will be found in Table 5.1 - the values below are for the pentode mixer of A and 13 .
$C_{1}-10$ to $50 \mu \mu \mathrm{f} . \quad \mathrm{K}_{2}-1.0$ megohmı. $\begin{array}{ll}\mathrm{C}_{2}-5 \text { to } 10 \mu \mu \mathrm{f}, & \mathrm{R}_{3}-0.47 \text { megohm } \\ \mathrm{C}_{3}, \mathrm{Ca}_{4} \mathrm{C}_{5}-0,(0) \mathrm{f} . & \mathrm{R}_{4}-1500 \text { olıms. }\end{array}$
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathrm{O}, 001 \mu \mathrm{f}$.
$\mathrm{h}_{1}-6800$ olams.
Positive supply voltage can be 250 volts with a $6 \mathrm{AC} 7,150$ with a $6 \mathrm{AK5}$.
the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligitle. If the signal frequency is only 5 or 10 times the i.f., it may be difficult to develop enough oscillator voltage at the grid (because of the selectivity of the tuned input circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high-transconductance tubes like the 6.1C7, 6AK5 or 60 8 (pentode section). A good triode also works well in the circuit, and tubes like the 6.Jt (one section), the 12AT7 (one section), and the fiJ4 work well. When a triode is used, the signal frequency must be short-cireuited in the plate circuit, and this is done by connecting the tuning capacitor of the i.f. transformer directly from plate to eathode.

The circuit in Fig. 5-1113 shows cathode injection at the mixer. Operation is similar to the grid-injection case, and the stme considerations apply.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid mixer tube provides much better isolation. A typieal circuit is shown in Fig. $5-11 \mathrm{C}$, and tubes like the 6SA7, 6BA7 or 6BEK are commonly used. The oscillator voltage is introduced through an "injection" grid. Measurement of the rectified current flowing in R_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit can have little effect on the oscillator frequency berause the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is much noisier than a triode or pentode mixer, but its isolating characteristics make it a very useful device.

Many receivers use pentagrid converters, and two typical circuits are shown in Fig. 5-12. The circuit shown in Fig. i-12.1, which is suitable for the 615\%, is for a "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is connected internally to an injection grid in the hexode. The isolation between oscillator and converter tube is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit shown in Fig.

Fig. 5.12-Typical circuits for triode hevole (A) and pentagrid (13) convertors. Values for R_{1}, R_{2} and h_{3} can be found in Table 5.I; others are given below.
C1 - $47 \mu \mu$.
$\mathrm{C}_{3}-0.01 \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{f} . \quad \mathrm{K}_{4}-1000$ ohms.
i-12l3 can be used with a tube like the 6sil7, 6SB7Y, 6BA7 or 6BLE6. (iencrally the only care necessary is to adjust the feedlark of the oscillattor circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver gencrally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Iractically the same number of cireuit components is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.

Typical circuit constants for converter tules are given in Table $5-1$. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of Figs. 5-11C and 5-12.

The effectiveness of converter tubes of the type just described becomes less as the signal frequency is inereased. Some oscillator voltage will

TABLE 5-I								
Plate voltage $=\mathbf{2 5 0}$		Circuit and Operating Values for Converter Tubes Screen voltage $=100$, or through specified resis						
		Self.excited			Sepabate Ficitation			
Tube	Cathode Resistor	Screen Resistor	Grid Leak	$\begin{aligned} & \text { Grid } \\ & \text { Current } \end{aligned}$	Cathode Resistor	Screen Resistor	Grid leak	Grid Current
6BAT'.	0	12,000	22.000	0.35 ma .	68	15,000	22.100	0.35 ma.
$6 \mathrm{BE} \mathrm{O}^{1}$	0	22,000	22,000	0.5	150	22,000	22,000	
6K 8^{2}	240	27,000	47,000	0.15-0.2				
$6 \mathrm{SH}^{17^{2}}\left(7 \mathrm{Q}^{-3}\right)$.	0	18,000	$\underline{22,000}$	0.3	150	18,000	23.000	0.5
$6 \mathrm{SB}^{1} \mathrm{Y}^{2}$.	0	15,000	22,000	0.35	68	15,000	22,000	0.35
${ }^{1}$ Miniature	ctal base	, metal.	Lock-in b					

be coupled to the signal grid through "spacecharge" coupling, an effect that increases with frequency. If there is relatively little frequency difference between oscillator and signal, as for example a 14 - or 28 - Me. signal and an i.f. of 455 ke, this voltage can become considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.e. system, eonsiderable bias can be developed which will cut down the gain. For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than 5 or 10 percent of the signal frequency, for best results.

Audio Converters

Converter circuits of the type shown in Fig. $5-12$ can be used to advantage in the reception of eorle and single-side-band suppressed-carrier signats, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 ke. and usually below 100 ke . An ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the incoming carrier.

Since the beat oscillator modulates the electron stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

The "product detector" of Fig. 5-6 is also a converter circuit, and the statements above for audio converters apply to the product detector.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular care should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanical shock and changes in voltage and loading. Thermal effects (slow change in frequency because of tube or eircuit heating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning condenser too close to a tube. Propping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.
Sensitivity to vibration and shock can be minimized by using good mechanical support for eoils and tuning capacitors, a heavy chassis, and by not hanging any of the oscillator-circuit components on long leads. Tie-points should be used
to avoid long leads. Stiff short leads are excellent because they can't be made to vibrate.

Smooth tuning is a great convenience to the operator, and can be obtained by taking pains with the mounting of the dial and tuning capacitors. They should have good alignment and no back-lash. If the eapacitors are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The eapacitors should be selected with good wiping contacts to the rotor, since with age the rotor

Fig. 5.13- High-frequeney oseillator circnits. A, pentode grounded-plate oscillator; 13 , triode grounded-plate oscillator; C, triode oscillator with tickler circuit. Conpling to the mixer may be taken from points X and Y. In A and 13 , coupling from Y will reduce pulling effects, but gives less voltage than from \boldsymbol{X}; this type is best adapted to mixer circnits with small oscillator-voltage requirements. Typical valucs for components are as follows:

	Circuil A	Circuit R	Circuit C
C1-	$100 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.	100 \%
C2-	$0.1 \mu \mathrm{f}$.	$0.1 \mu \mathrm{f}$.	$0.1 \mu \mathrm{f}$.
$\mathrm{C}_{3}-$	$0.1 \mu \mathrm{f}$.		
\mathbf{R}_{1} -	47,000 ohms.	47,000 ohms.	47,000 ohms.
R_{2} -	$4 ., 000$ ohms.	10,400 to	100,000 to

The plate-supply voltake should be 250 , olts. In eir. ruits 13 and C, K_{2} is used to drop the supply voltage to 100-1.00 volts; it may be omitted if voltage is oltained from a voltage divider in the jower supply.
contacts can be a source of erratic tuning. All joints in the oscillator tuning circuit should be carefully soldered, because a loose connection or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its harmonic output should be as low as possible to redure the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f.-oscillator frequency is affected by changes in plate voltage, a voltage-regulated plate supply (VK tube) can be used.

Circuits

Several oscillator circuits are shown in Fig. 5-13. Circuits A and B will give about the same results, and require only one coil. However, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Mc . and higher frequencies when a.c.-heated-cathode tubes are used. The circuit of Fig. i-13(' reduces hum because the cathode is grounded. It is simple to adjust, and it is also the best circuit to use with filament-type tubes. With filament-type tubes, the other two circuits would require r.f. chokes to keep the filament above r.f. ground.

Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feedback to obtain optimum results. Too much feedbark may cause "squegging" of the oscillator and the generation of several frequencies simultaneously; too little feedback will cause the output to be low. In the tapped-coil circuits (A, 13), the feedback is increased by moving the tap toward the grid end of the coil. In C, feedback is obtained by increasing the number of turns on L_{2} or by moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple reccivers, or two or three stages in the more claborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired sigual and hence decrases the image ratio, A low i.f. also increases pulling of the oscillator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the gain is lowered and selectivity is harder to obtain by simple means.
An i.f. of the order of 455 kc . gives good seler'tivity and is satisfactory from the standpoint of image ratio and oseillator pulling at frequencies up to 7 Mc . The image ratio is poor at 14 Mc. when the mixer is connerted to the antema, but adequate when there is a tuned r.f. amplifier between antema and mixer. At 28 Mc. and on the ver: high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Me., pulling is likely to be bad without very loose coupling between mixer and oscillator.
With an i.f. of about 1600 kc ., satisfactory image ratios can be secured on 14,21 and 28 Me. with one r.f. stage of good design. For frequencies of 28 Mc. and higher, the best solution is to use a double superheterodyne, choosing one high i.f. for image reduction (5 and 10 Mc . are frequently used) and a lower one for gain and selectivity.

In choosing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such signals may be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interference problem.

Fidelity; Side-band Cutting

Modulation of a carrier causes the generation of side-band frequencics numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 cycles, it must at least be capathle of amplifying equally all frequencies contained in a band extending from 5000 cycles above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, the i.f. amplification must be uniform over a band 5 kc . wide, when the carrier is set at one edge. If the carrier is set in the center, a $10-\mathrm{kc}$. band is required. The signal-frequency circuits usually do not have enough over-all selectivity to affect materially the "adjacentchannel" selectivity, so that only the i.f.-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the side bands are "cut." While side-band cutting reduces fidelity, it is frequently preferable to sacrifice naturahess of reproduction in favor of communirations effectiveness.

The selectivity of an i.f. amplifier, and hence
the tendeney to eut side bands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the studipoint of communication, side-band cutting is never serious with two-stage amplifiers at frequencies as low as $45 \% \mathrm{ke}$. A two-stage i.f. amplifier at $8 \overline{5}$ or 100 kc . will be sharp enough to cut some of the higher-frequency side bands, if good transformers are used. IIowever, the cutting is not at all serious, and the gain in selectivity is worthwhile in crowded amateur bands.

Circuits

I.f. amplifiors usually consist of one or two stages. At 455 kr . two stages generally give all the gain usable, and also give suitable selectivity for phone reception.

A typical cireuit arrangement is shown in Fig. 5-14. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically always uses a remote eut-off pentode-type tube operated as a Class A amplifier. For maximum selectivity, double-tumed transformers are used for interstage roupling, although single-tumed rircuits or transformers with untuned primaries can be used for coupling, with a consequent loss in selectivity, All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of tuned circuits in it.

In Fig. $5-14$, the gain of the stage is redured by introducing a negative voltage to the lead marked "AVC" or a positive voltage to R_{1} at the point marked "manual gain control." In cither case, the voltage increases the bias on the tube and reduces the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained fiom common sources. The decoupling resistor, R_{3}, helps to prevent unwanted interstage coupling. C_{2} and R_{4} are part of the automatic volumecontrol eireuit (described later); if no a.v.e. is used, the lower end of the i.f.-transformer secondary is comerted to chassis.

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. amplifier stages, since grid-bias gain control is practically always applied to the i.f. amplifier. Tubes with high phate resistame will have least effert on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choire of i.f. tubes normally has no effert on the

TABLE 5-II Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplifiers				
Tube	Plate 'olls	sireen Volts	('athode Resistor	Serpen Resivtor
$6 \mathrm{AB}^{-1 *}$	300		200 ohtus	33,000 ohtms
$6 \mathrm{AC}^{-1}$	300		160	62,000
$6 \mathrm{AH} \mathrm{m}^{2}$	300	150	160	fi2.060
$6 \mathrm{AK5}{ }^{2}$	180	120	200	27,000
6.t106 ${ }^{2}$	250	150	68	33,000
6B:A $6^{2 *}$	250	100	68	33,000
$6 \mathrm{BH6}{ }^{2}$	250	150	100	33,000
613J62*	250	100	82	47,000
6.J ${ }^{1}$	250	100	1200	270,000
6K7*	250	125	240	47,000
$6 \mathrm{Sc} \mathrm{S}^{\circ}$	250	125	68	25,000
60301*	250	150	200	47,000
6SH71	250	150	68	39,000
$6 \mathrm{SJF}^{1}$	250	100	820	180,000
6SK71*	250	100	270	56,000
${ }^{1}$ Octal base, metal. ${ }^{2}$ Miniature tube *Remnte cul-off type.				

sigual-to-noise ratio, since this is determined by the preeding mixer and r.f. amplifier.

Typical values of cathode and sereen resistors for common tubes are given in Table $\overline{\mathrm{b}}$-II. The 6K7, 6Skit and 6IBIt are recommended for i.f. work herause they have desirable remote cut-off characteristics. The indicated screen resistors (drop the plate voltage to the correct sereen voltage, as R_{2} in Fig. $5-14$.

When two or more stages are used the high gain may tend to cause instability and oscillation, so that good shielding, bypassing, and caroful circuit arrangement to prevent stray coupling hetwen input and output cireuits are necessary.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the sereen bepass caparitor directly on the bottom of the socket, crosswise between the plate and grid pins, to provide additional shielding. If a paper eapacitor is used, the outside foil should be grounded to the chassis.

I.F. Transformers

The tuned rircuits of i.f. amplifiers are built up as transformer units eonsisting of a metal shield container in which the coils and tuning capacitors are mounted. Both aireome and powdered iron-core universal-wound coils are used, the latter having somewhat higher (2) and hence greater selectivity and gain. In universal windings the coil is wound in layers with each turn traversing the length of the coil, back

Fig. 5-14- Wypara! inturmediate-fregurncy amplifier cirruit for a sumerheterodye resciver. Representative values for components are ab follows:
 $0,01 \mathrm{ff}$ at l (0) kr , and higher. $\mathrm{C}_{2}-0.01 \mu \mathrm{f}$.
$\mathrm{h}_{2}, \mathrm{H}_{2}$-sere tables.l.
$\mathrm{R}_{3}, \mathrm{R}_{5}-1.500$ ohme.
$\mathrm{R}_{4}-0.22$ megohm.

and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large caparitance an exist between lavers. Diniversal winding, with its "criss-rrossed" turns, tends to reduce distributed-capmerity effects.

For tuning, air-dielectric tuning capacitors are preferable to mica compression types because their capacity is practically unaffected by changes in temperature and humidity. Iron-core transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variahle air-capacitor tuning can be ohtained by use of high-stability fixed mica or ceramice capacitors. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different freguency than the other circuits, therely reducing the gain and selectivity of the amplifier. Typicali.f,-transformer eonstruction is shown in Fig. 5-15.

The normal interstage i.f. transformer is loosely coupled, to give grod selertivity consistent

AIR TUNED
PERMEABILITV TUNED
Fig, 5-1.5 - Representative i.f.-transformer construc. tion. Coils are supported on insulating tubing or (in the air-tuned type) on wax-impreknated wooden dowels. The shield in the air-tuned transformer prevents eapacity coupling between the tuning capacitors. In the permeability-tuned transformer the cores consist of finely-divided irom particles supported in an insulating binder, formed into eylindrical "plugs." The tuning caparitance is fixed, and the inductances of the coils are varied by moving the iron plugs in and out.
with adequate gain. A so-called diode transformer is similar, but the eoupling is tighter, to give sufficient transfer when working into the finite load presented by a diode detector. Itsing a diode transformer in place of an interstage transformer would result in loss of selectivity; using an interstage transformer to couple to the diode would result in loss of gain.

Besides the type of i.f. transformer shown in Fig, is-15, sperial units to give desired selectivity characteristics are available. For higher-than-ordinary adjacent-channel seleetivity tripletuned transformers, with a third tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to
the over-all selectivity of the transformer.
A method of varying the selectivity is to vary the coupling between primary and secondary, overcoupling being used to broaden the selertivitw curve. Special circuits using single tuned circuits, coupled in any of several different ways, are used in some advanced resoivers.

Selectivity

The over-all selectivity of the r.f. amplifier will depend on the frequency and the number of stages. The following figures are indicative of the bandwidths to be experted with goodquality transformers in amplifiers so constructed as to keep regeneration at a minimum:

Intermediate Frequency	Banduidth in Kilocycles		
	6 db .	20 db .	40 db .
	doun	down	down
One stage. 50 ke . (iron core)	0.8	1.4	2.8
One stage. 4ij) ke. (air core)	8.7	17.8	32.3
One stage. 45.5 ke . (iron core)	4.3	10.3	20.1
Twostages, 455 kc . (iron core).	2.9	6.4	10.5
Twostages, 1600 kc . .	11.0	16.6	27.4

THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The seeond detector of a superheterodyne receiver performs the same function as the detertor in the simple receiver, but usually operates at a higher imput level lecause of the relatively great amplification ahead of it. Therefore, the ability to handle large signals without distortion is preferable to high sensitivity. Plate detertion is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control. The basie circuits have been described, although in many cases the diode elements are incorporated in a multipurpose tube that contains an anplifier soretion in addition to the diode.

Audio-ronverter circuits and product detectors are often used for eode or s.s.b. deteetors.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Sperial beat-oscillator transomers are available, usually eonsisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. :)-13. 1 and 13 , with the output taken from Y. . variable eapacitor of about $25-\mu \mu$. capabitance can be comnected between cathole and ground to provide fine adjustment of the frequency. The beat oscillator usually is coupled to the seconddetector tuned circuit through a fixed eapacitor of a few $\mu \mu$ f.

The beat oscillator should be well shielded, to prevent coupling to any part of the receiver except the second detector and to prevent its harmonies from getting into the front end and being amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest

Fig. 5-16 - Delayed automatic volume control circnits using a twin diode (A) and a dual-diode triote. The circuits are essentially the same and differ only in the method of biasing the a.v.c. rectifier. The a.v.c. control voltage is applied to the controlled stages as in (C). For these circuits, typical values are:
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}-100 \mu \mu \mathrm{f}$.
$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}, \mathrm{C}_{8}-0.01 \mu \mathrm{f}$.
C ${ }_{8}-5 . \mu f$. electrolytic.
$\mathrm{R}_{1}, \mathrm{R}_{9}, \mathrm{R}_{10}-\mathbf{0 . 1}$ megohm.
$\mathrm{R}_{2}-0.27$ megohm.
$1 \mathrm{R}_{3}-2$ megohms.
$\mathrm{K}_{4}-\mathbf{0 . 4 7}$ megohm.
$\mathrm{K}_{5}, \mathrm{~K}_{6}$ - Voltage divider to give 2 to 10 volts bias at 1 to 2 ma. drain.
$1 \mathrm{R}_{7}-0.5$-megohm volume control.
R_{8} - Correct bias resistor for triode section of dual-diode triode.
of the signal, the gitin is redured as the signal strength becomes greater. The control will be more complete and the output more constant as the number of stages to which the a.v.e. bias is applied is increased. Control of at least two stages is advisable.

Circuits

Although some receivers derive the a.v.e. voltage from the diode detector, the usual practice is to use a separate a.v.c. rectifier. Typical circuits are shown in Figs. 5-16A and $5-16 \mathrm{I} 3$. The two rectifiers can be combined in one tuhe, as in the 6116 and 6.1 L 5. In Fig. 5-16A V_{1} is the diode detector; the signal is developed across $R_{1} R_{2}$ and coupled to the audio stages through $C_{3} . C_{1}, R_{1}$ and C_{2} are included for r.f. filtering, to prevent a large r.f. component being coupled to the audio circuits. The a.v.c. rectifier, V_{2}, is coupled to the last i.f. transformer through C_{4}, and most of the rectified voltage is developed across $R_{3} . V_{2}$ does not rectify on weak signals, however; the fixed bias at R_{5} must be exceeded before rectitication can take place. The developed negative a.v.c. bias is fed to the controlled stages through R_{4}.

The circuit of Fig. 5-16B is similar, except that a dual-diode triode tube is used. Since this has only one common cathode, the circuitry is slightly different but the principle is the same. The triode stage serves as the first audio stage, and its bias is developed in the cathode circuit across R_{8}. This stme hias is applied to the a.v.e. rectifier by returning its load resistor, R_{3}, to ground. To avoid placing this bias on the detector, V_{1}, its load resistor $R_{1} R_{2}$ is returned to cathode, thus avoiding any hias on the detector and permitting it to respond to weak signals.

The developed negative a.v.c. bias is applied to the controlled stages through their grid circuits, as shown in Fig. 5-16C. $C_{7} R_{9}$ and $C_{8} R_{10}$ serve as filters to avoid common coupling and possithle feedback and oscillation. The a.v.c. is disabled by closing switch S_{1}.
The a.v.c. rectifier bias in Fig. $5-16 B$ is set by the bits required for proper operation of V_{3}. If less bias for the a.v.c. rectifier is required, R_{3} can be tapped up on R_{8} instead of being returned to chassis ground. In Fig. 5-16A, proper choice of bias at R_{5} depends upen the over-aill gain of the receiver and the number of controlled stages. In general, the hias at R_{5} will be made higher for receivers with more gain and more stages.

Time Constant

The time constant of the resistor-capacitor combinations in the a.v.c. circuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the rela-
tively slow earrier variations with fading. Audiofrequency variations in the a.v.e. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too great or the a.s.e. will be unable to follow rapid fading. The atparitance and resistance values indicated in Fig. i)-16 will give a time constant that is satisfactory for average reception.

C.W. and S.S.B.

A.v.c. can be used for c.w. and s.s.b. reception but the circuit is more complieated. The a.v.re voltage must he derived from a rectifier that is isolated from the beat-frequency oscillator (other-
wise the rectified b, f.o. voltage will reduce the reeciver gain even with no signal (oming through). This is generally done by using a separate a.v.e. chamel connected to an i.f. amplifice stage ahead of the aecond detector (and b.f.o.). If the selectivity ahead of the a.v.e. reotifier isn't good, strong adjacent signals will develop a.v.c. voltages that will reduce the receiver gain while listening to weak signals. When clear channels are available, however, e.w. and s.s.b. a.v.ce. will hold the receiver output constant over a wide range of signal input. A.v.r. systems designed to work on these signals must have fairly long time constants to work satisfactorily, and often a selection of time constants is made available.

Noise Reduction

Types of Noise

In addition to tube and circuit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic or industrial electrical equipment and by automohile ignition sustems. The interference is of two tepes in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the recoiver noise. It is largely reduced by high selectivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is caused by commutator sparking in d.c. and series-wound ace. motors, while the "shot" type results from separated spark discharges (a.e. power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit noise is through better "front-end" design and through more over-all selectivity.

Impulse Noise

Impulse noise, hecause of the short duration of the pulses compared with the time between them, must have high amplitude to eontain much average energy, Hence, noise of this type strong enough to cause much interference generally has an instantaneous amplitude much higher than that of the signal being rereived. The general primeiples of devices intended to reduce such noise is to allow the desired signal to pass through the receiver unafferted, but to make the receiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successfut the noise reduetion.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" berause of its short duration, and very effective noise reduction is olbtained. Sueh devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, hecause of the Q of the circuits. Thus the more solertivity ahead of the noisereducing device, the more difficult it hecomes to secure good pulse-type noise suppression.

Audio Limiting

A considerable degree of noise reduction in code reception can be acomplished hy am-plitude-limiting arrangements applied to the cudio-output circuit of a reveiver. Such limiters also maintain the signal output nearly constant during fading. These output-limiter systems are simple, and adaptable to most receivers. However, they eannot prevent noise peaks from overloading previous stages.

Fig. 5.17 - Series-valve noise-limiter circuits. A, as used with an infinite-impedance detector; 13 , with a diode detector. I'ypical values for components are as follows:
$R_{1}-0.27$ megohm. $\quad R_{4}-20,000$ to 47,000 ohms.
$\mathrm{R}_{2}-47,000$ ohms. $\quad \mathrm{C}_{1}-270 \mu \mu \mathrm{f}$.
$R_{3}, R_{3}-10,\left(\mathrm{KNO}\right.$ ohmas. $\quad \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.1 \mu \mathrm{f}$.
All other diode-circuit constants in 13 are conventional.

Fig. 5-18-Self-adjuming series (A) and shant (13) mise limiters. The functions of l_{1} and I_{2} can he eombined in one tuhe like the 6116 or 6 ALS.
$\left.\mathrm{C}_{1}-10\right)_{\mu \mu} \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.05 \mathrm{H}_{\mathrm{f}}$.
$1 \mathrm{~K}_{1}-0.27 \mathrm{meg}$. in $\mathrm{A} ; 17,000$ ohms in 13.
$\mathrm{K}_{2}-0.2{ }^{2}$ mes. in $\mathrm{A} ; 0.15$ meg. in 13 .
R_{3} - 1.0 mexohm.
$\mathrm{R}_{4}-0.82$ meqolim.
R_{5} - $\mathbf{6 8 0 \%}$ ohms.

- SECOND-DETECTOR NOISE limiter circuits

The circuit of lig. $\overline{\mathrm{j}}$-17 "chops" moise peaks at the second detector of a superhat reeiver by means of a biased diode, which hecomes noneonducting above a predetermined signal level. The audio output of the detector must pass through the diode to the grid of the amplifier tube. The diode normally would be nonconducting with the comnections shown were it not for the fact that it is given positive bias from a 30 -volt source through the :udjustable potentioneter, R_{3} Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio signal.
The audio signal from the detector can be considered to modulate the steady diode current, and eonduction will take place so long as the diode plate is positive with respert to the cathode. When the sigual is sulficiently large to swing the cathode positive with respect to the phate, however, conduction reases, and that portion of the signal is cut off from the audio amplitier. The point at which cut-off oecurs can the selected lyy adjustment of R_{3}. By setting R_{3} so that the signal just passes through the "valve," noise pulses higher in amplitude than the signal will be cut off. The cireuit of Fig. $\overline{5}-17 \mathrm{~A}$, using an infinite-impedanee detector, gives a positive voltage on reetifieation. When the reerified voltage is negative, as it is from the usual diode detector, the circuit arrangenent shown in lite. 7 -1713 must be used.
An audio signal of about ten volts is refuired for good limiting action. The limiter will work on cither c.w. or phone signals, but in either case the potentioneter must be set at at point determined by the strength of the incoming signal.
Second-detector noise-limiting circuits that automatically adjust themselves to the reeceived carrier level are shown in Fig. 5-18. In either circuit, V_{1} is the usual diode second detector,
$R_{1} R_{2}$ is the diode load resistor, and C_{1} is all r.f. bypass. A negative voltage proportional to the carrier level is developed arross ('2, and this voltage camot change rapidly hecause hand ('2are both large. In the circuit at A, diode l 'y acts ats a conductor for the andio signal up to the point where its anode is negative with respect to the eathode. Coise peaks that exeeed the maximum earrier-modulation level will drive the anode negative instantanconsly, and during this time the diode does not conduct. The large time constant of $\mathrm{C}_{2} \mathrm{R}_{3}$ prevents any rapid change of the reference voltage. In the eircuit at 13 , the diode V_{2} is inactive until its cathode voltage exceeds its anode voltage. This condition will ohtain under noise peaks and when it does, the diode l'z short-circuits the signal and no voltage is passed on to the audio amplifier. Diode rectifiers such as the 6 H 6 and $6 \mathrm{AL5}$ can be used for these trpes of noise limiters. λ cither circuit is useful for c.w. or s.s.lo. reception, but they are both cuite effertive for :am. phone work. The series circuit (A) is slightly better than the shunt circuit.

SIGNAL-STRENGTH AND TUNING INDICATORS

The simplest tuning indicator is a milliammeter connerted in the d.e. plate lead of an a.v.e.controlled r.f. or i.f. stage. Since the plate current is reduced as the a.v.e. voltage beeomes higher with at stronger signal, the plate current is a measure of the signal strength. The meter can have a $0-1,0-2$ or ($0-5 \mathrm{ma}$. movement, and it should be shunted be a 25 -ohm rheostat which is used to set the no-sigual reading to full scale on the meter. If a "forward-reading" meter is dosired, the meter can be mounted upside down.
Two other types of indicators are shown in Fig. 5-19. That at A uses an electron-ray, or

Fig. 5.19-Tuning-indicator or S.meter circnits for superheterodyne receivers. I, electron-ray indicator; B. Jridge circuit for a.v.e.econtrolled tube.

Ma- 0 -l or $0-2$ milliammeter. K_{1} - see text.
"tuning eye," tube. The choier of tube type depends upon the voltage available for its grid: where the a.v.e. voltage is large, a remote cut-off type ($6(55,6 \times 5$ or 6 AD) $6(\mathrm{i}$) should be used in preference to the sharp, cut-off type (6E5).

The system at 13 uses a milliammeter in a bridge circuit, arranged so that the meter readings incroase with the a.v.e. voltage and signal strongth. The meter reads approximately in a linear decibel seale and will not be "crowded" at some point.

To adjust the system in Fig. 5-1913, pull the tube out of its socket or otherwise break the cathode circuit so that no plate current flows, and adjust the value of resistor R_{1} across the meter until the scale reading is maximum. The value of resistance required will depond on the internal resistance of the meter, and must be determined by trial and error (the current is
approximately 2.5 ma.). Then replace the tube, allow it to warm up. turn the a.v.c. switch to "off" so the grid is shorted to ground, and adjust the 3000 -ohm variable resistor for zero meter current. When the a.v.c. is "on," the meter will follow the signal variations up to the point where the voltage is high enough to cut off the meter tube's plate current. This will orcur in the neighborhood of 15 volts with a 6.55 or 6 SNTCT , and represents a rather high-amplitude signal.

The bridge circuit, while not exactly linear, is quite satisfactory from a practical standpoint. It will handle a signal range of well over 80 db . The meter eannot be "pinned" because the maximum reading occurs when the tube plate current is driven to zero, at which point further increases in a.v.c. bias cause no change.

Improving Receiver Selectivity

- INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned carlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher sigual frequency. For phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the side bands are cout that intelligibility is lost, although it is possible to remove completely one full set of side bands without impairing the quality at all. Maximum receiver selectivity in phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tume" during the transmission, The limit to useful selertivity in code work is around 100 or 200 rygles for hand-key spereds, but this much selectivity roquires good stability in both transmitter and receiver, and a slow recoiver tuning rate for case of operation.

Single-Signal Effect

In heterodyne c.w. reception with a sujerheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 4 ft ke . (the i.f. being 4 in kr .) to give a 1000 -evele beat note, Now, if an interfering signal appeats at 4.75 kr ., or if the receiver is tuned to heterodyne the incoming signal to 4 洛 ke, it will also be heterodyned by the beat oscillator to produce a $1000-$ cyele beat. Hence every signal can he tuned in at two places that will give a 1000 -ryele beat (or any other low audio frequency). This audiofrequency image effect ran be reduced if the i.f. selectivity is such that the incoming signal,
when heterodyned to 457 ke., is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on cither side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

The necessary selectivity is not obtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of cireuits is used.

Regeneration

Iregeneration can be used to give a singlesignal effect, partieularty when the i.f. is 450 ke . or lower. The resonance curve of an i.f. stage at eritical regeneration (just below the oscillating point) is extremely sharp, a band width of 1 ke. at 10 times down and 5 ke . at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -cycle beat note (image 2000 eycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of capacity couphing between grid and plate. 13ringing a short length of wire, connected to the grid, into the vicinity of the plate kad usually will suffies. The feedback may be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This type of operation prevents overlouding and inereases selectivity.

The higher selectivity with regeneration reduces the over-all response to noise generated in the carlier stages of the receiver, just as does high selectivity proflued by other means, and therefore improves the signal-to-moise ratio. Ilowever, the regenerative gain varies with signal
strength, being less on strong signals, and the selectivity varies.

Crystal Filters

Probably the simplest means for obtaining high selectivity is by the use of a piezoelectric quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned rircuit, the () of such a erystal is extremely high. The crystal is ground to be resonant at the desired intermediate frequency. It is then used as a selective coupler between i.f. stages.

Fig. 5-20 gives a typical crystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a factor of 1000 or more. lesides practirally eliminating the a.f image, the high selectivity of the crystal filter provides good diserimination against signals very close to the desired signal

Fig. 5-20-Graphical representation of single-signal seledtivity. The shaded area indirates the over-all handwidth, or region in which response is oblatinatbe.
and, by reducing the hand-width, rednces the response of the receiver to noise.

Crystal-Filter Circuits; Phasing

Two erystal-filter circuits are shown in lig. 5-21. The circuit at A (or a variation) is found in many of the current communications receivers. The ervstal is commeted in one side of a bridge circuit, and a "phasing" eapacitor, C_{1}, is connected in the other. When C_{1} is set to balance the erystal-holder capacitane, the resonamee curve of the filter is practically symmetrical; the crystal acts as a series-resonant circuit of very high ($)$ and allows sigmals over a narrow band of frequencies to pass through to the following tube. More or less capacitance at C_{1} introduces the "rejection notch" of Fig . $\overline{5}-20$ (at $4(0: 3 \mathrm{ke}$, as drawn). The Q of the load cireuit for the filter is adjusted by the setting of R_{1}, which in turn varies the bandwidth of the filter from "sharp" to a

Fig. 5.2l- I variahle seltretisity rrystal filter (A) and a band-pass cryctal filter (B).
bandwidth suitable for phome reception. Since some of the components of this filter are spectal and not generally available to amateurs, home construation of the filter is usually out of the question.
The "band-pass" (rystal filter at D) uses two arystals sparated slighty in frequeney to give a band-pass charateteristic to the filter. If the frequencies are removed only a few hundred eveles from each, the characteristio is an excellent one for ew. reception. With erystals bout 2 ke , apart, a good phome characteristicat is obtained.

Additional I.F. Selectivity

Many commercial commumications receivers do not have suflicient selectivity for amateur use, and their performance can be improved by adding additional selectivity. One popular method is to couple a BC-45:3 aireraft receiver (war surphas, tuning range 190 to 550 ke.) to the tail end of the $16 \mathrm{~F}-\mathrm{ke}$. i.f. amplifier in the communications receiver and use the resultant output of the BC- 1533 . The aireraft receiver uses an 85-ke. i.f. amplifier that is sharp for voice work -

 a sumerheterodyne recoiver, Repreantative valus for romponents are as followis:
 30 Hc
$\mathbf{R}_{1}, \mathrm{R}_{2}$-see Trathe 5.II
R_{3} - I $8(\mathrm{~K})$ ohms.
R. 4 - 0.22 megolim.
6.5 kc . wide at -60dt. - and it helps considerably in separating phone signals and in batcking up erystal filters for improved cow. reception. (hee (SiTT, January, 1948, p. 10.)

If a BC -453 is not avaiable, one can still enjoy the benefits of improved seleetivity. It is only. necessary to heterodyne to a lower frequency the 4(iō-kc. signal existing in the receiver i.f. amplifier and then rectify it after passing it through the sharp low-frequency anıplifier. The Hammarlund Company and the J. W. Miller Company both offer $50-\mathrm{ke}$. transformers for this application.

QST' references on high i.f. selectivity include: MrLaughlin, "Selectable Single Sideland," April, $10 \cdot 48$; Githens, "Super-Selective C. 11 . Receiver," Aug., 1948.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, discrimination against radio-frequency images can only be obtained in circuits ahead of the first detector. These tuned circuits and their associated varuum tubes are called radio-frequency amplifiers. For top performance of a communications receiver on frequencies above 7 Mc., it is mandatory that it have one or two stages of r.f. amplification, for inage rejection and improved sensitivity,

Receivers with an i.f. of 45 kc . can be experted to have some r.f. image response at a signal frequency of 14 Mc. and higher if only one stage of r.f. amplification is used. (Regeneration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplification and an i.f. of 455 ke., no images should be apparent at 14 Me., but they will show up on 28 Mc. and higher. Three stages or more of r.f. amplification, with an i.f. of $45 \% \mathrm{kc}$., will reduce the images at 28 Mc. but it really takes four or more stages to do a good joh. The better solution at 28 Mc , is to use a "triple-detection" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 kc. or higher. A normal receiver with an i.f. of 45% kc. can be converted to a triple superhet by ronnecting a "converter" (to be described later) ahead of the receiver.

For best selectivity, r.f, amplifiers should use high- Q circuits and tubes with high input and output resistance. Variable- μ pentodes are prartically always used, although triodes (neutralized or otherwise connected so that they won't oscillate) are often used on the higher frequenries berause they introduce less noise. ''entodes are better where maximum image rejection is desired, because they have less loading effect on the tuned circuits.

FEEDBACK

Feedback giving rise to regeneration and oseillation can occur in a single stage or it may appear as an over-all feedback through several stages that are on the same frequency. To avoid
fredtrack in a single stage, the output must be isolated from the input, in every way possible, with the vacuum tube furnishing the only coupling between the two circuits. An oscillation can be obtained in an r.f. or i.f. stage if there is any unduc capacitive or indurtive coupling betwern output and input cireuits, if there is too high an impedance between cathode and ground or screen and ground, or if there is any appreciable impedance through which the grid and plate currents can flow in common. This means good shielding of coils and tuning capacitors in r.f. and i.f. cireuits, the use of good by-pass capacitors (mica or ceramic at r.f., paper or ceramie at i.f.), and returning all by-pass capacitors (grid, cathode, plate and screen) for a given stage with short leads to one spot on the chassis. If single-ended tubes are used, the sireen or cathode by-pass capacitor should be mounted across the socket, to serve as a shield between grid and plate pins. Less care is required as the frequency is lowered, but in high-impedance circuits, it is sometimes necessary to shield grid and plate leads and to be careful not to run them close together.

To avoid over-all feedbark in a multistage amplifier, attention must be paid to avoid running any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might run along a chassis in a straight line, run into a mixer where the frequency is changed, and then the i.f. amplifier could be run back parallel to the r.f. amplifier, provided there was a very large frequency difference between the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the safe side. Good shielding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it becomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (ineluding the heater circuit) are common to all stages, and they can provide the over-all eoupling if they aren't properly filtered. Good bypassing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. ehokes, instead of resistors, are used in the heater leads where necessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a band width measured in hundreds of ke. at 14 Mc. or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through several r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to
shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effect is called cross-modulation, and is often encountred in receivens with several r.f. stages wolling at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effert is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antemma and r.f. stages (difficult to ohtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antematimput to the receiver. The $613 J 6,613.16$ and 61$) \mathrm{C}$ are reommended for r.f. amplifiors where cross-modulation maty be a problem.

A recoiver designed for minimum cross-modulation will use as little gain as posible ahead of the high-selectivity stages, to hold strong unwanted signals bolow the overload point.

Gain Control

To avoid cross-modulation and other overload effects in the mixer and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is accomplished by using variahlo- μ tubes and varying the d.c. grid bias, either in the grid or cathode circuit. If the gain control is automatie, as in the case of a.v.c., the bias is controlled in the grid circuit. Manual control of r.f. gain is generally done in the cathode circuit. A typical r.f. amplifier stage with the two types of gain control is shown in schematic form in Fig. 5-22.

Tracking

In a receiver with no r.f. stage, it is no inconvenience to adjust the high-frequency owillator and the mixer circuit independently, because the mixer tuning is broad and requires little attention over an amateur band. However, when r.f. stages are added ahead of the mixer, the r.f. stages and mixer will require retuning over an entire amateur hand. Ience most receivers with one or more r.f. stages gang all of the tuming controls to give a single-tuning-control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. circuits, and when this condition is achieved the circuits are said to track.

In amateur-band receivers, tracking is simplified by choosing a bandspread circouit that gives practically straight-line-frequency tuming (equal frequency change for each dial division), and then adjusting the oscillator and mixer tumed circuits so that both cover the same total number of kilocyeles. For example, if the i.f. is 4in) ke. and the mixer circuit tunes from $\mathbf{8 0 0 0}$ to $7: 300 \mathrm{ke}$. between two given proints on the
dial, then the oscillator must tune from 74.55 to 755 ke . between the same two dial readings. With the bandspread arrangement of Fig. i-9.d, the tuning will be practically straight-line-frequency if ('2 (bandset) is 4 times or more the maximum (apacity of C_{1} (bandspread), as is usually the case for strictly amateur-hand coverage. ('s should be of the straight-line-capacity type (semicireular plates).

Squelch Circuits

An audiosquelch circuit is one that cuts off the receiver output when no signal is coming through the receiver. It is useful in mobile or net work where the no-signal receiver noise maty be as

Fis. 5.23-1 practical squelch circuit for cutting off the receiver output when mo signal is present.
loud as the signal, causing undue operator fatigue during no-signal periods.

A practical squelch circuit is shown in Fig. $\tilde{0}-2 \cdot 3$, When the a.v.e. voltage is low or zero, the 6 S 57 draws plate current. Voltage drop across the 47,000 -ohm resistor in its plate circuit cuts off the 65 and no receiver signal or noise is passed. When the a.v.c. voltage rises to the cut-off value of the $6 \mathrm{~S}, \mathrm{~T}$, the pentode no longer draws current and the hias on the 6.J5 is now only the operating bias, furnished by the 1000 -ohm cathode resistor. The triode now functions as an ordinary amplifier and passes signals. By varying the screen voltage on the 6sJ/ through R_{1}, the pentode's cut-off bias can be varied, so that the relation between a.v.c. voltage and signal cut-off point of the amplifier is adjustable.

Comertions to the receiver consist of two a.f. lines (shielded), the a.v.e. lead, and chassis ground. The squeld circuit is normally inserted hetween detector output and the audio volume control of the receiver. Since the circuit is used in the low-level audio point, its plate supply must he free from a.c. or objectionable hum will be introduced.

Improving Receiver Sensitivity

The sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc . is depentent upon the band width of the re-
ceiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that image rejection may be poor, a receiver with no
r.f. stage is generally satisfactory, from a sensitivity point, in the 3.5- and 7 -Mre, hands. However, as the frequency is increased and the atmospherie noise beromes less, the advantage of a good "front end" becomes apparent. Hence at It Mc. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for best sensitivity as well ass image rejection. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when usod as mixers that they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve the receiver noise figure at it Me. and higher, a high $-g_{\mathrm{n}}$ pentode or triode should be used. Among the pentodes, the best tubes are the $6.1(7,6.155$ and the $6.1(57$, in the order named. The 6.lki takes the lead around 30 Me . The 6.54, 6.56, 7 F 8 and triode-comected $6.1 \mathrm{~K} \mathrm{~K}^{5}$ are the best of the triodes. For best noise figure, the antema circuit should be eoupled a little havier than optimum. This cannot give best selectivity in the antemma circuit, so it is futile to try to maximize sensitivity and solertivity in this circuit.

When a receiver is satisfartory in every respert (stability and seleativity) exept sensitivity on It through 30 Mr., the best solution for the ame teur is to add a preamplifer, a stage of r.f. amplification designed expressly to improve the sensitivity, If image rejection is larking in the receiver, some selectivity should be built into the preamplifier (it is then called a preselector). If, however, the receiver operation is poor on the higher frequencies but is satisfactory on the lower ones, a "converter" is the best solution.
some commercial receivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antenna. Since the receiver manufarturer has no way to predict the type of antenna that will be used, he generally designs the input for some compromise value, usually around 300 or 400 ohms in the high-frequency ranges. If your antenna looks like something far different than this, the receiver effectiveness can be improved by proper matehing. This can be acoomplished by changing the antemna feed line to the right value (as determined from the receiver instrurtion book) or be using a simple matching device
as deseribed later in this chapter. Overeoupling the input circuit will often improve sensitivity but it will, of course, always reduce the imagerejection contribution of the antenna circuit.

Commercial receivers ean also be "hopped up" by substituting a high $-g_{m}$ tube in the first r.f. stage if one isn't already there. The amateur must be prepared to take the consequences, however, since the stage may oscillate, or not track without some modification. A simpler solution is to add the "hot" r.f. stage ahead of the receiver.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity berause the greater gain it provides serves to mask more completely the firstdetector noise, and it also provides a measure of automatic matching to the antema through tighter coupling. Ilowever, accurate ganging beromes a problem, becuse of the increased selectivity of the regenerative r.f. stage, and the receiver aimost invariably becomes a two-handedtuning device. legeneration should not be overlooked as an experdient, however, and amateurs have used it with eonsiderable sucerss, High- $/ \mathrm{m}$ tubes are the best as regenerative amplifiers, and the feedtark should not be controlled by rhanging the oproating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feed-burk coupling. This is a tricky process and another reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the g_{m} of the first tube is reduced, and its noise figure becomes higher. I good receiver might well have two gain controls, one for the first radio-frequeney stage and another for the i.f. and other r.f. stages.

Extending the Tuning Range

As mentioned earlier, when a receiver doesn't cover a particular frequency range, cither in fart or in satisfactory performance, a simple solution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the neressary performance. It works into the recoiver at some frequency between 1.6 and 10 Nhe and thus forms with the receiver a "triple-detection" superhet.

There are several different types of converters in vogue at the present time. The commonest
type, since it is the oldest, uses a regular tunable oscillator, mixer, and r.f. stages as desired, and works into the recoiver at a fixed frequency. A serond type uses broad-banded r.f. stages in the r.f. and mixer stages of the converter, and only the oscillator is tuned. Nince the frequency the converter works into is high (7 Mr. or more), little or no trouble with images is experienced, despite the browd-band r.f. stages. A third type of converter uses broad-banded r.f. and output stages and a fixed-frequency oseillator (self- or crystal-controlled). The tuning is done with
the receiver the converter is comnerted to. This is an excellent system if the receiver itself is well shielded and has no external pick-up of its own. Many war-surphus receivers fall in this category, 1 fourth type of converter uses a fixed oscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not ritical, however, unless there are many stages.

The broad-banded r.f. stages have the advantage that they can be built with short leads, since no tuning capacitors are required and the unit can be tuned initially by trimming the inductances. They are more prone to cross-modulat tion than the gang-tuned r.f. stages, however, because of the lack of selectivity. The fourth type of converter is probably the most satisfactory, particularly if a crystal-controlled high-
frequency oscillator is used. It not only has the advantage of the best selectivity and protection against images and cross-modulation, but the erystal gives it a stability unobtainable with selfcontrolled oscillators. imateurs who specialize in operation on 28 and 50 Mc. generally use good converters ahead of conventional communications receivers, and it pays off in better performance for the station.

While converters can extend the operating range of an existing receiver, their greatest advantage probably lies in the opportunity they give for getting the best performance on any one band. By selecting the best tuhes and techniques for any particular band, the amateur is assured of top receiver performance. With separate converters for each of several bands, changes can be made in any one without disabling or impairing the receiver performance on another band.

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength, as indicated by maximum hiss. Then turn on the beat osicillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for ocasional checking to make certain the frequency has not drifted from the initial setting. The b.for, may be set on either the high- or low-frequency side of zero beat.

The best receiver condition for the reepption of code signals will have the first r.f. stage rumning at maximum gain, the following r.f., mixer and i.f, stages opreating with just enough gain to maintain the signal-to-noise ratio, and the audio gain set to give comfortable headphone or spaker volume. The audio volume should be controlled by the audio gain control, not the i.f. gain control. Under the above conditions, the selectivity of the receiver is being used to best advantage, and eross-modulation is minimized. It preclude's the use of a recoiver in which the gain of the first r.f. stage and the i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the beat oscillator and in tuning. The beat oscillator is set as described above, but with the erystal filter set at its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control in an intermediate position. Once adjusted, the beat oscillator should
be loft set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considarably weaker than the first, and may be "phased out" almost eompletely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the other.

In interfering signal having a beat note differing from that of the a.f. image can be similarly phased out, provided its frequency is not too near the desired sigmal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be emphasized that, to realize the benefits of the erystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its high selectivity often makes it difficult to find the desired station quickly, if the filter is switched in only at times when interference is present.

Phone Reception

In reception of phone signaks, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the a.v.c., and use the audio gain control for setting the volume. This insures maximum effertiveness of the a.v.c. system in compensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which case the weaker station may disappear because of the reduced gain. In this case better reception may result if the a.v.e. is switched off, using the manual r.f. gain eontrol to set the gain at a point that prevents "blocking" by the stronger signal.

When reeceiving an atm. signal on a frequency within 5 to 20 ke . from a single-side-band signal
it may also be necessary to switch off the a.v.e. and resort to the use of manual gain control, unless the receiver has excellent skirt selectivity. No ordinary a.v.e. circuit can handle the syllabic bursts of energy from the s.s.b. station, but there are special circuits that will.

A crystal filter will help reduce interference in phone reception. Although the high selertivity cuts side-bands and reduees the audio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. As in code reception, it is advisable to do all tuning with the filter in the circuit. Variableselectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produce a beat note equal ${ }^{\circ}$ to the frequency difference. Such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter.
. tone control often will be of help in reducing the effeets of high-pitched heterodynes, side-hand splatter and moise, by cutting off the higher audio frequencies. This. like side-hand cutting with high selectivity circuits, reduces naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of dificulty. Often it is possible to
identify an image by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. I sing a crystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which desired signals peak.

Harmonic response can be recognized by the "tuning rate," or movement of the tuning dial required to give a specified change in beat note. Signals getting into the i.f. via high-frequency oscillator harmonies tune more rapidly (less dial movement) through a given change in beat note than do signals received by normal means.

Ilarmonies of the beat oscillator can be recognized by the tuning rate of the beat-oscillator pitch control. A smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorlyshielded receivers it is often possible to find b.f.o. harmonies below ' 2 Mc., but they should be very weak at higher frequencies.

Narrow-Band Frequency- and Phase-Modulation Reception

F.M. Reception

In the reception of n.f.m. (narrow-band f.m.) by a normal a.m. reeeiver, the a.v.c. is switched off and the incoming signal is not tuned "on the nose," as indicated by maximum reading of the s meter, but slightly off to one side or the other. This puts the carrier of the incoming signal on one side or the other of the i.f. selectivity characteristic (see Fig. $\bar{j}-1$). As the frequency of the signal changes back and forth over a small range with modulation, these variations in frequency are translated to variations in amplitude, and the conserquent a.m. is detected in the normal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. If the audio is too wak, the transmitting operator should be advised to increase his swing slightly, and if the audio quality is bad ("splashy" and with serious distortion on volume peaks) he should be advised to reduce his swing. Coopperation between transmitting and receiving operators is a necessity for best audio quality. The transmitting station should always be advised immediately if at any time his bandwidth exceeds that of an a.m. signal, since this is a violation of FCC regulations, except in those portions of the bands where wideband f.m. is permitted.

If the receiver has a discriminator or other
detector designed expressly for f.m. reception the signal is peaked on the receiver (as indicated by maximum S-meter reading or minimum background noise). There is also a spot on either side of this tuning condition where audio is recovered through slope detection, but the signal will not be as loud and the noise will be higher.

P.M. Reception

Phase-modulated signals can be received the same as n.f.m. signals are, except that the audio output will appear to be lacking in "lows," becaluse of the differences in the deviation-r's.-audio characteristics of the two systems. This can be remedied some by advancing the tone control of the receiver to the point where more nearly normal speech output is olstained.

Narrow p.m. signals can be received on communications receivers by making use of the cristal filter. The erystal filter should be set to the sharpest position and the carrier should be tuned in on the crystal peak, not set off to one side. The phasing rapacitor should be set not for exact neutralization but to give a rejection notch at a side frequency about 1000 cycles off resonance. There is attenuation of the side bands with such tuning, but it can be made up by additional audio gain. Narrow f.m. signals received through the crystal filter will have a "boomy" characteristic.

Reception of Single-Side-Band Signals

Ningle-side-band sighals are generally transmitted with little or no carrier, and it is necessary to furnish the carrier at the receiver before proper reception can be obtained. Bocause little or no carrier is transmitted, the a.v.e. in the reeeiver has nothing that indieates the averago signal level, and manual variation of the r.f. gain control is required.

A singlo-side-band signal (atn be identifiod bs the absonce of a strong carrier and by the severe variation of the st meter at at sbllabic rate. When such a signal is encountered, it should first be peaked with the main tuning dial. (This centers the sighal in the i.f. pass band.) Aiter this operation, do not touch the matin tuning dial. Then set the r.f. gain rontrol at a very low level and switch off the a.v.e. Increase the audio volume control to maximum, and bring up the r.f. gain control until the signal can be heard weakly. Switeh on the beat oscillator, and carefully adjust the freguency of the beat oscillator until proper speech is heard. If there is a slight amount of earrier present, it is only neessary to zero-beat the beat oseillator with this weak carrier. It will be noticed that with incorrect tuning of an ses.b. signat, the sperech will sound high- or low-pitehed or evern in-
verted (vory gatbed), but no trouble will be hat in getting the correet sotting once a little experirene has beren obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) oreurs in the recolver. It may refuire a readjust mont of your tuning hahits to tune the receiver slowly enough during the first frew trials.

Once the proper setting of the b.f.o. has been established by the procedure above, all further tuning should be done with the main tuning control. However, it is not unlikely that s.s.b. stat tions will be encountered that are transmitting the other side band, and to receive them will require shifting the b.f.o, setting to the other side of the receiver i.f. passband. The initial tuning proredure is exactly the same as out lined above, ex"ept that you will end up with a considerably difforent b, for, setting. The two b, f.o, sottings should be noted for future roference, and all tuming of s.s.b. signals can then be done with the main tuning dial. After a little experience, it becomes a simple matter to determine which waty to tune the receiver if the receiver (or transmitter) drifts off to make the received sighal sound low- or high-pitched.

Alignment and Servicing of Superheterodyne Receivers

I.F. Alignment

A calibrated signal generator or test oscillator is a useful devire for aligmment of an i.f. amplifier. some means for measuring the output of the roeriver is reguired. If the receiver has a tuning meter, its indications will serve, Lacking an simeter, a high-resistance voltmetor or a varuumtube voltmeter can be connected across the ser-ond-detector load resistor, if the serond deteretor is a diode. Alternatively, if the signal genemator is a modulated type, an atre voltmeter can be comnected across the primary of the transformer feeding the speaker, or from the plate of the last audio amplifier through a $0.1-\mu \mathrm{f}$. Blocking a a pacitor to the reveriver chassis. I ateking an al. voltmeter, the audio output ean be julged by (arr, although this method is mot as accurate as the others. If the tuning moter is used as an indication, the av.e.e. of the recoiver should be turned on, but any other indication reguires that it he turned off. Lacking a test oscillator, it steady signal tumed through the input of the receiver (if the joh is one of just touching up, the i.f. amplifier) will the suitable. However, with no oseillator and tuning an amplifier for the first time, ones only recourse is to try to prak the i.f. transfomers on "noise," a difficult task if the transformers are badly off resonamer, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposes.

Initial alignment of a new i.f. amplifier is as follows: The test oscillator is set to the correct frequency, and its output is coupled through it condenser to the grid of the last i.f. amplifier tube. The trimmer rapacitors of the trinsformer feeding the second detector are then adjusted for maximum output, as shown by the indicating doviee being used. The oscillator output lead is then elipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be neressary to reduce the output of the tost oscillator as more of the i.f. amplifier is brought into use. It is desirable in all coses to use the minimum signal that will give useful output readings. The i.f. transformer in the plate eircuit of the mixer is aligned with the sigmal introduced to the grid of the mixer. Since the tuned circuit feeding the miver grid may have a very low imperdance at the i.f., it may be necessary to boost the test generator output or to disconnert the tuned circuit temporarily from the maxer-stabe grid.

If the i.f. amplifier hats a mestal filter, the filter should first be switchod out and the alignment carriod out as above, setting the test osiollator as closely as posible to the crystal frequeney. When this is completed, the erystal
should be switched in and the oscillator frequency varied back and forth over a small range either side of the erystal frequency to find the exact frequency, as indicated by a sharp rise in output. Leaving the test oscillator set on the crystal peak, the i.f. trimmers should be realigned for maximum output. The necessary radjustment should be small. The oscillator frequency should be checked frequently to make sure it has not drifted from the crystal peak.

A modulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inaccurate if the audio output is used as the tuning indication. Lacking the a.v.e. tuning meter, the transformers may be conveniently aligned by ear, using a weak unmodulated signal adjusted to the crystal peak. Switch on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realigned by using any steady signal, such as a local broadeast station, instead of the test oscillator. One's 100-kc. standard makes an excellent signal source for "touching up" an i.f. amplifier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, be sure to read the instruction book carefully before attempting to realign the receiver. Most instruction books include alignment details, and any little special tricks that are peculiar to the receiver will also be described in detail.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to secure adequate tracking over each tuning range. The adjustment may be carried out with a test oscillator of suitable frequency range, with harmonics from your 100 -kc. standard or other known oscillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequency end of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oscillator output may be connected to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer capacitor in the receiver to give maximum response on the test-oscillator signal, then reset the receiver dial to the low-frequency end of the range. Set the test-oscillator frequency near the frequency indicated by the receiver dial and tune the test oscillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial, more inductance (or more capacity in the tracking capacitor) is needed in the receiver oscillator circuit; if the frequency is lower, less inductance (less tracking capacity) is required in the receiver oscillator.

Most commercial receivers provide some means for varying the inductance of the coils or the capacity of the tracking capacitor, to permit aligning the receiver tuning with the dial calibration. Set the test oscillat or to the frequency indicated by the receiver dial, and then adjust the tracking caparity or inductance of the receiver oscillator coil to obtain maximum response. After making this adjustment, recheck the high-frequency end of the seale as previously described. It may be necessary to go back and forth between the ends of the range several times before the proper combination of inductance and caparity is sccured. In many cases, better over-all tracking will result if frequencies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the highfrequency end of the range. Adjust the mixer trimmer capacitor for miximum hiss or siganl, then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency end of the range, and repeat ; if the circuits are properly designed, no change in trimmer settings should be necessary. If it is necessary to increase the trimmer capacity in any circuit, it indicates that more inductance is needed; conversely, if less caparity resonates the circuit, less inductance is required.

Tracking seldom is perfect throughout a tuning range, so that a check of alignment at intermediate points in the range may show it to be slightly off. Normally the gain variation from this cause will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the circuits may be aligned for maximum performance in that region, even though the ends of the frequency range as a whole may be slightly out of alignment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequency amplifier and mixer circuits shows up as squeals or "birdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to cause the a.v.c. system to reduce the receiver gain drastically. Oscillation can be caused by poor connections in the common ground circuits. Inadequate or defective by-pass eapacitors in cathode, plate and screen-grid circuits also can cause such oscillation. A metal tube with an ungrounded shell may cause trouble. Improper screen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may be responsible for such instability.

Oscillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by a continuous squeal that appears when the gain is advanced with the c.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits similar to those above. Inadequate screen or plate by-pass capacitance is a common cause of such oscillation.

Abstract

\section*{Instability} "Birdies" or a mushy hiss occurring with tuming of the high-frequency oscillator may indirate that the oscillator is "sapuegging" or oscillating simultaneously at high and low frequencies. This: may be caused by a defective tube, too-high oscillator plate or sereen-grid voltage, excessive feedback, or too-high grid-leak resistance.

A varying beat note in c.w. reception indieates instability in either the h.f. oscillator or beat oscillator, usually the former. The stability of the beat oscillator can be checked by introduring a signal of intermediate frequener (from a test oscillator) into the i.f. amplifier ; if the beat note is unstable, the trouble is in the beat oscillator. Poor connections or defective parts are the likely ratse. Instability in the high-frequeney oseilator may be the result of poor eircuit design, loose connections, defective tubes or circuit components, or poor voltage regulation in the oscillator plate-and'or sereen-supply circuits. Mixer mulling of the oscilator circuit also will canse the beat note to "chirp" on strong cew. signats, In phone reception with a.v.e., a pereuliar type of instability ("motorboating") may appear if the h.f.-oscillator frequeney is sensitive to changes in plate voltage. As the a.v.e. voltage rises the currents of the controlled tubes decerase, decreasing the load on the power supply and causing its output voltage to rise. Since this increases the voltage appliod to the oseillator, its frequencr ehanges correspondingly, throwing the signal of the peak of the i.f. resonance curve and reclucing the a.v.c. voltage, thus tending to restore the original conditions. The process then repeats itself, at a mate determined loy the signal strength and the time constant of the powersupply circuits. This effect is most pronounced with high i.f. selectivity, as when a erystal filter is used, and ean be cured be making the oscillator insensitive to voltage changes or lyy regulating the phate-voltage supply. The better receivers use VR-type tubes to stabilize the oscillator voltage -a defective VR tube may be the cause of oscillator instability.

Improving the Performance of Receivers

Frequently amateurs unjustly riticize a receiver's performane when actually part of the trouble lies with the operator, in his lack of knowledge about the receiver's operation or in his inability to recognize a readily-curable fault. The best example of this is a complaint about "lack of selectivity" when the receiver contains an i.f. erystal filter and the operator hasn't bothered to learn how to use it properly. "Labek of sensitivity" maty be nothing more than poor alignment of the r.f. and mixer tuning. The cures for these two complaints are obvious, and the details are treated both in this chapter and in the receiver instruetion book.

However, many complaints about selectivity, sensitivity, and other points are justified. Inexpensive, and most second-hand, receivers eannot be expeeted to measure up to the performance standards of some of the current and toppriced receivers. Nevertheless, many amateurs overlook the possibility of improving the performance of these "bargains" (they may or may not be bargains) by a few simple additions or modifications. From time to time articles in QST describe improvements for specific reecivers, and it may repay the owner of a newlyacquired second-hand receiver to examine past issues and see if an applicable article was published. The annual index in each December issue is a help in this respect.
Where no applicable article can be found, a few general principles can be lad down. If the complaint is the inability to separate stations, better i.f. (and occasionally audio) selectivity is indieated. The subject has heen treated earlier in this chapter, and several construetional articles follow. The answer is not to be found in better bandspread tuning of the dial as is sometimes erroneously eoncluded. However, with the addition of more i.f. selectivity, it may be
found that the receiver's tuning rate (mumber of k e. tuned per dial revolution) is too high, and consequently the tuning with good i.f. solectivity beromes too critical. If this is the (oase, a 5 -to-1 reduction planetary dial drive mechanism may be added to make the tuning rate more favorable. These drives are sold by the larger supply houses and can usually be added to the receiver if a suitable mounting bracket is made from sheet metal. If there is already some backlash in the dial mechanism, the addition of the planetary drive will magnify its effect, so it is neressary to minimize the backlash before attempting to improve the turing rate. While this is not possible in all cases, it should be investigated from every angle before giving up. Replaring as small tuning knob with a larger one will add to ease of tuning.

In many of the inexpensive receivers the frequeney ealibration of the dial is not very accurate. The recriver's usefulness for determining hand limits will be greatly improved by the addition of a $100-k$ e, erystal-eontrolled frequeney standard. These units can be built or purchased complete at very reasonable prices, and no anateur station worthy of the name should be without one.

Some receivers that show a considerable frequency drift ats they are warming up can be improved by the simple expedient of furnishing more ventilation, hy propping up the lid or by drilling extra ventilation holes. In many cases the warm-up drift can be cut in half.

Receivers that show frequency changes with line-voltage or gain-eontrol variations can be greatly improved by the addition of regulated voltage on the oscillators (high-frequency and b,for.) and the sereen of the miver tube. There is usually room in any rectiver for the addition of a VR tube of the right rating.

A One-Tube Regenerative Receiver

The receiver shown in figs $5-21,5-2(i$, and $5-27$ represents close to the minimum requirements of a useful short-wave roceiver. I'nder suitable ronditions, it is capable of receiving signals from many foreign countries. It is a good receiver for the beginner, because it is

While the title indicates that the receiver has one tube, actually it uses two tubes in one envelope - envelope meaning the glass enclosure. The $6 \mathrm{l}^{\prime} \mathrm{s}$ is a triode-pentode, and in this receiver the pentode section is used as a regenerative detector and the triode as an andio amplifier.

Referring to Fig. 5-25, the antema

Fig. 5-24 - Front view of the one-tule regenerative receiver and power supply. The eontrol at the upper left is the general-coverage tuning, center is bandspread, lower left the regeneration control, and the bottom renter the antenna trimmer.
casy to build and the eomponents are not expensive.

With this receiver it is possible to hear amateur and commercial stations in the $2-$ to $20-$ Ild . range. This funing range will enable the builder to listen to the two low-frequeney Novice hands. Also, if one is interested in obtaining code pratetice, WIAIV, the ARLRL Has station, wan be tuned in for its nightly code-practice sessions. less cexpensive. coil, L_{1}, couple's the signal to the detertor tuned circuit $\mathrm{L}_{2} \mathrm{Co}_{2} \mathrm{C}_{3}$. The cat paritor, C_{2}, is largor than C_{3} and is used as the "bandset" capacitor once ('z is set for a particular frequency range, C_{3} is used as the "handspread" tuning control. To fatcilitate using manufantured coils, the coil L_{0} is tatpped to obtain a feedback or "tickler" winding. Regeneration in the detector is controlled by changing the screen voltage obtained at the potentiomater R_{1}. An r.f. filter, using two eapacitors and an r.f. choke, is placed in the plate circuit of the pentode detcetor to reduce r.f. appearing at the grid of the triode audio :mplifier. Still further attemuation of r.f. at the grid is obtained through the use of a series resistor and a shunt capacitor right at the grid of the audio stage. The audio coupling choke, L_{3}, is made from an interstage audio transformor with the two windings connerted in serios. I high-inductance choke could, be used here, but the series-connerted tramsformer is

The headphones are connerted directly in the plate circuit of the audiostage, and consequently the pate voltare appears at the terminals you can get an elertrical shock here if you aren't careful. Some receivers eliminate this hazard by feeding the plate through an audio choke and

Parts List for Regenerative Receiver

$2100-\mu \mu \mathrm{f}$. midget variables (Millen 20100) (C_{1}, C_{2})
$115-\mu \mu \mathrm{f}$. miduet variable (Milken 2(0)15) (C3)
$11(0)-\mu \mu \mathrm{f}$. mica or ceramic caparitor
$150(0-\mu \mu \mathrm{f}$. mica or ceramic capacitor
$30.001 \sim \mu$. disk ceramic caparitors $10.01-\mu \mathrm{f}$. disk ceramic eapacitor
$10.1-\mu \mathrm{f}$. 200-volt paper capacitor
$110-\mu$. 2 ij -volt electrolytic capacitor
$216-\mu \mathrm{f} .250$-volt electrolytie (or dual $16-\mu \mathrm{f}$.)
1470 -ohm $1 / 2$-watt carbon resistor
108.000 -ohm 1 -watt carbon resistor
10.1 -megohn $1 / 2$-watt carbon resistor $10.5-$ megohm $1 / 2$-watt carbon resistor
1 1.0-megohm $1 / 2$-watt carhon resistor
150,000 -olim potentioneter
$21-m h$. r.f. chokes (National R-50)
80-, 40-, and 20 -meter Barker \& Williamson Baby Indictars M1EL. ($L_{1,}, L_{2}$)
1 interstage transformer (Stancor A-i3-C) (La3)
2 6-henry 40 -ma. filter ehokes (UTC R-555) (L_{4}, L_{5})
1 power transformer, 120 -volt secondary at 50 un.;
6. 3 rolt at 1 antp. (Merit I 3045 or P30.46)

1 dry rectificr, 130 volts, 20 ma . (Federal 1509) (CR)
1 aluminum chassis. $7^{\prime \prime} \times 7^{\prime \prime} \times 2^{\prime \prime}$
1 aluminum ${ }^{\text {manel, }} 7^{\prime \prime} \times 6^{\prime \prime}$
1 piere of aluminum for power-supply chassis, $3^{\prime \prime}$ by
$10^{\prime \prime}$ (the panel and this piece are obtainable at any sheet-metal shop)
19 -pin miniature tube socket, bakelite or mica filled
1 .j-pin socket for coils L_{1} and L_{2}, bakelite or isolantite
4 3-terminal tie joints
$78 / \mathrm{g}^{\prime \prime}$ rubber grommets
1 I'anel bearing assembly, over-all length $6^{\prime \prime}$
1 insulated shaft coupler
1 terminal strip, 6 terminals
2 pin jacks, insulated tyue
Miscellaneous 6-32 machine srews and nuts 6 ground lugs
2.) feet of hook-up wire

4 knobs for controls
16 L'8 $^{\prime}$ tube
1 length of spaghetti wire covering
line cord and plug
coupling to the headphones through a capacior, but in the interest of saving a few dollars this protertive feature was not included. Be sure to use "high-impedance" headphones with this receiver - the low-impedance headphones that have been available in surplus will not work well in this particular cireuit.

The receiver is built onat $7 \times 7 \times$ 2 -inch aluminum chassis, with the power supply mounted on a separate chassis. In order to minimize hum pickup and vibration from the power trinnsformer, it is not advisable to mount the power

Fig. 5-26- Rear view of receiver and power supply showing the placenent of parts, The variable capacitor on the left is for bandspread and the one on the ripht for general coverage. The leads from the two capacitors are rum through mbiber grommets to avoid shorting to the chassis top.
supply on the same chassis as the receiver. An aluminum chassis is easy to work; a $1 / 8-$ and $1 / 4-$ inch drill, phas a small rat tail file and hatek-saw bade are all the tools needed for the joh, att hough two socket pumehes will save some work.

The first strp is to mount the coil and tube sorkets. They are spaced 2 inches from the sides at the center of the chassis. Ground lugs should be mounted under the nuts that hold the tube socket and also under the rear nut holding the coil socket. Next, the panel holes are drilled.

Looking at Fig. 5-24, front, the knob at the lower left is the regeneration control, lower center is the antenna trimmer, and the headphone tips are at the lower right. The knob at the upper left is for the general-coverage capacitor, and the one at the right the band spread tuning. The dial shown in the photograph is the National type K.

After the holes are drilled in the panel, it is held in place against the chassis and the four holes along the bottom are used as a tempate for the chassis holes. A small right-angle bracket to hold the antenna-trimmer capacitor is made from a piece of aluminum. The hole in the bracket should be large enough to clear the rotor of the capacitor, sine both the rotor and stator are insulated from the chassis. The trimmer is mounted to the bracket by serews and the insulated muts on the capacitor frame. The bracket, tie points, and audio choke L_{3} can now be mounted in place.

The two eapacitors, C_{2} and C_{3}, should then be installed on the panel. When the potentiometer R_{1} and the pin jacks are mounted in place, they will hold the panel to the chassis. Be sure to insulate the pin jacks from the panel and chassis with fiber washers. The through-shaft bushing is then measured and cut to size, making allowance for the insulated coupler.

If this is your first construction project, see the chapter on Construction Practices for tips on wiring and soldering before starting this job.

It is important that a separate ground lead be connected to the rotors of C_{2} and C_{3} and the lead brought below the chassis to a common grounding

point at the tube sorket. This will help make the receiver stable and reduce hand caparits.

There are five leads coming from the interstage transformer: red, blue, black, and two green. The red lead and green lead that are directly opposite each other are connected together. After the leads are soldered and taped, the end of the black lead is also taped. These leads are then rolled up and turked in the comer of the chassis. The remaining blue and green leads then become those used for wiring the serioseonnected transformer into the circuit. One is connected to the junction of the $0.01-\mu \mathrm{f}$. disk capacitor and the $1-\mathrm{mh}$. r.f. choke and the other lead is eonnerted to the $13+$ voltage terminal.

The Barker \& Williamson coils are mounted on five-prong plugs, although only four of the contacts are used. The link mounted at one end of the coil is L_{1} and the coil proper is L_{2}. To make the tickler tap, a short piece of hook-up wire approximately 3 inches long is soldered to the fifth prong on the plug. The piece of wire is then run through the middle turns of the coil and soldered to the tap point. For the 80-meter coil, the tap is comnerted to the 8 th turn in from the link end. To get the tap, wire through the middle turns of the eoil, it will be necessary to bend two or three turns of the coil in towards the center of the coil. This will provide sufficient clearance for the tap lead. It is also neeessary to bend in the 8th turn to make the tap comneretion. Be sure that none of the bent turns tourhes adjacent turns.

For maximum bandspread on 40 meters, it is neressary to remove nine turns from the 40 moter coil. The turns are taken from the end opposite the link end of the coil. The tiekler tap is made on the th turn end from the link end.

To handspread the 20-meter coil, two turns are removed from the end opposite the link end. The tap is placed on the 4 th turn from the link end. In all three roils, the tap lead should be insulated where it passes through the coil turns.

The power-supply components suln now be wired. There are two important points that beginners should keep in mind when wiring the
supply. The first is that the electrolytic eaparitors should be wired with the leads marked with a minus sign, or negative, connected to the ehassis. The plus sign, or positive, conncets to the ehoke leads. Likewise, the selenium rectifier is marked with a plus sign, and this lead is connected to the choke lead. Four leads are brought out from the power supply to conneet to the receiver: the two heater leads, the $\mathrm{B}+$ lead, and the B - lead.

When the power supply is wired and the leads connected to the receiver, the unit is ready to test.

If you already have an antemna strung up, connect the end of it to Terminal 2 - the one connected to the rotor of C_{1}. If you don't have an antema, any wire, 20 to 40 feet long or longer, ean be strung up. An outside antenna will perform better than one indoors, although you'll hear many signals with just a wire in the room.

Connect your headphones to the tip jarks and plug in the 80 -moter coil. Plug the power cord into the 115 -volt a.c. line and wateh the 6 C 8 to sce if the heater lights up. If it doesn't, turn off the power and cheek wiring from the power supply to the heater pins on the 6U8 socket.

The receiver will only take a minute to warm up. Turn the regeneration control and, at one point, you should hear a change in the charateristic of the noise. This is the point where the reobiver starts to oseillate. Tune the generalcoverage eaparitor slowly and you should hear signals. Leave the capacitor set at or near one of the signals and then tune the band-spread caparitor. This capacitor gives a slower tuning rate, making it much easier to tune in signals.

With a signal tuned in, rotate the antennatrimmer control and the signal should get louder at one point. If it doesn't, change the antenna to terminal number 1 and short terminals 2 and 3 together with a short piere of wire. Try the antenna trimmer again, and you should find that the signal will peak up. The regeneration control setting may have to be changed to maintain oscillation.

Locating the amateur Novice bands is simple. Tune the receiver until you find an amateur phone station. The Novice band on both 80 and 40 meters is immediately below the phone bands. To tune lower in frequency than the phone bands, the bond-spread capacitor is turned so that the plates mesh more.

Fig. 5.27-Buttom view of the two mits. It the lower left in the receiver is the interstage transformer L_{3}. T'o the right of L_{3} is the antenna-trimmer capacitor monted on a right-angle bracket. Immediatcly in fromt of the bracket is the insulated shaft coupler which roonnerts the through-shaft bushing to the antenna trimmer.
The seleniam rectifier in the power cupply is visible lectween the two electrolytic capacitors.

A Two-Band Three-Tube Superheterodyne

The thres-tube superheterodye shown in Figs. 5-28, 5-30 and 5 -31 might be called a "minimum" receiver, since it probably represents the minimum in receriving equipment that will give a good account of itself under present band conditions. By using an i.f, of 1700 ke , it is possible to use an oscillator that tumes 5.2 to 5.7 Mc. and provides receiver covfrage of the 80 - and to-meter bands without switching. To listen on higher frequencies, it erystalcontrolled converter ean be used ahead of the set, working into it at 80 meters.
leferring to the cirenit in lig. 5-29, it ean be seen that adjustthle input coupling is provided (variable coupling between L_{1} and L_{2}). While the signal level seth be redured by detuning the $140-\mu \mu \mathrm{f}$. ANT eqpacitor, ('1, the adjustable coupling is casy to construet and permits reducing the input kevel without detuning. The high-frequeney oscillator output is coupled to the cathode of the pentode mixer, to provide a low-noise mixer and a minimum of "pulling." Changing the setting of the ANT capacitor does not pull the oscillator frequeney appreciathly unless the mixer input circuit is tuned close to the oscillator frequency,

Fig. 5-28 - This two-band superheterodyne receiver uses an antodyne second detector and adjustable antenna conpling. The dial pointer and black trim strips are made of blach Scotch Tape. The control marked "Feedback" is the regeneration control.

Fig. 5-29 - Schematic diagram of the two-hand superheterodyne. Alt resistors $1 / 2$-watt unless specified otherwise. All capacitances in $\mu \mu f$. miless otherwise noted. All fixed capacitors evcept two across L_{46}, one across L_{4}, and the electrolytics (polarity marked) are ceramic. Fixed capacitors across L_{4} and I_{66} are silver mica.
C_{1} - $110-\mu \mu \mathrm{f}$. midget variable (IIammarlund IFF-110). $\quad \mathrm{L}_{4}$ - 21 turns, sparated from L_{3} by one (removed) (:2 - $1.5-\mu \mu \mathrm{f}$ midmet variahle (11ammarlund 11 F -15).
R_{1} - lo. 1006 ohm - -watt wire-wound potentioneter (Clarostat A+3-10K).
$L_{1}, I_{2}, 1_{3}, 1_{4}-13 \& W$ No. 3016 Miniductor, 1 -inch diam., 32 turns per inch, No. 22 wire.
$11_{1}-12$ turns.
$1.2-26$ turns.
$\mathrm{L}_{3}-8$ turns.
that have berome popular rerently. They have the twin virtues of low cost and quite adequate (for this job). The regenerative detector uses the Colpitts circuit to eliminate the need for

 resicretively.
$\mathrm{L}_{6} 5, \mathrm{~L}_{6}$ - Grayburne Vari-Loopstick. ($80 \mu \mathrm{~h} .$. approx.) s_{1} - Mounted on 300 K , olume control.

Power transformer is K hight (.Nlied Radio) 62.-(-031 , filter choke is Knight 62-G.132, filter capacitor is Mallory $2 \mathrm{~N}-\mathrm{sin}$.
tapping the coil or adding a tiekler winding. An electrolytic capacitor across the regeneration control eliminates the noise produced by varying the wire-wound potentioneter. With any significant current flowing, a wire-wound potentiometer usually has longer life than does the more common composition control.

The twostage audio amplifier is conventional, execept that a cathode by-pass capacitor is omitted from the second stage because there is already sufficiont gain in the amplifier. Switch S_{1} is mounted on the audio volume rontrol.

An $8 \times 12 \times 3$-inch aluminum chassis plus a 7×13-inch panel provides enough metal for the receiver, with the single exception of the serap of aluminum needed for the bracket that supports the $15-\mu \mu$. tuning capacitor, C_{2}. The panel is held to the chassis by the two shaft hearings and the regemoration-control potentiometer, as (an be seen in lig. 5-31. It will pay off to take a little care in the location of the holes for the National type k dial, in the interests of a smooth-tuning recciver. Build the tuning-capacitor bracket first, then line up the rapacitor shaft against the panel to mark the dial bushing hole, and finally locate the drive bushing hole. Replare the small knob that comes with the Type K dial with a larger one, and use a couple of drops of oil to lubricate the drive bushing.
l'ractically everything else in the receiver can le located from the photographs. The adjustable antenna-coupling coil is mounted on the end of a length of $1 / 4$-inch diameter ludite rod by cutting the end of the rod at 45 degrees and cementing a small scrap of polystyrene sheet to this face. The scrap is then filed to fit inside the coil and secured with a few drops of louco rement. Four small hoks are drilled through the rod: two for the coil ends (which also serve as tie points for the flexible antenna and ground leads), one through which the antemat and ground leads are threaded and cemented, and the fourth through whirh a piere of No. 20 wire is pushed and bent back around the rod. This last
wire serves as a shoulder that bears against a fiber (or metal) washer that in turn bears against a large rubber grommet with a $1 / 4$-inch hole, as shown in Fig. $\tilde{0}-32$. The other side of the grommet has another washer between it and the panel bushing. The rod is pushed through the bushing, two more washers are added, and then the knoh is put on. By pushing the rod out through the panel as the knob) is tightened, the rubber grommet is left in compression, and it serves as a simple friation lock for the control.

The two coils L_{5} and L_{6} are mounted on 1 -inch separated centers. The "phones" jack is insulated from the chassis by fiber washors. lhate voltage will appear at this point, so always use an insulated phone phug. Both C_{2} and C_{1} caparitors are insulated from the chassis - the former by mounting it with short bushings on the mounting bracket, and the later by fastening it to the chassis with a machine serew through small extruded fiber washers. Clearance holes for leads from looth stators and rotors of these raparitors are provided, as can be seen in Figs. $5-30$ and $5-31$.

To minimize hum, shield the leads to and from the volume control. These pass through a grommet in the chassis and make connertion to the chassis only at the 12ANT rhassis. Also shield the lead from the arm of the regeneration control.

Assuming that the wiring is correct, that the tule heaters light when you turn on the set, and that the power supply delivers 250 to 300 volts, the first step is to check the detector. This is conveniently done with the 6U8 out of its sorket - then if something is wrong in the "front end" it won't confuse the detector cherking. With headphones plugged in and the receiver (less 6U8) warmed up, advancing the volume control should give a hissing sound in the headphones. Advancing the regeneration control (increasing the voltage on the (6131)6 screen) you should find a point where the hiss increases appreciably and perhaps a very slight hum is heard. This is the point where the detector "oscillates" - below this point you
 won't get a beat note with c.w. signals, and bevond it you will. The detector works - the next step is to get it on $1 \mathbf{7 0 0} \mathrm{kc}$. (If it doesn't work,

Fig. 5.30 - The miniature tubes, from left to right, are $618,6131) 6$ (in shield) and 12AX:. The lefthand variable capacitor tunes the mixer input circuit, and the small one in the center tunes the high-frequency oscillator. Note the phono-jack antenna terminal and headphone output jack on the wall of the chassis. The tuning capacitor at rear eenter is mounted on an aluminum bracket.

Fig. 5-31 - The mixer input and high-frequency oscillator crils are mounted on tie points. as shown here. The antenna coil. I_{1}, is mounted on the end of a piece of lucite rod, as shown here and in Fig. -5.32. The leads to it are wrapped several times around the rod, to provide a "pig tail" connection.
check your wiring and the voltages at the 613106 and 12.4×5 pins.) If you can beg, borrow or steal a test generator, put the detertor on 1700 kc . In adjusting the slug in L_{6} until the 1700 -ke. signat is heard. The test signat need only be loosely coupled to L_{6} - a wire plabed a foot from the coil and connerted to the test gamerator should sulfiee. lacking the test gencrator, you may be able to use a broadeast reredver bey tuning it t a around $12 \mathrm{t}^{5} \mathrm{ke}$. If the receriver has a toj- kr . i.f., the oscillator will be dose to 1700 kr ., and if the BC set is plated within a few fere of the receiver under test, there will be enough radiation from the set to act as the test signal. Ion't go

Fïg. 5 -32 - Details of the atjustable antema compling roil. Part of the coil has leeen cut away to show the support.
be the cablibation on the $B C$ recoiver; make a new one from known stations.

When the atodyne deteretor is working satisfactorily and you have atequainted yourself a little with its operation, plug in the 6 o 8 and hot it warm up. Trim L_{5} until you tind a point where it pulls the detector out of oseillation, and detume it slightly until regeneration starts about 10 or 15 degrees farther along the regeneration control, R_{1}, than it did when L_{5} wats tumed woll off the frecueney. (herek again to maker sure that vou are still on or close to $17(6) \mathrm{ke}$.

Now ronnere an antemna (any wire 20 fort long or more) and swing the ANT (atpacitor, (x_{1}, aeross its range. The recoiver hoise should inreater at two points - one near minimum on the eapacitor (H0 moters) and one around $3 / 4$ meshed (80 meters). The $3-30-\mu \mu$ f. compression ascillator trimmer should he set at about ${ }^{1}$ 自turn batek from its tightest setting. Leaving the wor (atpatcitor on 80 or 40 moters, tune around with the TWNE rapacitur, ("2, until vou boeate some amatene signals. If you lack a fropuencer standard or the athility to bormo one, you have no alternative but to identify the bands bey the limits of phone or ew. signals in the various subbends.

In any event, onee you have found the signals, you can move the bands on the tuase seale by changing the setting of the mica rompression trimmer. However, anless the i.f, is pactly on 1700 ke., the $7 .(0-$ and $3.6-$ Me, points, 7.1 and 3.7 Me, fter, won't roincide as they do on the homemade scale shown in Fig. 5-28. (Onserving the error, however, you reth bring the i,f, to 1700 ke . easily. The homemade seale is simply a sheret of white papere held down with batak Sooteh Tape, with a sliver of tape on the dial to serve as a pointer. The pointer laps over the "0" (ond, and the (0)- loo sate of the dial ran still be used for logging bey referring it to the uppor edge of the lower back strip on the right-hand side.

For the reception of cew, signals, the regenerettion control is advanced far conough for the detector to oseillate, as indieated by the sudden increase in hiss. It may be noticed that on strong signals it is impossible to tume in a signal at at low beat moto (200 to 300 e evelos). This indieates that the signal is too strong and is "pulling" or "hlowing" the detertor. To overcome this, inerease the regeneration control or reduce the antomat roupling, After you have used the recoiver for it while, you will get used to the "feed" of it and you will find the settings that work best for various QRM levols.
When receiving at.m. phone, the regeneration rontrol is maintaned just below the oscilation point. This is the most sensitive point for phone reception, since the gain of the detertor derreases as you back off the regencration cont rol still more. The selectivity of the reeriver for phome reeption is not as great as cath be expereded from a small supertheterodyme using several tuned cirenits in a tisioke, i.f :mplifier. However, you can make up a lot of this selectivity by derroasing the antemat coupling and rumning the detector just under the oscillation point. A strong signal derreases the selertivity of the regenerative doteretor, hemer the med for reducing the sigmal be deereasing the antemat coupling. N.s.b, phone is received the stme as at cew. signal, by atvatheing the regeneration control past the osedilation point and tuning carefully about the signal matil it beromes intelligible. Overloted is again the enemy here. so run the antemnat coupling at a value consistent with good signal noise ratio.

A Two-Band Five-Tube Superheterodyne

The five-tube superheterodyne shown in Figs, 5 -3:3, $5-35$ and 5 - 36 is a double-conversion receriver tuning the 3.5- and \bar{T}-Mc. amateur hands. It is not difficult to build, and it has stability and selectivity not surpassed by factory-built receivers rosting much more.

As can be seen in Fig. 5-34, the circuit diagram, the reereiver uses intermediate frequencies of 1700 and 100 ke . The $1700-\mathrm{ke}$. first i.f, permits using an oseillator that tumes only one range for the two bands. Tuning the oscillator from 5.2 to 5.7 Me. gives an i.f. of 1700 ke . for the 3.5 - to $\mathbf{4 . 0 - \mathrm { Me } \text { . }}$ range and the same i.f. for the 6.9 - to $7.4-\mathrm{Me}$. range. The oseillator components are soldered in place (no switching or plug-in coils) and the dial calibration is made once and can then be relied upon. To change bands, it is only necessary to swing the input capacitor, ('1, to the 80) or 4()moter hand. The $1700-k$ c. i.f. climinates any pulling on the oseillator, in either range.

With no r.f. stage, the receiver's signal-tonoise ratio is determined $b y$ the mixer. The 6.107 is the best tube available for the purpose. To minimize spurious responses, two tuned circuits are used in the input between antenna and converter grid. The stator plates of the dual capacitor, C_{1}, are shiedded from earh other, as are the two coils L_{2} and L_{3}, and the coupling between circuits is ohtained by the 0.001-mf. eapacitor.

The $1700-\mathrm{ke}$. signal from the first converter is converted in the 6 K 8 serond converter to 100 ke . The use of a $1600-k$ e. erystal for the oseillator at this point permits using an r.f. gain control that has no effect on the frequenery, No frequency change with gain-control setting is a desirable characturistic of any good receiver, so the 1600ke. crestal at $\$ 2.75$ is not a luxury. While the 1600-ke. oscillator could be made self-controlled,
it would be almost erertain to "pull" with gaincontrol changes.

Instead of a commercial unit, a homemade 7700 -ke. i.f. transformer is used at T_{1}. It is made from two "Vari Loopsticks" (high-() broadeast antennas) shunted by $100-\mu \mu$ f. fixed capacitors. This works well and is cheaper than any com-mercially-available unit.

The 100-ke, output from the 6K8 is filtered through threr tuned circuits and feeds a triode plate detertor ($1 / 26 \mathrm{ENS}^{2}$). This detector is regenerative, but the regeneration is fixed and doesn't have to be bothered with by the operator unless he changes tubes and the new tube has considerably different characteristics. The regeneration in the $100-\mathrm{k}$. detector gives the recoiver its single-signal c.w, reception characteristic, since there aren't enough tuned circuits to give it otherwise. The b.f.o. uses the other triode in the 6SN7 envelope, and stray coupling is used for the b.f.o. injection. No panel control of b.f.o. pitch is available, berause the selectivity is not adjustable and the variable-pitch feature is not essential.

Up to this point the gain of the receiver is not too high, and two stages of audio amplification are used. Omitting the cathode by-pass capacitors still leaves more than enough audio for any pair of high-impedance headphones.
l3y kerping the signal level low up to and through the selective stages, there is a minimum opportunity for overloading and cross-modulation, and the gain need be kept only high enough to prevent degrading the signal-to-noise ratio. Further, a regenerative stage has a tendeney to "flatten out" with strong signals, so the regenerative detector is somewhat protereted by holding the gain down. However, the reeriver has quite adequate sensitivity - in any normal location

Fig. 5.33 - The five-tube double-tonversion superhet. erody ne thmes the $3,5-$ and 7. Mr. bands without handswitching. 'The controls on the left are andio volume (upper) and b.for. switeh, and those on the right are antenna tuning (upper) and i.f. gain.

Fig. 5-34 - W'iring diagram of the five-tuber receiver.

All capacitances in $\mu \mu$. unless specified othervise. All resistors $1 / 2$ watt unless sperified etherwise.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{f}$. -per-section dual variable (Hammarlund MCl M (40-M).
$\mathrm{C}_{2}-35-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-35).
$\mathrm{C}_{3}-100-\mu_{\mu} \mathrm{f}$. midget variable (National PSR-100).
K_{6} - 1000 -ohm wire-nound potentiometer (Vallory IIMP).
$L_{1}-8$ turns No. 30 d.c.e. close-nound over gromidend of L_{2}.
$\mathrm{L}_{2}, \mathrm{I}_{3}-35$ turns No. 30 d.c.c. closerwound on National XR-50 slug. tuned form.
1.4-23 turns Nu. 24 bare space-wound 32 wrns per inch, $5 / 8$-inch
diam. 'Tichler is $13 / 4$ turns spaced 1 turn from L_{4}. See text.
(Made from B \& W 3008 Miniduetor.)
$\mathrm{L}_{5}-20$-mh. (approx.) slug-tmed coil (RC:1 205R1).
$\mathrm{L}_{6}-20$ henry, 15 ma. choke (Stancor (i1515).
T_{1} - 1700-ke. i.f. transformer (made from two Vari lanpmicknshonted by $100-\mu \mu \mathrm{f}$. mica capacitors. See text).
$\mathrm{T}_{2}, \mathrm{~T}_{3}-100-\mathrm{ke}$. transformers made from 'I' components (RC.I Bisit or Merit 'V-162). Sec text.
T_{4} - Small 3:1 andio transformer (Stancor A-63-C).
RFCC $\mathrm{C}_{1}-750 \mu \mathrm{~h}$. (National R-33).
The loon-he. erysial is a lroteran Ratio type Z-2.

Fig. 5.3.5-A top view of the five-tube superheteronlyne shows how an alumimum and a sleel chassis are combined for greater weixht and atrength. The oc:4 madilator and ode: miner are at the left, and the two osi is are at the extreme right. Note tho shieli het ween the stator sections of the eaparitor on the left.
and with a fair to good antenna, any signal that can be heard by a large receiver can be heard by this one, exeept in rare cases where the large receiver's superior selectivity makes the difference.

Construction

The construction of the receiver is unconventional in that two chassis are used, as shown in ligs. $5-333$ and $5-35$, and the panel is mounted away from the ehassis. All of the electrieal components are mounter on the aluminum $7 \times 11 \times$ 2-inch chassis, and this sits on an inverted 7×11 $\times 2$-ind stecel chassis that servers as a hase and bot tom cover. The bottom chassis has rubber feet (grommets) at its corucrs that prevent its slipping on the table. The 8×12-inch panel is supported away from the aluminum chassis on 1/2-inch-long brass collars, secured by suitable washers and 6-32 screws, as shown in Pig. 5-36. The panel is supported by two such collars at earch end of the chassis and by two more that make up to two of the mounting serews of the National ACN dial at the center. The two center collars add to the strength of the assembly by furnishing additional support for the panel and dial, and they should not be omitted.

The aluminum chassis is bolted to the steet rhassis 1 y two $41 / 4$-inch lengths of $1 / 8$-inch diameter brass rod, threaded $6-32$ at earch end. These rods pass through holes in the top and lip of earh chassis. The only holes that are required in the sted chassis are those for the two tie rods, the four holes for the rubber fret, and a $1 \frac{1}{4}$-inch diameter hole to dear the headphone jack.

In the oscillator cireuit, the $35-\mu \mu \mathrm{f}$. tuning (aparitor, ("2, is supported by a small aluminum bracket. The correct location of the capacitor
with the eoupling of the dial. The 100-mpf. trimmer, ('s, is mounted under the chassis with its shaft extending through to the top, so that the capacitor is adjustable from above the chansis. Neither Cen nor ('s is grounded to the chassis through its mounting - leads from the rotors are grounded to the chassis at one point near the $6 \mathrm{AC}_{7}$ tube socket. The oscillator coil, L_{4}, is mounted lyy its leads on a multiple tie point.

The shind botweon the input coils, L_{2} and L_{3}, is mate of thin aluminum. It has a noteh in the edge that goes against the chassis side, to elear the antema-coil leads, and it has a hole through it for the lead between the bottoms of L_{2} and L_{3}. The dual ceppacitor, C_{1} is fastened to the chassis by a single 6-32 screw, and the head of this screw has a copper shield soldered to it for minimizing coupling betwern $C_{1 A}$ and $C_{1 B}$. The shield is easily cut out from copper flashing and soldered to the serew head. The rotor assembly of C1 nust be removed to put the shield in plame, but this is just a matter of loosening four serews. Jon't touch the stator plates. The serew with the shield on it, which holds C_{1} to the chassis, also holds the coil shield in place underneath the chassis.

The $1700-k c$. i.f. transformer is made by mounting the two "loopsticks" 1 -inch apart on the chassis, as shown in Figs, 5-3:3 and 5-35. The 1(n)- $\mu \mu$ f. capacitors are mounted on the coils.

The 100-ke. cireuits use a TV' component, a special Horizontal Osellator eroil. As purehased, they have the soldoring lugs and tuning scran out of the top of the can, but they are easily reversed by uncrimping the can and reversing the assembly. Before reassembly, however, there are a few things to be done. The large coil is used for the l(K)-ke, tuned circuit by connecting a 100 -
 lifting the center-tap from lin('. Don't break the renter-tap - the asiest way is to serape the two wires first to remove the insulation, flow a drop of solder on the seraped portion, and then cut the two wires away at the pin. The other winding is used as the primary in T_{2} and the tiekler in T_{3}. The primary in T_{2} can be tuned from the top, berather there is also an irom sug in this smather coil.

In wiring the set, use tie points liberally so that no components will be floppes. The only shideded wires are the one ruming from the volume control to Pin 1 of the audio amplifier and the leads from T_{3} to dins t and is of the detector. The shiedde are groumed to the chassis at the ends and any other convemiont points.
The oscillator coil, L_{4}, is made from 13 \& W Miniductor. Toseprarate the two moils of L_{4}, push the Brd or the turn from one end of the piere of Miniductor through toward the erenter of the coil. suip this wire with a pair of coltops and push the two ends bate out. Wach end is then pereded around for $\frac{1}{2}$ turn. The two coils are adjusted to the right number of turns by working in from the ontside ends.
The rotor of C_{1} is commeded underneath the chassis to the 0.001- $\mu \mathrm{f}$. cotpling catatitor by rumning a wire from the front support of the rotor through a $\frac{1}{4}$-imely elearime hole in the ehassis. The 0,001- 0 f. coupling cetpacitor and L_{2} and L_{33} tre grounded to the lug under I_{2}.

Adjustment

There are two types of adjustment that must be made to get the recoder working: adjusting the eirenits to the proper frequencies and adjusting the oscillators and the regenembe demetor to the proper amplitudes. To this latter end, leave the eathode end of R_{1} disemmerted in the original wiring, and lightly solder (so that it cam be (hanged later) the leat from bin $\overline{3}$ of the deterom to Terminal (of T_{3}. Resistors R_{2} athed R_{3} may require changing, so don't solder them too well it first.

Comert a power supply to the receriver and wee that the tubes light and that the power-supply voltakes are appoximately correct. The 2 on volts (an be athything 25 volts ather side of 250 , and the 105 volts, coming from a Vle tube, will he mothing to worry about if the Vla tube lights.

Next connere a low-range milliammeter intwoen R_{1} and cathode (+ load to cathonle) and apply power atgath. The grid current should read about (0.05 ma. (50 μ it.). If it reads much more than this, try a slighty larger resistor at R_{3}, or : smaller one if the grid current is too low. Make these :udjustments with the rotor arm of the r.if. getin control at the grounded end.

Nest cherck the oscilltation of the 6Ct highfrepurney oscillator. To do this, ronneret a (0-10 voltmeter ateross the houtohm resiston in the plate eirenit of the 6 C 4 (+ temmanal to

+105 side, - terminal to the $0.001-\mu$. caparitor). Ohserve the voltage rating and then touid your finger to the stator of C_{2} or C_{3}. If the oscillator is working, the voltmeter reading will increase. If you get no change, it moans the oscillator isnt working. With both coils of L_{4} wound in the same direction (as they will be

3650 ke ., you know that the first 100 -ke. harmonie pou hear on the high-frequeney side will be 3700 ke., and the first one on the low side will be 3600 ke. The second harmonic of the $3650-\mathrm{ke}$. signal will furnish at check point at 7300 kr . ($2 \times 366_{5}(0)$, so swinging (${ }^{\prime}$ to about $1 / 3$ meshed (where it will prak the $\overline{\mathrm{F}}$-Mle. signals) will allow you to bocate

Fig. 5-37-Suggested circoit diagram for the receiver power supply. Tı - Stancor PM-8407 or equivalent. Sı - S.p.s.t. toggle switeh.
if Miniductor is used), the stator of the tuning capacitor should be connected to the outer end of the larger coil, and lin 5 of the 6 C 4 should be connected to the outside turn of the smatler coil.

If you can borrow a serviceman's test oscillator that will give a modulated signal at 1700 ke , this signal ean be introduced at the grid of the 6 K 8 and the 100-ke. i.f. cireuits ean be peaked (b.f.o. turned off), listening in the headphones for maximum response. The $1 \overline{700}-\mathrm{ke}$, signal can then be transferred to the grid of the $6: 1 C 7$ and the slugs peaked on T_{1}. Ladeking the signal generator, the alternative is to provide a modulated signal in the 80 - or 40 -meter hand and couple it to the stator of C_{13}. If the signal is from a erystal ascillator or v.f.o. at $3 \overline{50} \mathrm{ke}$. (for example), running from an unfiltered power supply to furnish the modulation, set the tuning dial vertical. If the signal is at 3500 kc ., set the tuning capacitor C_{2} at almost full capacity. Rock ('3 slowly until the signal is heard. Then peak the 100 -ke. transformers T_{2} and T_{3}, reducing the signal input as neeessary to avoid overloading. Next turn on the b,fo. and adjust the slug in L_{5} until a beat note is heard. Then peak the slugs in T_{1}.

With the initial tuning of the $100-\mathrm{ke}$. channel done, the slugs of L_{2} and L_{3} can be adjusted for maximum signal, with no antemna connected. set C_{1} at almost full capaeity, the signal near $3.5 \mathrm{Mc} \cdot$, and adjust the iron slugs for maximum in the headphones. If a v.f.o. or crystal oscillator is furnishing the signal, there will probably be enough pick-up without any apparent coupling, but a short 6 -inch wire connected to the antenna terminal may be required to pick up the output from a low-powered signal source.

It is not likely that the $100-\mathrm{ke}$. circuits will be tuned to the exart frequency that makes the calibrations coincide on 80 and 40 meters. While this isn't neerssary, of conrse, it does make the dial look eleaner. To bring the calibrations into line, beg or borrow a frequeney standard that will give signals at $100-\mathrm{kc}$. intervals. First locate the 4.0- and 7.0-Mr. points on the receiver dial, by referring the harmonies from the 100 -ke. standard to the original signal you used for aligmment. If, for example, the 80 -meter signal you used was at
the 7 -Mc. points. Thus you will have $100-\mathrm{ke}$. intervals on the dial from 3.5 to 4.0 Ne. and from 6.9 to $7.4 \cdot$ Me, , but not necessarily coinciding. To make them coineide, some slight retuning of the 100 -ke. transformers is required. If, for example, the $7.0-\mathrm{Me}$, point occurs to the right of the 3.6 Me. point, the 100 -ke. amplifier is tumed low, and the slugs should be turned out slightly. A few trials will bring the circuits into plate.

Now check the regeneration of the detector by conneeting the lead from lin 5 of the detector to 1) on T_{3}. If a steady beat is heard, indicating that the detector is oscillating, tune both circuits of T_{2} and see if they will kill the oseillation. Their artion is to load the regenerative detector to where it won't oscillate - if the action persists. try a $470(0)$-ohm reftstor at R_{3} as a last resort. These eircuits should be peaked on a modulated signal, with the b.f.o. turned off.

After the detector has been made regenerative, the calibration can again be checked as in a precoding paragraph, and any minor changes in tuning made as are found necessary. Onee the 100-ke. circuits have been aligned they can be left alone, and if the 3.5 - and 4.0-Me. points don't eome where you want them on the tuning dial, a slight adjustment of C_{3} will correct it.

Connect a $140-\mu \mu f$. variable in series between antema and the antenna post. On 80 meters, peak C_{1} on a signal and rock the adjustment slug of L_{2}. If it tunes fairly sharp, the antemn coupling is not too tight on that band. Swing C_{1} out until you are listening on 40 (to a signal) and again rock the slug on L_{2}. If it tunes broad, redure the capacity of the $140-\mu \mu$ f. antenna capacitor until L_{2} shows a definite peak. Note the settings of the eapacitor for the two hauds.

The input capacitor, C_{1}, will tune sharply on either band, and it should always be peaked when listening to a weak signal. It can be detuned slightly when receiving abnormally loud signals.

The power-supply requirements for the receiver are slight: about 15 ma . at 250 volts and 25 ma. at 105 . A $60-\mathrm{ma}$. power supply will take care of this and the extra 10-12 ma. for a VIR-105. A circuit diagram with suggested values is shown in Fig. 5-37.

A Selective Converter for 80 and 40 Meters

Many inexpensive "commmionations" reeopers are lacking in sedectivity and handepread. The 80- and fo-meter performance of such a reediver can be improved considerably by using athead of it the converter shown in Pigs. 5-38 and $5-40$. This converter is not intended to be used ahead of a broadeast receiver except for phone reception, hecause the BC set has no b.f.o. or manual

Fig. 5-38-I sed ahead of a small receiver that tunes to lato he., this converter will add tuning ease and selectivity on the 80. and 40 -meter bands. The input capacitor is the dual section unit at the upper left-hand corner. The erystal and the tuning slug for Lif are near the center at the foreground etge.
gain control, and both of these features are necessaty for good c.w. reception. The converter can be built for less than $\$ 20$, and that cost can be cut appreciably if the power can be "borrowed" from another source.

The converter uses the tuning primiple amploved in the two-band superheterodyes described earlier in this shapter. A double-tuned in-
put circuit with large capabitors covers both so and 40 meters withont switching, and the oscilLator thare from 5.2 to 5.7 Me . Consernently with an i.f. of $1 \overline{7}(x) \mathrm{ke}$, the tuning range of the eonverter is 3.5 to 4.0 Me. and (6.9 to 7.4 Me, Which band is being hoard will depend upon the setting of the input circuit tuning ($\left(_{1}\right.$ in Fig. 5 -39). The converter output is amplified in the rereiver, which must of course be set to 1700 kr . Tor add selectivity, at $17(0)-k e$. quartz arystal is used in series with the output commertion. A small power supply is shown with the converter. and some expense can be eliminated if 300 volts fle. at 15 mab. and 6.3 volts ate. at 0.45 ampere is available from an existing supply.

Construction

The unit is built on a $7 \times 11 \times 2$-inch aluminum chassis. The front panel is made from at 6×7-inch piece of ahminum. The power supply is mounted to the rear of the chassis and tho converter components are in the center and front. The layout shown in the bottom view should be followed, at least for the placement of L_{1}, L_{2}, L_{3} and L_{4}.
The input and oscillator coils are made from a single length of $13 \& W$ Miniductor stock, No. 3016. Count off 31 turns of the coil stock and bend the 32 nd turn in toward the axis of the coil. Cut the wire at this point and then unwind the 32 nd turn from the support bars. Csing a haveksaw Bade, carefully cut the polystyrene support bars and separate the $31-t u r n$ coil from the original stock. Next, count off 9 turns from the 31-turn coil and cut the wire at the 9 h turn. At the cut unwind a half turn from ewoh coil, and also unwind a half turn at the outside ends. This will

Fig. 5-40 - Rottom view of the converter showing placement of parts. The coil at the lower left is L_{23}. and the input coil. $L_{1} L_{2}$, is just to the right of $I / 3$. The oscil. lator coil, $L_{4} L_{55}$, is at the left near the center. The output coil, $L_{\text {o }}$ is near the top center.
leave two coils on the same support hars, with half-turn leads at their ends. One coil has 21 turns and the other has 8 turns, and they are separated by the space of one turn. These coils are L_{4} and L_{5}.

The input coils L_{1} and L_{2} are made up in the same manner. Standard bakelite tie points are used to mount the coils. Two 4-terminal tie points are needed for $L_{1} L_{2}$ and $L_{4} L_{5}$, and a oneterminal unit is required for L_{3}. The plate load inductance L_{6} is a $105-200 \mu \mathrm{~h}$. variable-inductance coil (North Hills 1201H). The coupling coil L_{7} is 45 turns of No. 32 d.c.c. scramble-wound adjacent to L_{6}. If the constructor should have difficulty in obtaining No. 32 wire, any size small enough to allow 45 turns on the coil form can be substituted.

The input capacitor, C_{1}, is a 2 -gang t.r.f. variable, $365 \mu \mu$ f. per section. As both the stators and rotor must be insulated from the chassis, extruded fiber washers should be used with the screws that hold the unit to the chassis. The panel shaft hole should be made large enough to clear the rotor shaft.

A National type 0 dial assembly is used to tune C_{3}. One word of advice when drilling the holes for the dial assembly: the template furnished with the unit is in error on the 2 -inch dimension (it is slightly short) so use a ruler to measure the hole spacing.

In wiring the unit, it is important that the output lead from the crystal socket be run in shielded wire. A phono jack is mounted on the back of the chassis, and a piece of shielded lead connects from the jack to the crystal socket terminal. The leads from the stators of C_{1} and C_{3} are insulated from the chassis by means of rubber grommets.

Testing and Adjustment

A length of shielded wire is used to connect the converter to the receiver: the inner conductor of the wire is connected to one antenna terminal; the shield is connected to the other terminal and grounded to the receiver chassis. The use of shielded wire helps to prevent pickup of un-
wanted 1700 -kc. signals. Turn on the converter and receiver and allow them to warm up. Tune the receiver to the $5.2-\mathrm{Mc}$. region and listen for the oscillator of the converter. The b.f.o. in the receiver should be turned on. Tune around until the oscillator is heard. Once you spot it, tune C_{3} to maximum capacitance and the receiver to as close to 5.2 Mc . as you can. Adjust the oscillator trimmer capacitor, \mathscr{C}_{2}, until you hear the oscillator signal. Put your receiving antenna on the converter, set the receiver to 1700 kc ., and tune the input capacitor, C_{1}, to near maximum caparitance. At one point you'll hear the background noise come up. This is the 80 -meter tuning. The point near minimum caparitance - where the noise is loudest - is the 40 -meter tuning.

With the input tuning set to 80 meters, turn on your transmitter and tune in the signal. By spotting your crystal-controlled frequency you'll have one sure calibration point for the dial. By listening in the evening when the band is crowded you should be able to find the band edges for calibration points. If you have access to a signal generator, it is a simple matter to calibrate the dial.

You'll find by experimenting that there is one point at or near 1700 kc . on your receiver where the background noise is the loudest. Set the receiver to this point and adjust the slug on L_{6} for maximum noise or signal. When you have the receiver tuned exactly to the frequency of the crystal in the converter, you'll find that you have quite a bit of selectivity. Tune in a c.w. signal and tune slowly through zero beat. You should notice that on one side of zero beat the signal is strong, and on the other side you won't hear the signal or it will be very weak (if it isn't, off-set the b.f.o. a bit). This is known as single-signal c.w. reception, because the "audio image" of the c.w. signal is reduced.

When listening to phone signale, it may be found that the use of the quartz crystal destroys some of the naturalness of the voice signal. If this is the case, the crystal should be unplugged and replaced by a $10-$ or $20-\mu \mu$ f. capacitor.

Converters for 7, 14, 21 and 28 Mc .

The revstal-controlled converters shown in Figs. 5-41, 5-4:3 and 5-16 are intended to be used ahead of a recediver or recoiving system that will tume 3.5 to 4.0 Mr ., exapt the 28 - Me converter which requires that the recoiver tune 3.5 to $\overline{5} .2$ Mes, if the entire 10 -meter band is to be tuned. The $1+$ and $21-$ Mr. convertors can be used to extend the tuming ranges of the two 80 - 40 -meter receivers described earlier in this chapter. While many arstal-rontrolled converters use bandpass r.f. circuits that need no tuning other that the initial adjustment, the r.f. cireuits of these converters are manually tumed, to give the best selectivity and image rejection, Adjustable antenna coupling is also provided, to facilitato matching to the antema and also to extend the signal-handing capabilities.

With two exceptions, the rircuits for these converters are the same, differing only in the tuning range of the signal circuits and the frequency of the crystal. The exceptions can be found in the 7 -and 28 -Mc. converters. In the former, the $3400-k$ e arystal is fairly close to one limit of the miver output range, so a trap is included to attenuate the $3400-\mathrm{ke}$. signal that appears in the mixer output and might tend to overload the following receiver. The other exception can be found in the 28 -Ml. unit, where at switch and additional rersial were added to permit covering the 27 -Mc. hand. It would not he necessary if the following receiver could tune as low as 2.5 Me, and could be omitted in such a case.

The basie rircuit is shown in Jig. $5-42$, with the mixer plate-circuit trap (L_{6} and $15 \mu \mu f$.) in place but not the s.p.d.t. crystal switeh for the highest-frequency converter. Following the adjustable coupling betwen L_{1} and L_{2}, the signal goes to the GBJI r.f. amplifier and then to a sercond inductively-toupled circuit and to the grid of the mixer. The mixer is the pentode section of a 6AN8; the crystal oscillator is the triode sertion of the G.AN8, and part of its output is applied to the mixer cathote via a capacitance divider, $C_{5} C_{6} .13 y$ using high-frequency erystals that are
now avaiable, no overtone oscillator circuit is required. Sime the 1 boto-ohm cat hode rosistor of the mixer is the load for the oscillator, the catpacitancer divider, (${ }_{5}\left({ }^{*}{ }_{6}\right.$, is required to abovid overloading the oscillator and ronsequent nonoseilation. In the oscillator in the $10 / 11$-meter converter, a single sotting of the oscillator coil, L_{5}, suffices for the two crystals. In the r.f. stage, provision is included for introducing a.v.c. voltage as well as manually-controlled cathode bias.

Construction

Although these converters are shown as separate units carh assembled in a 5×9. 2×3-inch chassis, they might abob be built as one large unit with sub shielding. In the design shown, and it is important in any dosign. particular attention was paid to see that the chassis grounds for the r.f. stage were all at one point. next to the sorket. Since rather large diameter (for receivers) high-() eoils are used, a shield was used between the coils to miniruize the chances for stray coupling. The shicled stradelles the 613.J6 sockot. The tuming capacitors, C_{1} and C_{3}, are ganged mechanically by a length of $1 / 8$-inch diameter rod and two of the Millen Mo08 miniaturized shatt couplings. The Hammarlund MAP'C-I3 capacitor has as standard $1 / 4$-inch shatt at the front and a $1 / 8$-inch shaft at the rear. To make room for the shaft complers, two rotor and two stator plates were removed from earh MAD' ${ }^{1}-35-13$;3j- $\mu \mu \mathrm{f}$. variable.

Dimensions for the sub-chassis are shown in Fig. $5-44$, as well as the location of most of the holes. Partitions A and 13 are held to the chassis by 6 -32 hardware; partition it has mounting holes for the variable capacitor similar to those in the front view except that the two small holes are on the horizontal center line. l'artition A also carrics the crystal socket and two clearance holes for the stator and rotor leads from the variable rapacitor. Partition I3 has a elearance hole for the variable capacitor shaft. The dashed hole on the front view is for the crystal switch shaft on the 10 -meter converter; this switeh mounts on

Fig. 5-41 - A T-Me. crys-tal-eontrolled comverter. The two shafts extendine to the risht are (lower) adjustable antenna conpling and (upper) signalcirenit tming. The rerstal holder is the dark oloject in the ernter section, just behind the coils.

 tor, is used only in the $\overline{6}$-Mc. converter. The 10 -meter converter uses two erystals, switehed by a s.p.d.t. rotary in the "eold" lead from chassis ground.

All fixed caparitors are reramic; all resistors are $1 / 2$ watt.
(i, C $\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. midmet variable (IIamınarlumd $\mathrm{l}_{6}-105-200 \mu \mathrm{~h}$. (Vorth Hills Electric 120-II).

partition A and is turned by the Ladite "rerankshaft" shown in Fig. 5 - $4: 3$. It is a simple matter to soften a length of $1 / 4$-inch diameter Lacite rod by rolling it on a soldoring iron. When it is suitably soft, it is then bent and held in position antil cool. The insulating crankshatit is used to escatpe running metal near or through the eoil. As ment tioned abover, it isn't neressatry to switeh erystials if the tuning range of the receriver following the converter inclades 2.5 Me.

The variable antemat roupling is made by running a piece of $1 / 4$-inch lacite rod through a shaft bushing and using a rubler grommet be twern filur washers as a frietion lork. A serew through the shatt serves as a stop, for the washer on one side of the grommet, and the shaft bearing serves as the stop on the other. ('ompression is maintained by using a solid shaft coupler on the other side of the bearing. Using a long set-screw on the solid shatt eroupler provides an arm that ratn hit either of two stops (small serews) and thus limit the travel of the coil.

In wiring a converter, shielded wire was used for the heater and d.e. leats that ran past partition A up toward the ref. stage. The antema lead is a length of R(i-59) U coaxial cable. Input and output connections are brought to phono jacks at the rear of the unit ; power and control leads are terminated in a Cinch-Jones P-30+AB plug.

Coils L_{2} and L_{4} are supported hy No. 14 wire leads extending from the tuming cipuritors. The $13+$ end of L_{3} is eemented to the ground cond of L_{4} with Dueo or Ambroid rement. This gives : an improvement in minimizing spurious responses over that obtainable with mounting L_{3} over L_{4}, but on the two lower-frequency ranges it requires the use of padding caparitors. ("2 and ("4, because otherwise the $L_{3} L_{4}$ assembly beromes too long. The $3-$ to $30-\mu \mu$. compression capabitor across (\boldsymbol{c}_{1} is momed on the leads of the variable capabitor.

Wires from the rotors of C_{1} and C_{3} are brought to the grounding lugs at the sockets, in kerping with the "single stage ground" poliey mentioned earlier. The katd from the stator of C_{3} to Pin 8

Fig. 5-43 - The 111-11. meter comverter rimoved from its case. 'The lanite "(rankshaft" for witching erystal* can lex ween in the right-hand compart. ment.

TABLE S.III
Component Values for the Crystal-Controlled Converters

Band	L_{1}	L_{2}, L_{4}	L^{\prime}	L_{5}	$C 2$	C. 4	Cs	C6	R_{1}	X_{1}
7 Mc	$12 t^{1}$	$28 t^{1}$	$18 t^{1}$	$\underset{(120 \cdot 1)^{3}}{9-16 \mu \mathrm{~h}}$	$25 \mu \mu \mathrm{f}$	$50 \mu \mathrm{f}$	$1500 \mu \mu \mathrm{f}$	$150 \mu_{\mu} \mathrm{f}$	47K	3.4 Mc .
14	$5 \mathrm{t}^{2}$	$19 t^{2}$	$15 t^{1}$	$\begin{aligned} & 3-5 \mu h \\ & (120-1 B)^{3} \end{aligned}$	$15 \mu \mu \mathrm{f}$	$25 \mu \mu \mathrm{f}$	330 \% f	$33 \mu \mu \mathrm{f}$	2\%K	10.5 Mc .
21	$12 \mathrm{t}^{1}$	$17 t^{2}$	$15 \mathrm{t}^{1}$	$\underset{(120-A)^{3}}{2-3 \mu h}$	-	-	$330 \mu \mathrm{\mu f}$	$33{ }_{\mu} \mathrm{H}$	33K	17.5 Me.
28	$8 \mathrm{t}^{1}$	$10 t^{2}$	$10 \mathrm{t}^{1}$	$\begin{aligned} & 2-3 \mu \mathrm{~h} \\ & (120 . \mathrm{A})^{3} \end{aligned}$	-	-	1.50 \% f	1.5 $\mu \mu \mathrm{f}$	18K	11 meters: 23.4 Vc. 10 meters: 24.5 Mc.

132 t.p,i. No. 24, $5 / \mathrm{R}$-inch diam, (14 \& W 3008)
216 t.p.i. No. 18, 5/8-inch diam. (B \& W 3007)
${ }^{2}$ North Hills Electric Co. designation.
of the GAN8 is brought through a small hole in partition A.

In wiring the oseillator portion of the 6.AN8, it is convenient to run a lead from L_{5} to lin 1 of the $6 . A N 8$ socket, and then mount C_{5}^{\prime}. C_{6} and the 15000 -ohm cathode resistor on the socket pins and the chassis grounding lag. There are two unused soldering lugs on L_{5}, and one of these is used as the junction point for the 68,000 -ohm resistor, the 2200 -ohm resistor, the $50-\mu \mathrm{h}$. r.f. choke and the .01- $\mu \mathrm{f}$. capacitor.

Adjustment

The first step in checking a converter, after the wining has been checked and a power supply and receiver have been connected, is to check the oscillator and mixer. With only the GAN8 in its socket, turn on the power and look around the erystal frequency with your receiver to see if the crustal oscillator is working, as indicated by a strong sigmal. If the uscillator doesn't work, tume L_{5} until it does. Then put the reediver in the range 3.5 to 4.0 Mc , and tune C_{3}. At some setting you should hear an increase in noise, indieating that the mixer input circuit is tuned to resonance. If the increase in noise is quite sharp, it indieates regeneration in the mixer, and the value of R_{1} should be reduced. This mixer-oscillator combination is hasically regenerative, and with R_{1} re-
moved the mixer will oseillate.
Under normal operation of the mixer and oscillator, the voltage at lin 7 will rum around 50 to 60 volts, and around 3 volts at lin 9.

When the $7-$ Me. converter is being tested, the following reeciver can be tuned to 3.4 Me., where the loud signal from the erystal oscillator will be received. The slug in L_{6} is then tuned for minimum signal in the receiver. I on't expect this minimum to be around S_{1} or S_{2} - it may still be enough to "pin the metor" with the receiver gain wide open.

Leave the ganged eapacitors C_{1} and C_{3} at the setting that gave the noise prak, commert a 2500)ohm wire wound potentiometer in the mannal gain circuit to chassis ground, short the AVC comection to chassis, and plug in the objb. Connert an antema and, with the gain control at maximum gain (minimum resistance), idjust the conpression trimmer across C_{1} for maximum noise. The two circuits are now tracking and should tume together over the band. Tuning 3.5 to 4.0 Mc . with the receiver should now bring in signals from the band for which the converter is designed. Loosening the antema coupling by swinging L_{1} away from L_{2} should reduce the strength of incoming signals. If it doesn't, or if the sharpness of $C_{1}\left(C_{3}\right.$ tuning changes with the gain-control setting, it indicates that the r.f. stage is regencrative. You shouldn't have any trouble with a regenerative r.f. stage, however, if the stage grounds are brought to one point on the

Fig. 5-14 - Details of the sub chassis and partitions. The lottom lips of the front and of piece 13 rest on $1 / 4$-ineh bars at the bettom.

Fig. 5-45 - Sehematic of a power supply for the ervital-controlled converters. If the power supply is to be used with only one converter, the switehes can he eliminated from the circuit.
R_{1} - Wire-womind potentiometer (IRC. WK2500).
$\mathrm{S}_{1}-2$-section 4 -pole rotary switch. Sections not shown switch antenna inputs and converter outputs through coaxial line. (Centralab) PA-2045, one

' 1 - Replacement-tyis' transformer, 32.5-0.325 v. (Knight 62 (;) (0.2).
you want to compare different (ireuits), and if the two crestals are on the same freduency no retuning of the following receiver will be reguired.

These converters have very low response to the r.f. image frequence, and no trouble with images should be encounterod. It is possible that under some rircumstanees sou may hear 80meter signals when you are using it converter, and this is usually an indieation of a poorlyshielded receiver or a faulty installation, The receiver should have no response to 8()-meter signals when no antema is romerefed to it if it has, it indicates that leetter shielding is required - and it should have no response to 80-meter signals when the abble used for eonnecting the ronverter to the recoiver is ronnected to the recoiver and left open at the converter end. Good shielded wire or coaxial cable (RG-58/U or RG-59/C) should be used between converters and receivers, and a minimum of imner conductor should be exposed at the rereiver antenna posts. The outer conductor or shield should connert to the ground terminal at the receiver and to one of the antemna posts, and the inner conductor should connect to the other
 lor installed on a chassis with a connmon power shpply. llere the 20- and 15 -metur converters are shown in place, (On the pandel, the lower left-land hnob is the common gain control, and the right-hand knol onnimols the switch that welerts the converter to be used. "The thagle witches control the heater circuit- meparately.
chassis, as mentioned carlier.
To get a wide range of gain control from the $250(0)$-ohm gain control, a bleed current of 8 or 9 ma. should pass through it. A typical power supply and gain-control cireuit is shown in lig. $5-45$, although this is more claborate than neeressary if only one converter is used. Where only one ronverter is used. the switehes can be eliminated, and a smaller transformer can be used for T_{1}. They are all included in the unit shown in Fig. 5-46, which was designed to take four converters. In this unit S_{1} is a 3 -section rotary switeh that switches the plate power as shown in Fig. 5-45 in one section, the antemna inputs in the second section, and the converter outputs in the third section. Converters that are to be used during an onerating period have their heater power applied through the appropriate toggle switeh, so through S_{E}. It is not neressary to switeh the gain eontrol or i.v.e. leads, because only one ronverter will be working at a time, as solected by S_{1}. An arrangement like this permits keeping all converters warm during a contest, or the use of only one during casual operation. It also permits the ready comparison of two eonverters on the same band (if some later developments show up or if
antenna post.

Variable-Coupling Antenna Tuning Unit

A variable-coupling antenna tuning unit connerted between antenna and receiver is useful for three reasons. In many instances it will improve reception slightly hy providing a better mateh betwern antenna and reeciver. Where trouble from r.f. images is eneountered, as is often the

Fig. 5-17 - Schematic of the variabic-conpling antenna tuming unit.
$\mathrm{C}_{1}-\mathrm{I} 90-\mu \mu \mathrm{f}$. midget variable (Hammarlund IfF-1 10). $\mathrm{s}_{1}, \mathrm{~s}_{2}-2$-pole miniature rotary switch (ciontralab P1-2003),
$I_{1}-7$ turns ($21 / 4$ inches).
$L_{2}, L_{4}-20$ turns ($5 / 8$ inches).
La - Iturns ($1 / 8$ inches).
I.s - 12 turns ($3 / 8$ inches).
$\mathrm{L}_{6}-2$ turns.
All coils 1 -inch diameter 32 turns per inch (13 \& W 3016).
cuse on the highor frequencios with simple recervers, an antema unit will provide additional solertivity. The unit shown on this page improved image rejection 15 dh, at 10 Ne, and 12 db, at 25 Nre in intypical cise. The third useful feature of this wnit is the variable coupling, which provides an auxiliary gatn control that is useful on strong local signals as well as permitting a wide range of matching.

Fig. 5-18 - View inside the case of the antenna tuning unit. The input terminale are a Vational FWII strip. and the output jack is a slielded phont jack.

As can he seen in Fig. i)-47, the unit provides for series or parallel tuning of the tumed rirenit. bandswitehing over the range 1.8 to 30 Me. Band 1 tumes 1.8 to 4.9 Ma ., Band 2 eovers 4.9 to 1:3 Me., and Band 3 tumes 12 to 30 Mre.

The antemna tuning unit is built in a $3 \times 10 \times$ b-inch aluminum chassis. To aid in shielding, a side plate for the box is made from a pieere of flat aluminum stock. The four operating eomtrols ate mounted on one end of the box with the antemat terminal and output jack on the other. Three coils, L_{1}, L_{2} and L_{3}, are bonded to a lucite bar with bued rement, and the bar is in turn supported by three ceramic cone insulators. The three coils should be spaced alout one coil diameter from earh other and from the ends of the box. Three variable eoupling links, $L_{4} L_{5} L_{6}$,

Fix. $5-49$ - Front view of the antenna tuner.
are soldered to small machine sorews that have been bolted to ta length of $1 / 4$-inch diamoter lumite rod. The rod extends the full length of the bos and is supported at the emds by a bushing and a panel bearing. In insulated coupling is used to join the pane bearing shaft and the larite rod. Comeretions to the links atre made by soldering the leads to the machine serews in the rod. The "panel" end of the box cetn be finished off with dereals indie:ting the knoh functions.

In operation, the tumer is comnertod betwern the antemmatad the receiver. With some antemma systems the patzallel commetion will give the better results, while with other atutemats and other frequencies the opposite will be true. It is a simple matter to switch between the two conditions and see which gives the sharper peate or louder signabs at resontance.

An Antenna-Coupling Unit for Receiving

It will often be found advantageons on the $1+$ and $28-\mathrm{Mc}$. bands to tune (or match) the recosving-antenna foed line to the receriver, in order to get the most out of the antenna. One way to do this is to use, in reverse, any of the linc-roupling devices advocated for use with a transmitter, Naturally the components can be small, herause the power involved is nagligi-

Fig. 5-50 - Cirenit diagram of the compling unit. C_{4} — I I $10-\mu \mathrm{f}$, midget variable (Millen 29140), C2- $1(0)-\mu \mu \mathrm{f}$, midget variable (Mill- $22(00)$.
14, 12-25 turns So. 2b d.c.oc, spare-wemend to orempy I inch on I-inch diameter form (Millen 400010$)$, tappod at 3, 2 , 12 and 18 turns.
$s_{1}-2$-rireuit $\overline{\text {-phestiom single-section ceramic wafer }}$ switch (Vallory 1:36:).
ble, and small receiving cobparitors and eoils are quite satisfactory. Some provision for adjustable eoupling is recommended, as in the transmitting case, because the signal-to-noise ratio at 14 and 28 Mc. is depondent, to a large extent, on the degree of coupling to the antemna system. The tuning unit can be built on a small chassis located noar the mocomer, or it can be mounted on the wall and a piece of R(i-z9/C run from the unit to the receiver input, in the manner of a link line in transmitting practice. For ease in changing bands, the coils can be switehed or plugged into a suitable socket. Adjustable coupling not only offers am opportunity to aljust for best signal-to-noise ratio, but the conpling can be derreased when a strong local
signal is on the atir, to climinate "blocking" and cross-modulation offerts in the receiver.

One comvonient type of antema-coupling unit for rececivers uses the familiar pi-section filtor circuit, and can be used to match a wide range of antenna impedances. The diagram of a compact unit of this type is shown in 1rig. 5-50. Through proper selection of raparitors and inductances, a mateh can be ohtained over a wide range of values. The deviece can be placed close to the receiver and left conneceded all of the time, since it will have little we no effect on the lower frequencies. A short lougth of 300 -ohm Twin-Lead is conveniont for connecting the antenna coupler to the receiver.

The antenma coupler is built in a $5 \times 7 \times 2$ inch metal chassis. All of the components except the two coils are mounted on the front and rear faces. The capacitors are mounted off the pancl by the spacers furnished with the capacitors, and a clearance hole for the shaft prevents any short-circuit to the panel. The coils, wound on Milden 45000 phenolic forms, are fastened to the chassis with brass sorews, and the coils should be wound on the forms as far away as possible from the monnting end. The switch should be wired so that the switching sequence puts in, in each eoil, 3 turns, 7 turns, 12 turns, 18 and 25 turns.

The unit is adjusted for maximum signal by switching to different coil positions and adjusting ('1 and C_{2}. It will not be necessary to retrim the capacitors except when going from one end of a band to the other, and when the unit is not in use, as on 7 and 3.5 Mc., the coils should be set at the minimum number of turns and the retpacitors sot at minimum. The small reactances remaining have a nogligible effect. The coil in the grounded side should be shorted if coaxial-line feed is used.

Fig, 5.51 - A compact coupling network for matchiog a halanerod line (1) the roceiber on | \mid amd :? 8 Mr .

The "Selectoject"

The Noldecojert is a receriver adjunet that ran bo used as a sharp amplifier or as a single-frequeney rejection filter. 'The frequeney of operation may be set to any point in the audio range by turning a single knob. The degree of solectivity (or depth of the mull) is contimumely adjustable and is independent of tuming. In phone work, the rujection not do can be used to reduce or climinate a heterodyme. In e.w. meroption, interfering signals may fre rejoeted or, alternatively, the dowired signal may be picked out and amplifiod. The Solocedocet may also be operated as a low-distortion variable-freguency audio oseillator suitable. for amplifier frequeney-response measurements, modulation tests, and the like, by advancing the "selectivity" control far coungh in the selectiveamplifier condition. Tho soldentoject is connerted in a reeciver between the detertor and the first audio stage. Its power requirements are 4 mat at 150 volts and 6.3 volts at 0.6 ampere. For proper operation, the liso volte should be obtained from across a VR-150 or from a supply with an output capacity of at least $20 \mu \mathrm{f}$.

The wiring diagram of the Soloctoject is shown in Fig. $5-52$. Resistors R_{2} and R_{3}, and R_{4} and R_{5}, ran be within 10 per cont of the nominal value but

Fig. 5-52 - Complete sphematic of Selectoject using 121X: tulves.
$\mathrm{C}_{1}-0.04-\mu \mathrm{f}$. mica, 400 volts.
(.2, C. $-0.1-\mu \mathrm{f}$, paper, 200 volts.

Cs - $0,05-\mu \mathrm{f}$, paper, 400 volts.
(8 - $16-\mu \mathrm{f}$. 150)-volt clectrolytic.
C: $-10 .(\mathrm{MOO} 2-\mu \mathrm{f}$. mica.
$\mathrm{R}_{1}-1$ megohm, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{~K}_{3}$ - 1000 ohms, 1 watt, matehed as closely as possible (see text).
Rs, $\mathrm{H}_{5}-2000$ ohms, 1 natt, matched as closely as possible (see text).
they should be as close to cath other ats pessible. An ohmmetor is quite satisfactory for doing the matehing. Onc-watt resistors are used bermase the larger ratings are usually more stable ower a long period of time.

If the station recoiver has an "accossory socket" on it, whe cable of the seleretoject ran be made up to match the connections to the socket, and the numbers will not nerensarily mateh those shown in Fig. 5-52. The lead befween the second detector and the reeriver gain control should be broken and rum in shinded leads to the two pins of the socket corresponding to those on the plug marked " A.F. Input "and "A.F. Output." If the receiver has a tik-150 included in it for voltage stabilization there will be no problem in getting the phate voltage - otherwise a suitatbe voltage divider shombl be incorperated in the reeceiver, with a 20 - to $40-\mu$ f. chectrolytic catanator connereded from the +150 -volt tap to ground

In operation, overload of the receriver or the Seloretoject should be avoided, or all of the possible seloctivity may not be realized.
Theselectoject is useful as a means for obtaining much of the performance of a crestal filur from a rocoiver latcking a filter.
$\mathrm{R}_{6}-20.0 \mathrm{OH}$ ohms, $1 / 2$ watt.
$\mathrm{R}_{\text {- - }}^{2001}$ ohms, $1 / 2$ watt.
R_{8} - IINONO ohms, 1 watt.
R_{9} - - 0 NO ohms, $1 / 2$ watt.
$R_{10}-20.000$ ohms, $1 / 2$ watt.
R_{11} - $0 . \mathrm{j}$-megolm $1 / 2$-watt potentiometer (selectivity).
R_{12}. R_{13} - Ganged 5-megohm potentiometers, standard andio taper (tuming control).
\mathbf{R}_{14} - 0.12 megohm, $1 / 2$ watt.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - I.p.d.t. toggle (can be ganged).

A Clipper/Filter for C.W. or Phone

The elipper /filter shown in Fig. 5-54 is plugged into the receiver handphone jack and the headphones are plugged into the limiter, with no work required on the recoiver. The limiter will cut down serious noise on phone or c.w. signals, it will keep the strength of c.w. signals at a constant level, and it will add selectivity to your receiver for c.w. reception. It will do much to relieve the operating fatigue caused by long hours of listening to static crashes, key clieks encountered on the air and with break-in operation, and the like.

There are times when the best results are secured with the selective audio circuit following the elipper. On other occasions it is better to have the selectivity precede the clipper. Sinee it is a simple matter to provide a switching arrangement so that either combination, clipper-to-filter or filter-to-elipper, can be used at will, this has been done in the unit described here.

The frequency response of the selective circuit reaches a peak at about 900 cycles and has a null at alout 1800 cycles. The peak frequency is determined by the eombined values of L_{1}, C_{1}, and C_{2}, while the notch frequency is that of the parallel-resonant cireuit $L_{1} C_{1}$. If different paak and null frequencies are desired the values of C_{1} and C_{2} can be changed; for raising the noteh frequency the capacitance of C_{1} should be made smaller; to raise the peak frequency reduce the capacitance at C_{2}.

The rotary switch S_{1} (Fig. 5-53) is used to
provide different combinations of the elipper and filter. To simplify the wiring diagram the switching circuit is shown separately in the diagram.

The filter-clipper is built on a $5 \times 51 / 2$ inch aluminum chassis with a two-inch lip. This is seeured to the front panel by the two potentiometers and rotary switeh S_{1}. A $6 \times 6 \times 6$-inch steel cabinet encloses the unit. Steel is preferable to aluminum because L_{1} is sensitive to stray magnetic fields (which would show up as hum at the output) and the sted cabinet aids in shieding. The aluminum chassis is mounted in a vertical position with the transformers and tubes on one side and rotary switeh and small components on the other. One layout precaution should be ob)served: Place the filter inductor L_{1} as far as possible from the power transformer, and mount the two units with their cores at right angles. This will minimize hum pickup by the inductor.

Before mounting L_{1}, it will be neeessary to remove the mounting frame and the "I" laminations. The frame is removed easily by prying out its two legs and then lifting it from the core. The "I" laminations are in the form of a bar lying across the top of the "li"" core.

By mounting the choke with a nonmetallic strap the Q will remain high. Use a strip of heavy cardboard cut to the same width as the core, about $5 / 8$ inch, as a clamp for mounting the inductor. The cardboard clamp is fastened to the chassis with two $5 / 8$-inch square aluminum

Fig. 5-5.3-Schematic diagram of the clipper-filter. Switch positions are: 1. Filter-clipper. 2. Clipper-filter, 3. Clipper. 4. Straight through. Resistors are $1 / 2$ watt unless otherwise specified; capacitances are in $\mu \mathrm{f} . ; \mathbf{0} \mathbf{0} \mathbf{0 1}-\mu \mathrm{f}$. capacitors not listed below are ceramic.
($\mathrm{C}_{1}-0.01$ plastic tubular capacitor (Sprague Telecap),
(:2-0.03 plastic tubular capacitor (Sprague Telecap).
(:3-Dnal section 30-30 $\quad \mu$ f. 150.volt electrolytic (Sprague TV 12 23:3).
($: \mathrm{h}_{1}$-Selenium rectifier, 50 ma. (Federal 1224).
$11-6.3$-volt pilot light, 60 ma.
J_{1}-Open-circuit phone jack.
L_{1} - Filter choke, 5 hy. 6.5 ma . (Thordarson 20C59). Modified: see text.
P_{1} - Phone plug.
$S_{1}-6$-pole, 4-position, 3-section rotary switch (Centralab PA-102(0).
S_{2}-S.p.s..t. toggle.
T_{1} - Output transformer $\mathbf{7 0 0 0 - 1 0 , 0 0 0 - o h m ~ p r i . . ~ 3 . 2 . ~}$ ohm sec. (Thordarnon 24852).
$\mathrm{T}_{\mathbf{2}}$ - Power transformer 120 v. 50 ma .; $6.3 \mathrm{v}$.0.7 amp . (Thordarson 26R32).

washers that can be eut from a pioce of scrap. It is very important that the elamp, be nommetallic. If aluminum or other nonmagnetic materials are used the () will be adversely afferted and the selectivity of the filter will suffer.

The switch wining shown at the bottom of the sehematic diagram can be done before mounting S_{1} in place. After the switeh is mounted the wiring between it and the other eomponents can be completed.
Apply jower by closing S_{2}, insert plug I_{1} in the receiver phone jack and turn switeh S_{1} to the "out" or straight-through position. Tune the receiver until a c.w. signal is found and adjust the receiver controls for comfortable copying.

Now turn S_{1} to the "rlipper" position. In order to become familiar with the action of the clipper these steps should be followed: Adjust the "clip)ping" control so no clipping ocrurs (maximum positive bias on the diode plates). Set the "level"
 strengt he, some so loud as to be ear-breaking; but switehing to "elipper" will make these big ones drop down to the "comfortable" preset level.

It should not take long to become familiar with use of this unit. However, there are many applirations for the clipper-filter which ean only be, discovered by actual use. The "elipper-to-filter" position is best suited where the audio selectivity is reguired and a high level of ignition noise is encountered. However, where impulse noise is not a factor the "filter-to-clipper" position is best. Because of the saturation characteristic of limitcos, a strong signal being rereived along with a weak one has the tendeney to take command, making it impossible to copy the weaker one. By using the selective audio filter first, peaking up a weak desired signal and attenuating strong interfering ones, the desired signal takes eommand in passing through the limiter, and can be copied over the interference.

In order to peak a desired signal the receiver b.f.o. or tuning control should be adjusted so the pitch of the signal is (10) reales. Sinee the selectivity rurve is rather sharp, any adjacent undesired signals will fall short of the peak and be attenuated. If the receiver b.foo. has sufficient range to tune 900 cercles or more on both sides af zero beat, the undesired signal can always be placed on the noteh side of the beak.

Fip. 5-55 - Side view of the unit. Switch St is located at the front center with the filter caparitor (.3 above it. Leads running away from the unit are the a.c. line cord and the cord for plag $/$'s.

A Regenerative Preselector for $\mathbf{7}$ to $\mathbf{3 0} \mathbf{~ M c .}$

The performance of many receivers thegins to drop off at 14 Mc. and higher. The signal-tonoise ratio is reduced, and unless double conversion is used in the receiver there is likely to be increased trouble with r.f. images at the higher frequencies. The preselector shown in Figs. 5-56 and 5 - 58 can be added ahead of any receiver without making any changes within the receiver, and
through the use of the preselector.
A 6.1N8 triode-pentode is used in the preselector, the pentode as a band-switch regenerative r.f. stage and the triode as a cathode follower. The conventional screen-grid neutralizing circuit is used; by upsetting this circuit enough the stuge can be made to oscillate. Smooth control of regeneration up to this point is obtained

Fig. 5.56- A regencrative preselector for 7 to 30 Mc. This unit can be used ahead of any receiver to add gain and image rejection; its effect will he most marked with receivers that fall off in performance at the higher frequencies. Adjustalle antenna coupling is obtained by supporting the antema coils on on an insulated rod that is controlled from the panel.

a self-contaned power supply eliminates the problem of furnishing heater and plate power. The poorer the receiver is at the higher frequencies, the more it will benefit by the addition of the preselector. A truly good receiver at 28 Me . would show little or no improvement when the preselector was added, but a medioere receiver or one without an r.f. stage will be improved greatly
by varying one of the capacitances in the neutralizing circuit. 'lo handle a wide range of antemua impedances, adjustable antemna coupling is iacluded, while cathode bias control of the pentode allows the gain to be reduced if and when it becomes neeessary to do so. One position of the bandswitch permits straight-through operation, so the preselector unit can be teft eomnected to

Fig. 5.57 - Schematic diagram of the regenerative preselector. Capacitances are in $\mu \mu \mathrm{f}$. unless otherwise specified. lesistors are $1 / 2$-watt unless otherwise specified.
C_{1} - $1.40 \cdot \mu \mathrm{\mu}$. variable capacitor (IFammarlund IIF-1.40).
C_{2} - l(k)- $\mu \mu \mathrm{f}$, variable capacitor (Ifammarlund M.MPC. 100-13).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$. niea (see text).
$\mathrm{C}_{4}-0.5$ to $5 \cdot \mu \mu \mathrm{f}$. tuhular trimmer (Eisie 532 -08.0RB).
C. R_{1} - 50 -ma. selenium rectifier (International Rectificr RSOSO).
L_{1} through L_{4} made of $\operatorname{No.} 20_{r} 3 / 4$ inch diam., 16 turns per inch (IS \& W 3011 Miniductor)
$\mathrm{L}_{1}-2$ turns.
I.a-5 turns.
$\mathrm{I}_{3}-7$ turns.
I_{44} - 19 turns.
L_{5} - $1(0) \mathrm{h}-\mu \mathrm{h}$. r.f. choke (National R. $33100 \mu \mathrm{~h}$.)
\mathbf{h}_{1} - $2 \mathbf{5}$ Whohm potentiometer (Mallory (7).
SiA. Sib-1-pole 3-pmsition wafer (Centralab PA.1).
Stc-b-2-pole 3-position wafer (Centralab P'A-3). See text for switch assembly instructions on indexing head (Centralab PA.301).
S_{2} - S.p.s.t. switch, part of R_{1} (Matlory LS-26).
$\mathrm{T}_{1}-125$ volts at 15 ma., 6.3 volts at 0.6 amp. (Stancor 1'S.8115).

Fig. J-.j8-The r.f. eompments are bunched around the tobe sochet. Power supply components are supported by serews and tie. points.
the receiver even during low-frequency reception.
The preselector is built on a $5 \times 10 \times 3$-inch chassis (Bud AC-404). A $5 \times 61 / 2$-inch aluminum panel is held to the chassis by the regeneration and bandswitch controls. Coils L_{2} and L_{4} are supported on a small staging of $1 / 4 \times 3$-inch clear plastic. (It can be made from the lid of the box that the Sprague 5GA-S1 .01-mf. disk ceramic capacitors come in.) All coils can be made from a single length of B\&W :3011 Miniductor; L_{4} is brought to the proper height by removing turns but retaining the plastic support bars. The coils are cemented to the plastic staging with louco cement. The links L_{1} and L_{3} are moved by means of a 6 -inch length of $1 / 4$-inch diameter lucite rod; the rod is supported at each end by panel bushings, and a friction loek is provided by washors and a rubber grommet. A screw through the lacite shaft and two others in the end bracket provide stops that limit the antemat coil rotation to 45 degrees.

The rotor of ('1 must be insulated from the rhassis, and its shaft is extended through the use of an insulated extender shaft (Allied Radio No. 60 H 355). The bandswiteh S_{1} is made from the sperified sections (see Fig. 5-57). The first sertion is spaced $3 / 4$ inch from the indexing head, there is 1 -inch separation between this and the next sertion (S_{13}), and the next section (S_{16}, S_{11}) is spaced $2 \frac{1}{2}$ inches from $S_{1 n}$.
The regeneration control, C_{2}, is momented on a small aluminum bracket. Its shaft does mot have to be insulated from the chassis, so an insulated or solid shaft connector can be used. The small neutralizing caparitor, C_{4}, is supported by soldering one lead of it to a stator bar of C_{2} and rumning a wier from the other lead to pin $\mathbf{6}$ of the tube socket. The rotor ind stator connertions from Cis are brought through the chassis deck through small rubber grommets.

1'ower supply components, resistors and citpacitors are supported be suitable lugs and tia points. The selenium rectifier is held by the same sorew that serures the link supporting bracket. l'hono phugs are used for the input and output jucks.

The leads to l_{1} are run up through the derk in shiclded wire. Switch s_{2}, part of the R_{1} assembly, eam be connerted with ordinary wire.

Adjustment

Assuming that the wiring is correct and that the eoils have been constructed properly and cover the required ranges, the only preliminary adjustment is the proper setting of C'4. Conneret an antenna to the ingut jack and connect the receiver to the output jack through a suitable length of R(i-5! $) / \mathrm{U}$. Turn on the receiver b.f.o. and tune to 28 Me, with S_{1} in the ort position. Now turn S_{1} to the 21- to 28 -Mc. range, and set the gan and antenna cotpling rontrols to maximum (R_{1} arm at ground end and L_{2} close to L_{4}), Swing the tovang capacitor and listen for a loud rough signal which indicates that the proselector is oscillating. If nothing is heard, advanere the regeneration control toward the minimum rapacitance end and repeat. If no oscillation is heard, it may be nerossary to change the sotting of C"4, One the oscillating condition has bern found, set the regencration control at minimum raparitance and slowly adjust r_{4} until the preselector oscillates only when the regeneration "ontrol is set at minimmm capacitance. You can now swing the receiver to 21 Mr. and patak the preselector tuning caparitor. It will be found that the regeneration caparitance will have to be increased to avoid oscillation.

Chect the performance on the lower range by tuning in signals at 14 and 7 Me. and praking the preselector. It should le possible to set the regeneration control in these t wo ranges to give both an oseillating and a non-oscillating condition of the proselector. If it is not possible, a different value may be required at ('3.

A little experience will be required before you can get the best performane out of the preselece tor. It will be found, for example, that loosening the antema coupling when the preselector is close to oscillation will bring it into oscillation, which will then require backing off on the regeneration control. This is perfectly normal. Reducing the tube gain by changing the setting of R_{1} will also reduce the regeneration, and the gain eontrol will probably only require touching in the presence of extremely strong signals, Strong signals can also be held down by reducing the antenna coupling, hut this will require backing off on the regenerattion control.

A Selective I.F. Amplifier for Phone and C.W.

The i.f. amplifier shown in JFigs. 5-59 and 5-(i2 operates at a freguency of 2.215 Mc . High selectivity is obtained through the use of commer-- Cally-available band-pass crystal filters that have selectivity characteristics similar to lower-frequency devices. A high-frequency i.f. amplifier of this type retains the advantage of a high-frequency first i.f. (good image rejection), overromes some of the disadvantages of multiple conversion (spurious signals, cross modulation) and retains the advantages of high adjacent-chamel selectivity heretofore oltained only through multiple conversion. An a.v.e. circuit that works well on s.s.b. and e.w, is included, together with an audio limiter for noise reduetion,

The i.f. amplifier is designed for both phone and code reception; you can save the price of one filter if you're a phone or code specialist by using just one filter. The broad filter is the first element in the i.f. (following at coupling device), and this is followed by the sharp, filter, which can be switched in or out. Following the filters there is a two-stage i.f. amplifier that feeds a product detector for heterodyne reception or a diode detector for a.m. work. The detector output is then amplified after passing through an adjustable rlipper circuit. The a.v.e. amplifier is taken off through a separate i.f, amplifier after the first stage berause it was found that getting any closer (o) the detector allows a little b.f.o. voltage to leak into the a.v.e, circuit. A buffer stage is used between the b.f.o. and product detector so that the b.f.o. can be run at low input and consequent low drift.

The hroad filter has a band width of 2800 eveles at -6 db . and $9.5 \mathrm{kc} \cdot \mathrm{at}-6 \mathrm{~d}) \mathrm{db}$., giving it an exwellent characteristic for phone work, The sharp filter hats a band width of 220 cyrles at -6 dth . and just over 1 kc . at $-(60 \mathrm{db}$., which is about as sharp as can be used for code.

The sehematic diagram of the i.f. amplifier up to the audio amplifier is shown in Fig. 5-6\%). The intent is to take the input signal from the plate circuit of a mixer stage (high impedance) into the broad filter at 4000 ohms. The input tuning coil, L_{1}, is adjusted to resonate at 2.215 Mc. with the fixed eapacitor C_{1} and the capacitance of the length of connecting coaxial line connected to J_{1}. Since the impedance of this resonant circuit (in shunt or not with the mixer output circuit, depending upon how you utilize the amplifier) may not be known with decent accuracy, provision for impedance matching is included by using the 3 to $30-\mu \mu$ f. adjustable trimmer. To go from 1000 to 300 ohms between the two filters, an L section is used, consisting of the $68-\mu \mu$. capacitor and the $75-\mu \mu \mathrm{h}$. inductor. (The computed value of capacitance is $6: 3 \mu \mu \mathrm{f}$., but $68 \mu \mu \mathrm{f}$, is close enough.) Tostep up the impedance level at the grid of the first i.f, stage, a tapped circuit is used. The caparitance divider uses 150 and 1200$) \mu \mu \mathrm{f}$. These values are based on a coil ($)$ of 60 , the measured Q of the coil specified. The larger capacitor calculates to $1: 350 \mu \mu$ f. but 1200$) \mu \mu \mathrm{f}$, is close enough. If it is decided to climinate one cervstal filter, or to install it later, you can simply add a jumper where the filter terminals would have been.

It is worthwhile to use as good a first i.f. tube

Fig. 5.59 - This i.f. amplifier uses cascaded band-pass crystal filters at 2.2 Mc. The filters are at the left of the chassis. Moving from left to right near the front of the chassis, the tubes are 6 Ali 6 i.f., 613 J 6 i .f., two 12 AL 7 detector tules and the 618 b.f.o. Voving back from the S meter, the a.v.c. \mathbf{c} circuit tubes are 613 J 6 amplifier, 12 LA A and 6.11 .5 . The remaining tutes at the rear right are $6 A 1.5$ limiter. $12 A L 7$ audin and $6 A R 5$ audio. The shielded leads on the top of the chassis run to the s meter.

Pancl controls, from left to right, are selectivity switch, limiter set, gain control, a,v.c. switch, a.m.-ss.s.b. switch, audin volume, b,fo. pitch, and speaker/headphones switeh. The b.fo. trimmer shaft is in front of the 6 i' 8 .
as possible, beeause if the gain ahead of this stage isn't high enough there can be some degrading of the over-atll noise figure. This is the rewon a GADh6 is used in the first i.f. stage instond of a 603Jte. Since the selectivity has already herot determined by the erswal filter(s), thote is no need for additional selectivity in the i.f. amplifier, and a single tuned circuit is used for coupling between first and second i.f. stages. The switch that shifts the signal to wither of the detertors, S_{3}, also switehes the b.f.o. on (S_{31}), selects the output ($S_{3 c}$), and shifts the a.v.e., when on, from the "hang" type for heterodyne reception to the more conventional type for am. ($\mathrm{S}_{3 \mathrm{~B}}$).

In the "hang" a.v.e. cirenit, an incoming signal will be reatified by $V_{4 A}$ and develop a voltage across the 6.8 -megohm resistor. This voltage is applied to the grid of $V_{4 B}$. A voltage is also developed arross the 470 K load resistor of $\mathrm{V}_{3 \mathrm{~A}}$; this is the voltage used for a.v.c. control. Through V_{513}, the a.v.c. voltage is used to charge up the $0.05-\mu \mathrm{f}$. capacitor in the a.v.e. line; this ran be done quickly beeause V_{51} has relatively little
resistance. When the signal is removed, the only discharge path for the $0.05-\mu$. capacitor is through $V_{4 B}$. By virtue of the (0.1-mf. capacitor aross the 6,8 -megohm load for $V_{4 A}$. $V_{4 \mathrm{~B}}$ will remain at cutoff potential for a moticeable portion of a second, and the a.v.e. Will "hang" at a given value until $V_{4 B}$ beromes conductive and starts to diseharge the 0.0.j- $\mu \mathrm{f}$. capacitor.

In the a.v.e. circuit, switeh $\mathrm{S}_{2 \mathrm{~B}}$ turns the a.v.c. on or off, $\mathrm{S}_{2 \mathrm{~A}}$ opens the S-meter cireuit when the a.v.e. isn't used, and $S_{2 c}$, takes the cathode return off the gain control so that the S-meter reading isn't affected by the gain setting. The S-meter circuit moters the voltage difference between a referone and the eathode voltage of an a.v.e.controlled stage. It hetps to show which signals are stronger when a.v.e. is being used. If you have a signal generator you can calibrate the meter in db, above some abitrary level. With the constants shown, the meter has a range of about 90 (ib). The no-signal point will be lower on a.m. than on s.s.b. by a few divisions, berause of con-tact-potential offect in the hang-a.v.c. eireuit.

Fig. 5-60-Schematic diagram of the i.f. amplifier up to and including the detector circuits.
Caparitances in $\mu \mathrm{f}$. unless oth"rwise noted. Refiftors are $1 / 2$ watt unless otherwise noted.
$\mathrm{C}_{1}-150 \mu \mu \mathrm{f}$. less the capacitance of the calle connected to J_{1}. RG-39/L runs $21 \mu \mu \mathrm{f}$, per foot.
$\mathrm{FL}_{1}-2.215$. Me. loand-pass crystal filter, 2800 cecles wide at - 6 db . (11 y con Eastern* Type 22 Niodel 159-11 1).
$\mathrm{FL}_{2}-2.21 \mathrm{j}$. Me. Hand-pass erystal filter, 220 eycles wide at -6 db . (1I yeon Eastern Tyipe 22 Niodel 159-1(1).
J_{1} - Phono jack.
L_{1} through $1.7-36-64-\mu \mathrm{h}$. adjustable coils (Vorth Hifls 'Type 120 OH coil mounted in North Hills S. 120 shield can).

* Hycon Eastern, Inc., 75 Cambridge Parkway, Cambridge 42, Mass.
1.8 - 18 turns No. 20, 16 t.p.i., $3 / 4$-inch diam. (B \& W 3011 stock).
Is - 9 turns No. 20,16 t.p.i., $3 / 4$-ineh diam. (B \& W 3011 stock). $1 / 8$ inch between L_{8} and $L 9$.
 turns removed.
$\mathrm{M}_{1}-0-2(\mathrm{~N})$ nicroammeter (Triplett Model 32--PL).
$\mathrm{RH}^{\circ} \mathrm{C}_{1}, \mathrm{RHC}_{2}$ - National R-30, 2.5-mh. choke.
S_{1} - Two-pole 2 -position 2 -section rotary switeh (Centratab P'A-31 sections on P'S-30I assembly).
s_{2} - Three-pole 2 -position rotary switeh (Centralab PA-1(0):).
S_{3}-Six-pole (5. used) 2-position 2 -seetion rotary switch (Centralab PA-1019). See Fig. 5.61.

Fig. 5-61 - Schematic diagram of the audio portion of the amplifure.
J_{2} - Open-circuit phone jack.
J_{3} - Phomo jack.
s_{3}-See Fig, 3.
liverything in the audio amplifier (Fig. 5-61) seciion is conventional, with the except ion of the t hreeposition switch S_{4}, which permits feeding output to headphones, loudspeaker or both. This is a convenience when visitors are in the shark. The rireuit is shown for low-impedance headphones that work at voire-roil impedanere level: a constructor with high-impedaner phones might take the headphone output from the plate of the $6 A R 5$ through a $0.05-\mu \mathrm{f}$. eapacitor.

Construction

The chassis is an $8 \times 17 \times 3$-inch aduminum one, and the panel is a standard relay rack panel 7 inches high. The panel is held to the chassis by the mounting nuts of the switches and potentiometers; the shaft bushing of the Hammarlund HF-15N b.f.o. capacitor isn't long enough to be used in this way, and eonsequently a clearance hole is required in the panel large enough to clear the nut that holds the capacitor to the chassis. Fig. 5 -62 shows that ceramic switches were used in this unit; there is no noed for them, and the eaptions show phenolic switches specified. Ceramic caparitors can be used for any of the values up to $0.01 \mu \mathrm{f}$., with the exception of those associated with the b.f.o., where silvered mica and air catpuritors are recommended. The 150- $\mu \mu \mathrm{f}$. eapacitors shunting the i.f. coils can be mica, since the circuits aren't sharp enough to justify silvered mica.

Figs, 5-60 and 5-61 show that a number of shielded leads are used, in the audio between tubes and switches and for some of the other leads. Actually, the shielded leads in the audio circuit are pieces of coaxial line; this is done to carry the grounds back to the audio tubss and not depend upon the chassis for a return. In some cases this latter procedure can introduce a.c. hum when one side of the heaters is grounded as in this case. The other shielded wires are included to minimize the chances for feedl)ack and b.f.o. leakage into the "front end." A shield partition masks the input tube and S_{1} from the rest of the amplifier; this is done to knork down some slight
S_{4} - Two-pole 3-josition rotary switch (Centralab P1-1002).
T_{1} - $\mathbf{7 0}(\mathrm{K})$-ohms.in-voice-coil output transformer, 4 watts (Stancor A-3822).
b.f.o. energy that otherwise might leak into the grid of the first tube.

Most of the remainder of the unit follows standard practices and requires no elaboration. The b.f.o. coil, L_{8} and L_{9}, is supported by its leads on a long tie point. The $1400-\mu \mu \mathrm{f}$, capacitor shown shunting the $10(0)-\mu \mu$ f. trimmer is made up of two 680- and one $4 \overline{7}-\mu \mu \mathrm{f}$. silvered mica caparitors; with tolerances romning the way they do you may have to use something other than a $47-\mu \mu \mathrm{f}$. capacitor to bring the b, fo. close enough to 2.215 Mc . to be set by the Hammarlund MAPC-100 trimmer. The $15-\mu \mu$ f. b.f.o. panel control tumes over more than 8 kc , and some builders might want to pull off a plate or so to bring this range down to about 6 ke., although the tuning rate is quite adequate.

The power-supply requirements are 95 ma . at around 280 volts for the plates, a few ma. at regulated +105 (from a VR tube), $31 / 4$ amperes at 6.3 volts for the heaters, and -15 volts at negligible current for one terminal of $\varsigma_{3 E}$ (Fig. 5 -(i)). The latter voltage can be obtained from the same power transformer through a $1-\mathrm{V}$ rectifier and an $R C$ filter.

Alignment

There is nothing unusual about the alignment of the amplifier. If you have at signal generator (or grid-lip meter) you can use the output to tune the circuits L_{2} through L_{5} close to 2.215 Mr. This portion of the amplifier is broad, so if you get in the vicinity of 2.215 . Mc, you will be able to hear a signal passed through the erystal filters, after which you can again peak the coils. The a.v.c. circuit can be aligned initially by conneeting a voltmeter from ground to the cold ends of L_{6} and L_{7}, after which the S meter will serve as an indicator. It will reguire some further juggling, which will be described later. The b,fo. is lrought into tume with the $100-\mu \mu$ f. trimmer; if you can't hit because the silvered-mica caparitors are at the edges of tolerance you may have to add capacitance or else remove a turn from L_{8}. If you have a v.t.v.m. and r.f. probe, the

Fig. 5.62 - The audio output transformer is mounted on the side wall of the chassis, and the rear wall of the chassihas the input and output jacks, the power plug and the S-meter zero set. Audio leads lietween limiter and andio, stage and panel controls are carried in small coasial eable. The shield at the left-hand side of the chassis is held in place by the mounting screws of the shiclel can.
voltage at the grid of V'ya should be adjusted to about 5 volts peak, ty changing the value of the 22 K resistor between $S_{3 D}$ and L_{9}.

With a steady signal coming through the amplifier, its amplitude should be adjusted to give about -6 volts at the grid of V_{41}. You will need a v.t.v.m. for this job. Then measure the voltage at the cathode of $V_{5 B}$ and detune L_{7} until it gives a reading of about 40 per rent of the other reading, or $2 \frac{1}{2}$ volts. Don't try to measure the voltage on the a.v.c. line, because even the high input resistance of the v.t.v.m. (11 megohms) will impair the a.v.e. performanee. When you get the a.v.e. completely adigned, as mentioned a little later, L_{6} will be peaked for maximum signal through $V_{4 A}$ and for something less than this through $\mathrm{I}_{5 \mathrm{~A}}$.

The i.f. should now be in a condition suitable for the reception of signals, but it requires a "front end." The NCD-300 can be used, because it has a first i.f. of 2.215 Mc ., or you can build or revise a converter for the job. Lise a length of I2G-59/U to connert from J_{1} to the plate of the mixer tube, with a $1(0)-\mu \mu f$. rapacitor between plate and inside conductor of the coax to avoid short-circuiting the plate supply in the receiver. If a home-built converter is used, the plate voltage to the mixer cin be fed through L_{1}, by lifting the bottom of L_{1} and foeding the plate voltage to it through a 1000 -ohm resistor. Bypass the bottom of L_{1} with a $0.01-\mu$, capacitor to chassis.
Tune around until you find a signal or, better yet, feed in a stable signal from a signal generator or $100-\mathrm{ke}$. crystal-oscillator harmonic. Peak L_{2} for maximum signal: then "rock" L_{1} and the 3-to-30- $\mu \mu \mathrm{f}$. trimmer for maximum signal. If you are using looth filters, do these jols with both filters switched in. You should now be able to
tume around the bands and get aceustomed to the i.f. and its operation. You will need a slow tuning rate when the sharp filter is used, beatuse the signals come in and out rather fast with this much sclectivity. You also need a slow tuning rate with s.s.b. reception, as any operator knows. You can get a line on the a.v.c. ation by tuning in a few rode signals. On slow sending around 12 or 15 words a minute the S meter will start to drop back between words, while at speeds of 20 w.p.m. or more the s meter should "hang" steady and only follow fading. If it doesn't hang in long enough, detune L_{7} a little.

As you familiarize yourself with the operation of the amplifier, you may notice that the broad filter characteristic isn't as "smooth" as one might expect for a hand-pass filter. (If it is, it's just blind luck.) You won't notice this in operating in a ham band; it will show up when you tune slowly through a steady medium-strength signal (as from a loo-ke. calibration oscillator harmonic) with the selectivity in broad, the a.v.e. on, S_{3} in the a.m. position and with no antenna on the reeciver front end. As you tune slowly through the signal, the s meter may rise to a maximum, fall off slightly, riso again and then fall off. The slight falling off at the center may be 5 db , or so; it has no obvious effert on signals, but it indicates that the filter isn't looking into and back to the correct terminations. When the center dip (or dips) is minimized, the terminations will be correct. You do this by tuning to the dip and giving the 3 - to $30-\mu \mu$ f. eat pacitor and L_{1} both a slight adjustment to make the s meter rise slightly. Now tune across the signal again and see if the dip has been reduced any. By trying this several times you will be able to bring the "ripple" at the top of the pass band of the filter down to a low value.

Conelrad

Wiffective January 2, 1957, the "Conelrad" rules became part of the amateur regulations. Vissentially, compliance with the rules consists of monitoring a broadeast station - standard band, f.m. or TV - either continuously or at intervals not exceeding ten minutes, during periods in which the amateur transmitter is in use. On reeeipt of a Conelrad Alert all transmitting must cease, except as authorized in 12.193 and 12.194 of the FCC regulations.

The existence of an Alert may be determined as outlined in $12.192(\mathrm{~b})(3)$. Operation during hours when local broadcast stations are not an the air will require tuning through the standard broadeast band to determine if operation appears to be normal. The presence of any U.S. broadcast stations on frequencies other than 640 and 1240 ke. indicates normal operation.

Perhaps the simplest form of compliance is by means of a simple converter working into the i.f. amplifier of the regular station receiver. A typical circuit is shown in Fig. 5-63. The converter can be built in a small metal case and mounted at a convenient spot on the receiver so that S_{1} can be closed at regular intervals for checking the

Fig. 5-6.3 - Converter circuit for monitoring broadcast stations in connection with a communications receiver. (:apacitances are in $\mu \mu$ f.
Cin, $_{1}$, Cib - Two-gang broadeast capacitor, wseillator section according to intermediate freguency to be used.
I. 1 - 1 sop stick.
T_{1} - IS.c. oseillator transformer (for i.f. to be used).
T_{2} - I.f. coil and trimmer. This can be taken from an i.f. transformer, or the transformer can be used intact, the output being taken from the secondary.
Note: If only oue broadeast station is to be monitored $C_{\text {IA }}$ and $C_{\text {IB }}$ can be padder-type caparitors (or a combination of padding and fixed capacitance as required) adjusted for the desired station and intermediate frequencies. Other types of converter tubes may be substituted if desirel.
Power for the unit can be taken from the receiver's "accessory" socket.
broadeast station. As an alternative, the converter can be mounted out of the way at the rear of the receiver and the switch leads brought out to a convenient spot.

A "FAIL-PROOF" CONELRAD ALARM

The Conelrad alarm shown in Fig. 5-6t uses a sunall BC receiver to furnish both audible and visible indications of a Conelrad thert (the receiver may still be used for nomal broadeast reception).

With the receiver tuned to a broadeast carrier and the alarm circuit in operation, a green "safe" light indicates that all is wetl on the broadcast band. When the broadeast carrier goos off, as it will in a Conelrad Radio Alert, the green light goes out, a red "danger" light comes on, a buzzer sounds, and the 115 -volt a.c. line to the transmitter is opened up. In other words, the device puts you off the air! The andible and visible warnings also are given in the event of a component faihure in cither the control receiver or the alarm. Even the disappearance of the $115-$ volt supply will not go unnoticed, since in that case the green "safe" light will go out, indicating that the aharm is inoperative.
The abarm requires a minimum of 0.7 volts (negative) from the receiver's a.v.c. circuit for dependable operation. Receivers having one stage of i.f. amplification will develop at least this much a.v.e. voltage when tuned to a signal of reasonable strength. But wateh out for the "superhets" that do not have an i.f. stage; they are of little value as a source of control voltage for the abarm. You can usually find out if the receiver has an i.f. stage by looking at the tube list pasted on cither the chassis or the inside of the cabinet.

The circuit of the alarm is shown in section B, Fig. 5 -64. Section A is a typical a.v.c.-detectorfirst audio statge of an a.c.-d.e. receiver, and shows how the alarm cireuit is tied into a receiver.

Although a 12AV6 is shown as the detector, other tubes may be used in some receivers. However, the basic circuit will be the same or very similar.

Finding the a.v.c. line in the jumble bencath the chassis of the ordinary a.e.-d.e. receiver is not ahways easy. Here are a few hints:

Using seetion A, Fig. 5 -64, as a guide, locate the detector tube socket. Truce out the leads going to the secondary of the last i.f. transformer, T_{1}. This transformer usually will be adjacent to the detector tube. The lower end of the secondary winding will be connected to several different resistors, one of these being the diode-load filter resistor (approximately 50 K in most cireuits) and another the a.v.c. filter resistor, R_{1}. The value of the latter resistor is ordinarily above one megohm. Trace through R_{1} in the direction of the arrow (Fig. $\overline{\text { - }}$-64), until you locate the fairly high value ($0.05 \mu \mathrm{f}$. or so) a.v.c. filter capacitor, C_{1}.

Fig. 5-64 - Circuit of the Conelrad alarm (13) commented to the a.s.e. circuit (1) of a typical a.c-d.c. hroadrast receiver. Resistors are $1 / 2 n$ att unless otherwise specified. C_{1}, R_{1} and T_{1} in section I are components in the hroadrast receiver.
I_{t} - 6-iolt acc. buzzer (Eidwards 72.).
$\mathrm{I}_{2}, \mathrm{I}_{3}-6$ volt pilot lanip, No. 47.

contacts (Potter \mathbb{X} Brumficld (GBIID).
$\mathrm{R}_{2}-\mathbf{5}$-megohm potentiometer.
Now you have the a.v.c. line clearly identified and the tap for the alarm cirenit may be made.

Notice that the cathode of V_{1} and the eold side of C_{1} are both returned to a common bus or -13 line, not directly to the chassis. Also observe that the return for the alarm circuit is made to the rommon bus in the receiver, not to the chassis of the set. Do not ground this lead to the chassis or connect it to any exposed metal parts. If there is any difficulty in locating the common bus in the vieinity of the detector stage, rherk back from the negative side of the power-supply filter catpacitors, as this point is always attached to the common bus.

The monitor should be built in an insubated box of some kind and not in a metal rase. The box can be made of plywool, or a bakelite instrument rase (e.g., 1CA type 8202). The bakelite case is ideal for the application, but it must be handled with care during construction, to avoid scratching, chipping, or breakage. 13e especially careful when drilling large holes such as those used in mounting the pilot-lamp assemDies and switches, beratuse a large drill tends to bind and erack the rase.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-\mathrm{S}, \mathrm{p}, \mathrm{s}$ t. rotary canopy swith (ICA 12.57).
Si_{2} - Momentary-contart switch (Switeheraft 100).
T_{2} - Replarement-ty pe poner (ransformer, 1.00 voles, 2.5 ma.; 6.3 volts, 0.5 amp . (Merit P.30t6 or equivalent).

Testing and Operating

The ehanees are pretty good that right after the receiver and the monitor have been turned on the red lamp will light and - if you haven't had the foresight to open S_{3} to prevent the noise the buzzer will sound. Tune the receiver to a broadeast station and see if the red light goos out and the green light comes on. If this happens, close S_{3} and vou're all set for Conelrad compliance. If the "safe" light does not come on, tune around for a signal strong enough to actuate the alarm. Whould the signal of greatest apparent strength fail to trigger the monitar, leave the rereiver tuned to this signal and then momontarily press S_{2}. The alarm should now lock on "safe," provided the a.v.e. cireuit delivers 0.7 volt or more to ${ }^{2}{ }^{2 A}$.

The only d.e. measurements of any consequence that need be mate in checking through the alam circuit are the output voltage of the power supply and the voltage at the cathode of V_{213}. The proper voltages at these two points are given on the rircuit diagram. If the alam fails to respond properly, it maty be advisable to cheek the a.v.e. voltage with a v.t.v.m.

High-Frequency Transmitters

The principal requirements to be met in c.w. transmitters for the amateur bands between 1.8 and 30 Mc . are that the frequency must be as stable as good practice permits, the output signal must be free from modulation and that harmonies and other spurious emissions must be eliminated or reduced to the point where they do not cunse interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. A simple oseillator with satisfactory frequency stability may be used as a transmitter at the lower frequencies, as indicated in Fig. 6-1. , but the power output obtainable is small. As a general rule, the output of the oseillator is fed into one or more amplifiers to bring the power fed to the antenna up to the desired level, as shown in 13 .

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier. A buffer amplifier is the term sometimes applied to an amplifier stage to indicate that its primary purpose is one of isolation, rather than power gain.

Berause it becomes increasingly difficult to maintain oscillator frequency stability as the frequency is increased, it is most usual practice in working at the higher frequencies to operate the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exciting frequency. A doubler is a multiplier that gives ontput at twice the exciting frequency; a tripler multiplies the exciting frequency by three, etc. From the viewpoint of any particular stage in a transmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should not loe used to feed the anterna system directly, but should feed a straight amplifier which, in turn, feeds the intenna system, as shown in l'ig. 1-(, 1) and E. As the diagrams indicate, it is often possible to operate more than one stage from a single power supply:
(iood frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for eath frequency desired (or multiples of that frequency). A self-controlled oscillator or v.f.o. (variable-frequency oscillator) may be tuned to any frequency with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a crystal oscillator.

In all types of transmitter stages, screen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exeiter, the problem of harmonic reduction is made easier. Most satisfactory oscillator circuits use it sereen-grid tube.

Fig. 6.1-13lock diagrams showing typical combinations of oscillator and amplifiers and power supply arrangements for transmitters. A wide selection is pos. sible, depending upon the number of bands in which operation is desired and the power output.

Oscillators

CRYSTAL OSCILLATORS

The frequency of a crestal-rontrolled oscillatom is held constant to a high dogree of accuracy by the use of at quartz arystal. The frequeney depends almost entirely on the dimensions of the erystal (essentially its thickness); other eircuit values have romparatively negligible effert. Lowever, the power obtainable is limited by the heat the crystal will stand without fracturing. The amount of heating is dependent upon the r.f. erystal current which, in turn, is a function of the amount of fredback reguired to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. Excitation should always be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

The simplest crystal-oscillator circuit is shown in Fig. 6-2A. An equivalent is shown at B. It is a Colpitts circuit (sece chapter on varumm-tube principles) with the tube tapped arows part of the tunced cireuit. The erystal has been replaced by its equivalent - a serics-tuned rimenit $L_{1} \mathrm{C}_{4}$. (See chapter on electrical laws and rireuits.) ('s and ('6 are the lube grid-cathode and plate-
rirenit in the atetual plate ciredit. Athough the oseillator itself is not entirely indepentent of adjustments made in the plate tank circuit when the latter is tuned near the fundamental froqueney of the rystal, the efferts can be satisfactorily minimized by proper choice of the oscillator tube.

The circuit of Fig. 6-3. A is known as the Tritet. The oscillator cireuit is that of Fig. 6-2C. Lixeitation is controlled by adjust ment of the tank L_{1} C'I $_{1}$, which should have a low L / C ratio, and be tuned ronsiderably to the high-frequenes side of the erystal frequency (approximately 5 . Ite for a 3.⿹-Xre (rystal) to prevent over-expitation and high erystal curvent. Once the proper adjustment for average crystals has been found, C_{1} may be roplared with a fixed capacitor of equal value.

The oseillator circuit of Fig. 3-13 is that of Fig. 6-2A. Exeitation is controlled by ('g.

The oscillator of the grid-plate circuit of Fig. ($6-3 \mathrm{C}$ is the same as that of Fig. 6 -3B, exeept that the ground point has heen moved from the cathode to the plate of the oseillator (in other words, to the screen of the tube). Excitation is adjusted hy proper proportioning of C_{6} and C_{7}.

Wher most types of tubes are used in the eirruits of Fig. 6-3, oscillation will stop when the output plate cirenit is tumed to the erystal fro-

Fig, 6.2 - Simple crystal-oscillator circuits. 1 - Pierce. B - Equivalent of circuit A. (: - Simple triode oneillator. C_{1} is a plate bloching capacitor, C_{2} an outpat coupling capacitor, and C_{3} a plate bypasi. I_{1}, C_{4}. Cis and C_{0} are disconed in the test, C:- and L_{2} shond tune to the erystal fundamental frequmer, K_{1} is the grid leah.
fathode capacitances. respectively. In best prate tical form, C_{5} or ('6, or both, would bre angmented by external caparitors from grid to cathode and plate to eathode so that feedback rould be andusted properly.

The circuit shown in Fig. 6-2C' is the equivalent of the tumed-grid tuned-plate cirenit diselussed in the chapter on varum-tube principles, the erystal replacing the tumed gride cireuit.

The most commonly used erystal-oseillator eirruits are based on one or the other of these two simple types. and are shown in Fig. 6-3. Although these cireuits are somewhat more complirated, they rombine the functions of oseillator and amplifier or frequency multiplier in a single tube. In all of these ciruits, the sereen of a tetrode or pentode is used as the plate in a triode oscillator. Power out put is taken from a separate tuned tank
quener, and it is neressary to operate with the plate tank cireuit critically detumed for maximum output with stahility. However, when the
 with proper adjustment of expitation, it is possihe to tume to the erystal frequency without stopping osedlation. The plate thaing characteristic should then be similar to Fig, ($0-4$. These tubes atso operate with less arystal current thatn most ot her types for a given power output, and less frequency change ocrurs when the plate circuit is tuned through the erystal frequency (less than 25 cycles at 3.5 Ml .).
(rystal eurrent maty be estimated by observing the relative brilliance of a $60-\mathrm{ma}$. dial lamp conneeted in series with the rrystal. Current should be held to the minimum for satisfactory output by eareful adjustment of excitation. With the
operating voltages shown, satisfactory output should be ohtained with crystal currents of 40 ma, or less.

In these circuits, output may be obtained at multiples of the crystal frequency by tuning the plate tank circuit to the desired harmonic, the output dropping off, of course, at the higher har-

Fig. 6.3 - Commonly oused crystal-controlled oscillator circuits. Values are those recommended for a OAG7 or 3763 tube. (See reference in text for other tubes.)
C_{1} - Feed-hach-control capacitor-3.5. M1. crystals
 approx. $150-\mu \mu$ f. mica.
C_{2} - Output tank capacitor- 100 o- $\mu \mathrm{f}$. variable for single-band tanh; $250-\mu \mu$ f. variable for Inoband tank.
(is - Screen ly pasm - 0.(M) I- μ f. disk ceramic.
(is - Plate bypass - 0.(k) 1- $\mathrm{\mu}$ f. disk ceramic.
Cos - Output conpling capacitor - 50 to $\mathrm{I}(\mathrm{X}) \mu \mu \mathrm{f}$.
Ca_{6} - Excitation-control capacitor - 30 - $\mu \mu \mathrm{f}$. trimmer.

Cs - D.e. bloching capacitor - 0,(0) $1-\mu \mathrm{f}$. mica.
(:y - Excitation-rontrol capacitor - 220 - $\mu \mathrm{\mu}$. mica.
Cio - Heater hypas- - $0 .(6) 1$ - μ f. disk ceramic.
R_{1} - Grid leak - 0.1 megohm, $1 / 2$ watt.
K_{2} - Screen resistor - 47,000 ohms, 1 watt.
L.1 - Excitation-control inductance - 3.5 . Alc. crystals - approx. $4 \mu \mathrm{~h} .:$ 7. Mlc. erystals - approx. $2 \mu \mathrm{~h}$.
L_{2} - Output-circuit coil-single band: - 3.5 Me. $17 \mu \mathrm{~h} .: 7 \mathrm{Mc}-8 \mu \mathrm{~h}$, ; $14 \mathrm{Mc},-2.5 \mu \mathrm{~h}, ; 28 \mathrm{Mc}$. - $1 \mu \mathrm{~h}$. Two-band operation: 3.5 \& 7 Mc. $7.5 \mu \mathrm{~h} . ; 7$ \& $14 \mathrm{yc} \cdot-2.5 \mu \mathrm{~h}$.
$R \mathrm{RC}_{1}-2.5 \cdot \mathrm{mh} .50 \cdot \mathrm{ma}$. r.f. choke.
monies. Espectially for hamonir operation, a lowC plate tank circuit is desirable.

For best performanee with a $6: 1(17$ or 57603 , the values given under ligg, 6-3 should be followed closely. (For a diseussion of values for other tubes, see QS' ${ }^{\prime}$ for March, 1050, page 28.)

VARIABLE-FREQUENCY OSCILLATORS

The frequency of a v.f.o. depends entirely on the values of inductance and capacitance in the circuit. Therefore, it is neressary to take careful steps to minimize changes in these values not under the control of the operator. Is examples, even the minute changes of dimensions with temperature, particularly those of the eoil, may result in a slow but noticeable change in frequeney called drift. The effertive input caparitance of the oscillator tube, which must be connected across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the oscillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the osellator, and variations in the load may reflect on the frequency. Very slight mechanieal movement of components may result in a shift in frequency, and vibration can cianse modulation.

V.F.O. Circuits

Fig. 6-5 shows the most commonly used cirpuits. They are all designed to minimize the effects montioned above. All are similar to the (rystal oscillators of Fig. $6-3$ in that the sereen of a tetrode or pentode is used as the oscillator plate. The oscillating circuits in Figs. 6-5A and B are the Hartley type; those in (C and I) are Colpitts circuits. Wee chapter on vabeum-tube principles.) In the circuits of A and C, atl of the above-mentioned efferts, except rhanges in inductance, are minimized by the use of a high-(Q) tank cirenit obtained through the use of large tank caparitances. Any uncontrolled changes in raparitance thus berome a very small perentage of the total circuit capacitance.

In the series-tuned Colpitts circuit of Fig. (i-51) (sometimes called the Clapp circuit), is high-Q circuit is olstained in a different manner. The tube is tapped aeross only a small portion of the oscillating tank circuit, resulting in very loose roupling between tube and circuit. The taps are provided by a series of threce capacitors arross the coil. In addition, the tube capacitances are shunted by large eapacitors, so the effects of the tube - ehanges in clectrode voltages and loading - are still further reducod. In contrast

Fig. 6.4 - Plate tuning characteristic of circuits of Fig. 6.3 with preferrod types (see text). The plate-current dip at resonance broadens and is less pronounced when the circuit is loaded.
to the preceding circuits, the resulting tank cirenit has a high $L /(\mathrm{C}$ ratio and therefore the tank current is murh lower than in the rireuits using high-r tanks. As a mesult, it will usually Ine found that, other things being equal, drift will be less with the low-C cireuit.

For hest stability, the ratio of $\left(11+C_{12}\right.$ to C C_{13} or' ('14 (which are usually equal) should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the fo the coil and the mutual conduetance of the tube. If the circuit does not oscillate over the desired range, a coil of higher Q must be used or the capacitance of C_{13} and (C_{14} reduced.

Load Isolation

In spite of the precautions already discussed, the tuning of the output plate circuit will cause a
noticeable change in frequencr, particularly in the region around resonance. This effect ran be reduced considerably by designing the maillator for half the desired frequency and doubling frequency in the output circuit.

It is dowirable, although not a striet neressity if etetuning is recognized and taken into atcount, to approach ats chasely as posible the condition where the adjustment of tuning controls in the transmitter, berond the v.fo. frequency eontrol, will have negligible effert on the frequener: This can be done ly substituting a fixed-tuned cirruit in the output of the oscillator, and adding isolating stages whose tuning is fixed between the oseillator and the first tunable amplifier stage in the transmitter. Fig. $6-6$ shows such an arrangoment that gives good isolation. In the first stage, a 6 C 4 is comnected as a cathode follower. This

Fig. 6.5-Y.f.o. circuits. Approximate values for 3.5 Me. are given below. For 1.75 Me., all tank -circuit values of caparitance and inductance, all tuning capacitances and C_{13} and C_{14} should be doubled; for T Mc., they should be cut in half.
 $\mu \mu$ f, variable.
C_{2} - Gutput-rircuit tank capacitor - $\mathbf{I O H}$ - $\mu \mathrm{\mu} \mathbf{f}$.
 prrature-forfficient mica.
C_{4}-Grid coupling capacitor-I(1)- $-\mu \mathrm{f}$. zero-tem-perature-coreffieient mica.

C: - Screen bypass - 0.001- H f disk eeramic.
Cis - Plate bypass - (0.ONI- μ f. disk ceramic.
Cis - Output coupling rapacitor - $^{5} 0$ to $100-\mu \mu \mathrm{f}$. mica.
C_{9} - Oscillator tank capacitor - (880 - $\mu \mathrm{\mu}$. zero-tem -prerature-coefficient mica.
C_{10} - Oscillator tank capacitor- $0.00222 \mathrm{\mu}$. zero-temprature-corficient mica. air.
C_{12} - Oscillator handepread tuming eapacitor-25. $\mu \mu \mathrm{f}$. variable.
Cis, (is - I'ulve-coupling caparitor - 0.0 (N1- - f. zero-temperature-coeflicient mica.
$\mathrm{R}_{1}-47,0$ (1) ${ }^{2}$ ohms, $1 / 2$ watt.
L_{1} - Oscillator tanh coil - $4.3{ }_{\mu} \mathrm{h}$., tapped about one-third-way from gromided end.
1.2 - Gutput-cirenit tank coil-22 $\mu \mathrm{h}$.

1,3- Oecillator tanh coil - $4.3 \mu \mathrm{~h}$.
$1_{4}-$ Oscillator tank roil - $33 \mu \mathrm{hl}$. (B \& W JFLL-80).
$\mathrm{RFC}_{1}-\frac{2}{5}-\mathrm{mlt}, 50$-ma. r.f. eloohe.
 \mathbf{V}_{2} - $6006,570,3$ or $6 \Delta 116$ required for feed-bach eaparitances shown.
drives a 5763 buffer amplifier whose input circuit is fixed-tuncd to the approximate band of the v.f.o. output. For best isolation, it is important that the 6C.4 does not draw grid current. The output of the v.f.o., or the eathode resistor of the 6 C 4 should be adjusted until the voltage across the cathode resistor of the $60 \cdot 4$ (as measured with a high-resistance d.e. voltmeter with an r.f. choke in the positive lead) is the same with or without exeitation from the v.f.o. L_{1} should be adjusted for most constant output from the 576:3 over the band.

Chirp

In all of the circuits shown there will be some change of frequency with changes in sereen and plate voltages, and the use of regulated voltages for both usually is necessary. One of the most serious results of voltage instability occurs if the oscillator is keyed, as it often is for break-in operation. .Uthough voltage regulation will supply a steady voltage from the power supply and therefore is still desirable, it camot alter the fart that the voltage on the tube must rise from zero when the key is open, to full voltage when the key is closed, and must fall back again to zero when the key is opened. The result is a chirp ewh time the key is opened or closed, unless the time constant in the keying circuit is reduced to the point where the chirp) takes place so rapidly that the roceiving operator's ear cammot detert it. Unfortunately,as explatined in the chapter on keying, a rertain minimum time constant is necessary if key clicks are to be minimized. Therefore it is evident that the measures necessary for the reduction of chirp and clicks are in opposition, and a compromise is neressary. For best keying characteristics, the osillator should be allowed to run continuously while a subsequent amplifier is keyod. However, a kered amplifier represents a widely variable load and unless sufficient isolation is provided between the oscillator and the keyed amplifier, the keying characteristics may be little better than when the oscillator itself is keved. (Hee keving chaptor for other methods of break-in keving.)

Frequency Drift

Frequency drift is further reduced most easily by limiting the power input as much as possible and by mounting the components of the tuned circuit in a separate shielded compartment, so that they will be isolated from the direct heat from tubes and resistors. The shielding also will
eliminate changes in frequency caused by movement of nearby objects, such as the operator's hand when tuning the v.f.o. The circuit of Fig. $6-5 \mathrm{I}$) lends itself well to this arrangement, since relatively long leads between the tube and the tank circuit have negligible effect on frequency because of the large shunting capacitances. The grid, cathode and ground leads to the tube can be hunched in a cable up to several feet long.

Variable capacitors should have ceramic insulation, yood bearing contacts and should preferably the of the double-bearing type, and fixed capacitors should have zero temperature coeflicient. The tube socket atso should have ceramic insulation and special attention should be paid to the selection of the coil in the oseillating scetion.

Oscillator Coils

The Q of the tank coil used in the oscillating portion of any of the circuits under discussion should be as high as circumstances (usually space) permit, since the losses, and therefore the heating, will be less. With recommended care in regard to other factors mentioned previously, most of the drift will originate in the coil. The coil should be well spaced from shielding and other large metal surfaces, and be of a type that radiates heat well, such as a commercial air-

Fig. 6.6 - Circuit of an isolating amplifier for use between vifo. and first tunable stage. All capacitances below $0,001 \mu$, are in $\mu \mu$. All resistors are $1 / 2$ watt. L_{1}, for the $3.5-$ Wle. band, consists of 9.3 turns No. 36 enam., $17 / 32$ inch long, $1 / 2$ inch diameter, elose-wound on Vational XR-50 irnn-slug form. Inductanec 69 to $134 \mu \mathrm{~h}$. All capacitors are disk ceramic.
wound type, or should be wound tightly on a threuded ceramic form so that the dimensions will not change readily with temperature. The wire with which the coil is wound should be as large as practicable, esperially in the high-C circuits.

Mechanical Vibration

To eliminate mechanical vibration, components should be mounted securely. Particularly in the circuit of Fig. (6 -5l), the capacitor should preferably have smill, thick plates and the coil braced, if necessary, to prevent the slightest mechanical movement. Wire connections between tank-rireuit components should be as short as possible and flexible wire will have less tendency to vibrate than solid wire. It is advisable to cushion the entive oscillator unit by mounting on sponge rubber or other shock mounting.

Tuning Characteristic

If the circuit is oscillating, touching the grid of the tube or any part of the circuit connected to it will show a change in plate current. In tuning the plate output circuit without load, the plate current will be relatively high until it is tuned near resonance where the plate current will dip to a low value, as illustrated in Fig. 6-1. When the output circuit is loaded, the dip should still be found, but broader and much less pronounced as indicated by the dashed line. The circuit should not be loaded beyond the point where the dip is still recognizable.

Checking V.F.O. Stability

A v.f.o. should be checked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristics, final tests should be made with the complete transmitter in operation. Almost any v.f.o. will show signals of good quality and stability when it is running free and not connected to a load. A well-isolated monitor is a necessity. Perhaps the most convenient, as well as one of the most satisfactory, well-shielded monitoring arrangements is a receiver combined with a erystal oscillator, as shown in Fig. 6-7. (See "Crystal Oscillators," this chapter.) The cristal frequency should lie in the band of the lowest frequency to be checked and in the frequency range where its harmonics will fall in the higher-frequency bands. The receiver b.f.o. is turned off and the v.f.o. signal is tuned to heat with the signal from the crystal oscillator instead. In this way any receiver instability caused by overloading of the input circuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the receiver when the transmitter is keyed, will not
affect the reliability of the cherek. Most crystals have a sufficiently-low temperature roefficient to give a check on drift as well as on chirp and signal quality if they are not overloaded.

Harmonies of the erystal may be used to beat with the transmitter signal when monitoring at the higher frequencies. Since any chirp at the lower frequencies will be magnified at the higher frequencies, acrurate checking ran best be done by monitoring at a harmonic.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the crystal oscillator and the transmitter signal. When using harmonies of the crystal oscillator, it may be necessary to attach a piece

Fig. 6-7-Setup for checking v.f.o.stability.'Ite receiver should be tuned preferably to a harmonic of the v.f.o. frequency. The erystal oscillator may operate somewhere in the band in which the v.f.n. is operating. 'I'he receiver b.f.o. should be turned off.
of wire to the oscillator as an antemnat to give sufficient signal in the receiver. Checks may show that the stability is sufficiently good to permit oscillator keying at the lower frequencies, where break-in operation is of greater value, but that chirp becomes objectionable at the higher frequencies. If further improveneent does not seem possible, it would be logical in this case to use oscillator keving at the lower frequencies and amplifier keving at the higher frequencies.

R.F. Power-Amplifier Tanks and Coupling

R.f. power amplifiers used in amateur transmitters usually are operated under Class C conditions (see chapter on vacuum-tube fundamentals). Fig. 6-10 shows a sereen-grid tube with the required tuned tank in its plate circuit. Equivalent cathode connections for a filamenttype tuhe are shown in Fig. 6-8 It is assumed that the tube is being properly driven and that the various electrode voltages are appropriate for Class C operation.

- PLATE TANK Q

The main objective, of course, is to deliver as much fundamental power as possible into a load, R, without exceeding the tube ratings. The load resistance R may be in the form of a transmission line to an antenna, or the grid circuit of another amplifier. A further objective is to minimize the harmonic energy (always generated by a Class (amplifier) fed into the load circuit. In attaining these objectives, the Q of the tank circuit is of importance. When a load is coupled inductively, as in Fig. 6-10, the Q of the tank circuit will have an effect on the coefficient of coupling nec-
essary for proper loading of the amplifier. In respect to all of these factors, a tank Q of 10 to 20 is usually considered optimum. A much lower Q will result in less efficient operation of the amplifier tube, greater harmonic output, and greater difficulty in coupling inductively to a load. A much higher Q will result in higher tank current with increased loss in the tank eoil.

The Q is determined (see chapter on electrical laws and (circuits) by the L / C ratio and the load resistance at which the tube is operated. The tube: load resistance is related, in approximation, to

Fig. 6-8 - Filament center-tap connections to be substituted in place of cathode connections shown in diagrams when filament-type tubes are sulstituted. T_{1} is the filament transformer. Filament by-pasies, Ci, should le $0.001-\mu$ f. disk ceramic capacitors. If a self-biasing (cathode) resistor is used, it should be placed between the center tap and ground.

Fig. 6-9- Chart showing plate tank capacitance required for a Q of 10 . 'To use the chart, divide the tube plate voltage loy the plate current in milliamperes. Select the vertical line corresponding to the answer obtaincd. Follow this vertical line to the diagonal line for the hand in question, and thence horizontally to the left to real the capacitance. For a given ratio of platevoltage/plate current, doubling the capacitance shown doubles the Q ctc. When a split-stator rapacitor is used in a halanced circuit, the capacitance of each section may be one half of the value given by the chart.
the ratio of the d.c. plate voltage to d.c. plate current at which the tube is operated.
The amount of C that will give a Q of 10 or various ratios is shown in Fig. 6-9. For a given plate-voltate/plate-current ratio, the Q will vary directly as the tank eapacitance, twice the capacitance doulbles the Q ete. For the same $(Q$, the capacitance of each sectuon of a split-stator capacitor in a balanced circuit should be half the value shown.

These values of capacitance include the output capacitance (plate-cathode) of the amplifier tube, the input capacitance (grid-cathode) of a following amplifier tube if it is coupled capacitively, and all other stray eapacitaners. At the higher plate-voltage/plate-current ratios, the ehart may show values of eapacitance, for the higher frequencies, smaller than those attainable in practice. In such a case, a tank Q higher than 10 is unavoidable.

In low-power exciter stages, where capacitive coupling is used, very low- Q circuits, tuned only by the tube and stray cireuit capacitances are
sometimes used for the purpose of "broadhanding" to avoid the neressity for retuning a stage across a band. Higher-order harmonics generated in such a stage can usually be satisfactorily attenuated in the tank cireuit of the final output amplifier.

INDUCTIVE-LINK COUPLING

Coupling to Flat Coaxial Lines

When the load R in Fig. 6-10A is located for convenience at some distance from the amplifier, or when maximum harmonie reduction is desired, it is advisable to feed the power to the load through a low-impedance coaxial cable. The shiclded eonstruction of the eable prevents radiation and makes it possible to install the line in any convenient manner without danger of unwanted coupling to other circuits.

If the line is more than a small fraction of a wave length long, the load resistance at its output end should be adjusted, by a matching cireuit if necessary, to mateh the impedame of the cable. This reduces losses in the cable and makes the coupling adjustments at the transmitter independent of the rable length. Mateling circuits for use between the cable and another transmission line are discussed in the chapter on transmission lines, while the matrhing adjustments when the load is the grid cirecuit of a following amplifier are described elsewhere in this chapter.

Assuming that the cable is properly terminated, proper loading of the amplifier will be assured, using the circuit of Fig. 6-11C, if

1) The plate tank circuit has reasonahly high value of (2. A value of 10 is usually sufficiont.
2) The inductance of the pick-up or link coil is close to the optimum value for the frequency and type of line used. The optimum eoil is one whose self-inductance is such that its reartance at the operating frequency is equal to the charac-

Fig. 6.10-Inductive-linh output compling circuits. Ci - Ilate tank capacitor - see lext and Fig. 6.9 for capacitance, Fig. 6-3.3 for voltage rating.
C: - Ileater bypass - 0.001- $\mathrm{\mu}$. disk ceramic.
C_{3} - Screen bypass - voltage rating depends on method of screen supply. Sce section on screen considerations. Voltage rating same as plate voltage will be safe under any condition.
C_{4} - Ilate bypass - $0.001-\mu \mathrm{f}$. disk ceramic or mica. Voltage rating sance as (1 , plus safety factor.
L_{1} - 'lo resonatc at operating frequency with C_{1}. See I.C. chart in miscellaneous-data chapter and inductance formula in electrical-laws chapter, or use ARRL Lightning Calculator.
L_{2} - Reactance equal to line impedance. See reactance chart and inductance formula in electrical-laws chapter, or use ARRL Lightning Calrulator.
R - Representing load:

Fig. 6.11 - With flat transmission lines power transfer is ohtained with lonser coupling if the line input is tuned to resonance. Ci1 and l_{13} shonld resonate at the operating froqueney. See table for maximum usable value of Ci. If circuit dowes not resonate with maximum Cif or less, inductance of L_{1} must he increased, or added in series all L_{2}.
teristic imperdaner, Z_{0}, of the line.
3) It is possible to make the coupling between the tank and pick-up coils very tight.

The second in this list is often hard to meret. Few manufactured link coils have adequate inductance even for eoupling to a 50 ohm line at low frequencies.

If the line is operating with a low s.w.r., the system shown in lig. $6-11 \mathrm{C}$ will require tight coupling between the two coils, 大ince the secondary (pick-up eoil) circuit is not resonant, the leakage reactance of the pick-up coil will cause some detuning of the amplifier tank circuit. This detuning effect increases with incroasing coupling. but is usually not serious. However, the amplifier tuning must be adjusted to resonance, as indicated by the plate-current dip, each time the roupling is changed.

Capacitance in $\mu \mu$ f. Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit	
Freunency Charactoristir Impedance of line	
lland	52
Mc.	ohms ${ }^{1}$ ohmes ${ }^{\text {1 }}$
1.8	00006
3.5	1.00
$\overline{7}$	230 1.20
1.1	11.0 is
28	6010
1 Capacitance values are maximum usable.	
Note: Inductance in circuit must be adjusted to resonate at oprerating frefuency.	

Tuned Coupling

The design difficulties of using "untuned" pick-up coils, mentioned above, can be avoided by using a coupling circuit tuned to the operating frequency. This contributes additional selectivity as well, and hence aids in the suppression of spurious radiations.

If the line is flat the input impedance will be essontially resistive and equal to the Z_{0} of the line. With coaxial cable, a cirenit of reasonable () can be obtained with practicable values of inductance and rapacitance connected in scries with the line's input terminals. Suitable circuits are given in ligg, 6-11 at A and B. The Q of the roupling eircuit often may be as low as 2 , without running into difficulty in getting adequate coupling to a tank (ircuit of proper design. larger values of () can be used and will result in increased ease of coupling, but as the Q is increased the frequency range over which the circuit will operate without readjustment beromes smaller. It is usually good practice, therefore, to use at couplingcircuit () just low enough to permit operation, over as much of a band as is normally used for a particular type of communication, without requiring retuning.

Caparitance values for a Q of 2 and line impectances of 52 and 75 ohms are given in the accompanying table. These are the maximum values that should be used. The inductance in the circuit should be adjusted to give resonance at the operating froquency. If the link coil used for a particular band does not have enough inductance to resonate, the additional inductance may be connceted in series as shown in Fig. 6-11B.

Characteristics

In practice, the amount of inductance in the circuit should be chosen so that, with somewhat loose coupling between L_{1} and the amplifier tank eoil, the amplifior plate current will increase When the variable capacitor, (${ }_{1}$, is tuned through the value of capacitance given by the table. The coupling between the two coils should then be increased until tho amplifior loads normally, without changing the setting of C_{1}. If the transmission line is flat over the entire frequency band under consideration, it should not be necessary to readjust C_{1} when changing frequency, if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some realjustment of (C_{1} may be needed to eompensate for changes in the input impedtune of the line. If the input impedanee variations are not large, C_{1} may be used as a loading control, no changes in the coupling betwern L_{1} and the tink coil being neerssary.

The degree of coupling between L_{1} and the amplifier tank roil will depend on the couplingcircuit (Q. With a () of 2 , the coupling should be tight - comparable with the coupling that is typical of "fixed-link" manufactured coils. With a swinging link it may be necessary to increase the Q of the coupling circuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

PI-SECTION OUTPUT TANK

A pi-section tank circuit may also be used in (coupling to an antenna or tramsmission line, ats shown in Fig. (6-12. The values of capacitance for ('1 and ('2, and inductance for L_{1} for any values of tulx load rexistaner and output boad revistance may low calculated lyy the following procedure:
$R_{1}=$ Plate load resistance.
$R_{2}=$ Output load resistance (resonant or matched antemna system - nonreactive).
$R \mathrm{x}=$ Imaginary common resistance (used only for calculation purposes).
$Q_{1}=\operatorname{Tank} Q$.
$Q_{2}=$ Output-section ((not significant here except for (alculation purposes).
$X_{\text {Cl }}=$ Reactance of C_{1} in ohms.
$X_{1,1}=$ Reactance of $L_{1}\left(=X_{\text {LA }}+X_{\text {LB }}\right.$ for calculation purposes.).
$\lambda_{C_{2}}=$ Reactance of (2 in ohms.

Formulas

(1) $R_{1}=\frac{\text { I'late rolts } \times 5010)}{\text { I'lute ma. }}$
(2) $Q_{1}=$ Vialues betwen 10 and 20 should be used.
(3) $X_{1-A}=\frac{l_{1}}{Q_{1}}$
(4) $\Gamma_{C_{1}}=\frac{R_{1}}{Q_{1}}$
(5) $R_{\mathrm{x}}=\frac{R_{1}}{Q_{1}^{2}+1}$
(b) $Q_{2}=\sqrt{\frac{R_{2}}{R_{\mathrm{X}}}-1}$
(7) $X_{\mathrm{L} 13}=Q_{2} \times R_{\mathrm{X}}$
(8) $X_{L 1}=X_{L A}+X_{L 13}$
(9) $X_{\mathrm{C}_{2}}=\frac{R_{2}}{Q_{2}}$
(10) $C_{1} \mu \mu \mathrm{f} .=\frac{159,(000}{\left(f_{\mathrm{Mc}}\right)\left(X_{\mathrm{Cl}}\right)}$
(11) $L_{1} \mu \mathrm{~h}_{1}=\frac{0.159 \mathrm{~S}_{\mathrm{L}_{1}}}{f_{\mathrm{Mc}} .}$
(12) $C_{2} \mu \mu f .=\frac{159,0010}{\left(f \mathrm{M}_{\mathrm{c}}\right)\left(\mathrm{Nc}_{2}\right)}$

Example:

An amplifier tube is to be operated at 1000 volts, 200 ma. 1 t is to work into a matched antenna system fed with s0-ohtn coax cable. I tank Q of 15 is chusen.
(1) $R_{1}=\frac{1000 \times .000}{200}=2,500$ ohsus.
(2) $Q_{1}=15$, as chosen.
(3) $X_{\text {I. }}=\frac{2500}{15}=167$ ohms.
(4) $X \mathrm{C}_{1}=\frac{2500}{15}=167$ ohms.
(5) $R_{\mathrm{x}}=\frac{2500}{15^{2}+1}=\frac{2500}{220}=11$ ohms.
(ii) $\dot{Q}_{2}=\sqrt{\left(\begin{array}{l}0 \\ 11\end{array}-1\right.}=\sqrt{1, i \pi-1}=\sqrt{3, \% \%}=1.89$
(7) $\Lambda_{1,13}=1.80 \times 11=20.1$ ohtms.
(8) $\Sigma_{1.1}=167+20.4=187.4$ oh111s.
9) $\mathrm{Xc} 2=\frac{.00}{1.8!}=26.4$ ohms.
(10) $C_{1} \mu \mu \mathrm{f} .=\frac{159,000}{3.5 \times 167}=270 \mu \mu \mathrm{f}$. for 3.5 Mc .
(11) $I_{11} \mu \mathrm{~h} .=\frac{0.159 \times 187.4}{3.5}=8.5 \mu \mathrm{~h}$. for 3.5 Mc .
(12) $C_{2} \mu \mu \mathrm{f} .=\frac{159,000}{3.5 \times 29.4}=1720 \mu \mu \mathrm{f}$. for 3.5 Mc .

Fig. 6-12 - I'i-section output tank circuit.
C_{1} - Input caparitor. See text or Fiz. 6.13 for react. ance. Voltage rating should be equal to d.c. plate voltage for e.w.; douhle this value for plate modulation.
C.2-Output capacitor. Sec text or Fig. 6-15 for react ance. See text for voltage rating.
C:3- Ileater bypass - $0.001-\mu \mathrm{f}$. dish ceramic.
(:4 - Screen bypass. See Fï. 6-10.
C5-I'late loypass, See Fig. 6.10.
(. - - Ilate bloching capacitor - $0.001 \cdot \mu$ f. disk ceramic or mica. Voltage rating same as C_{1}.
L_{1} - See text or Fig, $6-11$ for reactance.
RFCi - See later section on r.f. chokes.
IRFCiz - $2.5-m h$. receiving type (essential to reduce peak voltage across both input and output capacitors).

For the higher-frequeney bands under the same conditions of tule load resistance, tank () and output load resistance. divide the values obtained in (10), (11) and (12) ats follows:

7 Mc., divide by 2; 14 Me., divide by $4 ; 21 \mathrm{Mc}$., divide loy $6 ; 28$ Me., divide by 8 . For 1.75 Me , multiply by 2.

Vialues of reactance for $\mathrm{C}_{1}, \mathrm{~L}_{1}$ and C_{2} mas be taken directly from the charts of Figs. 6-1:3, ii-14 and 6-15 if the output load resistance is 52 or 72 ohms. It should be borne in mind that these values apply only where the output load is resistive, i.e., where the intenna and line have been matched.

Output-Capacitor Ratings

The voltage rating of the output eapacitor will depend upon the s.w.r. If the load is resistive, receiving-type air capacitors should be adequate for amplifier input powers up to 1 kw . with plate modulation when feeding 52 - or 72 -ohm loads. In obtaining the larger capacitances required for the lower frequencies, it is common practice to switch fixed caparitors in parablel with the variable air capacitor. While the voltage

PI-NETWORK DESIGN CHARTS FOR FEED. ING 52- OR 72-OHM COAXIAL TRANSMISSION LINES

Fig, 6.13- Reactance of input capacitor, C_{1}, as a function of tube load resistance, R_{1}, for pi networks.

Fig. 6.1.4- Reactance of tank coil, L_{1}, as a function of load resistance. R_{1}, for pi networks.

Fig. 6.15- Reactance of loading capacitor, C_{2}, as a function of tube load resistance, K_{1}, for pi networks.
rating of a micat or ceramic eapheitor maty not the exereded in a particular cased, capacions of these types are limited in curronterarrying capacity. The type of caparitor to be seloceted depends upon the frequenery as well as the amplifier power. Postage-stamp silver-mica capacitors should be alequate for amplitioer inputs ower the range from about 70 watts at 28 Mc. to $4(N)$ watts at 14 Mc . and lower. The larger mica capacitors (CNT-45 case) having voltage ratings of 1200 and 2500 volts are usually satisfactory for inputs varying from athout 350 watte at 28 Mr . to 1 kw , at 14 Mr . and lower. Because of these emrent limitations, particularly at the higher freguencies, it is advisable to use as large an air capacitor as prace ticable, using the micas only at the lower frequencies. Broadeast-receiver replacement-type caparitors can be obtained very reasonably. They are available in triple units totaling about $1100 \mu \mu \mathrm{f}$., or dual units totaling ahout $900 \mu \mu$. Their insulation should be sufficient for inputs of 500 watts or more. Air capacitors have the additional advantage that they are seldom permanently damaged he a voltage break-down.

Neutralizing with Pi Network

Screen-grid amplifier using a pi-net work output circuit may be neutralized by the system shown in Figs, $0-2513$ and C .

MULTIBAND TANK CIRCUITS

Multiband tank circuits provide a convenient means of covering several hands without the need for changing eoils. Tuners of this type consist essentially of two tank circuits, tuned simultancously: with a single control. In a tuner designed to cover 80 through 10 meters, each circuit has a sufficiently large eapacitance variation to assure an approximately 2-to-1 frequensy range. Thus, one cireuit is designed so that it covers 3.5 through 7.3 Me., while the other covers $1+$ through 29.7 Me.

A single-ended, or unbalanced, circuit of this trpe is shown in Fig. 6-16A. In principle, the reactance of the high-frequeney coil, L_{2}, is small enough at the lower frequencies so that it can the largely neglected, and C_{1} and C_{2} ars in paralled across L_{1}. Then the circuit for low frequencies beromes that shown in Fig. 6-16ibs. At the high frequeneides the reatetmer of L_{1} is high, so that it may be considered simply as a choke shunting C_{1}. The high-frequency circuit is essuntially that of Fig. $6-16 \mathrm{C}, L_{2}$ being tuned by ('1 and (${ }_{2}$ in series.

In practice, the effect of one circuit on the other camot be neglected entirely. L_{2} tends to increase the effertive capacitance of C_{2}, while L_{1} tends to decrease the effective caparitance of C_{1}. This effert, however, is relatively small. Each circuit must cover somewhat more than a 2-to-1 frequency range to permit staggering the two ranges sufficiently to avoid simultaneous responses to a frequeney in the low-frequeney range, and one of its harmonies lying in the range of the high-frequency circuit.

Fis. 6.16 - Inltiband tuner circuits, In the unhalanced circuit of A, C_{i} and C_{2} are sections of a single split. stator capacitor. In the balanced circuit of 1 , the two split-stator capacitors are sanged to a single control with an insulated shaft coupling between the two. In 1). the two seetions of L_{2} are wound on the same form, with the inner ends connected to C_{2}, In A. each section of the capacitor should have a oltage rating the same as Fig. (0.3.3. In I), (it should have a rating the same as Fig. 6-3.311 (or Fig. 6-34F if the feed system corresponde). (2_{2} may have the rating of Fig. 6-34E so long as the rotor is not grounded or hypassed to ground.

In any circuit covering it frequency range as great as 2 to 1 by capareitance alone, the circuit Q must vary rather widely. If the circuit is designed for a Q of 12 at 80 , the Q will be 6 at 40 , 24 at 20,18 at 15 , and 12 at 10 meters. The inrevase in tank current ats a result of the increase in () toward the low-frequency end of the highfrequency range may make it necessary to design the high-frequeney coil with care to minimize loss in this portion of the tuning range. It is

generally found desirable to provide separate output coupling coils for each circuit.

Fig. 6-16I) shows a similar tank for balanced circuits. The same principles apply.

Series or parallel feed may be used with either balanced or unbalanced circuits. In the balanced circuit of Fig. 6-16D, the series feed point would be at the center of L_{1}, with an r.f. choke in series.
(For further discussion sce (SST, July, 1954.)

R.F. Amplifier-Tube Operating Conditions

In addition to promer tank and output-roupling circuits discussed in the preceding sections, an r.f, amplifier must be provided with suitable clectrode voltages and an r.f. driving or excitation voltage (ser varuum-tule chapter).

All r. f. :mplifier tuhes require a voltage to operate the filament or heater (ate is usually permissible), and a positive d.e. voltage Inetween the plate and filament or cathode (plate voltage). Most tubes also require a negative d.e. voltage (biasing voltage) between control grid ((irid No. 1) and filament or wathode. vereen-grid tubes require in addition a positive voltage (serreen voltage or (irid No. 2 voltage) between sereen and filament or cathode.

Biasing and plate voltages may be fed to the tube either in series with or in parallel with the associated r.f. tank rircuit as diseussed in the chapter on electrical laws and circuits.

It is important to remember that true plate. screen or biasing voltage is the voltage between the particular electrode and filament or cathode. Only when the cathode is directly grounded to the chassis maty the electrode-to-chassis voltage be takell as the true voltage.

The required r.f. driving voltage is applied between grid and cathode.

Power Input and Plate Dissipation

Ilate power input is the dee, power input to the plate circuit (d.e. plate voltage \times d.er plate current. Screen power input likewise is the d.e. sureen voltage X the die, sereen current.

Plate dissipation is the difiereme botwern the r.f. power delivered by the tube to its losteded plate tank circuit and the dee plate power input. The sereref, on the other hand, does not deliver any output power, and therefore its dissipation is the same as the sereen power input.

TRANSMITTING-TUBE RATINGS

Tube manufacturcrs specify the maximum values that should be applied to the tubes they produce. They also publish sets of typieal operating values that should result in grod efficieney and normal tube life.
Maximum values for all of the most popular transmitting tubes will be found in the tables of transmitting tubes in the last chapter. Also included are as many sets of typieal operating values as space permits. However, it is recommended that the amateur serure a transmittingtube manual from the manufacturer of the tube or tubes he plans to use.

CCS and ICAS Ratings

The sime transmitting tube may have different ratings depending upon the manner in which the tube is to be operated, and the service in which it is to be used. These different ratings are based primarily upon the heat that the tube can safely dissipate. Some types of operation, such as with grid or sercen modulation, are less efficient than others, meaning that the tube must dissipate more heat. Other types of operation, such as e.w, or single-side-bath phone are intermittent in nature, resulting in less average heating than in other modes where there is a continuous power input to the tube during transmissions. There are also different ratings for tubes used in transmitters that are in almost constant use (CCS (ontinuous Commererial serviere), and for tubes that are to be used in transmitters that average only a few hours of daly operation (ICASLutermittent (Commereial and Amateur Service). The latter are the ratings used by amateurs who wish to obtain maximum output with reasonable tube life.

Maximum Ratings

Maximum ratings, where they differ from the values given under typical operating values, are not normatly of significance to the amateur exerpt in special applieations. No single maximum value should be used unless all other ratings can simultaneously be held within the maximum values. As an example, a tube may have a maximum plate-voltage rating of 2000 , a maximum platereurrent rating of 300 mat., and a maximum phate-power-input rating of 400 watts. Therefore, if the maximum plate voltage of 2000 is used, the phate current should be limited to 200 ma. (instead of 300 ma .) to stay within the maximum power-input rating of 400 watts.

SOURCES Of ELECTRODE VOLTAGES

Filament or Heater Voltage

The filament voltage for the indirectly-heated cathode-type tubes found in low-power classifications mas vary 10 per cent above or below rating without seriously reducing the life of the tube. But the voltage of the higher-power fila-ment-type tubes should be held elosely between the rated voltage as a minimum and $\overline{5}$ per cont above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when phate power is applied.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. If the overload has not heen too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.

Plate Voltage

D.e. plate voltage for the operation of r.f. amplifiers is most often obtained from a trans-former-rectifier-filter system (see power-supply chapter) designed to deliver the required plate voltage at the required current. However, batteries or other d.e.-generating devices are sometimes used in certain types of operation (see portable-mobile chapter).

Bias and Tube Protection

Several methods of obtaining bias are shown in Fig. 6-17. In A, bias is obtained hy the voltage drop arcoss a resistor in the grid d.e. return circuit when rectified grid current flows. The proper value of resistance maty be determined by dividing the required biasing voltage be the dic. grid current at which the tule will be operated. Then, so long as the r.f. driving voltage is adjusted so that the d.e grid current is the recommended value, the biasing voltage will be the proper value. The tube is hiased only when exritation is applied, sinee the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the hias falls to zoro. At zero bias most tubes draw power far in excess of the plate-dissipation rating. So it is
advisable to make provision for protecting the tube when excitation fails by aecident, or by intent as it does when a preecding stage in a c.w. transmittor is keved.

If the maximum c.w. ratings shown in the tube tables are to be used, the input should be cut to zoro when the key is open. Aside from this, it is not necessary that plate current be cut off completely but only to the point where the rated dissipation is not exceeded. In this case platemodulated phone ratings should be used for c.w. operation, however.
With triodes this protection can be supplied by obtaining all hias from a source of fixed voltage, as shown in Fig. (j-17B. It is preferable, however, to use only sufficient fixed bias to proteet the tube and obtain the balance needed for operating bits from a grid leak, as in C. The gridleak resistance is calculated as above, exeept that the fixed voltage is subtracted first.

Fixed hias may be obtained from dry batteries or from a power pack (see power-supply chapter). If dry hatteries are used, they should be checked periodically, since even though they may show normal voltage, they eventually develop a high internal resistance. Grid-eurrent flow through this battery resistance may increase the bias considerably above that anticipated. The life of batteries in bias service will be approximately the same as though they were subjert to a drain equal to the grid eurrent, despite the fact that the grid-eurrent flow is in such a direction as to charge the battery, rather than to diseharge it.

In Fig. 6-17F, bias is obtained from the voltage drop across a resistor in the cathode (or filament (enter-tap) lead. Protertive bias is obtained by the voltage drop across R_{5} as a result of plate (and sereen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cut-off protective bias camot the ohtained. When exeitation is applied, plate (and sereen) curvent inereases and the grid current also contributes to the drop across R_{5}, thereby increasing the bias to the operating value. Since the voltage between plate and cathode is reduced by the amount of the voltage drop a across R_{5}, the over-all supply voltage must be the sum of the plate and operating-bias voltagos. For this reason, the use of cathode bias usually is limited to low-voltage tubes when the extra voltage is not diffieult to ohtain.

The resistance of the cathode biawing resistor R_{5} should be adjusted to the value which will give the correct operating bias voltage with rated grid, plate and screen eurrents flowing with the amplifior loaded to rated imput. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time reguired to remove plate woltage. A disadvantage of this biasing system is that the eathode r.f. connertion to ground depends upon a by-pass caparitor. From the consideration of v.h.f. harmonies and stat bility with high-pervenner tubes, it is preferable to natke the rathode-to-ground impedance as close to zero as possible.

Fig. 6.17 - Various systems for ohtaining protective and operating bias for r.f. amplifiers. A - Grid-leak. B - Battery. C - Combination lattery and grid leak, I) - Crid leak and adjusted-voltage bias pack. E. - Combination grid leak and voltage-regulated pack. F - Cathode bias.

Screen Voltage

For c.w. operation, and under certain conditions of phone operation (see amplitude-modulat tion chapter), the screen may be operated from a power supply of the same type used for plate supply, except that voltage and current ratings should be appropriate for screen requirements. The screen may also be operated through a series resistor or voltage-divider (see powersupply chapter) from a source of higher voltage, such as the plate-voltage supply, thus making a scparate supply for the screen unnecessary, Certain precautions are necessary, depending upon the method used.

It should be kept in mind that screen current varies widely with both excitation and loading. If the sereen is operated from a fixed-voltage source, the tube should never be operated without plate voltage and load, otherwise the screen may be damaged within a short time. Supplying the screen through a series dropping resistor from a higher-voltage souree, such as the plate supply, affords a measure of protection, since the resistor causes the sereen voltage to drop as the current increases, thereby limiting the power drawn by the screen. However, with a resistor, the screen voltage may vary considerably with excitation, making it necessary to check the voltage at the screen terminal under actual operating conditions to make sure that the screen voltage is normal. Reducing excitation will cause the screen current to drop, increasing the voltage;
increasing excitation will have the opposite effect. These changes are in addition to those caused by changes in bias and plate loading, so if a sereen-grid tube is operated from a series resistor or a voltage divider, its voltage should be checked as one of the final adjustments after excitation and loading have been set.

An approximate value of resistance for the sereen-voltage dropping resistor may be obtained hy dividing the voltage drop reguired from the supply voltage (difference between the supply voltage and rated screen voltage) by the rated sereen current in decimal parts of an ampere. Some further adjustment may be necessary, as mentioned above, so an adjustable resistor with a total resistance above that calculated should be provided.

Protecting Screen-Grid Tubes

Screen-grid tubes cannot be cut off with bias unless the sereen is operated from a fixed-voltage supply. In this ease the cut-off hias is approximately the screen voltage divided by the amplification factor of the screen. This figure is not always shown in tube-data sheets, hut cut-off voltage may be determined from an inspection of tube curves, or by experiment.
When the screen is supplied from a series dropping resistor, the tube can be protected by the use of a screen-clamper tube, as shown in Fig. 6-18. The grid-leak bias of the amplifier tube with excitation is applied also to the grid of the

Fig. 6. 18 - Screen clamper circuit for protecting screen. grid power tubes. The VR tube is neceled only for complete eut-off.

$$
C_{1}-0.001-\mu \text { f. disk ceramic. } R_{1}-100 \text { ohens. }
$$

clamper tube. This is usually sufficient to cut off the elamper tube. However, when excitation is removed, the clamper-tube biats falls to zero and it draws enough current through the sercen dropping resistor usually to limit the input to the amplifier to a safe value. If complete screenvoltage cut-off is desired, a VR tube may be inserted in the sereen lead as shown. The VRtube voltage rating should be high enough so that it will extinguish when exeitation to the amplifier is removed.

- FEEDING EXCITATION TO THE GRID

The required r.f. driving voltage is supplied by an oscillator generating a voltage at the desired frequency, either directly or through intermediate amplifiers or frequency multipliers.

As explained in the chapter on vacuum-tube fundamentals, the grid of an amplifier operating under Class C conditions must have an exciting voltage whose peak value exceeds the negative hiasing voltage over a portion of the excitation cycle. During this portion of the cycle, current will flow in the grid-cathode circuit as it does in a diode circuit when the plate of the diode is positive in respect to the cathode. This requires that the r.f. driver supply power. The power required to develop the required peak driving voltage arross the grid-cathode impedance of the amplifier is the r.f. driving power.

The tube tables give approximate figures for the grid driving power required for each tube under various operating conditions. These figures, however, do not include circuit losses. In general, the driver stage for any Class C anplifirr should be capable of supplying at least three times the driving power shown for typical operating conditions at frequencies up to 30 Me . and from three to ten times at higher frequencies.
Nince the d.c. grid current relative to the biasing voltage is related to the peak driving voltage, the d.e. grid current is commonly used as a convenient indicator of driving conditions. A driver adjustment that results in rated d.c.
grid current when the dee bias is at its rated value, indicates proper expitation to the amplifier when it is fully loaded.

In coupling the grid input eircuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifier grid excitation is obtained without exceeding the plate-input ratings of the diriver tube.

Driving Impedance

The grid-current flow that results when the grid is driven positive in resperet to the cathode over a portion of the excitation cevele represents an atverage resistance across which the exciting voltage must be developed by the driver. In other words, this is the load resistance into which the driver plate circuit must be coupled. The approximate grid imput resistance is given by:

$$
\begin{aligned}
& \text { Input impedance (ohms) } \\
& =\frac{\text { driving power }(\text { watts })}{\text { d.c. gril current } \text { (ma.) })^{2}} \times 622 \times 10^{3} .
\end{aligned}
$$

For normal operation, the values of driving power and grid current may be taken from the tube tathles.

Since the grid input resistance is a matter of a few thousand ohms, an impedance step-down is necessary if the grid is to be fed from a lowimpedance transmission line. This can be done by the use of a tank as an impedance-transforming device in the grid circuit of the amplifier as shown in Fig. 6-19. This coupling swstem may be considered either as simply a means of obtaining mutual inductance between the two tank coils, or as a low-impedance transmission line. If the line is longer than a small fraction of a wave length, and if a s.w.r. bridge is available, the line is more easily handled by adjusting it as a matched transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed earlier have been observed in connection with the driver plate circuit. So far as the amplifier grid circuit is concerned, the controlling factors are the Q of the tuned grid circuit, $L_{2} \mathrm{C}_{2}$, (see Fig. (6-20) the inductance of the coupling coil, L_{4}, and the degree of coupling between L_{2} and L_{4}. Variable coupling between the coils is convenient, but not strictly necessary if one or both of the other factors can be varied. An s.w.r. indicator (shown as "SWl" in the drawing) is essential. An indicator such as the "Micromatch" (a commercially available instrument) may be connected as shown and the adjustments made under actual operating conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respect to L_{2}, and adjust C_{2} for the lowest s.w.r. Then
change the coupling slightly and repeat. Continue until the s.w.r. is as low an possible; if the rircuit constants are in the right region it should not be difficult to get the s.w.r. down to I to J. The (Q of the tuned grid cireuit should be designed to be at least 10, and if it is not possible to get a very- low s.w.r. with such a grid circuit the probable reason is that L_{4} is too small. Maximum coupling, for a given degree of physiral couphing, will orecur when the induetanco of L_{1} is such that its reactance at the operating frequency is equal to the characteristir impedance of the link line. The reatanere ean be caldeulated as described in the chapter on ceretrical fundamentals if the inductance is known; the inductance can either be calculated from the formula in the same chapter or measured as described in the chapter on measurements.

Once the s.w.r. has been brought down to 1 to 1, the frequenty should be shifted over the band so that the variation in s.w.r. can be observed, without changing (2 or the coupling fetween L_{2} and L_{4}. If the s.w.r. rises rapidly on cither side of the original frequency the circuit can be made "flatter" by reducing the () of the tuned grid circuit. This may be done by deereasing C_{2} and correspondingly increasing L_{2} to matatain resomance. and bis tightening the coupling betwern $/ L_{2}$ and L_{4}, going through the same adjustment process :gatin. It is possible to set up the system so that the s.w.r. will not execed 1.5 to 1 over, for example, the entire 7 -Me, band and propertionately on other bands. L'nder these rireumstanes a single setting will serve for work anywhere in the band, with essentially constant power transfer from the line to the power-amplifier grids.

If the coupling betweon L_{2} and L_{4} is not addjustable the same result may be secured by varying the L / C ratio of the tuned grid circuit - that is, by varying its Q. If any difficulty is encountered it can be overome ber changing the number of turns in L_{4} until a match is secured. The two

Fig. 6.20 - Chart showing required grid tank capacitance for a Q of 12. To use, divide the driving power in watts by the square of the d.e. grid current in milliamperes and proceed as deseribed under Fig. 6.9. Driving power and grid current may le taken from the tube tables. When a split-stator capacitor is used in a latanced grid cirenit, the capacitance of each sertion may be hatf that show in by the chart.
coils should be tightly coupled.
When a resistance-bridge type s.w.r. indieator (see measuring-equipment chapter) is used it is not possible to put the full power through the line when making adjustments. In such case the operating conditions in the amplifier grid circuit ran be simulated by using a carbon resistor ($1 / 2$ or 1 watt size) of the same value as the calculated amplifier grid impedance, connerted as indicated by the arrows in Fig. 6-19. In this case the amplifier tube must be operated "cold" without filament or heater power. The adjustment process is the same as described above, but with the driver power reduced to a value suitable for operating the sw.r. bridge.

When the grid coupling systern has been adjusted so) that the s.w.r. is close to 1 to 1 over the desired froquency range, it is certain that the power put into the link line will be delivered to the grid circuit. Coupling will be facilitated if the line is tuned as described under the earlier section on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without re－ gard to transmission－line effects，the link line must not offer appreciable reactance at the operating frequence．Any appreciable reactane will in effert reduce the coupling，making it im－ possible to transfer sufficient power from the driver to the amplifier grid cireuit．Comsial cables especially hatve considerable capatitance for event short lengths and it may be more desirable to use a spaced line，such as Twin－Lead，if the radiation can be toldrated．

The reactance of the line can be nullified only by making the link resonant．This maty require changing the number of turns in the link eoils， the length of the line，or the insartion of at tuning capacitance．Nince the s．w．r．on the link line maty be quite high，the line losses increase be－ cause of the greater current，the voltage increase may be sufficient to cause a break－ down in the insulation of the cable and the added tuned circuit makes adjustment more critical with relat－ tively small changes in frequency．

These troubles may not be encoun－ tered if the link line is kept very short for the highest frequence．A length of 5 feet or more may le tol－ crable at 3.5 Me．，but a length of a foot at 28 Mc ，may be enough to catuse serious effects on the function－ ing of the system．

Adjusting the coupling in such a system must necessarily be largely a matter of cut and try．If the line is short enough so as to have negligible reactance，the coupling betweren the two tank circuits will increase within limits by adding turns to the link coils，or ley coupling the link coils more tightly，if possible，to the tank coils．If it is impossible to change either of these，at variable capacitor of $300 \mu \mu \mathrm{f}$ ．mity be connerted in series with or in paralled with the link esil at the driver end of the line，de－ pernding upon which comertion is the most effective．

If roaxial line is used，the capacitor should be romere ted in series with the inner conductor．If the line is long enough to have appreciable reartanere， the variable rapacitor is used to resor nate the entire link cireuit．

As mentioned previously，the size of the link coils and the length of the line，as well as the size of the capari－ tor，will affeet the resonsut frequency and it may take an adjustment of all three before the eaparitor will show a pronounced effert on the coupling．

When the system has been made resonant，coupling may be adjusted by varying the link eapacitor．

Fig．6．21－Caparitive－obupled amplifiers．A－Simple capacitive conpling． 13 －Pisesetion coupling．
（i）－Driver plate tanh rapacitor－see tevt and Fig．（1－0）for ca－ pacitance，Fig．6． 33 for voltage rating．
C2－Coupling mparitor－ 50 to 1.50 a 2 f．mica，as neessary for desired coupling．Voltage rating sum of driver plate and amplifier hiasing voltages，plus affety factor．
（a－I）river plate ly－pass capacitor－ $0.001-\mu$ f．dish erramic or mica．Voltage rating same as plate voltage．
C_{4}－Grid bypass－（0．001－μ f．dish ceramic．
（is－Heater lypass－ $0 .(0) 1-\mu$ f．dish ceramic．
C 6 －I）river plate blocking capacitor－ $0.001-\mu f$ ．disk ceramic or mica．Voltage rating same as C_{2} ．
Cz－Visection input capacitor－see text referring to Fig．6．12 for capaeitance．Voltage ratillk－sere Fik．6．33．1．
（：s－Piescetion ontput caparitor－loko－μ f．miea．Voltage rating same as driver plate voltage plus safety fartor．
I_{1}－－Po rewonate at onerating frequency with C_{i} ．see I ．Chart in miscellaneous－data chapter and inductance formbla in electrical－laws chapter，or use ARRI．Iighning Calculator．
1_{2}－l＇i－section inductor－See ドig．6－lき．Ipprox．same as L_{1} ．
KPC_{1}－Grid r．f．choke－ $2 . \bar{n}-\mathrm{mh}$ ．
$\mathrm{RFC} 2-1$ river pate r．f．choke－-2.5 mh ．
varied by altering the caparitance of the eoupling capacitor, (${ }_{2}$, but no impedance transforming is possible. The driver load impedanee is the sum of the amplifier grid resistance and the reactance of the coupling eapacitor in series, the coupling capacitor serving simply an a sories reator. Driver bad resistance increases with a deerease in the caparitance of the coupling eapacitor.

When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tank coil, but this is not recommended because it invariably causes an increase in v.h.f. harmonies and sometimes sets up a parasitic circuit.

No far as coupling is concerned, the Q of the circuit is of little significance. However, the other considerations discussed earlier in connection with tank-circuit Q should be observed.

Pi-Section Tank as Interstage Coupler

A pi-section tank circuit, as shown in lig. (i-2113, may be used as a coupling devier between sereen-grid amplifier stages. The cireuit is artually a capacitive coupling arrangement with the grid of the amplifier tapped down on the circuit be means of a capacitive divider. In contrast to the tapped-coil method mentioned previously, this system will be very effertive in reducing v.h.f. harmonies, because the output capacitor, C8, provides a direct eapacitive shunt for harmonics across the amplifier grid circuit.

To be most effertive in reducing v.h.f. harmonies. ('8 should be a mica rapacitor comnerted directly across the tube-socket terminals. Tapping down on the circuit in this manner also helps to stabilize the amplifier at the operating frequener berause of the grid-circuit loading provided be C.8. For the purposes both of stability and harmonic reduction, experience has shown that a value of $100 \mu \mu$ f. for (8 usually is sufficient. In gencral, C_{7} and L_{2} should have values approximating the capacitance and inductance used.in a conventional tank circuit. A reduction in the inductance of L_{2} results in an increase in coupling because C_{7} must be increased to retune the circuit to resonance. This rhanges the ratio of C_{8}^{\prime} to C_{8} and has the effere of moving the grid tap up on the rireuit. Since the coupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power capability of the driver stage. If suffiedent excitation cannot be olstained, it may be neerssary to raise the plate voltage of the driver, if this is permissible. Otherwise a larger driver tube may be required. As shown in Fig. 6-2113, paralled driver plate feed and amplifier grid feod are neressarts.

STABILIZING AMPLIFIERS

External Coupling

A straight amplifior operates with its input and output rifenits thund to the same frectuenes. Therefore, unkess the coupling between these two
circuits is brought to the necessary minimum, the amplifier will oscillate as a tuned-plate tuned-grid circuit. Care should be used in arranging components and wiring of the two cirenits so that there will be negligible opportunity for coupling external to the tuhe itself. Complete shielding between input and output circuits usually is required. All r.f. leads should be kept as short as possible and particular attention should be paid to the r.f. return paths from plate and grid tank circuits to cathode. In general, the best arrangement is one in which the cathode (or filament center tap) comnection to ground, and the plate tank circuit are on the same side of the chassis or other shielding. Then the "hot" lead from the grid tank (or driver plate tank) shouk be brought to the sorket through a hole in the shielding. Then when the grid tank mpacitor or bypass is grounded, a return path through the hole to cathode will be encouraged, since transmissionhine characteristies are simulated.

A check on external coupling between input and output circuits can be made with a sensitive indicating device, such as the one diagrammed in Fig. 6-22. The amplifier tube is removed from its socket and if the plate terminal is

Fig. 6.22 - Circuit of sensitive nentraliaing indicator. Stat is a 1 N 31 crystal detector, M/A a 10 -] direeterurremt milliammeter and (: a $0,001 \cdot \mu f$, mica hy-pass capacitor.
at the socket, it should be disconnerted. With the driver stage running and tuned to resonance, the indicator should be coupled to the output tank coil and the output tank rapateitor tuned for any indiation of r.f. feedthrough. Experimont with shiclding and rearrangement of parts will show whether the isolation can be improved.

Screen-Grid Neutralizing Circuits

The plate-grid capacitance of screen-grid tubes is reduced to a fraction of a micro-microfaral by the interposed grounded sereen. Nevertheless, the power sensitivity of these tubes is so great that only a very sumall amount of fred-back is necessary to start oscillation. To assure a stable amplifier, it is usually necessary to load the grid circuit, or to use a neutralizing circuit. A neutralizing circuit is one external to the tube that balances the voltage fed bark through the grid-plate capacitance, by another voltage of opposite phase.
lig. (i -23.1 shows how a screon-grid amplifier may be neutralized by the use of an induetive link line coupling the input and output tank direnits in proper phase. The two coils must be properly polarized. If the initial connection proves to be incorrect, connections to one of the link roils should be reversed. Neutralizing is adjusted be changing the distance between the link coils and the tank coils. In the case of ca-
pacitive coupling betwern stages, one of the link roils will be coupled to the plate tank coil of the driver stage.

A capacitive neutralizing system for screengrid tuhes is shown in Fig, $6-2313, C_{2}$ is the neutralizing capacitor. The capacitance should be chosen so that at some adjustment of $(2,2$,

The tube interelectrode (atpacetances (' ${ }^{\text {kp }}$, and ('in are given in the tube tables in the last chapter. The grid-rathode capacitance must include all strays directly across the tube capacitance, including the eapacitance of the tuning-capabitor stator to ground. This may amount to $\overline{5}$ to 20 $\mu \mu$. In the case of rapacitance coupling, as shown in Fig. 6-23C, the output capacitance of the driver tube must be added to the gridcathode capacitance of the amplifier in arriving at the value of C_{2}. If C_{2} works out to an impractically large or small value, Ci can be ehanged to compensate by using combinations of fixed mica capacitors in parallel.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplifier tube should be lighted and expitation from the preceding stage fed to the grid circuit. There should be no plate voltage applied to the amplifier.

The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output eireuit through the grid-plate capacitance of the tube. This is done by adjusting warefully, hit hy bit, the neatralizing capacitor or link coils until an r.f. indirator in the output circuit reads minimum.

The device shown in Fig, 6-22 makes a sensitive neutralizing indicator, The link should be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is loose enough at all times to prevent burning out the meter or the rectifier. The plate tank rapacitor should be roadjusted for maximum reading after each change in neutralizing.

A simple indicator is a flashlight bulb (the lower the power the more sonsitiye) comerted at the center of a turn or two of wire coupled to the tank coil at the low-potential peint. However, its sensitivity is poor compared with the milliam-moter-reetifier.

The gridecurrent meter may also be used as a noutralizing indicator. If the amplifier is not neutralized, there will be a large dip in grid current as the plate-tank tuning passes through resonance. This dip reduces as neutralization is appowhed until at exact neutralization all change in grid current should diswppear.

When neutralizing an amplifier of medium or high power, it may not be possible to bring the reading of the rectifier indicator down to zero, but a minimum point in the adjustment of the

Fig. 6-23 - Screen-grid nentralizing circuits. 1 - In. ductive neutralizing. 13 - $(:$ - Capacitive neutralizing.
C_{1} - (Brid by-pass capacitor - approx. 0.00l- ff. mica. Voltage rating same as hiasing voltage in B , same as driver plate voltage in 6:
C.2-Veutralizing rapacitor -approx. 2 to $10 \mu \mu$. -see text. Voltage rating same as amplifier plate voltage for c.w., twice this value for plate modulation.
I.1, I_{2} - Ventralizing link - usually y_{a} turn or two will be sufficient.
neutralizing control should be found where higher readings are obtained on cither side.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power rapability to spare. Lading by tapping the grid down on the grid tank coil (or the plate tank woil of the driver in the (ase of (aparitive coupling), of by resistor from grid to cathode is effertive in stabilizing an amplifier, but either devier may inerease v.h.f. harmonics. The best loading system is the use of a pi-section filter, as shown in Fig. 6-2113. This circuit places a rapacitanee directly hetween grid and rathode. This not only provides the desirable loading, but also a vory effective capacitive short for v.h.f. hatmonirs. A $1(0)-\mu \mu f$. mica capacitor for C's, wired diredty between tube terminals will usually provide sufficient loading to stabilize the amplifier.

V.H.F. Parasitic Oscillation

Parasitic oscillation in the v.h.f. range will take place in ahmost every r.f. power amplifier, To test for v.h.f. parasitic oscillation, the grid tank coil (or driver tank coil in the case of capacitive coupling) should be short-circuited with a clip lead. This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in identifying the parasitic. Any fixed bias should be replaced with a grid leak of 10,000 to 20,000 ohms. All load on the output of the amplifier should be disconnected. Plate and sereen voltages should be reduced to the point where the rated dissipation is not exceeded. If a Viriace is not available, voltage may be reduced by a 115 -volt lamp in series with the primary of the plate transformer.

With power applied only to the amplifier under test, a search should be made by adjusting the input capacitor to several settings, including minimum and maximum, and turning the plate capacitor through its range for each of the gridciparitor settings. Any grid current, or any dip or flicker in plate current at any point, indicates oscillation. This can be confirmed by an indi(ating absorption wave meter tuned to the frequency of the parasitie and held close to the plate lead of the tube.

The heavy lines of Pig. 6-2tA show the usual parasitic tank circuit, which resonates, in most cases, betweon 150 and 200 Me. For cach type of tetrode, there is a region, usually above the parasitic frequency, in which the tube will be selfneutralized. $13 y$ adding the right amount of inductance to the parasitic circuit, its resonant frequency can be brought down to the frequency at which the tube is solf-neutralized. However, the resonant frequeney should not le brought down so low that it falls close to 'T'V Chamel 6 (88 Mc .). Prom the consideration of TVI, the cireuit may be loaded down to a frequency not lower thatn 100 Mc . If the self-neutralizing frequency is below 100 Me ., the circuit should be loaded down to somewhere between 100 and 120 Me . with inductanere. Then the parasitic can be suppressed

 foading of parasitie cirmit. © - fuluctive coupling of loading resistance into parasitic circuit.
by loading with resistance, as shown in Fig. (6-24. A coil of 4 or 5 turns, $1 / 4$ inch in diameter, is a good starting size. With the tank capacitor turned to maximum eapacitance, the circuit should be checked with a g.d.o. to make sure the resonance is above 100 Mc . Then, with the shortest possible leads, a noninductive 100 -ohm l-watt resistor should be connected across the entire coil. The amplifier should be tuned up to its highest-frequency band and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be inereased until the resistor legins to feel warm after several minutes of operation, and the power input noted. This input should be eompared with the normal input and the pouer rating of the resistor inereased by this proportion;i.e., if the power is half normal, the wattage rating should be doubled. This increase is best made by connecting 1 -watt carbon resistors in parallel to give a resultant of about 100 ohms. As power input is increased, the parasitic may start up again, so powrer should be applied only momentarily until it is made certain that the parasitio is still suppressed. If the parasitic starts up again when voltage is raised, the tap must be moved to include more turns. So long as the parasitic is suppressed, the resistors will heat up only from the operatingfrequency current.

Since the resistor can be placed across only that portion of the parasitic circuit represented by L_{p}, the latter should form as large a portion of the circuit as possible. Therefore, the tank and bypass eapacitors should have the lowest possible induetance and the leads shown in heavy lines should be as short as possible and of the heaviest practical conductor. This will permit L_{p} to be of maximum size without tuning the rircuit below the $100-\mathrm{Mc}$. limit.

Another arrangement that has been used successfully is shown in Fig. ($6-24 \mathrm{C}$. A small turn or two is inserted in place of L_{p}, and this is coupled to a circuit tuned to the parasitie frequency and loaded with resistance. The heavy-line circuit should first be checked with a g.d.o. Then the loaded circuit should be tuned to the same frequeney and coupled in to the point where the parasitic ceases. The two coils can be wound on the same form and the coupling varied by sliding one of them. Slight retuning of the loaded circuit may be required after coupling. Start out with low power as before, until the parasitio is suppressed. Since the loaded cirenit in this case carries much less operating-frequency current, a single 100 -ohm 1 -watt resistor will often be suffirient and a $30-\mu \mu$ f. mica trimmer should serve as the tuning capacitor, C_{p}.

Low-Frequency Parasitic Oscillation

The sereoning of most transmitting sereen-grid tubers is sufficient to prevent low-frequener parasitic oscillation calused by resonant circuits set up) by r.f. chokes in grid and plate cireuits. Should this type of oscillation (usually between 1200 and 200 kc .) occur, sce section under triode amplifiers,

PARALLEL-TUBE AMPLIFIERS

The direnits for parallel-tube amplifiors are the same as for a single there, similar terminals of the tubes being connerted toget hers. The grid impedance of two tuber in patalled is hadf that of a simgle tube. This means that twied the grid tank raparitance shown in Fig. fi-20 should l_{re} ased for the stme (9 .
The plate load resistanee is halved wo that the plate tank caparitance for a single tube (lig. ($\mathrm{i}-10$) ahow should be doubled. The total gride current will be doubled, so to maintain the same grid bias, the grid-leak resistame should be half that used for a single tube. The reguired driving power is doubled. The capacitance of a neutralizing eapacitor, if used, should be doubled and the value of the suren dropping resistor should be cut in half.
In treating parasitic oscillation, it maty be necessary to use a choke in eath plate lead, rather than one in the eommon lead. Input and output eapacitances are doubled, which maty be a factor in obtaining efficient operation at higher frequencies.

PUSH-PULL AMPLIFIERS

(incouts for push-pull amplifiers aro shown in Fig. (6-2\%. With this arrangement both gridinput impedanere and optimum plate lond rosistance are doubled. For the same (Q, each sertion of the split-stator tank capacitor should have hatf the capacitance for a single tulne drawing the same total plate corrent and having the same grid impedance shown hy figs, (i-9 and (i-20. This means that the total tank-rireuit cat pacitaner is one-quarter that for a single tube and that the induedanere of the tank coils must he quadrupled to resonate at the same frequener. Other values remain the same, exerept that the total grid. soreen and plate currents will be twiee the values for a single tube and the stage will reguire twite the driving power.

In Fig, (i-25.A, inductive link coupling is shown. The neutralizing eireuit is shown in heave lines and may not be necersarys. Fig. (i-253 shows eat paritive coupling to the grids. The driver in this case must be provided with a balaned output rercuit. To maintain balanced excitation. it may be neressary to place ('13, shown in dashed lines.

Fin. 6-25- J'uah-pull sereenkrid amplifier rerenits,

A - Induetive-link compling. B - Capacitive compling. C, - Splitotator prial tanh cat pracitar - seer text and riig. 6-20 for mapacitance, lize. 6-3.3 for whtaker ratine.
Co-Split-atator plate tank capacitur sectext and Fig. 6 - 10 for rat paritance. Fiz. 6-33 fer voltager ratime.
C:3-Grid be-pass caparitur 0.001 - μ f, dish reramic.

Ca, C: Filament londas-0.0.001- - f. lisk reramio.
 $0 .(0) 1-\mu \mathrm{f}$. disk ceramic or mica. Soltage rat ing depurnds ma masimum woltake to which sicrern maty war. dependtink on how it is supplied. Soltake rating eronal to plate voltake will ber safe in any rase.

C: P- Plate hypass- $0.001-\mu \mathrm{f}$. disk ceramie or mica Soltage rating same as plate whage for c.n.: twice this salue for plate modulation.
Co- Driver plate tank capacitor-sere section on simple raparitive coupling with single tube, F'or same O, earh seertion should have half the capactance shown in Fig. (6)10. Woltage rating of cach section should be twice d.e. plate voltake of driser.
 mica. Volake rating wise driver platte whltake.
Cal2-0,001-mf. disk erramic or mica, Vollage rating sathe as piate valake.
Ci3-sie text.
 chart in miserellaneons-data chapter and intductanere formula in electrical-laws chapter.
1.3, D .4 - Compling linh:- rractianer equal to feed-line impedanere, sere reartaner ehart aml induetane formulat in ele triat-law. chamer.
1.s, I.i- Xentratizing linh:- usuatly a turn or two will be sullicient.

diPts 2.j-mbth. r.f. chohe to earrs mate current.

Fig. 6.26 - Connections for tuhes in push-pull when tilament types are used. The by-pass capacitors, C_{1}, should le 0.001-pf. disk ceramio, one placed close to each fitament terminal. T_{1} is the filament transformer.
across the lower portion of the circuit to balance the driver-tube output capacitance arross the upper half. The remainder of circuit 13 is the satme as A. If a neutralizing link is needed, it should be coupled at the ernter of the driver plate tank coil.
It is advisable to use separate screen and heater ber-pass capacitors, waperially when TVI is a fator. Fig. 6 - 26 shows equivalent "cathode" comertions to be substituted when filament-type tubes are used. Also, individual v.h.f. parasitie chokes will ine meressary.

Balance in Push-Pull Amplifiers

Proper push-pull oquation requires an accurate balaner betwern the two sides of the circuit. Otherwise the dissipation will not be distributed evenly letwen the two tubes, one being overloaded if an attempt is made to operate the amplifier at full rating. l nbatance is indicated when the grid and/or plate e currents are not equad and, if serious, is arompanied les a visible difference in the color of the tube phates. If interchanging the tubes does not change the unbalance, the eireuit is not symmetrical elee trically.

If the eoil center-tap in split-stator tank rircuits issufliciontly woll-isolated fromground, the balane will depend upon the arearacy of eapacitive balanee in the tank raparitor, the length of lads comnerting the tubes to the apacitor (in(rluding the retirn load from rotor to filament) and the settings of the neutralizing capacitors. Unbalanere in the plate circuit will seldom influme the balaner in the grid circuit, but the opposite maty not be true. Langthening one or the other of the leads betwern the tubers and the tank "aparitor will alter the babanee, partieularly in the plate cirenit. In extremes it maty be neressary to plare a trimmer arross one section of thesplit-stator canaritor. Smathdiferenere often maty be taken care of low a readjustment of the aneutralizing caparitors, possibly to slightly unopual settings. Otherwise, the neutralizing citpacitors arr adjusted together, keeping the eapamitarmes as equal as possible at each step.

TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig, 6-28. Neglecting references to the screen, all of the foregoing information applies equally well to triodes. All triode straight amplifiers must be neutralized, as Fig. 6-28 indieates. From the tube tables, it will be seen that triodes require considerably more driving power than sereengrid tubes. However, ther also have less power sensitivity, so that groater fordback can be tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitstator tank capacitors combine with the r.f. chokes to form a low-frequeney parasitic circuit, unless the amplifier circuit is arranged to prevent it. In the circuit of Fig. 6-2813, the amplifier grid is sories fod and the driver plate is parallel fed. For low frequencies, the r.f. choke in the driver plate circuit is shorted to ground through the tank (onil. In liges. 6-28(and 1), a resistor is substituted for the grid r.f. choke. This resistance should be at least 100 ohms. If any grid-leak resistance is used for biasing, it should be substituted for the 100 -ohm resistor.

Triode Amplifiers with Pi-Network Output

linetwork output tanks, designed as desrribed carlier for sereen-grid tubes, may also be used with triodes. Howerer, in this rase, a balanced input circuit must be provided for neutralizing. lig. $6-27 \mathrm{~A}$ shows the cireuit when inductive-link input eoupling is used, while 13 shows the circuit to be used when the :mplifier

Fig. 6.27 - When a pi-network output circuit is used with a triode, a halanced prid circuit must be provided for neutralizing. A - Inductive-link input. B Capacitive input conpling.

Fig. 6-28-Triode amplifiet circuits. A - Link coupling, single tuhe. B - Capacitive coupling, single tube. C- link eoupling, push-pull. I) - Capacitive coupling, push-pull, Aside from the neutralizing cirenit,, which are mandatory with triodes, the circuits are the same as for sereen-grid tuhes, and should have the same values throughout. The neutralizing capacitor, Ci, should have a capacitance somewhat kreater than the grid-plate capacitance of the tube. Voltage rating should be wice the d.c. plate voltage for c .w., or four times for plate modulation, plus safety factor. The resistance R_{1} should be at least 100 olmen and it may consist of part or preferably all of the grid leak, For other component values, see similar screen-grid diagrams,
is coupled capacitively to the driver. Pi-network rircuits camot be used in both input and output circuits, since no means is provided for meutralizing.

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be ohtained from an amplifier stage if the output circuit is tuned to a harmonic of the exeiting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc., output at 7 Mc., 10.5 Me., 14 Me., cte., may be obtained by tuning the plate tank circuit to one of these frequencios. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplier efficiency.

Efficiency in a single- or parallel-tube multiplier comparable with the eflieiency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly inereasing the plate voltage. A practical linit
as to cffiriency and output within nomal tube ratings is reached when the muttiptier is operated at maximum permissible plate voltage and maximum permissible grid courrent. The plate current should be reduced as necessary to limit the dissipation to the rated value by increasing the bias. High efliciency in multipliers is not often required in practice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a lower-frequency ervstal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, hecause of the rapid derline in practicably obtainable efficioney as the multiplication factor is increased. sereen-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easier to drive properly than triondes.

Since the input and output circuits are not funed close to the same freguency, neutralization usually will not be required. Instances may be encountered with tubes of high transconductance, however, when a doubter will oscillate in t.g.t.p. fashion, requiring noutralization. The link neutralizing system of Fig. $6-25.1$ is convenient in such a contingency.

Fig. 6-29 - Circuit of a push-push frequency multiplier for even harmonics.
$C_{1} \mathrm{I}_{1}$ and $\mathrm{C}_{2} \mathrm{l}_{2}$ - See text.
(:3 - I'late loybass - $0.001 \cdot \mu \mathrm{f}$. disk ceramic or mica. Voltage rating efrial to plate voltage plus safety factor.
HFC - $2.5-\mathrm{mh}$, r.f. choke.

Push-Push Multipliers

A two-tube circuit which works well at even harmonies, but not at the fundamental or odd harmonics, is shown in Fig. 6-29). It is known as the push-push circuit. The grids are connected in push-pull while the plates are connected in parallel. The efficiency of a doubler using this circuit may approach that of a straight amplifier, berause there is a plate-corrent pulse for eath cyrle of the output frequenc:

This arrangement has an advantage in some applications. If the heater of one tube is turned off, its grid-plate capaceitance, being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequeney with two tubes as desired.

The grid tank circuit is tuned to the frequency of the driving stage and should have the same constants as the grid tank circuit of a push-pull amplifier (sere Fig. (6-25). The plate tank eircuit is tuned to an even multiple of the exriting frequency, and should have the same values as a straight amplifier for the harmonic frequency (sec Fig. (F -10) , bearing in mind that the total plate current of both tubes determines the C to be used.

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at rither even or odd multiples of the exciting frequener. A push-pull multiplier does not work satisfactorily at even multiples because even harmonics are largely canceled in the output. On the other hand, amplifiers of this type work well as triplers or at other odd harmonies. The operating requirements are similar to those for single-tube multipliers, the plate tank circuit being tuned, of course, to the desired odd harmonic frecuenes.

METERING

Fig, 6-30 shows how a voltmeter and milliammeter should be comnereded to read various vollages and rurrents. Voltmoters are soldom instabled permanenty; since their principal use is in preliminary eherking. Also, milliammetors are not normally installed permanontly in ath of the positions shown. Those most often used are the ones reading grid current and plate current, or grid rurrent and cathode current.

Milliammeters come in various current ranges. Current values to be expeeted can be taken from the tube tables and the meter ranges selected atecordingly. To take care of normal overloads and pointer swing, a meter having a current range of about twice the normal current to be expected should be selected.

Meter Installation

Grid-current meters comerted as shown in Fig. ($6-30$ and meters connected in the eathode rireuit ned no sperial preatutions in mounting on the transmitter panel so far as safety is concerned. However, milliammeters having zeroadjusting serews on the face of the meter should be recessed behind the panel so that accidental

Fig. 6-30 - Diagrams showing placement of voltmeter and mil. liammeter to olntain desired measurements. A - Series grid feed, parallel plate feed and series sereen voltage-dropping resistor. B-Parallel grid feed, series plate feed and sereen voltage divider.

Fig. 6-31 - Switchine a single milliammeter, 'The resistors, R, shond be 10 to 20 times the internal resist ance of the meter: 17 ohms will usually be satisfactory. s_{1} is a 2 -section rotary switch. Its intulatims should be ceramic for high voltages, and an insulatimg roupling should alwaya be used betwers shaft and control.
contact with the adjusting screw is not possible, if the moter is comerted in any of the other positions shown in lig. (i-30. The meter can be mounted on a small subpancl attached to the front panel with long serews and spacers, 'The meter opening should be eovered with glass or celluloid. Illuminated moters make reading easier. Reference should also le mate to the 'TVI ehapter of this Handbook in regard to wiring and shiclding of moters to suppress TVI.

Meter Switching

Nilliammeters are expensive items and therefore it is seldom feasible to provide even grieleurrent and platerourront moters for all stages. The expiter stages in at maltistage transmitter often do not reguire metoring altor initial adjust ments. It is common practiere to provide a meterswitehing system by which it single millitmmeter maty be switched to read currents in as many circuits as desired. Surh at metor-switehing rircuit is shown in Fig. (i-31. The resistors, R, are conneeded in the various cirecuits in plate of the milliammeters shown in Fig. 6-30. Sine the resistance of R is several times the internal resistane of the milliammeter, it will have no pratetian delfect upon the reading of the meter.

When the meter must read currents of widely differing values, a meter with a range sufficiently low to ateommodate the lowest values of current to be meatsured mate be solected. In the circuits in which the eurrent will be above the seale of the moter, the resistanere of h 'an be adjusted to a lower value which will give the moter reading a multiplying fartor. (Fiore chapter on measurements.) (itre should be taken to observe proper polarity in making the commertions between the resistors and the switeh.

AMPLIFIER ADJUSTMENT

Eiarlier soretions in this chapter have dealt with the design and adjustment of input (grid) and output (plate) roupling systoms, the stabilization of amplitiors. atod the methods of obtaining the reguired deretrode vollages. Roformen to these seretions should be madr as neressary in following a procedure of amplifier adjustment.

The objeretive in the adjustment of ath intermediate amplifier stage is to sereure adequate exatation to the following stage. In the rase of the output or final :mplifier, the objertive is to ohtain maximum power output to the antennat. In both caser, the adjustment must be consistent with the tube ratings as to voltage, current and dissipation ratings.

Adequate drive to a following amplifior is normatly indicated when rated gride courent in the following stage is obtatined with the stage operating at rated hias, the stage loaded to rated plate current, and the driver stage tuned to resonathere. In a tinal amplifier, maximum output is normally indicated when the output coupling is adjusted so that the amplifier tube draws rated plate current when it is tuned to resonture.

Resonance in the plate dircuit is normally indicated bey the dip in plate-rurrent reading ats the plate tank eatabeitor is tuncol through its range. When the stage is unloaded, or lightly loaded. this dip in plate courrent will be quite pronounced. As the loading is increased. the dip will beeome less noticrable. sere Fig. 6-1. However, in the case of a spreen-grid tube whese sareen is fed through at meries resistor, maximum output may mot be simultaneons with the dip in plate current. The reason for this is that the sereon current varies widely as the plate direuit is tuned through resonamer. This variation in soreren current catuses a corresponding variation in the voltage drop acros: the sereert resistor. In this case, maximum output maty oreur at an arljustment that results in ath optimum combination of sereen voltage and bearness to resonatner. This effere will seddom be ohserved when the serecol is operated from a fixedvoltage sourere.

The first step in the adjustment of atn amplifier is to stabilize it. both at the operating frequency by neutralizing it if neressary, and at parasitic frequencies by introducing suppression rircuits.

If "flat" trathsmission-line coupling is used, the output end of the line should be matched, as desoribed in this chaptor for the asse where the amplifier is to ferd the grid of a following stage. or in the tramsmission-line chapter if the amplifier is to feed an antennat system. After proper match hats beon obtained, all adjustments in coupling should be made at the input end of the line.
[ntil preliminary adjustments of excitation have been made. the amplifier should the operated with filament voltage on and fixed hias, if it is reguired, hut sireren and plate voltages off. With the exciter eoupled to the amplifier, the roupling to the driver should be adjusted until the amplifier draws rated grid current, or somewhat above
the rated value. Then a load (the antenna grid of the following stage, or a dummy load - see Fig. 6-32) should be coupled to the amplitier.
With screen and plate voltages (preferably reduced) applied, the plate tank capacitor should be adjusted to resonance as indicated by a dip in plate current. Then, with full screen and plate voltages applied, the coupling to the load should be adjusted until the amplifier draws rated plate current. Changing the coupling to the load will usually detune the tank circuit, so that it will be neressary to readjust for resonance earh time a change in coupling is mate. An amplifier should not be operated with its plate circuit off resonance for any except the briefest necessary time, since the plate dissipation increases greatly when the plate circuit is not at resonance. Also, a sereen-grid tube should not be operated without normal load for any appreciable length of time, since the sereen dissipation increases.

It is normal for the grid current to decrease when plate voltage is applied, and to decrease again as the amplifier is loaded more heavily. As the grid current falls off, the coupling to the driver should be increased to maintain the grid current at its rated value.

MEASURING POWER OUTPUT

The power output of any transmitter stage can be checked with reasonable aceuracy by simply coupling an ordinary lamp to the output tank circuit and comparing its brilliance with that of another lamp of the same size operating from a.e. Since it is difficult to judge power accurately when the lamp is over or under normal brilliance, the lamp selerted should have a wattage rating as close as prossible to that expected from the amplifier. Flashlight bulls can be used for low power. At frequencies alove 7 Me. sufficient coupling usually is obtained by conneeting the lamp in series with a few turns of wire that can be slipped over or inside the tank coil, as shown in Fig. 6-32.A. But at 3.5 and 7 Mc., it is usually necessary to tap the bulb directly across a portion of the tank coil, as shown at I3. WARNING! Turn off the high voltage when tapping a series-fed tank circuit. 'The coupling should be adjusted until the plate current at resonance is the rated loaded value for the tube. A more accurate dummy load is deseribed in QS'' for March, 1951.

(E)

(G)

Fig. 6.32 - Using a lamp bulb for an approximate check on the output of an oscillator or amplifier, always turn off the pourer before rhanging the tap.

COMPONENT RATINGS AND INSTALLATION

Plate Tank-Capacitor Voltage

In selecting a tank capacitor with a spacing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank circuit under load, but without modulation, may be taken conservatively as equal to the d.c. plate voltage. If the d.c. plate voltage also appears across the tank capacitor, this must be added to the peak r.f, voltage, making the total peak voltage twice the d.c. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.c. plate voltage, because both d.c. and r.f. voltages double with 100 -per-cent plate modulation. At the higher plate voltages, it is desirable to choose a tank circuit in which
the d.e. and modulation voltages do not appear across the tank capacitor, to permit the use of a smatler capacitor with less plate spacing. Fig. 6-3:3 shows the peak voltage, in terms of d.e. plate voltage, to be expeeted arross the tank caparitor in various cireuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher.

The plate spacing to be used for a given prak voltage will depend upon the design of the variable caparitor, influencing factors being the mechanical construction of the unit, the insulation used and its placement in respect to intense fields, and the capacitor plate shape and degree of polish. Capacitor manufacturers usually rate thair prolucts in terms of the peak voltage between plates. Typical phate spacings are shown in the following table.

Typical Tank-Capacitor Plate Spacings					
spacing (In.)	reak Voltage	spacing (In.)	l'eak Voltage	Sjpacing (Jn.)	l'eak Voltage
0.015	1000	0.07	3000	0.175	7000
0.02	1200	0.08	3500	0.25	9000
0.03	1500	0.125	4500	0.35	11000
0.05	2000	0.15	6000	0.5	13000

Plate tank capacitors should be mounted as close to the tube as temperature considerations will permit to make possible the shortest capacitive path from plate to cathode. Esperially at the higher frequencies where minimum circuit cat paritance becomes important, the capacitor should be mounted with its stator plates well spared from the chassis or other shielding. In circuits where the rotor must be insulated from ground, the caparitor should be mounted on ceramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of safety to the operator - a well-insulated coupling should be used between the capacitor shaft and the dial. The section of the shaft attucherl to the dial should be well groumled. This can be done conveniently through the use of panel shaft-bearing units.

Grid Tank Capacitors

In the circuit of Fig. 6-34, the grid tank eaparitor should have a voltage rating approximately equal to the biasing voltage plus 20 per cent of the plate voltage. In the balaned circuit of 13 , the voltage rating of each section of the capacitor should be this satme value.

The grid tank canacitor is preferably mounted with shielding between it and the tube socket for isolation purposes. It should, however, be monnted close to the sorket so that a short lad ran be passed through a hole to the socket. The motor ground lead or bep-pass lead should be run directly to the nearest point on the chassis or other shiclding. In the circuit of Fig. $6-34.1$, the same insulating precations mentioned in connertion with the plate tank capacitor should be used.

Fig. 6-3.4 - The voltage rating of the grid tank capacitor in A should be equal to the biasing voltage plus about 20 per cent of the plate voltage.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest plate-voltage/ plate-current ratio likely to be used at the maximum power level for which the coil is designed. Therefore in the majority of cases, the capacitance shown by Figs. 6-9 and (6-20 will be greater than that for which the coil is designed and turns must be removed if a Q of 10 or more is needed. At 28 Mc ., and sometimes 14 Mc , the value of capacitance shown by the chart for a high plate-voltage/plate-current ratio may be lower than that attainable in practice with the components available. The design of manufactured eoils usually takes this into consideration also and it may be found that values of capacitance greater than those shown (if stray capacitance is included) are reguired to tune these coils to the band.

Manufactured coils are rated according to the plate-power input to the tube or tubes when the stage is loaded. Since the eireulating tank current is much greater when the amplifier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive heating.

Tank coils should be mounted at least their diameter away from shielding to prevent a marked loss in (Q. Exeept perhaps at 28 Me., it is not important that the coil be mounted quite close to the tank capacitor. Leads up to 6 or 8 inche's are permissible. It is more important to keep the tank capacitor as well as other components out of the immediate field of the coil. For this reason, it is preferable to mount the coil so that its axis is parallel to the capacitor shaft, cither alongside the eapacitor or above it.

There are many factors that must be taken into consideration in determining the size of wire that should be used in winding a tank coil. The considerations of form factor and wire size that will produce a coil of minimum loss are often of less importance in prative than the coil size that will fit into available spare or that will handle the required power without excessive heating. This is partirularly true in the case of sereen-grid tubes where the relatively small driving power required can be easily ohtained even if the losses in the driver are quite high. It may he considered breferable to take the power loss if the physical
size of the exciter can be kept down by making the coils small.

The accompanying table shows typical conductor sizes that are usually found to be adequate for various power levels. For powers under 25 watts, the minimum wire sizes shown are largely a matter of obtaining a coil of roasonable Q. So far as the powor is conecrned, smaller wire could be used.

Space-winding the turns invariably will result in a coil of higher Q, esperially at frequences above 7 Me., and a form factor in which the turns sparing results in a coil length between 1 and 2 times the diameter is usually considered satisfactory. Space winding is esperially desirathe at the higher power levels because the heat developed is dissipated more readily, The power lost in a tank eoil that develops appreciable heat at the higherpower levels dors not usually represent a serious loss percentagewise. A more serious consequence. aspecially at the highor frequencies, is that coils of the popular "air-wound" tepe supported on plastic strips maty deform. In this case, it may be neressary to use wire (or copper tubing) of suffirient size to make the coil self-supporting. Coils wound on tubular forms of ceramic or mica-filled bakelite will also stand higher temperatures.

Wire Sizes for Transmitting Coils		
Power Input (IValts)	Band (.Mc.)	H'ire S'ize
1000	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ 10 \end{array}$
500	$\begin{aligned} & 28-21 \\ & 1.4-7 \\ & 3 . i-1.8 \end{aligned}$	$\begin{array}{r} 8 \\ 12 \\ 14 \end{array}$
150	$\begin{gathered} 28-21 \\ 1-7 \\ 3.5-1.8 \end{gathered}$	12 14 18
75	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	14 18 22
25 or less*	$\begin{gathered} 28-21 \\ 14-7 \\ 3.5-1.8 \end{gathered}$	$\begin{aligned} & 18 \\ & 24 \\ & 28 \end{aligned}$
* Wire size limited principally by eonsideration of Q.		

Plate-Blocking and By-Pass Capacitors

l'ate-blocking capacitors should have low inductance: therefore capacitors of the miata or eramie type are preforred. For frequencies lowtwern 3.5 and 30 Mc ., a cobacitance of 0.0 on is commonly used. The voltage ratiag should he 25 to 50% ahowe the plate-supply voltage (twier this rating for plate modulation).
small disk reramir capacitors (approximately 1/4 inch in diameter) are to be preferred as by-pass (apacitors, sime when they are applied correetly (we TVI (hapter), they are series resonant in the TV range and therefore are an important measure in filtering power-supply leads. Capacitors of this type are rated at 600 to 1000 volts. At higher
voltages, disk ceramies with higher-voltage ratings, or capacitors of the TV "doorknub" type are recommended. Voltage ratings of by-pass capacitors should be similar to those for blocking capacitors.

R. F. Chokes

The charatertistics of any r.f. choke will vary with frequency, from characteristics resembling those of a parallel-resonant rireuit, of high impedance, to those of a series-resonant circuit, where the impedance is lowest. In between these extremes, the choke will show varying amounts of inductive or capacitive reat ance.

In series-feed circuits, these characteristics are of relatively small importance because, in a correctly-operating circuit, the r.f. voltage across the choke is negligible. In a parallelfred eircuit, however, the choke is shunted aross the tank circuit, and is subject to the full tank r.f. voltage. If the choke does not present a sufficiontly high impedanee, enough power will be absorbed by the choke to cause it to burn out. With chokes of the usual type, wound with small wire for compactness, a relattively small amount of power loss in the choke will cause excessive heating.
To avoid this, the choke must have a sufficiently high reactance to be effective at the lowest frequent?, and yet have no series resonances near the higher-frequency bands. This is not difficult to acemplish for a frequency range of 2 to 1 or less. But the design of a choke that meets requirements over a range as wide as 3.5 to 30 Mc. at the higher voltages is quite eritical.

Universal pie-wound chokes of the "receiver" type ($2.5 \mathrm{mh} ., 125 \mathrm{mat}$.) are usually satisfactory if the plate voltage does not exced 750. For higher voltages, a single-layer solenoid-type choke of correct design has been found satisfactory: The National type $12-175 \mathrm{~A}$ is a representative manufactured type. An example of a satisfartory homemade choke for voltages up to at least 3000 consists of 112 turns of No. 26 wire, spaced to a length of $37 / 8$ inches on a 1 -ineh ceramic form (Centralab stand-off insulator, type X3022H). A ceramic form is advisable from the consideration of temperature. This choke has only one series resonance (near 24 Me.), and exhibits an equivalent parallel resistance of 0.25 megohm or more in all of the amateur hands from 80 through 10.

Since the characteristics of a choke with be affected by any metal in its fiedd, it should be checked when mounted in the position in which it is to lu used, or in a temporary set-up simulating the same conditions. The plate end of the choke should not be comerted, lut the power-supply end should be connected directly, or be-passed, to the chassis. The g.d.o. should be coupled as close to the ground end of the choke as possible. Series resonances, indieating the frequencies of greatest loss, should be checked with the choke short-circuited with a short piece of wire l^{1} arallel resonances, indicating frequencies of least loss are checked with the short removed.
(For further discussion, see QST, May; 1954.)

A One-Tube Two-Band Transmitter for the Novice

F'igs, $6-35, \mathrm{t}-36 \mathrm{~b}$, and $\mathrm{f}-37$ show the details of a low-power arsataloseilator tramsmiter covering the 3 , $\overline{0}-$ and $\overline{\mathrm{T}}$-Mr', hands. It is complate with power supply, and an output cirenit that will feed direetly into a simple anterna without the need for an amemat tuncr. The cireuit diagram appeurs in Fig, 6-36t. A tish(io prentode is used in an oweillator of the grid-plate typer. The output rireuit, consisting of $C_{1 n},\left(_{11}\right.$ and L_{1}, is in the form of a pi-sertion notwork that will couple into a wire of random length. The rirenit is keverd in the athone cirmit.
J_{1} is an octal tube socket that is used as a combination erystal socket and key jack, ha is the grid lake. C_{1} and ('2 are exitation-control capacitors. RF'C' is neeressary to prevent shortcircuiting Ce for r.f. When the key is closed. Re is the sereen volage-dropping resistor that redueds the voltage to the soreen. $R F^{\prime}$? is the phate fred choke. Plate current is measured by the milliam-
 and $C_{3}{ }_{3} C_{5}$ and C_{6} are by-pass capacitors.

The power supply is a simple one dolivering about 3 Bol volts. The smoothing filter, consisting of ('s, ('g and the 8-h. W-mat, whoke, is of the eapacitive-input type, R_{3} is the bleeder resistor. S_{1} turns the power supply on and off.

Construction

The parts are assombled on a $7 \times 12 \times 3$-ineh aluminum chassis. In the placement of pats. the power-supply section is kept in at line at the back of the chassis. The r.f. components are monnted toward the from of the chassis. As can be seen in the photographs, there are threr octal sockets - one for the syizer reretifier. one for the 6 itcio oseillator, and the third which is usert as a reysal sorkot and key jark.

With the exception of the three sorkets and
the moter, all the monting holes ran be made with an ordinaty hand drill. For the socket holes, ome rat purchase, or bormow, a sockel jumela. The meter hole ran be statterl with the sorket pureh and then entarged with a hati-round or rattail file. The variable catpacitors are mounted direetly against the under side of the chassis. In pharing them, be sure that their shafte extend lar enough out from the front of the chassis to aceommodate the tuning knobs. These capanitors are of the boadeast-reeremer replarement tepe, and wan be purchased locally, or from one of the large matorter houses. They are usually listed as singlegang mided t.r.f. mapators and have a maximum seipareitanere of more than 300 mul.
The power transfomer is mounted in such a manner that the high-voltage leads and the s-volt reetifier lemas are brought out at a point elowest to the 5):3 (iT rectifier socket. A three-termital tio point is mounted closie to the tramsomer 115volt leads to furnish tommats for the power switch and transformer leds. Aftor the sockets, a.ce. switch, metor, and feed-through bushings for holding L_{1} are all mounted in place, the wiring can be started,

Wiring

Connert the two 11 i -volt transformer primary leads (blark), each to one of the tie proints. Then also combert one of the power-cord wires to one of these tie points, and one terminal of the power switch, si, to the other. Connere the remaining side of S_{1}, and the remaining poweromd wire to the third tie point. Fitasten ofle of the 6.3 -volt transformer leads (green) to a soldering lug under the tio-point mount ing serew. The mematining $6: 3-$ volt transomer wire (grem) is comerod to lin 7 on the $6.16 i^{-}$sorket.
lion the high-voltage wiring, the ementer-tap

Fig. 6.3.5- 'I'nr vinw of the Vovice 2.banal tramsmitur. L_{1} at the lenf right-hand side is shown with the clip in the somemer positions. It is clipened to the fied-throumb lushoing. 'Illoe laded wo the hay is a short pierere of 3(1)-ohnin livin-lead which is terminaled ist a Millen : Whathom flose, 'lhis type af plog is the corren siga fur welal sonher Pins: and 1 .

Fig, 6.36-Circuit diagram of the beginner's transmitter.

wire of the high-voltage semondary (red and yellow) is eomerted to ground, one of the highvoltage leads (red) is commented to lin 4 of the $5 \mathrm{Y}^{\prime} 3 \mathrm{~B}$: T sorket, while the other red lead goes to Pin d . Gue of the s -wolt reetifier-filament leads (yellow) is connerted to l'in 8 of the stise iT' somket, and the other yedow last is rum to liat 2, Also
 from the ehoke. and the lead matrked + from ('s. The other side of ('s, or the megutive side. is grounded. The remaining lead of the choke, the plus side of C^{\prime}. a and a lead from P_{a}, atre all ron to a terminal on a tie point. The nefntive side of ('9 and the other lead from R_{3} are grounded. This completes the fower-supply wing.

Pius 1, 2, and 3 of the ($6,16 \mathrm{l}$ sorket are connered together with a bare wire and the wire run to ground. Dlso, one side of (2 must be grounted, so it can be commerted to one of these pins. The other side of C_{2}^{\prime} is run to l'in 5 . A lead to $R P^{\prime}\left({ }^{\prime} 1\right.$ is also commerted to l'in E). One side of C_{1}, ond side of R_{1}, and a kead to Pin 8 of J_{1} are all soldereal to Pin 1 of the Gilli- socket. The other side of A_{1} is grounded, while the remaining side of ('1 goos to Pin 5. Pins 4 and 6 of the erystal sorket are also grounded. The remaining side of
 to P'in 2 is one side of C_{3}. The other side of C_{3} is grounderl.

The sereen resistor, i_{2}, is comerted between the $\mathrm{B}+(+$ terminal of $($ 'g $)$ terminal and lin $(6$ of the ($\mathrm{B} . \mathrm{M}$ (i- socket. Akso connected to lin 6 is one site of C_{5}. The other side of C_{5} is grounded. A lead is commered betweren the $13+$ terminal and the + side of the metor. The other terminal of the meter is comereted to ome side of $R F^{\prime} C_{2}$, Aso connereted to this point on $R A^{\prime} P^{2}$, is one side. of ${ }^{\prime} 6$, the other side of $\left(\begin{array}{c}6 \\ \text { being grounded. The }\end{array}\right.$ rematining side of $R F^{2}$ "2 is commerted to Pin 8 of the 6.106 socket and $\left(\begin{array}{c}7 \\ \text { is conmerted betwern }\end{array}\right.$ this side of $R F C_{2}$ and the stator seetion of C_{10} is also connetied to the nearest of the two feedthrough bushings holding L_{1}. The stator of C_{11} is ronnected to the other feed-through bushing, and a lead is run from this bushing to the trans-
mitter output terminal mounted on the back side of the chassis. This should complete all wiring below the chassis.

Coil

As shown in the parts list, L_{4} is a Barker \& Williamson storek No. 3016 coil with $1: 3$ turns removed from each emi. For to-meter operation, it is nerecosary to short out a latrge part of the eoil. This is accomplishod by use of a short clip lead. One pond of the lead is commected along with one end of L_{3} to the output bushing (the one connerted to (S_{11}). The other end of L_{1} is soldered to the imput bushing. To operate on 40 meters, it is neressary to attach the elip to the 30th turn of L_{1}, from the input side. In order not to short out the 29 th and 31 st turns, they can be bent in toward the axis of the coil.

Testing

An 80-meter ervstal between 3700 and 3750 kc . will be needed for 80 -meter operation. For 40meter work, one betwen 3588 and 3598 kc . will be required. (The crystal frequency is doubled for T-Me, operation.)

In tuning up on 80 meters, insert the erystal in Pins 6 and 8 of the octal socket. The key leads are inserted in Pins 2 and 4. A 115 -volt 10- or 15 watt light bulb will serve as an artificial load for testing purposes. Comect the bult) to the output of the rig by soldering a piere of wire to the center terminal in the base of the bulb, and one to the sorew shell portion. One of the wires is then conneeted to the output terminal of the transmitter and the other to the chassis. The 11 is-volt a.ce switch is turned on and the tubes allowed a minute or so to warm up. . Ifter the rig has been on for a minute, close the key. Tune the station receiver to the crystal frequerncy and the transmitter's signal should be heard. The input eapacitor, C_{10}, is slowly tuned through its range. Two things should happen - the dummy load lamp should light and the meter should show a dip, or lower reading, at the point where the bulb lights. Also, the signal should be louder at this point. Now
tune the output capacitor, C_{11}, across its ratuge and the bulb, should brighten at one point, and the signal get louder in the receiver. Also, the meter should show a greater reading than before. Switching back and forth between the two capacitors, always the for maximum brilliance in the bull.

Antenna

An antennat mave now be substituterl for the lamp. The trpe of output cirenit used in the rige will load with almost any length of wire. However, it will loud with a 3 30-foot length of wire on both 80 and 40 moters a great deal easior than with some lengths. One end of the wire should be romered to the output terminal and the other end suspended on an insubator attarded to atomd or rope slung from the highest available support. (Fee the antennat chapter for methods of bringing the wire in to the transmitter.)

Output Indicator

The transmitter ran be tumed up be the meter, but sometimes a begimer may beeome confused trying to interpret the readings he gets. A simple devier to show that the antema is taking power consists of two pieces of wire, about two feret long, and a 2 -volt 0.06-ampere flashlight bulb, either No. 48 or 49. The bulb is connered betwern the two pieres of wire, one lead tos the tip of the bulb base and the other lead to the shell of the hase, making a four-foot longth of wire with the bull, in the conter. Gue end of this wire is connerted to the output terminal, whike the otherent is elipped on the anterna, three or four feet up. Serape the wive at this print if it is insulated. When the transmitter is turned on and the caparitors are tuned, a point will he rearched in the tuning where the bulb will glow, or light up. Tune the eat pacitors for maximum brillianere in the bulle; this is an indication that maximumpower is going inta, the antema.
Forty-meter tume-up procelure is the same as

Shopping List for Novice Transmitter

22- $\mu \mu$ f. mica caparitor.
$22(1)-\mu \mu \mathrm{f}$, mica caparitor.
$40.001-\mu \mathrm{f}$. disk ceramic capacitors,
28 - $\mu \mathrm{f}$, $\overline{\mathrm{J}}(\mathrm{O}$-volt midgret electrolytir capacitors. 67.000-ohm resistor. $1 / 2$ watt.
22.000 -ohan renistor, 1 watt.
$0.1-m e g o h m$ resistor, 2 watts,
2 21/2-mh. r.f. chokes (National R 100 N or Millem 34102).
2 variable ratacitors fomidet tspe t.r.f. one-gang broaleast reverer replarement).
70 turns of No, 24 wire, 1 -ineh disam,. $2 \frac{1 / 4}{4}$ inches long (H \& 16 : 3016 with 13 turns removed from each end).

 TS-2 21302).
3 ortal sockets.
Single-pole single-throw toggle witel.
2 feed-tarough insulators (National TPl).
T'ip jack (Amphenol type 7818).
2 threc-buint terminal strips.

Aluminum chassis 3 hoy 7 by 12 inches.
ti feet of hook-1t, wire.
6.As 77 tube.
5): s tube.
if solder liges.
Is 6 - $32 \times{ }^{1}{ }^{2}$-ineh muts, boltw, and washers.
I'wo toning knots to fit $1 / 4$-ineh shaft.
(rysumal.
for 80 with the exception of using the correct rrystal, and shorting out the section of L_{1}. Remomber to listen on the receiver when tuning up the transmitter on 10 or 80 . When tuning up, on HO, the signal should be definitely louder on to thath on 80 meters, and viee versa for 80 -meter tume-tip).

When the osidiltor is fully loaded and tuned to resonames, the plate current should run be1 wern 20 and 30 mat, representing a power input of 7 to 10 watts.
(This unit originally deseribed in the Novemher, 195.3, issue of QSTT.)

Fig. 6.37-Bottom view of the Novice one-tabe transmitter showing the wiring of parts. 'I'he power supply corriponents are monted along the hack side while the r.f. sertion runs atong the front. 'ilhe output lead from the fered. through bushing is clearly vixible en the right-hand side. 'The only oproning at the bash are the omtput terminal and the 11.5-xal ace leands.

A Single-Tube 75-Watt Novice Transmitter

Figs. (t-38 through $6-42$ show at 7 - watt e.w. tratusmiter using a $614 t$ in a derstal oseillator. The power supply uses an ordinary replacementtype transfomer in a bridge cirenit. In the eirenit diagram, Fig. 6-40, the transformer rating is 360 volts cath side of center tap, but the supply will deliver $\overline{5}(\mu)$ volts at $1+(0$ ma. For tune-up purposes, the output of the power supply cin be switched from high to low voltage. The bow potential output is 280 volts.

In order to limit the input to 75 watts, the sureoll voltage is held to 125 volts by $R_{1} R_{2}$. With the supply output switched to low voltage, the sereen drops to 80 volts for tune-up purposes.

The erestal current is monitored by a 2 -volt (i)-ma. bulb counerted betwern the reystal and chassis ground. The bulb also serves as a fuse, in the event the erystal current should ancidentally rise alove a satio value.

To avoid coil changing, a portion of the plate (roil is shorted ont for th-meter operation.

Construction

The ransmitter is built on an $11 \times 7 \times 3$ -
 components above deck are shielded ber a if X (6×6-inch aluminum box.

The power transformer, T, and rectifiers are mounted on the chassis top at one end. The other power supply romponents, T_{1}, L_{4}, the 8 - μ f. electrolotic eapacitors and the 20.000 -0hm 10 watt resistors, are mounted below deck.

The 61 fl sorket is monnted $11 / 2$ inches in from the front of the chassis and $41 / 2$ inches from the end. Two 1-inch isolantite standoffs are used to support $L_{2} L_{3}$, and they are mounted $21 / 4$ inches apart. The rear one is $21 / 8$ inches from the chassis
back and 2 inches from the righthand end. A row of $1 / 4$-inch holes is drilled near the bottom on both sides of the rover box to permit ventilation. Several $1 / 4$-indh holes are also made in the box top dirertly over the $61+6$.

Wiring

The power supply is wired first. The center taps of T_{1} and the high-voltare winding of T_{2} are connerted together and soldered to the lowvoltage terminal of S_{3}. A lead is connected from one of the 5 Y 3 aT filament terminals to the highvoltage terminal on S_{3}. One lead from L_{4} is conneeted to the irm of S_{3}.

Next, the below-rhassis portion wiring of the r.f. section is completed. To sorket should be used for the 2 -volt $60(0$ ma. dial lamp in series with the erystal, A $5 / 6$-ineh rubber grommet is used to hold the dial lamp in plaee. Conmections are made to the lamp bey soldering leads to the hase point and to the metal shell. The lead from the shell ronneets to the chassis.

Standard eoil stock (13 \& W 39000 , 2-inch diam., 8 turns per inch. No. It wire) is used for $L_{2} L_{3}$. A total of 38 turns is cut from the original stork. At one end of the piere, a single turn is unwound from the support bars. From this emi, count up 7^{16} turns and rut the seventh turn. The cent should be madn at the support har opposite the bar from which the first lead extends. The leads from the cut point are separated from the side support hats and brought around to the same bar as the first lead. At the other end of the coil, which will be the top, a lead is unwound from the support bars and extended from the bar opposite the one with the three leats. This coil is shown in one of the photographs.

Fig. 6.38- Pietured is the completed 6146 rig. The plate-current indicator lamp is to the left of the tuning hooh. In areas where IVI is likely to le a problem, a metal bettomi blate abonlal be useed on the Chassis in addition to the $6 \times 6 \times 6$ alaminam hox shown.

Fis. $6-39$ - Bullom virn of the onte-tube trall-mitter. 'The 6.3solt libament trans. former is momated on the side of the ehassis at the upper righthand corner. 'lo the left of the tranzformer is sume of the 8 - μ f. elec: tralstice: the other Meretrolitie is mot visible, licing momated thehind the fower-suifjl choke coil.

Counting from the top, the 1ath and lath turns are bent in. allowing aceess to the leth turn. This is for the 40 -meter tap. A four-inch length of wire can be soldered to this point. The other and
should be remenerted to the switch terminal on S_{4}. The roil is supported on the isolantite standofis bey two soldering lugs. The smath ends of the lugs are first bent aromal the bottom turn. Before

I.1-1.8 $\mu \mathrm{h}$. (Ohuite $\% .111$) chake.
1.a, Ia - See tevt and whotograph.
1.4 - 10.5 henrs. 110 ma., $2=5$ ohm
$s_{3}-1$-pole 6-position (\because Hised) wafer switelt, monshorting (Centralal, 1101).
$S_{4}-1$-pole (o-pnsition (2 nsed) steatite wafer switeh, nonshorting (Centralah 250I).

T' - Filament transformer. (a.3 solt, 1.2 ammeres.
 volts 3. 3 amperes. is volts 3 amperes (Stancor P(8110).
loless othervise apecified. all capacitor salues are given in microfarads. Fiad capacioors except $8_{-\mu} f$. electrolytics and lit are disk ceramic.
soldering them in plare, the large holes in the lugs should be lorated over the holes in the standoffs for proper alignment.

A roas receptacle is mounted on the back of the shiold box and positioned so that the terminal is opposite the ungromuled end of link L_{3}. The switch and capabitor cat tre mounted in the box first and then wired. However, it will probably be gasion for the begimer to wire all the eomponents first, and then monnt them in the box. Three holes are needed in the front of the shield box. The caparitor and switeh holes are $11 / 2$ inches in from the side of the box and $2 \frac{1}{4}$ and 416 inches from the bottom, respertively. The hole for the ${ }^{5}$ sinch grommet is 2 inches to the left of the raparitor hole. With the holes rut in the box, it is eisy to fit the box over the wired parts.

When mounting the glass bulb of the plate rirenit (i-volt dial lamp in its grommet, be careful that none of the metal parts of the bulb base come in contibet with the metal of the box. If the huikder desires, a 20 () or $2 \overline{50}(0$-mat milliammeter rain be substituted for the bults.

Testing the Transmitter

The r.f. chokes and (apmoritors at the key comprise al eliek filtor, which should be eommeeted directly at the key terminals (not the plag).

For testing purposes, it dummy anternat should be commeded to the output terminal. I'se a f(o) or (6)-watt electric lamp for the dummy lond. Tho key phag is inserted in its jark and the key is loft open. With the 115 -volt line commerted to the rig, s_{1} is turned on and the 6.25 filaments are allowed to warm up for a minute or so. Then s_{2} is turned on and the 5 YBG allowed to warm up for another fow minutes. The power supply is switehod to the low-voltage output. The key is

Fig. 6.11 - Close-up view of the coil construction.
then elosed and the plate capacitor thated for resonance as indicated by minimum brilliance in the phate dial lianp. The dummy lamp should also light up at this point.

For formeter operation, a fometer

Fif. (1-f2 - Ioking down into the oseillator compartment.

75 Watts on Four Bands

Fig. (i-44 shows the circuit of a simple bandswitching transmitter that can be operated at inputs up to 75 watts on the 80), 4(0), 20- and 15meter hands. A bascia grid-plate ervostat oscillator drives a par of 61.6(i)3s. Either 80- or 40 -meter crystals may be used for fo-meter output, and f(0)-meter arystals will supply adequato drive to the amplifier on the 20 -and 15 -meter bands.

The pi network in the output of the amplifier is designed to feed a 50 - or 70 -ohm load. (${ }_{5}$ is a triple-gang 13C-type variable (1CA 5:31, Millor 2113 , Philmore 9047 or similar), having a capacitance of $365 \mu \mu$ f. or more per section. The sertions are wired in parallel. L_{3} and L_{4} are v.h.f. parasitic suppressors. Euth consists of $61 / 2$ turns of No. I8 wire wound around a 10 -ohm 1 -watt cartoon resistor ateross which the roil is comerted.

A single milliammeter, $/ /_{1}$, maty he switched to read cither amplifier grid rurrent or amplifier cathode current. A combination of series resistor R_{3} and shunt resistors R_{1} and R_{2} provides fullsaitle meter readings of 20 mat. for grid current and 300 mat. for cathode current.

A power supply is included, and ample spate rematis on the chatssis for adding a modulator. The power supply as desoribod should be adoquate for powring the modulator in addition to the transmitter. If rew. operating only is contemphated, a imilar transformer and dhoke hatving current ratings of 200 ma. maty be substituted.

Construction

Most of the eonstructional details are apparent in the photographs. A $12 \times 17 \times 3$-inch alumi-
num chassis surmounted by a $12 \times 7 \times(\mathrm{in}$ inch aluminum box (Promier A(-1276) is used as a shielding enclosure. Two octal tube sockets.
 as arystal sockets. Each will accommodate 1 wo Fr-24:3 crystal holders. On math socket, lins 1 and 3 should be wired together and grounded to the chassis. lins 5 and 7 should bath be connereded to a terminal on S_{1}. The erystals should be plugged in between Pins 3 and 5 and betwern Pins 1 and 7.

The shaft of ('2 must be insulated from the chassis. This is done be drilling at cloaramere hole for the shaft, and using insulating washers both inside and outside the chassis.

Coil dimensions are given in the table. Tap)s are most easily made be bending in toward the renter of the eoil one or two turns on either side of the turn to which the tap is to be soldered. Make sure that no turns are shorted by the solder.

Adjustment

The amplifier must be neutralized first. For this it is noressary to disconnect the high-voltage line to the amplifiar plates and sereens at the point marked " X " in the diagratm. With a 7 -Me. arestal plugged into the arpestal socker, power turned on and the key closed, turn se to the 21-Mc. position, and adjust fo for maximum grid current to the amplifier. The meter should read half seale or more. Listen to the sigmal on aroceiver and adjust C_{1} for best keying charateristics.

Fig. 6.43-A 7.5.watt 4-hand transmitter. The shafte of st the. low the meter) and ('s (see Fix. 6.4.) are plared symmetrically. S_{3}. C_{5} and I_{1} are erontered on the same vertical line: as ara the meter, S_{i} and S_{i} at the opposite end, Cis is at the evonter of the panel. with ss directly below. Cis and ss are spaceil monly on dither side of s_{2}, i series of $1 / 4$-inch wor tilating hulno is drilled in the bes arover, almas catly of the tuhnse and along the bark of the bos. teward the lows. tom. The power trans. formor, filter choks and rectifier tube are kronped in the left rear corner of the chassiz.

 resistors in prarallel.
(.1-30- $-\mu$ f. mica trimmer.
(:2-100- $10 \mu \mathrm{f}$. midyet varialble (Bud M(:-188.3).
(:3-15- $\mu \mu \mathrm{f}$. air trimmer (Jahmerg ISMII).
($84-300$) $-\mu \mu$ f. varialble (Buad M(:-1800) .
(:s-3-mang BC: variahle (factext).
I_{1} - 6-volt dial lamp.
J1 - Oponerircout hey jash.
J 2 - Cowial receptacle (($\left(0.233^{9}\right)$.
I. - IAB- hee text and tablo.
I. 7 - 10-h. 200-ma. filter whohe ('l'riad C16-A).
$\mathbf{M}_{1}-0.1$ d.e. milliamméter ('Triplett 22~-I').
K $\mathrm{H}^{\prime} \mathrm{C}_{1}, \mathrm{RH}^{\prime} \mathrm{C}_{2}, \mathrm{KF}^{\prime} \mathrm{C}_{3}-7.50 \mu \mathrm{~h}$. (National R-33).
$1 \mathrm{KH}_{4}-2.5 \mathrm{mh}$. (National $1 \mathrm{R}-50$).

$S_{1}-1$-pole 6 -position rotary (Centralal, 1401).
$S_{2}, S_{3}-1$-fole 6-porition rotary (Centralah 2501).
$\mathrm{S}_{4}-2$-pole 2 -pusition rotary (Centralab 1472).
S_{5}-S.p.s.t. togule switch.
Ti - 800) volts c.t., 300 ma.; 5 volts, 3 amps.; 6.3 volts, 4 amps. (Triad li2l-A).

Fig. 6.45-I. \quad is manmed on the righthand end of the lox by soldering lups to the enil turn and fastening the lugs to f-inch cone insulators which are eromered 2 inches down from the top, 1 sis is roldered directly latwern the 2l- Mr: -with terminat and the ritator terminal of Cat. © is fastoned diratly to the chassic with its whaft 2 inches from the righthand end. x_{4} is placed symmetrically at the opposite end of the panel.

Now turn S_{3} to the 21-Mre position and turn f's through its range. At some point there should be a kiek in the griderurrent reading. Adjust C_{3} to the point where this kiek is redued to a minimum. ()nere this adjustment has beret made. it should require no further attantion.

Now turn off the power stoply, and reeommed the high voltage to the amplifier. Comeret a
 caparitance. turn s_{4} to read eathode rurrent. turn on the pawer and elose the key. Adjust r ta for at dip in cathode current (resonamee). Then redure the eatacitanere of r_{5} at litile at a times,
 adjustments are eominued alternately, the current at the dip will inerease and the dip will hercome los pronobaced (sere F'ig, (i-1). Nimultaneonslys the lowd lamp should increase in hrillianere. (omtimue these adjustments until the highest reading is obtained with r's aldusted to resonames. However, do not allow the current at this print to rise above about 230 ma .

The tramsmitter abl be tested on the other bands in a similar manner, first tuning (es for maximum grid rurrent, and then adjusting the output direuit. Be sure that the switches are

	Turns	Wire Size	Diam. In.	Lgth. In.	Tap * Turns	Approx. $_{\mathbf{L}_{\mu}}$	$\begin{gathered} \text { B \& W } \\ \text { No. } \end{gathered}$
1.1	:31	2.4	1	$11 / 8$	23, 3	1!	3416;
I.:	;	20	3	3 m	-	$0 . \therefore$	3011
1.4	(i)	1.1	,	$11 /$	-	$0 . \%$	-
I.n	17	$11 ;$	\geq	$13 \times$	712, 11	8.5	33:17-1

turned to the proper bind. and that the proper frystal is in use.

A simple antenna satem for multibund onerattion is the paralled-dipole system deseribed in QS゙T for Juty. 19.3\%. Other types of antemats may le fed through an antemat coupler. Adjustmont when fereding an antema is similar to that dessribed for the dummy lowed. An output indi-

With the power supply show, the output. voltage with the :mplitier fully lowded should be about 400 . "The amplitior sureen woltage" should be approximately $2(x)$. Cuder fully-loaded eonditions, maximum output should he ohtained with a grid eurrent of about 6 mas. If the gride current exeeds this value it man be redued by slighty. drotuning © ${ }^{2}$.
(Originally deseribed in (2s゙T. Iann. 1957.)

 is set in the rear edge of the chansis.

A 7-Band 90-Watt Transmitter

Figs. 6-47 through 6-5:3 show photographs and rircuit diagrams of a !(0-watt bandswitching transmitter covering all hands from 160 (if a 160) meter oscillator is provided, of course) through 10 metors. The ref. cireuit is shown in Jig, ti-48. A string of four multiplior stages drives a $161 / 46$ final amplifier. A well-sereoned tube (6.AK 6) is used in the first stage, whose output is in the $8($-mater band, so that the stage will be stable when driven by an oscillator operating in the same land. For simplicity, triodes ($6 \mathrm{C}+\mathrm{s}$) are used in the remaning multiplier stages. The third stage of this seetion oprerates wither as a doubler to 14 Mc.., or as a tripler to 21 Mc ., the change bring made as the band switch opens or closes a short across a portion of the tank inductor. Tuning adjustments are simplifed by ganging the tuning eapacitors of all four multiplier stages to a single control. The So-meter tank rircuit, ('1A-L_ is designed to cover only the required tuning range - $3 \overline{0} 00$ to + OKO kr. However. when the hand swith is turned to the 7 -Me, and higher-frequency positions, the $47-\mu \mu \mathrm{f}$, aparitor across the input of the first 6 C 4 adde cough ceparitance to shift the tamk direuit's lowest frequency to about $333 \overline{5} 0 \mathrm{ke}$. so that the harmonies will include the 11 -metar hand. This is permissible, of course. sinee the frequemeries at the high enel of the 80 -meter band are not needed for multiplying into the other bands.
A pi-section tank cireuit is used in the output 42 the 6146 . It is designed to work into lowimpedance coaxial cable. In order to obtain better operation on 10 moters, and to cover $1(6)$ moters, the tank inductor, L_{6}. is broken up into there sections. $L_{6 \mathrm{~A}}$ is the only inductance in the rireuit when operating on 10 meters the roller contart on L_{663} being run all the way to one end to short $L_{6 \mathrm{~B}}$ out. In its last position, S_{218} opens the short across L_{66}, adding its inductance for 1 it meters.
L_{5} is a v.h.f. parasitic suppressor. L_{7} and ('s comprise a serios-resonant cireuit that may be adjusted to attenuate TVI in the most suscoptible chamel. $R F^{(2} 2$ provides a d.e. short arross ('z so that the latter need have only
approximately half the voltage rating that might otherwise be required.

The milliammeter, $V A$, may be switehed to read total exciter plate current, amplifier grid current, or amplifior cathode current. R_{3} and R_{4} are shunts that multiply the meter vecaling hy 10 when reading exciter current, and by 20 when reading amplifier rathode current.

Construction

The shiclding enclosure is matde up of two $8 \times 17 \times 3$-inch aluminum chassis. fastened together with top surfaces one against the other. It the right-hand rad, the chassis tops are cut away to provide an opening 7 inches derp by s inches wide. Into this opening the "dish" of Fig. (6-jo is lastened to provide a well for the final-amplifier components. A series of $1 / 4$-inch ventilating holes should be drilled in the bottom of the well, and in both top and bottom covers in the area above and below the 6116 .

The eomponente should be mounted so that the six control knobs on the panel come at the same level. using spaters under the eomponents where neecessary to acomplish this. The three eontrols at the left, and the three at the right are grouped with equal spateing. The meter is mounted at the conter line, and the tuning chart is centered over the excitor tuning control. 1 combination of grars (see Fig. (i-5l), operating from the shaft of the rotary inductor, was used to drive a surplus turns-rounter dial, but the Groth (R. W. Groth DIfg. Co., l(nNos) Pranklin Ave., Franklin Pk., 1ll.) counter should be ergually compater.

In the exeiter seetion, the four tube sockets are lined up between the tuning-tapacitor gang and the band switch. The 6AK6 is toward the front, with the $6 \mathrm{C} t$ multipliers following in logiral sequenere to the rear.

The capacitor gang. ('1, is mate up of two Hammarlund HFI)-1(0) dual units whose shafts are joined with a Millen $30(0): 3$ rigid buas coupling. Since the tail shaft of the Hammarlund unit is rather short, it may be neeessary to grind down the front end of the Millen coupling almost to the sel-screw hole to allow the sat screw to

Fife for17-Ciontruls. from left to riuhe, ara for hane! switrh, eveiter lmang. meter -witch. piosectioll tank rapacitor, rotars indumbor and larne combler and onsputcaparitur switelt. 'The patill
 coner (a changis lontom cower) is in place in this viow.

bear on the tail shaft.
The rapacitor sections must be modified as follows: ('ia - remove the last 5 rotor plates; ('in - remove the first ! rotor phates; (ineremove all rotor plates exerept the first four. and remove the fouth stator plate; ('ab remove all rotor plates exerep the last four. After the modification is complete, test rach sertion to make sure that no plates ate shorting. Use an ohmmeter, or use a lamp in series with the ace. line.

The hand switeh, s_{1}, is made up of Centrabah, Switchkit parts. The index assembly is type

P-123; the ecramie wafers are type N. For short leads, the wafers are spaced out so as to come appproximately half-way between the tube sockets. Vortically-mounted r.f. chokes arr used, since they orcupy a minimum of chassis sparer.
L_{1} is wound on a Millen 45000 form, I inch in diameter. It is mounted to the left of (iad $_{\text {a }}$ and (an be seen in the bottom-view photograph. The other multiptier coils are supported by their leads. soldered to the raparitor terminals. The tap lead on L_{3} should be a piece of wire about 3 inches long. The length of this tap is adjusted later for tracking over the 2l-Nle. band.

Fig. 6.49 - Top view of the amplifier compartment, showing the pi section tank rapacitor, the rotary inductor with
 normally in monntiol betwern the standenf insulator all the right rear cormer of the retary inductor and the rear rotary-inducter terminal. Finciter tubes are to the left.

The miat trimmor raparitors are mounted in such positions that they ran be adjusted through holes drilled in the ehassis and in the bottom cover.
The socket for the $61+6$ is mounted near the inside wall of the well bey means of an I. bracket attached to the rear wall of the ehassis. Holes are drilled in the wall of the well for wires comereting to the socket terminals. Sinere working spare is limited all neressary bypassing and other wiring at the bithe socket should be doue before the socket is mounted.

The output caparitor switch is assembled on a ('entralab) P' 121 index hetad.

The reatr of the metor is shielded with an 1(.. type liato shield can rut down to a depth of 2 inches. Whielded leads are lirought out through
notehes in the wall of the can, close to the pancl. The meter shunts, R_{3} and R_{4}, are wound with copper wire as deseribed in the moasurements chapter. R_{3} should be adjusted to increase the full-scale reading to $1(0)$ mas, and R_{4} to inerease the range to 200 ma .

Following standard practire (see chapter on BCI and TVI) all dec, and filament wiring is done with shielded wire.

The diagram of a suitable power sapply is shown in Fig. (6-52. A pair of voltageregolator tubes regulates the voltage drop arrose the f(o) O-ohm, 2 -watt series resistor that drops the voltage to :30) for the exciter. The tidQ 5 is a serern elamper which, in combination with the 29 volts of battery hias. kepes the imput to the til 16 at gero when oxcitation is removed.

Fög. (0-18- Wiring diagram of the F-land 9 (ll-wall transmitter. All resistors 1_{2} walt unlem otherwine specifical. (aparitor baluev liolow 1.0011μ f. are in $\mu \mu$ f. $\triangle=$ mica. $\Delta \|=$ siluer misa. $I \prime=$ mirat Irimmer. Alt other lixed capacitors are dish eremanic.

(in - Ippros. $3.5 \mu \mu \mathrm{l}$. (ane (10)t).

K_{2} - 1700 - and 33010 -ohm 1 -watt resistors in parallel.

1.1-12 $\mu \mathrm{h} .-21$ turnm \o. 22 d.c.c., 1 inch dianı. clase-wentor.
$1.2-1.2 \mu \mathrm{~h} .-17$ turns. $3 / 4$ inch diam., $17 / 32 \mathrm{inch}$ long (13 \& 11 3012 Viniductor).
$\mathrm{L}_{3}-1.8 \mu \mathrm{~h}$. - I2 turns, $3 / 4$ inch diann., $3 / 4$ inch long,
tanmed ol's turnz from ground and (is N W 3011 Minidurtor)
 (13 S ${ }^{1}$ 30103 Winiductor).
I.in - 8 turns No. 18. $1 / 4$ inch diam., $5 / 8$ incll long.

I. fis - 10-mll. variabla (Ialanson 229-201).
 inches lemg (1 S N W 390\% inductor).

1. - - Seremt.
J. J. J_{2} - Cinan monnertur.

I1 1 - 3 -incli, IO-ma. meter.
s_{1} - Ceramic rotary switch, 5 sections, 6 positions (sce text).
$\mathrm{s}_{2 \mathrm{~A}}$ - Centralal) Pls section (see text).
$\stackrel{S}{2 B}^{-}$(ientralab X seetion (see text).
s_{3} - Bakelite rotary.

Fig. 6.50 -. The "dish" for the final amplifier. It is bent from alamimum sheet.

Adjustment

Until the exciter has been tumed up, sereen and high-voltage lines should be disconnected from the transmitter, and the $6 . \lambda Q 5$ clamp tulxe should the removed from its soeket. The meter switeh should be turned to its gridecurrent position, and the 6146 heater turned on.

If an oscillator with ligi-meter output is available, turn the bated switel to the 160 meter prsition, and adjust the eompling to the oseillator until the metor reads a grid current of 3 mat.

Then with an oseillator delivering output on aither 1 tio or 80 meters, hum the hand switeh to the $8($-meter position, and adjust (') for maximum grid curvent. This should the at least 3 ma. If it is loss, try readjusting the coupling to the ose illator. If a vifo. is used, the multiplier should tre chereked at both 3500 and 40 (x) ke. to make sure that it is covering the proper frequenery range. It may be neeressary to spread out the last few turns on L_{1} to got the circuit to hit both ends of the bamed. If the output from the v.f.o. is reasonably constant, the grid current should remain essentially constant over the band.

With the 80-meter stage working properly, the switch should be turned to the +()-meter position. Set the v.f.o. to 3500 ke , and adjust C_{1} for maximum grid-eurrent reading. If there is no indiea-

Fig. 6.51 - Sketelt of drive and indicatur for the final-tank variable inductor. The gears are standard Boston Gear Works items.
tion of drive to the amplifier, it may be neeresary to adjust the 7 -MIe. trimmer, (2, a little bit at a time, retuning r_{1}, until an indication of output is obtained. As an aid, the meter, when switched to read exciter plate rurrent, should show a slight dip when f^{2} is tuned through resonaner. When an indication of grid current is obtained. tume ('1 for peak drive, and then readjust r_{2} to increase the peak. The corred adjustment is the one where no readjustment of aither ("1 or '/2 will inerease the drive. Now tute the oseillator to 3750 ke . (half this fregurery, of course, if the oseillator output is in the lifo-meter band) and retune (1. The drive to the 61 th should remain essentially unchanged.

Now tune the ossillator harek to 3 soun kr , and retune ('1 for maximum drive. Latwe the coscillator and f_{1} at this fuint, and tum the hand swite to It Mre. Adjust first 1 's and then ('s for maximum grid current. It may take a little juggling bark and forth betwerin these two before a maximum reading is obtained. The meter, when turned to read exciter current should show a dip when r_{4} is tuned through resonamer.
Leaving all tuning adjustments fived, turn the
 fulls. and note whether an increase or a decrease in caparitance catuses an increase in drive to the 6) ft . If it is ath increase. lengthen the tap wire slightly. Theon turn the switroh bark to 1+ Me. and readjust ("t for maximum drive. Then switch back to 21 Me, and rheck farefully again. By adjusting the length of the tap wire (arrefully, it should be possible to arrive at a condition where maximum drive is obtained at hoth $1 t$ and 21 Me, at the same setting of f_{4}. Remember, after (:urla adjustment of the tap length, first go hack to 1t Me. and retume, then switeh to 21 Mre.

Adjustment for 28 Me, is similar to that for 1t Ma., although it will he mone eritical. Careful adjustment of ('s and f_{6} will be moressary for maximum drive. The It-meter bathe is covered by tuning ('1 to resenance with the switeh in the 2s-Me. pesition. The various circuits should he cherekel with ath absorption wavemeter to make sure that they are tuning to the right multiphe.

When the above adjusiments for the lowfrequency ends of the varions hamds have been completed as doseriberl, it should be found that the output will be exsontially the same at any point within any selected band. Although such areurater in lining up is not nocressary, it should be possible to resomate. (ci for maximum drive at 7oon ke. and then, without retuning, switch to 1t, 21 and 28 Nre and find that the stages arre delivering maximum drive. As mentioned previously, a differmentroney range is used for 80 meters. so it is always meressary to retume C_{1} when changing to this band.

The harmonic trap, $L_{r_{-}}-$'s. is adjusted to resonate at the frequenery of the 'TV ehanmel most susceptible to TV', with the coax-connertor terminals shorted. The frequeney should be rherekel with a grid-dip moter. As an example, B turns of No. 18, 1/4 inch diameter for L_{5} a and $100 \mu \mu$ f. for ('s resonates in Channel 6 , by proper

Fig. 6.92 - Punar-iuplly and damp-tule circuit.

1.2 - (imoothing chooke, 10 h., 200 mat. ('riall (i-16A).

tralal 2.50).
adjustment of the turns spacing of L_{i}.
The X ()-meter band is tuned with all of L_{661} in the eirecuit. 40) is tuned with about 12 turns in the eireuit. 20 moters with about 7 turns. and 15 moters with about 5 turns. For 10 meters, $L_{6 B}$ is shorted out antirely by running the contartor all the way to the end of the coil. In carth case.
T_{1} - Plate trandermer: (Merit P'31.09).
T_{2} - Filament tranfiormer: 5 volte, 3 amp.; 6.3

the inductor is set, and the rircuit resonated be means of (${ }^{7}$. Then the loading is adjusted by \dot{S}_{2}, re-resonating with (', for cach position of S_{2}. The output cireuit is designed to couple into a matchod low-imperdane line foeding ath anterna tumer or coax-foed antemma.
(O)riginally described in ONT for May, 1!D5.)

Fig. 6-3.3- Botom siow of the exciter aretion. showing the meter switht, tuning-rabritor gang and the band suitch. The r.f. ehoke near top center is the amplifier srid choke. Ventilating holes in the bottom of the amplifier "disla" are duplicated in the bottom plate which was removed for this pieture.

75 to 300 Watts with V.F.O. Control

Figs. 6-5t through 6-62 show circuits and construetional details of a v.f.o. band-switching t ransmitter that covers all bands from 80 through 10 meters. Depending on the plate voltage used, the final may be operated efficiontly at inputs from 75 to 300 watts. 1 differential break-in keying system is includerl.

The cireuit of the r.f. section is shown in Fig. 6-56. The v.f.o. follows the series-tumed Colpitts, or Clapp, circuit. It is remotely tuned through a length of coax cable to minimize frequency drift. Output from the oseillator is in the 80 -meter band. A switeh, \aleph_{1}, changes the frequency range. One range eovers approximately 3.5 to 3.75 Me. This range is used to cover the c. W. portion of the 80 -meter band, and to drive multipliers covering the higher-frequeney hands. The second range is from 3.75 to $+M(\cdot$, and is used only for eovering the 80 -meter phone band.

Good isolation between the v.f.o. and following stages is provided by a bl't cathode follower and a 6.1 L 6 buffer.

The ontput of the buffer may be switched $\left(s_{2 A}\right)$ to drive (ither the 5763 driver statge or a saries of three multipher stages using 6 Cts , and covering the $7-1+$, and 21 - Me hands. The 5763 is used as a doubler from 14 to 28 Mce for output on 10 meters. 13and-pass couplers are used botween stages in the multipler sertion. After initial adjustment, no tuning of these stages is reguired. A multiband tumer in the output oif the 5 ä 63 covers all hands bey adjustment of its tuning capacitor, (${ }_{14}$, Vexcitation to the final amplifier may be controlled by R_{1} which varies the 5763 sereen voltage.

A $4-6 \overline{5} . \mathrm{i}$ is used in the final amplitier. Its charamerisities are such that it oporates officiently over a wide range of plate voltages, extending from 600 to 2000 volts. 13y proper choier of tank caparitor, a Novier mas limit the input to 75 watts be using low plate voltage, and later incerase the power input up to 300 watts by raising plate voltage. A pi notwork is used in the output of the final stage. It is designed to work into a low-impedance coax line. ('15 is the input eaparitor. L_{14} is a variable inductor, used for all bands exerpt the 10 -metor band. (On $28 \mathrm{Mc} \cdot, L_{14}$ is shorted out berming the shorting contact to the end of the coil, and L_{13} alone supplies the necessary inductance. The outpat (atparitance is furnished by a group of fixed mica (apacitors that may be connected in parallel arcording to the need for cach band, or operating condition, by S_{3}. L_{15} and (in form a sericsresonant direuit that may be adjusted to resonate at the frequency of the television chamed most likely to be interfered with in a given locality. It consists of a $100-\mu \mu$ f. mica capacitor in series with a few turns of wire.

Keying

The v.f.o. and the 5 -6:3 stage are keved. A 6WG(BT elamper, and a ()132 voltage-regulator tube (the hatter used here as an electronie switeh) hold the imput to the $4-8)^{2} .1$ to a low level during keying intervals. The other unkeyed stages are protected by cathode bias.

I differential keyer provides elean amplifier keying with all the convenieneres of oscillator keying for break-in work. The eireuit ronsists of a 12AU7 twin-triode vacuum-tube switeh for

Fig, 6.5.1-The 4.6.5.1 transmitter of W8F'「C in a rack ralbinet with remote v.forand con" trol unit to the right. Nhons the botiom of the main panc! are tho handswitch. the srid meter and the exritat tion fontrol. Nbove are the control- for the multilamd tuntr. ilve plate tank capacitor. the rotary inductor, and the outputerapats: itar switch. The mate milliammertri is att the tor.
turning the v.f.o. on and off as the key is operated, a 6 BL 7 (iT twin-triode vacuum-tube kever in the cathode of the 5763 , and a simple power supply to provide biasing voltages for the system. The a.c. voltage for the selenium reetifier is supplied by a small 6-volt filament transformer, operating in reverse from the 6 -volt transformer that supplies filament voltage for the 4 - $65 . \mathrm{A}, 6 \mathrm{~W} 6 \mathrm{GT}$ and 6BLA(iT. The primary, used here as a secondary, delivers 115 volts r.m.s.

When the key is open, a blocking voltage is applied to the grid of the v.f.o. tube so that it will not draw plate current. The 6 631.7 GT is also biased to cut-off so that it will not pass the 5763 cathode current. When the key is closed, blocking bias is removed first from the v.f.o., and then, an instant later, from the keyer tube. Although the v.f.o. may chirp when it is turned on, the chirp does not appear on the output sigual herause of the delay in the keying of the 5763 by the keyer tube.

The reverse artion takes place when the key is opened. The amplifier is turned off first, and
then the v.f.o., masking any osciltator chirp. The values of R_{3}, R_{4} and C_{17} determine the keying characteristic of the 5763. . With a fixed value for C_{17}, R_{3} controls the make characteristic, and R_{4} the break characteristic. Increasing resistance softens the keying. The interval between oscillator and amplifier keving is controlled by R_{2}. The farther that the tap is advanced toward the ground end, the faster the oscillator will turn off after the key is opened. However, if it is advanced too far, the break keving characteristic may be clipped because the oscillator is turned off too quickly.

Separate milliammeters are used in the grid and plate circuits of the final amplifier. This is the only metering required.

Construction

The r.f. seetion of the transmitter is assembled on a $13 \times 17 \times 3$-ineh aluminum chassis fitted with a $10 \frac{1}{2} \times 19$-inch rack panel. The amplifier is enclosed in a box constructed of angle stoek and aluminum sheet. Perforated sheet will pro-

Fig. 6.55 - Top view of W8E'TL"s transmitter. At the right, from Icft to right, progressing toward the hottom are
 meter 6 Cis , the $6 \mathrm{BL} \mathrm{ICO}^{\prime} \mathrm{T}$, and the 56.3 . The 6 W 6 CT clamper tube is at the upper left. The multiband tuncr for the 5763 is enclosed in the bov fastened against the final-amplifier enclosure. The tank capacitor is placed so that its shaft is central on the panel, and the rotary induetor is located so that its control and the control for the multibaind tuncr are symmetrical in respect to the tank-eapacitor control. The turns counter for the rotary inductor is geared to the coil drive shaft, S_{3} and the mica output capacitors are off the left rear corncr of the inductor. The v.h.f. sericsresonated circuit is mounted against the rear wall, adjacent to the output connect.

 text and Table If for output rabaritors.
Ci Widget variable.

Cill - Virlere daal variable. I li) $\mu \mu$ f. per sections.
(:15-Seretevtand lable II.

l.1-

1.2-90 thrna \o, 30 mam.. on $\frac{2}{2}$-inch iron-alug form.

 1.12-8 8 turns Vo. 18 enam.. I inch diam.. I inch long.

1.for Sin text.
l.16- J'arasitio suppresaser- Ipprox. 5 turne Vio. 16 ,
 resiztur (see sertien on parasitie -upprazion).
(R_{1} - Selenium rectifirer.

1. I_{2} - Imphenol 8:3-2:2R connector.
fa- Imphenol 8:3-I I coav connector.
II I_{1} - 2-inch square meter.
$\mathrm{HV}_{2}-3$-ineh square meter.
RHCa- \ational R-I. 1 I.

$S_{2}-1$ ramie rutary swith: 3 weetions, 1 cirenit prer section. I prestions (A entralah 251!).

${ }^{\prime} 1{ }^{\prime}$ - 6.3 -solt 6 amp, filament tran=former.
' F : - 6.3-solt 1.2 -imp, filament transformer.

TARLE 6-I					
Band-pass Coupler Data					
('mil	Band	Turns	IVire	Sparimg	$B N \mathrm{H}$
1.3	80	41	30 entur.	1/4"	
1.4	80	37	30 entim,		
1 In	11	21	$30)$ enam.	7/16"	
1.\%	4)	16	216 enthi.		
1.7	20	1.7	$2 t$ tinned	$9 / 16^{\prime \prime}$	3012
1.8	20	10	21 timmerl	P/10	3012
140	1.:	9	$2 . t$ timmed	1/2"	83012
1.10	1.5	f	24 timat	12	3012

TABLE 6-II						
Approximate Pi -Section Values for Resistive 50-or 70 ohm Loads (80-meter band)						
1njurt		$\begin{gathered} \text { Tank } \\ Q \\ 10 \end{gathered}$	${ }^{\prime}$		$\underset{\mu h .^{2}}{I_{13}+I_{14}}$	Output $\mu \mu f_{1}{ }^{2}$
Volt:	Mit.		$\mu \mu f_{\text {\% }}{ }^{2}$	1 1/4s		
(in)	140		201%	600	12	1000
400)	12.5	10	2015	(i)0)	12	1000
1000	1.00	11	1.00	1000	17	1000
1.000	1.00	10	100	1.500	≥ 3	500
2000	1.00	14	10)	2000	23	70

1 suggested for Novice operation.
2 One half this value for to meters. whe quartar for 20 moters, one sixth for 1.3 meters, amb one vimhth for 10 moters.

 in the upper left hand cormer. R_{2}. Whe hias-adiusting petmationeter for the w. switeh cirenit. is to the left of the
 Fiblanent and bias transformere are th the right. All power wiring io done with shielded wire.

vide better ventiation. The dimensions of the corcosure are approximately 10 inches square be 7 inches high, but may be varied somewhat to accommodate the eomponents selected.

The multiband tumer in the output of the 57 (i:3 is built into a $3 \times 4 \times$-inch aluminum box (see detail photogriph of Fig. ($0-58$) attached to the amplifier enclosure. A vernier mechanism, such ts the National AN or AVI), or a type AM dial, is recommended. The components are liad out so that, on the panel, the control for the multiband tumer is balaned by the eontrol of the variable inductor, with the control for the input capacitor, r_{15}, central. A turns counter is geared to the shaft of the rotary inductor. (A control with a built-in turns counter, such

Fige. 6ons -a lige multiband tumer uned between the driser amil final amplifier is honsed in a $3 \times 4 \times \overline{5}$ inclo the tastened to the side wall of the amplifier emelosure. The $5: 603$ and 6131.: have been remesed in this vien.
as the Groth-R. W. Groth Mfy. Co., 10000 Franklin Ave., Pranklin Pk., Ill,, may be suhstituted.) In Fig. (i-ing, the $4-65.1$ is in the lower righthand corner of the amplifier enclosure, with the plate r.f, choke betwern it and the rear of C_{15}. The mien output eapacitors ture stacked in the opposite comer, close to the selector switch, $S_{3} . L_{15}$ and ('16 are against the rear wall, close to the cosx output comertor.

Underneath the chassis, the band switeh is plaeed so as to allow room between it and the end of the chassis for the 6.1166 and the 20 -meter 6 C 4 and their handpass couplers. The 40 -meter and 15 -meter 6 Cts , and their conplers are similatry placed on the other side of the switch. L_{2} and the $6: M H 6$ v.f.o. tube are forward from the

Fig. 6.59 - Power-supply circuit for the 1.6 .5 trancmitter. S_{1} is an antomonile innition switch. controlling all primary power, $s+$ turns on line soltage to the transmitter filament transformers and also turns oa the low-voltage supply. S_{2} turns on the 866 rectifier filaments, and s_{3} controls the high-boltage transformer.
6. K6. The cathode follower is in front of the 4() -meter $6(4.1$ with the 12.107 to the left in Fige, 6 -5.5. In this view, the 5 ofies is in the rear
 in front. The dilligite remper tube is betwern the amplition enclosure and the pand. near the inductor thems combter. The ol32 Vla buhe is plated mulememath the chassis, on a bearket to the reat of the grid millianmerter. The excitation control. R_{1}, is plamed an as to balamere the cont mol for the hand switeh on the patacl. T_{1}, P_{2}, the solenium rectifier, and the components for the kever bitassupply filtor are assembled against the right-hand end wall of the chassis in Fig. (6-57.

All power wiring is done with shieded wire, by-passed as described in the chapter on BCI and TVI.

Band-Pass Couplers

The band-pass complers shown were constructed using the air tuning capanitors and mountings from discarded i.f. transformers. The arrangement shown in the detatil photograph of Fig. 6-60 may be duplicated closely using a poly-styrene-strip base and midget air trimmors. The coil forms shown are polystrente, 1 inch in diamoter and 11,2 inches long but Nillen type \$5000 may be substituted. I hole is drilted through the botom of the form so that it cath be mounted on a spacer or brawed betwern the two capacitors.

Winding dimensions are shown in Touble (i-1. The primaty windings of the 80- and fo-moter coils are wound at the bottom ende of the forms. and cemented in plater with oroil doper. Difor the dope has dried. the rest of the coil form should to sprinkled with taldom powder, atol it laver of erellophane tape womed around it, with the whesive side out. (On the stirky side. the secondary turns should be wound firmby, but not so tightly that the winding counot be slid atong the form for adjustment. The ends of the seroondary winding are hed in place with coil dope applied carefully so that the serombary does not beeme cemented to the form so that it cimnot he moved. The conds of the windings shombl now be sulderod to the caparitor treminals, completing the assembly.

The 20-and 15 -meter couptres are mate from Barkor and Williameor Minidutors, bengths of Which are slid inside the coil forms. The furms should first be slit with a line saw to promit the ands of the windungs lo eome out ribdially. The primary windings should be inserted in the form first, and the seoomdaries slid in and out as needed for adjustment.

V.F.O. Construction

The remote fomed rireuit for the v.f.o, is ansembled in a $5 \times 6 \times(9$-indin aluminum box. The National ACN dial is centered on one of the eovers. The inductor is eemented to a strip of polystyrene, and the strip is supported on sections of polvstyrene rod that have been tapped for marhine serews at eath end. Air trimmers

C'a and C_{3} are mounted on a panel so that they may be adjusted with a serewdriver through holes in the cond of the box. The frequeney-range switch, s.s. and the eons output commedor. . f_{1}, are momented at this end.

The bex is fitted with shock momonges attached to a hase mate of 1 wo $7 \times 9 \times 2$-imbh rhassis, bottom to lottom, and fitted with ant aluminum pabel. The base is used ase a control box, and contans the switches and indieater lamps shown in the power-suphly diagram of Fig. (i-is). The matin power suiteh is an atomobile ignition switeh. With the key removed, the transmitter cannot be turned on, A terminal strip at the rear provides combections to power supple and transmitter. A length of R(i-22 U' two-eonductor cable is used between the output connector of the tuning unit, and the input connector at the transmitter.

Fig. (6-5!) shows the cireuit of the power supply ased with the transmitter. It was assembled on a $1: 3 \times 17 \times 3$-inch steel chassis.

Pi-Section Values

Table 6-II shows approximate values for maximum rated plate current for e.w, operation at plate voltages ranging from 600 to 2000 volts on 80 -meters. The ${ }^{\text {bin }}$-volt, 125 -ma, rating provides 75 watts input for Noviee operation. To maintain the samo values of () at the higher frequencios, the valuas of caparitanee and indeetance shown in the tal)le should be cut in half catch time frequency is doubled ($1 / 2$ for 40 , 1 ifor 20 . $1 / 6$ for 15 and $1 / 8$ for 10). ($n 128$ Me., and possibly on 2! Me., minimum circuit capacitance may make it impossible to reduce the Q

Fig. (6-60-'This photograph shows the method of assenbling the band-pass couplers as described in the text.
to the values indieated by the table. This will mean that less inductance and greater output raparitance will be required.

If 80 -meter operation over the complete range of imputs shown in Table 6-ll is desired. the imput eapacitor (ris must have a voltage rating for the highest voltage (20 (0) volts) and sufficient caparitance for the lowest voltage (200) $\mu \mu \mathrm{f}$.). (Johnson 250F20 has suitable dimensions.) (Otherwise a rapacitor of voltage and caparitance ratings shown in the table may be used.

The output raparitancer solector switch. S's. has 10 contarts. The output capacitane required over the voltage range of 600 to 2000 volts for all bands will be satisfactorily appoximated if $50-\mu \mu \mathrm{f}$, eapacitors are romered to each of the first six positions, $100-\mu \mu$ f. units to the next two positions, and $250-\mu \mu$ f. units to the last two positions. It should be possible to compensate for minor departures from the nereded values by readjust ment of the other two elements. ('is and L_{14}. To take care of operation at maximum power input, the output capacitors should be mica units rated at 2 onch volls, such as sprame type SFM.

Tuning U_{P}

After all wiring is cherked, the oscillator tube and rathode follower are plugged into their sockets, and the exeiter power turned on, If all is wedl, the signal will be heard in a rereever, in the vieinity of the 80 -meter band. Next, S_{1} is oponed, (${ }^{1}$ set at minimum eaparitance, and C_{2} adjusted until the signal is hemed slighty above

the signal should be found in the viemity of 3.75 Mr. Sh should now be closed, and ('s adjusted until the signal is heard at slightly helow 3.5 Mr . some slight proming of the tumed eireuits maty be neecesary. but it should the pessible to get the asidlator to operate from below 3.5 Mr. to ower f.0 Mre, with a slight overlap aromen 3.7.5 Mc.

Now the hand-pass eomplems ran be tumed. Sed the batedswite hat the 80 -metere pesition, the exeritation control at zero, and phag in the rest of the tubes in the exeiter sertion. Temporatily ground the cathode of the s-atis, and connere it highresistance voltmeter aross the 50 (i3: grid-lew k resistor. All hand-pass-roupler seoondary windings should be pulled as fir atway from the primaries as possible. The v.f.o is now set at 3.5 s Mr., and (${ }^{6} 6$ and ' $^{\prime}$ ' taned for maximum indication on the voltmeter. The secondary winding. /a. should now be moved toward $/ 2$. until the spaceng is that given in the eoil table. This spacing should be set very carefulty in all cases, sineer a small deviation will result in a chatnge in the hand-pass chatacteristie. It is also to he noted that the coupler tuning capawitors are to be adjusted only. When the windinge are at the maximmo spacing.

Next, move the high-resistame voltuneter to read the drop across the didkid grid-leak resistor and set the v.f.o. frequeney at 4 Me. Now adjust La for maximm grid voltage and suing the v.for. through its entire rauge. If the grid voltage ineromes when the fregnemer is lowered, deremese the inductanere of L_{2}. Correet adjustment of L_{2} will result in mearly eonstant drive fo the batiof throughout the entire v.f.o. rimge.

The rest of the band-pass emplers ran now

Fip, (0 - 01 - 'The v.f.t. remote tuming unit aml centrol box. 'I'he tuning winit is emelomed in a $\overline{3}$ ン 6×9-inch allami-
 The controdennit enclosure is made ul of ino- $-\times 9 \times 2$-inch aluminum chats. sis. bettom to button. The range. control switel and remote cable connector are mononted on one erod of the tuning unit. A fuaf holder projects from the end of the control unit.
be adjusted, following the procedure deseribed allowe for the 3.5 -Me coupler, and with the voltmoter onve again reading driver grid voltage. The fo-meter compler should be adjusted with the v.f.o, set at $3,6 \mathrm{M}$, ., the 20 -moter coupler should the adjusted at 3.6 . Me., atme the liz-meter coupler at 3.5: Me. It should be possible to tume through any of the bunds with less than ten per cent variation in drive to the 3 afis).

The Multiband Tuner

The multiland tumer catn now be cherked. with the 4 -65. C in its sorket, and heater voltage applied. It is suggested that it grid-dipper be used to aseertain that the grid direuit is tuming to the proper frequency and not to at harmonic. (irid tuning-dial settings should be logged for future reforenee, and note taken if two bands resomate at the same dial setting. If, for example, the 80and 20 -meter resontare points oecur at or hrat the same dial setting, pruning of one of the eoils will be necessary. For best separation between the two frequency ranges, the low-frequency inductor, L_{11}, should be adjusted so that $\quad 3300 \mathrm{ke}$. comes close to the minimum capacitance of C_{14}, and the high-frequeney inductor, L_{12}, adjusted so that 1 . Ale comes elose to maximum caparitance. The dial settings in this unit were !5, 2:3, 82, 15, and 5 , resperetively for the $80-, 10-, 20-, 15-$, and 10-meter bands.

Adjustment of the keyer can now be made after removing the ground from the 5763 rathode. R, is advaneed toward its positive abl (ground) until the voltage at Pin 1 of the 12.16 is -15 volts. The keying charateristic can be adjusted
to individual lasite later by adjusting the value of C_{17}.

Pi-Tank Adjustment

The final amplifier is best tested at rechuced plate voltage. Wither a 5 orohm dimmy load or an antemat known to present a resistive load of $\mathbf{5 0}$ ohms should be used for initial tune-up. Adjustmont of the exatition eontrol, R_{1}, will provide the correct gride eurrent of 15 man to the fimat. With the bandswiteh set in its 80 -meter position, and the grid tank resonated. the plate tank (:aptaitor, Cis. should be set at athout !e per rent of its maximum value, and the rotary inductor set at near-maximum inductance. A grid-dipper could be used hore to cestablish a near-resomanee print. The plate voltage should be applied. and C'15 quickly tumed for a plate-cumrent dip. If an appreciable ehange in capatatance is necessary to establish resonamee, a now setting of the variable inductor shombld be tried, until the plate cirenit resonates at 3.5 Me with almost all of the capacitime of C'15 in the cireuit. Full plate voltage can now be applied, and loading adjusted for a plate current of 1 en mat. Now is a good time to cherek the $t-65.1$ sereen voltange, whirh should be 250 volts.

Adjusting the final amplifier on the ot her bands is carried on in much the same manner, setting the final tank ceuparitor to approximately the correat value (sere Table (i-Il), adjusting tha rotary inductor for resontaner with a gride dipper, and finally resonating the rirenit with power on. All settings should he logged for future reference.
(From QST', October, 1955.)

Pig. $6.62-$ lkear vien of the tuning unit showing the mounting of the indugetor on polyaly reme sheet and roxls and the arrangement of other erompmotents. Ciramic trimburs, mounted on the insulating panel at the left. were later replated with air trimmers (C_{2} and (3).

A 500-Watt Multiband V.F.O. Transmitter

Figs. 6-(i;3 through ($\mathrm{i}-\mathrm{T} 1$ show the eirevit and other details of a 5000 -watt tramsmiter with w.f.o. frequency control, capable of operation in any band from 3.5 to 28 Mc . It is completely shiedded and all tuning adjustments, including band changing. may be done with the panel eontrols.

As the circuit of Fig. (6-tit shows the v.f.o. users a 5 -fis in a Chap cireuit operating over a range of 3330 to 4000 ke., split into three handspread ranges, tuned by C' which is fitted with a malibrated dial. These rauges. selected bey proper setting of C_{2}, are 3500 to $3750 \mathrm{kc}, 33370$ to 3405 kc . (for 11-meter operation) and 3750 to 4000 ke . for 75-meter phone work.

The oscillator circuit is followed by two isolating stages. The first is a 6 C 4 comnected as a cathode follower, which is very effertive in reducing reaction on the oscillator by subsequent stages. Since the output of the cathode follower is quite small, it is followed by a 5 otis in an amplifior fixed-tuned in the 3.5 -Mc. region.

Frequency multiplying to reach the higherfrequency hands is done in the next two stages, the first using a 5763 , while the socond employs the larger 6146 to drive the final amplifier. These two stages are tuncd with multiband tumerscircuits which have a tuning range that includes all nevessary bands. Thus no switching or plug-in coils are needed. Neither of these two stages is operated as a straight amplifier. exoept on 80 meters. Frequency is doubled in the $61 \$ 6$ stage for output on 10,20 and 10 meters, and tripled for
output on 15 meters. The 5 bibi stage is operated at 3.5 Mte for 80 - and 40 -meter output, doubles to 7 Me. for 20 - and 15 -meter output, and quadruples to 1 : Me for 10 -meter output. Excitation to the final is adjusted by the potentiometer in the sereen circuit of this stage.
The 813 in the final amplifier also uses a multiband tuner to cover all bands. This stage is ahways operated as a straght amplifier and a neutralizing circuit is provided. The only switching neressary is in the output link circuit in changing between high- and low-frequeney hands, Loading is adjusted by C_{10}.
V_{8} and V_{9} are used in a differential break-in keving system which automatically turns the v.f.o. on before the andias cathode is closed by the kever tube V_{9}, and turns the v.f.o. off after the 5itis cathode cireuit has been opened. This provents any chirp in the oscillator from appearing on the output signal of the transmitter.

I in)-mat. meter may be switehed to read plate current in the exerter stages, grid current in the driver and final-amplifier stages, or sereen current to the 813 . The $1 / 2$-ohm resistor in the 6146 highvoltage lead multiples the meter-seale reading by three, while the l-ohm shunt in the $81: 3$ soreen lead increases the fall-scale reading to 100 mat. A separrate on (N)-ma. moter is used to eheck plate current to the 813.
The tworereuit rotary switch, s_{1}, is used to hats the sereens of the 6146 and $81: 3$ negative while tuming up the preceding stages and setting

 3_{2} and Gio. Power toggles are below at the enoter spaced I inch apart. The calibrated v.fo. dial (National s(iN) for (i) is at the center, with the excitation eontrol to the left, and the dial for fig to the ripht (both National type DII). National (\&'A chart frames entine the rectangular opmings for the revesime meters, 50-mat. to the left, Simema. to the right. The shicleting enclosure is huilt up using aluminum amgle, merforated sheet (also used for the buttom plate), and sheet-metal sirews.

Fig. 6-64 - The components are assembled on a $16 \times 12 \times 3$-inch alumitum chas-is. The meters are housed in $4 \times 4 \times 2$-inch lomen, the b.f.l. modmene is $6 \times 6 \times 0$ while the ben enchesing L_{3} and $L A$, to the right, meanures $3 \times 4 \times 5$ iuthes. The , Na-

 2(1)K.T'5) is mosumed on a metal l, rachent fastaned to a stator terminal of C C. ($C i 2$ (a
 throngh A. I.h.f. pararitic chake Loto emo xiate of 6 turns lo. $16.16 .1 / 4$ ind diameler, $11 / 4$ inches lomes. R_{1} is made up of lise followh
 nerted acroses 3 turns of L in. The 813 somet is monnted on ${ }^{1}$-inch pillars oser a $21 / 4$-inch hole in the wasem. Along the ratar apron are
 nals. anc: power-inpu! connector, two ate onderts. how-ooltare input terminalo. key comertor, and R_{4}.

the w.f.o. to frefuency. In the first position, both screens are biased: in the seeond josition, only the 813 serem is biased, while pensitive voltage is applied to the sereen of the $61-46$ so that this stage may be tuned up. In the third and fourth positions, positive voltage is applied to both sareons, but in the last position it is applied to the 81:3 sereen through an audio woke so that the stane maty be sereen-plate modulated.

Two bias rectifiers are included to supply fixed bias to the $61 . t 6$ and 813 , so that the plate courrents will be cut off during keying intervals. Segrative blocking voltage is also provided for the keying system, Both reerifiers operate from at single 6.3 -volt filament thansformer eomerted in reverse. The hias transformer T'y is operated from the 6.3 -volt winding of the filament transiomer T_{1} 。

Two ace outlets are provided for connerting the primaries of extermal high- and low-voltage
supplies into the rontrol circuit consisting of three togerle switches. B_{1} is a ventilating blower that operates when the filament switeh is elosed.

It is highly impontant that the v.fo. box make good contant with the chassis: otherwise the v.f.o. mat he adversely afferted hy ferdbate from the adjacent final tank whot working on 80 meters. Mounting semews spared an inch around the bottom lip of the box, and conerspondingly in the top cover, should eliminate this completely.
$L_{1}(35 \mu h$.) is a Bs ll 80)-B(1 a coil with the link and base removed. L_{2} is describod over Fign. (i-71.
 while $L_{4}\left(5.3 \mu \mathrm{~h}\right.$.) is 30 turns of $3011 . L_{5}$ ($1.5 \mu \mathrm{~h}$.) consists of 11 tums of No. $16,3 / 4$-inch ditmoter, $1: 3 / 16 \mathrm{inch}$ long. $L_{6}\left(8.3 \mathrm{~m}_{\mathrm{h}} \text {.) has } 29\right)^{2}$ tums of
 of 'finch ropper tubing, 2 't inches inside diameter, $23 / 4$ inches long.

ris, 6-6.5 - The s.f.o. box is pared with it. front wall $1^{3 / 1}$ g inches bath of the pancl, central on the elamsis. L_{i} is monnted on 2 -ind erones to center it in the bon. The shaft of Co (Cardwall Pl -(0)OII mime lant rotor plate) is central ont the low front, at a height to mateh that of Co. C.2 (C)ard. wroll Plefore) is momoted, forwon (s) and whe roil, shaft downward. to engage the risht-angle driseluelow. C:3 (Cardwall Pls(200) is similarls inementerd, to she left of 6%. Cirmimed te the left are l_{4}, l_{2}, and 13 in
 the center, Ferdalirenghas in the hottom of the eoil hen to the rear conmert 1 . 3 and Lat to (at ledow. 'The sentilating holes are
 pared with ite ahaft $2 \frac{1}{4}$ imelnes from the end of the chassio, and its rear emb plate 15 inches in from the hach enges, The theree fred-theroughe to the laft commedt l.s to . . 2 . This photogeraph was made before the in-
 and 1 :

Fig. 6.66 - All rapacitances less than $0.061{ }_{\mu} \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All ummarked by-passes are dish ceramic. All if

 h_{1} is the semtilating fan motor.

Fig. 6.67-Circuit of a suitable power supply for the 813 transmitter.

B\&W 3905-1 strip coil as follows: Unwind one full turn from one end. Then count off $91 / 4$ turns, clip) the wire without breaking the support bars. Bend the last quarter turn out. This portion is L_{7}. Remove the next $3 / 4$ tum to make a $1 / 4$-inch space between L_{7} and L_{8}. Count off 10 turns more, cut the remainder of the coil stock off. Unwind the last turn on L_{8}. Tap, L_{8} at the 8 th turn from L_{7}.

Adjustment

The diagram of a suitable power supply is shown in Fig. 6-67. The low voltage supply should deliver a full 400 volts under toad, and h_{3} shouid be adjusted eventuatly so that the voltage to V_{B}, V_{3}, V_{4} and V_{5} is 300 under load.

The v.f.o. tuning ranges should be adjusted first. Set S_{1} to the first position. Adjust R_{2} to zero and turn on the filaments and low-voltage supply. Set C_{1} at 95 degrees on the dial (near minimum caparitance). Set C_{2} aecurately at midseale. Listening on a calibrated receiver, adjust C_{3} until the v.f.o. signal is heard at 3750 ke . Tune the receiver to 3500 ke., turn C_{1} toward maximum capacitance until the v.f.o. signal is heard. This should be close to the lower end of the dial. By carefully bending the rearmost stator plate of C_{1} backward, it should be possible to adjust the range of 3500 to 3750 kc . so that it covers from 5 to 95 degrees on the diai. Some slight readjust ment
of C_{3} may be necessary during the plate-bending process to keep the band centered on the dial.

Now set C_{1} at ahout 15 degrees. Set the receiver at $37 \overline{50} 0 \mathrm{kc}$. and reduce the caparitance of ("2 until the v.f.o. signal is heard. Then tuning the receiver to 4000 ke., the v.f.o. signal should be heard when its dial is set at about 85 degrees. Mark this setting of C_{2} accurately. If it is desired to center the 11 -meter band on the dial, set C_{1} at midscale. Increase the capacitance of C_{2} until the v.f.o. signal is heard at 3387 ke. Mark this setting of C_{2} also arrurately.

When the v.f.o. frequency ranges have been set, tune the v.f.o. to 3.6 Me, and adjust the slug of L_{2} for a maximum voltage reading across the 22 K grid leak of V_{4}. A high-resistance voltmeter should read about -25 volts.

Readjust C_{2} to midscale and turn the meter switeh to read 6146 grid current, and turn up the

T'uning Chart for the 813 Transmitter					
Output Band (Mc.)	Dial ${ }^{1}$	$\begin{aligned} & C_{4} \\ & \text { Band (MC.) } \end{aligned}$	Dial 1	$\begin{aligned} & \text { ('s } \\ & \text { Band (.Mc.) } \end{aligned}$	$\begin{gathered} C \cdot \\ \text { Dial } 2 \end{gathered}$
3.5	8.8	3.5	6.1	3.5	77
7	8.8	3.5	0.5	7	9
14	1.5	7	9.5	14	82
21	1.5	7	3.7	21	26
27-28	4.7	14	1.8	28	7
${ }^{1} 10$-division dial - 10 max. capacitance. ${ }^{2} 100$-division dial - 100 max. capacitance.					

excitation control to give a reading of 2 or 3 ma . Resonate the output tank cireuit of the 5 atitu frequeney multiplier at 80 meters (near maximum (aparitanero as indicatod by maximum (6146 grid courcont. Thore sto the seromed position so that sereren voltage is appliod to the 6146 but not 10 the 81:3. Then the metor switeh to read bithi plate curvent and resonate the 61 th ontput tank remenit as indiated by the phate current dip near maximum wapeitance. Tuming the metorswitch to read 81:3 grid current, adjust the excitation (ontrol ta give a reading of about $2 \overline{5}$ ma.

Before applying power to the 813, the neutralizing should be adjusted as described in an carlier seetion of this chapter. After neutralization, reduced plate voltage should be applied. I'late voltage can be reduced by inserting a 150-watt lamp in series with the high-voltagetransformer primary. A $3(0)$ (watt lamp connerted across the output connector can be used as a dummy loat for testing. Make sure that S_{2} is turned to the low-frequency position. This position is used for 3.5- and $\overline{-}$-he operation. The other position is used for 14,21 and 28 Me. Turn s_{1} to the thid position to apply sereen voltage to the 813 , apply plate voltage and resonate the output tank cireuit (near maximum capacitance) as indieated by a dip in plate current. Full plate voltage may now be applied and C_{10} adjusted to give proper loading (220 ma, maximum), Adjust the expitation control to give an 81:3 grid current of 15 to 20 ma . Tuning up on the other bands is done in a similar manner, by adjusting the tuners in each circuit to the correct band to obtain the desired multiplication. The tuning chart shows the approximate dial setting for cach band, but each should be checked with an absorption wave meter and the setting logged for future reference. The voltage-rurrent whart shows typiral values to be experted. The output circuit is designed for a 50 - or 70 -ohm resistive load. For other loads, a link-coupled antenna tuner (soe transmission-line chapter) should be used.

In the kever cireuit, turning R_{4} toward ground causes the oscillator to cut off more quickly after the key has been opened.
(Originally described in QST for January,

Fif. 6-68 - Close-up showing method of mounting L. $_{7}$, L_{8} and Las. Whe stator rools of fis are tapped $6 \cdot 32$ for threaded studs hy which the l-inel come insolators are attarhed. 'Ihe bracket attaching C_{8} to the stator of C '. is at the lower right.

1951: with modifications in the issues for Jume, 1!5:4, June and ()etolyer, 1956).
Vollage-('urrent 'hat for the 81.5 T'ransmitter

Tube	$\begin{aligned} & \text { Rand } \\ & (\text { Mc. }) \end{aligned}$	Cirid (rolls)	$\begin{aligned} & \text { Cirid I } \\ & (m a .) \end{aligned}$	(irid (tolls)	$\begin{aligned} & \text { Girid 2 } \\ & \text { (ma.) } \end{aligned}$	l'uthode (rolts)	Plate (rolts)	Pate (ma.)
V	35	-16	-	150	-	0.6	300	-
V_{3}	3.5	-	-	-	-	39	300	
V.	3.5	-18	-	190	-	9	300	35
V^{3}	35	-6it	-	11.5	-	275	300	55
V_{5}	-	-61	-	115	-	27.5	300	55
V_{6}	14	-5N	-	170	-	34	300	$\times 5$
V_{6}	3.5	-75		170	-	-	100	55
V_{6}	-	-76	*	170	-	-	400	63
V 。	11	-80	*	18.5	-	-	100	87
V_{6}	21	-810	*	195	-	-	400	90
V6	28	- 2.5	-	175	-	-	100	105
I:	3.5	-16.5	17	400	40	-	2000	220
V_{7}	7	-185	18	400	40	-	2000	220
V	14	-190	19	400	35	-	2010	290
V_{7}	21	-190	21	800	35	-	2000	220
V_{7}	28	-190	19	400	10	-	2010	220

[^0]

Fig, 6.69 - Detail view of the expiter sere tion, The neutralizing lead from Ci2 comos through the rhases at feed-hrongh d. R_{4} on the heyer circuit is in the lower right corner. R_{3} is near the lower teft corner.
 large elearance lowle in the lirachet.
 Prame, the pancel and the ahminumb box are held together, as show in A, by the hardware supplied with the CFA. B shons a mezur (Triplett Mondel 32:-1), its insulatern mounting ring, and the rear cover of the thex. The meter assembly is slipped into the metal box after the latter has been attaehed to the rear of the painel. Shielded meter leads enter the bottom of the hox through a rubber gromnet. The shield hraid should be londel to the outninle of the aluminum came at the point of entry.

Fig. 6.71 - The panel drops 316 ineh below the bottom edge of the chassis. The National RAD right-angle drive for C_{2}^{2} is at the center. The other controls along the hottom are placed $11 / 2$ inches up from the hottom edge of the chasis, and the corresponding components mounted so that their shafts line up with the controls. Panel bushings should be provided for the shafts of (io (Cardwell PL-7006), and the right-angle drive: panel-bearing shaft units for C_{4} and C_{5} (Cardwell PI, (0) 13), and S_{2} (Centralal, IR nafer on P-121 index assembly). The 6146 is mounted on a $.5 \times 21 / 4$-ineh bracket between C_{4} and C_{5}, whose shafte are fitted with insulating couplings, C_{5} is mounted on spacers, while C_{4} is monnted on ita side on a liracket. T_{1} (Triad $\mathcal{F} .18 . \mathrm{N}$) and T_{2} ('Triad $\mathcal{F} \cdot 14 \mathrm{~N}$) are monnted on another brachet at the center. I_{5} and L_{6}, at rizht angles, are soldered betwen the terminals of C_{5} and Pin 4 of the 813 soeket, scen through the $21 / 4$-inch hole in the ehassis. (10 and S_{2} are mounted on small brackets. T_{3} (1 'riad $l^{\circ}-23 L^{\prime}$) and the
 bes seen between the shaft of C C and the shielded power nires to the left. All power wiring is done with shielded wire (Belden 86.36, Birnbach 1820, or shielded ignition wire for the 2000 -volt line; Belden 8885 for the rest). $I, 2$, behind S_{3} (Centralab, 141), is a National XR-50 slug-tuned form close-wound with 93 turns No. 36 enameled wire.

A Remotely-Tuned V.F.O.

Hhe v.f.o. shown in liges. (i-ite through (i-it is at series-tumed Colpitts ((liapp) cireuit buift in thon seretions. The large romparthent comtains only the tuned eireuit (Fig. (i-7:3.1), whild the other contains the satio3 tube and at pair of (olse volt itge regulators (Fig. (6-73B). The two are emnered with a piece of double-sondurtor enaxial (able that may be of any length up to 10 feret or so. The advabtiges of such at sistim are, first, that the tuned eirenit is well removed from hatgenerating equipment, including the oseillator tube itself, and seromb, that it forms a comvenient means of remote frequency control. While this arrangement was designed primarily ass a driver for a frequeney-multiplier unit, in many cases the existing cryatal-oscillator tulne of a transmitter can be substituted for the serond
 5-(i33. If the gird-plate crystal-oscillator circuit is in use in the transmitter, it shouk be possible to feed the tuned direnit direetly through the 2 conductor cable to grid, cathode and ground without modifying the crystal oscillator cireuit in any way. R(i-22/V shielded twin conductor is rerommended for the comerting cable.

The oseillator oprates in the 3.5-Mc. region and the bindspread tuning system, consisting of ('1, Ce and C_{3}, is designed to cover the desired frequency ranges in three stems, when ('1 and cos are altered as dosoribed under Fig. 6-7:3. With one setting of (2 , the tuning cabluritor' (1 spreads the range of 3510 to 3750 ke , out over 95 per eent of the National $A C N$ dial, Since this fundamental range covers the most-used 80 -meter c.w. frequencies, and harmonies of this range sover abl of the higher-frequency hands, excepting only.
 fier for ! 10 per erent of abll operating. By shifting the setting of (ce the range of 3750 to toro ke , is spreal out ower abont is per cent of the dial. The 11 -motrer latud is provided for be a thitd sotting of (\%

Tuned-Circuit Unit

 athminum box. An enclosure of this size is nerded not only toprovide monating for an adequate dial, but ahso to permit sparing the eoil well atway from the siders of the box an that its () will not be drastically redured by the shichling in its field.

The dial is first mounted erentratly on one of the $5 \times$!-inch sides of the box. The tuning capaciter. (*1, is then roupled to the dial and the mounting step at the rear of the ratpacitor is supported against the bottom of the box with a heaver mefal spacer eat to fit. The hand-set capacitor, (2, is shat thole mounted 1 inch in from the left side and bottom of the box. This necessitates drilling the shaft hole through the edge of the dial frame. f_{3} is soldered direetly arooss the terminats of ('s. The knol) is a National Illes- 5 .

The 13 \& 11 coil is removed from its mounting by first drilling out the rivets in the plug-in base, leaving the motal angle pioces at each end attached to the coil, and unsoldering the leads from the pins. The link winding is carefully removed by snipping the turns and prying the spateing blocks loose with a knife. ()ne furn is removed from the eroil itself. The coil is then mounted on National (ds-1 pillar insulators so that it will be centrally located in the hox in both dieections.

The three-eontart jack for the remote-tuning
 voltage-regulator tubes. "Ihe two terminals on the smaller box are for output and bey connections. The power contneetor is at the end opposite the cable connection.

in one of the covers, below the shelf level, and the power contrector is mounted at one end and the jack for the coax cableat theother. The adjustable resistor is mounted on top of the shelf, alongside the tubes, on the same side of the box as the keying and output jacks. This makes it possible to remove the tubes and adjust the slider by removing the blank cover of the box. The resistor is supported between two small angle pieces
Fig. 6.73- Cirrnit of the remotely tuned v.f.o.
All caparitances less than $0,001 \mu$. are in $\mu \mu \mathrm{f}$. All
 Silver mica. All resistors are ${ }^{1} \frac{1}{2}$ watl unless otherwise spereified.
 rear rotor plate bent: see text.
C_{2} - Ilammarhand $11 F=3.3$, last stator and hast two rotor plates removed.
R_{1} - Adjustable slider.
La-3. ph. - 34 turns No. $18,15 / 8$ inehes long, $11 / 2$ inches diam. (13 \& II JELS-RO, I turn and link removed).
$\mathrm{J}_{1}, \mathrm{~J}_{2}-3$-contact female jack (Amphenol i8-1C(3F).
J_{3} - Key jack - phune input jack.
J_{4} - Insulated phome-tip jack.
J_{5} - 4-contart male quntector (C.-J P-301-AB).
RFC, RFG: Vational R-50.
Nore: RC,-22 1 remote cable is terminated at each end with tmohenol 91.MPM-36 male eonnector to fit I_{1} and J_{2}.
cable is set in the back of the box, and C_{4} and C_{5} are soldered to its terminals.

Tube Unit

The photographs show the essential details of the assembly of the tube unit. The enclosure is a standard $2 \times 2 \times 1$-imeh aluminum box. The Hree tubes are mounted on a shelf spared 1! 2 inches from the top of the box. This dimension is rritical if the tubes are to be removed without difficulty. The keying ind output jacks are mounted
joined with a piece of threaded rod (or a long 6-32 serew) through the resistor form.

All wiring, with the exception of the connections to the keying and output jacks and the cable connector, can be done before the shelf is placed in the box. This includes connections to the power connector which mounts from the inside. In the bottom view of Fig. 6-76; the plate choke, $R F C_{2}$ is to the lower left, soldered between Pin 6 of the $576 ; 3$ sorket and I'in 5 of the sorket of the first 0132 regulator. The cathode choke, $R F C_{1}$, is above, with one end fastuned to l'in 7 of the 5763 sorket, while the other end is left free until the cover plate carrying the key jack is ready to be put in place. A $0.001-\mu \mathrm{f}$. capacitor is soldered direretly : across J_{3}. lacads of proper lengt h are made for the jacks and cable connector, and these connections cat be made after the shelf hats been put in place, and just before the cover is put on. Care should be used in plating the tubes in their sockets, since there is little height to spare. If necessary, the tips of the tubes san be run up through the ventilating holes in the top of the box to allow the pins to clear the sockets.

Power Supply

Any power supply delivering between 300 and $f(0)$ volts at 50 ma. or more may be used to operate this v.f.o.

Fig. o. 75 - 'lhe completed tube section with the tubes in place. Ven tilation holes are drilled in the top of the hox and in the plate covering the free side.

Adjustment

Adjustment of the frequeney range for maximum bandspread is quite simple. Set C_{1} to a dial reading of 5 . Then adjust C_{2} until the oscillator signal is heard on the receiver at 3500 ke. Set the receiver to 3750 kc . and adjust C_{1} until the signal is heard. If this occurs with the dial set at less than lo(), carefully bend the rearmost rotor plate of C_{1} awiay from the adjacent stator plate, making sure that the plates do not touch and short the capacitor in any position of the rotor. Turn C_{1} again to a dial reading of 5 , reset C_{2} for 3500 kc ., and check agatin for the point where C_{1} tunes to 3750 ke . By proper adjustment of the rotor plate on C_{1}, the $3500-\mathrm{to}-3750-\mathrm{ke}$. range can be made to eover the entire dial, or as much of it as desired.

Phone Band

After this initial range has been set, tune the receiver to 3875 ke . Set (${ }_{1}$ to midseale and adjust (2) until the v.f.o. signal is heard. Then the range of 3750 to 4000 ke. should be approximately centered on the dial with a coverage of about 75 divisions. The range can be shifted one way or the other by simply shifting C_{2} slightly.

11-Meter Band

If it is desired to eenter the 11-meter band on the dial, set C_{1} to midsciale, set the receiver to 3387 ke . and adjust C? until the v.f.o. is heard. All three settings of C should be phanly marked so that they can be roturned to when desired.

The rathode current may vary from about 28 ma. with both ('1 and C ${ }_{2}$ set at maximum capacitance to $3 \overline{7}$ mas. with both at minimum.

In using the v.f.o. the tube unit should be placed close to the stage to be driven and fastemed securely to the rhassis. A short leal should be used to eonnect the output terminal to the grid of the stage to be driven. If the driven stage has a grid eapacitor, the loo- $\mu \mu \mathrm{f}$. mica capacitor shown connerted betwern the output terminal and the plate choke RFC'2 should be omitted. If more than adequate drive is obtained, the sereen of the oscillator tube can be commeded to the junction between the two VIR tubes, rather than to the end of the adjustable resistor ats shown in Fig. 6-73. This unit is not a power device, and adequate gain in the way of a crystabecsillator tube or other buffer amplifier should be provided.
(Originally deseribed in QST, Jan. 1!153.)

-

Fig. 6. ${ }^{2} 6$ - Bottom view of the tube-unit shelf. RFC, is above, RF'(2 he. ow. A $0.001-\mu$ f. eapacitor is soldered to $/ 3$ on the cover ulate. 'The twolcads going to the left solder to the catble cormector. The one to the left above gors ti) J_{4}, the lead to the richt to $/ 3$.

A Single 6146 Amplifier

 show viows of an amplitior using a single of 16 . It is artually a revision of the 7 - 5 -wat Novice nacillator tramsmifter deserihed in an earlier seretion. 'The ribenit is shown in fige (i-78. The input circuit is a eonventional parallel-tumed tank with link empling. However, the inductor is made up in two sertions to atwoid the in-- Pficiencios of shorting turns on a single large "oil is switehing to the higher frequencies. I separate link coil is used with cath of the two grid coils.

A pi-sertion tank cirenit is used in the output. Ther amplifere is keyed in the cathode ereruit. The single milliammeter may he switehed to read aither grid cument or cathode curvent. The $1.00-$ ohm series resistor athd the 22 -ohm paralled resistor form a metor shont that increases the full-scale reading to 2 ind mat. When checking rathonde curvent.

Construction

The layout of components is shown in the
photographs. In the low, the tulne sorebet should be placed fall enough back on the chassis so that the tube will elear the meter. C'z is phaced to the rear to space it about an inch from the tube. It is mounted on an aluminum brateket so as to bring its shaft up to the proper level. I panel bearing is coupled to the shaft.
 terminal strip to the left of the tube sorket (Fig. (i-8:9). The flexible plate leat to the 61.16 is conneeted to RP('3 and ('s at this strip). The v.h.f. parasitic suppressor L_{5} is connerted beI weren this lead and the plate eonnerem.

To the rear of the tube socket is another strip with two insulated terminats. A piece of So. 16 wire about 2 inches long is soldered vertically to earch of the insulated terminals. Then a pioce of "spaghett" is slid over earh of the wires. The raparitance betwern these wires provides

If this is a modifieation of the oserillator transmitter (Fig. (i-38), the erystal sockot may be used as the ingut commertor J_{1}, as shown in Fig.

 should te shielded as indicated.
(1-100- $\mu \mathrm{ff}$, variable (If ammarhand MC-IOO-s).
C: $470-\mu \mu \mathrm{f}$, mica.
C_{3} - Nentralizing capacitor (see text).
C4- 250 - $\mu \mu \mathrm{F}$. variable (H ammarlund MC-250-S).
($: 5$ - 4 (N)- $\mu \mathrm{ff}$. tub, ceranic (Centralab 16-401).
(CB - 820- $\mu \mu \mathrm{f}$. tul), ceramic (Centralab 1)6-821),
Cis - 400 - $\mu \mu \mathrm{f}$. variable capacitor (hroadeast replacement type).
$\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{D}$)isk ceramic.
1 - See text.
J_{2} - Cowial receptactr (SO-239).
J_{3} - Close-cirouil kes jach.
1.1-I, - Ser coil data opposite.
$\mathrm{M}_{1}-0$-2i-ma, d.r. milliammeter, $21 / 2$-inch spuare (Shurite)
RFCi, RH_{4} - 1 or $2 . \overline{2}-\mathrm{mh}$. (National R-50).
RFO, RFG3-I-or $2.5-\mathrm{mh}$. (National R-100).
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - Double-pole 6 -pmition rotary switch (Cen. tralab P(-2(N) 3).
See l'ig. 6 - 10 for suitable power supply.

COIL DATA

The coils $L_{1} L_{2}$ are made from a single length of $\mathrm{B} \& W$ Miniductor stock. Unwind 8 turns from the support bars and using side cutters, snip) of the projecting bars. Snip the unwound piece of wire off about one inch from the coil stock. Next count off 13 turns and bend the 13th turn in toward the axis of the coil and cut the wire at this point. At the cut, unwind $1 / 2$ turn from earh coil, This leaves two coils on the same support bars. Unwind $1 / 2$ turn at the end of the large coil. The 12 -turn coil is L_{1} and the 42 -turn coil is L_{2}. Sintilar procedure is followed in making $L_{3} L_{4}$,
1,12 turns of No, 24, 1-ineh diam, 32 turns per inch (B d W 3016).
L2- 42 turns of No. 24, 1-ineh diam., 32 turns per ineh (B d W 3016)
40-meter tap is made at 25 th turn counting from junction of $L_{2} L_{4}$.
L3-4 turns of No. 20, 5/8-ineh diam, 16 turns per inch (BdW3007).
$L_{4}-13$ turns of No. $20,5 / 8$-inch diam, 16 turns per inch (B \& W 3007).
20 -meter tap is made at junction of $L_{2} L_{4}$.
1.j-meter tap is made $71 / 2$ turns from junction of LILLA.

10 -meter tap is made $41 / 2$ turns from junction of $L_{2} I_{4}$.
$\mathrm{L}_{5}-4$ turns of No. 14. $1 / 4$-inch diam, turns spaced wire diam.
L6 - $51 / 2$ turns of No. 12, 1-inel diam., turns spaced so that coil is 1 -ineh long.
10-meter tap is made $11 / 2$ turns from junction of $L_{0} L_{\sim}$.
L; - 171/2 turns of No. 16, 2-inch diam., 10 turns per ineh (B \& W 3907-1).
15 -meter tap is made 2 turns from junction of $L_{6} L_{7} 7$. 20 -meter tap, is made is turns from junction of $L_{6} L_{7}$. 40 -meter tap is made 9 turns from junetion of $L_{6} L_{\%}$.

Fig. 6-79A - Looking into the amplifier box before mounting the output coils and bandwitch. The meter switch is between the 6116 and the panel. The output capacitor is mounted on a brachet and is turned lov the extension shaft. 'I'wisted wires to the right of the loading capacitor form the neutralizing capacitor.

Fig. 6.79B-- This view shows the arrangement of components in the hox. $L_{\text {a }}$ is supported ly two loge soldered to the end turn and fatlened to l-inch cone insulatore contered $13 / 4$ inches down from the top of the box. L_{6} is supported at right angles to L_{-7} bs soldering its top end to the inner end of LA. 'The twisted insolated wires forming (is ansear immediately in front of 67 near the center.

3

(b-77. ()therwise, a roxxial receptarele similar to J_{2} may be mounted at the rear.

Adjustment

The amplifier requires a driver delivering at least 2 watts. The usual v.f.o. will not drive it without an intermediate amplifier, such as a (iAQ5. However, most crystal oscillators operating at $3(0)$ volts should be adequate.

The first step in the adjustmont is to noutralize the amplifier. The high-voltage line to the plate and screen should be diseomered temporarily at the point marked X in Fig. G-78. The exeiter should be tumed up on the highest-frecuacney band available.

With the heater voltage only applied to the (6146, excitation should be applied, and C_{1} adjusted to give maximum grid current. Then, with siz set to the same band as the grid cirenit, and C_{7} set at maximum eapacitanee, ('4 should be turned through its range. Culess the amplifier is neutralized, there should be a kiek in the grid current at some point within the range of ('4. When this point has been found, the two insulated wires representing (${ }_{3}$ should be twisted togother a bit at a time until the grid-current kick is brought to a minimum.
The high-voltage eonnection to the plate and sereen may now be replaced. A (io)-watt lamp may: be connected across J_{2} to serve as a dummy load during testing. With power and excitation applied, and C_{7} at maximum capacitance, adjust C_{4} for a dip in cathode current. Then reduce ('7 at little at a time, each time readjusting C_{4} for the dip in cathode current. As C_{7} is reduced, the dip in cathode current should become less pronounced and the load lamp should increase in Inilliance. Continue these altermate adjustments until the cathode current at the point of dip is maximum, but do not allow it to exceed 150 ma .
The output cirenit is designed to feed 50 - or 70 -ohm matched antenna systems. For other antenna systems, ansantema tuner should be used between the amplifier and the intenna. With an antemna replacing the dumny load, the adjustment procedure should be similar.
(Originally described in (QST, August, 1050.)

3

Fig. 6.80-The grid tank coils I_{2} and 1.4 are supported on soldering-lug strips to the rear of S_{1} and C_{i}. Poner-supply filter components are grouped in the lower right-hand corner.

A Parallel 807 Amplifier

The amplifier shown in Figs. 6-81 through $6-84$ was designed to cover all bands from 3.5 to 30 Mc . It can be operated at an input of 150 watts on c.w., or 120 watts on phone. However, it will operate efficiently at 75 watts input for Novice use.

A pair of 807s in parallel is shown in the circuit diagram of Fig. 6-83. A pair of 1625 s may be substituted if a 12.6 -volt filament transformer is provided. The amplifier is capacitively coupled to the driver through the $100-\mu \mu \mathrm{f}$. mica caparitor, $C_{1} . L_{1}$ and L_{2} are small inductors which, in conjunction with R_{2} and R_{3} in the serecol leads, are used for the suppression of v.h.f. parasitics.

A combination of battery and grid-leak bias is used. Since the sereens are operated from a lowvoltage source, the fixed hias provided by the hat tery will eut the input to the 80ts to zero when excitation is removed, as in keying preceding stages for cew, operation. When the screens atre supplied through a dropping resistor from the plate supply, as required for plate-sereen modulation, the battery will hold the input to a safe level in case of excitation failure, although the input will not be reduced to zero.

A pi-sertion tank cirenit is used in the output, and parallel plate feed is therefore necessary. Wither a rotary inductor from at surplas $13 \mathrm{C}-37 \mathrm{~s}-\mathrm{E}$ antenua-tuning unit or a Johnson type 229-201 inductor may be used as the variable inductor, $L_{4} . L_{3}$ is a separate inductor for 10 -meter operation, This coil will not be needed if the Johnson variable inductor is used, or if the surplus induc-
tor is used and 10-meter operation is not required.
The required output capacitance is furnished by a combination of a variable capacitor, ($_{5}$. and several fixed capacitors that may be switehed in parallel with the variable. A total of about $2000 \mu \mu \mathrm{f}$. should tre provided. For a contimuous range of capacitance, each of the fixed cababitors should have a capacitance not greater than the maximum of the variable. Is an example, a 50 ()$\mu \mu \mathrm{f}$, variable and three $500-\mu \mu$ f. fived capacitors may be used. A $250-\mu \mu$ f. variathe, on the other hand, will require seven $25(0)-\mu \mu$ f. fixed capacitors and a switch to aceommodate them.
${ }^{5}$ '6 maty be useful in localitios where TVI is bothersome ot one particular v.h.f. chatmel. In this case, the capacitor can be series-resonated to the particular chamel hy adjusting its lead lengeth (represented by L_{5}). It should be connected directly across the output coax comector.

Plate and grid milliammeters are not inchuded in the unit, but are monnted exfernatly on another panel to kerp them out of r.f. fields. /J is provided for plagging in a cord from the grid millianmeter while cherking grid current, The plate meter is wired in permanently through terminals at the rear of the chassis. If desived, the jark can be omitted and the grid milliammeter wired in permanently, also.

Construction

An inverted $10 \times 15 \times 4$-inch aluminum chassis is used as a shielding cuclosure for the amplifier. A standard bottom cover is used as the

Fig. 6.81 - Top sien of K4CDO's parallel $80-$ amplitier. The variable output caparitor is at the upper left with the fixed mica capreators and switch in the corner. The variable inpme capacitor in to the right of the variable inductor. The r.f. choke and by-pass fastened to the rear wall of the chasis are in the plate circuit, The biasing battery can be seen in the compartment to the right which also houses the input eircuit camponents.

Fig. 6-82 - Panel view of the 150 -watt amplifier showing the grid-meter jack, and controls for the pi-section input capacitor, variable inductor, variable output capacitor and fixed-capacitor switch.
top cover. The chassis and the cover are perforated in the area near the tubers to provide ventilation. Iloles in addition to those provided are drilled in the cover and along the lips of the (hassis so that the rover may be secured tightly to the chassis with No. (i) sheet-metal serews. 'Ihe chassis is centered behind a standard $51 / 4$-inch aluminum rack panel.

The 807 s are monnted horizontally from a patition spaming the chassis. This partition is made from a piece of ahminum cut 43,8 inches wide by 10 inches long. Half-inch lips are bent over at the frome end and along the bothom edge for fastening it with mathine serews to the front wall and bottom of the chassis. The partition is spared 2 inches from the end of the chassis. The fubes are provided with aluminum shield caus, and the sockets placed sufficiently far to the rear to leave spatere for the input cetparitor, Cid.

Most of the assembly and wiring to the sockets can be dome before the partition is fastened permanently in place. Pins 4 and 5 of rach socket should be grounded right at the socket. The No. 2
pins are joined by the two resistors R_{2} and R_{3} in series. $R F C_{1}$ is a National R-IONS, or similar model, with an insulating mounting. It is plated rentrally betwen the two sorkets and between the partition and the end of the chassis. It is eventuatly fastened against the bottom of the chassis. However, until the assembly is ready to be fastened in place, it is suspended by its leads. The two parasitic suppressor chokes, L_{1} and L_{2}, are eonneeted betwern the No. 3 pins on the sookets and the top of $R F^{\prime} C_{1}$. If r_{1} is used, it should be connected between the top of the r.f. choke and the excitation input connector, J_{1}. ()therwise, a short piece of wire should be substituted. The grid leak, R_{1}, is momed betwern the bottom end of $R F^{\prime}(1$ and an insulated tie point, and the grid by-pass, C_{2}, is connected between the bottom end of the choke and a ground on the partition. The negative terminal of the biasing battery is also comested to this tie point, while the positive terminal goes to J_{2}.

Three shielded and by-passed leads are prepared as deseribed in the chapter on TVI and

(: Vot nealed if Iriser hat ousput rompling rapatitor.

以ate sparing) sire tove
(is-250 μ_{μ} R. or largor. fore tave for low-immedance outpht. recerining =paring aldequatto. (Johnath

 32.8- (1).
I.ر. $1,2-22$ turns No. 30 enam., $1 / 4$-inela diam., $7 / 16$ inedı long.
1.3-3 (1rrna No. I 0 , $3 / 4$ inch diam., $3 / 4$ inch loug (see (evt)
1.4 - Rolary indaetor - 1.5 mh. (see text).

1s-sieretent.
I - RCitepe shirlded phono jack.
J2- Clondedirmit plone jach.
J_{3} - Coar conmertor.
\therefore - I'rogremively-ahorting rotary witch (centralab) P-I2l index head, P's wafer).
III capacitances less than $0 .($ NO 1 μ. are given in $\mu \mu$ l. Sll fiseal eapacitors disk reramic unless etherwise sperified. All resistors ! 2 watt unlesis otherwise indicated.

BCI. One lead is connected to the junction of R_{2} and R_{3}. The other two leads are fistened to the No. I pins of the sockets. After the partition has been fastened in plater, the lead from the junction of the resistors should be connected to the sereen-voltage input terminal. The other two leads both are run toget her to the angrounded heater input terminal. The shichls of these three leads are gromeded at both ends, to each other, and to the chassis at several points.

The plate blocking cablatitor, C_{3}, is mounted with one of its terminals central in respect to the two 807 plate caps to permit plate leads of equal length. The 1 -mh. $300-\mathrm{man}$, paralled-feed plate choke is mounted off the rear wall of the chassis, with its cold end close to the high-voltage input terminal. The plate bepass, ("o is fastemed against the rear wall of the rhassis, and is connereted between the eold end of the p.f. choke and the high-voltage input terminal with the shortest possible leads.

The variable inductor camot be mounted rentrally in the rhassis without interlering with the removal of the 80-s. It is placed an inch or s, away from the plate cups of the tubers, alld the input and variable output raparitors are spaced symmetrically on either side. The fixed capacitors in parallel with ('s are stacked up and fastened to it grounding bracket attached to the lefthand end of the chassis. The front terminals of these capacitors are connered to the terminals of S_{1} mounted immediately in front.

Adjustment

The values of input and output caparitance and the value of the inductanee to be used in the pi net work will depend upon the voltage and eurrent at which the amplifier is operated. For full imput on e.w., a voltage of $\mathbf{6 5 0}$ at 200 mat is required for the plates. and 250 volts at 12 mat. for the sereen grids. In this case, sereen voltage is best obtained from the exeiter plate supply. For full input on phone, a supply delivering (800 volts at 200 mat is needed, and 275 volts at $1: 3 \mathrm{mab}$. for the sereens. For phone work, the serern voltage should be taken from the plate supply through at $25 .(H)(0)-$ hm $20-$ watt resistor.

For Soviee operation, the amplifier ran be operated, for instance, at 500 volts, 150 mat .

Fis. 6.84 - The amplifier is enclosed in an inverted aluminum chasia in which the lwotom plate aerves as the top cover. Along the rear edge are the output coas connector, ground post, tip jarks for heater, soreen and plate voltages, and r.f. input jack.

OUTPUT-CIRCUIT VALUES						
Band (Mc.)		8.5	7	14	21	28
750 volts, $100 \mathrm{ma}$. ($3750 \mathrm{ohms)}$						
Cis (uuf.)	150	2301	75	38	25	20
Cout (uuf.)	910	1700	450	225	150	110
I. (uh.)	14.8	10.0	7.4	3.7	2.5	1.8
759 volts, 200 ma . (1875 ohms)						
	300	2502	1.50	75	50	37
Cout (uuf.)	1570	1160	785	390	260	195
L (uh.)	7.9	9.3	40	2.0	1.3	1.0
500 rolts, 150 ma . (1606 ohms)						
'is (uuf.)	340	2503	170	85	55	40
('out (uuf.)	1680	1100	810	420	280	210
L fuh.)	7.1	9.3	3.5	1.8	1.2	0.9
600 rolls, 200 ma. (1.509 ohms)						
$C_{\text {IN }}($ uuf. $)$	380	250 *	190	95	63	47
Cout (uuf.)	1820	1000	910	455	300	227
L (uh.)		9.3	3.2	1.6	1.1	0.8
$1 Q=19 \quad 2$	$=10$	${ }^{2} Q=9$	$+0$	8	others	$=12$

with both tubes in use, or at 750 volts, 100 mat. with one of the tubes removed.

An arcompanying table shows the values of input and output caparitance and the inductane required for a tank-cireuit () of 12 and 50 -ohm output under the four operating eonditions deseribed above. The Johnson inductor does not have sufficient inductance for al Q of 12 under the 750 -volt $1(0)$-mat. rondition. In this raser, with maximum inductance in use the () will rem around 15 or 18 . Also, the values of input caparitanee shown in the table include tube output caparitance and othor stray eapacitanoces. so that imput rapacitaners of lass that about of muf, will probably be mattainathe. Where the
 C_{4} should be operatted as close to minimum caparitithere as prate ticabla.

In expiter should be comberted to J_{1}, and the coupling adjusiod to give alont $\overline{7}$ mat of grid current. With a bo-ohm load commeredt, the input and output raparitaners should fre set as chosely as possible to the vadues indieated in the table, and the variable inductor should he atjusted for resonaner as indieated bes the renstome ary dip in plate curnent. Derreasing the output raparitance or the induedane while mantaning resonance with the input capacitor should increase loading.
(From (2ST, August, 1955.)

A Single 813 Amplifier

Figs. (i-85) through (i-8!) illustrate a multiband single-tube r.f. :mplifier using an 813. The circuit diagram is shown in Fig. (i-s. The bunds, 3.5 through 28 Ne, atre changed in the grid circuit hy switching roils. A $1(X)-\mu \mu f$, caparitor, (' 1 , is added to the caparitance of the grid tuning eit
value when excitation is removed, or if stages ahead of the $81: 3$ are keyed.
separate meters are provided for reading grid and phate current, I voltmeter is included to permit a continuous cheek on filament voltage. Filament transformers are mounted in the unit,

Fig, 6-8.5- 1 multihand handswitching 81:3 amplifier with a shicleding enclosiare made up of standard chassis and bottom plates. To the right of the meters are the conirala far sto (alove) and $i 2$, , It the renter are the controle for (is and L_{12}. T'o the right are controls for \dot{x}_{2} (above) and (im. (1) onigmed by $116 \mathrm{~K}^{\prime} \mathrm{FiV}$.)
pacitor, C_{2}, when the bandswitch, S_{1}, is in the 80-meter position.

A pi-section tank is used in the plate circuit. f_{13} is the input capacitor. The output caparitance is made up of a group of four $375-\mu \mu \mathrm{f}$, variahble capacitors, ('14, ganged to a single control shaft, plas a $0,001-\mu f$. Fixed rapacitor, (${ }^{15}$. The three positions of se provide a means of changing the maximum capbicitance in the eireuit over a wifle range, for matehing various lowl resistances, The variable inductor, L_{13}. is a rotary coil taken from a surplus $B(--35$). However, the is \& IV type 3852 rotury coil has sufficient inductance ($15 \mu \mathrm{~h}$. to be used as at substitute, although the coil requires somewhat groater spatere. L_{12} is an apparate coil for 10 moters, L_{13} being turned so that it is shorted out on this band.
L_{11} and R_{2} constitute a v.h.f. parasitic suppresson. The amplifier is moutralized by the caparitive-bridge method, C_{6} being the nentralizing eapacitor. A $\mathrm{il}^{\circ} \mathbf{6 G}$ clamper tuthe is used in the serven eireuit to reduce the input to the $81: 3$ to a safe

Fig, 6.86 - End view of the 813 amplitier, showing the prid-eireuit asacmbly and filament transfomers.

Fig． 6.87 －Circuit of the 813 amplifier．Alt capacitanses below $0.001 \mu \mathrm{f}$ ，are in $\mu_{\mu} \mathrm{f}$ ．
C_{1}－Air trimmer．

Cis，C12，Cis－Nica．
 C．22，Ci23，C24，C25，Ci26－Ciramic．
Co－Nrutralizing capacitor（Johnson N．250，0．25－ inch spacing）．
（A13－0．0．0－inch plate spacing．
 $0.023-i n c h$ plate spacing．
R_{2}－live 680 －othon 1 －watl carbon resistors in parallel， tapped across 3 turne of L_{11} ．
L：－32 turns No． 24 mam，close－wound， $3 / 4$－inch diam．
L．2－3 thrns No． 2.2 hook－up wire over cold end of L_{1} ． l．3－30 turns No． 20 enam．，elowe－wound， $3 / 4$ inch diam． I．－ 3 turns No． $\mathbf{2} 2$ homk－up wire over cold end of $I .3$. 1．5－14 turns \o． 20 enam．，close－wound， $5 / 8$－inch diam．
 $1.7-10$ turns \o． 18 enam．， $5 / 8$－ineh long， $5 / 8$－inch diam． $\mathrm{I}_{\mathrm{R}}-2$ turns No， 22 hook－uf wire over cold end of L_{i}.

The bottom，top and rear are closed with ahmi－ num plates that maty be cut from chassis bottom plates if no other material is available．llowever， from the consideration of ventilation，perforated aluminum sheet is proferable．If solid sheret is used，top，bottom and back should be drilled with several holes not latger than 14 inch in diameter，particularly in the areas in the vieinity of the 81：3 tulx．Cracks in the shielding，where the top and bottom covers meet the rear cover and panel，are avoided by the use of strips of atumi－ num angle attached to the panel and rear cover． The shielding is completed by bottom covers to fit the two chatssis．

The output capacitors and the switch，S_{2} ， are enclosed in the chassis to the right．The chassis at the left contains the grid coils，the bandswitch，S_{1} ，and the two filament transform－ ers，T_{1} and T_{2} ．
l．9－8 turns．No． 18 cnam． 5 年inch long， $5 / 8$－inch diam．
l．10－2 turns Da．2．2 hook－n！wire over cold pend of $L_{\text {a }}$ ．
L_{11}－Parasitic suppremor－－ $\mathrm{S}^{1} \underline{2}$ turns No ． $11,1 / 4$－inch diam．
J．12－ 3 turns Nor． $10,3 / 4$ inch long， $3 / 4$－inch diam．
I．13－Variable inductor from $13 \mathrm{C}-3.5$（ $25 \mu \mathrm{~h}$ ．max．）， 1
$\mathrm{J}_{1}, \mathrm{~J}_{2}$－Coav commetor．
$\mathrm{M}_{1}, \mathrm{M}_{3}-\mathrm{J}, \mathrm{C}$ milliammeter，－－ineh．
$\mathrm{M}_{2}-\mathrm{A} . \mathrm{e}$ voltmeter， 2 －inclt．
RFC，125ma．
及以 H_{2}－National R－1－5．
S_{1}－－circuit \bar{j}－position ceramic rotary switch（Cen－ tralable lile wafer）．
$\mathrm{S}_{2}-3$－position frogresively－ahorting ceramie rotary switch（Cemtralal，P＇IN wafer）．
${ }^{\prime}{ }_{1}$－Filamont 1 ransformer： 6.3 volts， 1.2 amp．

${ }^{1}$ The 13 \＆W type 3852 or Johuson type $229-202$ rotary coil（ $15 \mu \mathrm{~h}$ ．）has sufficient inductance to be used as a sub－ stitute，although it requires somewhat more space．

Most of the remaining components are mounted in the man rompartment at the center．The rotary inductor，L_{13} ，and the pi－metwork input capacitor，（＂13，are fastemed to the pancl．The latter is mounted on ceramio pillars．The only ground comection is at the reatr of the capacitore． where the metal end plate is comnereded to the adjacent chassis with the shortest possible leat． This eliminates multiple paths to ground．ln－ sulated flexible couplings are used betweren the shafts of the capacitor and coil and their panel controls．

As shown in the bottom view of Fig．6－88，the 813 is mounted toward the rear，and near the bottom of the right－hand chatsis，The socket is supported on metal pillirs to space it $1 / 2$ inch from the chassis，and is so oriented that the filat－ ment will lie in a vertieal plane，（irid，soreon and filament wires are run through holes to the grid－

Fig. 6.88 - In this view, the 813 amplifier has been turned upside down to show the horizontally. mounted 8!3, and Cla. The rotary inductor, L_{13}, is partially hidden. Also shown in the shielding compart. ment at the lett is the gangel variable, Cis. A suitable substitute is a 2 -or 3 -gang broadeast t.r.f. capacitor with more fixed capacitors at S_{2}.

rircuit compartment. Filament and sereen bypass capacitors are grounded immediately on the socket side of the enclosure.

The plate r.f. choke, $R F C_{2}$, and the neutralizing capacitor, C_{6}, are mount dabove the 813 , as shown in the top view of Fig. 6-89. The plate by-pass, C_{11}, is mounted close to the base of the choke. The placement of the 616 G clamper is also shown. The socket is submounted with its terminals inside the grid-circuit compartment.

The three meters are mounted on the panel, one ahove the other, in the space to the left. All power wiring is done with shielded wire, and input and output connections are brought to coaxial fittings at the rear of the two chassis.

The plate spacing of the pi-section input cat paritor, C_{13}, should be adequate for a plate voltage of about 2000 for ew. operation, or about 1000 volts with plate modulation, provided that the amplifier is fully loaded. I'rovision should be made for reducing voltage during preliminary tune-up. A $2.5-\mathrm{mh}$. r.f. choke (not shown in the circuit diagram) connected across $C_{14 \mathrm{~A}}$ is a precaution worth adding, since this, in effect, removes the d.c. plate voltage from aross both input and output capacitors, thereby decreasing

Fig. 6.89 - Looking down into the main compartment of the 813 amplifier, showing the placement of the pi-section components, neutralizing capacitor, plate r.f. choke, and the 6 Y 6 clamper tube.
any tendency for the capacitors to arc over at maximum voltage.

The circuit of the high-voltage-supply circuit shown in Fig. 6-59 should the suitable for this amplifier. The screen should be supplied through an external sories resistor. The resistor should have a total resistance of $50,000 \mathrm{ohms}$ (150 watts) and be equipped with an adjustable slider so that it ean be set to give a sereen voltage of 350 or 400 under actual operating conditions.

Adjustment

The amplifier is neutralized by applying exnitation, but no screen or plate voltage, and then adjusting the neutralizing eapacitor, C6, until the kick in grid current, as the plate circuit is tuned through resonance, is brought to a minimum. Later, when plate voltage and load are applied, the adjustment should be tourhed up so that the grid-current peak and the plate-current dip oceur at the same setting of C_{13}.

Assuming that the amplifier will be loaded to the maximum rated plate current (200 ma .), the approximate capacitance for the pi-section input capacitor, C_{13}, for a Q of 12 will depend on the plate voltage. When the 813 is operated at 1000 volts, this capacitance should be approximately $200 \mu \mu$ f. for $80,100 \mu \mu$ f. for $40,50 \mu \mu$ f. for 20,37 $\mu \mu$ f. for 15 , and $25 \mu \mu f$. for 10 . For 1500 volts, the approximate paparitances should be $140 \mu \mu \mathrm{f}$. for $80,70 \mu \mu \mathrm{f}$. for $40,35 \mu \mu \mathrm{f}$. for $20,25 \mu \mu \mathrm{f}$. for 15 , and $18 \mu \mu \mathrm{f}$, for 10 . For 2000 volts, the input capacitance should be $100 \mu \mu$ f. for $80,50 \mu \mu$ f. for $40,25 \mu \mu \mathrm{f}$. for $20,1!9 \mu \mu$ f. for 15 , and $13 \mu \mu$ f. for 10 . In cise the $B \& W$ coil is used, the maximum inductance shoald be used on 80 meters for plate voltages in exeess of 1000 , and the cireuit should be resonated with the capacitor, C_{13}, alone. Since the capacitances listed above include tube and other stray capacitances, amounting to at least $25 \mu \mu \mathrm{f}$., C_{13} should be set at or near minimum for the higher frequencies, and the coil adjusted for resonance.

The output capacitance should be adjusted for proper loading. Variation of the output capacitance will require readjustment of C_{13}, or L_{13}. (Originally described in QST, Nov., 1954.)

4-250-A's in a $1-\mathrm{Kw}$. Final

The amplifier shown in the accompanying photographs uses two $4-250 \mathrm{As}$ in parallel and covers 3.5 to 28 Mc . with complete band-switehing. The output circuit is a pi network designed for working into reasonably well-matehed 52 - to 75-ohm coaxial lines. The amplifier ean handle a kilowatt input in Class C operation on either phone or $\mathbf{e} . \boldsymbol{w}$. without pushing the tubes to their limits. It can also be operated as a linear amplifier for single side band.
The various components are mounted on a $17 \times 13 \times 4$-inch aluminum chassis attached to a standard 19 -inch relay rack panel $153 / 4$-inehes high. The above-chasisis section is enclosed in a $111 / 2$-inch high shield made from $1 / 16$-inch sheet aluminum. An aluminum bottom plate completes the below-chassis shieding. Enclosing the amplifier in this way, plus the use of shielded wire and filters in the supply keads, takes care of the harmonic TVI question.
The 4250 As are cooled by forcing air into the chassis and thence up past the tubes by means of a 21 eu. ft. per minute bower. The air is exhausted through two 3 -inch diameter circular openings over the tubes in the top cover. To maintain the shielding intact, these are covered with perforated aluminum.
A Barker and Williamson Model 850 bandswitching pi-tank inductor is used in the output circuit. It is tuned by a vacuum variable ca-
pacitor operated through the counter dial (Groth TC-3) shown in the panel view.

Circuit Details

The cirenit, Fig. (i-91, is eleetrically the more-or-less standard arrangement of a parallel-tened grid circuit and a pi-net work output circuit. The amplifier is nentralized by the caparitive bridgemethod. A filament transformer is included, but all other voltages come from external supplies.
The grid input cirenit of the amplifier uses a slightly modified Bd W' turret assembly. The grid coils are tuned by a $7 \overline{0}-\mu \mu$ f. variable. The $20-, 15-$, and 10 -meter coils cach must have a few turns removed for proper grid tuning on these bands.
The circuit includes a 2 (M)-ohm grid leak and has provisions for exterat bias, which should be used in combination with the leak. The ly-pass capacitors on the screen teads all carry a rating of 1600 volts. This rating is necessary to avoid capacitor breakdowns when operating the amplifier screens at their rated voltages for AB_{1} operation, and also with plate-modulated Class C operation where the 6000 -volt rating of the smatler ceramic caparitors would be exreeded on modulation peaks. All of the $0.001-$ and $0.003 \mathrm{3}-\mathrm{\mu}$. cat pacitors are the disk type, and aside from the screen by-passes are used mainly for filtering TV harmonics from the supply leads.
The by-pass capacitors in the high-voltage lead

Fig. 6-90-A 1-kw. final using a pair of 4-250-1's in parallel.

Fig. 6.91 - (Girrout diakram of the $4-2.50 \mathrm{~A}$ amplifier. 13_{1} - Blawer-motor assembla, 21 c.f.m. (Ripley model 8133).
 $\mathrm{C}_{2}-7-\mu \mu \mathrm{f}$. neutralizing eapacitor (Cardwell type 10N).
$\mathrm{C}_{3}-300-\mu \mu \mathrm{f}$. vacuum varialke (Iennings type CCS). C_{4} - $15(\mathrm{O})$ - $\mu \mu \mathrm{f}$. variable (Cardwell ty pe 8013).
$\mathrm{C}_{5}-22()-\mu \mathrm{f}$. mica or NP'O ceramic.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Codax receptacle, chassis momenting.

1. - 'lurret asscmbly (BN゙N BTHLL with If., 21-, and 28 - Whe coils modified ly removing turns). 3 ..) Mr.: 39 curns No. $22,1 \frac{1}{4}$ inches diann., $13 / 8$ inchee lonk, link 3 turns No. 18.
7 Mc.: 20) 1 иrns No. 20, $11 / 4$ inehes diam., 1316 inches long, linh 3 turns No. 18.
are the TV high-voltage ceramic type, as is also the blocking capacitor in the tank circuit. The loading capacitor, C_{4}, in the output cirenit of the amplifier is a variable having enough range ((io)O $\mu \mu \mathrm{f}$. total capacitance) to give adequate lowding on so through 10 meters when working into at 52- or 750 ohm resistive load.

Plate current is metered by a $0-1$ ammeter shunted aeross it resistor in the negative high voltage lead, As shown in Fig. (6-9), this resistor is incorporated in the power supply, not in the amplifier mit. A so-watt rating represents an ample satety factor, since the power disipated would not execed a lew watts should the ammeter ofen up.

Aeparate milliammetors are provided for the grid and serem direuits. The sereen moter is quite esomtial since the sercen current, and henee sereen dissipation, is very sensitive to grid driving voltage and plate tuning.

Layout Details

Fig. ($\mathrm{b}-92$ is a viow looking into the amplifier with the top "over romoved. The variable capaci-

It Ve.: 8 turns No. 18, $11 / 4$ inehes diam., 3/4 inch long, link 2 turns No. 18.
21 Ve.: 4 turns No. $16,11 / 4$ inches diam., 1/2 inch long, link 1 turn No. 18. 28 He: $21 / 2$ turns No. 16. $11 / 4$ inches diam., $1 / 2$ ineh long, link 1 turn No. 18.
L_{2} - V.l.f. parasitic suppresosor, 1 turns Vo. 12, $1 / 4 \mathrm{inch}$ dia., turns spacel wire diameter.
$\mathrm{L}_{3}-\mathrm{Pi}$-tank inductor (BNW Wolel 8:(0). Inductances as follows: 3.5 IIc., 13.5 μ l.: 7 Mc., 6.5 /h.; It

RFO - National type R1污A r.f. Choke.
 $\mathrm{RFC}_{3}-2 . \overline{\mathrm{T}}$-mlo r.f. chohe.
T_{1} - Filament transformer, 5 volts, 29 amp. (Chordarson $\mathrm{T}^{2}-21 \mathrm{~F}(\mathrm{O}-\mathrm{A})$.
tor at the right is the output loading control, C_{4}. To the left of C_{4} is the Model 850 inductor unit. Immediately to the rear (below, in the photograph) of the induetor is the output lead, connocted to a conxial receptacle mounted on the rear cover. The vacuam variable, 6_{3}, is mounted between the inductor and the +-2501 s . It is supported by an ahuminum bracket 6 inches high and 4 inches wide. The neutralizing eapateitor C_{2} is betwren the $4-250$ As and the front panel.

The grid turret and tuning eapauitor are mounted underneath the chatssis to take advantage of the shidding afforded therely. To fit under the chassis the turret is mounted with the switwh shalt vertical, neressitating a rightangle drive to the panel control. The shatt appromethes the panel at an angle, so a flexible coupling of the batl trpe (Nillen 3 ano $)$) is used between the shaft and panel bearing.

The metere are in a separate enelosure measuring $11 \times 3 \times: 3$-ine hes. It is mounted to the fromt of the low by countersunk Hat-head screws. The top lips of the meter box are drilled to take sheetmetal screws when the lid is in place.

Fig. (6.94

Commertions to the tube plates and nentralizing (apatitor are made from flexible brass strip, $1 / 2$ inch wide. A piere of $3 / 4$-inch wide brass strip is used for the commertion betweren the stator terminat of the varemm variable and the tank inducfor. The bocking catpactitor is mounted on this strip.

Fig. (6-9:3 shows the amplitier with the top and back pancle removed. The' bower asembly is monnted on the rear chassis wall. To the right of the motor is the high-voltage terminal, the 1 15volt commedor, the gride and sereen terminals, and the high-voltage megative rommertor. ladeds from these last three terminals rim below chasesis in shiedded wire and then up to the moter trox. These leads art visible in from of the loathing raparitor. Bolden KXS: shiolded wire is used for the leads. The inner comdurtor is bepaseed to the shiold braid at ewh cond. The 2.5 -mh. "satoty" rhoke, REC ${ }_{3}$, shunting the output end of the 1 is network is mounted on the hark of the tars coil botweron the output bead and rhassis groumb.

The isolantite ferd-h hoongh insulato to the hef of the induetor is used to bring the high voltage through the whasis. Adjacent to it is the hepars at the bettom of the platererheke, $R F^{\prime} C_{1}$.

Wonnting detatils of the right-angle drive assombly for switehing the grid cirenit ate clearly visible in Fig. (i-3, I . I 2 -inchs square rod $23 / 4$ inches long is drilled and tapped at both ends to support the drive.

The sockets for the $4-250$ As are mounted on onc-inch isolantite pillars. The sereen and filament terminals are bypassed directly at the sowket terminals. The grid terminals on the sockets firre each other, and a small feredthrough is used to bring the grid lead up through the ehassis.

Fig. $6-9.9$ is a boteom viow of the amplifier and Pig. 6 - 3 th is a choso-up vien of the grid eireuil. A
 the reat chassis wall to the link torminals on the turet assembly. The high-voltage leat is filtered
 two components are visible on the inside of the reat wall alove the hower asembly. Twetominall berpoints are used for the are. connero tions to the filament transtormer and blower motor. Shielded leads are used betwern the tiopoints and the 115 -wolt comertor.

Fig. (i-96 shows the grid-cirenit wirime in a bit mowe detail, particularly the grid rhoke, grid resistor and \boldsymbol{r}^{\prime} s chastored just above the toming caparitor. 'The monlifatione to the 10- and 1.7meter (oxils also are somewhat mote masily sed in this photograph.

Adjustment and Operating Data

The amplifier should be neut ratized with the plate and screom supply leads diseonnected and the bandswiteh sot to 28 Mre. An indieat ing wave neter should tre coupled to the tank cirenit and drive applied to the amplifier. Resonate the grid
and phate tanks and adjust the noutralizing (apseitor for minimmon r.f. in the tank eircuit as indiated by the wave meter. The same nentralizing adjustment shonla hold for all hands, I hon't attempt to neutralize with the plate and sereen supply leak combeded-i.e., with a complete direuit for d.e. - beratuse even with the fower taned off this permits electrons to flow from the rathode to the plate and sereen, and r.f. Will be present that rammet be nentralized out.

The parasitio choke will, in gemeral, resomate the plate leat in one of the low w.h.f. TV' ehamnels, and will tond tos incerase harmonio output
 ol the phate lead at L-2 with a grid-dip moter, and if it is in one of the chammels reserived in your lomatity, bither pall the turns eppatt, or squereg them together to mowe the frequenter to an mo
 should ta satisfactery.

Power Supply

Fon I kw. inpmt, al plate voltage of at leas $2(0) 0$ is requited. sereen woltage is ohatamed peferably
 operation, ant extomal bias suply regulated hy
 mended. Wibh this combination the grid comrent
 (i) mas. with the amplifier fullus lowed.

Fome sont of r.f. output indicator, surh as it
Fig. 6.95
 (ann hamble :an s.w.r. in the coas line of about - to 1 , hut with higher s.w.r. values it may not be pessilhate get the desited loading. . Asa, athongh the eonstrum tion is sum that the amplifier is
 leakage of hamonies in the TV bamk are romement, a good low-pass filter will teremuired in must installations. A low s.w.r. in the eom lime is defintely an requirement if exersibe build-np of chments of voluare in the filter is to be aboided. If the line manot be matreded at the amernat, an amxiliary antema compler will have to la nsed.
For plate mondalation a rhoke moil
 so the serest voltage will follow the ambion varialions in plater veltage. Tha reboke should have an indurnatere of athat lof hemres and must lue capable (af narving 12: mar d.e. For (las: AB, "Feralion on single site bath the eirenit maty la Feft intact, the only requitement hoing to supply the proper operating voltages from sutably well-regulated supplies If lan amplitier is to la onarated in AB3 on s.a.th, the grid-leak resiston shonth be shemed out; also, suibable loading should be applied to the grid tank to maintan grod regulation of the r.f. driving voltare.
(From (0゙T, Jane, 1456.)

Power Supplies

lisentially pure diredterurent plate supply is required to prevent serious lam in the oup pat of reerivers, speech amplifiers, modulators and transmitters. In the ease of transmitters. d.e. plate supply is also dictatod by govermment regulation.

The filaments of tulues in a tramsmitter or mextulator usually maty be oprated from are However, the filament power for tulus in a reeriver (excopting power adudio tubers). or those in at sperch amplifier may be a.ce only if the tulnes are of the indi-rectly-heatererathode type. if hum is to be avoident.

Wherever commerrial a.e. lines are available. high-voltage d.e. plate supply is most cheaply and eonveniently ohtaned by the use of a transformor-rectifier-filter system, An examplo of such a systom is shown in lig. $\bar{i}-1$.

In this circuit. the plate transformer, T_{1}, steps up the ace. line voltage to the required high voltage, The a.ce, is changed to pulsating d.e. by the rectifiers. V_{1} and V_{2}. Pulsations in the d.e., apmaring at the output of the rectifier (points A and B) are smoothed out by the filter composed of L_{1} and C_{2}, R_{1} is a bleerler resistor, Its chief function is to discharge (") as a safety measure, after the supply is tumed off. By proper selection of value, R_{1}
ako helps to minimize changes in output voltate with ehanges in the amount of current drawn from the supply. Te is a step-down transformer to provide filament voltare for the rextifior tubes. It must have suflicient insulation between the

filament winding and the core and primary winding to withstand the peak value of the recetified vohage. 7 as a similar transformor to supply the filaments or haters of the tubes in the equipment operating from the supply. Frequently, these three transformers are combined in a single unit having a single 115 -volt primary winding and the required three secondary windings on one core.

Rectifier Circuits

Half. Wave Rectifier

Fig. 7-2 shows three rectilier rireuits rovering most of the rommon applications in amat teur equipment. Fig. $\bar{i}-2 \$ is the cireuit of a hall-wave reetifer. During that half of the atse reve when the redifies plate is positive with respert to the cathode (or fitament). current will flow through the reetifier and load. But during the other half of the eyole, when the plate is negative with respert to the eathode, no current can How. The shape of the output wave is shown in (1) at the right. It shows that the current alway flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.

The average output voltage - the voltane real by the usual dide voltmeter - with this rircuit is 0 , is times the r.m.s. value of the ate. voltage delivered by the transformer secoudary. Because the frequency of the pulses in the output wave is relatively low (one pulsation per (arde), (onsiderable filtering is required to
provide adequately smonth d.e. output, and for this reason this eireuit is usually limited to applications where the rurrent involved is smath, surh as in sumplies for eathoderay tulnes and for protertive bias in a transmitter.

Another disadvantage of the half-wave rertifier cireuit is that the transformer must have a considerably higher primary volt-ampere rating (approximately fo per cent greater), for the same d.e. bower output, that in other rectifier rireuits.

Full-Wave Center-Tap Rectifier

The most universally-used reetifier circuit is shown in Fig. 7 -213. Being essentially an arrangement in which the outputs of two halfwave rectiliers are combined, it makes use of both halves of the a.e. coyde. I transformer with a renter-tapped secondary is required with the rircuit. When the plate of V_{1} is positive, current flows through the load to the center tap. Current camot flow through V_{2} because at this
instant its cathode (or filament) is positive in respect to its plate. When the polarity reverses, V_{2} conducts and current agaim flows through the load to the center-tap, this time through V_{2}.

The average output voltage is 0.45 times the r.m.s. voltage of the entire trans-former-secondary, or 0.9 times the voltage across half of the transformer secondary. For the same total sceondary voltage, the average output voltage is the same as that delivered with a half-wave rectifier. However, as ean be seen from the sketches of the output wave form in (B) to the right, the frefuency of the output pulses is twice that of the half-wave rectifier. Therefore much less filtering is required. Sine the rectifiers work alternately, each handles half of the average load current. Therefore the load-current rating of cach rectifier need be only half the total load current dran'n from the supply.
Two separate transformers, with their primaries connected in parallel and secondaries connected in series (with the proper polarity) may ise used in this rircuit. However, if this substitution is made, the primary volt-ampere rating must be reduced to about 40 por cont less than twice the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig. 7 -2C. In this arrangement, two rerifiers operate in series on each half of the evcle, one rectifier being in the lead to the load, the other being in the return lead. Over that portion of the cyrle when the upper end of the transformer secondary is positive with respect to the other end, current flows through V_{1}, through the load and thence through V_{2}. During this period current cannot flow through rectifier V_{4} because its phate is negative with respect to its rathode (or filament). Over the other half of the eyrle. current flows through V_{3}, through the load and thene through V_{4}. Three filament transformers

Fig, 7.2-Fundamental vacumm-tube rectificr circuits. A - Halfowave. B - Full-wave. C - Full-wave bridge, A.c-input and pulsating-d.e. oulput wave forms are shown at the right. Output-voltage values indicated to not include rectifier drops. Other types of rectifiers may he substituted.
are needed - one for l_{1} and V_{3} and one each for V_{2} and V_{4}. The output wave shape (C), to the right, is the stme as that from the simple center-tap rectifier circuit. The output voltage obtainable with this cireuit is 0.9 times the r.m.s. voltage delivered by the transformer secondary. For the same total transformersecondary voltage, the average outpat voltage when using the bridge redifier will be twice that obtainable with the center-tap rectifier circuit. However, when comparing rectifier cipcuits for use with the same trensformer. it should be remembered that the power which a given transfomer will handle romains the same regardless of the rectifier ciredit used. If the output voltage is doubled by substituting the bridge cirenit for the conter-tap, reetifier eireuit. only half the rated load current can the taken from the transformer without excerding its normal rating. bach rectifier in a bridge dircuit should have a minimum load-current rating of one half the totad load current to be drawn from the supply.

Rectifiers

Cold-Cathode Rectifiers

Tuhe rectifiers fall into three general classifieations as to type. The cohd-rathode type is a diode which requires no cathode heating. Certain types will handle up to 350 ma at 200 volts d.e. output. The internal drop in most types lies between 60 and 90 volts. Rectifiers of this kind are
produced in both half-wave (single-diode) and full-wave (double-diode) types.

High-Vacuum Rectifiers

Iligh-varuum rectifiers depend entirely upon the thermionic emission from a heated filament and are characterized by a relatively high
internal resistance. For this reason, their applieation usually is limited to low power, although there are a few types designed for medium and high power in cases where the relatively high internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome electrical noise sometimes assoriated with other types of rectitiers.
some rectifiers of the high-varuum full-wave type in the so-called receiver-tube class will handle up to 250 mat at $4(\%)$ to 500 volts d.e. output. Those in the higher-power class can be used to handle up to 500 ma. at 2000 volts d.c. in fullwave circuits. Most low-power high-vacuum rectifiers are produced in the full-wave type, while those for greater power are invariably of the halfwave type, two tubes being required for a fullwave rectifier circuit. A few of the lower-voltage types have indirectly heated cathodes, but are limited in heater-to-cathode voltage rating.

Mercury-Vapor Rectifiers

The voltage drop through a mercury-vapor rectifier is pratically constant at approximately 15 volts regardless of the load current. For high jower they have the advantage of che:apness. Rectifiers of this type, however, have a tendency toward a type of oscillation which produces noise in nearby receivers, sometimes difficult to eliminate. R.f. filtering in the primary circuit and at the rectifier plates as well as shielding may be required. As with high-vacuum rectifiers, full-wave types are available in the lower-power ratings only. For higher power, two tubes are required in a full-wave circuit.

Selenium Rectifiers

Solenium rectifiers are available which make it possible to design a power supply capahle of delivering up to $4(0)$ or 450 volts, 200 ma. These units have the advantages of compactness. low internal voltage drop (alrout 5 volts), and the fact that no filament trinsformer is needed. However, to limit the charging eurrent with capateitive input, a resistance of 5 to 50 ohms should be used in series with the rectifier (see table at the end of this chapter). They may be substituted in any of the basie circuits shown in Fig. 7-2, the terminal marked " +" or "cathode" corresponding to the filament in these circuits. Cireuits in which the selenium rectifier is particularly adaptable are shown later in Figs. 7-23 through 7-25. Since they develop little heat if operated within their ratings, they are especially suitable for use in equipment requiring mininum temperature variation.

Rectifier Ratings

Vacuum-tube rectifiers are subject to limitations as to breakdown voltage and current-handling capability. Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate. This is sometimes dependent on whether a choke- or eaparitiveinput filter is used. Others, particularly mercury-
vapor types, are rated according to maximum inverse patak voltage - the peak voltage bet ween plate and cathode while the tube is not condlueting. In the circuits of Fig. $\mathbf{7}-2$, the inverse peak voltage across earh rectifier is 1.4 times the r.m.s. value of the voltage delivered by the entive transformer secondary.

All rectifier tubes are rated also as to maximum d.c. load current and many, in addition, carry peak-current ratings, all of which should be carefully observed to assure normal tube life. With a capacitive-input filter, the peak current may run several times the d.c. current, while with a chokeimput filter the peak value may not run more than twice the d.c. load current.

Operation of Rectifiers

In operating rectifiers requiring filament or cathode heating, care should be taken to provide the correct filament voltage at the tube terminals. Low filament voltage can cause excessive voltage drop in high-vacuum rectifiers and a considerable reduction in the inverse peak-voltage rating of a mercury-vapor tube. Filament connections to the rectifier socket should be firmly soldered, particularly in the case of the larger mercury-vapor tuhes whose filaments operate at low voltage and high current. The socket should be selected with care, not only as to contact surface but also as to insulation, since the filament usually is at full output voltage to ground. Bakelite soekets will serve at voltages $u p$ to $5(\%)$ or so, but ceramic sockets, well spaced from the chassis, always should be used at the higher voltages. Special filament transformers with high-voltage insulation between primary and secondary are required for rectifiers operating at potentials in excess of 1000 volts inverse peak.

The rectifier tubes should be placed in the equipment with adequate space surrounding them to provide for ventilation. When mercury-vapor tubes are first placed in service, and each time after the mercury has been disturbed, as by removal from the socket to a horizontal position, they should be run with filament voltage only for 30 minutes before applying high voltage. After

Fig. 7.3-Connecting mercury-vapor rectifiers in parallel for heavier cur. rents. R_{1} and R_{2} should have the sante value, between 50 and 100 ohms, and corresponding filament terminals should be connected together.
that, a delay of 30 seeonds is recommended each time the filament is turned on.

Rectifiers may be connected in parallel for current higher than the rated current of a single unit. This includes the use of the sections of a double diode for this purpose. With mercuryvaipor types, equalizing resistors of 50 to 100 ohms should be connected in series with each plate, as shown in Fig. 7-3, to help maintain an equal division of current between the two rectiliers.

Filters

The pulsating d.e. waves from the rectifiers shown in Fig, 7 -2 are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of capacitances and inductances are required between the rectifier and the load to smooth out the pulsations to an essentially constant d.c. voltage. Also, upon the design of the filter depends to a large extent the vollage regulation of the power supply and the maximum load current that can be drawn from the supply without exceeding the pak-current rating of the rectifier.
Power-supply filters fall into two classifications, depending upon whether the first filter element following the rectifier is a capacitor or a choke. Capacitive-input filters are characterized by relatively high output voltage in respect to the transformer voltage, but poor voltage regulation. ('hoke-input filters result in much better regulation, when properly designed, but the output voltage is less than would be obtained with a (eapacitive-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always decreases as more current is drawn, not only beeause of increased voltage drops in the transformer, filtor chokes and the rectifier (if highvacuum rectifiers are used) but also because the output voltage at light loads tends to soar to the peak value of the tramsformer voltage as a result of charging the first capacitor. By proper filter dexign the latter effect can be eliminated. The change in output voltage with load is called voltage regulation and is expressed as a percentage.

$$
\begin{aligned}
& \text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}} \\
& \text { Example: Nu-load voltage }=E_{1}=1550 \text { volts. } \\
& \text { Full-load voltage }=E_{2}^{\prime}=1230 \text { volts. } \\
& \text { Percentuge regulation }=\frac{100(1530-12: 30)}{12: 30} \\
& \qquad=\frac{32,0(0)}{1230}=26 \text { per cent. }
\end{aligned}
$$

Regulation may be as great as 100% or more with a capacitive-input filter, but bey proper design can be held to 20 's or less with a choke-input filter.

Good regulation is desirable if the load current varies during operation, as in a keyed stage or a (lass Is mondulator, because a large change in voltage may increase the tendency towatd key clicks in the former case or distortion in the latter. On the other hand, a steady load, such as is represented by a receiver, specein amplifier or unkeyed stages in a transmiter. does not require good regalation so long as the proper voltage is obtained under koad conditions. Another eomsideration that makes good voltage regulation desirable is that the filter capacitors must have a voltage rating safe for the highest value to which the voltage will soar when the external loud is removed.

When essentially constant voltage, regardless
of current variation is required (for stabilizing an oscillator, for example), special voltage-regulating circuits described elsewhere in this ehapter are used.

Load Resistance

In diseussing the performance of power-supply filters, it is sometimes convenient to express the load connected to the output terminals of the supply in terms of resistance. The load resistance is equal to the output voltage divided by the total current drawn, including the current drawn by the bleeder resistor.

Input Resistance

The sum of the transformer impedance and the rectifier resistance is called the input resistance. The approximate transformer impedance is given by

$$
Z_{\mathrm{TR}}=\lambda_{2} R_{\mathrm{P} 1 \mathrm{~L}}+R_{\mathrm{sWC}}
$$

where N is the transformer turns ratio, primary to secondary (primary to $1 / 2$ secondary in the case of a full-wave rectifier), and $h_{\text {PII }}$ and $h_{\text {see }}$ are the primary and secondary resistances respertively. Rese will be the resistance of half of the secondary in the case of a full-wave circuit.

Bleeder

A bleeder resistor is a resistance commeded arross the output teminals of the power supply (see Fig. $7-1$). Its functions are to diseharge the filter capacitors as a safety moasure when the power is turned off and to improve voltage regulation by providing a minimum load resistance. When voltage regulation is not of importance. the resistance may be as high as low ohme per volt. The resistanee value to be used for voltageregulating purposes is discussed in later sertions. From the consideration of safety, the power rating of the resistor should be as conservative as possible, since a burned-out bleder resistor is more dangerous that none at all!

Ripple Frequency and Voltage

The pulsations in the output of the reetifier cenn be considered to be the resultant of an alternating current superimposed upon at steady direct current. From this viewnint, the filter may be considered to consist of shonting caparitors which short-eireuit the ace component while not interfering with the flow of the d.e. component, and sories chokes which pass d.e. readily but whieh impere the flow of the ate. component.

The alternating component is called the ripple. The effectivencss of the filter can be expresed in torms of per cent ripple. Whath is the ratio of the r.m.s. vaiue of the ripule to the d.e. value in terms of percentage. For c.w. trinsmitters, the output ripple from the power supply should not exceed 5 per cent. The ripple in the output of supplics for voiere tramsmitters should not exceed 1 per cent. Class 13 motulators require a ripple reduction to about $0.2 \overline{0} / \mathrm{c}$, while v.f.o.'s, high-
gain speceh amplifiers, and rereivers maty require a reduetion in ripple to $0.01 ;$ 。
lipple frequener is the frequeney of the pulsattions in the reetifier output wave - the number of pulsations per second. The frequency of the ripple with half-wave reetifiers is the same as the frequency of the line supply - 60 (ceoles with fio)ceole supply. Siner the output pulses ate doubled with a full-wawe rectifier, the ripple fropurey is doubled - 10120 excles with tio-evelo supply.

The amount of filtering (valums of inductance and capacitance) required to give adequate smoothing depends upon the ripple frequencer, more filtering being required as the ripple frequener is lowered.

CAPACITIVE-INPUT FILTERS

(apacitive-input filter sustems are shown in Fig. 7-4, Disregarding voltage drops in the choker, all have the same characteristics exopt

Fig. 7-4- (apacitive-input filter circuits. A - Simple

in respect to ripple. Better ripple reduction will be obtained when $/ \mathrm{C}^{\prime}$ sertions are added, as shown in Figs. 7 -4] and $($.

Output Voltage

Tor retermme the approximate dee, voltage output when a caparitive-input filter is used, refer-

1×:
Irampormer r.hus, waltage - 3.0
Input resintatce - 200 ohms
Maximam load darrent, induding beeder curront - 18.5 tha.
Lome resistatioce $=\frac{3.50}{0.17 .5}=2(0) 0$ ohms abprox.
From Figg, 7 -5, for a load resistance of 2000 ohms and an input resistance of 200 ohms, the d.e. output voltage is given as slightly over 1

Fig. 7 - (Chart showing approximate ratin of d.c. output voltage across filter inpul rapacitor in transformer rem,e.ereondiary voltage for different boul and input resistances.
times the transformor r.m.s. voltage, or about 350 volts.

Regulation

If a bleoder resistanee of $\mathbf{8 0 , 0 0 0}$ ohms is used, the d.e. output voltage, as shown in Fig. 7 -i, will rise to about 1,35 times the transformer r.m.s. value, or about 470 volts, when the extermal load is removed. For greater aceurace, the voltage drops through the input resistathe and the resistance of the chokes should be subtracted from the values determined athoves. For hest regulation with at eaparitive-input filter, the hateder resistance should be as low as possible without exceeding the transormor, rectifier or choke ratings when the external load is connered.

Maximum Rectifier Current

The maximum current that cam be drawn from a suphly with a capacitive-input filter without excereding the peakecurrent rating of the reetifior may he estimated from the graph of lig. 7 -6, ['sing values from the preesting example, the ration of pak rectifice current to d.c. load carront for 2000 ohms, as shown in lig. $7-6$ is 3 . Therer fore, the maximum load current that call be draw withont execeding the rectifier rating is $\frac{1}{3}$ the prak rating of the reetifier. For a load current of 175 mat, as abowe, the reotifier peak current rating should be at least $3 \times 175=52 \overline{5}$ mat.

With bleder current only, Jig. 7 -(shows that the ratio will increase to over 8 . But since the bleeter draws less thatn 10 ma, d.c., the rectifier peak current will be only 90 mat, or less.

Fig. 7.6 - Graph showing the relationship between the d.c. load current and the rectifier peak plate current with capacitive input for various values of load and imput resistance.

Ripple Filtering

The approximate ripple percentage after the simple caparitive filter of Fig. 7-4.A may he determined from Fig. 7-7. With a load resistance of 2000 ohms, for instance, the ripple will be approximately 10% with an 8 - $\mu \mathrm{f}$. capacitor or 20% with a $4-\mu$. capacitor. For other capacitances, the ripple will be in inverse proportion to

Fia. 7.7 - Showing approximate 120 -cyele percentage ripple across filter input capacitor for varions loads.
the caparitance, e.g., 5% with $16 \mu \mathrm{f} ., 40 \%$ with 2μ f., and so forth.

The ripple can be reduced further by the addition of $L C$ sections as shown in Figs. $7-413$ and C. lig. 7-8 shows the factor be which the ripple from any preeeding section is reduced depernding on the product of the eapacitance and induetanere added. For instance, if a section composed of a choke of 5 h . and a capacitor of $1 \mu \mathrm{f}$. were to be added to the simple caparitor of Fig. $7-4 \mathrm{~A}$, the product is $4 \times 5=20$. Fig. $7-8$ shows that the original ripple (10% as above with 8μ. for example) will be reduced by a factor of about 0.08 . Therefore the ripple percentage after the new section will be

Fig. 7-8-Ripple-reduction factor for varions values of L. and C'in filter section. Ohuput ripple $=$ input ripple \times ripple factor.
approximately $0.08 \times 10=0.8 \%$. If another section is added to the filter, its reduction fartor from Fig. $7-8$ will be applied to the 0.8 , from the preceding section; $0.8 \times 0.08=0.064 \%$ (if the second section has the same LC produrt as the first).

CHOKE-INPUT FILTERS

Much better voltage regulation results when a choke-input filter, as shown in Fig. 7-9, is used. Choke input also permits better utilization of the rectifier, since a higher load current usually can be drawn without exreeding the peak current rating of the rectifier.

Minimum Choke Inductance

A choke-input filter will tend to act as a capari-live-input filter unless the input choke has at least a certain minimum value of inductance called the critical value. This critioal value is given by

$$
I_{\mathrm{h}}=\frac{E_{\mathrm{YOl}, \mathrm{TS}}}{I_{\mathrm{MA}}}
$$

where E is the output voltage of the supply, and I is the current being drawn from the supply.

If the choke has at least the critical value, the output voltage will be limited to the average value of the rectified wave at the input to the

Fig. 7.9 - Choke-input filter circuits. A - Single-section, B - Iouble-section.
choke (see Fig. $\mathbf{7}-2$) when the current drawn from the supply is small. This is in contrast to the capareitive-input filter in which the output voltage tends to soar toward the peak value of the rectified wave at light loads. Aso, if the input choke has at least the rritical value, the rectifier peak plate current will be limited to about twier the d.c. curvent drawn from the supply. Most rectifier tubes have peak-current ratings of three to four times their maximum d.c. output-current ratings. Therefore, with an input choke of at least aritical inductance, current up to the maximum output-current rating of the rectifier may be drawn from the supply without exceeding the peak-current rating of the rectifier.

Minimum-Load-Bleeder Resistance

From the formula above for eritical inductance, it is ohvious that if no current is drawn from the supply, the critical inductance will be infinite. So that a practidal value of indurtance maty be used, some current must be drawn from the supply at all times the supply is in use. From the formula we find that this minimum value of current is

$$
I_{\mathrm{MA}}=\frac{E_{\mathrm{VOLTS}}}{L_{\mathrm{h}}}
$$

Thus, if the choke has an inductance of 20 h ., and the output voltage is 2000 , the minimum load current should be 100 ma . This load may he provided, for example, by transmitter stages that draw current continuously (stages that are not keyed). However, in the majority of cases it will be most convenient to adjust the bleeder resistance so that the bleeder will dratw the required minimum current. In the above example, the bleeder resistance should be $2000 / 0.1=20,(60)$ ohms.

From the formula for critical inductance, it is seen that when more current is drawn from the supply, the critical inductance beeomes less. Thus, as an example, when the total current, inchuding the 100 ma . drawn by the bleeder rises to 400 ma., the choke need have an inductance of only 5 h . to mantan the eritieal value. This is fortunate, because chokes having the required inductance for the bleder load only and that will maintain this value of inductance for much larger currents are very expensive.

Swinging Chokes

Less costly chokes are available that will maintain at least critical value of inductance over the range of curront likely to be drawn from pratit (al supplies. These chokes are catled swinging chokes. As an example, a swinging choke may have an induetance raling of $5 / 25$ h h . and a current rating of 225 mad. If the supply delivers $10(0)$ volts, the minimum load current should to $1000 / 25=40 \mathrm{ma}$. When the full load current of 225 mat. is drawn from the supply, the inductance will drop to 5 h . The eritical inductance for 225 mat. at 1000 volts is $1000 / 225=4.5 \mathrm{~h}$. Therefore the $5 / 25-h$. choke maintains at least the critieal induetane at the full current rating of 225 ma . At all load currents bet ween 40 ma . and 225 ma , the choke will adjust its inductance to at least the approximate eritieal value.

Table $\overline{\text { Th }}$ shows the maximum supply output voltage that can be used with commonly-available swinging chokes to maintain critical inductance at the maximum eurrent rating of the choke. These chokes will also maintain critieal inductance for any lower values of voltage, or current down to the required minimum drawn by a proper bleeder as discussed above.

TABLE 7-I				
$L_{\text {h }}$	Max.ma.	Max. volts	Max, R^{1}	Min.ma. ${ }^{2}$
3.5/13.5	1.50	525	13.5K	39
5/25	175	875	2.5 K	35
2/12	200	400	12 K	33
5/2.5	200	1000	2.5 K	40
5/2.5	225	112\%	$2: 3 \mathrm{~K}$	45
2/12	2.50	500	12 K	42
4/20	300	1200	$20{ }^{\circ}$	60
5/2i	300	1.500	25K	60
3/17	400	1200	17 K	71
4/20	400	1600	20 K	80
$5 / 25$	400	2000	2.5 K	80
4/16	500	2000	16 K	12.5
5/25	500	2500	2.5 K	100
5/25	550	2750	25 K	110
${ }^{1}$ Maximum bleeder resistance for critical inductance. ${ }^{2}$ Minimum current (bleeder) for critical influctance.				

In the case of supplies for higher voltages in particular, the limitation on maximum load resistance may result in the wasting of an appreciable portion of the transformer power capacity in the bleeder resistance. Two input chokes in series will permit the use of a bleeder of twice the resistance, cutting the wasted current in half. Another alternative that can be used in a c.w. transmitter is to use a very high-resistance bleeder for protective purposes and only sufficient fixed bias on the tubes operating from the supply to bring the total current drawn from the
supply, when the key is open, to the value of courent that the reguired bleoder resistatnee should draw from the supply. Operating bias is brought back up to normal by increasing the grid-leak resistance. Thus the entire current ratparity of the supply (with the exception of the small drain of the protertive bloeder (ath be used in operating the tramsmitter stages. With this system, it is advisable to operate the tulnes at phone, rather than cow., rating, since the average dissipation is inereased.

Output Voltage

Provided the input-ehoke inductance is at least the rritical value, the output voltage may be calculated quite closely by the following equation:

$$
E_{0}=0.9 E_{\mathrm{t}}-\frac{\left(I_{B}+I_{1}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; E_{1} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between center-tap and one end of the secondary in the case of the center-tap rectificr); I_{1} and I_{L} are the bleoder and load currents, reoperetively, in milliamperes; R_{1} and R_{2} are the resistances of the first and second filter chokes: and E_{r} is the drop between rectifier plate and cathode. The various voltage drops are shown in Fig. 7-12. At no load $/_{1}$ is zero, hence the no-load voltage may be calculated on the basis of blededer current only. The voltage regulation may be determined from the no-load and full-load voltages using the fommala previously given.

Ripple with Choke Input

The pereentage ripple output from a singlesection filter (Fig. 7-9.) may be determined to $^{\text {a }}$ a close approximation, for a ripple frequency of 120 eveles, from Fig. 7-10

$$
\text { Exauple: } L=5 \mathrm{~h} ., \mathrm{C}^{\prime}=4 \mu \mathrm{f} ., L C=20
$$

From Fig. $\bar{i}-10$, percentage riphle $=\tilde{j}$ ber cont.

Fig. 7-10-Crapla showing combinations of imburtance and capacitance that may be hisel to reduce ripple with a single-sertion choke.input filter.

Fxample: $L=5 \mathrm{~h}$. What capacitamee is needed to reditee the riphle to I juer cent? Foollowing the l-parecent line to the right on its intersection with the diagonal, thenere downward to the $L e^{\prime}$ wate, road $L C^{\prime}=1(10,1(\mathrm{H}) / \mathrm{F}=$ $\because 0 \mu \mathrm{f}$.

In solecting values for the fist filter sertion, the inductane of the choke should be determined by the ronsiderations disenssed previously. Then the rapacitor should be selerted that when combined with the choke indueatnee (minimum inductance in the case of at swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple down to the desired figure with practical values in a single section, a serond section cam be added, as shown in Fig. 7-913 and the reduction factor from Fig. 7-8 applied as discoussed under capacitive-imput filters. The second ehoke should not he of the swinging type, but one having a more or less ronstant inductance with changer in rurrent (smoothing choke).

- OUTPUT CAPACITOR

If the suphly is intended for use with an audio-frectuence amplifier, the reactane of the last filter (apacitor should be small (20) per cent or less) compared with the other atadiofrecuency resistance or impedanere in the cirecuit, usually the tube plate resistaner and load resistance, On the basis of a lowner at limit of 100 exeres for sperech amplification, this condition usually is satisfied when the output capacitance (last filter capacitor) of the filter has a caparitane of 4 to $8 \mu \mathrm{f}$., the higher value of cabbuitane being wed in the canc of hower tube and load resistances.

resonance

Resomanere efferets in the suries cireuit across the output of the reetifier which is formed by the first choke (L_{1}) and first filtor capmewtor ((1) must be avoided, sinee the ripple volange would build up to harge values. This not only is the opposite action to that for which the filter is interded, but also maty cause exerssive rectifier pak currents and abmomally-high inverse peak voltages. For finll-wave rectification the ripple frequencer will be 120 eveles for a biterele supply, and resonance will oerab when the prodwet of choke indurtanere in hemers times caiparitor capacitance in microfatads is equal to 1.77. The eomespondiner figure for $\overline{0} 0$ - (cyele sup-

 At lease twioce these products of imductanee and capacitancer should lo used to ansure against resonamee efferts. With a swimging ehoke, the minimum rated inductanee of the choke shoulat be used.

RATINGS OF FILTER COMPONENTS

Although filtor rapacitors in a rhoke-inpont filter are subgorted to smaller variations in d.e. voltage than in the rapacitive-input filter, it is
advisable to use capacitors rated for the peak transformer voltage in case the beeder resistor should burn out when thore is no load on the power supply, since the voltage then will rise to the same maximum value as it would with a filter of the capacitive-imput type.

In a rapacitive-input filter, the capacitors should have a working-voltage rating at least as high, and preforably somewhat higher, than the prak-voltage rating of the transformer. Thus, in the case of a conter-tap rectifier having a transformer dolivering sion volts eath side of the conter-tap, the minimum safe caparitor voltage rating will be 550×1.41 or 775 volts. An 800 -volt raparitor should be used. or preferably a 1000 -volt unit.

Filter capacitors are made in several different types. Electrolytic capancitors, which are available for prak voltages up to about 800 . combine high capacitance with small size, since the dielectric is an extremely-thin film of oxide on aluminum foil. Capacitors of this trpe may be connected in series for higher voltages, although the filtering capacitance will be reduced to the resultant of the two caparitances in series. If this arrangement is used, it is important that each of the capacitors be shunted with a resistor of about 100 ohms per volt of supply voltage. with a power rating adequate for the total rewistor current at that voltage. These resistors mas sorve as all or part of the bleder resistance (see choke-ioput tilters) Capacitors with highervoltage ratings usually are made with a dielectric of thin paper impregnated with oil. The working voltage of a eapacitor is the voltage that it will withstand continuously.

The input choke may be of the swinging type, the required minimum no-load and full-load inductance values boing caleulated as desoribed above. For the second choke (smoothing choke) values of 4 to 20 herres ordinarily are used. When filter chokes are placed in the positive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.e. output voltage of the supply and be capable of handling the reguired load current.
filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its promeability decreases, consequently the inductance also docreases. Despite the air gap, the in-

Fig. 7.11- In most applications, the filter chokes may the placed in the neqative instead of the ponitive side of the circuit. This reduces the danger of a voltage breakdown between the chohe winding and core.
ductance of a choke usually varies to some extent with the direct current flowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direet curront flowing in the winding mar be considerably higher than the value when full load current is flowing.

- NEGATIVE-LEAD FILTERING

For many years it has been ahmost universal practice to place filter chokes in the positive leads of plate power supplies. This means that the insulation between the choke winding and its core (which should be grounded to chassis as a safety measure) must be adequate to withstand the output voltage of the supply. This voltage requirement is removed if the chokes are plared in the negative lead as shown in Fig. 7-11. With this connertion, the caparitance of the transformer secondary to ground appears in paralled with the filter chokes tending to bupass the chokes. However, this effect will be negligible in practical application except in rases where the output ripple must be reduced to a very low ligure. Such applications are usually limited to low-voltage devies such as recerivers, speech amplifiers and v.f.o's where insulation is no poblem and the chokes may be phaced in the positive side in the conventional manner. In higher-voltage applidations, there is no reason why the filter chokes should not be placed in the negative lead to redure insulation requirements. Choke terminals, negative capacitor terminals and the transformer center-tap) terminal should be well protected against arcidental contart, since these will assume full supply voltage to chassis should a choke bum out or the chassis eonnection fail.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required d.e. load voltage and the type of filter circuit.

With a choke-input filter, the required r.m.s. sceondary woltage (each side of center-tap for a conter-tap rectifier) can be calculated by the equation:

$$
E_{1}=1.1\left[E_{0}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{\mathrm{r}}\right]
$$

Where E_{0} is the required d.e. output voltage, I is the load current (including beeder current) in milliamperes, R_{1} and R_{2} are the d.e. rasistanees of the chokes, and E_{r} is the voltage drop in the rectifier. E_{t} is the full-loud r.m.s. secondary voltage; the open-circuit voltage usually

Fik. 7.12- Diagram showing various voltage drops that must be taken into consideration in determining the reguired transformer voltage to de. liver the desired ontput voltage,

will be 5 to 10 per cent higher than the full-load value.

The approximate transformer output voltage required to give a desired d.e. output voltage with a given load with a capacitive-input filter system can be ealculated with the help of lig. 7-12.

Example:

Required d.c. output volts - 500
Load current to be drawn - 100 ma.

$$
\text { Load resistance }=\frac{500}{0.1}=5000 \text { ohus, }
$$

If the rectifier rexistance is 200 ohms, Fig. 7-5 shows that the ratio of d.c. volts to the remuired transformer r.m.s, voltage is approximately 1,15,

The required transformer terminal voltage under load with chokes of 200 and 300 ohms is

$$
\begin{aligned}
E_{1} & =\frac{E_{\mathrm{o}}+I\left(\frac{R_{1}+R_{2}+R_{r}}{1000}\right)}{1.15} \\
& =\frac{500+100\left(\frac{200+300+200}{1000}\right)}{1.15} \\
& =\frac{570}{1.15}=495 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the type of filter (capacitive or choke input). With a eapacitive-input filter the heating effect in the seeondary is higher because of the high ratio of peak to average current, consequently the volt-amperes consumed b. the transformer may be several times the watts delivered to the loat. With a choke-input filter, provided the imput choke has at least the eritical inductance, the secondary volt-amperes can be
calculated quite closely by the equation:

$$
\text { Sec. } V^{\circ} . A .=0.00075 E I
$$

where E is the total r.m.s. voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the d.e. output current in millimmeres (load current plus berder current). The primary volt-imperes will be 10 to 20 per cent higher because of transformer losses.

Filament Supply

lexcept for tubes designed for battery operation, the filaments or heaters of vacoum tubes used in both transmitters and receivers are universally operated on alternating current obtained from the power line through a stepdown transformer delivering a seeondary voltage equal to the rated voltage of the tubes used. The transformor should be designed to cerry the current taken by the number of tubses which may be comected in parallel across it. "The filament or heater transformer generally is center-tapped, to provide a balaneed circuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-powor adudio stages, it is desirable to use a separate filament tramsformer for eath section of the transmitter, installed near the tube sockets. This avoids the necessity for ahommally large wires to earry the total filament curront for all stages withont appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, sine under- or over-voltage may reduee filament life.

Typical Power Supplies

Figs. 7-13 and $7-14$ show typical powersupply circuits. Fig. $7-13$ is for use with transformers commonly listed as broadeast or television replacement power transformers. In addition to the high-voltage winding for plate supply; these transformers have windings that supply filament voltages for both the rectifier tube and the 6,3 -volt tubes in the receiver or low-power transmitter or exeiter. Transformers of this typ may he obtaned in ratings up to (bo) volte rims. each side of renter tap, 20 d.e. mat. output.
lig. 7-1:3 shows at wo-sertion filter with caparitor input. However, depending upon the maximum hum level that maty be allowable for at
particular application, the last papacitor and choke may not be needed. In some low-current applications, the first caparcitor alone maty provide adequate filtering. Table $7-11$ shows the approximate full-load and bleceler-load output voltages and ace. ripple percontages for several representative sots of components. Voltage and ripple values are given for threr points in the rireuit - Point A (first capacitor only used), Point B (last capacitor and choke omitted), and Point (${ }^{(r o m p l e t e}$ two-sertion filter in use). In each case, the bleeder resistor R should be used arross the output.

Table $7-11$ also shows approximate output volt ages and ripple pereentages for choke-ingut filters

Table 7-II																
Capacitor-Input Power Supplies																
T1 Rating		$\begin{aligned} & V_{1}^{\prime} \\ & T_{1} u^{\prime} \\ & T_{y p e} \end{aligned}$	C		L		\boldsymbol{R}		A pproximate Full-load d.c. Volts at			Appro rimate Ripple \% $a t$			Approx Output Volis Bleeder Load	Useful Oulput Ma.*
$\begin{aligned} & \text { Volls. } \\ & \text { R.M.s. } \end{aligned}$	$\begin{aligned} & \text { Ma, } \\ & \text { D. } \end{aligned}$		μf.	Volts	II.	Ohms	Ohms	Wralts	A	B	C	A	B	C		
325	40	5Y3(3T	8	600	8	400	90 K	5	375	360	34.5	2.5	0.08	0.002	450	36
325	40	5V41	8	600	8	400	30に	5	410	395	375	2.5	0.08	0.002	450	36
350	10	5y3CiT	8	600	10	22.5	46K	10	370	350	330	6	0.1	0.002	460	82
350	90	5V4];	8	600	10	22.5	416 K	10	410	390	370	6	0.1	0.002	460	82
375	150	$50^{+4} 4$	8	700	8	145	25 K	10	37.5	3.50	330	9	0.2	0.006	500	136
375	150	5V4 ${ }^{\text {a }}$	8	700	8	145	25 K	10	425	400	380	9	0.2	0.006	500	136
400	200	5U4C	8	700	8	120	22 K	20	37.5	350	325	12	0.3	0.008	550	184
					Ch	oke-In	nput	ower	Supp	plies						
325	40	5Y3GT	8	450	15.	420	18K	10	-	240	225	-	0.8	0.01	265	25
325	40	5V4G;	8	450	15	420	18K	10	--	255	240	-	0.8	0.01	280	25
350	90	5Y3GT	8	450	10	225	11 K	10	-	240	220	--	1.25	0.02	2.0	68
350	90	5V4 ${ }^{\text {\% }}$	8	4.50	10	225	11 K	10	--	270	250	--	1.25	0.02	280	68
375	150	5Y3GT	8	450	12	150	13 K	20	-	26.5	245	-	1	0.015	325	125
375	150	$50^{5} 4{ }^{\text {a }}$	8	4.50	12	150	13 K	20	-	280	260	-	1	0.015	340	125
400	200	$50^{\circ} 46$	8	450	12	140	14K	20	-	275	250	-	1	0.015	350	175
* Balance of transformer current capacity consumed by bleeder resistor.																

Fip. 7.13-Typical a.c. power-supply circuit for receivers, exciters, or low. power transmitters. lepresentative values will be found in Table 7-11. The 5 -volt winding of T_{1} should have a current rating of at least 2 amp. for types 5)3G1 and 5\4C, and 3 amp. for $51^{\prime 4}$; (GA, GB).

Table 7-III							
$\begin{aligned} & \text { A pprox. D.C. } \\ & \text { Outpul } \end{aligned}$		$\underset{\text { Raling }}{T_{2}}$		$\begin{aligned} & L_{2} \\ & h . \end{aligned}$	Voltage Rating C_{1}, C_{2}	$\begin{gathered} R \\ \text { w'atts } \end{gathered}$	Approx. BleederLoad Output Volis
Volts	Ma. ${ }^{1}$	$\begin{aligned} & \text { Approx. } \\ & \text { V'.h.M.S. } \end{aligned}$	Ma.				
400/:00	230	520/615	250	4	700	20	440/540
600/550	260	750/950	300	8	1000	50	650/800
1250/1500	240	1500/1750	300	8	2000	150	1300/1600
1250/1500	440	1500/1750	500	6	2000	150	1315/1615
2000/2.500	200	2400/2900	3004	8	3000	320 ${ }^{2}$	2050/2550
$2000 / 2500$	400	2400/2400	500	6	3000	$320{ }^{2}$	2065/2565
2500/3000	380	$2500 / 3450$	5005	6	4000	500^{3}	2565/3065
${ }^{1}$ Bulance of transformer current rating consumed by bleeder resistor. ${ }^{2}$ ['se two 160 -watt, 12,500 -ohm units in series. ${ }^{2}$ l'se five 100 -watt, 5000 -ohm units in series. 4 Regulation will be somewhat better with a 400 or $500-\mathrm{ma}$. choke. s Regulation will be somewhat better with a 5.50 -ma, choke.							

Fig. 7-14-Convemtional power-supply circuit for higher-power transmitters. $\mathrm{Ci}_{\mathrm{i}} \mathrm{C} \mathrm{C}_{2}-4 \mu \mathrm{f}$. for approximately 0.5% out. put ripple; 2μ f. for approximately 1.5% output ripple. Ci $_{2}$ should be 4μ. if supply is for modulator.
R - 25,000 ohms.
I. - Swinging chohe: $\mathbf{5} / \mathbf{2 5}$
h., current rating same as T_{2}
I. 2 - Snoothing chohe: current rating same as T_{2}.
T1 $\cdots 2.5$ volts, 4 amp. for type 816; 2.5 volts, 10 amp . for 866A.
T_{2} - I, re voltage rating same as butput voltage.
T_{3} - Voltake and current rating to suit transmitter.
 shown in Trable $\mathbf{7} .11$. See Table -.III for nther valuen.
(first filter capacitor omitted), for Point B (last capacitor and choke omitted), and Point C (complete two-sedion filter, first capacitor omitted).
Actual full-load output voltages may be somewhat lower than those shown in the table, since the voltage drop through the resistance of the transformer secondary has not been included.
Fig. 7-14 shows the conventional circuit of a transmitter plate supply for higher powers. A full-wave rectifier circuit, half-wave rectifier tubes, and separate transformers for high voltage, rectifier filaments and transmitter filaments are used. The high-voltage transformers used in
this circuit are usually rated directly in terms of d.c. output voltage, assuming rectifiers and filters of the type shown in Fig. 7-14. Table 7-11I shows typieal values for representative supplies, based on commonly-available components. Transformer voltages shown are representative for units with dual-voltage secomdaries. The bleeder-load voltages shown may be somewhat lower than artually found in practice, because transformer resistance has not been included. Ripple at the output of the first filter section will be approximately 5 per cent with a $4-\mu$. eapacitor, or 10 per cent with a 2- μ f. capacitor.

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and screens of the various tubes in a transmitter or receiver of ten require a variety of operating voltages differing from the output voltage of an available power supply. In most eases, it is not eronomically feasible to provide a separate power supply for eath of the required voltages. If the current drawn by an electrode, or rombination of electrodes operating at the same voltage, is reasonably constant under normal operating conditions, the required voltage may be obtatined from a supply of higher voltage by means of a voltagedropping resistor in sories, as shown in IFig. 7-15A. The value of the series, resistor, R_{1}, may be ohtained from Ohm's law, $R=\frac{E_{d}}{l}$, where
E_{d} is the voltage drop required from the supply voltage to the desired voltage and / is the total rated eurrent of the load.

$$
\begin{aligned}
& \text { Example: The plate of the tube in one stage } \\
& \text { and the serecns of the tubes in two other stages } \\
& \text { recuire an operating voltage of } 250 \text {. The nearest } \\
& \text { available supply voltage is } 400 \text { and the total of } \\
& \text { the rated plate and serecturrents is } 75 \mathrm{ma} \text {. The } \\
& \text { refuired resistance is } \\
& \qquad R=\frac{400-250}{0.075}=\frac{150}{1.075}=2000 \text { ohms. }
\end{aligned}
$$

The power rating of the resistor is obtained from ${ }^{1}$ (watts) $=I^{2} R=(0.075)^{2}(2000)=11,2$ watts. A 20 -watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this mamer oloviously is poor, since any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop arross the rasistor. The regulation can be improved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. $7-15 \mathrm{~B}$. Such an arrangement constitutes a voltage divider. The second resistor, $R 2$, acts as a constant load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn by the rosistors when they alone are connected across the supply, the better will be the voltage regnlation at the tap.

Surh a voltage divider may have more than a single tap) for the purpose of obtaining more than one value of voltage. A typieal arrangement is shown in Fig. $7-15 \mathrm{C}$. The terminal voltage is E, and two taps are provided to give lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2}

Fig. 7.1.5 - - Series voltage-dropping remistor. IS Simple voltage divider. C: Multiple divider circuit.

$$
R_{3}=\frac{I_{1}}{I_{6}} ; R_{4}=\frac{\mathscr{H}_{2}-I_{1}}{I_{1}+I_{1}} ; R_{5}=\frac{E-L_{2}}{I_{4}+I_{1}+I_{2}}
$$

respertively. The smaller the resistance between taps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, $I_{\mathrm{b}}: R_{4}$ carries I_{1} in addition to $I_{5} ; R_{5}$ carries I_{2}, I_{1} and I_{1}, To calculate the resistances required, a bleeder current, I_{L}, must be assumed; generally it is low compared with the total load current (10 per
t or so). Then the required values can be

ratculated ats shown in the eaption of rig. 7-15C, I being in decimal parts of ath ampere.

The met hod may be cextended to any desired number of taps, each resistaner section being calculated by 0 hm 's law using the neoded voltage dropaceoss it and the total current through it. The power dissipated by each section may be cakculated cither by multiplying I and E or J^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage dow-current rircuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gascous regulator tubes ($) \mathrm{C}: 3 /$ VR105, OD:3/VR150, ete.) can be used to grood advantage. The voltage drop across such tubes is eonstant over a moderately wide current range. Tubes are available for regulated voltages near $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. 7-16.A. The tube is con-

Fig. $\mathbf{7}$-16 - Voltage-stabilizing circuits using VR tubes.
nected in series with a limiting resistor, R_{1}, across a source of voltage that must be highor than the starting voltage. The starting voltage is about 30 to 40 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma. is re-
quired. The maximum permissible current with most types is 40 ma ; consequently, the lowd current cannot exceed 30 to 35 ma . if the voltage is to be stabilized over a range from zero to maxinum load current.

The value of the limiting resistor must lie between that which just permits minimum tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{J}
$$

where R is the limiting resistance in ohms, E_{a} is the voltage of the source across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 40 ma .).

Fig. 7 -16IS shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for E_{r}. Since the upper tube must carry more current than the lower, the load eonnected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exceed 30 to $3 \overline{5}$ milliamperes.

Voltage regulation of the order of 1 per eent

can be obtained with these regulator cireuits. A single VR tube may also be used to regulate the voltage to a load current of almost any value so long as the variation in the current does not execed 30 to 35 ma . If, for example, the averuge load current is 100 ma., a VR tube may be used to hold the voltage constant provided the current does not fall helow 85 ma . or rise above 115 ma. In this case, the resistance should be calculated to drop the voltage to the VR-tube rating at the maximum load current to be expected plus about 5 ma . If the load resistance is constant, the effects of variations in line voltage may be diminated by basing the resistance on the load current plus 15 ma . Voltage-regulator tubes may also be connected in parallel as described later in this chapter.

Electronic Voltage Regulation

Several cireuits have been developed for regulating the voltage output of a power supply electronically. While more complicated than the VIRtube circuits, they will handle higher voltages and currents and the output voltage may be varied continuously over a wide range. In the cireuit of Fig. $7-17$, the 565 l regulator tube supplies the grid (4) of the 6SL, $\mathbf{7}$ with a constant reference voltage. When the load connected acorss the output terminals incrases, the output voltage tends to decrease. This decreases the plate (5) voltage. Since grid (1) is connected directly to plate (5), grid (1) heoomes less positive and that triode draws less plate current. The voltage drop across R_{3} being less, the bias on the grids of the 6.157 G is reduced, decreasing the voltage drop across the

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}-16 \% \mathrm{f} .600$. volt electrolytic.
$\mathrm{C}_{3}-0.015-\mu \mathrm{f}$. paper.
$\mathrm{C}_{4}-0.1-\mu \mathrm{f}$. paper.
$\mathrm{R}_{1}-0.3$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}-100$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-510$ ohms, $1 / 2$ watt.
1is, $\mathrm{H}_{8}-30,000$ ohnis, 2 watts.
$\mathrm{lis}_{6}-0.24$ megohm, $1 / 2$ watt.
$\mathrm{H}_{7}-0.15$ megohm, $1 / 2$ watt.

Fig. 7-18 - Circuit diagram of an electronically-regulated power supply rated at 300 volts max., 150 ma. max.
$\mathrm{R}_{9}-9100$ ohms. I watt.
$\mathrm{R}_{10}-0.1$-nlegohm potentiometer.
$\mathrm{R}_{11}-43,000$ ohms, $1 / 2$ watt.
1, -8 -hy., $40-m a$. filter choke.
s_{1} - S.p.s.s. toggle.
T_{1} - Power transformer: 375-350 volts r.m.s.s, 160 ma.; 6.3 volts, 3 ampm.; 5 volts. 3 aups. (Thor. 22R33).
6.AS7G and thereby maintaining the original output voltage.

For a maximum regulated voltage output of 250 , the filtered d.e. input voltage should be 325 volts at 225 ma. For a constant line voltage the output voltage will remain constant within 0.2 volt over a boad-ourrent range of 0 to 22 j mat. With a line-voltage variation of plus or minus 10 per cent, the output voltage will vary less than 0.1 volt.

Another similar regulator circuit is shown in Fig. 7-18. The principal difference is that sereengrid regulator tubes are used. The fact that a sereen-grid tube is relatively insensitive to changes in plate voltare makes it possible to obtasin a reduction in ripple voltage adequate for many purposes simply by supplying filtered d.e. to the sereens with a consequent saving in weight and cost. The accompanying table shows the

Table of Performance for Circuit of Fig. 7-18			
I	II	1/1	Oupht coltage - 300
450 v ,	29 ma	3 mv .	1.31 ma. 2.3 mv.
425 v	4.5 ma.	4 mv .	125 ma. 2.8 mv .
400 v .	72 ma.	6 mv .	100 ma. 2.6 mv .
3.5 v .	97 ma.	8 mv .	Sima. 2.5 mv.
350 v .	122 ma .	9.5 mv .	50 ma. 30 mm .
32.5	1.50 ma.	3 mv .	$25 \mathrm{ma}$.3.11 mv .
300 v .	1.50 ma.	2.3 mv .	$10 \mathrm{ma}$.2.5 mv .

performance of the circuit of Fig. 7-18. Column I shows various output voltater, while Column II shows the maximum current that can be drawn at that voltage with negligible variation in output voltage. Column III shows the measured ripple at the maximum current. The second part of the table shows the variation in ripple with load current at 300 volts output.

Bias Supplies

As discussed in the chapter on high-fregueney transmitters, the chief function of a hias supply: for the r.f. stages of a transmitter is that of providing protective bias, although under certain circumstances, a bias supply, or pack, as it is

Fig. F-19 - Simple bias-zupply circonits. In A. the neak transformer voltage must not exceed the operating value of bias. The circuits of B (half-wave) and C. (full-wave) may be used to reduce tran-former voltage to the rectifier. K_{1} is the recommended grill-leak resistance.
sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-19A shows the diagram of a simple bias supply. R_{1} should be the recommended grid leak for the amplifier tube. No grid leak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value between the bias required for plate-current cut-off and the recommended operating bias for the amplifier tube. The transformer peak voltage (1.4 times the r.m.s. value) should not exceed the recommended operating-bias value, otherwise the output voltage of the pack will soar above the operating-bias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider across the transformer secondary, as shown at B. Such a system can be used when the transformer voltage is higher than the operating-hias value. The tap on R_{2} should he adjusted to give amplifier cut-off bias at the output terminals. The lower the total value of R_{2}, the less the soaring will be when grid current flows.

A full-wave circuit is shown in Fig. 7-19C. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases, the transformer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. 7-19 and the difficulty of predicting values in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-20A. A VR tube

(A)

(B)

Fig. 7.20 - Illustrating the use of VR tubes in stabiliz. ing protective-bias supplies. R_{1} is a resistor whose value is adjusted to liznit the current throngl each VIA tube to 5 ma. hefore amplifer excitation is applied. R and R_{2} are current-equalizing resistors of 50 to 1000 ohms.
with a voltage rating inywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifier excitation, until the V'R tube ignites and draws about 5 ma . Additional voltage to bring the bias up to the operating value when excitation is applied ean be obtained from a grid leak resistor, as discussed in the transmitter chapter.

Fatch VR tube will handle 40 ma . of grid current. If the grid current excemts this value under any condition, similar Vle tubes should be cuded in patallel, as shown in Fig. $7-2013$, for cach 40 mit , or less, of additional grid current. The resistors R_{2} are for the purpose of helping to maintain equal currents through each VR tube, and should have a vadue of 50 to 1000 ohms or more.
If the voltage rating of a single V'R tube is not sufficiently high for the purpose, other VIl gubes may be used in series (or series-paralled if required to satisfy grid-current requirements) as shown in the diagrams of Fig. $7-20 \mathrm{C}$ and I).

Fig. 7.21 - Circnit diagram of an electronically-regulated hias supply.
$\mathrm{C}_{1}-20-\mu \mathrm{f}$. 450 -volt electrolytic.
$\mathrm{C}_{2}-20-\mu \mathrm{f}$. 150 -volt electrolytic.
$\mathrm{R}_{1}-5000$ ohms, 2.5 watts.
$1 \mathrm{R}_{2}-22,000$ olims, $1 / 2$ watt.
R_{3} - $68,(1400$ ohnse, $1 / 2$ watt.
$\mathrm{R}_{4}-0.27$ megohm. $1 / 2$ watt.
R_{3} - 3000 ohms, 5 watts.
$\mathrm{R}_{6}-0.12$ megohm, $1 / 2$ watt.
R_{i} - 0, 1-megolm potentioneter.
$\mathrm{Rs}-2 \mathrm{Z},(\mathrm{mO})$ ohms, $1 / 2$ watt.
$L_{1}-20 . h_{y}$. \quad (t-mil. filter choke.
T1 - Power transformer: 350 volts r.m.s. earh side of eenter. 50 ma.; 5 volts, 2 amp.; 6.3 volts, 3 amp.
in Fig. $7-20 \mathrm{E}$, to adapt them to the needs of each stage.

Providing the VR-tube current rating is not exrecded, a series arrangement may be tapped for lower voltage, as shown at F.

The circuit diagram of an electronicallyregulated bias-supply is shown in Fig. 7-21. The output voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid currents up to 200 ma. over the range of 30 to 80 volts, and 100 ma . over the remainder of the range. This will take are of the hias requirements of most tubes used in Class I3 amplifier service. The regulation will hold to about 0.001 volt per milliampere of grid current. The regulator operates as follows: Since the voltage drop across I_{3} and V_{4} is in paralled with the voltage drop across V°, and R_{5}, any change in voltage arooss V^{\prime}, will appear aross R_{5} because the voltage drops a moss both VR tubes remain constant. R_{5} is a cathode biasing resistor for F_{2}, so any voltage change aeross it appears as a grid-voltage change on $V^{r}{ }_{2}$. This change in grid voltage is amplified by V_{2} and appears across R_{4} which is commeeted to the plate of V_{2} and the grids of V_{3}. This change in voltage swings the grids of F_{3} more positive or negative, and thus varies the internal resistance of V_{3}, maintaining the voltage drop auross V_{3} practically constant.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be connected with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-22A. In an-

Fig. 7.22 - Convenient means of obtaining biasing voltage. A - From a low-voltage plate supply. 13 From spare filament winding. T_{1} is a filament transfornter, of a voltage output similar to that of the spare filament winding, connerted in reverse to give 115 valts r.m... output. If eold-cathoule or selenium rectifiers are used, no additional filament supply is refuired.
other arrangement, shown at B, a spare filament winding can be used to operate a filament transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be sufficient to operate a V'R5s or VIR!0 regulator tube.

A bias supply of any of the types discussed requires relatively little filtering, if the outputterminal peak voltage does not approanh the operating-bias value, because the effeet of the supply is entirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the circuits shown in IFigs. 7-23, 7-24 and $7-25$ may be used with any type of rectifier, they find their greatest advantage when used with selonium reclifiers which require no tilament transformer. These eircuits must be used with caution, observing line polarity in the circuits so marked, to avoid shorting the line, since the negative output terminal should always be grounded. In circuits showing isolating transformers, the transformer is a requirement, since without the transformer, the negative output terminal camot be grounted in following good practice for safety without shorting out part of the rectifier circuit. In the cireuits which do not show a transformer, the transformer is preferable, since it avoids the necessity for correctly polarizing the connection to the power line to prevent a short circuit.

Fig. 7-23 is a straightforward half-wave rectifier cirenit which may be used in applications where 115 to 130 volts d.e. is desired. It can be used for bias supply, for instance.

Fig. 7-24 shows several voltage-doubler circuits. Of the three, the one shown at A is the most desirable since there is no series capatoitor. It is a full-wave circuit and there will be very little ripple voltage appearing at the output. The arrangement of circuit 13 is such that one side of the output may be grounded. In eircuit (, the point X is eommon to both calpacitors in the rectifier and filter, and a single-unit 3 -section capacitor can be used to save space. If the load current is less than l(n) ma., this is the best circuit.

Fig. 7.23 - Simple half-wave circuit for selenium rectificr.
$\mathrm{C}_{1}-\mathbf{0 . 0 5 - \mu f . 6 0 0}$-volt naper.
$\mathrm{C}_{2}-40-\mu \mathrm{f} .200$-volt electrolytic.
$1 R_{1}-25$ to 100 olims.

Fig. 7-24-Voltage-doubling eircuits for use with selenium rectiliers.

$\mathrm{C}_{2}-4(10-\mu \mathrm{f}, 20$-volt dectrolytic.
C_{3} - riller capacitor.
$\mathrm{R}_{1}-2.5$ to 100 ohms.
L_{2} - Filter choke.
li- Isolation transformer.
Fig. $7-25 \mathrm{~A}$ shows a voltage tripler, and 13 and C quadruplers.

All components are standard. C'in all circuits is for "hasin" filtering and its value is
 itor shouhd serve. All other capacitors should the $f(0-\mu f$. $2(0)$-volt units, except those in the tripler and quadrupler cirreuts. Those in the circuit of Fige $7-25$ should have a rating of tio) volts working. In the voltage multipliers and in other circuits where a capacitor is passing the full current, good capacitors should be used beeause the ace ripple mentioned above appears across the caparitor and introases as the load increases. If the current is allowed to

Fig. 7-25-A - I'ripler cirenit. B - IIalf-wave quadrupler. (: - Full-wave quadrupler.
C. $0.05-\mu \mathrm{f}$. 60 OH -volt paper.

C2 - 40- 4 f. 150 -volt electrolytic.
$\mathrm{C}_{3}-100-\mu \mathrm{f}$, 150-volt electrolytic. $R_{1}-2.5$ to 100 ohms. T_{1}-Isolating transformer.
become too high, it will rause heating and deterioration of the caparitor. This can be kept to a minimum by using a capacitor of high value and making sure it is of good make. R_{1} should be 25 ohms, but if it is found that the rectifier units are rumning a litte too warm, this value may be increased to as high as 100 ohms, with a corresponding drop in output voltage, of course. A single-section filter, as shown in lig. $7-24 \mathrm{C}$, will provide sufficient smoothing for most applications.

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, special consideration should be given to the are line running into the station. In some revidential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230 , while half of this voltage (115) appears between earh of these wires and neutral, as indicated in Fig. $7-26 \mathrm{~A}$. In systems of this type, usually it will be found that the 115 .
volt household load is divided as evenly as possible between the t wo sides of the rireuit, half of the load being connected between one wire and the neutral, while the other half of the load is connerted between the other wire and neut ral. Heavy appliances, such as elect rie stoves and heaters, normally are designed for 230 -volt operation and therefore are connected across the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The reason for this is that opening the nentral wire does not disconnert the equipment. It simply leaves the equipment on one

Fig. 7-26 - Three-wire power-line cireuits. A - Normal 3-wire-line termination, No fuse should be used in the grounded (neutral) line. 13 - Showing that a switeh in the nentral does not remove voltage from either side of the line. C - Connertions for both 115 - and 230 -volt transformers. 1) - (Operating a 115 -volt plate transformer from the 230 -volt line to avoid light blinhing. F_{1} is a $2 \cdot t o-1$ step-down transformer.
side of the 230 -volt circuit in series with whatever load may be arross the other side of the circuit, as shown in Fig. 7-2til3. Furthermore, with the neutral open, the voltage will then be divided between the two sides in inverse proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the other side, unless the loads happen to be equal.

The usual line ruming to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, modulator, receiver and other auxiliary equipment, it is not unusual to find this 150 -ampere rating exceeded by the requirements of a station of only moderate power. It must also be kept in mind that the same branch may be in use for other household purposes through another outlet. For this reason, and to minimize light blinking when keying or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A three-volt drop in line voltage will cause noticeable light blinking.)

If the system is of the threewire type, the three wires should be brought into the station so that the load can be distributed to keep the line balanced. The voltage arross a fixed load on one side of the cireuit will increase as the load eurrent on the other side is incereased. The rate of increase will depend upon the resistance introduced by the neutral wire. If the resistance of the neptral is low, the increase will be correspondiatit small. When the rurrents in the two circuits are balanced, no current flows in the neutral wire and the sustem is operating at maximum efficiency.

Light blinking can be minimized by using transformers with $2: 30$-volt primaries in the power supplias for the keved or intermittent part of the load, comecting them across the two ungrounded wires with no connection to the noutral, as shown in Fig. 7-260. The same can be aceomplished by the insertion of a stepdown transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional 115 -volt transformers may be operated from the secondary of the step-down transformer (see Fig. 7-26D).

When a special heavy-duty line is to be installed, the local power company should be
consulted as to local requirements. In some localities it is necessary to have such a job done by a licensed electrician, and there may be special requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the station at a switeh box, while others may use elertrict-stove receptacles as the tormination. The power is then distributed around the station by means of conventional outlets at convenient points. All circuits should be properly fused.

LINE-VOLTAGE ADJUSTMENT

In, wertain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the foad on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when hights are turned on at evening, they may be taken care of by the use of a manuallyoperated compensating device. A simple arrangement is shown in Fig. 7-27.A. A tuy transformer is used to boost or buek the line voltage

Fig. 7-27-T'wo methods of transformer primary eontrol. At A is a tapped toy triminformer which may he connected so as to bonat or back the line voltage as reguired. At 13 is imdicated a variable trameformer or autotransformer (Iariac) which fecds the transforiner primaries.
as required. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load eur-
rent of the entire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in serios with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought up to the rated 115 volts by setting the toytransformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 115 volts. This method is prefcrable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as seriously. The circuit of $7-2713$ illustrates the use of a variable autotransformer (Variac) for adjusting line voltage to the desired value.

Another scheme by which the primary voltage of fach transformer in the 1 ransmitter may be adjusted to give a desired secondary voltage, with a master control for compensating for changes in line voltage, is shown in Fig. $7-28$.

This arrangement has the following features.

1) Adjustment of the switch S_{1} to make the voltmeter read 105 volts automatically adjusts all transformer primaries to the predetermined correct voltage.
2) The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can he appled to the primary of one transformer, 115 to another, ete., as required to ohtain the desired output voltage.
3) Independent control of the plate transformer is alforded by the tap switch S_{2}. This pormits power-input control and does not require an extra autotransformer.

Fig. 7.28- With this circuit, a singleadjustment of the tap, switch S_{1} places the correet primary voltage on all transformers in the transmitter. Information on constructing a suitalle antotransformer at nesligible cost is contained in the text. The light winding represents the regular primary winding of a revamped transformer, the heavy winding the voltage -adjusting section.

Constant-Voltage Transformers

Although comparatively expensive, special transformers called constant-voltage transformers are available for use in cases where it is necessary to hold lime voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 va, at 6.3 volts output, for small tube-heater demathes, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their output voltages within one per cent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a factor in construction. Nore important are the points of good high-voltage insulation, adeguate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safety to the operator. bxposed high-voltage terminals or wiring which might be bumped into aceidentally should not be permitted to exist. They should be covered with adequate insulation or plawed inacressible to contact during normal operation and adjust mont of the transmiter. Powersupply mits should be fused individually. All negative terminals of plate supplies and positive terminals of bias supplies should be securely groumded to the chassis, and the chassis connerted to a waterpipe or radiator ground. All transformer, choke, and eapacitor eases should also he grounded to the chassis. A.c. power cords and thassis comedors should be arranged so that exposed contarts are never "live." Starting at the
conventional are, wall outlet which is female, one end of the eord should be fitted with a male plug. The other end of the cord should have a female receptacle. The imput comnector of the power supply should have a male rereptacle to fit the fonale receptacle of the cord. The power-output ronnector on the power supply should be a femate sorket. A male plug to fit this socket should be connerted to the cable going to the equipment, The opposite end of the eable shoubl be fitted with it female connector, and the saries should terminate with a male comector on the equipment. If comeetions are made in this mamer, there should be no "live" exposed contarts at any point, regardless of where a diseonnedtion may he made.
lectifier filament leads should be kept short to assure proper voltage at the rectifier socket, and the sockets should have good insulation and adequate contact surface. Plate leads to mercurv-vapor tubes should be kept short to minimize the radiation of noise.

Where ligh-voltage wiring must pass

Fig. 7.29- A typical simple receiver power supply. Filament and plate voltages are taken from the multi. contaet tube soeket which serves as an outlet.
through a metal chassis, grommet-lined clearance holes will serve for voltages up to 500 or 750, hut ceramic feed-through insulators should be used for higher voltages. Bleeder and voltage-dropping resistors should be plared where they are open to air circulation. Plaring then in confined space reduces the rating.

It is highly preferable from the standpoint of operating convenience to have separate filament transformers for the rectifier tubes, rather than to use combination filament and plate transformers, such as those used in receivers. This permits the transmitter phate voltage to beswitched on without the necessit,y for waiting for rectifier filaments to come up to temperature atter each time the high voltage has been tumed off. When using a combination power trunsformer, high voltage may be turned off without turning the filaments off by using a swith between the transformer renter tap and chassis. This switch should be of the rotary type with good insulation hetween contacts. The shaft of the switeh must be grounded.

Fig. 7.30-Botton view of the simple receiver power supply showing the eut-out for the flush-mounting transformer.

SAFETY PRECAUTIONS

All power supplies in ant installation should be fed through a single main power-line switch so that all power may be eut off quirkly, either before working on the equipment, or in case of an arcident. Spring-operated switehes or relays are not sufficiently reliable for this important sorvice. Foolproof devices for cutting off all power to the transmitter and ot her equipment are shown in Fig. 7-33. The arrangements shown in Fig. 733 A and B are similar circuits for two-wire ($115-$ volt) and three-wire ($2: 30$-volt.) systems. S is an enelosed double-throw knife switch of the sort usually used as the entrance switch in house installations, J is a standard a.ce. outlet and I^{\prime} a shorted plug to fit the outlet. The switeh should be located prominently in plain sight and members of the houschold should be instrueted in its location and use. I is a red lamp loeated alongside the switch. Its purpose is not so much to sorve as a warning that the power is on as it is to holp in identifying and quickly locating the switch

Fir. 7.31-A typical highvoltage transmitter fower supply. 'The transformers, chokes and capacitors are inverted wo that no terminalare exposed to accislental contart. The capsof the 866 rertifiers are the insulated type. A safety terminal (Millen) is used for the positive high-voltage connertion.

should it become neecssary for someone else to cut the power off in an emergency.

The outlet J should be plated in some comer out of sight where it will not be a temptation for children or others to play with. The shorting plug can be removed to open the power circuit if there are others around who might inadvertently throw

Fig. 7-33 - Reliable arrangenents for cutting off all power to the transmitter. S is an enclosed double-pole knife-type suitch, J a standard a.c. ontlet. ''a shorted plug to fit the outlet and I a red lamp.
A is for a two-wire 115 -volt line, B for a three-wire \#30-volt system, and C a simplified arrankement for low-power stations.
the switch while the operator is working on the rig. If the operator takes the plug with him, it will prevent someone from turning on the power in his absence and either injuring themselves or

Fig. 7-32- Bottom view of the transmitter power supply showing the cut-outs for the terminals. Separate power plugn are used for the rectifier-filament and plate transformers so that they may be switched independently from the control position.
the equipment or perhaps starting a fire. Of utmost importance is the fact that the outlet J must be placed in the ungrounded side of the line.

Those who are operating low power and feel that the expense or complieation of the switeh isn't warranted can use the shorted-phug idea as the main power switch. In this ease, the outlet should be located prominently and identified by a signal light, as shown in Fig, $7-3: 3 \mathrm{C}$.

The test bench ought to be fed through the main power switch, or a similar arrangement at the bench, if the bench is located renote from the transmitter.

A bleeder resistor with a power rating giving a considerable margin of safety should be used across the output of all transmitter power supplies so that the filter capacitors will be discharged when the high-voltage transformer is turned off.

Selenium-Rectifier Table

All types listed below are rated as follows: Max. input r.m.s. volts - 130, Max, peak inverse volts - 380. Series resistors of 47 ohms are recommended for units rated at less than 65 ma., 22 ohms for 75-and 100-ma, units, 15 ohms for $150-m a$. units, and 5 ohms for all higher-current units.

$\begin{gathered} \text { D.C. } \\ \text { Ma. } \\ \text { Output } \end{gathered}$	Manufacturer					
	A	B	C	D	E	F
20	1150	\ldots	8S20		\cdots	
30				811	\cdots	
35			8535			
50		RS6.9Q			50	
65	1002A	RN(3)	68.65	8.11	65	NA-5
75	1003.4	R2s75	6×85	5114	75	NB-s
100	1004A	12sicto	6sil00	5M11	100	NC- ${ }^{-1}$
130	1005. 1	[RS150	6\&150	5 Pl	130	ND-5
200	1006A	RS200	6s:200	5 R 1	200	NE- ${ }^{\text {a }}$
250	1028. ${ }^{\text {A }}$	RS250	6 S 250	5 Q1	250	NF-5
300	1090.	1RS:300	6s300	6C) 4	300	
350	1023	IRS350	68350	$55^{\text {c }}$ S 1		NK-5
400	1130	RStu0	6S400	5 S 2	400	N11-5
450		RS450	6S450			NJ. 5
500	1179	RS500	$6 \$ 500$	$5 \$ 1$	500	
600					600	
1000		RS 1000				
A - Federal. B - International. (: - Mallory. D - Radio Receptor, E - Sarkes-Tarzian, FSylvania.						

Keying and Break-In

Sbetion 12.13:3 of the fec regillations says ". . . The frequency of the emitted . .. wave shall be as constant as the state of the art permits." It adso says ". . . spurious radiation shall not be of sufficient intensity to catuse interference in receiving equipment of good engineering design including adequate selectivity charabeteristics. which is tuned to a frequency or frequencies outside the freguency band of emission normally required for the type of emission being employed by the amateur station."

If the FCC: ever decided to enforce these regulations to the strict letter of the law. citations would be received by a large percentage of the earrent erop of stations. The state of the art is such that an emitted wave can be mighty stable, yot many code (and phone) stations show f.m. and chirp that leaves them open to a ritation by the Commission. Rery rlicks (and splatter) represent violations of the spurious radiation clatuse. and it isn't hard to find evidences of them in any of the ham Iands.

There are four factors that have to be considared in the keying of a transmitter. They are r.f. clicks, envelope shape, chirp and backwate.

R.F. Clicks

Whenever any eircuit carrying d.c. or a.c. is rlosed or brokeln, the small or large spark (depending upon the voltage and current) generates at small amount of r.f. during the instant of make or brak. This r.f. covers a frequency range of many megacyeles. A typieal example of this type of miniature transmitter is when a lamp or other appliance is switched off in the house: at that instant a click may be heard in the broadeast or short-nave radio. When a transmitter is keyed, of necessity some current must be handled by the key (and relay, if one is used), and the minute spark at the contares usually causes a chick in the receiver. This rlick hus no effect on the transmitter, although many amateurs think it has, since it oceurs at the same time that a click (if any) appars on the (ramsmitter output, it is obviously impossible for one to jullee the elicks on his own transmitted signal by observation within the shack unloss he has first removed the effects of these r.f. clicks. Fortunately, this is usually a simple matter, involving only a small r.f. filter at the contants of the key (and relay, if used). Typiowl circuits and values are shown in lig. 8-1. The effectiveness of the filter call be easily Checked by interrupting the normal amount of current with the key and listening to observe if any click ean be heard. In other words, if your key normally handles. for example, 50 ma. of current, the effectiveness of the filter can be checked by keying that amount of current, without the transinitter running. The currest can be
obtained from your power supply through a suitable resistor (computed by Ohm's Law). If you don't care to go to this trouble, and often it isn't necessary, liston on a lower frequeney band than your transmitter and see if applying an r.f. filter at the key reduces the clicks. Do this with the gain control of the receiver backed off and only is short length of wire connerted to the receiver antemai terminal. This cheek will work if your transmitter keying is alrealy fairly "soft." but it is not a sure-fire test like interrupting the normal amount of current with no radio transmitter running.

Envelope Shape

The key dicks that go out on the air with your signal, and which make up one of the forms of spurious radiations mentioned in the opening paragraph (the other two are harmonics and

Fig. 8-I - T'ypical filter circuits to apply at the key (ant relay, if used) to minimise r.f. dicks. The simplest circuit (i) is a small capacitor monnted at the hey. If this proves insufficient, an r.f. choke can be added to the ungrounded lead (B) or in both leads (C). The value of C_{1} is . 001 to $.01 \mu f_{0}, R F C_{1}$ and $R P C_{2}$ can be 0.5 to 2.5 mh., with a current-carrying ability sufficient for the current in the keyed circuit. In difficult cases another small capacitor may be required on the other side of the r.f. choke or chokes. In all cases the r.f. filter should le mounted right at the key or relay terminals; sometimes the filter can be concealed under the key. When cathode or center-tap keying is used, the resistance of the r.f. choke or chokes will aild cathode bias to the keyed stage, and in this case a high-current low-resistance choke may be required, or compensating reduction of the gril-leak hias (if it is used) may be needed.

I visihle spark on "make" can often be reduced by the addition of a small (10 to 100 ohms) resistor in series with (A) (inserted at point "x"). 'Too high a value of resistor reduces the arc-suppressing effect on "break."
parasitie oscillations), are controlled by the shape of the envelope of the signal. The envelope is simply the outline of the oscilloscope pattern of your transmitter output, but you don't need an oscilloscope to observe the efferts. Fig. 8-2 shows representative soope patterns that might be obtained with a given transmitter under various

A

Fis. 8-2 - 'Typieal oscilloscope displays of a conde transmitter. 'The rectangular-shaped dois (A) have serious hey clich extending many k e. either side of the transmitter frequeney. lising proper shaping eireuits increases the rise and decay times to give signals with the emelope form of 13 . This signal would have prace tically mo hey elicks. Carrying the shaping process too far. as in Ce, results in a signal that is too "soft" and is not easy to copy.
conditions. The pattern at Fig. 8-2A is the transmitter output with no envelope-shaping provisions. A signal like this has horrible chicks on the air, which are the ineseapable result of turning the transmitter on and off too rapielly. The clicks can be reduced by providing cireuits that cause the transmitter output to rise to full output and (lrop off to zero output relatively sowly each time the key is closed and opened. The pattern of such a transmittor might look like lig. 8-213. and it would be found that such a signal shows little if any elicks outside of the narrow recociver range over which the code signal can tre heard. If the shaping process is carried too far, and a signal like Fig. 8-2C is ohtained, it may be found that the keving is too "soft" and, while it shows no clicks anywhere, it is not too easy or pleasant to cops under weak-sigmal conditions.

At the moment it is sufficient to appreciate that the on-the-nir clicks are determined hey the shaping. while the r.f. clicks caused bey the spark at the key can only te heard in the station receiver and possibly a broadeast remiver in the same house or apartment.

Chirp

The frequenerestahility referemee in the operning paragraph refers to the "chirp" observed on many signals. This is causid by a change in froquency of the signal during a single dot or dash. Chirp is an easy thing to dotert if you know how to listen for it although it is amazing how some operators will listen to at signal and saty it has no chirp when it actually has. The easiost way to detect chirp is to tune in the code signal at a low beat note and listen for any change in frequency during a dash. The lower the beat note, the easier it is to detect the frequency
change. Listening to harmonics of the signal will multiply the frequency change and make any quite olvvious.

The "state of the art" is such that code transmitters can be built with no chirp, and it is fortunate that the FCC hasn't seen fit to enfore the regulation. Actually, a small amount of chirp. while noticcable, does not prevent eopy even under the sharpest selectivity eonditions, although it is sometimes said that high-selectivity. receivers can't hold chirpy signals. This just isn't true, unless the chirp is so bad that the signal shouldn't be on the air anyway. The main reason for minimizing chirp, aside from complying with the letter of the regulations, is one of pride, since a properly-shaped chirp-free signal is a pheasure to copy and is likely to attract attention b_{y} its rarity. Chirps camot be observed on an oscilloseope pattern of the envelope.

Backwave

The last factor is "hackwave," a signal during ker-up conditions from some amplifier-keyed transmitters. It isn't a very important factor these days, siuce most amateurs are aware of it. although some operators listening in the shate to their own signals and hearing a hackwave thank that the backwave is hard on the air. It isn't

Fig. 8-3 - I'he basie cathode (A) and ernter-tip (13) keying dircuits. In cither case (d is the r,f, return to ground, shunted by a larger eapacitor for shaping, Foltage ratings at least ectual to the cut-off voltage of the tube are required. $T_{\text {i }}$ is the nornal filament transformer. (acan be about 0.01μ f.
"the shaping of the signal is controlled by the values of L_{1} and C_{i}. Inereased capacitance at ($: i$ will make tha signal softer on loreah; increased inductance at $/ .1$ will make the signal softer on make. In many cases the make will he satisfactory without any inductance.

Values at (it will range from $0 . .5$ to 4μ., depernding upon the tube type and operating conditions. 'The value of L_{1} will also vary with tube type and conditions. and may range from a fraction of a henry to several henrys. When tetrodes or pentodes are keved in this manner. a smaller value can sometimes be used at Cif if the scrienvoltage supply is fined and not obtained from the plate supply through a dropping resistor.

Oncillators keyed in the cathote cirenit cannot he softened on break indefinitely by incrasing the value of C_{1} becausc the grid-circuit time constant cnters into the action.

Fig. 8-4 - The banic circuit for hooked-kril hosing is shown at A. R_{1} is the normal grid leah. amp the horking voltage must be at least aeveral times the normal grid bian. "l'he elick on make "an ber reduced by making di larger, and the elich on break can be reduced by mahing R_{2} larger. lasually the valne of R_{2} will be $\boldsymbol{\sigma}$ to ${ }^{2} 0$ times the resistance of R_{1}. I'he power supply eurrent requirement depersis upon the value of R_{2} since closing the key cireuit places R_{2} across the bloching voltage supply.

An allied eircuit is the sactum-tule kever of l3. The tulbe l_{1} is commereded in the eatheote circoit of the stake to the keyed. The values of i_{1}, R_{1} and R_{2} determine the heving envelope in the same waty that they do for blorked-grid heving. Values to start with misht le $0 . \mathrm{t}^{\circ}$

'The blowking voltage supply most deliver aereral hundred whe. font the eurrent drain is wers low. "Ihe GB1-d or other law plate. rosistaner trionle in suitable for li. "I'o increase the correnterarrying ability of a tube hever. several tubez can be connected in parallel.
I vacumm-tube keyer adds cathode hias and drops the suphly whakes to the heved stage and will roduce the output of the stage,

Stages) has no effect on the oscillator frequency. This am be checked by listening on the oscillator frequency while the amplifier stage is keved. Be sure to listen for chirp on either size of zero beat to eliminate the possible affeet of a chirper receiver caused by linevoltage changes or pulling. If no chirp of the steadily-ruming oscillatore can he detected, you know that the transmitter can be keyed without ehirp in the stage or stages you used for the test. You have no assurance that the transmitter can be keved in an earlier stage without chirp until you make the same test with the earlier stage. Be proud if your transmitter cam be ampli-fier-keyed without chirp, but don't be surprised to find that it can't. Many transmitters, including some commerrial designs, won't pass the tost. They just don't have sufficient isolation and buffer action.

An amplifier rath bo keyed by any method that redueds the output to zero. Neutralized stages can be keyed in the cathoere circuit, although where pewers over 30 or $\overline{0}$ watts are involved it is often desirable to use a keying relay or vatum tube keyer, neressarily so, and the best way to cherk is with an amateur a mile or more away. If he can't hear a batckave on sour sio + signal. you ean be sure that it isn't there when your signal is weaker. batekwave is undesirable on your signal because it makes your signal a little harder to copy, (even with areeptable shaping and no chirp.

Amplifier Keying

You (:an look at keying an amplifer either as turning it on and off with the key (and shaping properly) or as "modulating" the carrior with the proper envelope. (The proper envelope might be something resembling Fig. 8-2l3.) ['sing the latter approach, you recognize immediately that the applied modulation must have no effert on the oscillator frequency if ehirp is to be avoided. In a phone transmitter this means having adequate isolating stages between modulated stage and oscillator, and it moans exartly the same thing in a code transmitter. Many two-, threc- and even four-stage transmitters are utterly incapaible of completely chirp-free amplifier keying because the severe "modulation" of the output stage has an offect on the oscillator frequency and "pulls" through the several stages. "lhis is partieularly true when the oseillator stage is on the same frequency as the keved output stage, but it can also hatpeen when frequeney multiplying is involved. Another source of reaction is the variation in oscillator supply voltage under keying conditions, although this can usually be handled by stabilizing the oscillator supple with a Ilk tube. If your oljocetive is a completely ehirp-free transmiter, the very first step) is to matke sure
to minimize the chances for electrical shock Tube keving drops the supply voltages and adds eathorle bias, points to be considored where maximum output is required. Blocked-

Fis, 8-5 - When the Iriver stage plate voltage is roukhly the same as the sereen voltage of a tetrode final amplifier, combined screen and driver keving is an excellent system. 'The envelope shaping is determined by the values of L_{1}, C_{-4}, and R_{3}. although the r.f. bypass capacitors C_{i}, C_{2} and C_{s} also have a slizht effect. R_{1} servers as an excitation control for the final amplifier, by controlling the screal voltake of the olriver atage. If a triode driver is used, its plate voltage can be varied for eveitation control.

The induetor $I_{\text {a }}$ will not be foo critical, and the secondary of a spare filament transformer can be used if a low-inductance choke is not available. 'The values of C_{4} and R_{3} will depend upon the inductance and the voltage and current levels, hut good starting vălự's are $0.1 \mu \mathrm{f}$. and 50 ohms.

To minimize the possibility of electrical shock, it is recommended that a keying relay be used in this circuit, since both sides of the cireait are "hot." Is in any transmitter, the signal will be chirp-free only if keying the driver stage has no effect on the oscillator frequency.
grid keving is applicable to many neutralized stages, but it presents problems in high-powered amplifiers and requires a source of negative voltage. Output stages that aren't neutralized, sueh is many of the tetrodes and pentodes in widespread use, will usually leak a little and show some backwave regardless of how they are keyed. In a case like this it maty becesiary to key two stages to eliminate backwave. They ean be keved in the cathodes, with blocked-grid kering, or in the sereens. When screen keving is used, it is not always sufficient to reduce the sereen voltage to zero: it maty have to be pulled to some negative value to bring the kev-up plate current to zero, unless fixed negative eontrol-grid bias is used. It should be apparent that where twe stages are keyed, keying the earlier stage must have no effect on the oscillator frequency if completely chirp-free output is the goal.

Nhaping of the keying is obtained in several Ways. Blocked-grid and vacuum-tube keyers get suitable shaping with proper choice of resistor and capacitor values, while cathode and sereengrid keying can be shaped by using induetors and rapacitors. Nample circuits are shown in PHigs. 8-3, 8-4 and 8-5, together with instructions for their-adjustment. There is no "hest" adjustment, since this is a matter of persomal preference and what you want your signal to sound like. Most operators seem to like the make to be heatvier than the break. All of the circuits shown here are capable of $: 4$ wide range of adjustment.

Oscillator Keying

The reader maty wonder why oscillator keying hasn't been mentioned carlier, since it is widely used. The sad fact of life is that excerllent oscillator keying is infinitely more difficult to ohtain than is excellent amplifier keying. If the objective is no detectable chirp, it is probably impossible to obtain with oscillator keying, particularly on the higher frequencies. The reasons are simple. Any keyed-oscillator transmitter requires shaping at the oseillator, which involves changing the operating conditions of the oscillator over a significant period of time. The "output of the oscillator doesn't rise to full value immediately, so the drive on the following stage is changing. which in turn may reflect a variable load on the oseillator. No oscillator has been devised that has no change in frequency over its entire operating voltage range and with a changing load. Furthermore, the shaping of the keved-oseillator envelope usually has to be exaggerated, because the following stages will tend to sharpen up the keying and introduce clicks unless they are operated as linear amplifiers (as deseribed in detail later).

Acceptable oscillator keving can he obtatined on the lower-frequeney bands, and the methods used to key amplifiers can be used, but chirp-froe rliek less oseillator keving is probably not possible at the higher frequencies. (ocasionally some additional shaping of the signal will be introduced on make through the use of a clamp tube (and associated time constants) in the output stage, but it is no help on break.

Break-In Keying

The usual argument for oscillator keving is that it permits break-in operation, which is true. If break-in operation is not contemplated and as near perfect keying as possible is the objective. then keving an amplifier or two by the methods outlined earlier is the solution. For operating convenience, an automatic transmitter "turneronner" (see Campbell, (gst', Aug., 1956), which will turn on the power supplies and switch antenna relays and receiver muting devices, can be used. The station switehes over to the compiete "transmit" condition where the first dot is sent, and it holds in for a length of time dependent upon the setting of the delay. It is equivalent to voice-operated phone of the tepe rommonly used by s.s.b. stations. It doos not permit hearing the other station whenever the key is up, hs does full break-in.

Full break-in with excellent keying is not eas. to come by, but it is aasier than many amoteurs think. Mang use oseilhator kering and put up with a second-lost signal.
Three solutions to chirn-free break-in keviner have been developed. One is the "silent v.f.o.." Which consists of at well-shielded owillator and huffer stage running continuously at a low froqueney. The output is keved before it gets ont of the shiedded compartment, and in some applieations several subsequent stages are also keved. The system is still subject to sharpening by fol-

Fig. 8-6 - When satisfactury blowhend-arid or tulo keying of an amplifier stage has been obtained, this Vif-tube breah-in circuit can be applifel to the trans. miter to furnish differontial heying. The constamt shown here are suitable for blocked-grid heving of a 6146 amplifier; with a tube keyer the 6.J. and Vis tube circuitry world be the same.

With the key up, sulficient corrent flow $=$ through R_{3} to give a voltake that will colt off the dsoillator tulne. When the hey is elosed, the cathode soltage of the blit becomes elose to ground protential. evtinguishing the V'R tabe and promitting the oseillator to oprater. 'lion morb shuat cabarity on the beads th the VR tube. and too large a walue of prid caparitor in the omeillator, may shom down this artion, and best merfornance will be obtained when the oweillator (turned on and off this way) sommets "cliceky." The output envelope staping is ohtained in the amplifier, and it can be made softer by increasing the value of i i. If the keyed amplifier is a tetrode or pentode, the soreell woltake shembld be obtained from a fixed voltage somere or aliff voltage divider, not from the plate supply through a dropping resistor.

A switch connected in series with the V'l tube will. when opened, turn on the oscillator for "frequency spotting."
lowing stages, but it is quite satisfactory and is used in at least one commercial transmitter.

A second approarh is to use a conversion exriter, in which two oscillators (one erystal-controlled, one v.f.o.) run continuously and their outputs, with suitable buffer stages intervening. are fed to a mixer stage. The mixer stage output is the sum or difference frequency of the two oscillator frequencios, which have heen selerted to give a sum or difference in an amateur band. When the mixer st ge is turned off byeying, no output appears in the amateur hand, and the rffect is the same as keying an oscillator stage that camot possibly chirp. The oseillator froquencies must be selected carefully so that none of their harmonies fall within an amateur band, and sufficient selectivity must bo present in stages following the mixer to insure that no spurious signals are amplified. If the mixer alone is keyed, its envelope is subject to sharpening by later stages unless they are linear amplifiers.

A third approach is to turn the oscillator on fast before a keyed amplifier stage can pass any sighal and turn off the oscillator fast after the keyed amplifier stage has eut off. The principle is called "differential keying" and a number of circuits have treen devised for acromplishing the artion. One of the simplest ean be applied to any grid-block keyed amplifier or tube-keyed stage by the addition of a triode and a VI tube, as in Fig. 8-6. The triode is used as a cathode follower; with the key up a negative hian is applied to the oscillator grid through the V'R tube and the $10,000-0$ hm resistor. When the key is closed, the 6.5\% cathote goses immediately to ground potential, the V'R tube is extinguished and the bias is removed from the oscillator. The oscillator turns on quickly. In the meantime, the amplifier hias, the voltage to which (, is charged, is discharging through R_{1}, the amplifier grid leak. The oscillator is turned on before the amplifier bias has been reduced to a value low enough for conduction through the tulee. When the key is opened, the oscillator continues to run until the grid of the cathode follower has reached a voltage of more than -175 volts, by which time the amplifier has stopped conducting. Ising this keying system for break-in, the keving will be chirp-free if it is chirp-free with the V'l tube removed from its wocket, to permit the oscillator to run all of the
time. If the transmitter can't pass this test, it indicates that more isolation is required between keyed stage and oscillator.

Clicks in Later Stages

It was mentioned earlier that key clicks ean be generated in amplifier stages following the keyed stage or stages. This is often a puzzling problem to an operator who has spent eonsiderable time adjusting the keving in his exciter unit for clickless keving, only to find that the clicks are bad when the amplifior unit is added. There are two possible cause's for the clicks: low-frequence parasitic oscillations and amplifier "clipping."

Under some conditions an amplifier will be momentarily triggered into low-freguency parasitic oscillations, and clicks will be generated whon the amplifier is driven by a keyed exciter. If these elicks are the result of low-frequeney parasitic oscillations, they will be found in "groups" of clicks oceurring at 5()- to 150-ke. intervals cither side of the transmitter frequener. Of course low-frequency parasitic oscillations can be generated in a keyed stage, and the operator should listen carefully to make sure that the output of the exeiter is clean before he blames a later amplifier. Low-frequeney parasitic oscillations are usually caused by poor choice in r.f. choke values, and using more inductance in the plate choke than in the grid choke for the same stage is recommended.

When the elicks introduced by the addition of an amplifier stage are found only near the transmitter frequency, amplifier "clipping" is indicated. It is quite common when fixed hits is used on the amplifier and the bias is well past the "cut-off" value. The effect can usually le minimized or eliminated by using a combination of fixed and grid-leak bias for the amplifier stage. The fixed bias should be sufficient to hold the key-up plate current only to a low level and met to zero. In a triode amplifier, overdriving the amplifier can also result in clipping that will add key clicks, and the cure is to reduce the drive. The output won't suffer appreciably.

A linear amplifier (Class $\mathrm{AB}_{1}, \mathrm{~A} 3_{2}$ or 13) will amplify the excitation without adding any clicks, and if elicks show up a low-frequency parasitic oseillation is probably the reason.

Testing Your Keying

The choice of a keying circuit is not as important as its complete testing. . Iny of the rireuits shown in this section can be made to give satisfactory keying, but they must be adjusted properly.

The easiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short QSO). If he is a half mile or so away, that's fine, but any distance where the signals are still S9 will be satisfactory.

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash spacing. (The letter "T" at about 5 w.p.m.) With the erystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get crisp signals instead of mushy ones) and tune slow! from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as

Fig. 8.7 - Representations of a chan c.w. signal as a receiver is tuned through it. (1) shows a receiver with no eryctal filter and the b,fos. set in the center of the pasthand, and (B) shows the erstal filter in and the receiver adjusted for singlesignal reception. The variation in thickness of the tines represents the relative signal intensity. The audio freguency where the signal disappears will depmen upon the receiver selectivity charaderistic and the strength of the signal.
yours or someone else's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the click on "break" should be practically negligible at any point. Fig. 8-7.1 shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of 3 3. or $40-16 . p . m$. dots with the hug - if they are easy to copy, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keying. If the reeriver has poor selectivity with the corstal filter out, make one last wherk with the filter in (Fig. 8-713), to see that the elicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little more rareful. The first step is to get rid of the r.f. elick at the key, as described earlier, berause if you don't you cannot make further observations. Locally (meaning in your own receiver) this click will eoincide in time with clicks that maty or may not be on your signal, so there is just no way to observe your signal without first eliminating the r.f. click.

So far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you may have cleaned up some elicks in the IBe set. Now discomeret the antena from your receiver and short the antenna terminals with a short piere of wire. Tune in your own signal and reduce the r.f. gain to the point where your receiver doesn't overload. Detune any antenna trimmer the reeciver may have. If you can't avoid overtoad within the ref. gain-control range, pull out the r.f. amplifier tube and try again. If you still (an't aroid overload, listen to the second harmonie as a hast resort. Since an overloaded receiver can generate clicks, it is easy to realize the importance of climinating overtoad during any tests or observations.

Describing the volume level at which you should set your receiver for these "sharck" tests
is a little difficult. The rif. filter should be effective with the receiver rumning wide open and with an antenna comected. When you turn on the transmitter and take the other steps mentioned to reduce the signal in the receiver, run the atudio up and the r.f. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the receiver tuned to the signal. This is with the crystal filter in. It this level, a properly-adjusted keving eireuit will show no clicks of the rushing-sound range. With the b.f.o. on and the same gatin setting, there should be no clicks outside the beat-note range. When observing relicks, make the slow-dash and fast-dot tests outlined previously.

Now you know how your signal sounds on the air, with one possible exerption. If keying your trinsmitter makes the lights blink, you may not be able to tell too accurately about the chirp on your signal. However, if you are satisfied with the absence of chirp when tuning cither side of zero beat, it is safe to assume that your receiver isn't chirping with the light Hicker and that the observed signal is a true representation. No chirp, either side of zero beat is fine. Don't try to make these tests without first getting rid of the r.f. click at the key, becouse clicks can mask a chirj).
lexchanging stations temporarily with another interested amateur is probably the hest way to check your keying. The serond-best methot is to where it in the shate as outlined above. The least satisfactory way is to ask inother ham on the air how vour keving sounds, although this seems to be a very popular method. The reason it is the least satisfactory is that many hams, for reasons of etiquette or QSimeard collereting, are reluctant to be highly reritiral of another amateur's signal. In a great many cases they don't actually know what to look for or how to describe any aberrations they may observe. Many call describe what they like to hear in the way of a clean eode signal, but the little factors that soil a signal are indistinguishable. However, they can all be summed up as chirps and clicks on make and break. A signal can have none or all of these.

Vacuum-Tube Keyers

The practical tube-keyer circuit of Fig. 8-8 ean be used for koring any stage of any transmitter. Depending upon the power level of the keyed stage, more or fewer Type 6B 1-Gitubes can be commected in parallel to handle the necessatry curvent. The voltage drop, through a single $633+G$ varies from about 70 volts at 50 ma . to 50 volts at 20 ma. Tubes added in parablel will reduce the drop in proportion to the number of tubes used.

When connecting the output terminals of the keyer to the circuit to be keyed, the grounded ontput terminab of the keyer must be connected to the transmitter ground. Thus the keyer can be used only in mogative-lead or casthode keving. When used in cathode keying, it will introduce
associated resistors and capatitors, since they are incorporated only to allow the operator to select the combination he prefers. But once the values have been solectod, ther can be soldered permanently in place. The rule for adjusting the keying characteristic is the same as for blocked-grid keying.

A Low-Power Keyer

If a low-level stage running only a fow watts is to be keyed, the tube-keyor cireuit of Fig. 8-9 offers a simple solution. By using ab 1131,7 type tube, which incorporates its own rectifier, it is only necessary to connect to some existing power

Fig. 8.8 - Wiring diagram of a practical vacuum.tube keyer.
cathode bias to the stage and reduce the output. This can be compensated for by a reduction in the grid-leak bias of the stage.

The nogative-voltage supply can be eliminated if a negative voltage is available from some ot her source, such as a bias supply. A simplified version of this circuit could eliminate the switches and

Fig. 8.9 - Simple low-power vacumm-tube keyer.
Comert kever to a low woltage power supply at point " \mathbf{X} ".
their supply at the point marked " X ". The keving charameteristic will vary with many factors, so the values of R_{1} and R_{2} only represent starting points for experimentation.

When the key or keving lead has poor insulation, the resistance mbe become low enough (particularly in humid weather) to reduce the borking voltage and allow the keyer tube to paiss some celrrent. This may cobuse a slight backwawe, but it ran be cured by better insulation, or ber reduced values of resistors and increased vablues of ceabacitors.

Monitoring of Keying

In general, there ate two common methods for monitoring one"s "fist" and signal. The first, and perhaps more common type, involves the use of an andio oscillator that is keyed simultaneously with the transmitter.

The second method is one that permits receiving the signal through one's receiver, and this generally reguires that the receiver be tuned to
the transmitter (not always convenient unless working on the same frequency) and that some mothod the provided for preventing overloading of the recciver, so that a good replica of the transpitted signal will be received. Fxerept where quite low power is used, this usually involves a relay for simultaneously shorting the receiver imput terminals and reducing the reeeiver gain.

"Little Oskey"-A Monitoring Oscillator and Keyer

Without modifying a receiver or cathodekered transmittor in any way, the unit shown in Figs. 8-10 and 8-12 blanks the receiver output and injerts a sidetone in the headphones when the key is down. It ran also be used ats a codempartice oscillator. No changes are required when frequency or hand is changed.
lerferring to the schematic in Fig. 8-11, the left-hand section of the $12: 107$ amplifier mixer handes the reereiver output and delivers it to the phones jack, lts grid return is the 4.7 -megohm resistor and the 0.27 -megohm resistor. When the key is colosed a negative voltage is placed arross the 0.27 -megohm resistor, and this bias cuts off the signal from reeriver to phones jack. At the same time the voltage is applied to the audio oscillator section of the lower 12 AL 7 , and any desired amount of the developed tone is applied to the phomes jack viat the right-hand section of the 12 AC 7 amplifier-mixer. The desired amount is controlled by the setting of the 0.5-megohm oseilator gain control. Two power supplies are used; plate voltage for the oseillator-mixer is provided by a selentum reetifier in a hatf-wave reetifier circuit, and the negative supply for the hias and oscillator is furnished loy a voltage tripher using a section of a $12 \mathrm{AC}^{\circ}$ and two rerstal diodes. Two small 6 -volt filament transformers commeted "back to back" are used for obtatining the necerssary operating voltages. A switeh, S2, permits kexing the transmitter without hlanking the receiver or introducing the audio sidetone, should this be required for frequeney spotting or monitoring.

No special prechutions are neerssary in laying out the unit. In fact, the monitor nay be built in a cabinet and placed alongside of the receiver. When wiring the unit, it is th good idea to keep the leads carrying a.e. away from the amplifier iuput to prevent hum, Catre should also be taken
when soldering the erystal diodes. Holding the diode leads with a pair of long-nose pliers while soldering is good insurance against ruining a (rystabl. Terminat strips can be used conveniently for mounting parts such as the selenium rectifier and to serve as tie points for resistors. capacitors, cte.

The frequency of the sidetone adio oseillator can be adjusted by changing the grid eapacitor, C_{1}. If the audio oscillator fails to oscillate, the primary leads of the interstage transformer should be reversed.

It is a very simple matter to insert the monitor into ath existing station. The cable from the unit is plugged into the keyed circuit and the receiver output and bead-phones are plugged into the unit. Switch s_{1} is used to turn the unit off and on. If for some reason it is desired to operate temporarily without the unit (such as when zerobeating) the toggle switch, se may be opened and the unit beomes inoperative.

With S_{2} closed, everything is ready. When the key is up the receiver is heard: when the key is down a sidetome is heard and the transmitter is keved. The oseillator tone level can be adjusted with the gain control on the unit, while the recoiver level is controlled at the receiver. If the station being worked wishes to break in, his sigmals can be heard between the dhamerers being transmitted.

Since the receiver is atetually on during keydown conditions (even though in the headphones it appears to be off), care should be taken not to datmage the receiver hy r.f. overloading. The monitor hats been used suceessfully with a eathode-keyed transmitter ruming as high as 200 watts imput but separate transmitting and receiving antennas were used. The unit cannot be used with grid-block keved transmitters - it is designed for eathode-keyed rigs only. How-

Fie. 8-10 -- A exmbination c.w. monitor and combe-bractice owibllator that ratn he used without modification of the recoriver or Iram-mitar.

Fig. 8.1] - Schematic diagram of "I.ittle Oskey." All resistors $1 / 2$ watt. Ill capacitors in $\mu \mu \mathrm{f}$, unless specified otherwise. The talse heaters pet their power from the 6.3 -volt line between T_{1} and T_{2}.
$\mathrm{S}_{1}-\mathrm{S}_{\text {.p.s.t. on oscillator gain eontrol. }}$
' ${ }^{\prime}$, $\mathrm{I}_{2}-6.3$-volt 1.2 -amp. filament transformer (UTC F'T-2).

Sil - Iow -current seleninm rectifier (bederal 1002).
' ${ }^{\prime}$ - Interstage audio transformer, secondary-toprimary ratio $2: 1$ ('Thordarson ${ }^{\prime}$ '20 $\mathrm{Al6}$).
ever, it is usually a simple matter to change the keying cireuit of a transmitter. "Little Oskev" dors nothing to the keying of the transmitter, and it must still be shaped by the methods outlined elsewhere in this chapter. In some instabliations it may not be possible to work full break-in because the receiver does not recover fast enough from the overload the transmitter places on it. In such cases it may be helpful to use a
smatler receiving antema or one that is farther from the transmitting intemat, to reduce the transmitter piek-up and the receiver overload that is causing the long recovery time.

If the transmitter and reereiver are turned off the monitor ean be keved and used as a codepractice oscillator. The sidetone will appear in the headphones as the unit is keyed.
(From QST', October, 1955.)

Fig. 8.12 - Inder-chassis view of the monitor, alowing the plug and cord that run to the transmitter key jatk. the monitor hey jack, and the phono jack where the recuiver output is apromed.

Break-In Operation

Ireak-in operation requires a separate receiving antennt, since none of the avaibable antenna changeover relays is fast cnough to follow keying. The receiving antemna should be installed as far as possible from the transmitting antenna. It should be mounted at right angles to the transmitting antema and fed with low pick-up lead-in material such as coaxial cable or 300 -ohm Twin-Lead, to minimize pick-up.

If a low-powered transmitter is used, it is often quite satisfatory to use no special equipment for break-in operation other than the separate recoiving antenna, since the transmitter will not block the recoiver ton seriously. Even if the transmitter keys without clicks, some clicks will be heard when the recoiver is
mitter oseillator. A filter at the key suppresses the elicks eaused by the relay current.

The keying relay should be mounted on the recciver as close to the antemat terminals as possible, and the leads shown heavy in the diagram should be kept short, since long leads will atlow too much signal to get through into the receiver. A good high-speed keying relay should be used.

Full deseriptions of systems for break-in operation am be found in the following QST' articles:

Hays, "Solenium I3reak-In Keving," July, 1955.
Willer and Meichner, "TVC; An did to IBreakIn," March, 195:3.
luckett, "'De Luxe' Keying Without Relays,"

Fig. 8-13 - Wiring diagram for smosih break-in operation. The lead shown as a heavy line and the lead from bottom relay contact to IT post on receiver should bekept as short as possible for minimum pichup of the transmitter signal.
R_{1} - Receiver manual gain control.
$1 R_{2}-5000$ - or 10,000 -ohm wire-wound potentiometer.
Ry-S.p.d.t. keying relay.

tuned to the transmitter frequency because of overload in the reeriver. An output limiter, as dessribed in Chapter Five, will wash out these dicks and permit grood break-in operation even on your transmitter frequeney.

When powers alove 25 or 50 watts are used, special treatment is required for quiet break-in on the transmitter frequency. A means should be provided for shorting the input of the rereiver when the rode characters are sent, and a means for reducing the gain of the receiver at the sume time is often neressary. The system shown in Fig. 8-I:3 permits quiet break-in operation for higher-powered stations. It requires a simple operation on the receiver but otherwise is perfectly straightforward. R_{1} is the regular receiver r.f. and i.f. gain control. The ground lead is lifted on this control and run to a rheostat, R_{2}, that goes to ground. A wire from the junction runs ontside the receiver to the keying relay, Ry. When the key is up, the ground side of R_{1} is connected to ground through the relay arm, and the receiver is in its normal operating condition. When the key is closed, the relay closes, which breaks the ground comertion from R_{1} and applies additional bias to the tubes in the receiver. This bias is controlled by R_{2}. When the relay closes, it also closes the circuit to the trans-

September, 195:3; Part II, Dec., 1053.
l'urkett, "(C.W. Man's Control Unit," Fel)., 1955.

- electronic keys

Flectronic keys, as contrasted with mechanical stutomatic keys, use vacuum tubes or relatys (or both) to form atomatir dashes as well as automatie dots. Full descriptions of electronic keys ean be found in the following $(S S T$ articles:
l3ram, "In Seareh of the Ideal Electronic Kes," Fel., 1951.
Turrin, "Debugging the Blertronic Bug," Jan., 1950.

Montgomery, "'Corkey" - I Tubeless Automatic Kies:" November, 1!50.
Bartlett, "Compact lutomatie Key Design," Der., 1951.
Turrin, "The 'Tur-key'", Deember', I!22. Correction, Fobruary, 1953.
Kaye, All-Fketronic "Ultimatic" Keyer, April, May, 1955.
Brann, "A Dot Anticipator for the Filectronic Key," July, 1953.
Turrin, "The 'Tur-Kry' in Miniature," Septemher, 1954.

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelephone transmitters operate on the principles outlined carlier in this book in the chapter on vacuum tubes. The design requirements are dotermined principally be the type of morlulation system to be used and by the trpe of miarophone to be employed. It is necessiry to have a clear understanding of modulation primeiples bofore the problem of laving out a speech system can be approached succosfully. Those printiples are discossed under appropriate chapter headings.

The present chapter cleals with the design of audio amplifier systems for communication purposes. In voire commanication the primary objective is to ohtain the most effective transmission; i,e, to make the message be understood at the recciving point in spite of adverse conditions created by noise and interforence. The methods used to accomplish this do not necessarily conncide with the methods used for
other purposes, such as the reproduction of musie or other program material. In other words, "naturalness" in reproduction is distinetly secondary to intelligibility.

The fact that satisfactory intelligibility can be mantaned in a relatively narrow band of frequencies is particularly fortunate, because the width of the channel occupied by a phone transmitter is directly proportional to the width of the audio-frequency hand. If the chamel width is reduced, more stations can occups a given band of frequencies without mutual interference

In spech transmission, amplitude distortion of the voice wave has very little effert on intelligibility. Its importance in communication hies almost wholly in the fact that many of the audiofreguency harmonics caused by such distortion lie outside the chamel needed for intelligible spech, and thus will create unnecrsary interference to other stations.

Speech Equipment

In designing spereh apuipment it is necessary to know (1) the amount of aludio power the modulation system must furnish and (2) the output voltage developed by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then beomes possible to choose the number and type of amplifier stages needed to generate the required audio power without overlouting or distortion any where in the system.

- MICROPHONES

The level of a microphone is its clectrical output for a given sound intensity. Level varies greatly with midrophones of different types, and depends on the distance of the speaker's lips: from the mierophone. Only approximate values based on averages of "normal" speaking voices can be givern. The values given later are based on close talking: that is, with the microphene about an inch from the sparacers lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of difïerent frequencies into alternating current. For understandable speech transmission only a limited frequeney range is necessary, and intelligible speech can be ohtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of athout 200 to 2500 cyeles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the microphone is said to be flat betwern those limits.

Carbon Microphones

The carbon microphone comsists of a metal diaphragm placed against an insulating cap containing loosely-packed carbon gramules (microphone button). Current from at battery flows through the granules, the diaphragm being one connection and the metal backplate the other. Fig. 9-1.1 shows comections for carbon mierophones. A variable resistor is included for adjusting the button current to the value as specified with the microphone. The primary of a transformer is connected in series with the battery and microphone.

As the diaphang vibrates, its pressure on the granules alternately increases and derreases, causing a corresponding inerease and decrease of current flow through the circuit, since the pressure changes the resistance of the mass of gramules. The resulting change in the current flowing through the transformer mimary causes an altornating voltage, of corresponding frequency and intensity, to be set up in the transformer sectondary:

Good-quality carbon microphones give outputs: ranging from 0.1 to 0.3 volt across 50 to 100 ohms; that is , across the primary winding of the microphone transformer. With the step-up of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be avalable at the grid of the
amplifier tube. The usual button current is 50 to 100 ma .

Piezo-electric Microphones

The crystal microphone makes use of the piezoelectric properties of Rochelle salts cristals. This type of microphone requires no battery or transformer and can be connected directly to the grid of an amplifier tube. It is a popular type of mierophone among amateurs, for these reasons as well as the fare that it has good fre quency response and is available in inexpensive models. The input circuit for the crystal midrophone is shown in Fig. 9-1 13.

Although the level of crystal microphones varies with different models, an output of 0.03 volt or so is representative for communieation types. The level is affected by the length of the eable connecting the miorophone to the first amplifier stage; the above figure is for longths of 6 or 7 feet. The frequeney characteristic is unaffected by the eable, but the load resistance (amplitier grid resistor) does affert it; the lower frequeneies are attenuated as the value of load resistance is lowered. A grid-resistor value of at heast 1 megohm should be used for reasonably flat response, 5 megohms being a customary figure.

The ceramic microphone utilizes the piezoelectrie effeet in certain types of ceramie materials to achieve performance very similar to that of the erystal microphone. It is less affected by temperature and humidity. Output levels are similar to those of erystal mierophones for the same type of frequency response.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallie ribbon suspended between the poles of a magnet.

Velocity microphones are built in two types, high impedance and low impedance, the former being used in most applications. A high-impedance microphone can be direotly commerted to the grid of an amplifier tube, shunted be a resistance of 0.5 to $\overline{5}$ megohms (Fig. $9-1 \mathrm{C}$). loonimpedance midrophones are used when a long connecting eable (75 feet or thore) must be employed. In such a case the output of the mierophone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. !-11).

The level of the velocity mirrophone is about 0.03 to 0.05 volt. This figure applies direetly to the high-impedance type, and to thas low-impedance type when the voltage is mosared across the secondary of the coupling transformer.

The dynamic microphone somewhat resembles a dynamic loudspeaker. A light-weight voice coil is rigidly attached to a diaphragm, the coil being suspended between the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the coil back and forth between the magnet poles and generating an alternating voltage.

The dymamie mierophone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the comneeting eable must be unusually long, a lowimpedance type should be used, with a step-up transformer at the end of the eable.

- THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that causes the r.f. carrier output to be varied is called the modulator, and all the amplifier stages prereding it comprise the speech amplifier. I sepending on the modulator used, the speech amplifier maty be called upon to deliver a power output ranging from prartically zero fonly voltage required) to 20 or 30 watts.

Before starting the design of a speech amplifier, therefore, it is neressary to have selected a suitable modulator for the transmitter. This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the type of modulation system selected, as deseribed in other chapters. With the modulator picked out, its driving-power requirements (audio power required to excite the modulator to full output) can be determined from the tube tables in a later chapter. Generally speaking, it is advisable to choose a tube or tubes for the last stage of the speech amplifier that will be eapable of

Fig. 9.2 - Resistameeconpled voltage-amplifier circuits. A, pentode: 13, triode. 1besinnations are as follows:
Ca - Cathode by-pass capacitor.
(2) Plate by pass capacitor.
(i3- Ontpat coupling rapacitor (blocking capatitor).
Cia - Screen by-pass capacitor.
R_{1} - Cinthoule resistor.
$R_{2}-$ Crid pesistor.
K_{3} - Plate resistor.
H_{4} - Vextostage grid resistor.
Rs - Plate deconpling resistor.
β_{6} - Sarcen resistor.
Values for suitable tubes are given in "l'able 9-1. Values in the decounling circuit, Co R_{5}, are not reitical. R_{s} may be about 10% of R_{3}; an 8 - or $10-\mu$ f electrolytic capacitor is usually larte enough at (.2.
developing at least 50 per cent more power than the rated driving power of the modulator. This will provide a factor of safety so that losses in coupling transformers, ete., will not upset the calculations.

Voltage Amplifiers

If the last stage in the speech anplifier is a Class AB_{2} or Class B amplifier, the stage ahead of it must he capable of sufficient power output to drive it. However, if the last stage is a Class AB_{1} or Class A amplifier the preceding stage can te simply a voltage amplifier. From there on back to the microphone, all stages are voltage amplifiers.

The important characteristies of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that can be secured from the stage without distortion. The amplifier frequency response should the adequate for voice reproduction; this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amplifiers are given in Table !-I, for resistance-roupled amplification.

The output voltage is in terms of peak voltage rather than r.m.s.; this makes the rating independent of the waveform. laxceeding the peak value causes the amplifier to distort, so it is more useful to consider only peak values in working with amplifiers.

Resistance Coupling

Irasistance coupling generally is used in volt-age-amplifier stages. It is relatively inexpensive, good frequency response can be secured, and there is little danger of hum piek-up from stray magnetic fields associated with heator wiring. It is the most satisfactory type of eoupling for the output rireuits of pentodes and high- μ triodes, because with transformers a sufficiently high load impedance cannot be obtained without eonsiderable frequency distortion. Typical eircuits are given in Fig. !-2 and design data in Table 9-1.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is very ineflicient), or when it is necessary to couple betworen a single-ended and a push-pull stage. Triodes having an amplification factor of 20 or loss arr used in transformer-coupled voltage amplifiors, llith transformer coupling, tubes should be operated under the Class A conditions given in the tube tables at the end of this book.

Ropresentative cireuits for coupling singleended to push-pull stages are shown in Fig. 9-3. The circuit at A combines resistame and transformor coupling, and may be used for exriting the

F̈̈s. 9.3 - Transformer eompled amplifier circuits for driving a push-pull amplifier. I is for resiatance-transformer coupling: is for transfornier couplings. Designations corresponil to those in líg. 9.2. In A, values can the taken from I'able 9.1. In B, the cathete resistor is calculated from the rated plate current and grid hias as given in the tube tables for the particular type of tube used.

TABLE 9－1－RESISTANCE－COUPLED VOLTAGE－AMPLIEIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the ratio of the new voltage to 300 volts．Voltage gain is measured at 400 cycles，Capacitor values given are based on 100 －cycle cutoff．For increased low－frequency response，all capacitors may be made larger than specified（cut－off frequency in inverse proportion to capacitor values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen Bypass μ f．	Cathode Bypass μ ．	Blocking Capacitor $\mu \mathrm{f}$ ．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
6SJ7，12SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 72 \\ 96 \\ 101 \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	0.011 0.004 0.003	$\begin{aligned} & 79 \\ & 88 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{aligned} & \text { 6J7, 7C7, } \\ & \text { 12J7-GT } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.25	0.25 0.5 1.0	1.18 1.18 1.45	1100 1200 1300	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
$\begin{aligned} & \text { 6AU6, 6SH7, } \\ & \text { 12AU6, 12SH7 } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \end{aligned}$	0.13 0.11 0.11	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 122 \end{array}$	$\begin{aligned} & 248 \\ & 318 \\ & 371 \end{aligned}$
$\begin{gathered} \text { 6AQ6, 6AQ7, } \\ \text { 6AT6, 6Q7, } \\ \text { 6SL7GT, 6SZ, } \\ \text { 6T8,12AT6, } \\ \text { 12Q7-GT, } \\ \text { 12SL, GT } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	－	$\begin{aligned} & 4.4 \\ & 3.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 40 \\ & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 41 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \end{aligned}$	－	$\begin{aligned} & 2.5 \\ & 1.9 \\ & 1.6 \end{aligned}$	0.013 0.0065 0.0035	$\begin{aligned} & 51 \\ & 65 \\ & 77 \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \\ & 48 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \end{aligned}$	－	1.2 1.0 0.9	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 51 \end{aligned}$
$\begin{gathered} \text { 6AV6, 12AV6, } \\ \text { 12AX7 } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$		$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	$\begin{aligned} & 45 \\ & 52 \\ & 57 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2200 \\ & 2800 \\ & 3100 \end{aligned}$	二－	$\begin{aligned} & 3.0 \\ & 2.3 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 54 \\ & 69 \\ & 79 \end{aligned}$	$\begin{aligned} & 59 \\ & 65 \\ & 68 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	二－	$\begin{aligned} & 4300 \\ & 5200 \\ & 5900 \end{aligned}$	－	1.6 1.3 1.1	$\begin{gathered} 0.006 \\ 0.003 \\ 0.002 \end{gathered}$	$\begin{aligned} & 62 \\ & 77 \\ & 92 \end{aligned}$	$\begin{aligned} & 69 \\ & 73 \\ & 75 \end{aligned}$
$\underset{\text { (one triode) }}{6 S C 7,12 S C 7}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	三－	$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$	二二	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	二	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \end{aligned}$	－	\square	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \\ & 64 \end{aligned}$	$\begin{aligned} & 39 \\ & 42 \\ & 45 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	二－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3280 \end{aligned}$	－	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 72 \end{aligned}$	$\begin{aligned} & 45 \\ & 48 \\ & 49 \end{aligned}$
$\begin{gathered} \text { 6J5, 7A4, } \\ \text { 7N7, 6SN7-GT, } \\ \text { 12JS-GT, } \\ \text { 12SN7-GT } \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$		$\begin{aligned} & 1300 \\ & 1580 \\ & 1800 \end{aligned}$	\square	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.061 \\ & 0.032 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 59 \\ & 73 \\ & 83 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 2500 \\ & 3130 \\ & 3900 \end{aligned}$	－	1.9 1.4 1.2	$\begin{aligned} & 0.031 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 68 \\ & 82 \\ & 96 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	\square	$\begin{aligned} & 4800 \\ & 6500 \\ & 7800 \end{aligned}$	－	$\begin{aligned} & 0.95 \\ & 0.69 \\ & 0.58 \end{aligned}$	0.015 0.0065 0.0035	$\begin{aligned} & 68 \\ & 85 \\ & 96 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$
$\begin{gathered} \text { 6C4 } \\ \text { 12AÚ7 } \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	二	$\begin{array}{r} 870 \\ 1200 \\ 1500 \end{array}$	－	$\begin{aligned} & 4.1 \\ & 3.0 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 38 \\ & 52 \\ & 68 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二二	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \end{aligned}$	二二	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	二二	$\begin{array}{r} 5300 \\ 8800 \\ 11000 \end{array}$	二二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 82 \\ & 92 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$

[^1]grids of a Class A or $\mathrm{A} \mathrm{B}_{1}$ following stage. The resistance coupling is used to keep the d.c. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its no-current value; this improves the low-frequency response. With low- $-\mu$ triodes ($6 \mathrm{C} 5,655$, ete.), the gain is equal to that with resistance coupling multiplied by the sec-ondary-to-primary turns ratio of the transformer.

In 13 the transformer primary is in series with the plate of the tube, and thus must carry the tulse plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transforring power (within the capabilities of the tube) to a following Class Al_{2} or Class 13 stage.

Phase Inversion

Push-pull output may be secured with resistance coupling by using phase-inverter or phasesplitter circuits as shown in Fig. 9-4.

The circuite shown in Fig. 9-t are of the "selfbatancing" type. In A, the amplified voltage

Fig. 9-4-Self-halancing phase-inverter circuit: it and F_{2} may be a doulife triode such as the 12.11 or 12.1×\%. V3 may he any of the triodes listed in Table 9.1 , or one section of a double triode.
B_{1} - Cridd resistor (1 megolam or less).
R_{2} - Cathonle resistor; use one-half value given in Table 9.I for tule and operating conditions chosen.
$\mathrm{I}_{3}, \mathrm{R}_{4}$ - Plate resistor; select from Table 9.I.
$\mathrm{R}_{5}, \mathrm{R}_{0}$ - Following-stage grid recistor (0.22 to 0.47 megolim).
$1_{7}-0.22$ inegohm.
R_{s} - Cathode resistor: select from Table 9.I.
$\mathrm{R}_{3}, \mathrm{R}_{10}$ - Fach one half of plate load resistor given in Tathe 9-I.
$\mathrm{C}_{1}-10-\mu \mathrm{f}$. electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.01$ - to $0.1-\mu \mathrm{f}$, paper.
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from I_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appears across $R_{;}$from V_{2} opposes the voltage from V_{1} across R_{i}, thus reducing the signal applied to the grid of V_{2}. The negative feedback so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially equal. The gain is slightly less than twice the gain of a single-tube amplifier using the same operating conditions.

In the singlo-tube circuit shown in Fig. 9-4B the plate load resistor is divided into two equal parts, R_{9} and R_{10}, one being connected to the plate in the normal way and the other between cathode and ground. Since the voltages at the plate and eathode are 180 degrees out of phase, the grids of the following tubes are fed equal a.f. voltages in push-pull. The grid return of l_{3} is made to the junction of R_{8} and R_{10} so normal bias will be applied to the grid. This circuit is highly degenerative because of the way R_{10} is connerted. The voltage gain is less than 2 even when a high- μ triode is used at V_{3}.

Gain Control

A means for varying the over-all gain of the amplifier is necessary for keeping the final output at the proper level for modulating the transmit ter. The common methol of gain control is to adjust the value of ate. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentiometer.

The gain-eontrol potentiometer should be near the input end of the amplifier, at a point where the signal voltage level is so low there is no danger that the stiges ahead of the gain control will he overloaded by the full mirrophone output. With carbon mierophones the gain control may be placed directly arross the mierophone-transformor secondary. With other types of microphones, however, the gain control usually will affert the frequency response of the microphone when comected directly across it. Also, in a high-gain amplifier it is better to operate the first tube at maximum gain, since this gives the best signal-to-hum ratio. The control therefore is usually placed in the grid circuit of the second stage.

DESIGNING THE SPEECH AMPLIFIER

The steps in designing a speech amplifier are as follows:
b) Determine the power needed to modulate the transmitter and select the modulator. In the rase of plate morlulation, a Class 13 amplifier may be required. Select a suitable tube type and determine from the tube tables at the end of this book the grid driving power required, if any.
2) As a safoty factor, multiply the required driver power by at least I.5.
3) Select a tube, or pair of tubes, that will deliver the power determined in the second stop. This is the last or output stage of the sperchamplifier. Receiver-type power tubes can be used (beam tubes such as the fild may be noeded in some cases) as determined from the rocoiving-tube tables. If the specch amplifier is to drive a Chass B modulator, use a Class A or AB_{1} amplifier.
4) If the speech-amplifier output stage is also the modulator and nust operate Class AB2 to develop the required power output, use a medi-um- μ triode (such as the 6 C 4 or corresponding types) to drive it. In the extrome case of driving Gldis to maximum outpat, two triodes should be used in push-pull in the driver. In cither case transformer eompling will have to be used, and transformer mandaturers' catalogs should be consulted for a suitable type.
5) If the spereh-amplifier output stage operates Class A or $A B_{1}$, it may be driven bur a voltage amplifier. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a balanced secondary, or may be a dual-triode phase inverter. Detormine the signal voltage required for full output from the last stage. If the last stage is a single-tube Class it amplifier, the poak sigmal is equal to the grid-bias voltage; if push-pull Class A, the peak signal voltage is equal to twice the grid bias; if Class $A B_{1}$, twice the bias voltage when fixed bias is used; if cathode bias is used, twiee the bias figured from the cathode resistance and the maxi-mum-signal cathode current.
6) From Table 9-I, select a tube capable of giving the required output voltage and note its rated voltage gain. A double-triode phase inverter (Fig. 9-4A) will have approximately twier the output voltage and twier the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium- μ triode and calculate the gain and output voltage as described earlier in this chapter.
7) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the poak voltage required at the grid of the next-to-the-last stage.
8) Find the output voltage, under ordinary eonditions, of the microphone to be used. This information should be obtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will serve.
9) Divide the voltage found in (7) by the output voltage of the microphone. The result is the over-all gain required from the mirrophone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
10) From Table 9-I, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in eascade. If high gain is required, a pentode may be used for the first speech-amplifier stage, but it is not advisable to use a second pentode berause of the possibility of feed back and self-oscillation. In most cases a
triode will give enough gain, as a second stage, to make up the total gain required. If not, a medium- μ triode, may be used as a third stage.

A high- μ double triode with the sections in casmate makes a good low-level amplifier, and will give somewhat greater gain than a pentode followed b, a medium- μ triode. With resistancecoupled input to the first section the cathode of that section may be grounded (contart potential hias), which is helpful in reducing hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable sircuit has been solected for a sperch amplifier, the fonstruction problem resolves itself into avoiding two difficulties excessive hum, and unwanted feedback. For reasonably humless operation, the hum voltage should not exceed about I per cent of the maximum audio output voltage - that is, the hum should be at least 40 db . below the output level.

Lnwanted feedback, if negative, will reduce the gain below the ralculated value; if positive. is likely to cause self-oscillation or "howls." Feedback can be minimized by isolating each stage with "decompling" resistors and caparitors, by avoiding layouts that bring the first and last stages near each other, and by shielding of "hot" points in the circuit, such as grid leads in lowlevel stages.

Specech-amplifier equipment, especially voltage amplifiers, should be const ructed on steel chassis, with all wiring kept below the chassis to take advantage of the shiclding afforded. Fipposed leads, particularly to the grids of low-level high-gain tubes. are likely to pick up hum from the edectric field that usually exists in the virinity of house wiring. Even with the chassis, additional shielding of the input circuit of the first tube in a highgain amplifior usually is necessary: In addition, such cirenits should be separated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly-high power levels; this will minimize magnetic coupling to the grid circuit and thus reduce hum or audio-frequener feedback. It is always safe, although not absolutely neressary, to separate the specech amplifier and its power supply, building them on separate chassis.

If a low-level mierophone such as the erystal type is used, the mirrophone, its connereting cable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are eonstructed with suitable shielding; this should be connected to the speech-amplifier chassis, and it is advisable - as well as usually necessary - to connect the chassis to a ground such as a water pipe. With the top-cap tubes, complete shielding of the grid lead and grid (ap is a necessity.

Ieater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-
tap is grounded, the heater leads to each tube should be twisted together to reduce the magnetic field from the heater current. With either type of connection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the corner to the tule socket by the shortest possible path.

When metal tubes are used, always ground the shell connection to the chassis. Glass tubes used in the low-level stages of high-gain amplifiers must be shielded; tube shields are ohtainable for that purpose. It is a good plan to enclose the entire amplifier in a metal box, or at least provide it with a cane-metal cover, to avoid feed-back difficulties caused by the r.f. field of the transmitter. R.f. picked up on exposed wiring, leads or tube elements causes overloarling, distortion, and self-oscillation of the amplifier.

When using paper capacitors as bypasses, be sure that the terminal marked "outside foil" is connerted to ground. This utilizes the outside foil of the capacitor as a shield around the "hot" foil. When paper capacitors are used for coupling between stages, always conncet the outside foil terminal to the side of the circuit having the lowest impedance to ground. Usually, this will be the plate side rather than the following-grid side.

INCREASING THE EFFECTIVENESS OF THE PHONE TRANSMITTER

The effertiveness of an amateur phone transmitter can be increased to a considerable extent by taking advantage of speech charartoristics. Measures that may be taken to make the modulation more effective include band compression (filtering), volume compression, and speerh clipping.

Compressing the Frequency Band

Most of the intelligilility in spech is contained in the medium band of frequencies: that is, between about 500 and $2 \pi 00$ cycles. On the other hand, a large portion of sperech power is normally found below 500 (.y.les. If these low trequencies are attenuated, the frequencies that carry most of the actual communication can be increased in amplitude without exceeding loo-per-cent modulation, and the effertiveness of the transmitter is correspondingly increased.

One simple way to reduce low-frequency response is to use small values of coupling capacitance between resistance-coupled stages, as shown in Fig. 9-5A. A time constant of 0.0005 second for the coupling capacitor and following-stage grid resistor will have little effect on the amplification at 500 cycles, but will practically halve it at 100 cycles. In two cascaded stages the gain will be down about 5 db . at 200 cycles and 10 db . at 100 cycles. When the grid resistor is $1 / 2$ megohm a coupling capacitor of $0.001 \mu \mathrm{f}$. will give the required time constant.

The high-frequency response can be reduced by using "tone control" methods, utilizing a capacitor in series with a variatble resistor connerted across an audio impedance at some point in the

Fis. 9.5 - A, use of a small coupling capacitor to reduce low frequency response; \mathbf{B}, tone control circuits for reducing high.frequency response. Values for C : and K are diaconswed in the text: 0.01μ f. and 25,000 ohms are typical.
spech amplifier. The best spot for the tone control is across the primary of the output transformer of the speech amplifier, as in Fig. 9-als. The capacitor should have a reactance at 1000 cyrles about equal to the load resistance required by the amplifier tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can be adjusted while listening to the amplifier, the object being to cut the high-frequency response as much as possible without unduly sacrificing intelligibility.

Restricting the frequeney response not only puts more modulation power in the optimum frequency band but ako reduces hum, because the low-frequency response is reduced, and helps reduce the width of the ehannel occupied by the transmission, because of the reduction in the amplitude of the high audio frequencies.

Volume Compression

Although it is obviously desirable to modulate the transmitter as completely as possible it is difficult to maintain constant voice intensity when spaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantaneous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered d.c. to a control electrode in an early stage in the amplifier.
A practical circuit for this purpose is shown in Fig. 9-6. I_{1}, a medium- μ triode, has its grid conneeted in parallel with the grid of the last speech amplifier tube (the stage preceding the power stage) through the gain control R_{1}. The amplified output is coupled to a full-wave recti-
fier, V_{2}. The rectitied audio output develops a negative d.c. voltage across ('1 R_{3}, which has a sufficiently long time constant to hold the voltage at a reasonably steady value betwern syllables and words. The negative d.c. voltage is applied as control bias to the suppressor of the first tube in the spereh amplifier (this circuit requires a pentode first stage), cffecting a reduction in gain. The gain reduction is substant ially proportional to the mierophone output and thus tends to hold the amplifier output voltage at a constant level.

An adjustable bias is applied to the cathodes of I_{2} to cut off the tube at low levels and thus prevent rectification until a desired output level is rearhed. R_{2} is the "threshold control" which sets this level. R_{1}, the gain control, determines the rate at which the gain is reduced with increasing signal level.

The hold-in time can be increased by increasing the capacitance of $C_{1} . C_{2}$ and R_{4} may rot be neressary in all cases; their function is to prevent too-rapid gain reduction on a sudden voice peak. The "rise time" of this circuit can be increased by increasing C_{2} and or R_{4}.

The over-all gain of the system must be high enough so that full output can be secured at a moderately low voire level.

Speech Clipping and Filtering

In sperch wave forms the average power content is considerably less that in a sine wave of the same peak amplitude. Since modulation percentage is based on peak values, the modulation or side-band power in a transmitter modudated 100 per cent ly an ordinary voice wave form will be considerably less than the side-band power in the same transmit ter modulated 100 per cent by a sime wave. In other words, the modulation percentage with voice wave torms is determined by peaks having relatively low average power content.

If the low-onergy peaks are clipped off, the remaining wave form will have a considerably higher ratio of average power to peak amplitude. More side-band power will result, therefore, When surh a clipped wave is used to modulate the transmitter 100 per cent. Although clipping dis-

Fir. 9.6-Specth-amplifier output limiting circuit. $V_{1}-6 C 4,6(: 7,6.5$, I2ALC, etc.
$V_{2}-6116,6.11,5$, etc.
T_{1} - Interstage audio, single plate to p.p. grids.
torts the wave form and the result therefore does net sound exactly like the original, it is possible to secure a worth-while increase in modulation power without sacrificing intelligibility. Onere the system is properly adjusted it will be impossible to overmodulate the transmitter because the maximum output amplitude is fixed.

By itself, clipping generates the same highorder harmonies that overmodulation does, and therefore will cause splatter. To prevent this, the audio frequencies above those needed for intelligible speerh must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequencies below about 2500 eycles, but high attenuation for all frequencies above 3000 cycles.

It is possible to use as much as 25 (th) of elipping before intelligibility suffors: that is, if the original peak amplitude is 10 volts, the signal can be clipped to such an extent that the resulting maximum amplitude is loss than one volt. If the original 10 -volt signal represented the amplitude that caused 100 -per-cent modulation on peaks, the clipped and filtered signal can then be amplified up to the same 10-volt peak level for modulating the transmit ter.

There is a loss in naturahess with "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 db .) there is almost no change in "quality" but the voice power is incrased considerably.

Before drastic clipping can be used, the speech signal must he amplified several times more than is necessary for normal modulation. Aso, the hum and noise must be much lower than the tolerable level in ordinary amplification, bectuse the noise in the output of the amplifier increases in proportion to the gain.

One type of clipper-filter system is shown in block form in loig. 9-7A. The clipper is a praklimiting rectifier of the same general type that is: used in receiver noise limiters. It must clip both positive and negative peaks. The gain or elipping control sets the amplitude at which clipping starts. Following the low-pass filter for eliminating the harmonic distortion frequeneies is a second gain control, the "level" or modulation control. This control is set initially so that the amplitude-limited output of the elipper-filter eamot modulate more than 100 per exint.

It should be noted that the prak amplitude of the audio wave form actually applied to the modulated stage in the transmitter is not neecssarily held at the same relative level as the prak amplitude of the signal coming out of the clipper stage. When the clipped signal goes through the filter, the relative phases of the various frequeney components that pass through the filter are shifted; particularly those components near the cut-off frequency. This may cause the pak amplitude out of the filter to exceed the prak amplitude of the elipped signal applied to the filter input terminals. Similar phase shifts can oreur in amplifiers following the filter, esperially. if those amplifiers, including the modulator, do

Fig. 9.7- (A) Bloek diagram of specch-clipping and filtering amplifier. (B) Prartical speech elipper circuit with low-pass filter. Capacitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu$ f. Resistors are $1 / 2$ watt.
I_{1} - 20 henrys, 910 ohms (S tancor $\mathrm{C}-1515$).
s_{1} - I.p.d.t. toggle or rotary.
not have good low-frequency response. With poor low-frequency response the more-or-less "square" waves resulting from clipping tend to be changed into triangular waves having higher peak amplitude. Best practice is to cut the lowfrequency response before clipping and to make all amplifiers following the elipper-filter as that and distortion-free as possible.

The best way to set the modulation control in such a system is to check the actual modulation percentage with an oscilloscope connerted as deseribed in the chapter on modulation. With the gain control set to give a desired clipping level with normal voice intensity, the level control should be adjusted so that the maximum modulation does not exceed 100 per cent no matter how much sound is applied to the microphone.

A practical clipper-filter circuit is shown in Fig. 9-7B. It may be inserted between two speechamplifier stages (but after the one having the gain control) where the level is normally a few volts. The cathode-coupled elipper eircuit gives some overall voltage gain in addition to performing the clipping function. The filter constants are such as to give a cut-off characteristic that combines reasomably good fidelity with adequate high-frequency suppression.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the low-level stages of the specech amplifier. In one rather simple but effective arrangement of this type the clipping takes place in the Class-13 modulator itself. This is accomplished by carefully adjusting the plate-to-plate load resistance for the modulator tubes so that they saturate or elip paiks at the amplitude level that represents 100 per cent modulation. The load adjustment can be made by choice of output transformer ratio or by adjusting the plate-voltage/plate-
current ratio of the modulated r.f. amplifier. It is best done by examining the output wave form with an oscilloscope.

The filter for such a system consists of a choke coil and capacitors as shown in Fig. 9-8. The values of L and C^{\prime} should be chosen to form a low-pass filter section having a cut-off frequency of about 2500 cycles, using the modulating impedance of the r.f. amplifier as the load resistance. For this cut-off frequency the formulas are

$$
L_{1}=\frac{R}{7850} \quad \text { and } \quad C_{1}=C_{2}=\frac{63.6}{R}
$$

where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a plate-modulated amplifier operating at 1500 volts and 200 ma. (modulating impedance 7500 ohms) L_{1} would be $7500 / 8850=0.96$ henry and C_{1} or C_{2} would be $63.6 / 7500=0.0085 \mu \mathrm{f}$. By-pass capabitors in the plate circuit of the r.f. amplifier

Fig. 9-8 - Splatter-suppression filter for use at high level, shown here connected between a Class \mathbf{B} modulator and plate-modalated r.f. amplifier. Values for L_{1}, C_{1} and C_{2} are determined as deseribed in the text.
should be included in C_{2}. Voltage ratings for C_{1} and C_{2} when comected as shown must be the same as for the plate blocking caparitor - i.e., at least twice the d.c. voltage applied to the plate of the modulated amplifier. L and C values can vary 10 per cent or so without seriously affecting the operation of the filter.

Besides simplicity, the high-level system has the advantage that high-frequency components of the audio signal fed to the modulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, are suppressed along with the distortion components that arise in clipping. Also, the undesirable effects of poor low-frequency response following clipping and filtering, mentioned in the preceding section, are avoided. Phase shifts can still occur in the high-level filter, however, so adjustments preferably should be made by using an oseilloseope to check the actual modulation percentage under all conditions of speech intensity. (For further discussion sce Bruene, "High-Level Clipping and Filtering", QST, November, 1951.)

Speech Amplifier with Push-Pull Triode Output

Fig. 9-9 is the circuit of a speech amplifier that is well suited to use as a driver for a push-pull triode Class B modulator. An output of about $1: 3$ watts can be realized with the power supply (ircuit shown (or any similar well-filtered supply delivering 300 volts under load). This is sufficient for driving most of the power triodes eommonly used as modulators. The output stage uses pushpull 6iB4(is, which are especially suitable as (lass IS drivers beciuse of their low plate rosistance. The 613.4 is are operated Class Al_{1}. The cirenit provides several times the voltage gain needed for communications-type erystal or ceramic microphones.

The t wo sections of a 12.4×7 tube are used in the first two stages of the amplifier. These are resistance coupled, the gain control being in the grid circuit of the second stage. Although the cathode of the first stage is grounded and there is no separate bias supply for the grid, the grid hias artually is about one volt breause of "contact potential." The coupling rapacitances between stages are chosen to cut off the lower voice frequencies for the reasons discussed earlier in this chapter. The higher frequencies are not attenuated in this amplifier since it is assumed that this will be done at the modulation transformer as recommended later in eon-
nection with the design of Class 13 modulators. The third stage uses a medium- μ triode which is coupled to the 6B4G grids through a transformer having a push-pull secondary. The ratio may be of the order of 2 to 1 (total secondary to primary) or higher; it is not critical since the gain is sufficient without a high step-up ratio.

The output transformer, ${ }_{2}$, should be selected to couple bet ween push-pull 6B4Cis (or 2A3s) and the grids of the particular modulator tubes used.

The power supply has a capacitor-input filter the output of which is applied to the 6134 G plates through T_{2}. For the lower-level stages, additional filtoring is provided by successive RC filters which also serve to prevent audio feedback through the plate supply.

Grid bias for the 6B4Gs is furnished by a separate supply using a small selenium rectifier and a TV "booster" transformer, T_{4}. The bias may be adjusted by means of R_{1}, and should be set to -62 volts or to ohtain a total plate current of 80 ma . (as measured in the lead to the primary (enter tap of 72) for the 6B4Gs.

In building an amplifier of this type the constructional precautions outlined earlier should be observed. The Class AB_{1} modulators described subsequently in this chapter are representative of good constructional practice.

 fos specified otherwine. Capanitors with pelarity indicated are electrolytir; others may be paper or ceramic.

C R_{1} - Selenium rectitier, 20 ma.
 'I' - Interstage andis transformer, single plate to mush-pull gride, turns ratio! 2 to 1 or 3 to 1 , total secondary to primary.
T_{2} - Clasis- 13 driver transformer, 3 (КN) ohms plate-to
plate: recondary impedanere as regnired by Clase-13 tuhers used: 1.5 wat rating.
T_{3} - Power transformer, 700 volt. $\because \cdot, 1 ., 110$ ma.; 5 vols, 3 ampe; 6.3 volts, 4 amp.
$\mathrm{T}_{4}-\mathrm{I}$ 'ower transformer, 125 volts, 20 ma.; 6.3 volts, 0.6 amp.

Low-Power Modulator

A modulator suitable for plate modulation of low-power tramsmitters or for serecen or controlgrid modulation of high-power amplifiers is pictured in ligs. (9-10 and ! 1 -12. As shown in
 in the output stage. These are driven by a $6\left(\begin{array}{l}\text { a }\end{array}\right.$ phase inverter. A twostage promplifier using a
 remmie microphone up to the proper level for the ef ' 4 grid. I power supply is included on the same chassis.

The undistorted audio output of the amplifier is $7-8$ watts. This is sufficient for modulating the plate of an r.f. amplifier rumning 10 to 15 watts imput, or for modulating the eontrol grids or sorerns of r.f. amplifiers using tubes having phatedissipation ratinge up to 250 watts. When sereen modulation is used the serern power for the modulated amplifier (up to 250 volts) can be taken from the modulator power supply. The wiring shown in Fïg. ?-11 provides for this, through an adjustable tap on the 25,000 orohm beder resistor, R_{5}, in the power supply, If a separate sereen supply is used, or if the modulator is used for grid-hias or plate modulation of an r.f. amplificr, the d.e. cireuit should be opened at point "X" in Fig. ! I I .

The amplifier uses resistanceroupling up to the ont put-stage grids. The first section, $V_{1 A}$, of the 12AN゙T hat "contact-potential" bias. The gain control, R_{1}, is in the grid circuit of the seecend sertion, Vas, of the 12ANT. Negative feedback from the serendary of the output transformer, T_{1}, is introduced at the cathoele of this tubse section. The fered-bark voltage is dependent on the ratio of R_{2} to R_{3}, approximately, and with the
constants given is sufficient to result in a considerable reduction in distortion along with improved regulation of the audio output voltage. The hater is importint when the unit is used for modulating a screon or control grid, as deseribed in the chapter on amplitude modulation.

The phase inverter is of the split-load type described earlior in this chapter. It drives the push-pull (iA(e)'s in the power amplifier. The ontput transformer used in the power stage is a multitap modulation transtormer suitable for any of the 1 ppes of modulation mentioned above.

Capacitor (${ }^{2}$ abross the secondary of the output transformer, T_{1}, is used to reduce the high-frequency response of the amplifier. Without it, self-oscillation is likely to ocrur at a high audio frequency (usually above audibility) because phase shift in the output transformer at the and of its useful frequeney range canses the fordback to berome positive.

The power supply uses a replarement-type transformer and choke with a eapacitor-injut filter. Voltage under the modulator and speechamplifier load is 250 . The decoupling resistancecapacitance networks in the plate cirouits of $V_{\text {ia }}$ and V_{i} contribute additional smoothing of the d.e. for these low-level stages.

The unit includes provision for send-recerive switching, S_{1} being used for that purpose. Sus can be used to control the r.f. section - for example, by being connerted in parallel with the key used for c.w. operation. Simultaneously $S_{1 A}$ short-circuits the serondary of T_{1} so the transformer will not be damaged by being left without load. If $S_{1 B}$ is comnerted across the transmitter key, S_{1} also can be used as a phone-

Fig. 9-10-Spered amplifier and low-jower modulator suitable for sereen or control-grid modalation of high-power amplifiers. or for Ifate modulation of atl r.f. stage with up to lis wattsplate input. It is ansmbled on a $7 \times 9 \times 2$ inch steel chassis, with the prower supply occupying the left-hand section and the audin circuits the right. 'The I2AX. preamplifier is at the lower right-hand corner, the foct phase inverter in to its left, and the 6, MO, power amplifiers are lechind the ino. iontrols along the ehassis edge are, laft to right, the puwer swited, surndmereive iwitch, gain control, and niorophone jack.

Fig. 9-11 - Circuit of the speech amplifier and modulator. All capacitances are in $\mu \mathrm{f}$.; capacitors with polarities marked are electrolytic, others are ceramie. Resistors are $1 / 2$ watt execpt as noted below. Soltages measured to chassis with v.t. velmeter.
J_{1} - Microphone eonnector (Amphenol $\because-\mathrm{F}$ - PCIM).
$\mathrm{L}_{1}-10$ henrys, 90 mal. (Triad C.-: X).
s_{1} - 1).p.d.t. togyle.
S_{2} - $S_{\text {.p.s.t. toggle. }}$
T' - Modulation transformer, tapped secondary, pri-
e.w. switch, being keft in the position that represents "off" or "receive" in phone operation.

The terminals marked "IS Switeh" should be short areuited (indieated by the dashed line) if S_{1} is used as a send-receive switch. If a switch on the transmitter is used for send-recepive, these terminals may be used for turning the phate voltage in the modulator on and off through an extra pair of contacts on the transmitter send-
mary $10,(\mathcal{M})$ ohms plate to plate (Thordarson $21168)$
T_{2} - Power transformer, 525 v.c.t., 90 ma.; 6.3 v., 5 amp.: 5 .., 2 anp. (Triad R-10A).
$\mathrm{H}_{2}-1500$ ohms, $1 / 2$ watt.
R_{4} - App. $2($ O) ohms, 2 watts (two 390 -ohn l-watt resistors in parallel).
receive switch. In that case S_{1} shoukd be left in the "send" position for phone operation.

The proper secondary taps to use on σ_{1} will depend on the impedanee of the load to which the amplifier is comenected. Methods for determining the modulating impedance with varicus types of modulation are given in the chapter on amplitude modulation, together with information on eomereting the modulator to the r.f. stage

Fig. 9.12- Below-chassis view of the modulator. The rectificrtobe somet and electrolytic filur capacitors are at the right in this view. The IDAXV socket is at the Iower left. Bleeder resistor R_{5} is at the upper left, near the 6-terminal connection strip on the rear edse of the chassis. l'acement of components is not critical, but the leads in the first two stages should be kept short and close to the chassis to minimize hum troublem.

25-Watt Modulator using Push-Pull 6BQ6GTs

The speoch amplifier-modulator shown in ligs. 9-13 to 9-15, inclusive, can be used for plate modulation of low-power transmitters rumbing 25 to 50 watts input to the final stage. The circuit as shown is capableof an audio output of 25 wates, Int this can be increased to 30 watts by a simple modifieation. The biberts in the output stage are oprated in Class . $1 B_{1}$. Inexpensive receiver-type replacement components are used throughout, (xeept for the molulation transformer.

Circuit

The spereh amplifier uses a pertode first stage resistancerompled to at riode second stage. This rombanation gives suffirient pain for a erystal misrophone. The pentode and trionde are the two
keyed, S_{23} may be used to control the transmitter plate voltage, usually by being commefted in the 115 -volt eirenit to the plate-supply transformer.

The "phone-c.w." switch, S_{3}, short-rireuits the secondary of the modulation transformer, T_{3}, when the trinsmitter is to be keved, and also opens the conter-tap of T_{1} so plate voltage camot be applied to the modulator.

The power supply uses a reediver replacementtype transformer with a capacitor-input filter. Additional filtering for the speech-amplifier stages is provided by the $10-\mu \mathrm{f}$. caparitors and the series resistors in the plate circuits. Hum is also redured by the Vlk-150 used to regulate the modulator screen voltage. Note that the regulator

Fif. 9.13 - 1 modulator for $\begin{gathered}\text { ramsmit. }\end{gathered}$ tors operating at plate ingut up (o) it wattr, "I'lue spereh amplifier and monlulator are at the left in this view: power supply combonenta are at the right.

sections of a dual tube, the ($\mathrm{A} . \mathrm{N} 8$. Transformer compling is used between the triode and the mudalator tuber, in order to get push-p it voltage for the fibgeiat grids. ('athode bias is used on the final stage.

A coupling capacitane betwern the first and socomel stages is purposely made small to reduce the low-frepuenes response, and the primary of the output transformer is shumted by ('z to redued the amplifieation at the high-frequener end. (1 , on the first stage, also tends to reduce highfremueney response in addition to bypassing any r.f. that might he pieked up on the miderophone cord. These measures confine the frequence response to the most useful protion of the voice range.

Sig is the "send-receive" switeh. (He section opens the power transformer center tap, thus cutting off the plate voltage during receiving periods. The other seetion can be eonnerted to the key terminals on the transmitter. as indicated in the cireuit diagram, to turn the transmitter on and off along with the modulator. If the transmitter is one in which the oscillator is not
tube is commected botween the sereems and cathodes so that the artual sereen voltage is 150 and is not redned by the drop in the cathode biats resistor. Matataning full sereen voltage is important if the rated output is to be secured.

Operating

The $6 B Q 6 G T$ amplifier requires a plate-toplate load of 4000 ohms, and the output transformer ratio must be chosen to reflect this load to the plates (sere later section on matching a modulator to its load). For most small transmitters ruming 30 to 50 watts input to the final stageal-to-1 transformer ratio will be satisfactory, since the modulating impedance of such transmitters usually is in the neighborhood of 4000 ohms. The secondary of T_{3} is connerted in series with the doce lead to the plate (and screen, if a sereon-grid tube) of the Class C amplifier to be modulated. For further details, see the chapter on amplitude motulation.

For checking the modulator operation a milliammeter ($0-200$ range satisfactory) may be connected in the lead to the center-tap of the

Fia. 9.11- Cironit diagram of the 25-watt mondalator. Capacitances below $0.00 \mathrm{f}_{\mu \mathrm{f}} \mathrm{f}$, are in $\mu \mu \mathrm{f}$. (.apacitors up to 0.01μ. are ceramie. Resistors are $1 / 2$ watt unlers otherwise specified.
$\mathrm{I}_{1}-8$ henrys. 150 ma.
S_{1} - S.p.n.t. toggle.
s_{2} - I).p.d.t. togyle.
$s_{3}-2$-pole 2 -position rotary (Centralab P 1.2003),
T_{1} - Power transformer, 0.50 volts c.t., 150 ma. 5
volts, 3 amp.: 6.3 wolle. $\overline{3}$ amp.
' T_{2} - Interstage andio, single mate to p.p. grids, ori. to total sece ratio I to 3.
J_{3} - Wodulation transormer, muttimatrh Iyw (tTi: S-l'9).
about 30 watts, sufficient for modulating an 800^{-7} at its full phone rating. if the fibceriot rathentes arre grounded and bits of about 30 volts lom at fixed souree such as a small battery is applied to the grids. The battery may he substitute el for the cathorde resistor if the ground rommertion is moved from the center tatp of the serombary of $T 2$ to the eathodes of the tillecti(i's.
(From (9.5', Derember, 1!95.)
primary of T_{3}. Withont voice input to the mierophone the plate current should be approximately 50 ma . When modulating the trinsmitter, the rurrent should "kick" to 60 or 70 man: this will usually represent loo per cent modulation. If the amplifier can be tested with a single-tone signal replacing the misrophone, the phate current will be about 16.5 mat at full output.

The audio power output can be increased to

Fia. 9.1.5- L'mer-chassis view of the 6 BGocra' modulator. The two large capacitors at the right are the filtur capacitors in the power sup. ply. The monlutator bias resister and by-patse capaceitor ($R_{1} C_{3}$) art at lower left. Lads from the modulattion Iransformer go through tha thres holes in the clasasis. Shistled wire is ured for heater, microphone impol, and gain-erntrol leads.

40-Watt Class AB1 Modulator

The modulator unit shown in Figs, !-16 for ?-18, inclusive. his im undistorted power output of somewhat hedter thatn 10 watte. It usos it pair of 80 ös as ($\mathrm{Class} \mathrm{AB}_{1}$ power amplifiers and is momplato with th inexpensive type of power supply.
 operating at at dir. plate pown input of 80 watts or less.

Speech Circuit

The spereh amplifier uses at high- μ dual triode ats atwostang resistancerompled amplifier. followed by a medium- μ triode. The latter is transformer-compled to the mondulator grids. Tho gain from the mierophone ingut to the sot grids is more than ample for erestal and other mierophones of similar output level. Battery hits is esed for the modulator gride sine it is the simplest method abd amath battory surh as those mate for hemping-aids rem lo ased. Sinere mo rurrent is tack from the battery its life is the same as the nomal shelf life.

The frepueney response of the amplifier is adjusted to put maximum energy in the range Where it contributes most to spered intelligibility: that is. the output is highest betwern in) and 1200 revers and drops off gradually on either side. The lower frequenelos are reduced by bow values of coupling cetpatitance hetweren the resistancerouplod situges. and the high-froguthey and is attenuated by ('1. Further high-fregulumes attemation, with partienatar referemer ta such components generated in the mondulator itself. is provided by eabpuitor fe, connected abross the output tominals of the modulation transformere.

Power Supply

The power supply uses at replatement-type

 The bridge reguires four reetifier clements but matkes it pussible to ohtatin twier the d.e out put
voltage that would be sereured from a simple center-tap rectifier. The power transformar is not overlouded. however. partly hectuse of the rhoke-input filter and partly beeranse of the low
 verice oprotation.

A soparate filament labsiommer is used for the two bidiodic reetifiors, with its seromdary romered to the renter tiap of the high-voltage winding of the power trinsformer. With this arrangement the peak heater-eathode voltage on (ewh tube is about 500 volts, slightly over the rating for these tulas hat not exeressively so.

The higher outpat voltage from the bridge rertifier meressitates using filter capacitors having higher working ratings thath the ordinary eleretrolytic, so two toolvolt units atre eommerted in saries for the high-voltage filter'. A single-seretion filter is used for this voltige. The bleeder consists of two resistors conncetad as shown in order to divide the voltage equatly between the two electroletic (atpacitors.

The der. voltabe at the cerbter tap of the highvoltage winding of the power transformer is approximately half the der. output voltage from tho tridge reetifier (with the diNECTs, the transformer serondity forms an "invertel" "entertab reatifior systom) and so offers a convenient methe for taking off a low voltage to operate the sperech amplifier, the drivere and the modulator sermens. This titp is more extonsively filtored that the high-voltage supply, sine better smoothing is nerded for the low-hevel stigers. Thly the 8 -homry, 100-mat. dhoke is common to both filter's.

With the vablues shown in Fig. 9-17 the hum level (mestured in the absence of signal) is about f0 dh. below the lull out put of the modulator.

Control Circuits

With this type of power supply circuit it is important that the bidscil heaters be permitted

Fig. 9-16-(Class A13 morlulator using 80?s for 10 watts andio outpur. 'The pmocr-supply 1 andeformer and reetificr tulese ereury the lefthand sertion of the rhazais. "The spered amplifier is in the renter and the modulator tubes and ontput transformer are at the rizht.
The controla, lefit to right, are the power switehos, N_{2} and s_{3}, the semdrereive switels. Si, microplone inpat connector. $/ h_{1}$, gain control, R_{1}, and at the far right, the pilot light.

Fig. 9.17 - Circuit diagram of the 10 -watt modulator. Capacitances below 0.00) $\mu \mathrm{f}$. are given in $\mu \mu \mathrm{f}$.; eapacitors other than electrolytir may be cither paper or ceramic; (ou)-volt rating. Wexintors are $1 / 2$ watt malesis otherwise inclicated.
 lower (lasic (: loall resistancers.
(:3- Inal electrolytic, $10-10$ pf.. 4.50 , olts.
(.4-1) Wal clectrolytic, 8-16 μ f., $4 . \%$ volts.
R_{1} - Carbon potentiometer, andio taper.
J_{1} - Nierophone conneretor (Amphemal $\mathrm{f}^{\prime}(: 1 \mathrm{M})$.
'I' - Interstage audio transformer, plate to pisili-pull grids; lo-ma. primary: 3 to I turns ratio, total secondary to primary.
T_{2} - Molulation 1 ransformer, adjustahla ratio, apm. 30-watt rating (I'C: (INM-I).
${ }^{\prime} \mathrm{T}_{3}$ - V̈lament transformer, 6.3 volts at 1.2 amp.
'T4-I'ower transformer, 350) walts each side e.t., 90 ma.: i whets at 2 ampo.: 6.3 volts at 3 amp.
sı-1).p.d.t. tuggle.

$\mathrm{B}^{\prime} \mathrm{l}_{1}-22 . \overline{\mathrm{m}}$-volt battery (hearing-aid type satisfactory).
to eome up to full operating temperature before pate voltatge is applied. Power ritu be applied to the (ix.jer heaters be mextes of Na: then after 10 or 15 seronds \mathbb{S}_{3} mayy be celosed. Buth switehos are then loft elosed during the operating perionl.

Gond-recoive switching is :wromplished by s.
 the plate voltage from the sperech-implifier states and the sereen voltage from the 807s. This makes the modulator inoperative. Sus rith be ased to control any suitathle airenit in the transmitter; for example, it ran substitute for the key, or cemb be used to turn the 115 -volt rirenit of the transmitter plate supply on and off.

Construction

The modulator is built on a $4 \times 17 \times 3$-inch sted chatssis, the 1 -inch length heing selected so
thith a standard l!-ind relay-rack panel atm be used for momnting the unit if desired. Other chassis sizes and latyouts maty be used if the builder prefers.

The prineipab constractionabl preatation to be observed is that the output transtomer. To should not he too close to the low-lever spereh amplifier ciredits. Adequate sepatration will redure fredback through straty eouphing and thas reduce any possible tomeney toward self-oscillation. The interstage transformer. Th, should be kept well soparated from the power trastormer, to minimize hum pick-up.

The power transformer is mounted on top of the chassis with its leads ruming through holes with rubber grommats. The two chokes and the filament tratiomer are seremed to the bottom and sides of the chatsis, with the smatl (4.5-

Fip. 9-18 - Bottom view of the 10 -wat modulator. The 8 -henry input choke of the power supply is at the extreme Ieft, mounted on the chasis wal!. Inder it (not visihle) is the lin-henry choke for the low-voltage supply. The dual
 coltage filter capacitors and heeder resiators. Just helow them is the filament tranaformer, F_{3}, mounted on the rear chassis wall.

The sockets for the nperth-implifier thles are in the center, with the dual andio by-pase caparitor, Can just to the eft. 'The leads coming through the grommets are from the interstage transformer, Th, 'The bias fattery and its mennting strab are to the right of the 80^{-}soekets. C_{2} is mounted on the modulation transformer terminals, at the right. Audio output and the leads from sis are conneeted to the external circuit through the four-prong ehassismonnting connector at the right-hand end of the rear chassis wall.
henry) ehoke held in plate by two of the serews that mount the power trinsformer. It is neeressary to cut a large hole - about 3 inches in diameter - for mounting the modulation transformer; atl of the connerting lugs on this transformer are on the bottom of the case, so the hole must be large enough to allow the loads to be connected.

When mounting the two series-eonnected filter (apabitors and their 20,0())-ohm voltage-equalizing resistors, care should be taken to kerep the resistors from physical contart with other components. These resistors operate at relatively high temperature and could damage other components by direct contaret.

The hearing-aid battery that furnishes the $221 / 2$-volt hias for the 807 s is fastened under the chassis by a small strap, mate from brass or aluminum, held in plate by the same serews that hold the $80{ }^{-}$tule sockets.

In wiring the speech-amplifier section, leards to grids and plates should be kopt short and separated as much as possible from heater wiring. The hater leads should be run abong the chassis corner except where they must be brought out to rearh the tube sockets. Shielded wire should be used for the lead from J_{1} to the first grid, and also for the gatin-control leads. All these moasures help reduce stray hum piekup in the low-level stages.

Operating Values

The optimum phate-toplate load resistance for 807 s operating Class AB1 with 600 volts on the plates and 200) volts on the sereens is abperoximately 12,500 ohms. At full drive - peak value of signal between the grids equal to twire the bias voltage - the peak power output has a sineWave equivatent of 48 watts. . Xot abl of this can be realized, sinee there is some foss in the modula-
tion transformer, but the nominal 40-wat rating is conservative.

The modulation-transformer tap numbers indicated in Fig. ! $1-17$ atre recommended (assuming that the type of transformer suecified is to be used) for use with transmitters having either at single 6146 or single $80{ }^{-}$in the statge to be modulated. Although the reflected load resistanee at the modulator plates is a little high in the case of either tube, the power output is still ample for plate-and-sereen modulation of either the 6146 or 800^{-6} at their maximum phone ratings.
for other r.f. tubes or different voltages and currents, or for at different type of modulation transormer. the lowd resistanere should be cablenlated ass deseribed in the chapter on amplitude modulation and the transformer taps chosen abecordingly.

The de power supply voltages in the modulatfor unit (line voltage 120) should measure (i90 and 260 for the high and low supplies with no audio input. The voltages at full output are indicated on the diagram. The modulator idling current is about 50 mat. with a new 22.5 -volt (actual voltage 24.5 volts) battery for bias. With tone input and the gain adjusted for maximum modistorted output, the modulator plate current is about 100 ma. (This current may be measured by inserting a milliammeter at point X in the diagram.) However, with speech the modulator plate current should not kick beyond 60 to (65 mat. on voice peaks; this represents full output on modulation peaks because of the lower average power content of voice waveforms as compared with a pure tone.

If c.w. ats well ats phone opreration is to be employed, it is desirable to make provision either in the modulator or the $1 . \mathrm{f}$. unit for shortrireuiting the modulation transformer secondary when the transmitter is boing keyed.

6146 Modulator and Speech Amplifier

The modulator shown in the aceompanying photographe usis a pair of 61 fos in $.13_{1}$, and with the exeception of the preamplifier unit is complete with power and bias supplies on : $7 \times 17 \times$ 3-ineh chassis. The preamplitior is a separate mit so that the midrophone input and gain control can be within easy reach at the operating position.
the plate to get at the wining. Rabher feet are mounted on the other removable side of the bes, which beromes the bot tom when the unit is is use.

The preamplifior is commeded to the modulator through a 10 -foot length of cathle (Alphat Wire (Co. No. 1242 having ons shieded and two unshielded contuctors. The shiedded wire, comeeted

Fig. 9.19- ${ }^{\circ}$ Wis Chass $\ B_{1}$ modulator is complate with all sumplies. I simg two 61.16s, it is rapablike of andior outputs un to 120 watls, damending en the plate voltage selected. 'The tirst two stages of sperech amplitisation are built into a small hox that may he used at the operating powition while the main chassis is installed in any comseniont losation.

Combroments on the chatsis are. Inft to right, powar irathsformor and 816 rectifiers, liamont eramsformer abled plate litter chohe 6] the and I R whes, modulation transformer and. in the right faregromil, the oc:l linal speed amplifier stage.

The modulator and power supply have no controls that need be manipulated, so ram be installed in any convenient spot. The modulator-power supply unit includes one stage of spereh :mplification, and also is wuipped with at splatter filter and an andio take-olf for scope monitoring.
The andio power that can be ohtained (hased on measurements is as follows:

Vominal		Plate-fo-1'late
I'late Volage	Power Output	Lond Rexistance
B00) volt:	7.5 Watts	t200 colums
	9.3 whts	[200 ohms
750 volts	120 watts	1800 ohmes

Suitable sots of eomponents for all there of the voltager listod above are readily available, so the power leved eath be selected to suit the Class C amplifer to he mondulated. The modulator shown in the photogretphe is set up for tio()-volt operattion, hut sufficient chatsis area has beron assigued to the power and modulation transformers toabcommodate the next larger size of the sime style. Other than these two transformers, all other eomponents are the same regatilless of the voltare level.

Preamplifier

The premmplifier ciruit, shown in Fig. ! 1 -22, is built in a 2 by + by taluminum hox. It uses a 12.1×7 in two resistancerempled triode stames. The 12.1×7 is moneded on a smatl bracket fastened to one removathe side of the box. With the exeception of the miarophone connector and gain control, whith twe on one erlege of the hox. and the conneretor, J_{2}, on the opposite edge, all romponents are on this same plate, mounted between appropriate tube-socket pins and tio-point strips. lonough kead length is allowed from the romponents on the box itsolf to permit taking off
to Pinl 3 of J_{2} in Fig. : 1 -22, is used for the :matio output. The shidet is the eommon gromed eothneetion throngh tha mata. One of the other two wires is used for phate current aud thr last for filament current. The capacitance of the shieded

Fig. 9-20 - The preamplifier removed from its 2 by 4 by 4 linx.
wire shants the output eirenit and thus reduces the high-frequency response. This is compensated for in the modulator mit.

Modulator and Power Supply

The circuit diarrim of the modulator and power supply section is given in Fig. 9-2;3. The "high-boost" rircuit. consisting of the two resistors and $250-\mu \mu \mathrm{f}$. ratpacitor associated with the grid of the 6 et speech amplifier, compensatess for the drop in highs in the cable coming from the promplifier. The modulation transformer is a multimatch type delivering output to the load through a splatter filter. The three 1 -megohm resistors form a voltage divider for delivering about $1 / 3$ of the total audio output voltage direct to the horizontal plates of a monitoring seope for

Fig. 9-21 - Bottom view of the modulator and power supply. The sockets at the upper left are for the 816s. The ablatter filter chohe is mountod on the lefthand chassis wall, using suall comestandofs as tie puints for the high. voltage connections. 'The large resistor to the leff of the lilter rapacitor is the dropping restor for the low-soltage circuit: the filter capacitor is -upported from the rear (lower. in this pirture) whasis wall, The thd surech amplifier

 is at the lawar riyht.
forming atrapmoidal pattern withont amplifiors ith the seoper, The mesistor values cam be varied, il
 though the total mesistame should be maintained
 roupling capamitor. This capareitor should have a voltare rating ergat to at least twier the dere plate voltang on the moklulated amplifier; titoovolt patper eaparitors in this capacitather ate ruadily availathe and inexpensive.

Plate power for all tubes is supplied from one transformer. I singhosertion choke-input filter is used for the high voltage appliod to the phates of the filtis. This is dropped through a rexistor
 a regulated voltage of 210 for the dillis semens. This volturn also is applied to the plate of the

Fig. 9.22 - I'reamplifier cironit, Fixerd reainors are $1 / 2$ watt. (abacitances in μ f,
J_{1} - Microphene conamector
J_{2} - Vour-prong commetor, chassix momating, malle.
 be the tano-ohm resistor and 8 - $\mu \mathrm{l}$. capacitor, to the promuplifior tube platos through lin 2 of I_{3}. The dropping vesistor, Res, should he adjusted to approximitely 5000 ohms with a 500 -volt

 When the modulator is in operation by observing "herther the Vh tubes go out on voier peaks. Poough curment should be bled through the regulators so that ther staty ignited at all voise levels.

A pair of terminals is provided for rommerting a milliammeter in suries with the phate lean to the (i) flis. The moter itself rem he phaced in any convenient spot. If it is not used, a jumper must be eommeded across the terminats, This circuit is fused to proteret the moter.

The hias supply use at small filament transformer, η_{4}, operating from the regular filament transformer, T_{3}. to provide 11.5 volts for the bias rectifier and filter. Bias is adjusted to the proper value by meatus of R_{1}.

Separate ace input connectors are used for the filament and plate supplios; when S_{1} and s_{2} are closed these cean be cout rolled by remote switches. The bias sumply goes on with the fillaments, and since there is no time litg in the selenimm rertifier the 61 His are always protereded.

Splatter Filter

The splatter filter constants should
bebased on the modulating impedance of the Class C amplifier as deseribed earlier in this chapter.

The choke is a "television" power supply filter choke modified to obtain the desired inductance by widening the air gap, using paper and cardloard spacers. Measured values of inductance with various air gaps are shown in Table 9-II. In reassembling the choke do not use the "finishing" laminations that overlap the I sections on each side of the core. The choke in the photograph is held together by clamps made from tempered Presdwood. The Presdwood mounting also serves to insulate the core from the chatsis.

Operating Data

With sine-wave input, the plate current at full output is 240 ma , when the load is adjusted to the appropriate value for the plate voltage in use, as listed earlier. This maximum current is pratetically the same at all plate voltages listed, since the plate dissipation rating of the 6146 does not permit using a bias value that gives a very large value of no-signall plate current. The grid bias

TABLE 9.11

Measured inductance values for various air-gap spacings, " 1-henry 300-ma." filter choke (Stancor (-2326) with 7 layers (approximately 30 per cent of turns) removed.

Airgap, inches	Inductance, henrys
0.003	0.71
0.010	0.62
0.020	0.48
0.025	0.46
0.050	0.36
0.075	0.31
0.100	0.28
0.125	0.26
0.15	0.24

should be adjusted for a total plate current that represents a no-signal input of slightly under 50 watts at the particular plate voltage used.

The voltage gain from the microphone imput to the modulator grids is such that full output can lie seeured with an input voltage of about 3 millivolts, r.m.s.
(Originally doscribed in QST' for December, 1954.)

$C_{1}, C_{2}-1600$.volt paper. See text.
K_{1} - (Bias control) 50,000 -ohm potentionmeter, preferably wire-wound.
$R_{2}-10,000$ ohms, 50 watts, adjustalile.
I.1-Sec text.

C: S Selenium reetifier, 20 ma. or larger, for 11 -solt operation.
J_{3} - Four-prong conncctor, chasis mounting, female. $J_{4}-$ Phono connector.
$\mathrm{J}_{5}, \mathrm{~J}_{6}-115$-volt connector, chatsis monnting, male.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-S.p.s.t. togele switch.

Fig. 9-2.3 - Modulator and power supply. Caparitances in μ f. unless otherwise specified. lixed resistors are $1 / 2$ watt except as noted.

Ti - Interstage audio, ser./pric ratio 3:1, push-pull sceondary ("hordarson 'livo Ale).
T_{2} - Multimatch modulation transformer (ITC (CVM.2 or CDM-3, depemding on audio omtput power level).
T_{3} - Filament transformer, 6.3 wolts at 8 amp, $; 5$ volts at 3 amp. (Triad for-30. $)$.
' I ' - Filament transformer, 6.3 volts at $1 / 2$ amp. ('riad F-1 4 X).
'I'5 - Ilate transformer. For 500 volts d.e.: 1235 v. e.t., 310 ma. ('Triad 1'-A) : for 0011 volts d.e.: 11.55 v. c.t.. 310 ma . (Triad l'llif); for 750 valti d.e.: 1.80 r.t., 310 ma. (T'riad type I•13A).

Modulators and Drivers

CLASS AB AND B MODULATORS

Class . Il3 or 3 modulator circuits are basically identical no matter what the power out put of the modulator. The diamrams of Fig. !-21 therefore will serve for any modulator of this tyon that the amatear may clect to buid. The triode cimuit is given at A and the cirruit for teotrodes at B3. When smatl tubes with indiredy-hoated cathodes are used, the cathodes should be comered to ground.

Modulator Tubes

The andio ratings of various types of transmitting tubes are given in the chapter containing the tube tables. Choose a pair of tubes that is capable of delivering sime-wave andio power equal to somewhat more than half the die. input to the mondalated (lasse C amplifior. It is somotimes conveniont to use tubes that will oproate at the same plate voltaure as that applied to the (lass C stage, because ond power supply of aderuate current capacity may then suffier for both stares.
In estimating the output of the modulator, remember that the figures given in the tables are for the tube outpat only, and do not include out-put-transformer losses. Toberadequate for modulating the transmiter, the modulator should have

Fig. 9.24- Modulator circuit diagrams. 'Tubes and circuit considerations are discussed in the text.
a theoretical power capability 15 to 25 per cont greater than the actual power needed for modulation.

Matching to Load

In giving atudio ratings on power tubes, manufacturers sperify the plate-to-plate load impedanee into which the tubes must operate to dediver the rated audio power output. This load impedance soldom is the same as the modulating impedane of the Class C r.f. stage, so a mateh must be brought about by ardjusting the turns ratio of the coupling transformor. The required turns ratio, primary to secondary, is

$$
N=\sqrt{\frac{Z_{11}}{Z_{11}}}
$$

where $N=$ Turns ratio, primary to secondary
$Z_{\mathrm{m}}=$ Modulating impedance of Class C r.f. amplitier
$Z_{\mathrm{p}}=$ Plate-to-plate load impodance for Class 13 tubes

Example: The modulated r.f, amplifier is to operate at 12.0 volts and 250 ma. The power input is

$$
I^{\prime}=E I=1200 \times 0.25=312 \text { watts }
$$

so the modulating power repuired is $312 / 2=$ 15t watts. Inereming this by 25^{\prime}; to allow for losses and a remomable operatime margin pivers $1.56 \times 1.2 .5=19.5$ watts, "The modulating imperdaner of the Clans C stage is

$$
Z_{\mathrm{ma}}=\frac{E}{I}=\frac{1250}{0.2 \overline{5}}=5000 \text { oh } \mathrm{mms}
$$

From the tube tables a pair of Clans 13 tubes is selected that will give 200 watts output when working into a 6 borohm load, plate-to-plate. The ;rimary-to-seromdary turns ratio of the mothation transformer therefore should be

$$
N=\sqrt{\frac{Z_{1}}{Z_{11}}}=\sqrt{\frac{6 \mu(\mu)}{3(\%)}}=\sqrt{1.38}=1.175: 1
$$

The required transformer ratios for the ordinary rango of impedanees are shown graphically in Fig. 9-25.

Mans modulation transformers are provided with primary and secondary taps, so that various turns ratios can be obtained to mod the requirements of particular tube combinations.

It may be that the exact turns ratio reguired camot the secured, ceven with a tapped modulation transformer. Small departure from the proper turns ratio will have no serious effert if the modulator is operating well within its capabilitios; if the artual turns ratio is within 10 per cent of the ideal value the system will operate satisfatorily: Where the diserepaney is larger. it is usually possible to choose a new sot of operating conditions for the Class (; stage to give a modulating impedance that

Fig. 9.25 - Transformer ratios for matehing a Cliss C modulating impedanee to the revuirad plate-tor-plate foad for the Class 13 modulator. 'The ratios given on the curves are from total primary to secondary. Resistance values are in kilohms.
can be matehed by the turns ratio of the available transformer. This maty reguire operat ing the ('lass C amplifier at higher voltage and less plate courrent, if the modulating impedance must be: increased, or at lower voltage and higher corrent if the modulating impedance must tre decreased. However, this proeres camod be carried very far without excerling the ratings of the Class (tubes for either plate voltage or plate current. even though the power input is kept at the same figure.

Suppressing Audio Harmonics

Distortion in either the driver or Class 13 modulator will cause alf. hamonios that may lie outside the frequency band needed for intelligible spech trathmission. While it is almost impossible to avoid some distortion, it is posible to cut down the amplitude of the higher-frequeney harmonics.

The purpose of rapacitors (11 and (ey across the primary and secondary, respectively, of the (lass Boutput transformer in Fig. 9 -2 2 is to reduce the strength of hamonics and unneressary highfrequency eomponents existing in the modulation. The caplatitors and with the leakage indurtanere of the transformer winding to form a rudimentary low-pass filter. The values of capacitance required will depend on the load resistame (modulating imperdance of the ("lass (C amplifior) and the leakage indurtance of the particular transformer used. In groneral, rapacitances betwern about 0.001 and $0.01 \mu \mathrm{f}$. will be required: the latger values are necessary with the lower vatues of load resistance. The voltage rating of cach mapacitor should at least be cepual to the dere voltage at the transformer winding with which it is associated. In the case of (". part of the total capacitancerequired will be supplied hy the plate by-pass or
blocking catpacitor in the modulated amplifier.
I still better arrangement is to use a low-pass filter as shown in Fig. (1-9, (יven though clipping is not deliberately employenl.

Grid Bias

Certain triodes dewigned for (latss 13 audio work can be operated without grid bias. Besides climinating the grid-bias supply, the fact that grid current flows over the whole audio ceycle means that the load resistance for the driver is more constant. With these tubes the grid-return lead from the renter-tap of the input transformer socondary is simply connected to the filament eenter-tap or cathode.

When the modulator tubes require bias, it should always the supplied from a fixed voltage sourer. Cathote bias or grid-leak bias mamot he used with a (lass 1 samplifier: with both typers the bias changes with the amplitude of the signal voltage, wherear proper operation demands that the hias voltage be nuvarying momater what the strengt hof the signal. When only a small amount of hias is required it can be obtaimed emveniently from a few dry colls. When greater values of hias are required, a heaverduty "13" batery may bo used if the grid current does not exered for or at milliamperes on voire peaks. liven though the batteries are charged be the gride corvent rather than diseharged, a hattery will deteriorate with time and its internal resistaner will increase, When the increase in internal resistame beromes apprectiable, the battory tends to act like a gridhatak rexistor and the bias varies with the applied signal. Batteries should be chededed with a voltmeter oceasiontally while the amplifier is operating. If the bias varise more than 10 per cent or so with voire exertation the battery should be replaced.

As an altermative to batteries, a regulated bias supply may be used. This type of supply is described in the power supply chapter.

Plate Supply

In addition to aderquate filtering, the voltage regulation of the plate supply should be as good as it can be made. If the dic, output voltage of the supply varies with the load current, the voltage at maximum rurrent determines the amount of power that wan be taken from the modulator without distortion, A supply whose voltage drops from loto at no load to 1200 at the full modulator blate current is a 1250 -volt supply, wo far as the modulator is conermed, and any estimate of the power output available should be based on the lower figure.
(iood dynamie regulation-i.e, with sud-donly-applied loads - is equally as important as good regulation under steady loads, since an instantameous drop in voltage on voice peaks also will limit the outpat and canse distortion. The output capacitor of the supply should have as much capacitance ate conditions permit. A value of at least 10μ f. should the used, and still largor values are desirable. It is botter to use all the atailable caparitance in a single-sertion filter
rather than to distribute it between two sections.
It is particularly important, in the case of a tetrode Class 13 stage, that the sereen-voltage power-supply source have execllent regulation, to prevent distortion. The sereen voltage should be set as exartly as possible to the recommended value for the tube. The audio impedance between screen and cathode also must be low.

Overexcitation

When a Class I3 amplifier is overdriven in an attempt to secure more than the rated power, distortion increases rapidly. The high-frequency harmonies whidh result from the distortion modulate the transmitter, producing spurious side bands which can cause serious interference over a band of frequencios several times the channel width required for speech. (This can happen even though the modulation percentage, as defined in the chapter on amplitude modutation, is less than 100 per econt, if the modulator is incapable of dolivering the audio power required to modulate the transmitter.)

As stated carlier, such a eondition may be reached by deliborate dosign, in case the modulator is to be adjusted for peak clipping. But whether it happens by aceident or intention, the whether it happens by aceidand
sulater and spurious side hands can be climinated by inserting a low-pass filter (Fig. !-9) betwern the modulator and the moduLated amplifier, and then taking "are to sere that the aretual modulation of the r.f. amplifier does not exceed 100 per cent.

Operation Without Load

Exeitation should never be appied to a Class 13 modulator until after the Class C amplitier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to absorb the power, the primary impedance of the transformer rises to a high value and expessive audio voltages are developed across it - frequently high enough to break down the transformer insulation. If the modulator is to be testod separately from the transmitter, a resistance of the stome value as the modulating imperdance, and capable of dissipating the full power output of the modulator, should be conneeted aeross the secondary.

- DRIVERS FOR CLASS-B MODULATORS

Class AB_{2} and Class B amplifiers are driven into the gridcurrent region, so power is con-
sumed in the grid circuit. The preceding stage or driver must be capable of supplying this power at the required peak audio-frectuency grid-to-grid voltage. Both of these quantities are given in the manufacturer's tube ratings. The grids of the Class 13 tubes represent a varying load resistance over the audio-frequency cyele, beause the grid current does not increase directly with the grid voltage. To prevent distortion, therefore, it is neressary to have a driving source that will maintain the wave form of the signal without distortion even though the load varies. That is, the driver stage must have good regulation. To this end, it should be capable of delivering somewhat more power than is consumed by the Class I3 grids, as previously deseribed in the discussion on sperech amplifiers.

The driver trinsformer, T or T_{2} in Fig. 9-26, may couple directly between the driver tubes and the modulator grids or may be designed to work into a low-impedance (200 - or 500 -ohm) line. In the lattor case, a tube-to-line output transformer must be used at the output of the driver stage. This type of coupling is recommended only when the driver must be at a considerable distance from the modulator: the second transformer not only introduces adlitional losses but also impairs the voltage regulation of the diver stage.

Fï, 9-20 - Triode driver eirenits for Class 13 modulators, A, resistance coupling to grids: IS, transformer coupling. R_{1} in 1 is the plate resistor for the preceding stage, value determined by the type of tube and operating conditions as kiven in 'able 9.1 . Ci and K_{2} are the coupling caparitor and grid resistor, respectively; values aloo may be taken from Table 9.I. In bonla cirenits the output transformer, (T, T_{2}) should have the proper turns ratio to equple between the driver tubes and the Class B grids. T_{1} in 13 is usually a 2 : I ranformer, secondary to primary. R, the cathode rosistur, should be calculated for the particular tuhes used. 'Ihe value of C, the cathode bypass, is determined as described in the text.

Driver Tubes

To secure good voltage regulation the internal impedance of the driver, as seen be the modulator grids, must be low. The principal component of this impedance is the plate resistance of the driver tube or tubesw reflected through the driver transformer. Hence for low driving-source impedanee the effertive plate resistance of the driver tubes should be low and the turns matio of the driver transformer, primary to serondary, should be as large as pessible. The maximum turns ratio that can be ased is that value whirh just permits developing the modulator grid-to-grid a.f. voltage required for the desired power output.
L.ow- μ triodes such as the 6 blat i have low plate resistance and are therefore good tubes to use as drivers for Class Al_{2} or ('lass 13 modulators. Tetrodes such as the 6 tif and $6 \mathrm{G}, \mathrm{f}$ make very. poor drivers in this respert when used without negative ferdback, but with such feedback the effective plate resistance can be reduced to a value (eomparable with low- μ triodes.

In seleeting a driver stage always choose (lass 1 or $A B_{1}$ operation in preference to Class AB3. This not only simplifies the spereh-amplifier design but also makes it casier to apply negative feedback to tetrodes for redurtion of plate resistance. It is possible to oldain a tube power output of approximately 25 watts from 6 I .6 s without going bevond Cliss.$\lambda 13_{1}$ operation: this is ample driving power for the popular Class 13 modulator tubes, reven when a kilowatt transmitter is to be modulated.

The rated tube output as shown bey the tube talhes should be reduced ber about 20 per cent to allow for losess in the Class 13 input transomer. If two transfomers are used, tube-to-line and line-to-grids, allow about 35 por rent for transformer losses, Another 25 per cent should be allowed, if possible, as a safety factor amd to improve the voltage regulation.

Fig. 9-26 shows representative circuits for a push-pull triode driver using cathode bias. If the amplifier operates Class A the rathode resistor need not be bypassed, becanse the a, currents from each tube flowing in the eathode resistor are out of phase and cancel cach other. However, in Class A13 operation this is not true: considerable distortion will be generated at high signal levels if the cathode resistor is not bypassed. The by-pass capacitance required can be calenlated by a simple rule: the cathode resistance in ohms multiplied by the by-pass eapacitance in microfarads should equal at least 25.000 . The voltage rating of the eaparitor sould be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the cathode resistance.

Fig. 9.27 - Negative feedback circuits for drivers for Class ${ }^{\text {B }}$ modalators, A - sinuleronded beam-tetrode driver. If I_{1} and l_{2} are a olis and wo. re-pertivety, the followink salues are sumpested:
 ohme: $C_{1}, 0,01 \mu$ f.: ($\left.\quad, 2,8\right)_{\mu}$.
B- P'ushopull beam-tetrode driver. If 1 , is atodisand 12 and I_{3}

Example: A pair of 6B4cin is to be used in ('lass A Br self-biased. lirom the tube tables, the cathode resistamee should be 780 ohms and the maximum-sigmal batt" curvat 120 that From Ohtu's Law.

$$
E=R I=780 \times 0.12=13.6 \mathrm{i} \text { volts }
$$

From the rule mentioned previonaly, the bypass raparitanet refuired is

$$
C=2,5,000 / R=2.5 .0100) / 780=32 \mu \mathrm{n} .
$$

 would he satinfactors:

Negative Feedback

Whenever tetrodes or pentodes are used as drivers for (latss 13 modulators, megative feedbark should be used in the driver stage, for the reason discussed above.
suitable circuits for single-ended and push-pull tretroles are shown in lizg. 9-27. Fig. 9-27. I shows resistance coupling between the preaeding stage and a single tertrode, such as the 6ith, that operates at the same plate voltage the the preading stage. Part of the a.f. voltage across the primary of the output transformer is fed back to the grid of the tetrode, I_{2}, through the phate resistor of the preceding tube, V_{1}. The total resistance of R_{4} and R_{5} in series should be ten or more times the rated load resistance of Fo. Instead of the voltage divider. a tap on the transfomer pinary can be used to supply the fred-back voltage, if such a tap is available.
The amount of feed-hatek voltage that appears: at the grid of tube V_{2} is determined by R_{1}, R_{2} and the plate resistance of V_{1}, as well as by the rela-
tionship between R_{4} and R_{5}. Circuit values for a typical tube combination are given in detail in Fig. 9-27.
The push-pull circuit in Fig. 9-27B requires an audio transformer with a split secondary. The feed-back voltage is obtained from the plate of earh output tube by means of the voltage divider, R_{1}, R_{2}. The blocking capacitor, C_{1}, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$: the reactance of this capacitor should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequency to be amplified. Also, the sum of R_{1} and R_{2} should be high (ten times or more) (ompared with the rated load resistance for V_{2} and V_{3}.

In this circuit the feed-back voltage that is developelt acposs R_{2} appears at the grid of V_{2} (or V_{3}) through the transformer secondary and prid-cathode eircuit of the tube, provided the tubes are not driven to grid current. The per cent feodback is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feod-batels pereentage, and R_{1} and Reate connected as shown in the diagram. The higher the feed-back percentage, the lower the affertive plate resistance. However, if the percontage is made too high the preceding tube, V_{1}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonic distortion. Distortion in V_{1} is not compensated for by the feed-back circuit.

If V_{2} and V_{3} are 6 L is operated self-biased in Class Al3 with a load resistance of 9000 ohms, V_{1} is a ($\mathrm{j}_{1} 5$, and T_{1} has a turns ratio of 2 -to- 1 ,
total secondary to primary, it is possible to use over 30 per cent feedback without going beyond the output-voltage capabilities of the 6 J 5 . Twenty per cent feedback will reduce the effective plate resistance to the point where the output voltage regulation is better than that of 6B4Gs or 2A3s without feed-back.

If the grid-cathode impedance of the tubes is relatively low, as it is when grid current flows, the feed-back voltage derreases because of the voltage drop through the transformer secondary. The circuit should not be used with tubes that are operated Class AB_{2}.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEEDBACK

A circuit for a speech amplifier suitable for driving a Class 13 modulator is given in lig. 9-28. In this amplifier the 6L6s are operated Class $\triangle 13_{1}$ and will deliver up to 20 watts to the grids of the Class 13 amplifier. The feed-back eircuit requires no adjustment, but does require an interstage transformer with two separate secondary windings (split secondary),

Any convenient chassis layout may be used for the amplifier provided the principles outlined in the section on speech-amplifier construction are observed. The over-all gain is ample for a com-munications-t ype crystal microphone.

The output transformer, T_{2}, should be selected to work between a 9000 -ohm plate-to-plate load and the grids of whatever Class B tubes will be used. The power-supply requirements for this amplifier are 145 ma . at 360 volts and 2.7 amp . at 6.3 volts.

Fig. 9-28 - Circuit diagram of speerh amplifier using 61 6s with negative feedlaeh, suitable for Iriving Class if modulators up to $\mathbf{3 0 0}$ watts output.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{\mathrm{s}}-20-\mu \mathrm{f}$. 25-vilt electrolytic.
(:2, Co, (in - 0. $1 \cdot \mu \mathrm{f}$, (0)-volt paper.

$h_{1}-2.2$ meqohms, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{~K}_{7}-1,000$ ohma, 1 首 watt.
R_{3} - $1 . \overline{5}$ megohms, 1 自 watt.
R_{4} - 0.20 nucolam, 1\% watt.
$\mathrm{R}_{5}, \mathrm{R}_{\mathrm{x}}-4 \overline{7}, 0101 \mathrm{ohms}$, $1 / 2$ watt.
$\mathrm{K}_{6}-1$-megohm volume control.

Rg - 0.15 mekolm, $1 / 2$ watt.
$R_{10}-1.3(0)$ ohms, 1 watt.
$1 R_{11}$ - 10,000 ohm:-, ${ }^{1} \underline{2}$ watt.
$K_{12}, K_{13}-0.1$ mequhm, 1 watt.
$\mathbf{R}_{14}, \mathbf{R}_{15}-22,(000$ ohms, $1 / 2$ watt.
$\mathrm{k}_{16}-250$ ohms. 10 watts.
$\mathbf{R}_{17}-2000$ ohms, 10 watts.
' 1 ' - Interstaze audio with onlit secondary winding (such as 'l'hordarson 'l"20:25).
T_{2} - Class $\$ 3$ input transformer to suit modulator tubes.

Class B Modulator with Filter

Representative Class 13 modulator ronstruction is illustrated by the unit shown in Figs ! !-2!! and 9-31. This modulator includes a splattor

Fig. 9.29 - A typical Class 1 imodulator arrangement. This unit uses a pair of $81 /$ Is, rapable of an andiop power output of 310 wats, and ineluden a aplather filear. Tha modulation transformer is at the lefo and the splatter choke at the right. Ill high-voltage terminals are coo. cred so thes canoot he dourhed aceidantalls.
filter, $\mathrm{r}_{1} \mathrm{C}_{2} L_{4}$ in the eireluit diagram. lig. 9-30, and also has provision for shortocircuiting the modulation transfomer serondary when e.w. is to bre userd.
Ther aldion input trameformer is not built into this unit. it bring assumed that this trameformer will be induled in the driver assombly as is customary. If the modulator and sperefi amplifier-

Fig. 9-30- (:̈rcouit diakram of the (itan 13 modulator. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{I}_{6}-$ Sefe text. (L_{1} is Chingo Tramaformer tybe SK-301.)
K_{1} - D.jp.dit. refay, high-solage insulation (AName type (0)0).
U-0-500 d.c. milliammeter, hakelite case.
'I' - Variahlo-ratio mendulation Iransformer (Chieagn Transformer tyme (:V|-1).
' ${ }_{2}$ - Vilament iransformer, 1,3 v.. 8 amp. l_{1} - 6.3 -valt pilet light.
X_{1}, X_{2} - Chasisis-1 ? pe Ilisevelt plugs, male. X_{3} - (hassis-type 115-volt receptache, female. S_{1} - S.p.s.t. toggle.
driver are mometel in the same ratek or cethinet, the length of leads from the driver to the moxalator grids presents no padalem. Tha liser required by the modulator tuhes at the ir higher pates voltage ratings should be fend through the eronter tap on the secombary of the driver tratsionmer. It a phate woltage of mon or lose mothies is nereted and the menter-tap rommert ion on the transionmer rall be gromudnd.

The values of $\mathrm{r}_{1}, \mathrm{C}_{2}$ and L_{1} deperend on the modulating imperdane of the (lass (P.f. amplifier. They ram be detarmined from the formulas givern in this chapter in the seretion on high-lever
 dffective regardtess of whether the modulator operating comblions are wheson to give highthevel relippinge, but it is worth while to derign the system for clipping at loo per cent modulation if the fulde ruves are avaitable for that pargese. The voltage rat inge for (1 : athd ('2 should at leatst equal the die. voltage applied to the modulated r.f. :mplifier.

A relay with high-voltage insulation (arthally an antomat relay) is used to short-rimenit the

Fig. 9.31 - The filament transformer is monnted brelow the chasein. 'The relas is uared as described in the tevt. Ci and C_{2} arr monted on small stamberf insulaters on the chatssis wall.
secondary of T_{1} when the relay enil is not anergizad. A nommally-rlosed contatet is usod for this purpose. The other arm is used to rlose the pimary circuit of the modulator mate suppla when the reday is comerized. shorting the transformer serondary is neresesary when the r.l. amplifier is keved, to prevent an indurtive dischatge from the tratsformer winding that would put "tails" on the keved chararteres and. with cathote keying of the amplifior. Would camen exomsive sparking at the key eontares. The control cireuit should he arranged in such :t waty that K_{1} is not anergized duringew. operation but is ancrgized by the send-recoive switch during phone operation.
('aretul attention shouk the patid to insulation since the instantatheors voltages in the serondary. cirenit of the transomer will be at least twiere the d.r. voltage on the r.f. amplifier. Standeoff insulators are used in this unit wherever neressary, including the mounting for the delay.

Checking Amplifier Operation

An adequate job of cherking sprech amplifiers can be done with equipment that is neither elaborate nor expensive. A typical setup is shown in Fig, 9-32. The construction of a simple audio oseillator is deseribel in the chapter on measurements. The atudio-frequeney voltmeter ran be wither a vacuum-tube voltmeter or a multirange volt-ohm-milliammeter that has a reetilier-type a.r. range. The headset is included for atural cherking of the amplifier performance.

An audio oscillator usually will have ath outpat control, but if the maximam output voltage is in cexcess of a wolt or so the output setting may be rather eritioal when a high-gain spereh amplifier is being tested. In such cases an attemuator surh as is shown in Fig. !?-32 is a convenience. Bach of the two volage dividers reduers the voltage by a factor of roughly 10 to 1 , so that the over-all attomation is about 100 to 1 . The redatively low value of resistance, R_{4}, across the input terminals of the amplifier also will minimize stray hum piekup on the comerting leads.

As a prodiminary cherk, cover the mierophone imput terminals with a metal shicld (with the atudio oscillator and attanuator discommertad) and, while listering in the headset, note the hum lavel with the amplifier gain control in the off ponition. The hum shouk be very low under these combitions. Then inerease the gain-ent wol setting to maximum and observe the hum; it will no doubt increases. Next eomere the atheo osillator and altonuator and, starting from minimum signal, increase the adio imput voltage until the voltmeter indieates full power output. (The voltage should aphat $\sqrt{P R}$, where I ' is the experted power output in watts and R is the load resistance - $R_{\text {; in }}$ the diagram.) While inereasing the input, listen carefully to the tome to see if there is any change in its whamacter. When it begins to sound like a musical oetave instead of a single tone, distortion is begiming. Assuming that the tone? is substantially without audible distortion at full output, substitute the mierophone for the audio uscillator and surak into it at moderate level while watehing the voltmeter. Reduce the gain-eontrol setting until the motor "kicks" morirly up to the

Fig. 9.32-Simple test setup for choreking a speech amplifier. It is not neessary that the freguency range of the andion wisillator the continuonsly , ariable; one or more "spot frequencies" will be watisfartory. Suitable resistor values are: R_{1} and $R_{\text {a }} 10.000$ ohans: R_{2} and R_{4}, 1000 ohams: $R_{\text {fie }}$ rated load resistance for amplifier ontput stage: R_{5}, determine by triad for comfortable hadphone le vel (25 to 100 ohms, ordinarily); tise two or more resistors in paratlel as at safely precation, ita high-resistance ace voltmeter.
full-power reading on voice peaks. Note the hum level, as read on the voltmeter, at this point; the hum level should not exceed one or two per cent of the voltage at full output.

If the hum leved is too high, the amplifier stage that is causing the trouble can be located by temporarily short-cireuiting the grid of eath tube to ground, starting with the output amplifier. When shorting a particular grid makes a marked dererease in hum, the hum presumalbly is coming from a precerling stage, although it is possible that it is getting its start in that partioular grid rircuit. If shorting a grid does not decrease the hum, the hum is originating either in the plate circuit of that tube or the grid cirruit of the next. Aside from wiring errors, a defective tube, or

Fig. 9.3.3-Test setup using the oscilloseope to check for distortion. "ihase connertions will result in the type of pattern shown in liy. 9.3I, the horizontal sweep being prosided liy the andio input nimal. For wave form patterna, onit the connection letween the adudio oseillator and the horizontal amplifier in the scope, and use the Morizontal linear sweep.
indedequte plate-supply filtering, objectionable hum usually originates in the first stage of the amplifior.

If distortion oecurs below the point at which the experted power output is secured, the stage in which it is oceurring can be located by working from the last stage toward the front end of the amplifior, applying a signal to each grid in turn from the audio oseillator and adjusting the signal voltage for maximum output. In the case of push-pull stages, the signal mayy be applied to the primary of the interstage transformer - after diseonnecting it from the plate-voltage source. Assuning that normal design principles have beon followed and that all stages are theoretically working within their capabilities, the probable causes of distortion are wiring errors (such is acridental short-circuit of a cathode resistor), (lefective components, or use of wrong values of resistance in cathode and plate circuits.

Using the Oscilloscope

Spech-amplifier cherking is facilitated eonsiderably if an oscilloseope of the type having amplifiers and a linear sweep circuit is available. I trpical setup for using the oscilloseope is shown in Fig. (!-3:3. With the connertions shown, the swepp circuit is not required but horizontal and vertical amplifiers are neerssary. Audio voltage from the oscillator is
fed directly to one oscilloscope amplifier (horizontal in this case) and the output of the speech amplifier is connected to the other. The scone amplifier gains should be adjusted so that each signal gives the same line length with the other signal shut off.

Under these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. 9-34, making an angle of about 45 degrees with the horizontal and vertical axes. If there is no distortion but there is phase shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendency of the ellipse to grow into a circle. When there is evenharmonic distortion in the amplifier one end of the line or ellipse beromes curved, as shown in the second row in Fig. 9-34. With odd-harmonic distortion such as is characteristio of overdriven push-pull stages, the line or ellipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a fairly good sine wave. They will tend to become complieated if the input wave form is complex and the spereh amplitier introduces appreciable phase shifts. It is therefore advisable to test for distortion with an input sigmal that is as nearly as possible a sine wave. Also, it is hest to use a frequency in the 500-1000 cycle range, since improper phase shift in the amplifier is usually least in this region. Phase shift in itself is not of great importance in an audio amplifier of ordinary design because it does not change the character of speech so far as the ear is concerned. However, if a complex signal is used for testing, phase shift may make it difficult to detect distortion in the oseilloscope pattern.

In amplifiers having negative feedbark, excessive phase shift within the feed-bark loop may cause self-oscillation, sinee the signal fed back may arrive at the grid in phase with the applied signal voltage instead of out of phase with it. Such a phase shift is most likely to be associated with the output transformer. Oseillation usually oceurs at some frequency above 10,000 eycles, although orcasionally it will occur at a very low frequence. If the pass band in the stage in which the phase shift oceurs is delitherately restricted to the optimum voice range, as deseribod earlier, the gain at both very high and very low frequencies will be so low that self-oseillation is unlikely, even with large amounts of feedtatck.

Generally spoaking, it is easier to detect small amounts of distortion with the type of pattern shown in Fig. 9-3t than it is with the wave-form pattern obtained by feeding the output signal to the vertical plates and making use of the linear swerp in the seore. However, the wavoform pattem can be used satisfactorily if the signal from the audio oscillator is a reasonably good sine wave. One simple method is to examine the output of the oscillator alone and trace the pattern on a sheet of transparent paper. The pattern

Fig. 9.3. - 'lypinal patterns shtained with the eonmere tions shown in ligy, 9-33. Wepending on the nomber of stages in the amplitier, the pattern may slope onward to the right, as shown, or upward to the left. Also, depending on where the distortion originates, the curvature in the second row may appear either at the top or bottom of the line or ellipse.
given by the output of the amplifier can then be compared with the "standard" pattern be adjusting the oncilloscope gain to make the two patterns coincide as closely as possible. The pattern discrepancies are a measure of the distortion.

In using the oscilloseope care must be taken to avoid introducing hum voltages that will upset the measurements. Hum piekup on the seope leads or ot her exposed parts such as the amplifior load resistor or the voltmeter can be detected by shutting off the audio oseillator and sperech amplifier and connecting first one and then the other to the vertical plates of the seope, setting the internal horizontal sweep to an appropriate width. The trace should be a straight horizontal line when the vertical gain control is set at the position used in the aetual measurements. Waviness in the line indicates hum. If the hum is not in the scope itself (cherek by discomnerting the leads at the instrument) make sure that there is a good ground connertion on all the equipment and, if necessary, shield the hot leads.

The oseilloseope can be used to good advantage in stage-by-stage testing to check wave forms at the grid and plate of each stage and thus to determine rapidly where a source of trouble may be lorated. When the soope is romered to cirenits that are not at gromed potential for d.e., a cat pacitor of about $0.1 \mu \mathrm{f}$. should be connected in series with the hot oscilloscope lead. The probe lead should be shielded so that it will not piek up hum.

Amplitude Modulation

The type of modulation most commonly employed in amateur radiotelephony is called amplitude modulation (a.m.). The name arises from the fart that the methods of generating a modulated wave of a particular type all acomplish the desired result by varying the instantaneous amplitude of the r.f. output of the transmitter.

As deseribed in the ehatper on circuit fundatmentats, the process of modulation sets up groups of frequencios cabled side bands, which appoar symmetrically above and below the frequeney of the ummodulated signal or carrier. If the instantaneons values of all these froquencies are added together, the result is a modulation envelope which follows the amplitude variations of the audio-frequency signal that is theing used to modulate the wave.

To produce this result it is not neeressary that the component radio frequencies - carrier and side frequencios - vary in amplitude at the modulation rate. For example, a carrier modulated by a 1000 -rycle tone will consist of three components - the lower side fregueney, the carrier, and the upper side frequency - all of which are perfectly constant in amplitude when received on a system having enough selectivity to respond to earh component separately while exchuding the remaining two. When received by a sustem that responds equally well to all three simultaneousl!, the output of the demodulator does vary at the modulation rate, 1000 ceycles in the example above. This is because the detector responds to the modulation envelope, when the band width is sufficient to pass all side bands along with the carrier, since the detector itself is an amplitude-operated deviex.

As a matter of fact, in amplitude modulation the carrier amplitude always is constant with or without modulation. The side frequencies likewise will be constant in amplitude if the modulation is a steady tome, even though the tone may be one consisting of a fundamental and series of harmonics. When the modulation is rapidly varring in wave form, as in the transmission of speceh, the side frequencies will vary in distribution and amplitude.

The existence of the side bands along with the carrier ran easily be demonstrated experimentally. It is perhaps easior to get an insight of the true nature of an a.m. signal by considering its modulation envelope to be the resultant of the instantaneous values of the carrier and sidebands than it is to attempt to visuabize side bands as hring generated by the proesss of varying the r.f. envelope amplitude, although the latter is actually the method used for modulation.

A.M. Side Bands and Channel Width

As described in the chapter on fundamentals, combining or mixing two frequencies in an ap-
propriate circuit gives rise to sum and difference freguencios. Speech can be electrically reproduced with high intelligibility, in a band of frequencies lying between approximately 100 and 3000 cyeles. When these frepuencies are combined with is radio-frequency carrier, the side bands occupy the frequency spectrum from ahout 3000 "ackes below the carrier frequency to 3000 cycles above - a total band or "channel" of about 6 kilocycles. Actual speech frequencies extend up to 10,000 eycles or so, so it is possible to occupy a 20 -ke. chammel if no provision is made for reducing its width. For communication purposes such a channel width represents a waste of valwable spectrum space, since a 6 -kc. channel is fully adequate for intelligibility. Occupying more than the minimum channel creates unneeessary interference, so speech equipment and transmitter adjustment and operation should be pointed toward maintaining the channel width at the minimum.

THE MODULATION ENVELOPE

In Fig. 10-1, the drawing at A shows the unmodulated r.f. signal, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent either voltage or current.

In I3, the signal is assumed to be modulated by the audio-frequeney shown in the small drawing above. This frequency is much lower than the carrier frequency, a necessary condition for good modulation, and always the case in radiotelephony because the audio frequencies used are very low compared with the radio frequency of the carrier. When the modulating voltage is "positive" (above its axis) the envelope amplitude is increased above its unmodudated amplitude; when the modulating voltage is "negative" the envelope amplitude is decreased. Thus the signal grows larger and smaller with the polarity and amplitude of the modulating voltage.

The drawings at C shows what happens with stronger modulation. The envelope amplitude is doubled at the instant the modulating voltage reaches its positive peak. On the negative peak of the modulating voltage the envelope amplitude just reaches zero; in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detected in a rereiver, the detector output follows the modulation envelope. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in Fig. 10-1C would produce considerably more useful audio output than the one shown at B.

The "depth" of the modulation is expressed as a perentage of the unmodulated carrier amplitude. In cither B or C, Fig. 10-1, X represents the ummodulated carrier amplitude, Y is the maximum envelope amplitude on the modukation up-peak, and Z is the minimum envelope amplitude on the modulation downpeak.

In a properly-oprating modulation system the modulation envelope is an accurate reproduetion of the modulating wave, as can be seen in Fig. 10-1 at B and C by comparing one side

Fig. 10.I - Graphical representation of (A) r.f. outpont unmodulated, (B) modulated 50%, (C) modulaterd 100%. The modutation envelope is shown by the thin outline on the modulated wave.
of the outline with the shape of the modulating wave. (The lower outline duplicates the upper, but simply appears upside down in the drawing.)

The percentage of modulation is
$\%$ Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation), or
$\%$ Mod. $=\frac{X-Z}{X} \times 100$ (downward modulation)
If the wave shape of the modulation is such that its peak positive and negative amplitudes are equal, then the modulation percentage will be the same both up and down. If the two percentages differ, the larger of the two is customarily specified.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 correspond to current or voltage, so the drawings may be taken to represent instantaneous values of cither. The power in the wave varies as the square of either the current or voltage, so at the peak of the modulation up-swing the instantaneous power in the envelope of Fig. 10-1C' is four times the unmodulated carrier powor (becanse the current and voltage both are doubled). At the peak of the down-swing the power is zero,
since the amplitude is zero. These statements are true of 100 per cent modulation no matter what the wave form of the modulation. The instantaneous envelope power in the modulated signal is proportional to the square of its envelope at every instant. This fact is highly important in the operation of every method of amplitude modulation.

It is convenient, and customary, to describe the operation of modulation systems in terms of sine-wave modulation. Although this wave shape is seldom actually used in practice (voice wave shapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common basis. With sine-wave modulation the average power in the modulated signal over any number of full cyeles of the modulation frequency is found to be $1 / 2$ times the power in the unmodulated carrier. In other words, the power output increases 50 per cent with 100 per cent modulation by a sine wave.

This relationship is very usuful in the design of modulation systems and modulators, becuse any such system that is capable of increasing the average power output by 50 per cent with sinewave modulation automatically fulfills the reguirement that the instantaneons power at the modulation up-patk be four times the carrier power. Consequently, systems in which the additional power is supplied from outside the modulated r.f. stage (e.g., plate modulation) usually aro designed on a sine-wave basis a mater of convenience. Modulation sestems in which the additional power is secured from the modulated r.f. amplifier (e.g., grid modulation) usually are more conveniently designed on the basis of peak envelope power rather than average power.

The extra power that is contained in a modulated signal goos entirely into the side bands, half in the upper side hand and half in the lower. As a numerical example, full modulation of a $100-$ watt carrier by a sine wave will add 50 watts of side-band power, 25 in the lower and 25 in the upper side band. Supplying this additional power for the side bands is the oliject of all of the various systems devised for amplitude modulation.

No such simple relationship exists with complex wave forms. Complex wave forms such as speech do not, as a rule, contain as much average power as a sine wave. Ordinary specch wave forms have about half as much average power as a sine wave, for the same poak amplitude in both wave forms. For the same modulation percentage in both cases, the side-band power with ordinary speerh will average only about half the power with sine-watve modulation, since it is the peak amplitude, not the average power, that determines the percentage of modulation.

Unsymmetrical Modulation

In an ordinary electric circuit it is possible to increase the amplitude of current flow indefinitely, up to the limit of the power-handling capability of the components, but it cannot very well be decreased to less than zero. The same

Fig. 10.2-Modulation by an masmmetriea wave form. This drawing shows 100% downward modulation along with 30) \% upward modulation. There is no distortion, since the modulation envelope is an acerurate reproduction of the wave form of the modulating voltage.
thing is true of the amplitude of an r.f. signal; it can be modulated apuard to any desired extent, but it cannot be mordulated downward more than 100 per cent.

When the modulating wave form is unsymmetrical it is possible for the upward and downward modulation percentages to be different. A simple case is shown in Fig. 10-2. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward morlulation is just 100 per cent $(Z=0)$ the prak upward modulation is 300 per cent ($Y=4.)^{\prime}$). The carrier amplitude is represented by X, as in Fig. $10-1$. The modulation envelope reproduces the wave form of the modulating signal accurately, hence there is no distortion. In such a modulated signal the increase in power output with modulation is considerably greater than when the modulation is symmetrical and has to be limited to 100 per cent both up and down. However, the peak envelope amplitude, Y, is four times the carrier amplitude, X, so the peak power is 16 times the carrier power. When the upward modulation is more than 100 per cent the peak power capaeity of the modulating system ohviously must be incorased sufficiently to take care of the much larger peak amplitudes.

Overmodulation

If the amplitude of the modulation on the downward swing becomes too great, there will be a period of time during which the output is entirely cut off. This is shown in Fig. 10-3. The shape of the downward half of the modulating wave is no longer accurately reproduced by the modulation envelope, consequently the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulation envelope causes new frequencies to be generated (harmonics of the modulating frequency, which combine with the carrier to form new
side frequencies correspondingly spaced from the carrier froquency) that widen the ehannel oceupied by the modulated sigmal. These spurious frequencies are commonly called "splatter."

It is important to realize that the channel occupied by an amplitude-modulated signal is dependent on the shape of the modulation enurlope. If this wave shape is complex and can be resolved into a wide band of audio frequencies, then the channel occupied will be correspondingly large. The modulation-envelope wave shape shown in Fig. 10-3 will contain a large number of harmonies of the original sine-wave frequency of the modulating wave because of the sharp corners in the wave shape when it is "elipped" at the zero axis. However, if the original modulating wave had had this same shape the channel oceupied by the modulating signal would be exartly the same. Basieally, it is not the fact that the signal cannot be modulated more than 100 per cent downward that causes splater, but the fart that any distorted modulation envelope contains higher frequencies than were present in the original modulating wave. A wave that is efficiently elipped, as is the case in Fig. 10-3, will contain a wider range of spurious frequencies than one in which there are no highly abrupt changes in amplitude.

Fig. 10-3 - An overmodulated signal. The modulation envelope is not an arcurate reproduction of the wave form of the modnlating voltage. This or any type of distortion occurring during the modulation process generates spurious side bands of "splatter."

Because of this clipping action at the zero axis, it is important that care be taken to prevent applying too large a modulating signal in the downward direction. Overmodulation results in more splatter than is caused by most other types of distortion in a phone transmitter.

GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated tranmitter there are a few general requirements that must be met no matter what partieular method of modulation may be used. Failare to meet these requirements is abcompanied by distortion of the modulation envelope. This in turn increases the channel width as compared with that required by the legitimate frequencies contained in the original modulating wave.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequenty must be entirely unaffected by modubation. If the application of modulation causes al change in the earrier frequener, the frequener will wobble back and forth with the monulation. This couses distortion and widens the chamel taken by the sigmat. Thus unneressaty interterence is caused to other transmissions.

In practice, this undesirable froguency modulation is prevented bey appling the modulation to an r.f. amplifier stage that is isolated from the frequene \boldsymbol{v}-eontrolling oseillator buy a buffer amplifier. Implitude modulation applied directly to an oscilator always is acompanied by frequency modalation. Inder existing Fe'rergulations amplitude modulation of ath oweilator is permitted only on frequenties above 14 Mc Me. Below that frequency the regulations require that an anplitude-modulated tramsmitter be completely free from freguency modulation.

Linearity

At least up to the limit of 100 per cent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. 10-4 is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneons modulation amp'itude. The modulation swings the r.f. :mplitude bark and forth along the curve A, as the modulating voltage alternately swings positive and negative. Assuming that the nogative poak of the modulating wave is just suflicient to redure the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the pusitive direction $(+1)$

Fig. $10 \cdot 1$ - The mudulation eharacteristic show, the relationship between the instantancous envelope amplitude of the r.f. output current (or voltage) and the instantaneons amplitule of the modulating voltage. The ideal characteristic is a straight line, as shown ly. curve A.
should catuse the rif. amplitude to reach twice its ummodulated value. The ideal is a straight line, as shown by curve 1 . such a modulation characteristic is perfectly linear.

A nonlinear charateristic is shown by eurve B. The r.f. amplitude does not reach twiee the unmodulated rarrier amplitude when the modulating voltage reaches its positive peak. I modulation characterist is of this type gives a modulation envelope that is, "flattened" on the uppeak; in other words, the modulation enwelope is not an exact reproduction of the modulating wave. It is therefore distorted and harmonics are generated, cansing the transmitted signal to werope a wider chanmel than is meressary. I nombinear modulation rhatarteristic can casily result when a tramsmitter is mot properly designed or is misadjusted.

The modulation capability of the trallsmitter is the maximum perentage of molulation that is possible without objertionable distortion from nonlinearits: The maximum capability can never exeed 100 per erent on the down-prak, but it is possible for it to be higher on the up-peak. The modulation (apability should be as close to 100 per cent as posible, so that the most effertive signal can be transmitted.

Plate Power Supply

The d.e. power supply for the plate or plates of the modulated amplifier should be well filtered; if it is not, phatr-supply ripple will modubate the carrior and cause amosing hum. The ripple voltage shouk not be more than about I per ernit of the d.e. output voltage.

In amplitude modalation the plate current varies at an adodo-frequency rate: in other words, an alternating current is superimposed on the d.e. plate current. The output filter capacitor in the plate supply must have low reactance, at the lowest andio frequeney in the modulation, if the transmitter is to modulate equally well at all atudio frequencies. The eaparitance required drpends on the ratio of d.e. plate curvent to plate voltage in the modulated amplifier. The requirements will be met satistartorily if the caparitance of the output capacitor is at least equabl to

$$
C=25 \frac{I}{E}
$$

where $C^{\prime}=$ Capacitance of output capabitor in $\mu \mathrm{f}$.
$I=$ I.c. plate current of modulated amplifier in milliamperes
$l:=$ Plate voltage of modulated amplifier
Wexample: A modulated amplifier oprerates at $1: 200$ volts and 275 tha. 'The capacitance of the outpot capacitor in

$$
C=20 \frac{I}{E}=25 \times \frac{275}{12,0}=25 \times 0.22=5,5 \mu \mathrm{f}
$$

Modulation Systems

An amplitude-modulated signal can be gemerated by a variety of methods, the only pres-ently-used ones being those in whieh a modulat-
ing voltage is applied to one or more tube elements in an r.f. amplifier. The proper object of all methods is to generate an r.f. signal having a modulation envelope which reproduces the wave form of the modulating voltage with as little distortion as possible.

The methods described in this chapter are the basic ones. There are many specialized variations, usually involving some form of grid modulation
with the object of increasing the rather low plate efficiency that is an inherent characteristic of grid modulation. Such systems, when they actually achieve substantially distortionless modulation, are rather complicated circuitwise, are difficult to adjust and are not well adapted to rapid frequency change. They have so far had little or no lasting application in amateur communication.

Amplitude Modulation Methods

PLATE MODULATION

The most popular system of amplitude modulation is plate modulation. It is the simplest to apply, gives the highest efficiency in the modulated amplifier, and is the easiest to adjust for proper operation.

Fig. 10-5 shows the most widely-used system of plate modulation, in this case with a triode r.f. tube. A balaneed (push-pull Class A, Class AB or (lass 13) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power generated by the modulator is combined with the d.c. power in the modulated-amplifier plate circuit by transfer through the coupling transformer, T. For 100 per cent modulation the audio-frequency power output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twice the d.c. operating plate voltage, thus eausing corresponding variations in the amplitude of the r.f. output.

Fig. 10-5 - Plate modulation of a Class C r.f. amplifier. The r.f. plate be-pass rapacitor, C., in the amplifier stage should have reasonably high reactance at andio frequencies. A value of the order of $0.001 \mu \mathrm{f}$. to $0.005 \mu \mathrm{f}$. is satisfactory in practically all cases. (Nee chapter on modulators.)

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
Z_{\mathrm{m}}=\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000 \mathrm{ohms}
$$

where $E_{\mathrm{b}}=$ D.c. plate voltage

$$
I_{\mathrm{p}}=\text { D.c. plate current (ma.) }
$$

E_{b} and I_{p} are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the instantaneous plate voltage (the r.f. output voltage must be proportional to the plate voltage) for the modulation to be linear. This will be the case when the amplifier operates under Class C conditions. The linearity depends upon having sufficient grid excitation and proper bias, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class C operation are described in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.c. plate voltage used, and the grid excitation should be great enough so that the amplifier's plate efficiency will stay constant when the plate voltage is varied over the range from zero to twice the unmodulated value. For best linearity, the grid bias should be obtained partly from a fixed source of about the eut-off value, and then supplemented by grid-leak bias to supply the remainder of the required operating bias.

The maximum permissible d.c. plate power input for 100 per cent modulation is twice the sine-wave audio-frequency power output availathle from the modulator. This input is obtained by varying the loading on the amplifier (keeping its tank circuit tuned to resonance) until the
protuct of d.e. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correct output-transformer turns ratio. This point is considered in detail in the chapter on modulator design.

Nentmalization, when triodes are used, should be as neary perlect as possible, sime regemeat tion may cause nombearity: The amplifier also must be completely free from parasitio oseillations.

Athough the total power input (d.c. plus andio-fregurney a.e.) inereases with modulation, the d.e. plate current of a plate-modulated amplifier should not change when the stage is modulated. This is beeause each inerease in plate voltage and phate current is bataneod by an equivalent deerease in voltage and curront on the next half-ercle of the modulating wave. D.c. instruments camot follow the a f. variations, and simer the average d.c. plate current and plate voltange of a properly-operated amplifier do not change, neither do the moter readings. A change in plate eurrent with modulation indicates nonlinarit:. On the other hand, a thermooouple r.f. ammeter connceted in the antenna or transmission line will show an increase in r.f. current with modulation, because instruments of this trpe respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Siereen-grid tubes of the pentode or beamtetrode type eam he used as ('lass C plate-modulated amplifiers bey applying the modulation to looth the plate and sereeng grid. 'lhe usual methed of ferding the sorengrid with the nerersals d.e. and modulation voltage is shown in lig. (0)-6. The dropping resistor, R, should be of the proper value to apply nomal d.e. voltage to the sermen under steady carrior conditions. Its value ram be ealeulated by taking the differene betwern plate and serern voltages and dividing it be the rated sereen eurrent.

Fig. 10 -6 - Plate and srreen modulation of a Class C r.f. amplifier using a screvngrid tule. 'The plate r.f. ly-pass capacitor. Cis shombl have reasenably hixh reactance at all audiu fremurncirs: a value of 0.001 to

When the modalated amplifier is a liomen tetrove the suppressor embertion -hown in this diakram may be ixmored. If a bate terminal is provided on the tube for the heam.forming plates, it should be connereded as recomunended by the manufacturer.

The modulating imperdance is found by dividing the d.e. plate voltage be the sum of the plate and sered euments. The plate voltage multiplied be the sum of the two currents gives the power input to be used as the basis for determining the andio power required from the modulator.

Fig. 10.7- Plate modulation of a beam tetrode, using an andio impedance in the serecto circuit. The value of L_{1} is disensend int the terst, see Fig. Io.b for data on leypass caparitors © 6 and Ci.

Modulation of the sereen along with the phate is neressary berause the sereen voltage has a mueh greater effeet on the pate current tham the plate voltage does. The modulation chatact eristio is monlinear if the plate alone is mondabated. However, beam tetrodes can be modulated satisfacterily ber applying the monlulating power to the plato "irevit atome, provided the sereen is "flowting" at audio fregurmes - that is, comereded to its d.e supply through an audio imperdance. Under these ronditions the sereen beromes self-motulating, beremse of the variations in serem curmont that orear when the plate cument is varied. The circuit is shown in Fig. 10-7. The choke eoil L_{1} is the andio imperdaner in the sereen rerenit; its inductaner should he large emough to have a reactane (at the lowest desired andio fregueners) that is mot less that the imperdane of the sereern. The latter rath be taken to be approximately rgual to the dee. serren voltage divided bey the dre. serwen wement.

Choke-Coupled Modulator

The choke-roupled Class 1 modulator is shown in Fig. 10-8. Buratuse of the relatively low power output and plate officionery of a (latse A amplifior, this mothod is sedtom usid exerep for at fow speritit applications. The sudio power output of the modulator is combined with the dec. power in the plate cibruit, just as in the case of the transiormer-eoupled modulator. However, there is comsiderably less freodom in adjustment, sinero no transformer is awalable for matehing impedaneres.
The modulating impedane of the r.f. amplifier must be adjusted to the value of load impedanere required bev the particular modulator tube used, and the power input to the ref. stage should not exered twier the rated al.f. power output of the modulator. A complieation is the faet that the plate voltare on the modulator must be higher

Fig. 0.8 - Choke emompled Class 4 modulator. 'The cathode resietor, R2, should hatse the wormal value for operation of the mondalator tule as at (Sass a power amplifier. 'the amodulation rhoke. If, aliould twe $\overline{3}$ hemes: or mores. I valur of 0.001 to 0.010 a $\mu \mathrm{f}$, is matiafactory at C2. the r.f. amplifier plate by-pass eapacitor. See text for diseusmian of C_{i} and K_{1}.
than the plate voltage on the r.f. amplifier, for 100 per cent modulation. This is because the a.f. voltage developed by the morlulator camont swing to zero without a great deal of distortion. R_{1} provides the neeessiary d.e. voltage drop between the modulator and r.f. amplifier, but its value canoot be calculated without using the published plate family of curves for the modulator tube used. The d.e. voltage drop through R_{1} must cofual the minimum instantancous plate voltage on the modulator tube under normal operating conditions. C_{1}, an audio-frequeney bypass across R_{1}, should have a capacitance such that its reactance at 100 cycles is not more than about onetenth the resistance of R_{1}. Without $R_{1} C_{1}$ the pereentage of modulation is limited to 70 to 80 per cent in the average case.

- GRID MODULATION

The prineipal disadvantage of plate modulation is that a considerable amount of audio power is required. This requirement can be avoided by applying the modulation to a gridelement in the modulated amplifier. However, the convenience and economy of the low-power modulator must be paid for, since no modulation system gives something for nothing. The increased power output that accompanies modulation is paid for, in the case of grid modulation, by a reduction in the carrier power output obtamable from a given ref. amplifier tube, and by more rigorous operating requirements and more complicated adjustment.
The term "grid modulation" as used here applies to all types - control grid, screen, or suppressor - since the operating principles are ex-
actly the same no matter which grid is actually modulated. With grid modulation the plate voltage is constant, and the increase in power output with modulation is ohtained by making both the plate current and plate efficiency vary with the modulating signal as shown in Fig. 10-9. For 100 per eent modulation, both plate current and efliciency must, at the peak of the modulation up-swing, be twice their carrier values. Thus at the modulation-envelope prak the power input is doubled, and since the plate offie ieney also is doubled at the same instant the peak envelope output power will be four times the carrier power. The efficiency obtainable at the envolope peak dopends on how carefully the modulated amplifier is adjusted, and sometimes can be as high as 80 per cent. It is generally less when the amplifier is adjusted for good linearity, and under average conditions a round figure of $2 / 3$, or 66 per cent, is representative. The efficieney without modulation is only half the peak efficieney, or about 33 per cent. Thus the carrier output is about onefourth the power obtainable from the same tube in e.w. operation, and about one-third the carrier output obtainable from the tube with plate modulation.

The modulator is required to furnish only the audio power dissipated in the modulated grid under the oprerating eonditions chosen, A speech amplifier capable of delivering 3 to 10 watts is usually sufficient.

Gencrally speaking, grid modulation does not give as limear a molulation characteristic as plate modulation, even under optimum operating conditions. When misadjusted the nonlinearity may be severe, resulting in bad distortion and splatter. However, with careful adjustment it is capable of quite satisfactory results.

relative mooulating voltage
Fig. /0.9 - la a perfert qrid-modulated amplifier both Hate current and pate eflicientry would vary with the in. stantanoous modulating voltage as shown. When this is so the mombation characteriztic is as wiven by eurve 1 in Fig. 10.1, and the peak envelope output power is four times the ummodulated carrier power. 'The variations in plate current with modulation. indieated above, do not rexister on a d.c. meter, so the plate meter shows un change when the signal is modulated.

Plate-Circuit Operating Conditions

The d.c. plate power input to the modulated amplifier, assuming a round figure of $1 / 3$ (33 per cent) for the plate efficiencr, should not exeeed $11 / 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. It is gencrally best to use the maximum plate voltage pernitted by the manufacturer's ratings, beeause the optimum operating conditions are more easily achieved with high plate voltage and the liucarity also is improved.

Example: Two tubes having plate dissipation ratings of 55 watts each are to be used with grid modulation.
The maximutn permissible power input, at 33% efficieney, is
$P=1.5 \times(2 \times 55)=1.5 \times 110=165$ watts The maximum recommended plate voltage for these tubes is 1500 volts. Using this figure, the average plate current for the two tubes will the

$$
I=\frac{P}{E}=\frac{165}{1500}=0.11 \mathrm{amp} .=110 \mathrm{ma}
$$

At 33% efficiency, the carrier output to be experted is 5ij watts.
The plate-voltage/plate-current ratio at twice carrier plate current is

$$
\frac{1.500}{220}=6.8
$$

The tank-eircuit $L /$ (ratio should be chosen on the basis of twice the average or earrier plate earrent. If the L / C ratio is based on the phate voltage plate surrent ratio under earrier conditions the (e may be too low for good coupling to the output cirenit.

Control-Grid Modulation

Control-grid modulation may be used with any type of ref. amplifier tule. A trpical triode cirenit is given in Fig. 10-10. The same cireuit ean be used with sereen-grid tubes merely hy supplying the nomal value of sereen voltage be any convenient means; however, the edreen should be hypassed for audio ($1 \mu \mathrm{f}$. or more) ats well as radio frequmenies. The audio sigmal is inserted, he means of transformer T, in series with the grid-bias lead. In a push-pull amplifier the transformer is eonnected in the common bias lead.

In control-grid modulation the d.e. grid bias is the same as in normal Class C amplifier service, but the r.f. grid excitation is somewhat smaller. The audio voltage superimposed on the d.c. bias changes the instantaneous grid bias at an audio rate, thus varying the oprating conditions in the prid eireuit and controlling the output and efficience of the amplifier.

The change in instantaneous bias voltage with modulation ealuses the rectified gride current of the amplifier to vary, which places a variable hoad on the modulator. To reduce distortion, resistor $/$ in Fig. 10-10 is connected in the output circuit of the modulator as a constant load, so that the over-all load variations will be minimized. This resistor should be equal to or somowhat higher than the load into which the modulator tule is rated to work at normal audio output. It is also recommended that the modulator circuit incorporate as much negrative ferellark as

Fig. 10.10-Control-grid modulation of a Class Camplifier. The r.f. arid by-pass capacitor, C, should hase

possible, as a further aid in reducing the internal resistance of the modulator and thus improving the "regulation" - that is, reducing the effect of load variations on the audio output voltage. The turns ratio of transformer T should be about I to 1 in most cases.

The load on the r.f. driving stage also varios with modulation. This in turn will caluse the excitation voltage to vary and may eause the modulation characteristio to be nonlincar. To overeome it, the driver should be eapable of two or three times the r.f. power output actually required to drive the amplifier. The exeess power may be dissipated in a dumny load (such as an incandesent lamp of appropriate power rating) that then performs the same function in the r.f. cireuit that resistor R does in the audio circuit.

The de bias souree in this system should have low internal resistance. Batteries or a voltageregulated supply are suitable. Grid-leak bias should not be used.

Adjustment

A control-arid modulated amplifier should be aljusted with the aid of an oscilloseope connected as shown in Fig. 10-11. A tone source for modulating the transmitter is a convenience, since a steady tone will give a steady pattern on the oscilloscope. A stealy pattern is easior to study than one that flickers with voice modulation.
llaving determined the permissible carrier phate current ats previously described, appler r.f. excitation and plate voltage and, without modulation, adjust the plate loading to give the required plate current (keeping the plate tank (ireuit tuned to resonance). Next, apply modulation and increase the modulating voltage until the modulation characteristic shows curvature (sce later section in this chapter for use of the oseillosente). If eurvature oreurs well below 100 per cent modulation, the plate efficioney is too

Fig. 10.11-ITsing the oscilloscope for adjustment of a arid-modulated amplifier. The eonnections shown are for krid-bias modulation. With sereen or suppressor modulation the comection to the horizontal platex of the seope slomid be tahen from the grid beine modulated: the r.f. piek-up arrangement remains unehanked.
L and C should tune to the oproting frequeney, and may be compled to the transmitter tanh circuit through a twisted pair or coax, using single-turn links at cach end. 'lhe $0.01-\mu$ f. blorking saparitor that couples the atulios voltage to the horizontal plates of the osilloserope shomblave a voltager rating repal to at leat twiee the d.e. voltage on the grid that is being modulated.
former, as shown in Fig. 10-12, In an ideal beam tetroale the plate current and output should be completely ent off with zero serem voltage, but in pratrtical tubes it is necessary to drive the sereen somewhat negative with respect to the eathode to get com-pletereut-off. For this reasom the prak modulating voltage required for 100 per cent modulation is usually 10 per erent or so greater than the d.e. sereen voltage. The latter, in turn, is approximately half the rated screen voltage under maximum ratings for c.w. operation.
The atudio power required is approximately one-fourth the d.e. power input to the sereen under c.w. operation, but varies somewhat with the operating conditions. I reediving-type audio power amplifier will suffiee as the modulator for most transmitting

fix. 10-13 - A typical sereen voltage-current curve of a bram tutrode adjusted for optimum conditions for screeen modulation.
tubes. Because the relationship between sereen voltage and soreen current is not linear (a typical curve giving this relationship is shown in Fig. 10-1:3) the load on the modulator varies over the audio-frequenes cerele, and it is therefore highly advis able to use nogative ferdhack in the modulator circuit. If exeess adudio power is available, it is also advisable to load the modulator with a resistance corresponding to R in lig. 10-10. the value of R being adjusted to dissipate the excess power. C'nfortunately, there is no simple way to determine the proper resistance exept experimentally, be observing its affect on the modulation envelope with the aid of an owilloseope.

On the assumption that the modulator will be fully loaded by the sereen plus the additional load resistor \dot{R}, the turns ratio required in the

Fig. 10.12 - Screen-grid modulation of theam tetrole. Capasitor (: is an r.f. by -pase caparitor and should have high reactance at andin frepuencios, i valae of $0,1102 \mu \mathrm{f}$, is satisfactory. The prill leak ran have the same value that is ned for cow, operation of the tule.
eoupling transformer may be caleulated as follows:

$$
N=\frac{E_{1}}{2.5 \sqrt{1 / R_{\mathrm{L}}}}
$$

where N is the turns ratio, secondary to primary; E_{4} is the rated sereen voltage for cew. operation; I 'is the rated audio pewer output of the modulator: and P_{i} is the rated load resistanco for the morlulator.
The best mothod of allonstment is to usi an oscilloscope (the comnertions of Fig, 10-11 maty be used, except that the audio swerp voltage is taken from the serven instead of the pontrol grid) and adjust plate loading, gride excitation, and modulating voltage for the greatest output compatible with good linearity at 100 per ecent modulation. The amplifier should be loaded hoavily and the grid current should be kept down to the point where a further reduction derereases the r.f. output. Under proper operating conditions the plate-current dip as the amplifier plate cirenit is tuned through resonane will be little more that just discornible.

In an alternative adjustment method not requiring an oscilloscope the r.f. :mplifier is first tuned up for maximum output without modulation and the rated d.e sereron voltage (from a fixed-voltage supply) for c.w. oneration applied. Use heare loading and roduce the grid excitation until the output just starts to fall off, at which point the resonance dips in plate current should be small. Note the plate current and, if possible, the r.f. antenna or feeder eurrent, and then reduce the d.e. sereen voltage until the plate curment is one-half its previous value. The r.f. output current should also be one-half its previous value at this soreen voltage. The amplifier is then ready for modulation, and the modulating voltage maty be increased until the plate current just starts io shift upward, which indicates that the amplifier is modulated 100 per eent. With voriere modulation the plate current should remain steady, or show just an oceasiona! small upward kiek on intermittent peaks.
It is desirable to operate with the grid current as low as possible, since this reduces the sereen current and thas reduces the amount of powor required from the mondalator. With proper adjust ment the linearite is good up to about 90 per cent modulation. When the sereen is driven negattive for 100 per cent modulation there is a kink in the modalation chametoristic at the zorovoltage peint. This introduers a small amount of envelope distortion. The kink can be removed and the over-all linearity improved by applying : small amount of modulating voltare to the conttrol grid simultamenosly with sereen modulation, but this requires adjustment with the ascilloseope.

"Clamp-Tube" Modulation

A method of sereen-grid modutation that is conveniont in tramsmitters provided with a sereen protective tube ("clamp" tube) is shown in Fig. 10-14. Basiowlly, the idea is that an audio-frequency signal is applied to the grid of the elamp tule, which then becomes a modulator. The
simplicity of the cirenit is somewhat decoptive, since it is considerably more difficult from a dexign standyoint than the transformer-coupled arrangement of Fig. 10-12.

For proper modulation the elamp tube must be oprerated as a triode (class A amplifier, and it will the recognized that the mothod is essentially identical with the choke-eouplod (lass A phate mondulator of Fig. 10-S with a resistanere, Re, substituter for the choke. Re in the usual case is the sereen dropping resistor normally used for cew. opera-

Fiz. IO-H-Serven mudalation by a "elamp" tube. The grid leak is the mornal value for e.w. operation and

 for diass A opreation of the modulater tube, but cannot the calrulated unless trionde curves for the tube are availalile.
tion. Its value should be at least two or three times the lowe resistance required bre the ('lass A modulator tube for optimum adio-frequencey output. Vafortunately, relatively litte information is avaiballe on the triode operation of the tubers most freduently used for serenempotective purposes.

Like the choke-coupled modulator, the (lamp)tube modulater is incapable of molulating the r.f. stage 100 per cent unless the drupping resistor, R_{1}, and audio bypass, ('1, are ineorponated in the cireuit. The samedesigu considerations hold, with the addition of the fare that the serem must be driven negative, not just to zoro voltage, for 100 per eent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to 40 per eont higher than the sereen that it modulates. Proper design requires knowledge of the screen characteristies of the r.f. amplifior and a set of plate-voltage plate-current curver on the modulator tube as a triode.

Adjustment with this system, once the design voltages have been determined, is carried out in the same way us with transommer-eoupled sereen modulation, proferably with the oscilloseope, Without the oseilloseope, the amplifier may frost be adjusted for c.w. operation as described carlier, but with the modulator tube removed from its
sacket. The modulator is then replaced, and the cathode resistance, R_{3}, adjusted to reduce the amplifier plate current to one-half its c.w. value. The amplifier plate curront should remain eonstant with modulation, or show just a small upward flicker on oceasional voice peaks.

Controlled Carrier

As explaned earlier, a limit is plated on the output obtainable from a grid-modulation system be the low r.f. amplifier plate efficiency (approximately 33 per eont) under ummodulated carrior

Fig. 10.15 - Circouit for rarriar contral with sereen monlabation. A small triome surlt as the wo dian be used as the control amplifier and at ofot is suitalla as a carrierecontral taloe. T_{1} is an interstage andio transformor having a l-torl or larker tarns ratio. K_{4} is a 0.in-megolim velume control and also serverian the grid resimior for the modulator. A permanium erystal may the used as the rectifier. Other valure are dincussed in the text.
conditions. The plate efficioney incrases with modulation, since the output increases while the d.c. input remains constant, and reaches a maximum in the weighborhood of 50 per cent with 100 prer rent sine-wave modulation. If the power input to the amplifier can be reduced during periods when there is little or no modulation, thus rertueing the plate loss, advantage ran be taken of the higher effirioney at full modulation to obtain highere efecetive out put. This can be done be varying the power input to the modulated stage in areordance with average variations in voice intonsity, in such a way as to maintain just sufficiont carrier power to keep the motulation high, but not excerding 100 per eent, under all ronditions. Thus the carrier amplitude is controlled 1 , the voice intensity. I'roperly utilized. controlled carricr permits incrasing the effective carrier output at maximum level to a value equal to the rated plate dissipation of the tube, or twise the output obtanable with constant carrier.

It is desirable to control the power input just emough so that the plate loss, without mondulation, is satedy below the tube rating, lxeressive control is disadvantageons because the receivers a.v.c. system must continually follow the variat tions in average signal level. The circuit of Fig. 10-15 permits adjustment of both the maximum
and minimum power input, and although somewhat more complicated than some circuits that have been used is actually simpler to operate becanse it separates the functions of modulation and carrier eontrol. A portion of the audio woltage at the modulator grid is applied to a ('lass A "control amplifier" which drives a rectifier circuit to produed a de.e. voltage negative with respere to ground. ('t filters out the audio variations, lawing a d.e. voltage proportional to the average voice level. This voltage is applied to the grid of a "clamp" tube to control the d.e sereen voltage and thus the r.f. carrier level. Maximum output is olbtaned when the carrier-eontrol tube grid is driven to cut-off, the voier level at which this occurs being determined by the setting of R_{4}. Minimum input is set to the desired level (usually about equal to the plate dissipation rating of the modulated stage) ber adjusting R_{2}. Ra may be the normat seremedromping resistor for the modulated beam tetrote, but in case a separate sereen supply is used it ned ho just large enough to give sufficient voltage drop to reduce the no-modulation power input to the desired value.
($1 h_{1}$ should hatre a time eonstant of about 0.1
 larger. Further details may be lound in (oST for April, 1951, page 6.4 . An oscilloseope is required for proper adjustment.

Suppressor Modulation

Pentode-type tube do mot, in general, modulate well when the modulating voltage is applied to the sereen grid. However, a satisfactory modulation characteristice can be obtained by applying the modulation to the suppressor grid. The circuit arrangement for suppresor-grid modulation of as pentonde tube is shown in Fig. 10-16,

The method of adjustment closely resembles that used with sereron-grid modulation. If an oscilloseope is not available, the amplifier is first atlonsted for optimum e.w. output with gero bias on tha suppresor grid. Negative bias is then appliod to the suppressor and inereased in value until the plate courcot and ref. output current drop to half their original values. When this combition has been reached the amplifier is ready for morlulation.

Fig. $10-16$ - Suppresor-mrid modulation of an r.f. amplifier using a pentode-type tuhe, 'The suppresore prid r.f. by-pass caparitor, fi, should be the same as the brid by-fase capacitor in control-grid modulation.

Since the suppressor is always negatively biased, the modulator is not required to furnish any power and a voltage amplifier ean be used. The suppressor hias will vary with the type of pentode and the operating eonditions, but usually will he of the order of $-\mathbf{1 0 0}$ volts. The peak a.f. voltage required from the modulator is equal to the suppressor hias.

- CATHODE MODULATION

Circuit

The fundamental cirenit for cathode modulation is shown in Fig. 10-17. It is a combination of the plate and grid methods, and permits a carrier efficiency midway between the two, 'lhe audio power is introdued in the cathode eireuit, and both grid bias and plate voltage are modulated.

Fip, 10-17 - Circuit arrangement for cathode modulation of a Class (: r.f. amplifier. \alues of hy-pase capacitors in the r.f. eircuits should be the same as for other modulation methools.

Because part of the modulation is by the control-grid mothod, the plate afficiency of the modulated amplifier must vary during modulation. The carrior efficieney therofore must be lower than the efficiencer at the modulation peak. The required reduction in effieience depends upon the proportion of grid modulation to plate modulation; the higher the pererntage of plate modulation, the highor the permissible carrior efliciency, and vioe versa, The audio power required from the modnator also varies with the pereentage of plate modulation, being greater as this pereentage is inereased.

The way in which the various quantities vary is illustrated be the curves of Fig. 10-18. In these curves the performanee of the cath-ode-modulated r.f. amplifior is plotted in terms of the tube ratings for plate-modulated tolephony, with the pereontage of plate modulation as a base. As the percentage of plate modulation is decreased, it is assumed that the grid modulation is

Fig, 10-18 - Cathode-modulation performance curves, in terms of percentage of plate modulation plotted against pereentage of Class C telephony tube ratings. $W_{\text {in }}$ - I, e, plate input watts in terms of percentage of plate-modulation rating.
$W_{o}-$ Carrier output watts in per cent of plate-modulation rating (hased on plate efficieney of $7 . .5 \%$).
$W_{n}-$ Audio power in per rent of dic, watts input. $\mathbf{N}_{\mathrm{D}}-I l_{\text {ate }}$ efliciency of the amplifier in pererntage.
inereased to make the over-all modulation reach 100 per cent. The limiting condition, 100 per cont plate modulation and no grid modulation, is at the right (A); pure grid modulation is represented by the left-hand ordinate (B and C).

Example: Assume that the r.f. tube to be used has a 100% plate-modulation rating of 250 watts input and will give a carrier power output of 190 watts at that input. ('athode molulation with 40)/e plate modulation is to be used. From Fig. 10-18, the carrier eflieiency will be 56% with 40% plate modulation, the promissible d.e. input will be (an'\% of the platemodalation rating, and the r.f, outjut will be 48% of the phate-modulation rating. That is,
l'ower input $=250 \times 0.0 .5=162,5$ watts
Power output $=100 \times 0.48=91.2$ watts
The required audio power, from the chart, is equal to 20° of the d.e. input to the modnlated amplifier. Therefore

Audio power $=162.5 \times 0.2=32.5$ watts
The modulator should sumpla small amount of extra power to take eare of losses in the grid cirenit. These should not exeeed four or fire watts.

Modulating Impedance

The modulating imperdane of a eathodemodulated amplifier is approximately equal to

$$
m \frac{L_{\mathrm{b}}}{I_{\mathrm{b}}}
$$

where $m=$ Pereentage of plate modulation (expressed as a decimal)

$$
\begin{aligned}
E_{\mathrm{b}} & =\text { D.e. plate voltage on modulated } \\
I_{\mathrm{b}} & =\text { D.e. plate current of modulated } \\
& \text { amplifier }
\end{aligned}
$$

Example: Assume that the modulated amplifiner in the example abow is to operate at a plate potential of 1225 volts. Then the d.c, plate current is

$$
I=\frac{P}{E}=\frac{162.5}{12.50}=0.13 \mathrm{amb}(130 \mathrm{ma.})
$$

The modulating impedance is

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}=0.4 \frac{12.50}{0.13}=3846 \mathrm{ohms}
$$

The modulating impedance is the load into which the modulator must work, just as in the case of pure plate modubation. This load must be matehed to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer, as described in the chapter on speech equipment.

Conditions for Linearity

R.f. excitation requirements for the cathodemontulated amplifier are midway between those for plate modulation and control-grid modulation. More excitation is required as the pereentage of plate modulation is increased. Grid biats should be considerably beyond cut-off; fixed bias from a supply having good voltage regulation is profored, especially when the prrentage of plate modulation is small and the amplifier is operating more natuly like a grid-bias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in rectified grid current is smaller. The grid lack should be bypassed for autio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap on the modulation-tratsionmer secomdars.

The cathode eirenit of the modulated stage
must be independent of other stages in the transmitter. When directly-heated tubes are modulated their filaments must be supplied from a separate transformer. The filament by-pass capacitors should not be larger than about 0.002 $\mu \mathrm{f}$, to avoid bypassing the audio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procelure is similar to that for grid-bias modulation. The critieal adjustments are antenna loading, grid bias, and excitation. The proportion of grid-bias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an oseilloseope connected in the same way as for grid-bias modulation. With proper antenna loading and excitation, the normal wedge-shaped pattern will be obtained at 100 per cent modulation. As in the case of grid-bias modulation. too-light antenna loarling will cause flattening of the upward praks of modulation as also will too-high excitation. The cathode current will be practically constant with or without modulation when the proper operating eonditions have been established.

Checking A.M. Phone Operation

USING THE OSCILLOSCOPE

Proper adjustment of a phone transmitter is aided immeasurally by the oscilloseope. The soope will give more information, more arobrately, than almost any collection of other instruments that might be named. Furthermore, an oscilloscope that is entirely satisfactory for the parpose is mot necessatrily an expensive instrument; the cathode-ray tule and its power supply are about all that are needed. Amplifiers and linear sweep circuits are be mo mens necessary.

In the simplest scope cirenit, radio-frequeney voltage from the modulated amplifior is applied direetly to the vertical deflection plates of the tube, and audio-frequency voltage from the morlulator is applied to the horizontal deffection plates. As the instantameous amplitude of the audio signal varies, the r.f. output of the transmittor likewise varies, and this produces a wodgeshapert pattern or trapezoid on the screen. If the oscilloseope has a built-in horizontal sweep, the r.f. voltare is applied to the vertical plates as before (never through an amplifier) and the swerp will produce a pattern that follows the modulation envelope of the transmitter output, provided the swerp frequency is lower than the modulation frequener. This produces a waveenvelope modulation pattern.

The Wave-Envelope Pattern

The connections for the wave-envelope pattern are shown in Fig. 10-19A. The verticat deflection
plates are coupled to the amplifier tank eoil (or an antenna (oil) through a twisted-pair line and piek-up eoil. As shown in the alternative drawing, a resonant circuit tuned to the operating frequeney may be connected to the vertical plates, using link coupling between it and the transmitter. This will eliminate r.f. harmonies, and the tuning eontrol provides a convenient means for adjustment of the pattern height.

The position of the pick-up coil should be varied until an unmodulated carrier pattern, Fig. 10-2013, of suitable height is ohtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than hall the diameter of the screen. When voice modulation is applied, a rapidly-changing pattern of varving height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone, the wave is being modulated 100 per cent. This is illustrated by. Fig. 10-20D, where the point I represents the horizontal sweep line (reference line) alone, $Y Z$ is the carrier height, and $P^{\prime}()$ is the maximum height of the modulated wave.

If the height is greater than the distance P ? , as illustrated in E, the wave is overmodulated in the upward direction. Overmondalation in the downward direction is indicated by a gap in the pattern at the reference axis, where a singlo bright line appears on the sereen. Overmodulation in either direction may take phace even when the modulation in the other direction is less than 100 per cent.

Fiz. 10.19 - Methods of comerting the nseilloscope for modulation cheching. A - combertivns for wave-enve. lope pattern with any modulation method; B - connertinns for traperzoidal pattern with plate mondalation. see lig. 10 - 11 for serope connections for trapezoidal pattern with grid modulation.

The Trapezoidal Pattern

Connections for the trapezoid or wedge pattern as used for cheeking plate modulation are shown in Fig. 10-1913. The vertical plates of the e.r. tube are couphed to the transmitter tank through a pick-up loop, preforably using a tuned cireuit, as shown in the upper drawing, adjustable to the operating frequency, Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, $R_{1} R_{2}$. This voltage should be adjustable so a suitable pattern width can be obtained; a 0.2 -5-megohm volume control can be used at R_{2} for this purpose, with c.r. tubes up to the 3 -inch size.

The rowistance roduired at R_{1} will depend on the d.c. plate voltage on the modulated amplifier. The total resistance of R_{1} and R_{2} in weries should be about 0.25 megohm for ach 100 volts of d.e. phate voltage. For example, if the modulated amplifier operates at 1500 volts, the total resistance should be 3.7.5 merohms, 0.25 mogohm at R_{2} and the remainder, 3.5 megohns, in $R_{1} . R_{1}$ should be composed of individual resistors not larger than 0.5 megohm each, in which case 1-watt resistors will be satisfactory.

For grod low-frequency coupling the capacitanee, in microfarads, of the blocking capacitor, C, should at least equal $0.004 / R$, where R is the total resistance ($R_{1}+R_{2}$) in megohms. In the exanple above, where R is 3.75 mogohms, the eapacitance should be at least $0.004 / 3.75=0.001$
μ., approximately. The voltage rating of the capacitor should be at least twice the die, voltage applied to the modulated amplifier. The caparitance can be made up of two or more similar units in series, so long as the total capacitance is equal to that required, in case a single unit of sufficient voltage rating is not available. Two or more units may be used in parallel if raparitors having adequate voltage rating but insufficiont caparitance arre available.

The corresponding seope combertions for grid modulation were given in Pig. 10-11. This cirenit will he satisfactory for chocking sereen-grid modulation (the atudio connertion of course being made to the woreen grid rather than to the control grid) for d.c. sereen voltages up to 200 volts or so, which will include most heam tedrodes. If the de, screen voltage, adjusted for proper modulation, exceeds 200 volts a voltage divider similar to that shown in lig. 10-19 should be used, the values being caleulated as described above using the sereen voltage instead of the plate voltage.

Trapozoidal patterns for various conditions of modulation are shown in Fig. 10-20 at F to. J, each alongside the correwonding waverenvelope pattern. With to signal, only the cathode-

(C)

(H)

100\% MODULATION

(1)
100% MODULATION
(E)

(J)

Fig. 10-20 - Waveenvelope and traperoidal patterns representing different conditions of modulation.
ray spot appears on the sereen. When the unmodulated carrier is applied, a vortiond line appears; the length of the line should be adjusted, by means of the piek-up eoil coupling, to at eonvernent values. When the arrier is modulated, the wedge-shaped pattern appears: the higher the modulation pereentage, the wider and more pointed the wedge beeomes. At 100 per erent modulation it just makes a point on tho axis, X, at one end, and the height, I' $($, at the othere end is eqpath to twice the carrier heright, YZ, Overmodulation in the upward direction is indicated by inereased height over $/$ ' ($)$, and in the downward dirootion by an extension along the axis X at the pointed end.

Checking Transmitter Performance

The traperondal pattern is far more useful than the wave-envelope jattern for chereking the operittion of a phone tratnsmitter. The latter type of pattern is of use primeipally for cheoring modulation perecontage, and even when the spereh system is fed with a sine-wave tone tor clowe examination of the pattern it is ditlieult to tell with sufficient areuracy whether the tratsmitter is operating linearly. Also, cron when distortion is avident in the waverenveloper pattern there is no clue as to whether it is occurring in the modubated amplifier or is eaused by a defore in the sporeh equipment.

On the other hand, the traperondal pattom is motally a graph of the modulation chatacterist io of the motulated amplitior. 'Thr' जloning sidos of the werge show the rif. amplitude for every value of instantaneous morlulating voltages, exactly the type of curve plotted in Figg. 10-1. If theses sides are proffoctly straight lines, as drawn in Fig. 10-20 at 11 and I, the modulataon chamateristio is linear. If the sides show curvature, the chatacteristic is monlinear to an extent that is shown by the degree to which the sides depart from perteet straighthesis. This is true regarlless of the wave form of the molulating voltage.

If the spereh system cath be driven by a good audio sine-wave signal lustead of a mieroplome. the trapezoidal pat tern also will show the presence of even-harmonic distortion (the most rommon type, especially when the modulator is overlonderl) in the sueced anplifier or modulator. If there is nor distortion in thr audlo sostemin, the trapezoid will extend horizontally equal distances on each side of the vertimal line representing the unmodulated earrior. If there is even-harmonic distortion the trapratid will extend farther to one side of the ummondulated-carrior position than to the other. This is shown in Fig. 10-21. The probable cause is inadoquate power output from the modulator, or incorreet load on the modulator.

An audio oseillator having reasomably good sine-wave output is highly desimble for testing both sperech equipment and the phone transmitter as a whole. A very simple audio oscillator such as is shown in the chapter on measurements is quite adequate. With such an osoillator and the seope, the pattern is steady and can be studied coser) to determine the effects of various operat ing adjustmonts.

The patterns shown in Figs. 10-21 and the top four groups of Fig. 10-22 show both correct and incorrext iramsmitter adjustmonts. The object of modulated-amplifior adjustment is to obtain a pattorn closery resembling that in Fig. 10-22A, Which shows excellent linearity (sides of wedge pattern quite straight) over the whole characteristic at 100 per cent modulation. Since no modulated amplifier is perfert, the sides will never be perferlly straight, but a close approatch is possible. Different methods of morlulation give different characteristic results. Iיig. 10-22A is typical of correctly-operated plate modulation. With control-grid modulation the sides usually are somewhat concave, particularly near the point of the trapezoid, while soreen modulation gives the characteristic pattorn shown in IFig. 10-21. As mentioned earlier, it is neeessary to drive the sereen somewhat nogative in order to reach complete plate-current cut-off and thus modulate 100 per cent downward.

Aside from overmodulation downward, Fig.

Fis. 10.21 - Top - a typical trapezoidal pattern obtained with screen modulation adjusted for optimum conditions. The sudden change in slope near the point of the wedge oceurs when the sereen voltage passes thromgh zero. Center - If there is no audio distortion, the unmodulated carrier will have the height and position shown by the white line superimposed on the siuewave modulation pattern. Botom - Even-harmonic distortion in the audio system, when the audio signal applied to the speerh amplifier is a sine wave, is indi. cated by the fact that the modulation pattern does not extend equal distances either side of the unmodulated earrier.

A
Proproly-operatal phone transmitter modulated 100 per cent.

13

Ormmodulation of a trans. mither hastink litsh moshala(iont stubability. Dietortion ae-rur- conls int the down-peaks.

C.

Amalimeariay in modudated
 ly insufliciont extataon of a plate-modulated amplitior or osorexitation of a grialhisas modulaterd amplifier. Aht amplifier modulates linearls in the downward dirertion but the tor-prathe are liattrined.

D)

Obermoulalation and monlimear onpration (inmultiridont mumblation rapability). 'lhere patherns are similar bo thase dierectly atoose but with the momblation arrited begond How per cent in the downward direction.

E

Overmondatation and parasitie oseillations in the modnlated amplifier. Tlie trapezondal pattern abor slows phase distortion rabsed by incorrevt compling betweron the onvilhoserpe and andio systen.

F

Left - Phase disturtion ranamed by ineoreret rompling letween andio setem and
 ple patterill dateed by isteorrent selling of sarillosacolve tillie-hatat control. In brith cater the wase is modulated INO fer cemt.

Fig. 10-22- TYIPICAI, OSCII, OACOPE PATVERNS
These photographs show varions conditions of modntation as dianlayed by the wedge or trapezodal patterns in the Ieft-hand colams, and the wave-envelone patterns in the right -hand eolumn.
(I'hotographs reprotuced through courtesy of the Illen B. Dullont Laboratoriex, Inc., I'assaic, N. J.)

10-22B, which is casily cured by kerping the speech amplifier gain or speech intensity below the point that causes it, the most common type of improper operation is shown by the pattern of Fig. 10-22('. The flattening at the large end of the trapezoid results from the inabilite of the modulated amplifier to deliver sulficient power output on the moxluation up-peak. With plate modulation the most likely canse is insufficiont grid oxemtation or incorrert grid bise or booh. With grid modulation this flattening is the result of attempting to operate the amplifier at too-high carrier aflicience. In this ease the remedy is to increase the loading on the output cireuit and reduce the grid excitation, or both in comsination, until the pattern sides are straight.
In this connection, it should be noted that while the trapezoidal pattern of ligg, 10-22(: shows nonlinearity in the modulated amplifier, the corresonding wave-enveloper pattern of the same figure eould result either from this cause or from modulator overkading. With the traperoidal pattern, modulator overloading will be evident be the fact that the position of the vertical line representing the ummodalated earrier will not he at the conter of the pattern (when the modulating voltage is (rut off); however, modulator overloading will not affert the shape of the traproid. This assumes that the audio signal is a sine wave.

Outward curvature near the point of the trapezoild, causing it to approach the horizontal axis more slowly than would orcur with straight sides, indicates that the output power does not deerease rapidly cough in this region. It may be caused by r.f. leakige from the exciter through the final stake. This can be cherked by removing the voltage from the modulated stage, when the carrier should disappear, leaving only the beam spot remaining on the soroot ($1 \cdot \mathrm{ig}$. 10-20) F°. If a smatl vertical line remains, the amplifer should the carefully mentralized; if this does not eliminate the line, it is an indication that the seope is getting r.f. from lower-power stages, either by "oupling through the final tank or via the pick-up boop.

Faulty Patterns

Figs, 10-20, 10-21, and 10-22A through I) show what is mormally to be expereted in the way of pattern shapes when the oscilloscope is used to check modulation. If the actual patterns differ considerably from those shown, it may be that the pattern is faulty rather than the transmitter.
It is important that r.f. from the morlulated stage only be eoupled to the oscilloseope, and then only to the vertical plates. The effeet of stray r.f. from other stages in the transmitter has been mentioned in the preceding section. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oscilloscope camot be moved to a position where the unwanted piek-up disappears, a small by-pass eapacitor ($10 \mu \mu \mathrm{f}$.) should be conneded acrosis the horizontal plates as close to the cathode-ray tube as possible. An r.f.
choke (2.5 mh. or smaller) may also be connected in series with the ungrounded horizontal plate.
"Folded" trapezoidal patterns, and patterns in which the sides of the trapezoid are elliptical instead of straight, l"ig. 10-22F (left), occur when the audiosweep voltage is taken from some point in the andiosystem other than that where the af. power is applied to the modulated stage. such patterns are eatused bey a phase difforence between the swerp voltage and the modulating voltage. The connections should ahwiys be as shown in lig. 10-11 and 10-1913.

MODULATION CHECKING WITH THE PLATE METER

The plate milliammeter of the modulated amplifier provides a simple and fairly reliable means for checking the performance of a phone transmitter, although it does not give nearly as tefinite information as the oscilloseope does. If the modulated amplifier is perfectly linear, its phate current will not change when modulation is applied if

1) the upward morlulation percentage does not exced the modulation capability of the amplifier,
2) the downwarl modulation does not exceed 100 per cent, and
3) there is no change in the d.c. operating voltages on the transmitter when modulation is applied.

The plate current should be eonstant, ideally, with any of the methots of modulation discussed in this chapter, with the single exception of the eontrolled-abrier system. The plate meter cannot give a reliable check on the performance of the latter system because the plate current increases with the intensity of morlulation. With this system the plate-current variations should the correlated with the trinsmitter performance as observed on an oscilloseope, if the plate meter is to be used for chereking modulation.

Plate Modulation

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. amplifier.
2) Insufficient grid bias on the modulated stige.
3) The r.f. amplifier is not loaded properly to present the reguired value of modulating impedance to the modulator.
4) Insufficient output capacitance in the filter of the molulated-amplifier plate supply.
5) D.c. input to the r.f. amplifier, under carrier conditions, is in excess of the manufacturer's ratings for plate modulation. Alternatively, the filament emission of the amplifier tubes may be low.
6) In plate-and-screen modulation of tetrodes or pentodes, the screen is not being sufficiently modulated along with the plate. In systems in which the d.c. screen voltage is
ohtained through a dropping resistor, a downward dip in plate current may oecur if the sereen by-pass caparitance is large mough to hypass audio frequencies
7) Poor voltage regulation of the modudatedamplifier plate supply. This may be cansed by voltage drop in the supply itself, when the modulated amplifier and a Class B amplifier are operated from the same supply, or may be eaused by voltage drop it the primary supply from the power line when the modulator load is thrown on. It is readily. checked by measuring the voltage with and without modnlation. Poor line regulation will be shown by a drop in filament voltage with modulation.
Any of the following may fanse an upward shift in plate current:
8) Overmodulation (exeessive audia) power, audio gatin too high).
9) Incomplete neutralization of the modulated amplifier.
10) Parasitic oscillation in the modulated amplifier.

Grid Modulation

With any type of grid molulation, ally of the following maty cause a downward shift in motulatertamplifier plate current:

1) Too much r.f. excitation.
2) Insufficient grid bias, particularly with control-mrid modulation. (irid hias is usually. not eritical with sereen and suppressor modulation, the value of grid leak recommended for e.w. operation boing satisfactory:
3) With eontrol-grid modulation, exerssive resistance in the bias supply.
4) Insufficient output capacitance in phatesupply filter.
5) Plate efficieney too high under carrier ennditions; amplifier is not loaded heavily enough.
Because grid modulation is not perfectly linear (always less so than phate modulation) a propertyoperating amplifier will show a small upward plate-current shift with modulation, 10 per cont or less with sine-wave nodulation and amomeng to an oecasional upward flieker with voice. An upward plate current shift in excess of this may be eaused bug
6) Overmodulation (exeressive modulating voltage).
7) Regeneration (incomplete neutralization).
8) With eontrol-grid or suppressor modulation, bias too great.
9) With screen modulation, d.c. sereen voltage too low.
In grid-modulation systems the modulator is not necessarily operating linarly if the plate eurrent stays constant with or without modulattion. It is readily possible to arrive at a set of operating conditions in which flattening of the up-peaks is just balaneed by overmodulation downward, resulting in practically the same plate current as when the transmitter is unmodulated.

The oseilloseope provides the only certain chere on grid modulation. While the same type of improper operation is possible with plate modulation, it ocears only ravely.

- COMMON TROUBLES IN THE PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum may be detered by listoning to the signal on a reeciver, provided the roeriver is far enough away from the transmitter to avoid overloading. The hum tevel should be low eompared with the voice at 100 per cent modulation. llum may come either from the speech amplifier and modulator or from the r.f. section of the transmitter. Hum from the r.f. section can be detered by eompletely shatting off the modulator: if hum remains when this is done, the power-supply filtors for one or more of the r.f. stages have insufficient smoothing. With a humfree earrier, hum introduced by the modulator can be chacked by turning on the modulator but leaving the sperech amplifior off: power-supply filtering is the likely source of such hum. If earrior and modulator are both elam, commed the speed amplifier and observe the increase in hum level. If the hum disappeats with the gain eontrol at minimum, the hum is being introdued in the stage or stages preceding the gain control. The mierophone also may piek up hum, a eondition that can be cheoked by removing the mierophone from the cirenit but loaving the first spereh-implifier grid eireuit otherwise unchanged. A good ground (to a eold water pipe, for example) on the microphone and speech system usually is essential to hum-free operation.

Spurious Side bands

A superheterodyne receiver having a erystal filter is needed for checking spurious side binds outside the normal communication chamel. The r.f. input to the receiver must be kept low enough, by removing the antenna or by adequate separation from the transmittor, to avoid overloading and consequent spurious recoiver responses. An "s" -meter reading of about half seale is satisfactory. With the crystal filter in its sharpest position tune through the region outside the normal chamod limits (3 to 4 kilocycles cach side of the earrier) while another person talks into the mierophone. Spurious side bands will be observed as intermittent "rlicks" or erackles well away from the carrier frequency. Wide hands more than 3 to 4 kiloeyeles from the carrier should be of negligible strength, eompared with the carrier, in a properly-modulated phone transmitter. The causes are overmodulation or nonlinear operation.

With sine-wave modulation the relative intensity of side bands can be observed if a tone of 1000 ceres or so is used, sinee the erystal filter readily can separate frequencies of this order. The "s"-meter will show how the spurious side frequencies (those spared more than the modulating frequency from the carrier) compare with the carrier itself. Without an "s"-meter, the a.v.c.
should to turned off and the b.for. turned on; then the r.f. gain should be sat to give a moderately strong beat note with the earrier. The intensity of side frequencios can be estimated from the rebative strength of the beats as the receiver is tuned through the spectrum :udjacent to the earrier.

R.F. in Speech Amplifier

A small amount of r ,f, current in the sperech amplifior - particularly in the first stage, which is most suseeptible to surh r.f. pickup-will cause overloading and distortion in the low-level stages. Frequently also there is a regenerative effect which causes an atudio-freguencre oscillation of "howl" to be set up in the audio sistem. In such eases the gain control camot be advanced vere far before the howl builds up, even though the amplifier may be perfertly stable when the r.f. section of the transmither is not turned on.

Complete shidding of the miderophone, mierophone cord, and spereh amplifier is neressary to provent r.f. pickup, and a ground connertion separate from that to which the tramsmitter is connectend is advisable.

- MODULATION MONITORING

It is always desirable to modulate as fully as possible, luat 100 per cont modulation should not be exeeded - particularly in the downward direction-Inceanse harmonic distortion will be generated ant the chamel width inereased. This causes unnoressary interference to wher stations. The oscilloseope in the best instrument for continuously checking the modulation. Howerer, simpler indieators may be ased for the patpose, oume calibated.

A convenient indicator, when a (lass I3 moduhator is used, is the plate milliammeter in the Chass 13 stage, sinue the plate current of the motulator fluctuates with the voire intensity. [sing the oseilloseope, detarmine the gain-entrol setting and voice intensity that give 100 per eent modulation on voice poaks, and simultancously observe the maximum Class IS plate-milliammeter reading on the pacaks. When this maximum reading is ohtaned, it will suflice to adjust the grifin so that it is not exereded.

A high- resistance (1000-ohnms-per-volt or more) rectifier-trpe voltmater (eopper-oxide or germanium type ako can be ured for modulation monitoring. It should be connocted across the output eirenit of an audio driver stage where the power lovel is a few watts, and similarly calibrated against the oscilloscope to determine the reading that represents 100 per eent morlulation.

The plate milliammeter of the modulated r.f. stage also is of value as an indicator of owermodulation. As explaned earlier, the dee plate current stays constant if the amplifier is linear. When the amplifier is overmodulated, especeially. in the downward direction, the opration is no longer linear and the average plate current will
change. A flicker of the pointer may therefore be taken as an indication of overmodulation or nonlinearity. However, since it is possible that under some operating eombitions the plate current will remain constant even though the amplifier is considerably owermodulated, an indicator of this type is not wholly reliable unless it has been checked against an oscilloscope.

Overmodulation Indicators

Overmondulation on negative peaks is usually the worst tupe, as explained earlier in this chapter. The milliammeter in the negative-peak indicator of Fig. 10-23 will show a reating on each peak that carries the instantaneous voltage on a

Fig. $10-23$ - Negative-peak overmodulation indicator. The millianucter Wif may be any low-range instrument (ap to (1)-50 ma, or so). 'The inverse-perak-voltage rating of the receifier, 1, most low at least twice the d.e. voltake applied to the plate of the r.f. amplifier. The alternatise meter-return circuit can be ased to indi. eate modulation in exeess of any desired value below 100 per eent. The reactaner of the by-pass capacitor, C. at l(0) cycles should be small compared with the re. sistance across which it is eonnerted. In 8 - μ f. eleetroIytie rapacitor will be satisfactory if the resistance it shunts is 1000 ohms ar more.
phate-modulated amplifier "holow zero" - that is, negative. The rectifier, I, cannot conduct so long as the negative half-evele of audio output voltage is less than the d.c. voltage applied to the r.f. tube.

The inverse-peak-voltage rating of the rectifier tube must be at least twice the d.c. plate voltage of the modulated amplifier. The filament transformer likewise must have insubation rated to withstand twice the d.e. plate voltage. I ither morcury-vapor or high-vacuum rectifiers can be used. The 15 -volt breaklown voltage of the formor will introduce a slight error, since the plate voltage must go at least 15 volts negative before the rectifier will ionize, but the error is inconsequential at plate voltages ahove a few hundred volts.

The effectiveness of the monitor is improved if it indicates at somewhat less than 100 per cent modulation, as it will then warn of the danger of overmodulation bofore it actually occurs. It can breadjusted to indicate at any desired modulation preentage by making the meter return to a point on the power-supply beeder as shown in the alternative diagram. The by-pass caparitor C, insures that the full audio voltage appears across the indicator circuit.

Frequency and Phase Modulation

It is possible to conver intelligener be molulating any property of a carrior. These propertios are amplitude, frefuenery and phase. Amplitude modulation (a.m.) is dexeribed in another chapter. When the frequency of the carrior is variod in aerordance with the variations in a modulating signal, the result is frequency modulation (f.m.). Similarly, varving the phase of the carrien eurment is callod phase modulation (p.m.).

Frequeney and phase modulation are not independent, since the fropurney eamot be variod without also varying the phase, and vier versa. The differenee is largely a matter of definition.
The effertiveness of f.m. and p.m. for conmunieation purposes depents almost entirely on the reeciving methods. If the reeceiver will respond to frequency and phase chamges but is insensitive to amplitude changes, it will discriminate against most forms of noise, particularly impular nowe such as is set up by ignition systems and other sparking devices. Sperial methods of detection are required to areomplish this result. Sinere most amateur recerivers do wot incorporate the proper circuits, the moise-reducing properties of f.m. or p.m. reception are soldom realized in anaterur work.

Modulation mothods for fim. athe prom, are simple and reguire practically no audio power. There is also the ativantage that, sime there is no amplitude variation in the signal, interferenee to broadeast reepption of the type resulting from reetifieation in the audio cirenits of the B(${ }^{\circ}$ recoever is substantially eliminaterl. These two points represent the prineipal reasons for the use of lim. and p.m. in amatear work. Unfortumately, the user of fom. or $\mathrm{m} . \mathrm{m}$, is unable to got the benefit of the inherent noise-reducing advantages of the system, and is furthermore at a considerable disadvantage with reseet to a.m. of the same power, beratase most of his communication will he with atmateurs using recoivers designed spe(ifically for ath,

Frequency Modulation

Fig. 11-1 is a reprosentation of frequeney modulation. When a modulating signal is applied, the carrier frequence is increased during one half-revele of the modulating signal and derereased during the half-erele of oposite polarity. This is indieated in the drawing bey the fact that the r.f. (evers oceupy less time higher frequencer) when the molulating signal is positive, athd more time lower frequences) when the modulating signal is negative. The change in the carrior frequeney (frequency deviation) is proportional to the in-
stantan ous ampliturle of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating sigmal is smatl, athed is greatest when the modulating signal romenes its prak, either positive or nequtive. That is, the freguency deviation follows the instantaneons rhanges in the amplitude of the modulating signal.

As shown by the drawing, the amplitude of the signal does not change during motulation.

Phase Modulation

To umderstand the difference bet ween f.m. and p.m. it is mocessary to apperefate that the frequency of an alternating current is determined by the rute at which its phase chantes.

If the phase of the current in a rirenit is changed there is an instantaneous frequency change during the time that the phase is being shifted. The amount of frefueney rhange, or doviation, depends on how rapidly the phase shift is ateomplished. It is also deprendent upon the total amount of the phase shift. In a propertyoperating p.m. system the atmome of phase shift is proportional to the instantamous amplitudo of the molnatating sighal. The rapistity of the phase shift is direetly proportional to the fregueney of the modulating signal. ('omsemumity, the frequeney deviation in p.m. is propertional th both the amplitude and fresueney of the modulating signal. The latter mepresents the outstathe ing difference betweron f.m. and p.m., since in lim.
(A)

(B)

(C)

Fig. 11.1 - Graphical repreantation of frequeney modalation. In the ummondated earrier at S. Nach r.f. cyele reeronies the same amoment of time. When the mordatating ixnal. IS, is aphlied, the radiofremumey is increased and dererased aromeding to the amplitude and polarity of the morlalatimis signal.
the frequeney deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

Perentage of modulation in f.m. and p.m. has to be defined differently than for at.m. Practically, " 100) per rent modulation" is reathed when the transmitted signal occupies a chamel just equal to the landwidth for which the receiver is dosigned. If the frequeney deviation is greater than the reediver can areept, the receiver distorts the signal. Ilowever, on another receiver designed for a different bandwidth the same signal might be equivalent to only $2 \overline{5}$ per cent modulation.

In amateur work "narrow-hand" f,m, or p.m. (frequently abbreviated n.f.m.) is defined as having the same channel width as a properlymodulated a.m. signal. That is, the chammel width clocs not exceed twice the highest audio frequency in the modulating signal. N.f.m. transmissions based on an upper audio limit of 3000 cyeles therefore should occupy a channel no wider than 6 kc .

F.M. and P.M. Side Bands

The side hands sat up hy f.m. and p.m. differ from those resulting from a m , in that they oceur at integral multiphes of the modulating frequency on cither side of the carrier rat her than, as in at.m., consisting of a single set of side freguencies for cuch modulating frequency. An f.m. or p, m, signal therefore inherently occupies a wider channel than a.m.

The number of "extra" side hands that oceur in f.m. and p.m. depends on the relationship between the modulating frequency and the frequency doviation. The ratio betwern the frequency deviation, in cereles per second, and the modulating frequency, also in cyeles per second, is called the modulation index. That is,

$$
\text { Morlulation index }=\frac{\text { Currier frequenc!, devintion }}{\text { Modulating freguency }}
$$

Example: The maximum frequency deviation in an f.m, transuitter is 3000 cyeles either side of the carrier freguency. The modulation index when the inodulating frequency is 1000 eyeles 15

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

At the same deviation with 3000 -eycle modulation the index would be 1 ; at 100 cyeles it would be 30 , and so on.
In p.m. the modulation index is constant regardless of the modulating frequency; in f.m. it varies with the modulating frequency, as shown in the previous example. In an f.m. system the ratio of the maximam carrier-frequency deviation to the highest modulating frequency used is called the deviation ratio.
liig. H-2 shows how the amplitudes of the carrier and the various side bands vary with the modulation index. This is for single-tone modulattion: the first side land (aretually a pair, one above and one below the carrier) is displaced from the

Fip. 11-2 - How the amplitude of the pairs of side hands varies with the modntation index in an f.m. or p.m. signal. If the earves were extended for greater values of modulation index it would the sern that the rarrier amplitute gors through zero at several puints, 'The same statement also applies to the side bands.
carrier by an amount equal to the modulating frequeney, the second is twice the modulating frequency away from the carrier, and so on, loor example, if the modulating frequency is 2000 rycles and the carrier frequency is $29,500 \mathrm{kc}$., the first side band pair is at $29,498 \mathrm{ke}$, and $29,502 \mathrm{ke}$, the second pair is at $29,496 \mathrm{ke}$, and $29,504 \mathrm{kc}$, the third at $29,49.4 \mathrm{ke}$, and $29,506 \mathrm{ke}$., etc. The amplitudes of these side bands depend on the modulation index, not on the frequency deviation. In a , m., regardless of the pereentage of modulation (so long as it does not exceed 100 per cent) the side bands would appear only at 29,498 and $29,502 \mathrm{ke}$. under the same conditions.

Note that, as shown by lig. 11-2, the carrier strength varies with the modulation index. (In amplitude modulation the carricr strength is constant: only the side-hand amplitude varies.) At a modulation index of approximately 2.4 the carrier disappears entirely. It then becomes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In f.m. and p.m. the cnergy that goos into the side bunds is taken from the carrier, the total power remaining the same regardless of the modulation index

Frequency Multiplication

Since there is no change in amplitude with modulation, an f.m. or p.m. signal can be amplified by an ordinary Class C amplifier without distortion. The modulation can take place in a very low-level stage and the signal can then be amplified by aither frequency multipliers or straight amplifiers.

If the modulated signal is passed through one or more froquency multipliers, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. loo example, if modulation is applied on 3.5 Me. and the fimal output is on 28 . Me, the total frequener multiphication is 8 times, so if the frequeney deviation is 500 eveles at 3.5 Me. it will be 4000 eveles at 28 Ne. Frequency multiplication offers a means for obtatining practically any desired amount of froquener deviation, whether or not the modulator itself is capable of giving that much deviation without distortion.

Narrow-Band f.m. and p.m.

"Narrew-band" f.m. or p.m., the only type that is authorized for use on the lower frequencies where the phone bands are crowded, is defined as l.m. or p.im. that dows not oerupy a wider channel than an atm. signal having the same atudio modulating frequencies. Narrow-hand operation requires using a relatively small modulation index.

If the modulation index (with single-tone modulation) does not exeed about 0.6 the most important extra side band, the sereond, will be at least 20 db . below the ummodulated carrier level, and this should represent an effective channel width about equivalent to that of an a.m. sigmal. In the case of sperch, a somewhat higher modulation index can be used. This is heause the energy distribution in a complex wave is such that the modulation index for any one frequency component is reduced, as compared to the index with at sine wave having the same poak amplitude as the voice wave.

The chief advantage of narrow-hand f.m. or p.m. for frequencies below 30 Mr . is that it eliminates or reduces eertain types of interference to broadeast reaption. . Wso, the modulating equipment is relatively simple and inexpronsive. However, assuming the same unmodulated carrior power in all cases, narrow-hand f.m. or p.m. is not as effective as a.m, with the methods of rereption used by most amatenurs. As shown by Fig. 11-2, at an index of 0.6 the ampliturle of the first side band is about 25 per cent of the um-modulated-earrier amplitude: this compares with a side-band amplitude of 50 per cent in the case of a 100 per cent modulated a.m. transmitter. That is, so far as effertiveness is eoneerned, a narrowband f.m. or p.m. transmitter is about equivalent to a 100 per cent modulated a.m. transmitter operating at one-fourth the carricr power.

Comparison of f.m. and p.m.

Freguency modulation camoot lee applied to an amplifier stage, but phase modulation catu: p.m. is therefore readily adaptable to tramsmitters
employing oscillators of high stability such as the cretal-controlled type. The amount of phase shift that can be obtained with good lingarity is such that the maximum practicable modalation index is about 0.5. Because the phase shift is proportional to the modulating frequence, this index can be used only at the highest frequency present in the modulating signal, assuming that all frequencies will at one time or another have equal amplitudes. Taking 3000 ceveles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 eveles, the frequence response of the specech-amplifier system atrove 3000 cerles must be sharply attenuated, to prevont side-hand splatter. Aso, if the "timny" quality of p.m. as recerived on an f.m. receiver is to be avoided, the p.m. must be changed to f.m., in which the modulation index decreases in inverse proportion to the modulating frequenco. This requires shaping the specthamplifier frequence-response curve in such at way that the output voltage is inversely proportional to frequeney over most of the voide range. When this is done the maximum modulation index cim only be used at some relatively low audio frequence, perhaps 300 to 100 ereles in voice tramsmission, and must derrease in proportion to the increase in frequency. The result is that the maximum linear frequence deviation is only ome or two hundred cecles, when p.m. is changed to $\mathrm{f} . \mathrm{m}$. To incrase the deviation for n.f.m. requires a frequence multiplication of 8 times or more.

It is relatively cary to sorure a fairly large frequency deviation when as solf-entrolled osrillator is frequence-modulated directly. (True fregueney modulation of a erystal-controlled oscillator results in only very small deviations and so requires a great doal of frequencer multiplieation.) The chief problem is to maintain a satisfactory degree of carrior stability, since the greater the inherent stability of the oseillator the more difficult it is to serede a wide frequeney swing with lincority.

Methods of Frequency and Phase Modulation

FREQUENCY MODULATION

The simplest and most satisfartory device for amateur f.m. is the reartance modulator. This is a vacuum tube connected to the r,f, tank eircuit of an owillator in such a way as to act as a variable inductance or caparitance.

Fig. $11-3$ is a representative rireuit. The control grid of the modulator tulo, $1 /$, is comected across the oscillator tank circuit, $C_{1} L_{1}$, through resistor R_{1} and blocking capacitor (2. C_{8} represents the input capacitance of the modulator tube. The resistance of R_{1} is made large compared to the reactance of C_{8}, so the r.f. current through $R_{1} C_{3}$ will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage across C's
will $l_{\text {ag }}$ the curvent by 90 degrees. The r.f. current in the plate circuit of the modulator will be in phase with the grid voltage, and consequently is 90 degrees hehind the current through (x. or 90 degreas behind the r.f. tank voltage. This lagging current is drawn through the oscillator lank, giving the same effect as though an inductance were connected across the tank. The frequency increases in proportion to the amplitude of the lagging plate current of the modulator. The audio voltage, introduced through a radio-frequency choke, $R F C$, varies the transconductance of the tube and thereby varies the r.f. plate current.
The modulated oscillator usually is operated on a relatively low frequence, so that a high order of carrier stability can be secured. Frequency

Fig, 11-3- Reatamer modulator using a bigh-trans-

(a - R.f. tank raparitaner (neer text).
($\because 2, \mathbf{1}, 3-11.101-\mu$ f, mina,

($\%$ - 10 - μ f. elentrolytio.
(is - lintre input eaparitanoe (vee text).
$K_{1}-\mathrm{F}_{2}, 000$ ohm:.
K_{2} - 11.17 megohm.
K_{3} - soreen Iropping resistor; select to give proper seren voltage on type of modalator tube used. R_{4} - Cathonle hia-rexiatur; seled a- in tave of lis.
I.1- IR.f. tank inductance.

RH': - 2.5.mh. r.f. choke.
multipliers are used to raise the frequency to the fimal frequeney desired. The frequeney doviation increases with the number of times the intial frefuence is multiplieds for instance, if the owillator is opreated on 6.5 Me. and the output frequency is to be 52 Mo., an owillator frequency deviation of 1000 erdes will be raised to 8000 eveles at the outpat frergurnes.

I reatemare modulator eath be ponnered to a arvial owillator as well as to the selferontrolleal type. However, the resulting signal is more phasemodulated than it is frequencemodulated, for the reason that the frequeney deviation that can be secored by varying the thang of a crystal osemillator is quito smatl.

Design Considerations

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the tramsondurtatme of the modalator tube. It increases when h_{1} is made smadler in comparison with Cr. It also increases with an increase in L C'ratio in the ose illator tank circuit. Since the arrior stability of the oscillator depends on the L reatio, it is desirable to use the highest tank ralparitance that will permit the desired deviation to le secured while kerping within the limits of lingar operation.

I change in any of the voltages on the modulator tube will wase a change in r.f. plate current, and consequently a frequencer chatge. Therefore it is advisable to ase a regulated plate power supply for both modulator and oscillator. At the low voltages used (250) volts) the required stabilization cau be secured by means of gaseous regulator tubes.

Speech Amplification

The sperch amplifier preceding the modulator follows ordinary dexign, except that no power is required from it and the a.f. voltage taken by the
modulator grid usually is small - not more than 10 or 15 volts, even with large modulator tubes. Berause of these modest requirements, only a few speech stages are needed; a two-stage amplitier consisting of a pentode followed by a triode, both resistance-coupled, will more tham suffice for erystal microphones.

PHASE MODULATION

The same type of reactance-tube circuit that is used to vary the tuning of the oscillafor tank in f.m. can be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for p.m. Hence the modulator cireuit of Fig. H-3 can be used for prat. if the reactane tube works on an amplifier tank instead of directly on a self-rontrolled oscillator.

The phase shift that oceurs when a circuit is detumed from resonane depends on the amount of detming ind the $(Q$ of the cireuit. The higher the (), the smatler the amount of detuning neded to serure a given number of degrees of phase shift. If the () is at least 10 , the relationship between phase shift and detuning (in kilocycles sither side of the resonatht frequeney) will ine substantially linear over a phase-shift range of about 25 degrees. from the standpoint of modulator sensitivity, the ($/$ of the tuned circuit on which the modulator operates should be as high as possible, On the other hand, the effective ($)$ of the cirenit will not the very high if the amplifier is delivering power to a load since the load resistaner redues the (Q. There must therefore be a compromise betwern modulator sensitivity and r .f. power output from the modulated implitior. Au optimum figure for (l appears to he about 20; this allows reasonable leading of the modulated amplifier and the medessary tuning variation can to seredred from a reactaner modulator without difficulty. It is advisable to modulate at a vory low power level - proferably in a stage where recerving type tubes are used.

Reartance modulation of an amplifier stage usually also result: in simultaneous amplitude modulation because the modulated stage is detuned from resonance as the phase is shifted. This must be eliminated by feoding the modulated signal through an amplitude limiter or one or more "saturating" stages - that is, amplifiers that are operated (lass C and driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.
loo the same two of reatance modulator, the spered-amplifier gain required is the same for p.m. as for f.m. However, as pointed out arlier, the fart that the actual frequency deviation incroases with the modulating audio frequency in p.m. makes it neerssary to cut off the freduencies above ahout 3000 creles before modulation takes plare. If this is not done, umeressarys side bands will be generated at frequencies considerably away from the carrier.

Checking F.M. and P.M. Transmitters

Accurate checking of the operation of an f.m. or p.m. transmitter requires different methods than the corresponding checks on an at.m. set. This is because the common forms of measuring devices either indicate amplitude variations only (a d.e. milliammeter, for example), or because their indications are most easily interpreted in terms of amplitude. There is no simple measuring instrument that indicates frequency deviation in a modulated signal directly.

Ilowever, there is one favorable feature in f.m. or p.m. checking. The modulation takes phace at a very low level and the stages following the one that is modulated do not affeet the lincarity of modulation so long as they are properly tuned, Therefore the modulation may be checked without putting the transmitter on the air, or even on a dumme antema. The power is simply cut off the amplifiers following the modulated stage. This not only avoids unnecessary interference to other stations during testing periods, but also keeps the signal at such a

Fig. 11-4- D.e. method of checking fresuency deviation of a reactance-tube-modulated eseillator. is $500-$ or 1000 -ohm patentiometer may be used at R.
low level that it may be observed quite easily on the station receiver. I good receiver with a crystal filter is an essential part of the checking equipment of an fim. or p.m. transmitter. particularly for narrow-hand f.m. or p.m.

The guantities to be chereked in an f.m. or p.m. transmitter are the linearity and frequency deviation. Because of the essential difference between f.m. and p.im. the methods of choeking differ in detail.

Reactance-Tube F.M.

It was explained cartier that in f.m. the frequency deviation is the same at any audio nodulation frequency if the adudio signal amplitude does not vary. Nince this is true at any audio frequency it is true at zero frequency. Consequently it is possible to calibrate a reartance modulator by applying an adjustable d.e. voltage to the modulator grid and noting the change in oscillator frequency as the voltage is varied. I suitable circuit for applying the adjustable voltage is shown in Fig. II-t. The battery, B, should have a voltage of 3 to 6 volts (two or more dry cell: in series). The arows indicate clip eomnections so that the battery polarity can be reversed.

The oscillator frequence deviation should be measured by using a receiver in conjunction with an accurately-calibrated frequency meter,
or by any means that will permit accurate measurement of frequeney differences of a few hundred eycles. One simple nethod is to tune in the oscillator on the receiver (discomeeting the receiving antenna, if necessary, to keep the signal strength well below the overload point) and then set the receiver b.f.o. to zero beat. Then increase the d.r. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be moasured by eomparison with a calibrated audio-frequency oscillator. Note that with the battery polarity positive with respert to ground the radio frequence will move in one direetion when the voltage is increased, and in the other direction when the battery terminals are reversed. When several readings have been taken a curve may be plotted to demonstrate the relationship between grid voltage and frequency deviation.

I sample curve is shown in lig. 11-5. The usable portion of the curve is the center part which is essentially a straight line. The bending at the ends indirates that the modulator is no longer lincar; this departure from linearity will cause harmonic distortion and will broaden the channel oreupied by the signal. In the example, the characteristic is linear 1.5 ke , on cither side of the enter or earrier frequency. This is the maximum deviation permissible at the frequeney at which the measurement is: made. It the final output frequence the deviation will be multiplied by the same number of times that the measurement frequency is multiplied. This must be kept in mind when the check is made at a frequency that differs from the output frequenes.

A good modulation indicator is a "magioeye" tube such an the 6 bia. This should be conneeted across the grid resistor of the reactanee modulator as shown in Fig. 11-6. Note its deflection (using the d.e. voltage method as in Fig. 11-1) at the maximum deviation to be used. This deflection represents " 100 per cent

Fig. 11-5-A typical eurve of frequency deviation rs. modulator grid voltage.

FREQUENCY AND PHASE MODULATION

modulation" and with speech input the gain should be kept at the point where it is just reached on voice peatis. If the transmitter is used on more than one band, the gain control should be marked at the proper setting for each band, berause the signal amplitude that gives the conrect deviation on one band will he either too great or too smatl on another. For natrow-band f.m. the proper deviation is approximately 2000 eycles (based on an upper a.f. limit of 3000 cyrles and a deviation ratio of 0.7) at the final output frequency. If the output frequency is in the $29-\mathrm{Mc}$. band and the oseillator is on 7 Mc ., the deviation at the oscillator frequency should not exceed $2000 / 4$, of 500 cycles.

Checking with a Crystal-Filter Receiver

With p.m. the d.ce. mothod of eherking just descrited cannot be used, because the firequency deviation at zero frequency also is zern. For narrow-hand p.m. it is necessary to cheek the actual width of the ehamel oreapied hy the transmission. (The same method also can tro used to eheck f.m.) For this purpose it is necessary to have a crystal-filter recoiver and an a.f. oscillator that generates a 3000 -cycle sine wave.

V̈a, 11 - 6 - olis moshalation indicator for f.m. or lo.m.
 dollection, it may the nowe-alry lo eommet the मath control in the modalator prid rirmit rather than in an carlier specth-amplilier tage.
laceping the signal intensity in the receiver at a medinm level, tune in the carrior at the outfint frequency. Do not use the ar.ver. Switeh on the beat oscillator, and set the erystal filter at its sharpest position. P'eak the signal on the reysal and adjust the b.f.o. for any convenient beat note. Then apply the 3000 -cyche tone to the sprech amplifier (through an attenuator, if meersary, to avoid overlonding; see chapter on audio amplifiers) and increase the atudio gain until there is a small amount of modulation. Tuning the reociver near the carrior frequeney will show the presence of side bands 3 ke . from the carrier on both sides. With low andio input, these two should be the only side bands detectable.

Now incorase the audio gain and tune the recober wer a range of about 10 kc . on both sides of the carrier. When the gain becomes high emough, a scrond sct of side bands spated 6 kr . on either side of the carrict will be dotected. The signal amplitude at which these side bands becume detertable is the maximum whereb:m-
plitude that should be used. If the 6E5 modulation indicator is incorporated in the modulator, its deflertion with the 3000 -cycle tone will be the " 100 per cent modulation" deflection for speech.

When this method of checking is used with a reactance-tube-modulated f.m. (not p.m.) transmitter, the linearity of the system can be checked by observing the carrier as the a.f. gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be acompanied by a shift in the average carrier frequency that will canse the bat note to change in frequency. If such a shift occurs at the same time that the 6 -ke. side bands appoar, the extra side bands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is not (:ipable of shifting the frequency over a wideamough range. The b-kre side bands should appear before there is any shift in the earrier frequoncy.

R.F. Amplifiers

The r.f.stages in the tramsmitter that follow the modulatod stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met excopt that all tank circuits should be carefully tuned to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In neutralized stages, the neutralization should be as exact as possible, atso to minimize unwanted phase shifts. With f.m. and p.me, all r.f. stages in the transmitter can lxe oprotated at the manufacturers maximums cow--tolography ratings, since the average power inpul docs not vary with modulation as it does in :t.m. phone operation.

The output of the transmiter should be cheoked for amplitude modulation by observing the antenna current. It should not change from the umodulated-arrier value when the trimsmitter is modulated. If there is no antenna ammoter in the transmitter, a flashlight lamp and loop can be roupled to the final tank eoil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not elange with modulation.

Amplitude modulation aceompanying fim, or p.m. is just as much to be avoided as frequency or phase modulation that accompanies atm. A mixture of atm. With cither of the other two systems results in the generation of spurious side bands and consequent widening of the chamel. If the presence of a.m. is indieated by virriation of antenna current with modulation, the canse is almost certain to be nonlinearity in the modulator. In very wide-hand f.m. the selectivity of the transmittor tank cilcuits may cause the amplitude to decrease at high deviations, but this eondition is not likely to oceur on amateur frequencies at which wide-hand f.m, would be used.

Single Side Band

The most significant devolopment in amateur radiotelephony in the past several years has been the increased use of singlo-side-hand suppressedcarrier transmissions. This system has tremendous potentialitios for increasing the effectiveness of phone transmission and for reducing interference. Because only one of the two side bands normally produced in modulation is transmitted, the chamel width is immediately cut in half. However, when only one side hand is transmitted, the carrier - which is essential in double-sideband transmission - no longer is necessary; it can be supplied without ton much diffieulty at the receiver. With the carrier eliminated there is a great saving in power at the transmittor - or. from another viewpoint, a great increase in effective power output. Assuming that the same finalamplifier tube or tubes are used cither for normal at.m. or for single side band, carrier suppressed, it can be shown that the use of s.s.b. cain give an effective gain of up to 9 dh. over it.m. - equivatlent to increasing the transmitter power 8 times. Eliminating the carrier also climinates the heterodyne interference that wrecks so much communication in congested phone bands.

SUPPRESSING THE CARRIER

The carrier can be suppressed or nearly eliminated by an extremely sharp filter or by using a balanced modulator. The basic principle in any balanced modulator is to introduce the carrier in such a way that it cloes not appear in the output but so that the side bands will. This requirement is satisfied by introducing the audio in push-pull and the r.f. drive in parallel, and connecting the output (plate circuit) of the tubes in push-pull, as shown in Fig. 12-1.1. Balanced modulators can also be connected with the r.f. drive and audio inputs in push-pull and the output in parallel (Fig. 12-113) with equal effectiveness. The choice of a balanced modulator cireuit is generally determined by constructional considerations and the method of modulation preferred by the buider. Scren-grid modulation is shown in the examples in Fig. 12-1, but control-grid or plate modulation can be used equally as well. Balaneedmodulator circuits using four rectifiers (germanium, copper oxide, or thermionic) in "bridge" or "ring" circuits are often used, particularly in commercial applications. Two-rectifier rircuits are also available, and they are widely used in amateur s.s.b, equipment. Rectifier-type balaneed modulators are shown in Figs. 12-2 and 12-3.

In any of the vacuum-type circuits, there will be no output with no audio signal because the circuits are balanced. The signal from one tube is balanced or cancelled in the output circuit by the signal from the other tube. The cireuits are thus balanced for any value of parallel audio signal.

When push-pull audio is applied, the modulating voltages are of opposite polarity, and one tube will ronduet more than the other. Siner any modulation process is the same as "mixing" in receivers, sum and diffrrence frequencies (side bands) will be gemerated. The modulator is not balanced for the side bands, and they will appear in the output.
The amount of carrier suppression is dependent upon the matrhing of the two tubes and their associated circuits. Normally two tubes of the same type will balance closely enough to give at least 15 or 20 db . carrier suppression without any adjustment. If further suppression is required, trimmer capacitors to batance the grid-plate capacities and separate bias adjustments for setting the operating points can be used.

Fig. 12-I - Two examples of balanced-modulator cireuits using sereen-mrid modulation. In Ithe r.f. excitation is in parallel in both tuhes, and the audio and ontput are in push-pull. In is the exritation and andio are in push-pull, the output is in parallel. In either case, the carrier frequency, f, docs not apperar in the output eircuit - only the two side-band frequencics, $f+F$ and $f-F$. will appear. The bias on the sereens is a practical reguirement with all sereen-grid tuhes for low-distortion operation, and is not a special requirement of balanced modulators.

Fig．12－2－＇rypical rectifier－tyge balanced modulators． The cirenit at A is called a＂bridge＂halanced modn－ lator and has bern widely used in erommercial work．

The balaned modulator at B is shown with constants suitable for oferation at 1.50 ke ．It is useful fer working into a resstal handpass filter．T_{1} is a transformer ile－ signed to work from the andio somree inte a follobim had，and T_{2} is an ordinary i．f．transformer with the trimmer reconneeted in series with a $0.001-\mu$ ．cap－ aditor，for impedance－matohing purpeses from the modulator．The caparitor C_{I} is for carrier balance and may le found unnecessary in some instances－it shonld be tried eonnected on either side of the carrier input circuit and used where it is more effertive．The esonohn petentioneter is nommally all that is required for carrier balance．The carrier injut slould be sufficient to de－ velopseseral volte across the resistor string．

The halaneed modulator cirenit at（：is shown with constants nuitable for operation at $3.9 \mathrm{Mc} ._{3}$ is a small step－down output transformer（ITC＇：R－38A），shunt－fed to eliminate dee from the windings．L_{1} can be a small coupling coil wound on the＂cold＂end of the carrier－ oscillator tank coil．with sufficient coupling togive two or three volts of r．f．atrons its output．Laz is a slug－tumed coil that resonates to the earrier frequency with the effective $0.001 \mu \mathrm{f}$ ，arross it．The Jow－ohm petentiom－ eter is for ratrier halance．

In the rectifiet－type halaneed modulators shown in Fig．12－2，the diode rectifiers are con－ nected in such a manner that，if they have equal forwatrd resistances，no r．f．can pass from the carrior source to the output circuit via either of the two possible paths．The net effect is that no r．f．energy appars in the out put．When adodio is applied，it unbalances the cireuit by biasing the diode（or diodes）in one path，depending upon the instantaneous polarity of the audio，and hence some r．f．will appear in the output．The r．f．in the output will appear as a double－side－hand sup－ pressed－carrier signal．（For a more complete deseription of diode－modulator operation，see ＂Jiode Modulators，＂（QS＇T，April，1953，p．39．）

In any diode modulator，the r．f．voltage should be at least 6 or 8 times the peak audio voltage，for
minimum distortion．The usual operation in－ volves a fraction of a volt of audio and several volts of r．f．The diodes should be matehed as closely as possible－ohmmeter measurements of their forward resistaneos is the usual test．
（The arouit of Fig，12－213 is described more fully in Weaver and Brown，＂Crystal Lattice Filters for Transmitting and Receiving，＂QST， August，1951．The cireuit of Fig．12－2C is suitable for use in a double－balanced－modulator cireuit and is so described in＂Sisl3，Jr．，＂General Electric Ham Neus，soptember，1950．）

Vacuum－tube diodes can also be used in the two－and fourdiode balanced－modulator circuits， and many operators eonsider them superior to the dry rectifier rireuits．A typical balaneed modu－ lator circuit using a twin diode（ $6: 1.5,6 \mathrm{H}$ ， 6 ， （et（ 0 ）is shown in Fig．12－3．In phasing－t．ape s．s．b． generators（described later）two of these modu－ lators are required，and they are usually worked

Iif．12－3－I twin diode balanced modulator eirenit． This is essentially the same as the circuit in Fig．12－2C， and differs only in that a twin dionle is used instead of dry reetitiers．＇I＇he heater circuit for the twin dionde san be connected in the usual way（one side grounded or conter tap prounded）．
into a common output cireuit．（For a deseription of a romplete s．s．b．exciter using 6AL5 balanced modulators，see Vitale，＂Cheap and Latsy心s．B．＂＇，（ぶT，Mar＂h，1956．）

SINGLE－SIDE－BAND GENERATORS

Two basic systems for generating s．s．b．signals arre shown in Fig．12－4，One involves the use of a bandpass filter having sufficient selectivity to pass one side band and rejeet the other．Filters having surh characterist ies can only be constructed for rolatively low frequencies，and most filters used by amateurs are designed to work somewhere be－ twern 10 and 20 kc ．（iood side－hand filtering ran be done at frequencies as high as 500 ke ．by using multiplererystal or electromechanieal filters．The low－frequency oseillator output is combined with the andio output of a specech amplifier in a bal－ anced modulator，and only the upper and lower side bands appear in the output．（Sne of the side bands is passed by the filter and the other re－ jeeted，so that an s．s．b．signal is fed to the mixer． The signal is there mived with the output of a high－frequency r．f．oseillator to produce the de－ sired output frequency．For additional amplifiea－ tion a linear r．f．amplifier（Class A or Class B） must be used．When the s．s．b．signal is generated at 10 or 20 kc ．，it is generally first heterodened to somewhere around 5 m$) \mathrm{ke}$ and then to the operat－
ing frequener: This simplifies the problem of rejecting the "image" frequencios resulting from the heterodyne process. The problem of image frequencies in the frequency conversions of s.s.b. signals differs from the problem in receivers because the beating-aseilator frequeney treomes important, Dither halanced modulators or sufficient selectivity must be used to attemate these frequencies in the output and hence minimize the possibility of unwanted radiations.

The second system is based on the phase rolationships betweren the carrier and side bands in a modulated signal. As shown in the diagram, the andio signal is split into two components that are idential except for a phase difference of 90 degrees. The output of the r.f. oscillator (which may

Properly adjustorl, aither system is capable of good results. Argmonts in favor of the filter system are that it is somewhat casior to adjust without an oseilloseope, sinere it requires only a roreiver and a v.t.v.m. for alignment, and it is more likely to remain in adjustment over a long period of time. The ehof argument against it, from the amatene viewpoint, is that it requires quite a few stages and at least one frequener eonversion after modulation. The phasing system recuires fower stages and can be designed to require no frequence conversion, but its alignment and adjustment are often considered to be a little "trickior" than that of the filter system. This probably stems from lack of familiarity with the sustem rather than any arfual difficulty, and now that

Fig. 12.4-Two basic systems for penerating single-side-band suppressed-carrier signals. Representations of a typical envelope picture (as sect on an oseiloseope) and spetrum pieture (as seen on a very selective panoramic receiver) are shown ahove and helow the connecting links.
be at the operating frecueney, if desired) is likewise split into two separate components having a GO-degree phase differenere. One r.f. and one andio component are combined in earh of two separate balane od modulators. The carrier is suppressed in the modulators, and the relative phases of the side bands are surb that one side band is bataneed out and the other is arerntuated in the eombined output. If the output from the balaned modulators is high enough, such in s.s.b. cxopiter can work dieretly into the antenna, or the power level can be inereased in a following amplifier.
rommereially-availathe preadjusted audio-phasing net works are available, most of the alignment diffiendty has bere eliminated. In most caser the phasing system will cost less to apply for an exist ing transmitter.
lagardless of the methoe used to generate a s.s.h. signal of 5 or 10 watts, the minimum cost will be found to be higher that for an atm. transmitter of the same low power. Howrever, as the power loved is increased, the sos.b. transmitter beromos more ceonomical that the a.m. rig, both initially and from an operating standpoint.

AMPLIFICATION OF S.S.B. SIGNALS

When an s.s.b. signal is generated at some fregueney other than the operating frecucucy, it is necessary to change frequeney by hoterodyme methors. These are exactly the same as those used in receivers, and any of the nommal mixer or converter circuits can be used. ()ne exreption to this is the case where the origimal signal and the heterodyning ascillator are not too different in frequeney (as when heterodyning a 2o-ke. signal to 500 kr .) and, in this case, a batanced mixer should be used, to climinate the hoterodyning oscillator frequency in the output.

To increase the power level of an s.s.b. signat, a linear amplifier must be usod. A linear amplifier is one that operates with low distortion, and the low distortion is ohtaned by the proper choice of tube and operating conditions. lhysieatly there is little or no diference betwern a linear amplifier and any other type of r.f. amplifier stage. The simplest form of linear amplifier (r,f. or andio) is the Class A amplifier, which is used almost without exreption throughout recerivers and low-level speech equipment. (See Chapter Three for an explanation of the elasses of amplifier operation.) While its linearity a ban be made relatively good, it is inefficient. The theoretical limit of efficiency is 50 per eant, and most practionl implifiers run 25-35 per rent aficiont at full output. At low levels this is not worth worrying about, but when the 2- to lowatt level is exeroded something else must be done to improve this rfficiency and reduce tube, power-supply and operating costs.

Class $A 3_{1}$ amplifiors make excellent linear amplifiers if suitathe tubses are selected. Primary advantages of Class $A B_{1}$ amplifiors are that they give much greater output than st raight Class A amplifiers using the same tubes, and they do not require any grid driving power (no grid current drawn at any time). Although triodes (an be used for Class $A B_{1}$ operation, tetrodes or pentodos are usuatly to be preferred, since Class AB_{1} operation reguires high peak plate current without grid current, and this is easior to olotain in tetrodes and pentodes than in most triodes.
'To obtain maximum output from tetrodes, pentodes and most triodes, it is neressary to operate them in Class Al3. Although this produces maximum peak output, it increases the drivingpower requirements and, what is more important, requires that the driver regulation (ability to maintain wave form under varying load) be good or exeedlent. The usual method to improve the driver regulation is to add fixed resistors across the grid cireuit of the driven stage, to offer a load to the driver that is modified only slightly by the additional load of the tube when it is driven into the grider'urrent region. This increases the driver's output-power requirements. Further, it is desirable to make the grid rireuit of the Class . NBe
 simplify rompling to the driver. A "stiff" bias source is also rerguired, since it is important that the bias remain constant, whether or not grid current is drawn.

Class B amplifiers are theoretically capable of 78.5 per cent efficiency at full output, and pract $\mathrm{i}-$ cal amplifiers run at 60-70 per cent efficiency at full output. Tuhes normally designed for Class 13 audio work can be used in r.f. linear amplifiors and will operate at the same power rating and efliciency provided, of course, that the tube is capable of operation at the radio frequency. The operating conditions for r.f. are sulastantially the same as for audio work - the only difference is that the input and outjut transformers are replaced by suitable r.f. tank circuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a nererssity in Class 13 r.f. work. Ilowever, the r.f. harmonios may be higher in the rase of the single-ended amplifier, and this should be taken into consideration if TVI is a problem.

For proper operation of Class 13 amplifiers, and to reduce harmonies and facilitate coupling, the input and output circuits should not lave a low (-to-L, ratio. A goorl guide to the proper size of tuning capacitor will he found in Chapter Six; in case of any doubt, it is well to be on the highcapareitance side. If zero-bias tubes are used in the Class 13 stage, it may not be necessary to add much "swamping" resistance across the grid cireuit, because the grids of the tubes load the rireuit at all times. IIowever, with other tubes that require bias, the swamping resistor should be such that it dissipates from five to ten times the power required by the grids of the tubes. This will insure an almost constant load on the driver stage and good regulation of the r.f. grid voltage of the Class 3 stage.

Bofore going into detail on the adjustment and loading of the linear amplifier, a few general eonsiderations should be kept in mind. If proper operation is experted, it is essential that the amplifier be so constructed, wired and neutralized that no trater of regeneration or parasitic instability remains. Nerdless to say, this also applies to the stages driving it.

The bias supuly to the Class I3 linear amplifier should be quite stiff, such as batteries or some form of voltage regulator. If nonlinearity is notired whon testing the unit, the bias supply may be checked by means of a large electrolytic capacitor. Simply shunt the supply with 100μ f. or so of napacity and see if the linearity improves. If so, rebuild the bias supply for better regulation. Do not rely on a large caparitor alone.

Where tetrodes or pentodes are used, the screen supply should have good regulation and its voltage should remain constant under the varying current demands. If the maximum soreen current does not excerd 30 or 35 ma , a string of VIR tulues in sories can be used to regulate the screnn voltage. If the courrent demand is higher, it may be neeressary to use an electronically-regulated power supply or a heavily-bled power supply with a current capacity of several times the curcent demand of the screen rireuit.

Where VR tubes are used to regulate the sereen supply, they should be selected to give a

TAELE 12-I-LINEAR-AMPLIFIER TUBE-OPERATION DATA FOR SINGLE SIDE BAND

Except where atherwise noted, ratings are manufacturers' for audio operation. Values given are for ane tube. Driving powers represent fube losees only-sircuit losses will increose the figures.

Tube	Class	Plate Voltage	Screen Voltage	D.C. Grid Voltage	Zero-Sig. D.C. Plate Current	Max.-Sig. D.C. Plofe Current	Zero-Sig. D.C. Screen Current	Max.-Sig. D.C. Sereen Current	Peak R.F. Grid Voltage	Max. Sig. D.C. Grid Current	Max.-Sig. Driving Power	Max.-Roled Screen Dissipation	Mox.-Rated Grid Dissipation	Avg. Plate Dissipation	Max.-Sig. Useful Power Outpul
$\begin{aligned} & 2 E 26 \\ & 6893 \end{aligned}$	A_{1}	250	200	- 14	35	42	7	10	14	-	O	2.5		10	5
	AB_{2}	$\begin{array}{r} 400 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 125 \\ 125 \\ \hline \end{array}$	$\begin{array}{r} -15 \\ -\quad 15 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{array}{r} .2 \\ .2 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 21 \\ & 27 \end{aligned}$
$\begin{aligned} & 6146 \\ & 68: 83 \end{aligned}$	AB_{1}	$\begin{array}{r} 600 \\ 750 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	-50 $-\quad 50$	$\begin{aligned} & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \end{aligned}$	$\begin{aligned} & .6 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	=	$\begin{aligned} & 14 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$
	AB_{2}	$\begin{array}{r} 600 \\ 750 \\ \hline \end{array}$	$\begin{array}{r} 185 \\ 165 \\ \hline \end{array}$	-50 -45	$\begin{aligned} & 21 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 135 \\ & 120 \end{aligned}$	$\begin{aligned} & .5 \\ & .3 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \end{aligned}$	$\begin{array}{r} 57 \\ 51 \\ \hline \end{array}$	$.4$	$\begin{aligned} & .02 \\ & .02 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$
$\begin{aligned} & 807 \\ & 1625 \end{aligned}$	AB_{1}	$\begin{array}{r} 600 \\ 750 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} -\quad 30 \\ -\quad 32 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{array}{r} 100 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & .4 \\ & .3 \\ & \hline \end{aligned}$	6	$\begin{aligned} & 39 \\ & 46 \end{aligned}$		$.1$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & \hline 40 \\ & 60 \end{aligned}$
811.A	8	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$	\bar{Z}	$\begin{aligned} & 0 \\ & 0 \\ & -\quad 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 27 \\ & 16 \end{aligned}$	$\begin{array}{r} 175 \\ 175 \\ 157 \\ \hline \end{array}$	$=$		$\begin{aligned} & 93 \\ & 88 \\ & 85 \end{aligned}$	13	$\begin{aligned} & 3.8 \\ & 3.0 \\ & 2.2 \end{aligned}$	ב		$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 124 \\ & 155 \\ & 170 \end{aligned}$
4-65A	AB_{1}	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 480 \\ 450 \\ 405 \end{array}$	$\begin{array}{r} \mathbf{- 1 0 5 1} \\ -1001 \\ -901 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 90(70) \\ & 80(60) \\ & 70(50) 4 \end{aligned}$		$\begin{array}{\|cc\|} \hline 13 & (4.2)^{4} \\ 11 & (3.04 \\ 8.5(2.5)^{4} \\ \hline \end{array}$	$\begin{array}{r} 103 \\ 100 \\ 90 \end{array}$		$\begin{aligned} & 2.5 \\ & 1.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 65 \\ & 63 \\ & 63 \end{aligned}$	$\begin{array}{r} 85 \\ 125 \\ 135 \end{array}$
	$\mathrm{AB}_{\mathbf{2}}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & -\mathbf{5 5 1} \\ & =80 \\ & -105 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 200^{2} \\ & 270^{2} \\ & 230^{2} \end{aligned}$		$\begin{aligned} & 45^{3} \\ & 65^{3} \\ & 45^{3} \end{aligned}$	$\begin{aligned} & 150 \\ & 190 \\ & 165 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 8 \end{aligned}$	$\begin{aligned} & 2.3^{77} \\ & 3.8^{7} \\ & 1.3^{7} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 65 \end{aligned}$	$\begin{array}{r} 150 \\ 300 \\ 325 \end{array}$
813	$A^{\prime} B_{2}$	$\begin{aligned} & 2000 \\ & 2250 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{array}{r} 750 \\ 750 \\ 750 \end{array}$	$\begin{aligned} & -90 \\ & =90 \\ & -95 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \\ & 180 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .6 \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 118 \end{aligned}$		$\begin{aligned} & .1 \\ & .1 \\ & .2 \end{aligned}$	$\begin{aligned} & \mathbf{2 2} \\ & 22 \\ & 22 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 228 \\ & 258 \\ & 325 \end{aligned}$
4-125A	AB_{1}	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 615 \\ & 555 \\ & 510 \end{aligned}$	$\begin{array}{r} -1051 \\ =1001 \\ -951 \end{array}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \end{aligned}$	135 $(100) 4$ 120 (85) 105 $(75) 4$	—	$\begin{array}{\|cc\|} \hline 14 & (4.0)^{4} \\ 10 & (3.0)^{4} \\ 6.0 & (1.5)^{4} \\ \hline \end{array}$	$\begin{gathered} 105 \\ 100 \\ 95 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 150 \\ & 180 \\ & 200 \\ & \hline \end{aligned}$
	$A^{\prime} \mathbf{B}_{2}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \\ & 350 \end{aligned}$	$\begin{array}{r} -411 \\ =451 \\ =431 \end{array}$	$\begin{aligned} & 44 \\ & 36 \\ & 47 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 130 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 17 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 141 \\ 105 \\ 89 \end{array}$	$\begin{aligned} & 9 \\ & 7 \end{aligned}$	$\begin{gathered} 1.25 \\ .7 \\ .5 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 200 \end{aligned}$
4-250A	AB_{1}	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{aligned} & 660 \\ & 600 \\ & 555 \\ & 510 \\ & \hline 90 \end{aligned}$	$\begin{array}{r} -115 \\ -110 \\ -105 \\ -100 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 55 \\ & 45 \\ & 40 \\ & \hline \end{aligned}$	$230(170)^{4}$ $210(150) 4_{4}$ $185(130)$ $165(115) 4$		$\begin{array}{cc} 15 & (3.54 \\ 12 & (2.5) 4 \\ 9.5 & (2.0) \\ 7.5 & (1.5) \end{array}$	$\begin{aligned} & 115 \\ & 110 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & \mathbf{3 5} \end{aligned}$			335 400 425 450
	$A^{8} \mathbf{2}^{2}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & \mathbf{3 0 0} \\ & \hline \end{aligned}$	$=481$ $=481$ $=511$ -531	$\begin{aligned} & 50 \\ & 60 \\ & 60 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 243 \\ & 255 \\ & 250 \\ & 237 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	17 13 12 17	$\begin{array}{r} 96 \\ 99 \\ 100 \\ 99 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 12 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 150 \\ & 185 \\ & 205 \\ & 190 \\ & \hline \end{aligned}$	$\begin{aligned} & 214 \\ & 325 \\ & 420 \\ & 520 \end{aligned}$
304TL	$A_{1} B_{1}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \\ & \hline \end{aligned}$	\bar{Z}	$\begin{aligned} & -1181 \\ & -170^{1} \\ & -2301 \\ & -290^{1} \end{aligned}$	$\begin{array}{r} 135 \\ 100 \\ 80 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 286 \\ & 273 \\ & 242 \\ & 222 \\ & \hline \end{aligned}$	—	$=$	$\begin{aligned} & 118 \\ & 170 \\ & 230 \\ & 290 \end{aligned}$	\bar{Z}	0 0 0 0 0				$\begin{aligned} & 520 \\ & 128 \\ & 245 \\ & 305 \\ & 365 \end{aligned}$
PL-6569	8^{3}	$\begin{aligned} & 2500 \\ & 3500 \\ & 4000 \end{aligned}$	\qquad	-601 $=901$ -1051	$\begin{aligned} & 40 \\ & 30 \\ & 24 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 270 \\ 250 \\ \hline \end{array}$	\bar{Z}		$\begin{array}{r} 180 \\ 220 \\ 205 \end{array}$	$\begin{aligned} & 80 \\ & 68 \\ & 42 \end{aligned}$	$\begin{aligned} & 70^{6} \\ & 756 \\ & 60^{6} \\ & \hline \end{aligned}$				$\begin{array}{r} 505 \\ \hline 750 \\ 760 \\ 800 \\ \hline \end{array}$
${ }^{1}$ Adjust to give stofed zero-signal plate current. ${ }^{2}$ Single-side-band suppressed-carrier linear amplifier ratings, voice signol. - Approximate value.									${ }^{4}$ Values in parentheses are with iwo-tone test signal. ${ }^{5}$ Grounded-grid circuit. ${ }^{-}$Includes bias loss, grid dissipation, and feed-through power.						

regulated voltage as close as possible to the tube's rated voltage, but it does not have to be exact. Minor differences in idling plate current can be made up by readjusting the grid bias.

One should bear in mind that the same amplifier cam be operated in several classes of operation by merely ehanging the operating eonditions (hias, loading, drive, sermen voltage, ate.). However, when the power sensitivity of an :mplifier is increased, as by changing the operation from (lass 13 to Chass A, the stability requirements for the amplifier berome stringent.

From the standpoint of ease of adjust ment and availability ol proper oprating voltages, a limear amplifier with Clase $.1 B_{1}$ tetrodes or pentodes or one with zero-hias Class 13 triodes would be first rhoice. The Class 13 amplifier would require more driving power. (For eximples of Class $A B_{1}$ tetrode amplifiers, sor Russ, "The 'little Firoaracker' Linear Amplifier," (SST, September, 1953, and Werkhardt, "The Single Side-saddle Lincar," (SST, November, 1953.)

Table 12-1 lists a few of the more popular tubes commonly used for s.s.b. linear-amplifier operattion. Exerept where otherwise noted, these ratings are those given by the manufarturer for andio work and as such are based on a sine-wave signal. These ratings are adergate ones for use in s.s.b. amplifier design, but they are conservative for such work and hence do not neressarily represent the maximum powers that ean be obtained from the tubes in voier-signal s.s.l. serviere. In no case should the average plate dissipation be exareded for any considerable length of time, but the nature of a s.s.b. signal is such that the average plate dissipation of the tube will rum well below the pak plate dissipation. Hence in s.s.b. opreation the peak phate dissipation of an amplifier tube maty exered the average plate dissipation bey several times.
(ietting the most out of a linear amplifier is done by increasing the prak power without execeding the average plate dissipation over any apprectable length of time. This can be done by raising the plate voltage or the peak current (or both), provided the tube can withstand the increase. For example, the 6146 is shown with 750 volts maximum on the plate, and it is quite likely that this rath be increased to goo or lown volts without any appreciable shortoning of the lifo of the tube. However, the mandianturers have not. released any data on such operation, and any extrapolation of the audio ratings is at the risk of the amateur. A 35- to an-per cent incroase above plate-voltage ratings should be perferety sate in most cases. In a tetrode or pentode, the peak plate current can be boosted some by mising the sowern voltage.

When rumning a linear amplificr at considerably higher than the audio ratings, the "t wo-tone test signal" (described later) should never be applied at full amplitude for more than a few seronds at any one time. The above statements about working tubes above ratings apply only when a voire signal is used - a prolonged whistle or two-tone test signal may damage the tube.

VOICE-CONTROLLED BREAK-IN

Although it is possible for two s.s.b. stations operating on widely different frequencies to work "duplex" if the earrier suppression is great enough (inadequate carrier suppression would the a violation of the FCC rules), most s.s.b. operators prefer to use voicerontrolled break-in and operate on the same frequency. This overcomes any possibility of violating the FCC rules and premits "round tahle" operation.

Many various sytems of voice-controlled break-in are in use, but they are all basieally the same. Some of the audio from the speech amplifier is amplified and rectified, and the resultant d.e. signal is used to key an oscillator and one or more stages in the s.s.b. transmitter and "blank" the receiver at the time that the transmitter is on. Thus the transmitter is on at any and all times that the operator is speaking but is off during the intervals between sentences. The voire-rontrol circuit must have a smatl amount of "hold" built into it, so that it will hold in between words, but it shondd be made to tum on rapidly at the slightest voire signal coming through the speerh amplifier. I3oth tube and relay kevers have been used with good sueress. Some voice-rontrol systems require the use of headphones by the operator, but a loudspeaker can be used with the proper eireuit. (See Nowak, "Voicro-Controlled 13rrak-In . . . and a Loudspeaker," Qs'T, May, 1951, and Hunter, "Simplified Voice Control with a Loudspeaker," (OST', (october, 1953.)

Restriction of Audio Range

In either type of s.s.b. generator, it is good practice to restrict the frequence range of the audio amplifior. In the filter-type exiter, redueing the response below 300 or tow ayeles makes it easier for the filter to climinate the unwanted side frequencies below this range. In the phasingtope exciter, restrifting the range of the audio amplifier to the frequencios at which the network gives its best performance (usually about 300 to 3000 rycles) reduces the possibility of grnerating unwanted side frequencies outside: this range. Iligh-frequener andio eutoff is not as important in the filter-type exciter because the filter takes care of the higher frequencies.

When a restricted audio range is used, it is a good idea to make a number of cherks on the system, in :un affort to obtain the best compromise between naturalness and intelligibility. Voice characteristios differ from operator to operator, and it is sometimes proferable to acrentuate the "highs" slightly to give better intelligibility. Nostandards can be given here it is a subject for expromentation and cheeking under varied conditions.
The simplest means for reducing the lowfrequency response in the audio amplifier is to reduce the values of the coupling capacitors. Iligh-frequency response can be reduced by adding capacitance across grid resistors. More elaborate means require the use of filters using induetance and capacitance combinations.

Phasing-Type S.S.B. Exciters

It should be obvious that a phasing-type s.s.b. exciter can take many forms, but in general it will consist of a speed amplifier, audio phaseshift network, audio amplifier, balaneed modulators, r.f. source, r.f. phase-shift network, and r.f. amplifier. If operation on a band other than that of the r.f. souree, a mixer stage will also be recuired, for heterodyning the signal to the desired frequene. Sine there are several balaneedmodulator, andio- and r.f. phasing circuits, it is apparent that many difforent combinations are available. One of the simplest of all combinations is that shown in Fig, 12-i,
laferring to Fig. 12-5, the spereds amplifier buide up the signal from a crystal mierophone
to a useful level. The andio signal is then fed to an audio phase-shift network, $P S N$, which applies equal-amplitude audio signals 90 degrees out of phase to the grids of the 12 AT a adio amplifier. The two audio signals, 90 degrees out of phase, are applied to two balaneed modulators that have their outputs in parallel (L_{3}). The r.f. exeritation to the balaned modulators is also (9) degress out of phase, obtaned be coupling from the two tunce rireuits at L_{1} and L_{2}. A 6:A(${ }^{-}$lincar amplifier, operating Class $.13_{1}$, follows the balaneed-modulator stage and provides about $\mathrm{S}_{\text {o }}$ wat ts pak envelope output.

The gain control in the speech amplifier sets the gain to the proper level, depending upon the

Fig. 12-5-Sehematic of a phasing-tyme s.s.b. exciter. Capacitance in mf, unless otherwise noted - resistors are 1/2-watt untess otherwise noted. Chassis grounds marked should be the same.
$C_{1}-5$ or $10{ }_{\mu \mu}$ f. if inductive coupling between L_{1} and $1,3-16$ turns. No, 22 enam., spaced to occupy 1 ineh L_{2} not sufficient.
T_{1} - Single plate in push-pull krid, 1:3 ratin (Stancor -53().
T_{2}, T_{3} - 6-watt universal putput transformer, 30 ohme output (1'NC: R-38A).
$\mathrm{I}_{1}, \mathrm{~L}_{2}-32$ turns $\mathrm{V}_{\mathrm{o}} .22$ enam. elowewound on t -inch diameter irom-core tuned form (Millen 69016). Linh turn is 6 turns hook-up wire wound adjacent to cold end.
length on $1 / 2$-inch diameter iron-core-tuned form (Villen (0\%16), tapped at ernter. One-turn link wound at center.
I_{4} - Same as L_{1} : no link.
L5-25 turns No. 22 enam, flowewound on $\frac{1}{2}$-inch iron-core-tuned form (Millen 69016). I,inh of 4 turns at cold end.
S_{1} - D.p.d.t. togkle or rotary.
PSN - Audio phase-shift network (Millen 75012). See Fig. 12-6.
miserophone and how the operator uses it. Sinee the audio phase-shift network, P S.l, has unequal gains through its two ehamels, unequalamplitude audio is required at the input to

Fig. 12.6-Schematic of the phase-shift network marked $P S N$ in Fig. 12-5. Resistors and capacitor: should be within 1 wer ernt of salues shown.
obtain equal signals in the output. This is ohtained through proper adjust ment of the 100 -ohm input andio bahance control. To compensate for lack of uniformity in audio-amplifior gains, a a00-ohm audio balane control is provided in the cathorle of a $12 . \mathrm{AT}^{7}$ section, R, fo carricer balanere is obtained by proper setting of the $1(0) \theta$-ohm catrier batance controls. The side bathd in use (upper or lower) is selected by s_{1}, which reverses the audio signal in one of the channels, The r.f. phasing adjustment is obtained by the tuning of L_{1} and L_{2}.

Construction

There are a fow construetional precatutions that should be observed in a unit of this type. Transformers T_{2} and T_{3} should preferably be mounted at right angles to each other, to minimize st ray coupling. The 1×52 germanium diodes used in the halanered modulator should be checked for forward and batek resistance with an ohmmeter, and the forward resistames (the lower readings) should agree within 10 per cent. The leads from the coupling loops at L_{1} and L_{2} should return to the halanced modulator stage in twisted pairs, and the gromnding preanation mentioned in lig. 12-5 should be obsserved. Coils L_{1} and L_{2} should be mounted paralled to each other and with a separation of about $11 / 2$ diamaters $-L_{3}$ and L_{4} should be mounted to minimize coupling between them and L_{5} and the oscillator coils. This ran be acomplished by providing shielding or using the chassis deck to separate them.

Although slug-tuned coils are shown in the schematic, capacitance-tumed circuits can of course be used. Approximately the sime L / C ratios should be retained, however, If operation on another amateur band is desired, the tuned circuits can be modified aceordingly, retaining the same L / C ratios,
or the output of this unit can be heterodyned to the different land.

Adjustment

If v.f.o. operation is to be use l, the v.f.o. signal should furnish at le ist 10 volts r.m.s. at the torminals. With erystal control, plug in a erystal and tune L_{7} until the cireuit oseillates as indieated by a signal in a rereiver tuned to the proper frequence, and then tune the erivenit to a slightly higher freguenery. With v.f.o, operation, the cirenit is resomated in the usual mamer, as indicated by a platererurrent minimum.

The output from the 6.167 stage can be checked on an oscilloscope or on a receiver. The method of coupling an oscilloseope or receiver to the exciter is shown in Fig. 12-7. When connecting to an ospilloseoper, a tumed cirenit is required, and the r.f. voltage developed aeross the tuned circuit is applied direetly to the vertical deflecetion plates. The receriver is romereded by conpling lexsely through a loop and length of shielded cable: when furt her attenuation is required it is obtained through the use of resistors at the receiver input terminals.

With the oweillator rumning, tume the balanced modulator and $6 . \mathrm{A}_{\mathrm{i}} \mathrm{i}$ circuits for maximum output - this resonates these circuits. Next adjust the carrier balance potentiometers for minimum output. Then introduce a single audio tone of around 1000 eveles at the microphone terminah. Here agran it may be necessary to use a resistance voltage divider to hold the signal down and prevont overlotal. Advance the gain control and check the voltage at l'ins 2 and 7 of the $12 A T 7$ audio amplifier with a v.t.v.m. If they are not

Fis. 12.7-Fundamental arrankement for using an oscilloseope and/or recriver when testing an s,s, bexiter or tramsmitter. An audio oscillator is required to furnish the audio signal, and its ontput is beat controlled lis the external control K_{1}. The andio volume control in the sash. exciter should not lwe turned ont tos far, or it should be set at the normal position if yon kmow that position, and all volume controlling should then be done with R_{1} and the output attenuator of the audio oseillator. This will reduce the chances of over-loading the andio and other anplifier stages in the exeiter, a common ratume of distortion.
The weithoseope is cound od to the dummy load throunh a lonp, Iength of coaxial linc, and an $L-C$ circuit tuned to the operating freguency, It in neceseary to ko direrely to the vertical dellertion plates of the oncillosesper rather than through the vertical amplitier.
The receiver is compled to the dummy load through a lenop and a length of shielded line. If ton murh signal is oltained this way, an attennator. $R_{2} R_{3}$ c can lie added to the input terminals of the receiser. Small values of R_{2} and large values of R_{3} give the most attentation; in some cases R_{2} might be merels a few inches of solid wire.

Fig. 12.8 - Sketches of the oseilloneope face showing differnt conditions of adjustment of the exeiter unit. (1) shows the substantially elean earrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the audio input. (B) shows improper r.f. phase and unbalanee between the outputs of the two hatanced modulattors, (C) shows improper r.f. phasing but outputs of the two batanced modulators equal. (I) showe proper r.f. phasing but unbalance bet ween outputs of two balanced mandulaturs.
requal, adjust the $1(0)$-ohm :undio batanere control until they are. Listening to the signal, from the (iAdit, or looking at it on the seoper, should give a modulated signal. Try various sottings of L Le until the modulation is minimizerl, as well as touching up the 500 -ohm audio balance control. With the v.t.v.ni. cheek the r.f. voltages at the arms of the $10(0)$-ohm carrier balane potentiometers - they should be about the same. If not, they a be brought into this condition by readjustment of the tuning conditions which, howaver, must be kept consistent with minimum morlulation on the output signal.
The s.s.b. signal with single-tone audio input is a steady umodulated signal. While it maty not be possible to eliminate the modulation entirely, it will be possible to get it down to a satisfactorily low level. Conditions that will prevent this are improper r.f, phasing, lack of carrier balance (suppression), distortion in the audio signal (at the source or through overload in the speech
amplifior), and lack of audio balance at the 12AT7 audio amplifier. (If these, the r.f. phasing is perhatps the most eritional.

A final chere on the signal com be made with the rereiver in its most selective condition. The spectrum testing deseribed bolow camnot be donce with a broad receiver. Dxamining the spectrum near the signal, the side signals other than the main one (earrier, unwanted side bands, and side bands from audio hamonies) should be at least :30 dh, down from the desired signal. This cherking can be done with the S-meter and the a.v.e. on - in the carlier tests the a.v.e. should be off but the r.f. gain reduced low enough to avoid rereiver overload.
Examples of the proper and improper seope patterns are shown in Fig. 12-8.
(For an extensive treatment of the alignment of commercial phasing-type s.s.b. exeiters, sere Ehrlich, "ILow to Adjust Phasing-Type S.S.B. lexeiters," (2がT', November, 1956.)

Filter-Type S.S.B. Exciters

The basie contiguration of a filter-type s.s.b. exciter was shown earliar in this rhapter (Fig. 12-4). Suitahle filters, sharp enough to reject the unwanted side band alove a few hundred cereles, can be built in the range 20 to $5(k) \mathrm{ke}$. (In Eingland a few amateurs have used erystal filters at 5 Mc.) The low-frequeney filters generally use iron-cored inductors, and the new toroid forms find considerable favor at frequencies up to 50 or (60 ke . These filters are of normal band-pass constant-k and m-derived configuration. In the range 450 to 500 ke., either crystallattice or eleretromeremical filters are used. Lowfrequency filters are manufactured by Batker of Williamson and by Burnell \& Co., and electromechanieal filters are made by the Collins Radio Co. Crystal-lattice filters are gencraly homemade, and crystals from war-surplus equipment are a ready source of supply.

The frequency of the filter determines how many conversions must be made before the operating frequency is reached. For example, if the
filter frepterner is 30 kr , or so, it is wise to convert first to 500 or $6(0) \mathrm{ke}$, and then convert to the
 almost surely result if the conversion from 30 to 3900 ke . were made without the intermediate step. When a filter at bol ke . is used, only one conversion is meressary to operate in the 3.9-Me. hand, but 14-N16. and higher-frequency opration would require at least two conversions to hold down the images and make them cose to eliminate.

The choide of converter eireuit depends largely on the frequencies involved and the impedanee level. At low ireguene ies (up to $\overline{500}$ ke.) and low impedances, rectifier-tspe balanced modulators are often used for mixers, because the balaneed modulator dows not show the localoseillator frequency in its output and one souree of spurious signal is minimized. At frequencies at high impedance levels, and at the higher frequencies, varum tubos are generally used, in straight converter or balamedemodulator cirruits, de-
pending upon the need for minimizing the localoseillator frequence in the output.

Low-frequency side band filters in the 30- to on-ke. range are usually low-impedance deviers, and rectifier-type balaneed modulators are common practice. Side-band filters in the i.f. range
this can be nothing more elaborate than a shieded b.f.o. unit. The signal should be introduced at the balanced modulator, and an output indicator connected to the plate circuit of the varuum tube following the filter. With the erystals out of the circuit, the transformers can be

Fig. 12.9-One type of halanced-modulator circuit that can be used with a
 are furnished in various types of mountings, and the values of C_{1} and C_{2} will depend upon the type of filter selected.
T' - Ilate-to-push-pull grids audio transformer.
are higher-impedance cireuits and vacuum-tube balanced modutators are the rule in this rase. An example of one that can be used with the high-imperdance ($15,0 \mathrm{HH}$ ohms) mechanion filter is shown in Fig. 12-10. The filter can be followed by a converter or amplifier tube, depending upon the signal level. Some models of the merhanical filters haves a $2: 3-\mathrm{d}$ b. insertion loss, while others have only 10 .

Crustal-lattioe filters are also used to reject the unwanted side band. These filters can be
brought close to frequency by plugging in small capacitors (10 to $25 \mu \mu \mathrm{f}$.) in one crystal socket in each stage and then tuning the transformers for peak output at one of the two arsistal frequencies. The small capacitors can then be removed and the crystals replared in their sockets.

Tuning the signal source slowly arross the pass band of the filter and watching the output indicator will show the selectivity characteristic of the filter. The objective is a fairly flat response for about two ke. and a rapid drop-off outside

Fig. 12-10 - I cascaded half-lattice crystal filter that can be used for side-band selection. 'I'he crystals are surplus type in F'I'-243A holders. Yi and y should be the rame frequency and $)_{2}$ and Y_{4} should be 1.8 ke . highor. $T_{1}, T_{2}, T_{3}-4 \overline{3}(\mathrm{k}$ - . i.f. transformers.
made from crystals in the i.f. range - many of these are still available from stores selling military surplus. The most popular eonfiguration is the "cascaded half lattice" shown in Fig. 12-10. The ervstals used in this filter can be obtained at frequencies in the i.f. range, and ones that are within the ranges of the modified i.f. transformers will be satisfactory. Two $100-\mu \mu$ f. capacitors are connected across the secondary winding of two of the transformers to give push-pull output. The crystals should be obtained in pairs 1.8 kc . apart. The i.f. transformers can be cither capacitortuned as shown, or they can be slug-tuned.

A variable-frequency signal generator of some kind is required for alignment of the filter, but
this range. It will be found that small changes in the tuning of the transformers will change the shape of the selectivity characteristir, so it is wise to make a small adjust ment of one trimmer, swing the frequency across the band, and observe the chararteristic. After a little experimenting it will be found which way the trimmers must be moved to compensate for the peaks that will rise when the filter is out of adjustment.

The (suppressed) carrier frequency must be adjusted so that it falls properly on the slope of the filter characteristie. If it is too close to the filter mid-frequency the sideband rejection will be poor; if it is too far away there will be a lack of "lows" in the signal.

A Class AB, Linear Amplifier

The amplifier shown in Figs. 12-11, 12-12 and $12-14$ is designed to atilize the advantages of Class $A 3_{1}$ operation. It requires very little driving power, the bias supply is simple. and the grid-current meter is a positive "overmodulation" indicator. A low-cost power supply permits a peak power input of 280 watts to the amplifier in s.s.b. service. Inder these conditions the indicated d.e. input is about $1: 50$ watts.

As ran be seen from Fig, 12-13, the amplitier uses four totrodes in push-pull parallel, with shunt feed to remove the d.e from the plug-in plate coils. A fixed-tume grid rimenit is used and gives substantially uniform response over a 200-ke, hand centered at $39000 \mathrm{ke}, K_{1}$ and h_{2} are not "swamping" resistors - whike they lowd the driver to about I watt, they are for the purpose of "hrowd-banding" the grid rimoit. Niner the loud is constant, it is possible to adjusi Les. the coupling abil, to offer a dofinite input intpedinne to the conmerting line from the exeritere This ean be done quite easily with a s.w.r. bridge (the amplifier tulnes do not have to the lit). The indurtaners of the eoils were aljusted to give close to a $1-\mathrm{to}-1$ s.w.r. in 7 on-ohm line at the band erenter. This method of roupling is a great convenionere, sine the exeiter and amplifier can be eomected by any length of 7 an-ohm line with no change in the eongling conditions.
l'arasitic owillations were eliminated by Las, L_{4}, L_{5} and L_{6}. The dircuit is moss-mputalizal by means of ('3 and f's, although the amplition is stable under most conditions without the neutralization.

One disudvantage of operatime tubre in pushopull in a linear amplifier is the nemosity for very good batanee in the driving voltages applied to rewh side of the eirenit. If the driving voltage is higher on one side that the othere, the tube or tubes on that side will be driven to paak output before those on the other side, and will start saturating or "flateming" hefore the full output of the amplifior is reatized. The capareitors in the grid tank direuit. \mathbf{C}_{1} and ${ }^{\prime}$ an, should be matehed in caparitance within a prevent or two, and the usual precautions as to maintaining rireuit bat-

Fig. 12.11 - The power supply astubies the riphthatd half of the $1: \times 10 \times 3$-inth \times hassis and ther.f. sere tion the hefthand half in this vins. "Ohe permer traths. former and filtor condenarer are morar the pandeland the filter chaske is at the erdine of the ehatsim nevt to the volt. age-regnlator tuhes. 'I'he patel is $101 / 2$ by 19 imehes.
 chamsis so that the cathondes dan be dirertly premeded wa the tol of the math chasis, 'The blytill wrial cirenit is in the ean to the rizht of the tulnes. "The smatl coramie standeoffs visibly berneath the subehassi- shomert the metal tates which form one of the mentralizing rapacitors. A similar pair, hidelen hy the shiolded grid cirruit, suppert: the othur neutralizing capacitor.
anee should be observed. The r.f. voltage balance can be choeked with tur r.f. probe and v.t. voltmeter.

An "ronomy-type" power supply is used with the amplifier, as shown in lieg. 12-15. (Stero "Nore Vffective L"tilization of the Smatl Power Transformer," (2心'T, November, 1952.) The r.f. tubes should not be bisased beyond cut-off during receiving periods but should continue to run it

 tanh roil remosed to show the bloching rapacitors. parallel-feral plate chates amil parasitio-suppresor woils, 'I'her donhle lead throngh the arommels runs from the ontputaciratu eosil to the comsling rapacitor and

nommal operating bias, beratuse theig iolling current of 110 mas., plus the 40-mat. drain throngh the Vla tubse, serves as the onls "blead" on the power supply, and the voltage would rise too high if this drain wepe menowed.

The plate efliciency ohtainable with ('lass . 13_{1} oparation under the deseribed romditions is such that the total plate loss at prak output is well under the maximum plate dissipation rating of

Fig. 12-13-Cirenit of the r.f. portion of the lincar amplifier unit. Ualess otherwise specified, capacitanecs are in μ f. $\mathrm{C}_{3}, \mathrm{C}_{4}$-Copper tals $3 / \mathrm{B}^{\prime \prime}$ wide, app. $1 / 4^{\prime \prime}$ separation,

1/2" overlal.

(C_{5} - 1810) $\mu \mu \mathrm{f}$.-per-section, 0.0 -inch sparing.
C. - $300 \mu \mu \mathrm{f}$., receiving spateink.
$1_{3}, \mathrm{I}_{4}-18$ turns No. 22 ftam, on 1 -watt resistor (any hish value) as form, tapined at center.
I.5, In - il turns No. 22 enam. on same type form. RFCG, RFCi2- Hillen 3110^{-}, 1 mh .
L_{2} wound over L_{1} at center on 3.5 and 7 Mc.; interwonnd with h_{1} on 14-Mr, coil, Coil forms 1 -inelh diam. $I_{.7}$ and L_{8} made from $13 \mathbb{N}$ W coil stock, $L_{7} 2$-inch cliam. (390: and 300010), $1.421 / 20$ ind diam. (3906), assembly monnted on Millen 10305 plug hase.

The prid tumed corcuit, enclosed by daatied line, is monnted in Millen " (400 phag-in hase and shield.
120 watts for the four tubes. With the lias set for near-maximum dissipation with no signal, the tulnes run cooler when driven. However, in selecting the resting plate current by adjustment of the bias voltage it is advisable to make sure that no one tuhe is overloarled. This can orcur even though the total input is less than 120 watts, sine there is some variation in the plate currents taken by various tubes at the same hias voltage. Test the tubes individually and, if a selection is

I_{1}	$3.8-1.0 \mathrm{Mc}$.	7.2-7.3 Mc.	14 Mc. 12 turns
	31 turns	17 turns	
	No. 2 enam.	No. 22 enam.	No. 22 enam.
	close-wound	close-wound	length $5 / 8-\mathrm{in}$.
L2	$41 / 2$ turns	22/3 1110 rrs	$23 / 4$ turns
	10. 22	No. 22	10. 22
$\mathrm{Cl}_{1}, \mathrm{C}_{2}$		$100 \mu \mu \mathrm{f}$.	$50 \mu \mu \mathrm{f}$.
	silver mica	silver mica	silver mica
L_{7}	26 turns	18 turns	8 turns
	No. 16	No. 14	No. 14
L8	10 turns/in.	8 turns/in.	8 turns/in.
	10 turns	6 turns	2 turis
	No. 11	No. 14	No. 1.4
	8 turns/in.	8 turns/in.	8 turne/in.

possible, choose four that take substantially the same plate current.

The preferable methorl of adjusting the amplifier tuning for optimum output and linearity is of course to use an oscilloseope with the two-tone test. If the andio oseibitor generates a good sine watve and the distortion in the exriter itself is low, the optimum conditions should be secured with a plate current of 180 to 190 ma . when the driving voltage is just at the point where a trace (a few micrommeres) of grid current shows. A fairly good job of adjustment can be done without

Fig. $\mathbf{1 2} 16$ - 'The only r.f. components underneath the chassis are the sochet for the krid tanh, grid loading resistors, and the variable capacitor for ontput coupling adjustment. The bias supply is the group of components in the lower center in this view. I'he 12.6 -volt filament transformer is monnted on the left chassis wall and the filament transformer for the $8: 3$ rectiliers projects through the chassis near the conter. 'The latter transformer is a lomewound joh, but transformers of similar ratings are availate ready-made.

Fig. 12-15-1'ower and hias supplies. Capacitance values are in pf. unless otherwise specified.
'Tı - Filament transformcr, 12.6 volts, 2 aIn!.
T_{2} - Rectifier filanment transformer, thrie 5-volt 3-amp. spr. ondarien.
$\mathrm{I}_{3}-600$-volt 20 OH -ma, re-placement-tye transformer. l'ila ment winlings not used except for pilot liyht.
O_{4} - Ifilament transformer, 6.3 volts, 1 amp.
the scope. provided the two-tone test can be used and there is independent assurance that the distortion in the exciter is low. Simple maintain the driving voltage just at the grid-current point and adjust the antenna coupling, kerping the plate rircuit at resonather, for about 180 ma . plate current. The offresonance plate current should be only 10 mat or so larger than the "intune" current. Some sort of r.f, output indicator, such as anatenna ammeter, is helpful: theoutput should start to drop immediately on even a slight reduction in driving voltage. If the output tends to stay up when the driving voltage is cut slightly, the amplifier is saturating on the peaks and is not loaded heavily emough. The trick is to get the loading just right so that the maximum output is obtaned (too-heavy loading will reduce both the output and phate effieiency at exactly the point where a bit more drive will cause flattening.

Although the usual constructional practice of shiclded wiring with disk bypases was followed as a matter of rourse, the amplifier was mot shielded for TVI, Shielding is not neressary for 75 meters, but is likely to be required for $14-$ It . - and perhaps 7 -Mr. - operation in localities where a hamonie falls directly in a chamel having a weak TV signal. Class $\operatorname{AB} B_{1}$ operation does hedp - it is only neressary to look at the TV screen while the driving voltage is mudged into the grid-current region to sae that - but it is not a complete panarea for the tough caves. Should shielding be needed, it should not be much of a constructional prohlem to add it around the r.f. section, both top and bottom.

The amplifier should be neutratized by the usual mothod of adjusting for minimum rif. in the plate circuit with r.f. voltage on the grids but with plate and serern voltages off. A sensitive indieator such as a crystal detector and lowrange milliammeter should be used; they may be

comereted to the r.f. output terminals for eonvenience, ('3 and ('a are adjusted by bending the motal tabs from whieh they arre ronstructed to vary the spacing. This should be done with an insulating tool: one can ensily be devised in such a way as to permit gretting at the plates.
(Originally deseribed in April, 1954, QST'.)

Fig. 12-16 - Construction of the plug-in grid tanks. The inductances of the two coils are adjusted for an inpat impedance of 55 ohms at the center of the band. Final pruning of the grid coil can be by adjuating the spating of an end turn as in this \bar{i}. Me. asermbly, The coil form is mounted on a thin insulating strin which is mounted on the studs at the sides of the plug-in base.

A Grounded-Grid Linear Amplifier

Grounded-grid amplification in linear serviee has several advantages over conventional eircuits. The amplifier is degenerative, which adeds to the stability. It has lewen found that it produces slightly better linearity than conventional circuits using the sume tuhes. The greater part of the power required to drive the grounded-grid
pacitors to the plate. This couples the input and output cireuits and canses instability. It is possible, however, to stabilize atn amplifier with these tubes by grounding the beam-forming phates directly, since this holps to isolate the input and output rircuits. In some makes of 1625 s the beam-forming plate lead is attached

Fias. 12-17-This linear amplifier
 in a gronnledi-grid cirouit. It rath lie driven loy ath s.x.b. excitur eapable of 20 watts peath emelope bower output.
 deep.

amplifier apparars in the output along with the amplified signal. The disadvantage of using the 807 or 1625 in this type of opration is that the beam-forming phates are combered to the catthode. The signal appears on the eathode, and the beam-loming phates form good roupling rat
${ }^{1}$ The modified tubes can be oltained from P \& 11 Electronics. is N. liarl Avo.. lafavotte. Ind. Cement for doing the job can be obtainol? from the same source.
to the eathode lead in the eathode pin. Such tubles cean be modified by first removing the old base by applying hat from a large torch, sopatrating the cathode and beam-phate leads, and reinstatling the base or a new one. Tube-thase coment ran be used to secure the base to the tube, and the assembly wan then be baked in an overn at 90 degrees C . to havden the seal. ${ }^{1}$

Fig. 12-18 - Schematic diagran of the grounded-grid amplifier. Capacitor values in $\mu \mu \mathrm{f}$. unless otherwise specified. C.3, C_{4} - 60\%)-volt nilvered mica caparitor. KFC: National 1 -1 -5 A.

Fig. 12-19-A top view of the linear amplifier shows the r.f. tulees at the left, clustered around the r.f. choke. The two small tubes are the 816 rectiliers used in the l201-solt power supply. The variable inductor is the antenna loading coil from a BC:-1.88 Command transmitter.
-

The schematic of an amplifier using these modified tubers is shown in Fig. 12-18 with photographs of the unit in Figs. 12-17, 12-19 and 12-20. Since the input cirenit of the groundedgrid amplitier is a low-impedance load for the driver, it is possible to do away with any input tuned rimenit: the d.e return for the 1625 s is made through the expiter output tap or link. A word of cation here - be sure there is no d.e. on the exiter link. berause the 1000 -ohm resistor would short it to the chassis.

No bias or sereen voltage is required at 1200 volts on the plate. liach tube draws about 10 ma.. so the power supply is constantly bled with to ma., thus eliminating the need for a bleeder.

With no serech and bias supply and no input tuned circuit, it is possible to bivid a rompact
amplifier. The unit in Fig. 12-17 uses the pinotwork output rircuit with variable inductor to cover 75.40 and 20 meters. Operation on 15 and 10 meters is impraetical berause of the high output rapacitance of the four tubes used in parallel.

Construction

The unit is construeted on a $10 \times 14 \times 3$-inch chassis, and a $51 / 4 \times 51 / 4$-inch subehassis on which are momed the plate r.f. ehoke and four (i-pin tube sockets. This subehassis is mounted $11 / 4$ inches below the main chassis deck. The cold cond of the r.f. choke is hy-passed through a 0.(0)t-pf. mapacitor to a soldering lug at the reonter of the subassembly. The lug is mounted beneath a 1 -inch stand-off insulator.

Fig. 12-20 - 'This bottom view shows bow the four r.f. tube sock"ta are mananted on a whall phatform. The $2.5-m h$. choke acress the obstpat rinenit is to prevent areidintal shoch from the antrina system in the event that the platr-hloching capacitor should shorl cirmit. Vilament transformers are menmed on the side of the chassis.

and a single stud serew holds the choke and stand-off to the subchassis. A feed-through insulator on the subehassis feeds d.e. to the choke and also serves as a tie point for the "hot side" of the br-pass caparitor. The sereen grid, grid, and beam plate are grounded to the subehassis as close as pessible to mach tube socket. The cathodes are commered at the contral standeof insulator, which is also the tie point for the r.f. input lead.

The cabinet is 10 by $141 / 2$ be $83 / 4$ inches with a pancel to lit. The rotor indieator of the inductor and imput rapacitor arre mounted on the pancel and the panel serured by the output rotor switeh. moter and toggle switehes. The 0.(O)t-pf. d.e. hocking rapacitor mounts on the rear of the input-tuning cataritor, ('ı.

An r.f. choke is included arross the output of the pi-metwork, so that in the event of a shorted else plate blocking caparitor the power supply fuse will blow. This kerps 1200 volts d.e. off the antemna system.

If plate voltage were applied with no input comection for the eathode return, full plate voltage would appear botworn cathode and filament. A 1000 -ohm resistor is connected from eathode to ground to prevent this from ocrurring.

Operation

The tume-up prowedure is the same as for any pi-metwork amplifier. The whole coil is used for 75 meters, ahout hall for to meters, and onefourth for 20 moters. Initial tuning adjustments are made with about half the available r.f. drive powor. Twonty watts of drive will put a good signal on the air.

The input and output circuits in this design are wetl shieded by the grounded grid, serecoll. and Ixam-forming phates, and no trouble with fundamental or v.h.f. instability should be axperionered. Although this amplitior is designed primatry for sseb., it may also be used to amplify a low-powered am. or (ciw, signal.
(From Junc, I!㐫5, QST.)

Grounded-Grid Amplifiers With Filament-Type Tubes

It is not nerossary to use indireetly-heated (athode tepe tulnes in the grounded-grid cireuits, and fibment-type tulus can be used just as cofertively. However, it is neressary to raise the filament ahove r.f. ground, and one way is shown in Fig. 12-21. Here tilament chokes are used bot ween the filament transformers and the tube socket. The inductane of the r.f. chokes does not have to he very high, and is to $10 \mu \mathrm{~h}$. will usually suffice from so meters on down. The ramenterarrying

Fix, 12.21 - When filamentetype tubes are used in a grounded-prid circuit. it is meressary to use filamemt chokes to herp the filament atove r.f. ground. In the portion of a typieal circuit shown here, the filament chokes, RFC1 and RPC: can be a manufartured unit (e.p., BSN FClis or P(C30) or homemade as dessribed in the text. Total plate and krid current tan be read on a milliammeter inserted at \boldsymbol{x}.
rapateities of the r.f. chokes must be adecpuate for the tubre or tubes in use, and if the resistance of the ehokes is too high the filament voltage at the tube socket mar he too low and the tube life will be endangered. In such a case, a higher-voltage
filament transfomer can he usad, with its primary voltagerelt down unt il the voltage at the tube socket is within the proper limits.

Filament chokes can be wound on ceramic or wooden forms, using a wire size large enough to carrs the filament eurrent without undue heating. Latge exlindrical ceramic antemna insulators ("an he used for the forms. If enamoted wire is used, it should ixe spaced from half the diameter to the diameter of the wire; heave string can be used for this purpose. The separate chokes indirated in Fig. le-2l are not essential; the t wo windings ram be wound in parallel. In this case it is not nerossaty to space all windings; the two parallel wires ean be treated as one wire, winding them together with a single piece of string to spare the turns. linameded wire can be used be(ause the enamel is sufficiont insulation to handle the filament voltage.

When considerable power is available for driving the grounded-grid stage, the matching betwern driver stage and the amplifier is not tou important. However, when the driving power is marginal or when the driver and amplifier are to be connered bey a long length of eoaxial cable, a pi network matching circuit can be used in the input of the grounded-grid amplifier. The input impedaner of a grounded-grid amplifier is in the range of 100 to $4(0)$ ohms, depending upon the tube or tubes and their operating conditions. When data for grounded-grid operation is available (as for one tube in Table 12-1), the imput impedance can be computed from
$Z_{\text {in }}=\frac{(\text { prak r.f. driving voltage })^{2}}{2 \times \text { driving power }}$
From this and the equations for a pi net work, a suitable network cim be devised.

Adjustment of Amplifiers

The two eritical adjustments for obtaining proper operation from the linear amplifier are the plate loading and the grid drive. Since these adjustments are preferably male with power on, it is a matter of convenience to have both controls readily available during initial tume-up.

The seope can show misadjust ment at a glance and will greatly facilitate all adjustments. In addition, it is the most reliable instrument for observing modulation amplitude and, once used, is likely to become the most nearly essential instrument in the shack. It ram bee coupled to the amplifier as in Fig. 12-7.

With single side band, 100 per cent modulation with a single tone is a pure r.f. output with no modulation envelope, and the point of amplifier overload is difficult to observe. However, if the input signal consists of two sine waves of different frequencies (for (xample, lои) e.p.s. difference) but equal amplitudes, the output of the single-side-band transmitter should have the envelope shown in Fig, 12-22. This is calleel a "twotone" test signal to dist inguish it from other test signals. Its first advantage lies in the fact that any flattening of the positive patas is readily disermible, whieh makes the adjustment of the linear-amplifier drive and output coupling as simple a procerlure as that for a.m. systems. Flattening of the peaks (to be avoided) is illustrated in Fig. 12-2:3.
Those who use the filter method for obtaining single side band can ohtain such a test signal by feeding a single audio tone to the balanced modulator and jumping the filtor. Those using the phasing method of single-side-band signal generation will recognize the pattern as that obtained when a single test tone is applied to ame of the balaneed modulators. For this latter group a two-tone test signal may be readily obtained be disabling one of the balaneed modulators in the exciter and applying at single-frequenery andio, tone at the input.

Suppose that the linear amplifior has beren coupled to a dummy load and the single-side-band exciter has been connerted to its imput. By observing the oseilloseope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the praks of the two-tone
test signal wave form are on the verge of flattoring. The prak input power may now be cherked. This is readily possible, for with the two-tone test signal applied, the peak input power will be 1.57 times the d.e. power input to the linear amplifier. Should this he different from the design value for the particular linear amplifier, the drive and loading adjustments can be quickly changed in the proper direction (always adjusting the loading so that the peaks of the envelope are on the verge of flattening) and the proper value reathet.

As a final check, before coupling the linear amplifier to the antemat, the single-side-hamd operator will do well to check the linearity of the sustem, since distortion in the linear amplifier probably will result in the generation of side hands on the side that was suppressed in the exeiter. Here again the 1 wo-tone test signal will le of great help, since distortion of the signal will be readily reeognized. A cherek of the bias supply has already been recommended. (iow Amplifieation of sts.B. Signals). The next most likely. form of distortion will be cetused ber curvatura of the tabe chamateristic mear autoff, and will bre reognizable from a twotone test pattern that looks like Fig. 12-2t, A slight readjustment of bias (or applying a fow volts of positive or negative bias, in the case of zerobias tubes) will usually straghten out the kink that exists wheme the pattern crosses the zero axis. Make this athjustment with speecial carre, however, lecouse the dissipation of tha tubes with no input signal will be very sensitive to this adjustment. There are a few tubes that will not permit this adjustmont to be carried to the point where the kink is antirely eliminated without execoding the raterd plate dissipation.

The antenna maty now he mopled to the lincous amplifier unt il the plate input with the exatitation as determined above is the samer as that obtamed with the dummy load. The system has now trent adjusted for opt imum performance, although it is well to monitor it with a seoper.
(For further reading on linear amplifiers, sere Long, "Sugar-Coatell Linoar-Amplifier Theory," (ss"T, October, 1951, and Fhrlich, "How To Test and Align a Linear Amplifier," (2以T, May, 1!52.)

rig. 12.22-0scillogran of a two-tone test signal through a linear amplifier.

Fig. 12.23-Flatening caused by overdrive or insufficient plate loading.

Fig. 12.2.1 - 'The distorted pattern ohtained when the hias voltage is incorrect.

Frequency Conversion

fif. 12-25-Two examples of "high-level" mixer rircaits. The eircuit at 1 hax lwern umed with ovo. 6l. 6 , 6.105 and 6Y'6 type tulues. With 30id valte on the blate the idling current is abont 1.5 ma., Kiching as high as 30 ma, with the s, w.h. signal.

The circuit in 13 operates with a positise sereren voltage and some cathode bias, and is capable of somewhat more output than the circouit shown in A.

In either case the output rircuit, $C_{1} L_{2}$, is tuned to the sum or difference frequency of the ospillator and m.s.b. signal. Coupling coils L_{1} and $\mathrm{I}_{3} 3$ will usually ler three or four turns coupled to their respective driving sources.

The proferred s.s.b. transmitter is probably one that generates the s.s.b. signal at some suitable frequency and then heterodynes the signal into the desired amateur bands, although a fow designs exist that generate the s.s.b. signal at the oporating frequeney and consequently eliminate the need for heterodyning. When the heterodyning is done at low level (involving an s.s.b. signal of not more than a few volts), standard receiving techniques are satisfactory. The converter tubes operated at manufacturer's ratings leave little to be desired.

When high-level heterodyning is required, as when an exciter delivering from 5 to 20 watts on a single hand is availahle and multiband operation is desired, a high-level converter is used. since the efficieney of a eonverter is only about one-fourth that of the same tule or tubes used in Class AB3, using a ronverter stage as the output stage is not very economical, and the high-level converter is generally used to drive the output stage.

Reference to tube manuals will disclose no information of the operation of small tramsmitting tubes as mixers. However, it has beren found that most of the tetrodes in the $15-$ to 35 -watt platedissipation class make acereptable mixers, and tubes like the $6{ }^{\circ} \%, 6 \mathrm{~L} 6,807$ and 6146 have been used suecessfully. The usual procedure is to feed one of the signals (oscillator or s.s.h.) to the control grid and the other to the eathode or soreen grid. Typical circuits are shown in Fig. 12-25.

Transmission Lines

The phere where ref, power is semerated is very frequently not the mare where it is to be utilized. A transmitter and its anterna are a goom example: The antemai, to radiate well, should be high above the ground and should be kept clear of trees, buildings and other objects that might absorb cmergy, hat the tramsmitter it self is most conveniontly installed indours where it is radils. areessible. There are many other instames where powermust bedelivered fromone point to another.

The means by which power is transorted
from puint to print is the r.f. themsmission line. It radio frequencies at line exhibits ention y dittrerent chaturemistice thath it dows at commereial power frequencies. This is herimse the speed at which electrical energy tratvels, while tremendously high as eompared with mechanieal motion, is not infinite. The peculiarities of r.f. tramsmission lines result from the fare that a time interval comparable with ath r.f. corle must elapse before energy leaving one point in the cireuit can reach :mother just a short distance anay.

Operating Principles

Suppose we have a battery and a pair of patratlel wites extending to a very great distance. It the moment the battery is comered to the wires, eledtoms in the wire neal the pesitive terminal will be attrated to the hatery, and the same number of electrons in the wire near the negative hattery terminal will be repelled out ward along the wire.

Thus a current flows in cach wire near the battery at the instant the battery is connected. However, a definite time interval will elapse before these currents are evident at a distance from the hat ery: The time interval maty be very smatl. For example, one-millionth of a second (one microsecond) after the connedion is made the rurrents in the wites will have traveled 300 moters, of newty 1000 fert, from the batery terminals.

The current is in the nature of a charging current, flowing to chatge the catpabiture ber tween the two wires. But unlike an odinary capacitor, the conductors of this "linest" cat pacitor have atpreciable induetanee. In fiat,

Fig. 13-1 - V̈quivalent of a transmission line in humped circuit constanto.
we maty think of the line as being componed of a whole series of small inductinces and caparitances connected as shown in fig. 1:3-1, where each eoil is the inductanere of a very short sedtion of one wire and each caparitor is the eatpateitance bet ween two such short sections.

Characteristic Impedance

An infintely-long chain of eopls and eapacitors commerted as in liig. [3-1, where eath L is the same as all others and all the Cs have the
same value, has an impertant properte. Tos an clectrical impulse applied at one end, the eomhination abplears to have an impedance - cabled the characteristic impedance or surge impedance - that is approximately equal to $\sqrt{ } / / / /^{\prime}$, where L and C are the inductance and eatparitinner per unit length. This impedane is purely resistive.

In defining the chatacteristio impedance an $\sqrt{ } / /{ }^{\prime}$, it is asumed that the ronductors hatve no inherent resistaner - that is, there is no $I^{2} R$ lose in them - and that there is moperer loss in the dielertrie survounding the eonductors. In other words, it is assumed there is no, pewer loss in or from the line no mater how great its Iengith. This does mot seem comsistent with cabling the rharateristia impedaner a pure resistance, which implies that the power supphed is all dissipated in the line. Jhat in in in-finitely-long line the coffert, so fion the the soure of power is comerned, is exately the simme as though the pewer were dissipated in a resistance, because the power leaves the souree and trivels out wated forever along the lime.

The chatrateristic impedance determines the amount of current that ran thow when a given voltage is atpplied to an infinitely-long line, in exactly the sime waty that a definite value of athal resistane limits current flow when at given voltage is applied.
The inductance and eapacitance per unit length of line depend upon the size of the conductors and the sparing between them. The closer the two conductors and the greater their diameter, the higher the capacitance and the lower the indurtince. I line with large conductors closely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"Matched" Lines

Aetual transmission lines do not extend to infinity but have a definite length and are connected to, or terminate in, a load at the "output"
end, or end to whith the power is delivered. If the load is a pure resistance of a value equal to the characterist ic impedance of the line, the current traveling along the line to the load does not find conditions changed in the least when it moets the load; in fact, the load just looks like still more tranmission line of the same chatareterist ic impedanee, Consequently, comnerting such a load to a short transmission line allows the current to travel in exately the same farhion as it would on an infinitely-long line.

In other words, a short line terminated in at purely-resist ive load equal to the characererist in impedance of the line adets just as though it were infinitely long. wach a line is said to be matched. In a matched transmission line, power thavels outward along the line from the soure until it reaches the load, where it is completely aborbed.

R.F. on Lines

The discussion athove, ath hough based on directcurrent flow from a battery, abo holds when an r.f. voltare is applied to the line. The difference is that the alternating voltage causes the amplitude of the current at the inpul terminald of the line to vary with the voltage, and the direction of current flow also periodically reverses when the polarity of the applied voltage reverses. In the time of one eyole the energy will travel a distance of one wave lengt thatong the line wires. The current at a given instant at any point along the line is the result of a vollage that was applied at some rarlier instant at the input terminaks. Hence the instantaneous amplit ude of the current is different at all points in at one-wave-length section of line: in fact, the current flows in opposite directions in the same wire in adjacent half-wavelength sections. However, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

The result of atl this is that the current (and voltage) travels aboug the wire ats at series of Waves having a length equal to the velocity of travel divided ber the frequency of the ace, voltare. On an infinitely-long line, or one property mat ched at the load, an immeter inserted anywhere in the line will show the same current, since the ammeter averages out the variations in current during a cerde. It is only when the line is not properly matched that the wave motion beomes apparent. This is discussed in the next section.

STANDING WAVES

In the infinitely-long line (or its motched counterpart) the impedance is the same at any point on the tine because the ration of voltage to current is absays the same. However, the impedture at the end of the line in Fig. 1:3-2 is zewo - or at least extremely smabll - bectuse the line is short-circuited at the end. The outgoing power, on meeting the short-circuit, reverses its direction of flow and goes back along the transmission line toward the input end. There is a large current in the short-cireuit, but substantially no voltage
across the line at this point. We now have a voltage and current representing the power going outward (incident powe-) toward the short-rircuit, and a seeond voltage and current representing the reflected power traveling bark toward the source.

The reflewed current travels at the sime speed as the outgoing ourent, so its instantaneous value will be different at evory point along the line, in the distince represented be the time of one evele. It some prints along the line the phase of the outgoing and reflected currents will be such that the rurrents rancel earh other while at others the amplitude will be doubled. It inholweren puints the amplitude is belween these two extremes. The prints at which the courents are in and out of phase depend only on the time erquired for them to travel and so depend only on the distaner atomg the line from the point of reflection.

In the short-rireuit at the end of the line the two current romponents are in phase and the total curcent is large. At at distance of one-half wave length back along the line from the shortcircuit the ouguing and reflected eomponents will again be in phase and the resultant curent will again have its maximum value. This is also
(A)

Fia. 1:3-2 - Standing waves of voltage and eurrent along short -drenited transmission line.
true at any point that is a multiple of a halfwave length from the short-circuited end of the line.

The outgoing and reflected eurrents will cancel at a point one-quarter wave length, along the line, from the short-rircuit. It this point, then, the current will be zero. It will abso be zero at all points that are an odd multiple of one-quarter wave lengtla from the short-circuit.

If the current along the line is meanured at sureessive points with an ammeter, it will be found to vary about as show in l'ig. 13-213. The same result would be oblaned by measuring the current in either wite since the ammeter eannot measure phase. Ilowever, if the phase could be cherked, it woud the found that in each surcessive half wave ? ength sect ion of the line the corrents at any given instant are flowing in opposite direetions, as indieated by the solid line in Pig. 13-2(3 Furthermore, the current in the second wire is flowing in the opposite direction to the current
in the adjacent section of the first wire. This is indieated by the broken curve in lig. 1:3-2(. The variations in current intensity along the transmission line are referred to as standing waves. The point of maximum line current is called a current loop or current antinode and the point of minimum line current is current node.

Voltage Relationships

Sinee the end of the line is short-cireuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing wave is met, at the end of the line, by a reflected voltinge of efual amplitude and opposite polarity. In other words, the phase of the voltage wave is reversed when reflection takes place from the short-rireuit. This reversal is equivalent to an extra half evele or half wave length of travel. As a result, the outgoing and returning voltages are in phase a quarter wave length from the end of the line, and again out of phase a half wave length from the end. The standing waves of voltage, shownat 1) in Fig. 13-2, are therefore displaced by one-quarter wave length from the standing waves of current. The drawing at lis shows the voltages on both wires when phase is taken into account. The polarity of the voltage on each wire reverses in eath half wave length section of tranmission line. 1 voltage maximum is catled a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-eireuited, there can be no rurrent at the end of the line hut a large voltage can exist, Igain the incident power is reflected back toward the source. In this case, the incident and reflected components of current must be equab and opposite in phase in order for the total current at the end of the line to be zero. The incident and reflected components of voltage are in phase and add together. The result is that we abain have standing waves, but the conditions are reversed as compared with at short-cireuted line. lig. 1:3-3 shows the open-circuit ed line case.
(A)

Fis. 13.3 -Standing waves of vurrent and voltage along an open-circuited transmission line.

Fig, 13.1 - Stamding wavers on a transmismion line termi. nated in a resistive load,

Lines Terminated in Resistive Load

Fig. 13-1 shows a line terminated in a rexistive load. In this case at least part of the incident power is absorthed in the load, and so is not atvatilathle to be reflected batek towated the source. Becoulse only part of the power is reflected, the reflerted components of voltage and current do not have the same magnitude as the incident components. Therefore neither voltage nor current cancel completely at any point abong the line. However, the speed at which the incident and reflected components travel is mot affected by their amplitude, so the phase relationships are similar to those in open- or short-circuited lines.

It was: pointed out earlier that if the load resistanee, $/ Z_{\mathrm{R}}$, is equat to the chararteristic impedance, Z_{0}, of the line all the power is absorbed in the load. In suth a case there is mo reflected power and therefore no standing waves of current and voltage. This is as speciab case that represents the change-over point between "short-circuited" and "open-cirenited" lines. If $Z_{\text {r }}$ is lessthatn Z_{n}, the current is largest at the load, while if Z_{n} is greater than $\%_{0}$ the voltage is largest at the load. The t wo conditions are shown att I 3 and C , respectively, in lig. 1:3-4.

The resistive termination is an important pratical case. The termination is seldom an actual resistor, the most common terminations being resonant cireuits or resontunt antenna systems, both of which have essentially resistive impedaness. If the load is reative as well as resistive, the operat ion of the line resembles that shown in lig. 1:3-1, but the presence of reatance in the load causes two moditiations: The loops and nulls are shifted toward or away from the load; and the amount of power reflected back toward the source is increased, as compared with the amount reflected by a purely resistive load of the same total impedance. Both effects berome more pronomed as the ration of reactance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum current along a line, Fig. 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a mpasure of the mismate bet ween the load and the line, and is equal to 1 when the line is per-
fectly matehed. (In that case the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive load, the standing-wave ratio is

$$
\begin{equation*}
\text { S.W.R. }=\frac{Z_{\mathrm{R}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{R}}} \tag{13-A}
\end{equation*}
$$

Where S.W.R. = Standing-wave ratio
$Z_{\mathrm{R}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Characteristic impedance of line

Example: A line having a chararteristic impedanre of 300 ohms is terminated in a resistive load of 2 ; ohms. The s.w.r. is

$$
S, W^{*}, R .=\frac{Z_{0}}{Z_{\mathrm{H}}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{R} or Z_{0}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1.

It is easier to measure the standing-wave ratio than some of the other quantities (such as the

Fig. 13-5 - Meastrement of standing-wave ratio. In this drawing, $I_{\text {max }}$ is 1.5 and $I_{\text {min }}$ is 0.5 , so the s.w.r. $=I_{\text {пıa }} / I_{\text {mia }}=1.5 / 0.5=3$ to 1 .
impedance of an antenna) that enter into trans-mission-line computations. Consequently, the s.w.r. is a convenient basis for work with lines, The higher the s.w.r., the greater the mismatch between line and load. In practical lines, the power loss in the line itself increases with the s.w.r.

INPUT IMPEDANCE

The input impedance of a transmission line is the impedance seen looking into the sending-end or input terminals; it is the impedance into which the source of power must work when the line is connected. If the load is perfeetly matched to the line the line appears to be infinitely long, ats stated earlier, and the input impedance is simply the characteristic impedance of the line itself. However, if there are standing waves this is no longer true: the input impedance may have a wide range of values.

This can be understood by referring to liigs. 13-2, 13-3, or 13-4. If the line length is such that standing waves cause the voltage at the input
terminals to be high and the current low, then the input impedance is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage to current. Conversely, low voltage and high current at the input terminals mean that the input impedance is lower than the line Z_{0}. Comparison of the three drawings also shows that the rainge of input impedance values that may be encountered is greater when the far end of the line is open- or short-circuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In aldition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also causes the input impedance to contain both reactance and resistance, even though the load itself may be a pure resistance. The only exceptions to this occur at the exact current loops or nodes, at which points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: It all other distances along the line the current cither leads or lags the voltage and the effect is exactly the same as though a caparitance or inductance were part of the input impedance.

The input impedance can be represented either by a resistance and a capacitane or by a resistance and an inductance, as shown in lig. I:36. Whether the impedance is inductive or capacitive depends on the characterist ies of the load and the lengt h of the line. It is possible to represent the equivalent circuit by resistance and reactance cither in series or parallel, so long as the total impedance and phase angle are the same in either case. For a given impedance and phase angle, different values of resist ance and reactance are required in the series case as compared with the parallel case.

- The magnitude and character of the input inpedance is quite important, since it determines the method by which the power source must be coupled to the line. The caldulation of input impedance is rather complicated and its measurement is not feasilile without special equipment. Fortunately, in amatour work it is unnecess.ury rither to calculate or measure it. The proper roupling can be achieved by relatively simple methods described later in this chapper.

Unterminated Lines

The input impedance of a short-circuited or open-circuited line not an exact multiple of onequarter wave length long is practically a pure reactance. This is because there is very little power lost in the line. Such lines are frequently used as "linear" inductances and capacitances.
If a shorted line is less that a quarter wave long, as at X in Fig. 1:3-2, it will have inductive reactance. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at Y, the reactance is capacitive, high near the quarter-wave point and becoming lower as the half-wave point is approached. It then alternates between inductive and capacitive in successive
quarter-wave sections. Just the reverse is true of the open-circuited line. *

At exact multiples of a quarter wate length the impedane is purely resistive. It is apparent, from examination of 13 and 1) in Fig. $13-2$, that at points that are a multiple of a half wave lengeth i.e., $1 / 2,1,11 / 2$ wave lengths, etc. - from the short-circuited end of the line the current and

Fig. 13-6 - Series and parallel equivalents of a line whose input impedance has both reactive and resistive componemts. The series and parallel equivalents do not have the same values; e.g., in A, I. drees not "pral I^{\prime} and K does not equal R '.
voltage have the same values that they do at the short circuit. In other words, if the line were an exart multiple of a half wave length long the gencrator or source of power would "look into" a short circuit. On the other hand, at points that are an odd multiple of a quarter wave length i.e., $1 / 4,3 / 4,11 / 4$, ete. - from the short circuit the voltage is maximum and the current is zero, sine $Z=E / I$, the impedance at these points is theor retically infinite. (Actually it is very high, but mot infinite. This is because the eurrent does not actually go to zero when there are losses in the line. losses are always present, but usually are small.)

Impedance Transformation

The fact that the input impedance of a line dopends on the s.w.r. and line length can be used to advantage when it is necessary to transform a given impedance into another value.

Study of Fig. 1:3-4 will show that, just as in the open- and short-circuited eases, if the line is onehalf wave length long the voltage and current are exactly the same at the input terminals as they are at the load. This is also true of lengths that are integral multiples of a half wave length. It is also true for all values of s.w.r. Hence the input impedance of any line, no matter what its Z_{1}, that is a multiple of a half wave length long is cxactly the same as the load impedance. Sueh a line can be used to transfer the impedance to a new locition without ehanging its value.

When the line is a quarter wave length long, or an old multiple of a quarter wave length, the load impedance is "inverted." That is, if the current is low and the voltage is high at the load, the input impedanee will be such as to require high
current and low yoltage. The relationship between the load impedane and input impedanee is given by:

$$
\begin{equation*}
Z_{s}=\frac{Z_{0}^{2}}{Z_{\mathrm{R}}} \tag{13-B}
\end{equation*}
$$

where $Z_{s}=1$ mpedaner looking into line (line length an odd multiple of onequarter wave length)
$Z_{\mathrm{R}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Chatacteristic impedance of line
Example: A guarter-wave-length line having a
 nated in a resistive load of 75 ohms. The impedance looking into the inpmt or somding end of the line is

$$
Z \mathrm{~s}=\frac{Z 0^{2}}{Z_{16}}=\frac{(500)^{2}}{76}=\frac{250.000}{75}=3333 \mathrm{ohns}
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{ } / \overline{z_{1} Z_{12}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that we wish to "mateh," we can do so if we connet them together by a quarter-wave transmission line having a charateristic impedanee equal to the square root of their product. A quarter-wave line in other words, has the characteristics of a transformer.

Resonant and Nonresonant Lines

The input impedanes of a line operating with a high s.w.r. is critically dependent on the line length, and resistive only when the length is some integral multiple of one-quarter wave length. Lines rut to such a length and operated with a high s.w.r. are catled "tuned" or "resol) nant" lines. On the other hathd, if the s.w.r. is low the input impedance is close to the Z_{0} of the line and does not vary a great deal with the lime length. Surh lines arre called "flat," or "untuned," or "nonresonant."

There is no sharp line of demarcation bet ween tuned and untuned lines. If the s.w.r. is below 1.5 to 1 the line is essentially flat and the same imput coupling method will work with all line lengths. If the s, w, r, is above 3 or 4 to I the type of coupling system. and its adjustment, will depent on the line longth and such lines fall into the "tuned" eategory.

It is always advantageous to make the s.w.r. as low as possible, A resonant line beromos nerensary only when a considerable mismatch between the load and the line has to be tolerated. The most important pratetical example of this is when a single antema is operated on several harmonically-related frequencies, in which case the antenna impedance will have widely-different values on different harmonics.

RADIATION

Whenever a wire carries alternating current the electromagnetic fields travel away into space with the velocity of light. At power-line frequencies the field that "grows" when the current is
increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the alternations are so slow. But at radio frequencies fields that travel only a relatively short distance do not have time to get back to the conductor before the next cycle commences. The consequence is that some of the electromagnetic energy is prevented from being restored to the conductor; in other words, energy is radiated into space in the form of electromagnetic waves.
The amount of energy radiated depends, among other things, on the length of the conductor in relation to the frequency or wave length of the r.f. current. If the conductor is very short compared to the wave length the energy radiated (for a given current) will be small. However, a transmission line used to feed power to an antenna is not short; in fact, it is almost always an apprectiable fraction of a wave length long and may have a length of several wave lengths.
The lines previously considered have consisted of two parallel conduetors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other conductor at that point, but the currents flow in opposite directions. This
was shown in Figs. 13-2C and 13-3C. It means that the fields set up about the two wires have the same intensity, but opposite directions. The consequence is that the total field set up about such a transmission line is zero; the two fields "cancel out." Hence no energy is radiated.

Actually, the fields do not completely cancel out because for them to do so the two conductors would have to occupy the same space, whereas they are slightly separated. However, the cancellation is substantially complete if the distance between the conductors is very small compared to the wave length. Transmission line radiation will be negligible if the distance between the conductors is 0.01 wave length or less, provided the currents in the two wires artually are balanced as described.

The amount of radiation also is proportional to the current flowing in the line. Because of the way in which the eurrent varies along the line when there are standing waves, the effective current, for purposes of radiation, becomes greater as the s.w.r. is inereased. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are balanced, the radiation from a line with even a high s.w.r. is inconsequential. A small unbalance in the line currents is far more serious.

Practical Line Characteristics

The foregoing discussion of transmission lines has been based on a line consisting of two parallel conductors. . Letually, the parallel-conductor line is but one of two gencral types. The other is the coaxial or concentric line. The coaxial line consists of a conduetor placed in the center of a tube. The inside surface of the tube and the outside surface of the smaller inner conductor form the two conducting surfares of the line.

In the coaxial line the fields are entirely inside the tube, because the tube acts as a shidd to prevent them from appearing outside. This reduces radiation to the vanishing point. So far as the electrical behavior of coaxial lines is concerned, all that has previously been said about the operation of parallel-conductor lines applies. There are, however, practical differences in the construction and use of parallel and coaxial lines.

PARALLEL-CONDUCTOR LINES

A common type of parallel-eonductor line used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spacers." The spacings used vary from two to six inches, the smaller spacings being necessary at frequencies of the order of 28 Mc. and ligher so that radiation will be minimized. The ronstruction is shown in Fig. 1:3-7. Such a line is said to be air-insulated. Typical spacers are shown in Fig. 1:3-8. The characteristic impedance of such "open-wire" lines is between 400 and 600 ohms, depending on the wire size and spacing.

Parallel-ronductor lines also are sometimes constructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$ ineh. This reduces the characteristic impedance

rig. 13.7-1'ypical construction of open-wire line. The line conductor fits in a groove in the end of the spacer, and is held in place by a tie-wire anchored in a hole near the groove.
of the line. Such lines are mostly used as quarterwave transformers, when different values of impedance are to be matched.

Prefabricated parallel-conductor line with air insulation, developed for television reception, can be used in transmitting applications. This line consists of two conductors separated one-half to one inch by molded-on spacers. The characteristic impedance is 300 to 450 ohms , depending on the wire size and spacing.

A convenient type of manufactured line is one in which the parallel conductors are imbedded in low-loss insulating material (polyethylene). It is commonly used as a TV lead-in and has a charac-

Fig. 13.8-Typical manofactured tran=miseion lines and sparers.
teristie impedaner of 300 ohms. It is sold under various names, the most common of which is "Twin- dead." This type of line has the advantuges of light weight. dose and miform eonductor sparing, flexibility and neat appearance. Ilowever, the losses in the solid dielectric :we higher than in air, and ditt or mosture on the line tends to change the charateristic impedance. Doisture roffects can be reduced be coating the line with silicone grease. I special form of 300 -ohm Twinlad for trammiting uses a polyethyene tube with the conductors molded diametrically opposite: the !onger die? ectrie path in such line tedures moisture troubles.

In addition to 300 -ohm tine, Twin-latad is obtainable with : characteristic impedane of 75 ohms for tramsmitting purposes. light-weight $75-$ and 130 -ohm Twin-lead also is available.

Characteristic Impedance

The characteristic impedance of an air-insulated parallel-conductor line is given bu:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{n}=$ Charateristic imperlance
$h=$ ('enter-to-senter distance betwern conductors
$a=$ Radius ol conduetor (in stme units as b)
It does not matter what units are used for a and b so long as they are the stme units. Both quantities may be measured in centimeters, inches, etc. Since it is nevessary to have a table of common logarithms to solve practical problems, the solution is given in graphical form in lig. 13-9 for a number of eommon conductor sizes.

In solid-dielectric parallel-conductor lines such ans Twin-Lead the chameteristic impedance cannot be calculated readily, because part of the electric field is in air as well as in the dielectric.

Unbalance in Parallel-Conductor Lines

When installing patallel-conductor lines care should be taken to awoid introducing electrical unbalanee intos the system. If for some reason the current in one condurtor is higher than in the other, or it the currents in the two wires are not
exactly out of phase with each other, the electromagnetic fields will not cancel completely and a considerable anount of power may be radiated be the line.

Maintaining good line balance requines, first of all, abatanced load at its end. For this reason the antema should be fed, whenever posibles at a point where each conductor "sees" exartly the sane thing. l'sually this means that the anternat syistem should be fed at its electricul center. liven though the antemat appears to be symmetrical, physically, it can be unbalaneed electrically if the part connected to one of the line condurtors is inadvertently coupled to something such ist house wiring or a metal pole or roof) that is not duplieated on the other part, of the antemat. Fevery effort should be made to kerp the antema as far as possible from other witing or sizable

F'is. $1: 30$ - Chart showing the characteristie inned. ance of sparederonductor paralle! tramsmission lines with air dichectric, J'uhing sizas given are for outside diammers.
motallie objects. The tramsmission line itself will cause some unbalance if it is not brought away from the antenna at right angles to it for a distance of at least a quarter wave length.

In installing the line conductors take care to sore that they are kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The shunt capacitance introduced by close proximity to metallie objects can drain off enough current (to ground) to unbalance the line currents, resulting in in(reased radiation. A shunt capacitance of this sort alon emstitutes a reactive load on the line, calusing an impedance "bump" that will prevent making the tine actually flat.

- coaxial lines

The most common form of coaxial line consists of either a solid or stranded-wire inner eonductor surrounded be polyethylene dielectric. (opper braid is woven over the dielectric to form the
outer conductor, and a waterproof vinyl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. Some different types are shown in fig. 13-8. This solid coaxial eable is commonly avalable in impedances approximat ing 50 and 70 ohms.

Air-insulated conxial tines have lower losses than the solid-dielectric type, but are less used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" placed at regular intervals.

Characteristic Impedance

The characteristic impedance of an air-insulated coaxial line is given by the formula

$$
\begin{equation*}
\psi_{0}=138 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Inside diameter of outer conductor
$a=$ Outside diameter of inner conductor (in same units as b)
('urves for typical conductor sizes are given in l'ig. 13-10.

The formula for coasiad lines is approximately correct for lines in which bead spacers are used, provided the beads are not too closely spaced. When the line is filled with a solid dielectrie, the characteristic impedance as given by the chart should be multiplied be $1 / \sqrt{ }$, where K is the dielectric constant of the material.

ELECTRICAL LENGTH

In the discussion of line operation earlier in this chapter it was assumed that currents traveled along the conductors at the speed of light. Aetualle, the veloeity is somewhat less, the reason being that electromagnetic fields travel more

Fik. 13.10 - (hart showing chararteristic impedance of various air-insulated coneentric lines.

TABLE 13-I Transmission-Line Data				
Type	Description or I'ype Number	Characteristic Impredance	Velocity Factor	$\begin{gathered} \text { Capaci. } \\ \text { tance } \\ \text { per foot; } \\ \mu \mu f . \end{gathered}$
Coaxial	Air-insulated RG-8/L RG-58/L RG-11/U RG-59/L	$\begin{gathered} \hline 50-100 \\ 33 \\ 33 \\ 75 \\ 73 \end{gathered}$	$\begin{aligned} & 0.85) \\ & 0.66 \\ & 0.66 \\ & 0.66 \\ & 0.66 \end{aligned}$	29.5 28.5 20.5 21.0
Parallel-Conductor	Air-insulated $214-080^{3}$ $214-023^{3}$ $214-079$ $214-056$ $214-076$ $214-022^{3}$	$200-600$ 75 75 150 300 300 300	0.9752 0.68 0.71 0.77 0.82 0.84 0.85	19.0 20.0 10.0 5.8 3.9 3.0
${ }^{1}$ Average figure for small-diameter lines with ceramic beads. ${ }^{2}$ Average figure for lines insulated with ceramic spacers at intervals of a few feet. *Amphenol type numbers and data. Line sinilar to 214-056 is made by several manufacturers, but rated loss may differ from that given in lig. 13-11. Types $214-023,214-070$, and 214-022 are made for transmitting applieations.				

slowly in material dielectrics than they do in free space. In air the velocity is practically the same as in empty spaee, but a practical line ahwas has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down; the currents travel a shorter distance in the time of one cycle than they do in space, and so the wave length along the line is less than the wave length would be in free space at the stme frequency.

Whenever reference is made to a line as being so many wave lengths (such as a "half wave length" or "quarter wave length") long, it is to be understood that the electrical length of the line is meant. Its actual physical length as measured by a tape always will be somewhat less. The physical length corresponding to an electrical wave length is given by

$$
\begin{equation*}
\text { Leruyth in feet }=\frac{984}{f} \cdot V \tag{13-F}
\end{equation*}
$$

where $f=$ l'requency in megacycles
$V=$ Velocity factor
The velocity factor is the ratio of the actual velocity along the line to the velocity in free space. Values of V for several common types of lines are given in Table 13-I.

$$
\begin{aligned}
& \text { Example: A } 7.5 \text {-foot length of } 300 \text {-uhn Twin- } \\
& \text { Lead is used to carry power to an antonna at a } \\
& \text { frequency of } 7150 \mathrm{kc}, \text { From Table } 13-\mathrm{I}, V \text { is } 0.82 \text {. } \\
& \text { At this frequency }(7.15 \mathrm{Mc.} \text {) a wave length is } \\
& \qquad \begin{array}{r}
\text { Length (feet) }=\frac{984}{f} \cdot V=\frac{984}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{array}
\end{aligned}
$$

The line length is therefore $75 / 112.8=0.065$ wave length.
Becaluse a quarter-wave length line is frequently used as a linear transformer, it is con-

Fin. 13.31 - Attemuation data for common types of transmission lines. Curve I is the mominal attemaztion of oflothm oprollwire line with No, le conductors, not including dicloctric loses in suaters nor possible raliation loseses. Additional line data are given in 'T'athe 13.1.
ance of the line) are given in graphical form in rig. 1:3-11. In these curves the ratiation loss is assumed to be negligible.

When there are stameling waves on the line the power loss increases as shown in lige, l:3-1:. Whether or not the increase in loss is serious depends on what the original loss would have been if the line were perferetly matehed. If the lose with perfect matehing is very low, a large s.w.r. will not greatly affect the efficiency of the lime-i.e.,

Fig. 13.12 - Fffert of standingewave ratio on line loss. 'The ordinates give the additianat hose in derilieds for the loss. under perfectly-matehed conditions, shown on the Inorizontal seale.
the ratio of the power delivered to the lond to the power put into the line.

Example: A 150-foot length of RG-11/C' cable is opherating at 7 Mc. with a 2 . to - 1 s.w.r. If perfertly matehed, the loss from Fig. 13-11 would be $1.5 \times 0.4=0.6 \mathrm{dtb}$. From Fig. $133-12$ the additional loss beconse of the s.w.r. is $0,73 \mathrm{db}$. The total lows is therefore $0.6+0.73=1.33 \mathrm{db}$.
An apprectiable sw.w. on a solid-dielectric line may result in excessive loss of power at the higher freguencies. Such lines, whether of the
paratlel-conductor or coaxial type, should be operated as nearly flat as possible, particularly when the line length is more than 50 feet or so. As shown by Fig. 1:3-12, the incrase in line loss is not too serious so long as the s.w.r. is below 2 to 1 , but increases rapidly when the s.w.r. rises above 3 to 1 . Tuned transmission lines such as are used with multiband antomas always should he air-insulated, in the interests of highest efficiency.

Matching the Load to the Line

The load for a transmission line may be any device (apathle of dissipating r.f. power. When lines are used for transmitting applieations the most common type of load is an antema, but there are also practical cases where the grid cirenit of a power amplitior may represent the load. When a transmission line is comerted between an antenna and a reerever, the reeoper input circuit (not the antema) is the load, beeause the power taken from a passing wave is delivered to the rereiver.

Whatever the applieation, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristic impedance of the line, there will be no standing waves. If the load is not purely resistive, and or is not equal to the line Z_{01}, there will be standing waves. No adjustments that ean be made at the input end of the line can change the s.w.r., nor is it affected by changing the line lengtl.

Only in a few sperial cases is the load inherently of the proper value to match a practicable transmission hine. In atl other cases it is neressary rither to operate with im mismateh and acerept the s.w.r. that results, or chse to take steps to bring about a proper mateh between the line and load by means of transformers or similar devices. Impedance-mateling transformers may take a variety of physical forms, depending on the circumstances.

Note that it is essential, if the s.w.r. is to be made as low as possible, that the load at the point of commertion to the transmission line be purely resistive. In general, this requires that the load be tuned to resonance. If the load itself is not resonant at the oprating frequency the tuning sometimes can be aceomplished in the matching system.

- THE ANTENNA AS A LOAD

Every antema system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connected. The problem is to transform this antenna input impedance to the proper value to mateh the line. In this resperet there is no one "best" type of line for a particular antema system, because it is possible to transform impedances in
any desired ratio. Consecuently, any type of line may be used with any type of antema. There are frequently reasons other than impedaner matehing that dietate the use of one type of line in preferener to another, such as ease of installation, inherent loss in the line, and so on, but these arro not considered in this section.

Athough the input impedanee of an antenna system is seldon known very arcumately, it is often possible to make a reasonably close estimate of its value. The information in the chapter on antemnas can be used as a ghide.

Matehing cireuits may be eonstructed using ordinary coils and condensers, but are not used very extensively because they must be supported at the antenna and must be weatherpoofed. The systems to be deseribed use linear transformers.

The Quarter-Wave Transformer or " Q " Section

As described earlier in this chapter, a quarterwave transmission line may be used as an impedance transformer. Kinowing the antematimpedance and the characteristic impedance of the

Fig. 13-13- "O" matching section, a quarter-wave impedance transformer.
transmission line to be matehed, the required characteristic impedance of a matching section such as is shown in Fig. 1:3-1:3 is

$$
Z=\sqrt{Z_{1} Z_{0}}
$$

where Z_{1} is the antenna impedance and Z_{0} is the characteristie impedanee of the line to which it is to be matched.

Example: To match a 600-olim line to an antenna presenting a 72 -ohm load, the quarterwave matching section would require a characteristic impedance of $\sqrt{i 2 \times 600}=\sqrt{43,200}$ $=208$ ohms.
The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in Fig. 13-9. (With

12-inch tubing, the spacing in the example above should be 1.5 inches for an imperlance of 208 ohms.)

The length of the quarter-wave matching section is given be E:quation 13-G.

The antenna must be resonant at the operating frequency. Setting the antema length be formula is amply accurate with single-wire antemmas, but in other systems, particularly close-spaced arrays, the antenna should be adjusted to resonance lesfore the matching section is conneeted.

When the antema input impedance is not known areurately, it is advisable to construct the matching section so that the spacing hetwern rondurtors ran be changed. The sparing then may be adjusted to give the lowest posible sew.r. on the transmision line.

Stub Matching

When a transmission line is not matele be be the load, the impedance looking into tho line towatd the load varies with the distance from the load, as discussed earlier in this chapter. ('onsidering the

Fig. 13-14 - Matehing the antenna the the ly means of a stub, Y. Gurves for determining the lengthas and) are given in Figs. $13-15$ and $13-16$, for the case whore the line, section X and serelion \boldsymbol{Y} all have the same characteristic impedance.
input impedance to be equivalent to a resistance in parallel with a reactance, at some distance along the line such as X in Fig. 1:3-14 the resistive part of the input imperdanee will be equal to the Z_{0} of the line. If at this point at reartame equal to the reative part of the imput impedance, but of the opposite type, is comnerted across the line, the reactanes will cancel and leave only the resistive component. From this point back to the transmitter or other soure of energy the line will he matehed.

The reactances used for matching in this way are usually linear reactances - sertions of transmission line - called stubs. Stubs may be open or closed, leppending on whether the free end is left open or is short-circuited, arcording to the type of reactance required in a particular case. The type and length of stub, as well as the point at which it should the attached to the line, can be found without any knowledge of the antenna input impedance, proviling that the s.w.r. on the line ean be measured before the stub is attached, and providing that the position of a current node (voltage loop) can be determined under the same conditions.

When the s.w.r. and the position of a current node are known Figs. 13-15 and 13-16 give the

Fig. 13-1.5- Graph for detrmining position and length of a shorted stub. Dimensions may be converted os linear units after valuen have bern taken from the yritph.
stub information necessary for impedance matching. Stub lengthsare given in wave lengthe, whidh may he converted to feet with the help of liquation 1:3-F. The data in Figs, 1:3-15 and 1:3-16 are hased on the assumption that the line and stub both have the same Z_{0}.
If the antenna is resomant a current loop or node will occur at the feed point. The distance X therefore may he mowsured from the antemna if the anterma is feel at a current node (high-voltage point). If the antemat is fed at a current loop use Fig. 13-16 and subtract 0.25 wave length from the distance given.

Folded Dipoles

A half-wave antenna element ran be made to match varions line impedances if it is split into two or more parallel conductors with the tramsmission line attached at the eenter of only one of them. Various forms of such "folded dipoles" arr shown in Fig. 1:3-17. ("urrents in all conductors are in phase in a folded dipole, and since the conductor spacing is small the folded dipole is equivalent in radiating properties to an ordinary single-conductor dipole. However, the corrent flowing into the imput terminats of the antenna from the lime is the curcent in one condertor only, and the antire power from the line is delivered at this value of current. This is equivalent to saving that the input impedaner of the

Fig. 13.16-Graph for determining position and length of an open stub. Dimensions may be converted to linear units after values have been taken from the graph.

l-ig. 13-17- The folded dipole, a method for using the antenna element itaelf to provide an impedance transformation.
antenna has heen raised hy splitting it up into two or more conductors.
"loe ratio by which the input impedance of the antemat is stepped up) depends not only on the number of conductors in the folded dipole but also on their redative diameters, sinee the distribulim of current between conductors is a function of

Fif. 13.18 - Impedance transformation ratio, two. comduetor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Cinves show the ratio of the impedance (resistive) seen lyy the transmisuion lise to the radiation resistance of the resonant antenna syatem.
their diameters. (When one conductor is larger than the other, as in Fig. 13-17C, the larger one carries the greater current.) The ratio also depends, in general, on the spacing between the conductors, as shown by the graphs of Figs. 1:3-18 and 1:3-19. An important special case is the 2 -conductor dipole with conductors of equal diameter: as a simple antenna, not a part of a directive array; it has an input resistance close enough to 300 ohms to afford a good mateh to 300 -ohm Twin-Lead.

The required ratio of conductor diameters to give a desired impedance ratio using two conductors may be ohtained from Fig. I:3-18. Nimilar information for a 3 -conductor dipole is given in Fig. 13-19. This graph applies where all three conductors are in the same plane. The two conductors not eomnerted to the transmission line must be equally spaced from the fed conductor, and must have equal diameters. The fed eondurtor may have a different diameter, however. The unequal-conductor method has been found particularly useful in matching to low-impedance

Fip. 13-19-Impedance transformation ratio, three. eonductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Gurves show the ratio of the impedanre (resistive) sern by the transmission lime to the radiation resintance of the resonamt antemat system.
antemans such as directive arrays using closespared parasitio clements.
The length of the antemm element should be such as to be approximately self-resonatht at the median operating frequence. The lengt h is usually: not highly critical, because a folded dipole tends to have the charmeteristies of a "thick" antenna and thus has a relatively broad frequency-response curve.

'T"' and "Gamma" Matching Sections

The method of matching shown in Fig. $13-20.1$ is based on the fact that the impedanee
between any two points along a resonant antenna is resistive, and has a value which depends on the spacing between the two points. It is therefore possible to choose a pair of points between which the impedance will have the right value to match a transmission line. In practice, the line cannot

Fïg. 13-20- The "F" match and "gamma" match.
be eomeeted directly at these points hecause the distance betwern them is much greater than the condurtor spacing of a practicable transmission line. The " 1 " arrangement in lig. 1:3-20: i overromes this differulty be using a second conductor paralleling the antemnat to form a mate hing section to which the line may be comneded.

The "r"" is particularly suited to use with at paratheronductor line, in which ase the two points along the antemia should be equidistant from the center so that electrical balanee is maintained.

The operation of this system is somewhat romplex. Eateh "T" conductor (!/ in the drawing) forms with the antemat conductor opposite it a short section of transmission line. Wiarh of these transmission-line sections (:an be considered to be terminated in the impedance that exists at the point of connection to the antenma. Thus the part of the antema betwem the two points carties a transmission-line current in addition to the normal antemna carrent, The two trammission-line matching sections are in series, as seen bey the main tramsmission line.

If the antemat be itself is resonant at the operating frequency its impedance will be purcly. resistive, and in such case the matching-sedion lines are terminated in a resistive load. However, since these sertions atre shorter than a ghatter wave length their input impedane - i.e., the impedaner seren by the main tramsmission line looking into the matehing-sertion terminals - will be reative as well as resistive. This prowents a perfect match to the main transmission line, since its load must be a pure resistance for perfect matching. The reactive component of the imput impedence must the tumed out before a proper matel can be seroured.

One way to do this is to detune the antenna just enough, her changing its length, to cause reactance of the opposite kind to tre reflected to the input torminals of the matching sertion, thas camedling the reactance introduced by the latter. Another
method, which is considerably easior to adjust, is to insert a variable cepmereitor in series with the matching sertion where it connerets to the transmission line, as shown in Fig. 13-21. A capacior having a maximum eapacitance of $150 \mu \mu t^{\prime}$. or so will be about right in the average case, for 14 Me: and highor. The capasitor mast be protected from the weather.

The methot of adjustment commouly used is to cut the antemna for approximate resonamer and the m make the sparing x some value that is convenient constructionally: The distanee !/ is then adjusted, while matintaning symmetry with respere to the center, until the s.w.r. on the transmission line is an low as possible. If the s.w.r. is not bolow 2 to 1 after this adjustment, the athtema length should be changed slightly and the matching-section taps adjusted agatin. This prowass maty be continued until the sow, is as clowe to 1 to 1 as possible.

When the series-rapacitor method of reactance eompensation is used (lig. 1:3-21) the antemat should be the proper length to be eesomatat at the operating frequence. Trial positions of the mate h-ing-section taps are taken, wath time atjusting the capacitor for minimum s.w.s., until the

Fig. 13-21-Itsing series caparitors for tuning out reactance in the matching section with the "I"" mateh and "xamma" match. The capacitor C should hase" a maximum raparitanes of approximately $1 \overline{0} 0 \mu \mu$. for If Mc. and may have proportionately lower rapacitanes for shorter wave lempths. Rereiving-type rapacitors can be used for powers 110 io a fow hunired watt-.
standing waves on the transmission line are brought down to the lowest possible valum

The unbalaneed ("gamma") :arrangement in Fig. $13-20 \mathrm{~B}$ is similar in prineiple to the "T," hat is :adapted for use with single roax line. The method of adjustment is the same.

The "Delta"' Match

The matching swistem in Fig, 13-22 is based on the variation in impedance bet ween two points symmetrically located with respert to the center of the antemna, as in the case of the " T " mateh, but uses a different matching section. If the two conduetors of a transmission line are fanned out, the trimgular seetion thus formed will ant as an impedance-matehing transformer if the proper
dimensions are used. The system is not as readily atljustable as the " l " or "gamma" but is more convenient constructionally when used with a wire antenna. A certain amount of radiation takes place from the "delta" hecause the two conductors are not sufficiently close together for (ancellation of the fields set up by the currents flowing in them.
Dimensions a and b in Fig. $13-22$ depend on the antenna impedanee (whether it is a simple half-

Fig. 13-22 - The "delta" matching scetinn.
wave antenna or the driven element of a multielement beam), the size of the conductors in the dolta, and the Z_{0} of the transmission line to be matched. Methods for catculation are not available, but dimensions for practionl rases are given in the chapters on antemas.

BALANCING DEVICES

An antemma with opern ends, of which the halfwave type is an example, is inherently a balaneed radiator. When opened at the center and fed with a paralled-ronductor line this batance is maintained throughout the system, including the transmission line, so long ats the causes of unbalancer discussed carlier in this chapter are avoided.

If the antenna is fod at the eenter through a coasial line, as indicated in trig, 13-23A, this batanee is upset beratuse one side of the radiator is connected to the shicld while the other is conneeted to the inner condurtor. On the side connected to the shield, a current call flow down over the outsile of the coasial line, and the fields thus set up cannot Ine cancelled by the fields from the inner conductor berause the fields inside the line camnot "sabe through the shielding afforded by the outer conductor. Hence these "antenna" currents flowing on the outside of the line will be responsible for radiation.

Linear Baluns

Line radiation can be prevented by a number of deviers whose purpose is to detune or decouple the line for "antenna" rurrents and thas greatly reduce their amplitude. Such deviess genemally are known as baluns (a contraction for "balaneed to unbalanced"). Fig. 13-2:33 shows one such arrangement, known as a bazooka, which uses a sleeve over the transmission line to form, with the outside of the outer line conductor, a shorted quarter-wave line section, As deseribed earlier in this chapter, the impedance looking into the open end of sumb a section is very high, so that the end of the outer conductor of the roaxial line is cffertively insulated from the part of the line below the sleeve. The length is an electrical quarter

Fig. 13-23 - Kadiator with coavial feed (1) and meth. onds of presenting unbalaner murrents from llowing on the outside of the transmission line (13 and (:). I'he half. wave phasing section shown at 1) is used for coupling between an unbalanced and a balanced circuit when a 4-to-1 impedance ratio is desired or can be accepted.
wave, and may be physieally shorter if the insulation between the sleeve and the line is other than air. The bazooka has no effect on the impedance relationships between the antenna and the coaxial line.
Another method that gives an equivalent effect is shown at C . Sinee the voltages at the antenna terminals are equal and opposite (with reference to ground), equal and opposite currents flow on the surfaces of the line and second conductor. Berond the shorting point, in the direstion of the thansmitter, these currents combine to "aneel out. The balaneing seetion "looks like" an open cireuit to the antenna. sinee it is a cquarterwave parallel-condurtor line shorted at the far end, and thus hats no effect, on the nommal antemat operation. However, this is not essential to the line-halaneing function of the deviers, and baluns of this type are sometimes made shorter than a quarter wave length in order to provide the shunt indurtive reactance required in certain types of matching systems.

Fig. 1:3-23D shows a third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing section. Since the voltages at the balaned end are in semies while the voltares at the unbalanced mad are in parallel, there is a $4-t 0-1$ step-down in impedances from the batanced to the unbalaneed side. This arrangement is useful for coupling betwern a balaned 300 -ohm line and a $\overline{0}$-ohm coaxial line. for eximple.

Coil Baluns

Another form of linear balun is shown in the upper drawing of Fig. 13-24. Two transmission lines of equal length having a characteristic impedance Z_{0} are connested in series at one end and in parallel at the other. At the series-connected end the lines are badinced to ground and will matchan impedance equal to $2 Z_{0}$. At the parallelromnerted end the lines will be matehed by an impedance equal to $Z_{0} / 2$. One side may be connected to ground at the parallel-connected end, provided the two lines have a length such that, ronsidering each line as a single wire, the balanced end is effertively decoupled from the paralleleconnerted end. This requires a length that is ath odd multiple of $1 / 4$ wave length. The impedance transformation from the series-conneeted end to the paradlel-romerted end is 4 to 1.
I definite line length is required only for decoupling purposes, and so long as there is adoquate decoupling the system will act as a 4 -to-1 impedance transformer regardless of line length. If each line is wound into a coil, as in the lower drawing, the inductances so formed will act as rhoke coils and will tend to isolate the seriesconnected end from any ground connection that may be placed on the parallel-connected end. Batun coils made in this way will operate over a wide frequeney range, since the choke indurtance is not eritical. The lower frequency limit is where the coils are no longer effective in isolating one line from the other; the length of line in each coil
should be about equal to a quarter wave length at the lowest frequeney to be used.

The principal application of such coils is in going from a 300 -ohm balanced line to a 75 -ohm coaxial line. This requires that the Z_{0} of the lines forming the coils be 150 ohms. Design data for winding the coils are not available: however, Equation 13-1) can be used for determining the approximate wire spacing. Allowance should be made for the fact that the effertive dielectric constant will the somewhat greater than I if the coil is wound on a form. The proximity effect bet ween turns can be reduced by making the turn spacing somewhat larger than the condustor spacing. For operation at 3.5 Mc. and higher frequencies the length of each conductor should be about 60) feet. The conductor spacing can be adjusted to the proper value by terminating auch line in a resistor equal to its characteristic impedance and adjusting the sparing until an impedane bridge at the input end shows the line to lxe matehed.

A batun of this type is simply a fixed-ration transformer and does not make up for inatcurate

Fig. 1.3.24 - Baluns for matching between push-pill and single-rnded rircuits. The impedance ratio is 1 to 1 from the push-pull side to the mbalaned side. Cailing the lines as shown in the lower drawing increases the: frequeney ranke over which satisfactory operation is obtained.
matching elsewhere in the sustem. With a ";300)ohm" line on the balaneed end, for example, a 75 -ohm coax cable will not be matehed unless the 300 -ohm line artually is terminated in a 300 -ohm load.

NONRADIATING LOADS

Important practical coses of nonradiating loads for a transmission line are the gride eircuit of a power amplifier (ronsidered in the ehapter on tramsmitters), the imput cireuit of a reesever, and another thansmission line. This last case includes the "antenna tuner" - a misnomer berause it is actually a deviee for coupling a transmission line to the transmitter. Because of its importance in amateur installations, the antenna coupler is considered sparately in a later seetion of this chapter.

Coupling to a Receiver

. 1 good mateh between an antenna and its transmission line does not guarantee a low stand-ing-wave ratio on the line when the antemat system is used for receiving. The s.w.r. is determined wholly by what the line "sees" at the reeeiver's antenna-input terminals. For minimum s.w.r. the reeeiver input cireuit must be matched to the
line. The rated input impedance of a receiver is a nominal value that varies over a considerable range with frequency. Methods for bringing about a proper match are discussed in the chapter on receivers.

It should be noted that if the receiver is matehed to the line, then it is desirable that the antenna and line also be matched, since this results in maximum signal transfer from the antenna to the line. If the receiver is not matched to the line, the input impedance of the line (at the terminals of the antcma itself) in turn camot mateh the antenna imperdance. In such a case the signal input to the receiver depends on the coupling system used between the line and the recoiver. for groatest signal strength the coupling system has
to be adjusted to the best compromise between receiver input impedance and load appearing at the input (antenna) end of the line. The proper adjustments must be determined by experiment.

A similar situation exists when the receiver input impedance inherently matches the line Z_{0}, but the line and antenna are mismatched. Under these conditions perfect matching at the receiver does not result in greatest signal strength; a deliberate mismatch has to be introduced so that the maximum power will be taken from the antenna.
The most desirable condition is that in which the rereiver is matehed to the line Z_{0} and the line in turn is matched to the antemma. This transfers maximum power from the antenna to the receiver with the least lose in the transmission linc.

Coupling the Transmitter to the Line

The type of coupling system that will be needed to transfer power adequately from the final r.f. amplifier to the transmission line depends almost entirely on the input impedanee of the line. As shown earlice in this chapter, the input impedance is determined hy the standing-wave rationand the line length. The simplest case is that where the line is terminated in its chararteristic impedance so that the s.w.r. is 1 to 1 and the input imperdance is merely the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a Hat line are readily designed. For all practical purposes the line can be considered to be flat if the s.w.r. is no greater than about 1.5 to 1 . That is, a coupling system designed to work into a pure resistance equal to the line Z_{0} will have enough leeway to take care of the small variations in input impedance that will occur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1 .

Coupling cireuits suitable for consial lines are discussed in the chapter on transmitters. As stated in that chapter, an untuned "piek-up" or "link" coil connerted directly to the transmission line should have an inductance such that the reartance at the operating frequency is approximately equal to the Z_{0} of the line, to assure adequate coupling to a line that is actually fat. While this rondition is sometimes met well cnough at the higher frequencies, at least for coavial lines, by manufactured link coils, it is definitely not mot when a parallel-conductor line having a Z_{0} of 300 ohms or more is used. The optimum pick-up roil for coupling to such lines will have about the same inductance as the plate tank coil itsolf.

Amateurs are frequently successful in coupling power into a line even though the pick-up coil is quite smatl and is loosely coupled to the amplifier tank roil. When such coupling is possible it is an indication that the line is operating at a fairly high s.w.r. and that the line
longth is such as to bring a current loop near the input end. It is customary to "prune" the line length in such cases until aderuate roupling is sorured - a practice that has given rise to the wholly fallacious belief, on the part of many, that pruning the line reduces the standing-wave ratio and that a flat line will load an amplifier with a small link and very loose roupling. Proning the line areomplishes nothing if the line is actually flat because, as explatined earlier in this chapter, the input impedance of a matehed line is ergual to its Z_{0} regardless of the line length. If the line is not flat, pruning changes the input impedance and eventually results in a value such that the link or pick-up roil is actually tumed to the operating frequency by the line, a condition that will give maximum power transfer with minimum coupling. The higher the s.w.r. the more loose the coupling can be. Although there is nothing inherently wrong with this method of adjustment, it works only when the s.w.r. is failly high and will not work with a line that actually is flat.

Tuned Coupling

A tuned coupling circuit has the same advantages, when used with properly-terminated paral-lel-conductor lines, that were outlined in the transmitting chapter in connection with coaxial lines. The principles are the same as well, but a resistance of 300 to 600 ohms is too high to be connected in scries with a tuned circuit. ('onsequently, parallel-tuned circuits must be used with

Fig. 13.25-Tuned circuita for coupling to a flat parallel-conductor line. Iahues for C_{i} are given in Table I3-Il: L_{1} is chosen to resonate with the value given at the operating frequency. In the alternative circuit the total inductance of L_{1}, L_{2} and L_{3} sitould equal- L_{1} in the circuit at the left.
these lines. Typieal arrangements are shown in Fig. 13-25. The caparitanere values given in Table 1:3-II are for a ($)$ of 2 and are the minimum values that should be used maless the coupling betwern the coils ran be made very tight. The (may be increased, permitting full power transfer with looser coupling betwern the coils, by increasing the capacitance and derreasing the indurtamere correspondingly to maintain resonance.

The caparitance values given are the total required, so if a balaned caparitor is used as indicated at (C_{1} in Fig. 1:3-25 earh section should have twien the raparitimee given, A single-ended capacitor may be used if care is taken to mount it far enough away from the ehassis or any other grounded conductor so that the eapacitanee from stator and frame to ground is small. In such case it should be tuned be an insulated extension shaft,

The series-tuned circuit shown in the transmitter chapter for coax line can be adapted to use with 75 -ohm parallel-conductor line ber removing the ground commertion and using two variable capacitors, one in each line conductor and earh having twice the capacitance sperefied. This is the best arrangement for maintaining batance to ground, but if reasonable eare is taken to monnt the caparitor as described in the proceding paragraph, a single capacitor may be used. In that rase the only circuit difference is that noither side of the line should be gromeded.

Link Coupling

The coupling arrangements for parallel-ronductor line shown in Fig. 13-25 are not entirely. satisfactory from a construetional standpoint. It is usually more convenient to build the coupling apparatus separate from the final amplifier, and this leads to greater opreating flexibility as well. For lines operating at a low standing-wave matio this is casily areomplished by eonnerting the amplifier and coupling rimuits through a short length of transmission line or "link," With proper design and adjusi ment, the thang of both cirenits will be completely independent of the length of the line ronnerting them. This mothod has the further advantage that, if the connerting line is coaxial cable, it offers an ideal spot for the insertion of a lowpass filter for preventing harmonic interference to television and f.m, reception.
The eirenit for coax-link roupling is given in Fig. 1:3-26. The constants of the tuned circuit ('ila are not particularty critical: the principal requirement is that the cirouit must be capable of being tund to the operating frequence. Constants similar to those used in the plate tank rirchit will be satisfactors. The construction of L La must be such that it can be tapped at least every turn. L_{2} must be tightly coupled to L_{3}, and the inductance of $L_{\text {a }}$ should be approxi-

TABLE 13-II		
Capacitance in μ f. Required for Coupling to 300-		
and 600 -Ohm	Flat Lines with Parallel-Tuned	
	Coupling Circuit	

Note: Inductance in circuit most be adjusted to resonate at operating frequency.
mately the value that gives a reactance equal to the Z_{0} of the connecting line at the frequency in use, An average reactance of about 60 ohms will suffice for either 52 - or $\overline{7}$-ohm coaxial line.

When the sustem is properly designed and oparated, the circuit formed by $L_{2} L_{3} \mathrm{C}_{1}$ atots purely as a matching deviee to transform the input impedance of the main transmission line to a value equal to the Z_{0} of the coaxial link. The coupling circuit at the amplifior end is merely designed and adjusted for working into a flat coaxial line, as deseribed in the transmitter chapter.

The most satisfactory waty to set up the system initially is to eomedt a coasial s.w.r. bridge in the link as shown in Fig. 1:3-26. The "Monimatch" trpe of bridge, which can handle the foll transmitter power and maty be left in the line for continuous monitoring, is execollont for this purpose. Howevor, a simple resistance bridge such as is deseribed in the chapter on moasurements is perfertly adequate, requiring only that the transmitter output be reduced to a very low values, that the bridge will nop be overloaded. Take a trial position of the line taps on L_{3}, kerping them aduidistant from the eronter of the eoil, and adjust ('s for minimum s.w.r, as indieated be the bridge. If the s.w.r. is mot close to 1 to 1 , try new tap positions and adjust (") igain, continuing this proedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions maty then he logged for future referenere, At this point

Fia. 13.26 - Matching circuits using a coaxial link, for use with parallelconductor transminsion lines. Adjustment setup using an s.w.r. bridge is shown in the lower drawing. Design ennsideratione and mathod of adjustment ard diapuamad in the toxt,
check the link s.w.r. over the frequener range normally used in that band, without changing the setting of C_{1}. No readjustment will be required if the sw.r. does not exeeed 1.5 to 1 over the range, but if it goes higher it is advisable to note as many settings of C_{1} as may be necessary to keep the s.w.r. below 1.5 to 1 at any part of the band. (hanges in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequency, and relatively little by the coupling circuit itself. A single setting of C_{1} at midfrequener will suffier if the antema itself is broad-tuning.

If it is impossible to get a 1-to-1 s.w.r. at any settings of the taps or ('1, the s.w.r. on the main transmission line is high and the line length is probably unfavorathe. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more that about 3 to 1 , but if the line sw.r. is higher it may not be posible to bring the link s.w.r. down except by using the methods for reartance compensation described in a subsequent seretion.

The matehing adjustment (an be considerably faceilitated ber using a variable capacitor in series with the matehing-cireuit coupling coil as shown in Fig. 13-27. The additional adjustment thus

Fig. 1.3.27-Using a series caparitor for control of coupling between the linh and line circuits with the coax-coupled materhing circuit.
provided makes the tap settings on L_{3} much less rritical since varying ('2 has the effert of var-ing the coupling betwern the two circuits. For optimum control of coupling, L_{2} should be somewhat larger than when C_{2}^{2} is not used - perhaps twice the reactance recommended above - and the reactance of 6, at maximum raparitane should he the same as that of L_{2} at the operating frequency: L_{3} and (ciare the same as before. The method of adjustment is the sime, except that for each trial tap position C_{1} and C_{2} are altarnately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In general, the adjustment sought should be the one that Keres Co at the largest possible eapacitance, since this broadens the frequence response. Nlso, the taps on L_{3} should to kept as far apart as possible, while still permitting a mateh, since this also broadens the frequency response of the eireuit.

Once the matehing cirruit is properly adjusterl. the s.w.r. bridge may le removed, if neressary, and full power applied to the transmitter. The input should be adjusted her the coupling or loading control built into the transmitter, never by making any rhanges in the settings of the matehing circuit, ('1 $L_{2} L_{3}$. If an amplifier having a parallel-tuned tank cireuit will not load properly, tuned coupling should be used into the eoas link.

It is possible to use a circuit of this type without initially setting it up with the s.w.r. bridge. In such a ease it is a matter of cut-and-try until adequate power transfer between the amplifier and main transmission line is secured. However, this method frequentiy results in a high s.w.r. in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is eritical with frequency. The bridge method is simple and gives the optimum operating conditions quickly and with cortainty.

"'TUNED" LINES

If the s.w.r. on a transmission line is high enough to cause the input impedance to change appreciably as the applied frequency is varied, the coupling between the transmitter and the lime must be changed accordingly if the amplifior loading is to be constant. So far as the coupling apparatus is concerned, the principal difference between flat and tuned lines is that the sustem can be designed for relatively constant impedancer for flat lines, but must be capable of coupling into a wide range of impedances if the line is "tuned."

Is montioned earlier, a simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the point where it connerts to the pick-up coil. The roupling will be maximum, for a given degree of separation between the pick-up coil and the amplifier tank roil, if the line is pruned to a length such that the input impedance is just sufficiently caparitive to caneel the indurtive reactanee of the piek-upeoil. Thisten be done by cut-and-try. The higher the s.w.r. on the line the easier it becomes to load the amplifier with loose coupling between the two roils. Whether or not good loading can be obtained over a band of frequencies chepends on the charateristies of the antemna system. The sharper the antenna and the higher the line s.w.r. the more difficult it becomes to operate over a band without progressively changing the line length.

Series and Parallel Tuning

Rether than adjusting the line length to fit a given coupling coil, it is more practical to adjust the coupling circuit to fit the conditions existing at the input end of the transmission line.

I high standing-wave ratio occurs prineipally on parallel-conductor lines, either berause no attempt has been made at matching the antenna and the line or because the system is used for multiband operation, which precludes such matehing. In the latter eave, eutting the line length to a multiple of a quarter wave length will bring either a eurrent or voltage loop near the iuput terminals of the transmission line (assuming that the antenna itself is resonant) depending on the termination and the line length. If there is a current loop near the input end the impedance will be lower than the line Z_{0}; if a voltage loop, the input impedance will be higher than the line Z_{0}. In both cases the input impedances will be essentially resistive.

Inder these conditions the circuit arrangements shown in lig. 13-28 will work satisfactorily. Series tuning is used when at current loop occurs at the input end of the line; parallel tuning when there is a voltage loop at the input end. In the series case, the circuit formed by L_{1}, C_{1} and C_{2} with the line terminals short-circuited should tune to the operating frequeney. C_{1} and C_{2} should he maintained at equal capacitance. In the parallel case. the circuit formed by L_{1} and ('1 should tume to resomance with the line disconnerted.

The L / C ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuning, a low L / C ratio must he used if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the $L^{\prime}($ 'ratio becomes less critical when the s.w.r. is high. As a first approximation, coil and capacitor values of the same order as those used in the plate tank circuit may he tried.

To adjust the series-tumed cireuit, first couple L_{1} loosely to the amplifier tank coil and then vary C_{1} and C_{2}, keeping their capacitances equal, until the setting is found that makes the amplifier phate current kick upward. Keep adjusting the amplifier tank rapacitor, C, for minimum phate current while this is being done. When the proper settings are found, increase the coupling between the tro coils until the minimum plate current is the normal operating value for the amplifior. It is unnecessary to readjust C_{1} and C_{2} when the coupling is increased. Keep the coupling between the coils at the smallest value that will load the amplitier properly. If full louding cannot be ohtained with the tightest possible coupling, use at coil of more inductance at L_{1},

The same adjustment procedure is used with parallel tuning, except that there is only one capacitor, C1. If full loading cannot be secured, reduce the indurtance of L_{1} and inerease C_{1} correspondingly to maintain the same frequeney, until the amplifier loads properly.
The r.f. :mmeters shown in Fig. 1:3-28 are not strictly neressary, hut are useful for indicating maximum output. Ther may he omitted if desired: in most cases the amplifier plate current is a good enough indication of output, providing the amplifier is operating at normal ratings and efficiener:

In case full loading camon be obtained even when the $L /{ }^{\prime}$ ratio is varied, the trpe of tuning in use probably is not suitable and should be changed: e.g., from series to parallel. If satisfactory loading still cannot be secured, the probability is that the s.w.r. is quite low and the roupling methords designed for flat lines, described earlier, should be used.

Two eaparitors are used in the
series-tuned cirenit in order to keep the line balanced to ground. This is beeatuse two identical capacitors, both connected with rither their stators or rotors to the line, will have the same capacitance to gromad. A single unit would be perfectly usable so far as the opration of the coupling cireut is concerned, but will slightly unbalance the cireuit berause the frame has more capacitance to ground than the stator. The unbatance is not especially serious unless the capacitor is mounted near a large mass of metal, such as at chassis or shield assembly:

A bataned capacitor is used in the parablel rircuit, in preference to a single unit, for the same reason. An alternative scheme to maintain lalance is to use two singlo-ended capacitors in parallel, but with the frame of one connected to one side of the line and the frame of the other ronnected to the other side of the line. The same two capacitors may be switched in series when series tuning is to be used.

Link Coupling

The circuits shown in Fig. 13-28 require a means for varying the coupling between two sizable coils, a thing that is somewhat inconvenient constructionally. It is easier to use separate fixed mountings for the final tank and antennat coils and couple them by means of a link. Is explained in the chapter on circuit fundamentals, a short link is equivalent to providing mutual indurtance between two tumed cirruits. Typieal arrangements for series and paralled tuning are shown in lig. 13-29. Although these drawings show variable coupling at both ends of the link, a fixed link coil can be used at either end so long as variable coupling is available at the other.

There is no essential difference between the tuning procedures with these cireuits and those of Fig, 1:3-28. The only change is that the roupling is adjusted by means of a link instaad of by varying the sparing between L and L_{1}.

In cases where the link will be more than a few inches long, or when comxial able is to be

Fig. 13.28 - Series and parallel tuning. 'This method is useful with resonant lines when the length is such as to bring either a current or voltage loop near the input end. Design data and methods of adjustment are given in the text.

Fig, 13.29-Linh-roupled series and parallef tuning.
not have enough range available to give cemplete compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the input impedance is principally reactive.

Under such conditions it is necessary, if the line length cannot be changed to a more satisfactory value, to provide additional means for compensating for or "canceling out" the reactive component of the input impedance. As described carlier in this chapter (Fig. 13-6) the input impedance can be considered to be equivalent to a circuit consisting either of resistance and inductance or resistance and capacitance. It is generally more eonvenient to consider these elements as a parallel combination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in lig. 13-6, it is apparent that if we commeet a capacitance of the right value across L^{\prime} the circuit will berome resonant and will appear to be a pure resistance of the value R^{\prime}. Similarly, connecting an inductance of the right value aeross (" in Fig. 13-613 will resonate the circuit and the impedance will be equal to R^{\prime}. The resistive impedance that remains can easily be matched to the coax link by means of the circuit of Fig, 13-26.

The practical application of this principle is shown in Fig. 13-30, where L and C are the reactances required to cancel out the line reactance, L for cases where the line is capacitive, C for lines having induetive reactance. The amount of either inductance or capacitance required is easily determined by trial, using the s.w.r. bridge in the coax link. First diseonneet the main transmission line from L_{3} and conneet a noninductive resistor in its place. A 1-watt carhon resistor of about the same resistance as the line Z_{0} will do, if a low-power bridge of the resistance type is used. With the "Donimatch" bridge, a suitable load may be made by connecting carbon resistors in paraliel; for example, five 1500 -ohni 2 -watt resistors in parallel will make a 300 -ohm load capable of handling 10 watts of r.f. Adjust the coil taps and C_{1} for a 1-to-1 standing-wave ratio in the link, as described earlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and connect the line, again adjusting the taps and C_{1} to make the s.w.r. as low as possible, and compare the

Fig. 13-30 - Reactance cancellation on random-length lines having a high standing-wave ratio,
new setting of C_{1} with the original setting. If the eaparitane has inereased, the line reactance is inductive and a capacitor must be connected at C in Fig. 13-30. The amount of caparitanee needed to bring the proper setting of ("1 near the original setting can be determined by trial. On the other hand, if the capacitance of C_{1} is less than the original, an inductance must be comeeted at L. Trial values will show when the proper tuning conditions have heen rearhed.

It is not necessary that C_{1} be at exactly the
original setting after the compensating reactance has been adjusted; it is sufficient that it be in the same vicinity.

Ising this procedure practioally any length of line can be coupled properly to the transmitter, even when the line s.w.r. is quite high. I'nfortunately, no sperific values a an be suggested for L and C, since they vary widely with lime length and s.w.r. Their values usually ate emparable with the values used in the regular compling eireuits at the same frequenery.

Coupler or Matching-Circuit Construction

The design of matching or "antemia coupler" rirenits has been covered in the preceding section, and the adjustment procedure also has been outlimed. Since circuits of this type are most fre'guently used for transerring power from the tranmitter to a parallel-conductor transmission line, a principal point requiring attention is that of maintaining good batance to ground. If the coupler cireuit is appreciably unbalaneed the currents in the two wires of the tramsmission line will also be unbalaned, resulting in radiation from the line.

In most casise the matehing reirenit will he built on a metal chasis, following common practier in the construction of tramsmitting units. The chassis, because of its relatively large area, will tend to cetablish a "ground" - reven though not actually grounded - partioularly if it is assembled with other units of the tramsuitere in a rack or eabinet. The romponents used in the roupler, therefore, should be phated so that they are elertrically symmetrial with respect to the chasisis and to carh other.

In general, the construction of a couplar eireuit should physically resemble the tank layouts used with push-pull amplifiors. In parallol-tuned circuits a split-stator caparitor should be used. The capacitor frame should be insulated from the chaswis because, depending on line length and other factors, harmonie reduction and line balaner may he improved in some cases by grounding and in ot hers be not grounding. It is therefore advisable to adopt construction that permits dither. 1'rovision atso should be madde for grounding the center of the eoil, for the same reison. The coil in a parallel-tuned cireuit should be monnted so that its hot ends are symmetrically phaced with respert to the chassis and other components. This equalizess stray capacitances and helpes matintain good balance.

When the eoupler is of the type that can be shifted to series or parallel tuming as required, two separate single-ended capacitors will be satisfactory. As deseribed carlier, they should the commeded so that both frames go to corresponding parts of the circuit - i.e.. either to the eroil or to the line - for series tuning. and when used in parallel for parallel tuning should be fomened frame-to-stator.

A coupler designed and adjusted so that the connerting link acts as a matched transmission line may he placed in athy ronvenient location. some anaterusp prefor to install the coupher at the point where the main transmission line anters the station. This hops maintalia a tidy station hayout when ath air-insulated parallel-enductor tramsmission lime is used. With solid-dieleretrie lines, whieh lend themselves well to neat installation indoors, it is probably more desimble to install the coupler where it wan be reached easily for adjustment and band-changing. The use of coax-

Fig. 13-31 - A coav-conpled matehing cirenit of simple construction. The antire cirruit is memoned on a 3 he at
 are mountad ont top.
ial line between the transmitter and coupler is strongly recommended if the link line is more than a few inches long, for the reasons outlined in the preceding section.

COAX-COUPLED MATCHING CIRCUIT

The matehing unit shown in loig. 13-31 is constructed according to the design principles outlined earlier in this chapter. It uses a paralledtuncol cireuit with taps for matching a parallelronductor line through a link roil to a coaxial line to the tramsmitter. It will handle about 500 watts of r.f. power and will work, without modification, into lines of any length if the s.w.r. is below 3 or 4 to I. If the s.w.r. is high, it maty be necessary to compensate for the reactive part of the input impedance of the line, at ecertain line lengths, by using an additional coil or capaeitor as discussed carlier. The neressity for such compensation can be avoided, on lines having a high s.w.r., by making the electrical length of the line a multiple of a quarter wave-length.

Is shown by the cireuit diagram, Fig. 1:3-:3?, the link circuit is adjusted be means of a variable

fig. 13-32-Circuit diamram of the coax-coupled matehing cirenit.
(it - $300-\mu \mu$. variable, approximately $0,024^{\prime \prime}$ spacing. (:2-100) $\mu \mu \mathrm{f}$. per section, liver volts. J_{1} - Classis-ty pe coas connector.
rapacitor, (en, to facilitate matching the man transmission line to the coax link. The coils are constructed from commercially-available coil matterial, and the link inductances are chosen to provide adequate coupling for flat lines. The link
geing into the and prongs of the plug from the tank coil. Short lengths of spaghetti tubing are slipped over the leads to the link coil where they go between the tank coil turns to reach the plug.
Taps on the tank coil for connection to a paral-lel-conductor transmission line are made by bending ordinary soldering lugs around the wire and soldering them in place. The elips are Johnson type 235-860, arljusted so that they fit snugly over the taps when pushed on sidewise. Used this way, the clips provide an easy and rapid mothod of connceting and disconnecting the line. The proper positions for the taps may be determined by first using the clips in the normal fashion.

The maxinum length of coil that ean be mounted satisfactorily on the plugs is about 4 inches. Alternative coils of this length are shown in Fig. 13-32 for 3.5 Mc.; one requires the addition of $75 \mu \mu$ f. fixed capacitanee arross the cireuit.

The matehing eireuit should be adjusted with the aid of an s.w.r. bridge, as described earlier in this chapter. In general, the tuning will be less aritieal, and the circuit will work over a wider froquency range without readjustment, if the taps are kept as far toward the ends of the coil as possible and C_{1} is set at the largest caparitance that will permit bringing the s.w.r. in the coax link down to 1 to 1 .

A "UNIVERSAL" MATCHING CIRCUIT

The matching cireuit shown in fig. 13-33 offors considerable flexibility in that it can be used as a tappedecoil matching network of the same type as that just described, and also can be used as either a seriesi- or parallel-tuned "antennas coupler." It can also be adapted to other types of coupling by simple changes in the plug-connection arrangement of the coils.

Two cepacitors are used in the tank eircuit. Their rotors are insulated from each other but are turned simultancously be a right-angle drive unit. When used eithor for parallel tuning or the tappederoil method of matehing, the rotors are

Coil Data								
Band, Mc.	L_{1}				L_{2}			
	Turns	Hire Size	$\begin{gathered} \text { Dia., } \\ \text { In. } \end{gathered}$	$\begin{gathered} \text { Turns/ } \\ \text { In. } \end{gathered}$	Turns	H'ire Nize	Dia., In.	Turns/ In.
3.5	44	16	$21 / 2$	10	10	16	2	10
3.5*	24	12	$21 / 2$	6	10	16	2	10
7	18	12	$21 / 2$	6	6	16	2	10
14	10	12	21/2	6	3	16	2	10
21-28	6	12	2162	6	2	16	2	10

* Alternate coil; reduires addition of $75 \mu \mu \mathrm{f}$. total in parallel with C_{2}.
coil, of smaller diameter than the tank coil, is mounted inside the latter at the center. Duco cement is used to hold the coils together at their bot tom tie strips. The coils are mounded on Millen type 40305 plugs and require no other support than the stiffuess of the short lengths of wire
connerted together to form a split-stator eapacitor having a maximum capacitanee of 150 $\mu \mu$. When used for series tuning the capacitor frames comect to the parallel-eonductor transmisuion line, the jumper that connects the potors tosether being removed.

The unit is built on a 7 by 9 by 2 aluminum chassis and has a 7 by 10 panel. The tank capacitors are mounted on small aluminum plates supported on $3 / 4$-ineh stand-off insulators, to insulate the frames from the chassis; this method is preferable to mounting the capacitors directly on the insulators as it lessens the mechanical strain on the latter. Soldering lugs projecting from the capacitor frames provide means for connecting the line clips for series and parallel tuning. The jumper for connecting the rotors together is in the foreground; it uses banana plugs that fit into jacks mounted on the caparitor nounting plates. The link capacitor is located underneath the chassis.

lig. 13-3.3 - Cirenit diagram of the "universal" maxcoupled matching network. F"or use as a tapped matehing ciremit, connect the line to taps on L_{1}, as at $A-B$, and rommeel the jumper, X, w (- D); the jumper is also used for parallel tuning but with the line conneeted to $E=F$. For series toming, remone the jumper and conncet the line to (:-l). The groumd commection to the middle prong of the enil sonket is provided for canes where it is desirable to gromme the cemter of l. .
C_{1} - $300-\mu \mu \mathrm{f}$. variable, approximately $0.024^{\prime \prime}$ spacing.
 $300)$.
J_{1} - Chassin-t pe coax connector.

Coil IJata

Ihand	L_{1}, turns	L_{2}, turns
3.5-- Mc.	$20\left(1+\mu \mathrm{h}_{\text {. }}\right.$)	10 (5 Mh.)
7-14 Ve.	10 ($5 \mu \mathrm{ll}$.	6 (2.5 mh.)
14-28 Me.	4 ($1.5 \mu \mathrm{~h}$.)	2

I_{1} - No. 12 timed wire, $21 / 2$ inches dia., 6 turns per inch (3 \& W $3905-1$).
$\mathrm{I}_{2}-\mathrm{V} .16$ wire, - inches dia., 10 turns per inch (1) \& W 3907 or $3907-1$).

The coils shown are designed primarily for use in the tapped matehing circuit or for paralled tuning, but will also be satisfactory for series
tuning if the transmission line length is such as to bring a current loop near the input end. Coil taps are made in the same way as in the coupler previously described. Because of the fairly large value of maximum capacitance available when the tank capuritors, C_{2} and C_{3}, are used together as a split-stator capacitor, it is possible to cover a 2 -to-1 frequency range. Consequently, only three coil assemblies are needed to cover the 3.5to 30-Mc. range, and each one can be used for two (in the case of the smallest coil, three) adjacent amateur bands.

Is a tapped matching circuit, adjustment is the same as for the unit just described. When using either series or paralled tuning, the s.w.r. bridge should be used as before, adjusting C_{1} and Co-s for minimum sw.r. in the roas link.
(Originally deseribed in Mareh, 195:3, QST'.)

MATCHING CIRCUIT WITH MULTIBAND TUNER

The coupling net work shown in Fig. 1:3-35 uses a multiband turar (soe ehapter on transmitters for other eximples) to rover the 3.5 -30 Me. range without roil changing or switching. The matehing circuit is shown in Fig. 1:3-36, and consists of the multiband circuit (${ }_{1} L_{1} L_{3}$, the roupling coils L_{23} and L_{4}, and the series capacitor ('s. The input impedance of a balaned (parallelronductor) line connerted to the output terminals, A or 13, can be matehed to at coasial line connected to the trinsmitter through J_{1}. Proper matehing can be achieved over the usual range of impedances conoomtered with practical antenna systems.

In the average ease, the transmission line will be comnected to the " 1 " terminats on 3.5 and 7 Mr., and to the "IB" terminals on It through 28 Me. However, there may be aperial eases where a better mateh ran be obtained. on a given band, by using the other set of terminals in preference to the one mentioned above. This nust be determined by trial.
The operation of this cireuit ram be resolved into thr equivalent of an "L. "network (see chapter on circuit fundamentals). The multibned cir-
lïg. 13-3: - A conpler or matehing network that can atso be used for series or parallal tuming of tuned lines.

cuit is equivalent to a parallel-resonant circuit having shunted across it a load resistance reflected to it through the coupling coil from the actual load. C_{2} is then the series arm of the " L " network and the multiband circuit is slightly detuned to the inductive side of reso-
stiffen the assembly, The two pairs of coils should be mounted with their axes at right angles in order to minimize coupling between them.

Adjustment

Proper adjustment of the matching circuit calls

Fig. 13.35 - Matchink circuit usink multiband tuner principle for covering 3.5-30 We-without coil changing. It is assembled on a standard relay-rach panel $31 / 2$ inches high, using a homemade I'shaped support made of shet aluminum. The components in this unit are suitable for atoont $\overline{5} 00$ watts.
nance to provide the necessary value of shunt reactance for matching.

Construction

The principal mombers of the supporting framework in the unit shown in Fig. 13-35 are two sheet-aluminum brackets, $31 / 2$ inches wide. with lips at both ends. The front lips are bolted to the panel and those at the rear are tied together by a third $31 / 2$-inch wide piece of aluminum 11 inches long. The over-all depth is 8 inches. The top and bottom shields are made of "do-it-yourself" proforated aluminum available at most hardware stores. These covers have bent-over edges fitting around the support frame and may be held in place with self-tapping serews, or 6-32 mathine sorews throaded into the supports.
C_{2} is mounted on smath ceramic cone insulators from the left-hand support. This capacitor must be insulated from the support, and is turned through an insulated coupling. (1 is mounted directly on the right-hand supporting member. The coaxial connectar and output terminals the latter are standard binding-post assemblies - are mounted on the rear piece.

The multiband circuit coils are supported by the wiring connerting them to the rapacitors and terminals, This method of support requires the use of heavy conductors (No. it or larger) and short leads. The coupling coils, which are mounted around the centers of the tuned-circuit coils, may be cemented to the latter. This will
for using an sw.r. indicator such as the "Monimateh" shown in the chapter on measurements. The setup is as given in Fig. 1:3-37.

Connect the transmission line to one of the two pairs of terminals, apply power from the transmitter, and adjust ('1 and Ces for minimum re-flected-voltage indication on the s.w.r. bridge. The two controls will interlock to some extent, but after a few trials a good null should be

Fig. 1.3-36 - Circuit diagram of the multiband matching circuit.
(it - 300) $\mu \mu \mathrm{f}$, per section, 0.045 -inch spacing (Johman: 300ED20).
 $350 \mathrm{~F}, 2(1)$.
I - Coavial connctor, chassis-moming type.
1.1-3.2 $\mu \mathrm{h}$.; 11 turns Iio. 12, diameter 2 inches, lenkth $23 / 4$ inches (1 ir l Mix 160.1).
$1,2-2.1$ Hh.; 6 turns No. 12, diameter $21 / 2$ inches, length $11 / 2$ inches (1 ir Dux 2004) ronemtrie with I_{1}.
$13-1.1 \mu \mathrm{~h} . ; 51 / 2$ turns No. 12 , diameter 2 inches, length $11 / 4$ inches (1 ir I Hux 160.4).
$\mathrm{L}_{4}-1.6$ h.; 5 turne No. 12, diameter $21 / 2$ inches, length $11 / 4$ inches (A ir 1)ux 2001) concentric with 1.3 .

Fif. 13.37-Adjustment setup using the "Monimatch." This setup applics with any type of matching circuit designed to match a coaxial line from the transmitter.
secured. If the meter reading cannot be brought down to zero, try connecting the balanced line to the other pair of output terminals.

When the null is obtained the system is ready for use. With the "Monimatch," the mefer switch can then be thrown to the "forward"
position and the transmitter tuned for maximum output as shown by the "Monimateh" meter. Output adjustments should be made only at the transmitter, not at the matching circuit after it has once been adjusted for minimum reflerted voltage.

CHAPTER 14

Antennas

An antenna system can be considered to include the antenna proper (the portion that radiates the r.f. energy), the feed line, and any coupling devices used for transforring power from the transmitter to the line and from the line to the antenna. Gome simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describo the antema proper, and in many cases will show popular types of lines, as well as line-toantenma couplings where they are required. However, it should be kept in mind that any antenna proper can be used with any type of ferdline if a suitable coupling is used bet ween the antenna and the line. Changing the line does not change the type of antemata.

Selecting an Antenna

In selecting the type of antemna to use, the majority of amatcurs are somewhat limited through space and structural limitations to simple antenna systems, except for v.h.f. opcration where the small space requirements make the use of multielement beams readily possible. This chapter will consider antennats for frequencies as high as 30 Me - a later chapter will describe the popular types of v.h.f. antomas. However, even though the availathe space may be limited, it is well to consider the propagation characteristies of the frequency band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristics of the amateur-band frequencies are described in Chapter Fifteen, In general, antenna construction and location become more eritial and important on the higher frequencies. On the lower frequencies (3.5 and 7 Mc .) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Me. the may be all-important. On a given frequency, the tipe of antema hest suited for long-distance communication may not be as good for shorter-range work as a different type.

Definitions

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus it vertical antenna radiates vertically-polarized waves, while a horizontal antema radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles off the ends of the wire. The wave from
an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains both horizontal and vertical components.

The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antennt, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertieal antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-spare pattern of the antemna.

The impedance of the antennat any point is the ratio of the voltage to the current at that point. It is important in commetion with feeding power to the antemat, since it constitutes the load to the line offered by the antemat. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by ann antenna is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. . Ill resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated "V," have substantially uniform current along their lengths.

The ratio of power required to produce a given fiek strength with a "comparison" antenna to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antema. The field is measured in the optimum direction of the antenna under test. The eomparison antena is generally a half-wave antenna at the same height and having the same polarization as the antema under consideration. Gain usuatly is expressed in decibols.

In unidirectional beams (antennas with most of the radiation in only one direction) the front-to-back ratio is the ratio of power rudiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-back ratio is usually expressed in decilsels.

The band width of an intenna refers to the frequency range over which the gain and impedance are substantially eonstant.

Ground Effects

The radiation pattern of any antenna that is many wave longths distant from the ground and all other objects is called the free-space pattern of that intenna. The free-space pattern of an antema is almost impossible to obtain in practice, except in the v.h.f. and u.h.f. ranges. Below 30 Mr ., the height of the antema above ground is a major factor in determining the radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-spare pattern and ground reflections. This resultant is dependent upon the height of the antema, its position or orientation with respert to the surface of the groumb, and the electrical characteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Pis. 14.1-Effert of ground on radiation of horizomtal anternas at vertical angles for four antema height. this chart is based on perfertly cenducting gromit.
origimal free-space field strength may be multiplied by a factor which has a maxinum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 14-1 shows how the multiplying fareor varies with the vertical angle for several representative heights for horizontal antennas, As the height is incroased the angle at which complete reinforement takes place is lowered, until for a height equal to one wave length it ocrurs at a vertical angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary inportance, especially at the higher
frequencies. It is advantageous, therefore, to erect the antenna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the intenna shoukd be high - at least one-half wave length at $14 \mathrm{Mr} \cdot$, and preferably throe-quarters or one wave length, and at least ono wave length, and preferably higher, at 28 Me. The physical height required for a given height in wave lengt hs decreases as the frequency is increased, so that good heights are not impracticable; a half wave longth at 14 Mc . is only : 35 feet, approximately, while the same hoight represents a full wave length at 28 Mc . At 7 Me , and lower frequencies the higher radiation angles are effertive, so that again a useful antema height is not difficult of attaimment. Heights between 35 and 70 feet are suitable for all bands, the higher figures being preforable.

Imperfect Ground

lig. $14-1$ is based on ground having perfect conductivity, whereas the artual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaccurate at the lowest angles: appreciable high-frequency radiation at angles snaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the curves are ancorate enough for all practioal puposes, and may be taken as indicative of the resalt to be experted at angles botwern atand 10 degrees

The effertive ground phane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the an-

Fig. 14-2 - Theoretical curve of variation of radiation resistance for a half-wave horizontal antenna, as a function of heipht in wave length above perfectly. reflecting around.
tenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antenna varies with height. The theoretical curve of variation of radiation resistance for a half-wave antenna above perfectly-reflerting ground is shown in Fig. 14-2. The impedance approtehes the free-space value as the height beoomes large, but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antemat is generally unimportant on frequencies between
3.5 and 30 Mc . However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. I vertical halfwave or quarter-wave antema will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wave longth. It is the unit from which many more-complex forms of antennas are constructed. It is known as a dipole or Hertz antenna.

The length of a half-wave in spare is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{492}{\text { Freq. (Me.) }} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wave length as shown in Fig. 14-3, where K is a factor that must be multiplied by the half-wave length in free space to obtain the resonant antemna length. An additional shortening effeet oceurs: with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas at frequencies up to 30 Mc :

Length of half-wave antenna (feet) =

$$
\begin{equation*}
\frac{492 \times 0.95}{\text { Freq. }(\mathrm{Mc})}=\frac{46 \mathrm{~s}}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-B}
\end{equation*}
$$

Example: A half-wave antenna for 7150 kc . (7.15 Mc .) is $\frac{468}{6.15}=65.45$ feet, or 65 feet 5 inches.
Above 30 Mc . the following formulas should be used, particularly for antemas constructed from rod or tubing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-wave antenna (feet) }= \\
\frac{492 \times K}{\text { Freq. }(\text { Mc. })} \tag{14-C}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. }(\text { Mc. })} \tag{14-D}
\end{gather*}
$$

Example: Find the length of a half-wave length antenna at 29 Mc ., if the antenna is made of $2-$ inch diameter tubing. At 29 Mc, a half-wave length in space is $\frac{492}{29}=16.97$ feet, from Eq. 14-A. Ratio of half-wave length to conductor diameter (rhanging wave length tu inches) is $\frac{16.9 \% \times 12}{2}=101.8$. From Fig. $14-3, K=0.963$ for this ratio. The length of the antenna, from Eq. 14-C, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 feet 4 inches. The answer is ohtained directly in inches by sutstitution in Eq. 14-13: $\frac{5005 \times 0.963}{29}$ $=196$ inchus.

Fig. 1A-3- Fiffect of antenna diannelie on Iength for half-wave reantance, shown as a multiply ing factor, K, to be applied to the free-space half-wave length (Equation If-A). The effect of condartor diameter on the impedance measured at the center also is shown.

Current and Voltage Distribution

When power is fed to a half-wave antenna, the current and voltage vary along its length. The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not zero at

Fig. 14-4 - The above stales, hased on Fis. 14-13, ean be und to determine the length of a half-wave antenna of wire.

Radiation Characteristics

The radiat ion from a dipole is not unform in all directions but variow with the angle with respeet to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermedi-

Fig. 14-5 - 'The free-space radiation pattern of a half-wave antenna. 'The antenna is shown in the vertical position. 'this is a cross-section of the selid pattern described by the figure when rotated on its vertical axic. The "domghmat" form of the sollid pattern can be more easily visualized by imagining tho Irawing glued to a piece of cardboard, with a short length of wire fastened on it to represent the antema. 'Twirling the wire will give a visual represell. tation of the solid radiation pattern.
its node because of the resistance of the antenna, which consists of both the r.f. resistance of the wire (ohmic resistonce) and the radiation resistance. The radiation resistance is an equicalent resistance, a convenient conception to indicate the radiation properties of ath antemna. The radiation resistance is the equivalent resistance that would dissipate the power the antenna radiates, with a current lowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a hall-wave dength antemna is ordinarily smatl enough, in comparison with the radiation resistanee, to be negleded for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antemat in free space is i:3 ohms, approximately. The value under pratieal conditions is commonly taken to be in the neighborhood of 70 ohms, atthough it varies with height as shown in lig. $1+-2$. It increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation (6) the wave length, as shown in Fig. 11-3, If the diameter of the conductor is made large, the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C^{\prime} ratio canses the () of the antema to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is eapable of working over a wide frequency range. This effect is greater as the diameter is inereased, and is a property of some importance at the very-high frequencies where the wave length is small.
ate values at intermediate angles. This is shown by the sketch of Fig. I4-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength will be uniform in all horizontal directions; if the

Fig. 14-6-Illustrating the importance of vertieal angle of radiation is determining antenna directional effects, Olf the end, the radiation is greater at higher angles. froumd re. flection is neglocted in this drawing of the free mpace pattern of a horizontal antenna.
antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at varions vertieal angles from a half wave length horizontal antenna is indicated in ligs. 14-6 and 14-7.

FEEDING THE DIPOLE Direct Feed

If possible, it is advisable to locate the antenna at least a hatf wave length from the transmitter and use a transmision line to carry the power from the transmitter to the antenna. llowever, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three cxamples of direct feed are shown in Pig. 14-8. In the method shown at.,C_{1} and C_{2} should be about
 each at 7 Me., and proportionately smaller at the higher frequencies. The antenna coil connected between them should resonate to 3.5 Me. with about 60 or $70 \mu \mu \mathrm{f}$., for the 80 meter hand, for 40 moters it should resomate with 30 or $35 \mu \mu \mathrm{f}$., and so on. The cireuit is adjusted by using loose coupling between the antenna coil and the transmitter tank coil and

Fig. 14-7- Horizontal pattern of a horizontal halfwave antenna at threc vertical radiation angles. 'The sulid line is relative radiation at 15 degrecs. Dotted lines show deviation from the $\mathbf{1 5}$-degrec pattern for angles of 9 and 30 degrees. 'The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna ahove ground and the vertical angle considered. The patterns for all three angles have heen proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will the the same. The arrow indicates the direction of the horizontal antenna wire.
adjusting C_{1} and C_{2} until resonance is indicated by an inerease in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It may be necessary to re-resonate the transmitter tank circuit as the coupling is increased, but the change should be small.

The circuits in Fig. 14-813 and C are used when only one cnd of the antenna is accessible. In B , the coupling is adjusted by moving the

Fig-14-8 - Methods of directly exciting the half-wave antenna. A, current feed, series tuning; 13, voltage feed, capacitive coupling; C , voltage feed, with in-ductively-coupled antenna tank. In A, the eoupling circuit is not included in the effective electrical length of the antennasystem proper. Link coupling can be used in A and C.
tap toward the "hot" or plate end of the tank coil - the eapacitor C may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C, the antenna tuned circuit (C_{1} and the antenna coil) should be similar to the transmitter tank circuit. The antenna tuned circuit is adjusted to resonance with the antenna comnected but with loose coupling to the transmitter. Heavier loading of the tube is
then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of B is undesirable because it provides practically no protection against the radiation of harmonics, and it should only be used in emergencies.

Transmission-Line Feed for Dipoles

Since the impedance at the center of a dipole is in the vicinity of 75 ohms , it offers a good match for $75-o h n$ two-wire transmission lines. Several types are available on the market, with different power-handling capabilities. They can be connerted in the center of the antenna, across a small strain insulator to provide a convenient connection point. Coaxiat line of 75 ohms impedance can also be used, but it is heavier and thus not as

Fig. 14-9-Comstruction of a dipole fed with 75 -olm line. The length of the antenna is calculated from Eguation 14-13 or Fig. 14-4.
convenient. In either case, the transmission line should be run aray at right angles to the antenna for at least one-quarter wave length, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Equation $14-\mathrm{B}$, for a half wave length antemna. When No. 12 or No. 14 enameled wire is used for the antenna, as is gencrally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9.
'The use of 75 -ohm line results in a "flat" line over most of any amateur band. Ilowever, by making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm line. such an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of No. 12 or No. 14 enameled wire, separated by

Fig. 14-10 - The construetion of an open-wire folded dipole fed with 300 -ohm line. The length of the antenna is caleulated from Fiquation 14-B or Fig. 14-4.
lightweight spacers of Lucite or other material (it doesn't have to be a low-loss insulating material), and the spacing can be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequency is. It $1+M c \cdot, 4$-inch separation is satisfactory, and 8 -inch spacing coul be used at 3.5 Me.

The half wave length antenna can also be made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. Ifter the wires have been soldered together, the joint can be strengthened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of Lucite can be devised.

Fig. 14-11- The construction of a 3-wire folded dipole is similar to that of the 2 -wire folded dipole. The end spacers may have to the slighty stronger than the other. pecanse of the greater eompression force on them. The length of the antenna is ohtained from liguation $1 \mathrm{f}-13$ or Fig. 14.1. I suitable line ean be made from No. 14 wire spaced 5 inches, or from V o. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the three-wire folded dipole of Fig. 14-11 offers a good match for a 600 -ohm line. It is favored by amateurs who prefer to use an open-wire line instead of the 300 -ohm insulated line. The three wires of the antenna proper should all be of the same diameter.

Another method for offering a mateh to a $600-\mathrm{ohm}$ open-wire line with a half-wave length antenna is shown in Fig. 14-12. The system is called a delta match. The line is "fanned" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antenna impedance at the point of comection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is necessary. The length of the antenna, l, is calcu-

Fig. 14.12- Delta-inatrhed antenna system. The dimensions C, D, and E are found by formmas piven in the text. It is inportant that the matebing section, E, conestraight away from the antenna without any bends.
lated from Equation 14-B or Fig. 1.4-4. The length of section C is computed from:

$$
\begin{equation*}
C^{\prime}(\text { feet })=\frac{11 \mathrm{~s}}{\text { Freq. (Me.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, l, is found from

$$
\begin{equation*}
E(\text { feet })=\frac{148}{\text { Freq. (Me.) }} \tag{14-F}
\end{equation*}
$$

Examble: For a frequency of 7.1 Mc ., the length
$L=\frac{46 \mathrm{~S}}{7.1}=65.91$ feet, or 65 feet 11 inches.
$C=\frac{118}{7.1}=16.62$ feet, or 16 feet $\overline{7}$ inches.
$E=\frac{148}{3.1}=20.44$ feet, or 20 feet 10 inches.
Since the equations hold only for 600-ohm line, it is important that the line be close to this value. This requires 5 -inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-ineh spaced No. 16 wire.

If a half-wave lenglh antenna is fed at the renter with other than $75-\mathrm{ohm}$ line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as described in the preeeding ehapter. However, in many cases it is not convenient to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antema is desired), and sometimes it is not convenient to feed the antema at the center. Where multiband operation is desired (to be discussed later) or when the antenna must be

Fig. 14-13 - The half-wave antenna can be fed at the conter or at the emd with an open-wire line. I'he antenna length is obtained from Fquation 14-B or Fig. 14-4.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedance is generally used. The impedance at the end of a half-wave length antenna is in the vicinity of several thousand ohms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is comnected to the end of the antema. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the use of ceramic or Miealex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers boiled in paraffin are satisfartory. Mechanical details of half-wave length antenmas fed with open-wire lines are given in Fig. 14-13. If the power is below 100 watts or so, 300 -ohm TwinLead can be used in place of the open line.

Long-Wire Antennas

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long ats its length is some integral multiple of a half-wave length. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 14-14 shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is

ZND HARMONIC (FULL•WAVE)

4 TH HARMONIC (2-WAVE)
Fig. 14-14 - Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant freguency.
(equal to a half-wive length) and at its second, third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Mc., the current and voltage distribution will be as shown at .1 . The same antenna excited at It Mc. would have current and voltage distribution as shown at I3. At 21 Mc., the third harmonic of 7 Mr ., the current and voltage distribution would be as in C; and at 28 Mc ., the fourth harmonic, as in D . The number of the harmonic is the number of half waves contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antental (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents
flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for harmonically-related frequencies, such as the various amateur bands. The long-wire or harmonic antema is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antema; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(. \mathrm{N}-0.05)}{\text { Freq. }(\mathrm{Mc})} \quad 14-\mathrm{G}
$$

where N is the number of half-waves on the antenna.

$$
\begin{aligned}
& \text { Example: An antenm } 4 \text { half-waves long at } 14.2 \\
& \text { Mc. would be } \frac{492(4-0.05)}{14.2}=\frac{492 \times 3.46}{14.2} \\
& =136.7 \text { feet, or } 136 \text { feet } 8 \text { inches. }
\end{aligned}
$$

It is apparent that an antenna cut as a halfwave for a given frequence will be slightly off resonance at exactly twice that frequeney (the second harmonic), ibecause of the derreased influence of the end effects when the antemma is more than one-half wave length long. The effect is not very important, except for a possible unbalance in the feeder system and consequent

Fig. 14-15-Curve A shows variation in radiation resistance with antenna length. (iurve B shows power in lolose of maximum radiation for long-wire antemas as a ratio to the maximum radiation for a half-wave antenna.

Fig. 14.16 - Ilorizontal patterns of radiation from a full-uate antenna. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation fron the 15 -degree pattern at 9 and 30 degrees. All three patterns are drawn to the same relative scale: actual am. plitudes will depend pron the height of the antema,
radiation from the feedline. If the antema is fed in the exact center, no unbalance will ocrur at any frequency, but end-fed systems will show an unbalance in all but one frequenery, the frequency for which the antenna is cut.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes higher as the antenna length is increased. Aso, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in other

Pia. 14-17-1lorizontal patterns of ratiation from an antenna three half-naves long. The solid line shows the pattern for a vertical angle of 1.5 dergrees: dotted limesshow deviation from the I-Atepreep pattern at 9 and 30 degrees. Minor lobes coineide for all three angles
directions. Fig. 11-15 shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antema length.

Directional Characteristics

As the wire is made longer in terms of the number of hadf wave lengths, the directional effects change. listead of the "doughnut" pattern of the half-wave antema, the directional characteristic splits up into "lobes" Which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Directional characteristies for antemas one wave length, three half-wave lengths, and two wave lengths long are given in Figs. 1+16, $14-17$ and $14-18$, for three vertical angles of radiation. Note that, as the wire length in-

Fig. 1.4-18 - Horizontal patterns of radiation from an antenna two teatengths long. 'The solitl line shows the pattern for a vertieal angle of 15 degrees: dotted lines show deviation from the 15 -degree pattero at 9 and 30 degrees. "The minor lobes coincide for all three angles.
creason, the radiation along the line of the antema becomes more pronounced. stil! longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave sections must be out of phase, as shown in Fig. 14-14. The feeder system must not upset this phase relationship. This requirement is met by feeding the antenna at either end or at any current loop. A two-wire feeder cannot be inserted at a current node, however, berause this invariably brings the currents in two adjacent half-wave sertions in phase. A long wire is usually made a half wave length at the lowest frequency and fed at the end.

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonics. When this is done it is neressary to use tuned feeders, since the impedance matching for nonresonant feeder operation (an be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it.

A half-wave antema that is center-fed by a solid-dielectric tine is useless for even harmonic operation; on all even harmonis's there is a voltage maximum orcurring right at the feed point, and the resultant impedance mismatch canses a large standing-wave ratio and consequently high losses arise in the solid dielectric. It is wise not to attempt to use on its even harmonics a half-wave antemas center-fed with eoaxial cable. (On odd harmonics, as between 7 and 21 Me .. a current loop will appear in the center of the antenna and a fair matel can be obtaned. High-impedance solid-dielectric lines such as 300 -ohm Twin-Lead maty be used. provided the power does not exeed a few hundred watts.

When the same antenna is used for work in several bands, it must be realized that the directional characteristic will vary with the band in use.

Simple Systems

The most practical simple multiband antonna is one that is a half watve length long at the lowest frequency and is fed either at the center or one end with an open-wire line. . Ithough the standing wave ratio on the feedline will not approach 1.0 on any band, if the losses in the line are bow the system will be eflicient. From the standpoint of reduced feedline radiation, a renter-fed system is superior to one that is end-fed, but the end-fed arrangement is often nore convenient and should not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the length of the antenaa is a half wave length. The end-fed antenna arts like a long-wire anteman on all bands (for which it is longer than a half wave length), but the center-fed one acts like two antemms of half that length fed in phase. For example, if a full-wave length antema is fed at one end, it will have a radiation pattern as shown in Fig. 14-16, but if it is fed in the renter the pattern will be somewhat similar to Fig. 14-7, with the maximum radiation bromdside to the wire. Fither antenna is a good radiator, but if the radiation pattern is a factor, the point of feed must be considered.

Since multiband operation of an antenna does not permit matehing of the feedline, some attention must be paid to the length of the feedline if convenient transmitter-coupling ar-
rangements are to be ohtained. Table 14-I gives some suggested antenna and feeder lengths for multiband operation. In general, the length of the feedline can be other than that indicated, but the type of coupling direuit may change.

Open-wire line feed is recommended for an antenna of this type, since the losses will run too high in solid-dielectric line. For low-power applications up to a few hundred watts, open-wire TV line is convenient and satisfactory to use. However, for high-power installations up to the kitowatt limit, an open-wire line with No. 14 or No. 12 conductors should be used. This must be built by the amateur, using soft-drawn enameled wire and ceramic or other suitable spacers.

Antennas for Restricted Space

If the space available for the antenna is not large enough to accommodate the length necessary for a half wave at the lowest frequency to be used, quite satisfactory operation can be secured by using a shorter antenna and making up the missing length in the feeder system. The antenna itself may be as short as a quarter wave length and will radiate fairly well, although of course it will not be as effective as one a half wave long. Nevertheless, such a system is usoful where operation on the desired band otherwise would be impossible.

Tuned feedors are a practical necessity with such an antenna system, and a center-fed antemat will give best all-around performance.

TABLE 14-I Multiband Tuned-Line-Fed Antennas			
Antenna Length ($F t$.)	Feeder Length (${ }^{\prime} t_{.}$)	Band	Type of Coupling Circuit
With end feed:			
135	45	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Series Parallel
67	45	$\begin{gathered} 7-21 \\ 28 \end{gathered}$	Scries Parallel
With center ferd:			
135	42	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Parallel Series
135	$771 / 2$	3.5-28	Parallel
67	$421 / 2$	$\begin{gathered} 3.5 \\ 7-28 \end{gathered}$	Scries P'arallel
67	(6) $1 / 2$	$\begin{gathered} 3.5,14,28 \\ 7,21 \end{gathered}$	l’arallel Series
Antenna lengths for end-fed antennas are approximute and should be cut to formula length at favorite operating frequency. Where parallel tuning is specified, it will be necessary in some cases to tap in from the ends of the coil for proper loading - see Chapter 13 for examples of antenna couplers.			

quener, but is not so desirable for multiband operation berause the ends play an increasingly important part as the frequeney is raised. The performance of the sustem in such a case is difficult to prediet. espereially if the ends are vartical (the most convenient arrangement) berause of the complex combination of horizontal and vertical polarization which results as well as the dissimilar diredional characteristics. However, the fate that the radiation pattern is incapable of prediction does not detract from the general usefulness of the antenma. For one-band operation, end-loading with eoils (5 feet or so in from eath end) is practical and efficient.

"Windom" or Off-Center-Fed Antenna

A multihand antemat that mioyed ronsiderable popularity in the 1930s is the "offeemen fered" or "Windom," named after the amatenur who wrote a romprehensive artiele athout it. Shown in Fig. It-21A, it consists of a half wave length antenna on the lowest-frequener band to be used, with a single-vier feeder connerted 14% off enter. The intema will opreate satisfactorily

Fip. 14-21 - Two versions of the offecenter-fell antenna.
(i) Single-wire fered shows approsimately ofo ohms impedanee to ground and is most convenienty coupleal to the transmitter as shown. The pi-network rompling will require more eapacity at C_{1} than at C_{2}, l_{1} is best found ly experiment - an indurtanee of about the same size as that used in the omtimt stage is a good starting point. The parallel-tumed cirenit will be a tuned circuit that resonates at the oprerating frepueney with L and c celose to thuse ued in the output stake. The tap is found loy experiment, and it should be as near the top of L at it can and still give good loading of the tramsmitter.
(B) Two-wire offerenter feed uaes 300-ohm TV line. Athough the 300 orlm line ran be compled directly to some transmittere, it is common practiee to step down the impedance level to 75 olms through a pair of "balun" coils.
on the even-hatmonic frequencies, and thus a single antenna can be made to serve on the 80 -, 4(1), 20-, and 10 -meter bands. The single-wire feeder shows an impedance of approximately 600 ohms to ground, and consequently the antenna eoupling system must be capable of matehing this value to the transmitter. A tapped parallel-tumed rireuit or a properly-proportioned pi-network coupler is generally used. Where TVI is a prob)lom, the antennat eoupler is required, so that a low-pass filter can be used in the connerting link of eomaial line.

Ithough theoretically the feed line can be of any length, some lengths will tend to give tronbo with "too much r.f. in the shatek," with the consequance that r.f. sparks can be drawn from the transmitter's motal mabinct and/or v.f.o. notes will develop serions motulation. If such is found to be the ease, the feeder length should be ehanged.

I newer version of the off-renter-feed antemna uses 300 -ohm TV Twin-Lead to foed the antenna, ats shown in liig. 14-21 l3. It is claimed that the antenna offers a good mateh for the 300 -ohm line on four bands and, although this is more wishful thinking than aetual truth, the system is widely used and does work satisfactorily. It is subject to the same ferd line length and "r.f.-in-the-shark" troubles that the single-wire version enjops. However, in this case a pair of "hadun" coils can be used to stap down the impedance level to (i) ohms and at the samo timo alleviate some of the fered line proubles. This antembat system is popular among amateurs using multiband transmitters with pi-net work-tuned output stages.

With either of the off-econter-fed antemat systems, the feed line should run away from the antenna at right angles for as great a distance ats possihle before bending. No sharp bends should be allowed anywhere in the line.

Multiband Operation with Coaxial Line Feed

The proper use of coaxial line requires that the standing-wave ratio be held to a low value, preferably below $2: 1$. Since the impedance of an ordi-

Fig. 1.4.22 - An effeetive *all-band" anteman fed wih a single length of coavial line can be constructed by joining several half wave length antennas at their renters and feeding them at the common point. In the example abose, a low w,w.r. will be obtained on 80 , 40,20 and 15 meters. (ithe 7 -Me, antenna also works at 21 Vle.) If a 28 -Me. antenna were added, 10 -meter operation could also be ineludeit.

The antenna lengths ean be computed from formula 14.1. The shorter antennas can be suspended a foot or two below the longest one,
nary antenna changes widely from band to band. it is not possible to feed a simple antenna with coavial line and use it on a mumber of bands without tricks of some kind. The single exception to this is the use of $\overline{\mathrm{j}}$-ohm coaxial line to feed a T-Mc, half-wave antenna, as in Fig. 1+19; this antemat can also be used on 21 Mc. and the s.w.r. in the line will not run too high.
(One approach to a solution is the use of paralleltuned rireuits installed in the antenna at the right points to "divore" the remainder of the antema from the center section (part fed bex (oowial line) as the tramsmiter is changed to a higher-frequeney band. The support and atjustment of those tuned cirouits presents a problem, but the mothod has bern used. The same principle has also boen appliod to a vertical amtemma.
 example of both horizontal and vertieal antennas using this principle. For information on the construction of the traps, seo (ireenberg, "Simple" Trap) (onstruction for the Multiband Antema," (SST, Oct., 1956.)

The principle of the "divorcing" eircuits is utilized in a commercial "all-band" vertical antema, and a B -band kit for horizontal antennas using the method is also available commercially.

The divoreing circuits are also used in several commerrial multiband beams for the 14-, 21- and 28-Mr. bands. The design and adjustment of these cirruits is diflicult without suitable equipmont and aswistance, and the pre-tumed commercial versions are recommenaled to anyone who lacks the time and equipment for the experimental work.

One multiband antenna system that can be used by anyone without much trouble is shown in Fig. 14-22. Here separate dipoles are connected to one feedline. The 7 -Mr. dipole also serves on 21 Mr. A low s.w.r. Will appear on the feedline in eath band if the dipoles are of the proper longth. The antenna system can be built bey suspending one set of elements from the ond above, using insulator-terminated wood spreaders about one foos long. An altemative is to let onc antema droop several feet under the other, bring ropes attacherl to the insulators back to a rommon support point. It hats beern found that a separation of only an inch or two between dipoles: is satisfactory. By using a length of the Twinlead used for folded dipoles (one Copperweld eonductor and one soft-drawn), the strong wire ran be used for the low-frequency dipole. The soft-drawn wire is then used on a higher band. supported hy the solid dielectric.

Another approach to multiband operation with foamial line feed is the use of a vertical antemma (a maximum length of 0.6 wave length at the highest frequency band) and the use at the base of suitable matehing sections for each band. The matching sections can be housed in a weatherproof box and changed manatly or by stepping relays; their form will vary from parallel-tuned rircuits to L sections. (See MeCoy, QS'l', December, 1955, for a description of the L-section coupler.)

Vertical Antennas

A vertical quarter wave length antenma is often used in the low-frequeney amateur hands to obtain low-angle radiation. It is also used when there isn't enough room for the supports for a

Fig. 14-23 - A guarter wave lengithantenna can be fed directly with 30 -chm coavial line (1) with a low stand-ing-wave ratio, or a coupling network can be used (13) that will permit a line of any impedance to le nsed. In (B), L_{1} and C_{1} should resonate to the operating fregueney, and L_{1} should be larger than is normally used in a plate tank circuit at the same frequency.
By nsing multiwire antennas, the guarter-wave vertical can be fed with (C.) 150 - or (I) 300 -ohm line.
horizontal antenna. For maximum effertiveness it should be located free of nearby objects and it should be operated in conjunction with a good ground system, but it is still worth trying where these ideal conditions cannot be obtained.

Four typical examples and suggested methods for feeding a vertical antenna are shown in Fig. 1+23. The antema may be wire or tubing supported by wood or insulated guy wires. When tubing is used for the anterna, or when guy wires (broken up by insulators) are used to reinforee the structure, the length given by the formula is likely to be long by a few per cent. A check of the standing-wave ratio on the line will indicate the frequency at which the s.w.r. is minimum, and the antenna length can be adjusted aroordingly.
A good ground connection is necessary for the most effective operation of a vertical antenna (other than the ground-plame type). In some rases a short connection to the cold-water system of the house will be adequate. But maximum performance usually demands a separate ground system. A single 4 to 6 -foot ground rod driven into the earth at the base of the antemna is usually not sufficient, unless the soil has exceptional conductivity, A minimum ground system that
(an be depended upon is 6 to 12 quarter wave length radials laid out as the spokes of a wheel from the base of the antenna. These radials can be made of heavy aluminum wire, of the type used for grounding TV antemnas, buried at least f inches in the ground. This is normally done ley slitting the earth with a spade and pushing the wire into the slot, after which the earth cin be tamped down.

The examples shown in Fig. 14-23 all require an antenna insulated from the ground, to provide for the feed point. A grounded tower or pipe can be used as a radiator by employing "shunt feed," which eonsists of tapping the imner conductor of the coaxial-line feed up on the tower until the hest mateh is ohtaned, in much the same manner as the "gamma match" (described later) is used on a horizontal element. If the antenna is not an electrical quarter wave length long, it is necessary to tune out the reactance by adding capacity or inductance between the coaxial line and the shunting conductor. A metal tower supporting a TV antenna or rotary heam can be shunt-fed only if all of the wires and leads from the supported antenna run down the center of the tower and underground away from the tower.

- THE GROUND-PLANE ANTENNA

A ground-plane antenna is a vertical quarter wave length antenna using an artificial motallic ground, usually consisting of four rods or wires

Fig. 14-24-Radiation resistance of a quarter-wave antenna (with ground plane or grounded) as a function of M. 'The values apply only when the antenna is of the resonant length,

Fig. 14.25 - The groundplane antenna with shunt matching. The antenna length, L_{3}, matching stub length, $L_{n n}$, and radial length, $L_{r,}$ are determined as described in the text, for matching a transmission line of given characteristic impedance. As shown in the insert, the radials and the outside conductors of the stub and line are all connected together.

perpendicular to the antenna and extending radially from its base. Unlike the quarter wave length vertical antennas without an artifieial ground, the ground-plane antenna will give low-angle radiation regardless of the height above actual ground. However, to be a true ground-plane anterna, the plane of the radials should be at least a quarter wave length above ground. Despite this one limitation, the antenna is useful for DX work in any band below 30 No.

The vertical portion of the ground-plane antemna can be made of self-supported aluminum tuling, or a top-supported wire, depending upon the necessary length and the available supports. The radials are also made of tubing or heavy wire, depending upon the available supports and necessary lengths. They need not be exactly symmetrical about the base of the vertical portion.

The radiation resistance of a ground-plane antenna varies with the diameter of the vertical element, as shown in lig. 14-24. Since the radiation resistance is usually in the vicinity of 30 to 32 ohms, the antenna can be fed with 75 -ohm coaxial line if a quarter wave length matching section of 50 -ohm coaxial line is used between the line and the antenna. (See Chapter Thirteen, "(Quarter-Wave Transformers.")

For multiband operation, a ground-plane antenna ran be fed with tuned open-wire line.

It is also possible to feed the ground-plane antenna with coaxial line and a "shunt" matching section, as shown in Fig. $14-25$. The various values required for proper matching will depend on the particular type of line used, as well as on the radiation resistance, resonant length, and reactance per unit length of the antenna. The necessary information for design purposes is given in Figs. 14-24, 14-26 and 14-27.

Determining the antenna dimensions can be reduced to a series of steps, as follows:

First determine M, the ratio of a free-space half wave length to the conductor diameter. The following formula may be used:

$$
M=\frac{5906}{F D}
$$

where $F=$ frequency in megacycles, $D=$ conductor diameter in inches.
Using this value of M, read the length factor (K_{a}) from Fig. $1+26$, the reactance change per 1 per cent change in length $\left(K_{x}\right)$ from Fig. 14-27, and the radiation resistance (R_{r}) from Fig. 14-24.

Since the antenna is to be shortened, these values must be modified appropriately. The actual radiation resistance, after the antenna is properly shortened, will be

$$
R_{\mathrm{o}}=R_{\mathrm{r}}-\frac{Z_{1}}{4 R_{\mathrm{r}}} \text { ohmss, }
$$

where $R_{0}=$ radiation resistance after shortening, $Z_{1}=$ characteristic impedance of transmission line to be matched.

Fig. 14-26 - The antenna-length factor as a function of the ratio of a freespace half wave length to the eonduetor diameter. The length faetor multiplied ly a free-space guarter wave length is the lennth of a quarterwave radiator resonant at the selected frequency,

OHMS REACTANCE CHANGE PER 1% CHANGE IN LENGTH
Fig. 1,4-27 - Heactance change with antenna longth as a function of M, for quarter-wave ground-plane (or grounded) antennas. If the antenna is Ionger than the resonant length the reactance is inductive; if shorter, the reactance is capacitive. The curve is acourate for lengths within 10 per cent of the resonant length. Multiply reactance values by 2 for half-wave anternas.

The proper value of capacitive reactance in the shortened antenna is given hy

$$
X_{\mathrm{a}}=S R_{\mathrm{v}} \text { ohms, }
$$

where $X_{\mathrm{a}}=$ capacitive reactance of antenna, and

$$
S=\sqrt{\frac{Z_{1}}{R_{0}}-1}
$$

The antenna length that gives the proper capacitive reartance is

$$
L_{\mathrm{a}}=\frac{2953 K_{\mathrm{a}} K_{\mathrm{b}}}{F} \text { inches, }
$$

where $L_{\mathrm{s}}=$ required antenna length, and

$$
K_{\mathrm{b}}=1-\frac{\Lambda_{\mathrm{a}}}{100 K_{\mathrm{x}}}
$$

The only remaining steps are to find the dimensions of the indurtive stub and the length of the radial ground-plane rods.

The required stub reactance is given by

$$
x_{\mathrm{a}}=\frac{Z_{1}}{S} \text { ohms, }
$$

where $X_{s}=$ inductive reactance of stul).

The length of the shorted stub is

$$
L_{\mathrm{s}}=\frac{32.81^{\circ} L}{F} \text { inches, }
$$

where $L_{s}=$ stub length,
$V=$ velocity factor of line used in stul),
$L=$ length of stub in elertrical degrees having required $\mathrm{K}_{\text {. }}$
L is equal to the angle whose tangent is $X_{\mathrm{s}} / Z_{\mathrm{s}}$, where Z_{s} is the characteristic impedance of the stub.
The length of each radial is given by

$$
L_{\mathrm{r}}=\frac{2!5: 3 K_{\mathrm{a}}}{F} \text { inches }
$$

the length being measured from the renter line of the radiator to the tip of the radial.

If the radials have a different diameter than the radiator (a common practice) the M and K_{a} for radials and antenna must le considered separately: The preceding formulas apply when the radials are horizontal, although the antemat cam be built with "drooping" radials.

Wxamplo: Assume a ground-plane antenna to be ponstructed with a vertieal radiator of 3 -ineh dianeter tubing and radials of No. 10 (0,10 -inch diam.) wire, for a fregurney of 7.1 Me , and to be matched to 7 -ohm R(i-11/[' coaxial line hy using a stub of the same material.

$$
\begin{aligned}
& r^{\prime}=7.1 M c, D=2 \text { inches, } Z_{1}=Z_{s}=72 \text { ohmus, } \\
& v^{\prime}=0.66, M=5906 \div(7.1 \times 2)=416 .
\end{aligned}
$$

From ligs. 1-4-26, 14-27 and 11-24, it is found that

$$
K_{a}=0.971, K_{z}=3.5, h_{r}=30.9
$$

lirom the formula.

$$
R_{\omega}=30.9-\frac{72}{4 \times 30.9}=30.3 \text { ohans }
$$

and the fartor

$$
S=\sqrt{\frac{72}{30,3}-1}=1.17 .
$$

llence $\mathrm{X}_{\mathrm{a}}=1.17 .5 \times 30.3=3.5 .0 .5$
Also, $K_{1}=1-\frac{30.605}{100 \times 8.0}=0.938$
'Ihas the atoman lougth.

To find the stul, dinminions,

$$
x_{0}=\frac{73}{1.17 .5}=61.3
$$

I is the andle whose tangent is $61.3 \div 7=0.8 .02$, and from a table of tangents is fomm to the to. 4 degrees

Then $L_{\text {as }}=\frac{32.8 \times 0.66 \times 40.4}{7.1}=\frac{123 \text { inchess }=10 \text { feet } 3}{\text { inches. }}$
Fur the radials.

$$
\begin{aligned}
& . M=5906 \div(7.1 \times 0.1)=8340, K_{\mathrm{L}}=0.978 .7 .
\end{aligned}
$$

Antennas for 160 Meters

Results on 1.8 Mc. will depend to a large extent on the antenna system and the time of day or night. Almost any random long wire that ean be tuned to resonance will work during the night but it witl generally be found very inelfertive during the day. I vertical antenna - or rather an antenma from which the radiation is predominantly vertia atly po-
larized - is probably the best for 1.8-Mc. operation. A horizontal antenta (horizontallypolarized radiation) will give better results during the bight than the day. The vertioallypolatized radiator gives a strong gronnd wave that is effertive day or night, and it is to be preforred on 1.8 Mle.

The bow-angle radiation from a horizontal
antenna $1 / 8$ or $1 / 4$ wave length above ground is almost insignifieant. Any reasonable height is small in terms of wavelength, so that a horizontal antemata on 160 meters is a peor radiator at angles usciful for long distances ("long," that is, for this band). Its chiof usefuluess is over relatively short distances at night.

Bent Antennas

Since ideal vertical antemnas are generally out of the question for practical amateur work, the best compromise is to bend the antema in such a way that the high-current portions of the antemat run vertically, It is advisable to place the antenna so that the highost currents in the antemna ocour at the highest points above atual ground. Two antemna systems designed along these lines are shown in Fig, $1+28$. The antenna of Fig, $1+28 B$ uses a full half wave length of wire but is bent so that the high-rurrent portion rums vertically. The horizontal portion rumning to $L_{1} \mathcal{S}^{\prime \prime}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 00 to 100 feet from the central connection point. As many radials as possible should be used: six is a minimum.

If the soil is good (not rocky or sandy) and generally moist, a low-resistance connection to the cold-water pipe system in the house will often serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped clean before tightening the ground clamp around the pipe.

A 6 - or 8 -foot length of l-inch water pipe, driven into the soil at a point where there is considerable natural moisture, can bo usod for the ground connertion. Three or four pipes driven into the ground 8 or 10 feet apart and all joined

Fins. $14 \cdot 28$ - Bent antenna for the 160 -meter band. In the wastem at 1 , the vertical portion (length V) should be made as long as possible, In either antemoa sostem, $L_{1} \mathrm{Cl}_{1}$ sfould resonate at $1900 \mathrm{he} \cdot$, rourdit. 'fo adjust L_{2} in antenna $A_{\text {, resonate }} L_{1} \mathrm{C}_{\mathrm{i}}$ atome lo the operating frefurney. then conneet it to the antemat sistem and adjust $l / 2$ for maximum loading, fiorther loading can be ohtained by incerasing the coupling betwern L_{1} and the link.
together at the top with heavy wire are more effertive than the single pipe.

The use of a rounterpoise is reommended where a buried system is not practicable or where a pipe ground camot be made to have low resistance beratuse of porer soil eonditions. A counterpoise consists of a number of wires sup)ported from 6 to 10 feet above the surfice of the ground. (ienerally the wires are spared 10 to 15 foot apart and lorated to form a separe or polygonal eonfigmation moder the vertical pertion of the antermas.

Long-Wire Directive Arrays

THE "V' ANTENNA

As the antenna length is incroasm, the lole of maximum radiation makes a more acoute angle with the wire. Two long wires may be cominined in the form of a horizontal "V" so that the main lobes from eath wire will reinforee along a line bisereting the angle between the wires. This inareases both gain and directivity, since the lobes

Iig. 14.29 - The basic " V " antenna, made by combin. ing twolong wires.
in directions other than along the bisector tend to cancel. The horizontal " V " antemna therefore transmits lest in either direction (is bidirectional) along a line bisecting the " V " made by the two wirres. The power gain depends upon the length in wave lengths of the wires. Provided the necessary space is avaitable, the " V " is a simple antema to build and operate. It can also be used on harmonics, so that it is suitable for multiband work. A top view of the "V" antennt is shown in Fig. 14-29.
lig. 14-30 shows the dimensions that should be followed for an optimum design to ohtain maximum power gain for differentsized "V" antennas. The longer systems give good performance in multiband operation. Angle a is approximately equal to twice the

Fip. 14.30- Design chart for horizontal " V " anternas, giving the enchesed angle hetween sides ss. the length of the "ires, \alues in parentheses represent approximate wave angle for thight of one-half wave length.
angle of maximum radiation for a single wire equal in length to one side of the "V."

The wave angle referred to in Fig. 14-30 is the vertical angle of maximum radiation. Tilting the whole horizontal plane of the " V " will tend to increase the low-angle radiation off the low end and decrease it off the high end.

The gain increases with the length of the wires, but is not exactly twice the gain for a single long wire as given in Fig. 14-15. In the longer lengths the gain will be somewhat increased. because of mutual coupling between the wires. I "V"" right wave lengths on a log, for instance, will have a gain of about 12 db . over a half-wave antenna, whereas twiee the gain of a single cight-wave-length wire would be only approximately 9 db .

The two wires of the " V " must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 11-29. Alternatively, a quarter-wave matching sertion may be employed and the antemna fed through a nomresonant line. If the antenna wires are made multiples of a half wave in length (use Equation 14-G for computing the longth), the matching section will be closed at the free end. A stub can be connected across the resonant line to provide a match, as deseribed in the preceding chapter.

the rhombic antenna

The horizontal rhombic or "diamond" antennat is shown in Fig. 1t-31. Like the " l ," it requires a great deat of space for erection, hut it is capable of giving excellent gain and directivity.

It also can be used for multiband operation. In the terminated form shown in lig. 14-31, it operates like a nonresonant transmission line, without standing waves, and is unidirectional. It may ako be used without the terminating resistor, in which case there are standing waves on the wires and the antenna is bidireretional.

The important quantities influencing the design of the rhombic antemat are shown in lig. 14-31. While several design methods may be used, the one most applicable to the conditions existing in amateur work is the so-called "compromise" method. The chart of lig. 14-32 gives design information based on a given length and wave angle to determine the remaining optimum dimensions for hest operation. Curves for value of length of two, three and four wavelengths are shown, and any intermediato values may be interpolated.

With all other dimensions correct, an increase in length eauses an inerease in power gatin and a slight reduction in wave angle. An increase in height also caluses a redurtion in Wave angle and an increase in power gain, but not to the same extent as a proportionate increase in length. For multiband work, it is satisfactory to design the rhombic antema on the hasis of 14 -Me. operation, which will permit work from the 7 - to 28 - Mic. bands as well.

A value of 800 ohms is correct for the terminating resistor for any properly-constructed rhombic, and the system behaves as a pure rosistive load under this condition. The terminating resistor must be capable of safely dissipating one-hadf the power output (to eliminate the rear pattern), and should be noninductive. Such a resistor may be made up from a carbon or graphite rod or from a long 800-ohm transmission line using resistance wire. If the ewhon rod or a similar form of lumped resistance is used, the device should he suitably protected from weather efferts; i.e., it should be covered with a good asphattic compound and seated in a smatl lightweight box or fiber tube. Suitable nonreactive terminating resistors are also available commereially.

Fig. 14-31 - The horizonta! rlombie or diamond antenna, termi. nated. Important design dimensions are indicated; letails in text.

Fig. 14.32-Compromise-method design rhart for rhombic antemas of varions leg lengethe and wave angles. The examples at the right illustrate the we of the ehart:

"

For feeding the antenna, the antenna imperdance will be matched by an 800 -ohm line. which miv be constructed from No. 16 wire spaced 20 inches or from No. 18 wire spaced 16 inches. The 800 -ohm line is somewhat ungainly to install. however. and may be rophaced by an ordinary 600-ohm line with only a negligible mismateh. Nternatively, a naterhing section may be installed between the antenna terminals and a low-impedance line. However, when such an arrangement is used, it will be necessary to change the mateh-ing-section constants for each different band on which operation is contemplated.
(1) Given:
length $(L)=2$ wave lengths
Desired wave angle (1) $=20^{\circ}$.
To Find: II, Ф:
Method:
Draw vertical line through point a $L=2$ wave Increths) and point bonabseisea ($\Delta=20^{\circ}$). Kead angle of tilt (Φ) for point a and height (II) from intersection of line ab at moint c on curse $I I$. Ressilt:
$\Phi=60.5^{\circ}$.
$I I=0.73$ wave tength.
(2) Given:

Lengh $(L)=3$ wave lengths.
Angle of tilt $(\Phi)=78^{\circ}$.
To l'ind: II. د.
Method:
I raw a vertical lime from point d on curve $L=3$ wavelengthe at $\Phi=78^{\circ}$. Read intersection of this line on curve $I /$ (point e) for height, and intersection at point f on the abscissal for $د$.
Result:
$I I=0.56$ wave length .
$\Delta=20.0^{\circ}$.
The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Tuned feeders are generally used with the unterminated rhombic. A nonresonant line may be used by incorporating a matching section at the antenna. but is not readily alaptable to satisfactory multiband work or over an appreciable hand of frequencios.

Rhombic antennas will give a power gain of 8 to 12 db . or more for leg lengths of two to four wave lengths, when construeted aceording to the charts given. In general, the larger the antenna, the greater the power gain.

Beams with Driven Elements

By combining individual half-wave antemas into an array with suitable spacing between the antennas (ealled elements) and feeding power to them simultancously, it is possible to make the radiation from the elenents add up along a single direction and form a heam, In other direce tions the radiation tends to rancel, so a power gain is obtained in one direction at the expense of radiation in other directions. There are several methods of arranging the clements. If they are strung end to end, so that all lie on the same straight line, the elements are said to be collinear. If they are parallel and all lying in the same plane, the elements are said to be broadside when the phase of the current is the same in all, and end-fire when the currents are not in phase.

Collinear Arrays

Simple forms of collinear arravs, with the current distribution, are shown in Fig. 14-3.3. The two-element array at A is popularly known as "two half-waves in phase." It will be recognized as simply a center-fed dipole operated at its second
harmonic. The way in which the number of clements may be extended for increased directivity and gain is shown in Fig. 14-3:313. (quarter-wave phasing sections are used between elements to give the necessary reversal in phase. It is best to feed at the center of the array, so that the energy will be distributed uniformly among the elements.

The gain and directivity depend upon the number of elements and their sparing, center-to-center, as shown in Table 14-II. Although three-quarter wave sparing gives greater gain,

Fig. 14.33-Collinear half-wave antennas in phase. The system at A is getuerally known as "two half. waves in phase." B is an extension of the system; in theory the number of elements may be carried on indelinitely, but practical considerations usually limit the elements to four.

TABLE 14-II Theoretical Gain of Collinear Half-Wave Antennas					
Spacing betaceen renters of adjacent hulf-ricares	Namber of half-rares in arros vs. gain in db.				
	2	3	4	5	6
1 3 3 4	1.8 3.2	3.3 1.8	4.5 6.0	5.3 7.0	6.8

it is diffieult to construct a suitable phase-reversing systom when the ends of the antema elements are widely separated. The half-wave spacing is most generally used in actual practice.

Collinear arrays may be mounted either horizontally or vertically. Horizontal mounting gives increased horizontal directivity, while the vertical directivity remains the same as for a single element at the same height. Vertieal mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles.

Broadside Arrays

l'arallel antenna elements with eurrents in phase may be combined as shown in Fig. 14-34 to form a broadside array, so named because

Fig. 14.34 - Broadsile array using parallel half-nave Memema, Irross- indirate the direetion of current thow. 'Iransmestion of the ferelers is neressary to hering the antemna currents in phase Any reasonalile mumber of eloments may be uzed. 'Ihe array is hidirectional, with maximum radiation "broadside" or perpendientar to the anternat plane (perpendicularly through this page).
the direction of maximum radiation is broadside to the phane containing the antemas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in fig. 14-35. Half-wave spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table d-lll gives theoretieal gain ats a function of the number of elements with half-wave spacing.

Broadside arrays may he suspended cither with the elements all vertical or with them horizontal and one above the other (stacked). In the former arse the horizontal pattern beromes quite sharp, while the vertical pattern is the same as that of one olement alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays may he fed cither by resonant transmission lines or through quarter-wave matrh-
ing sections and nomresonant lines. In Fig. 14-34, note the "erossing over" of the feeders, which is neressary to bring the elements into proper phase relationship.

Combined Broadside and Collinear Arrays

Broadside and collinear arrays may be combined to give both horizontal and vertical directivity. as well as additional gain. The

Fig. 4 -35-Cain ess sparing for wo parallel half-nave Fement-enmbinel as rither hroadride or emel-lirearrays.
general plan of constructing such antennas is shown in Fig. 14-36. The lower angle of radiation resulting from stacking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of element: in an array by stacking will raise the gain from 2 to 4 db,. depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadnide or collinear type.
The arrays in Fig. 14-36 are shown fed from one end, but this is not aspecially desirable in the ease of large arrays. Better distribution of energy betwen clements, and hence better over-all performance, will result when the feoders are attached as nearly as possible to the eenter of the array. Thus, in the eight-element arricy at A, the feeders could be introduced at the middle of the transmission line between the seeond and third sot of elements, in which case the connecting line would not be transposed hetween the second and third set of elements.

A four-element array, known as the "lazy-II" antenna, has been quite frequently used. This

TABLE 14-III	
Theoretical Gain vs. Number of Broadside Elements (Hall-Wave Spacing)	
No. of elements	

Fig. 14-36-Combination broadside and collinear arrats. A, with vertical elemento; d , with horizontal elemesuts. lloth arrays give loweangle radiation. 'T'wo or more sections may he used. 'The gain in dh. will be equal. approximately. to the sum of the gain for one set of broadside elements (Table 14-IV) plus the gain of one set of collinear elements ('lable 14-111). For example, in it each toroadside set has four elements (gain $\bar{i} \mathrm{db}$.) and each rollinear set two elements (sain 1.8 db.), giving a total gain of 8.8 db . In IS, each broadside set has two clements (gain 4 dhs.) and each collinear set three clements (gain 3.3 db .), mahing the total gain 7.3 dtb . The result is not strictly accurate. hecause of mutual coupling lietween the elements, but is good enongh for practical purposes.
arrangement is shown. with the feed point indicated, in Fig. 14-37. For best results, the bottom seetion should be at least a half wavelengthaloove ground.

End-Fire Arrays

Fig. 14-38 shows a pair of parallel half-wave elements with eurrents out of phase. This is known as an end-fire array because it radiates best along the plane of the antemas, as shown.

The end-fire array may be used either vertically or horizontally (clements at the same height), and is well adapted to amateur work hecause it gives maximum gain with relatively close element spacing. Fig. 14-35 shows how the gain varies with spacing. End-fire elements may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.

Either tuned or untuned lines may be used with this type of armus. Intuned lines preterably. are matched to the antenna through a quarterwave matehing section or phatsing stub.

Phasing

Figs. 14-36 and $14-38$ illustrate a point in connertion with feeding a phased antenna sustem which sometimes is confusing. In Figg. $1-1-38$, when the transmission line is connected as at A there is no crosower in the line connecting the two antennas, but when the transmission line is commected to the center of the connecting line the crossover becomes necessary (13). The same thing is true of the untransposed line of Fig. 14-3613. Note that, under these conditions, the antenna elements are in phase when the line is not transposed, and out of phase when the transposition is made.

Adjustment of Arrays

With arrays of the types just deseribed, using half-wave spacing between elements, it will usually suffice to make the length of each element that given by Equations $14-13$ or $14-C$.

Fis. 14.37 - A fourelement comhination lroadsidecoltinear array, popularly known as the "lazy-11" antema, A closed quarier-wave stub may be used at the fred point to match into an untuned tramsmission line, or tuned feedere may be attached at the poilt indicated. The gain over a half wave antenna is 5 to 6 dh .

The phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated irom:

Length of hulf-wowe line (feet) $=$

480

Freq. (Mc.)
Example: A half-watre length phasing line for
28.8 Mc. woulh be $\frac{1 \backslash 0}{25.8}=16.66$ feet $=16$ feet 8 inches.

The spacing between elements can be made egual to the length of the phasing line. No special adjustments of line or element length

Fin. 1A-38- bind-tire arrays using paralled half-wave elements. The elemente are shown with halfowave space ing to illustrate feeder connections. In practice, closer spacings are desirable, as shown by l'ig. I. -35. Direction of maximum ratiation is shown the the large arrows.
or spacing are needed, provided the formulas are followed closely.

With collinear arrays of the type shown in Fir. 14-333B, the same formula may be used for the element length, while the length of the quater-wave phasing section can be found from the following formula:

$$
\begin{gathered}
\text { Length of quarter-uture line (feet) }= \\
\frac{240}{\text { Freq. (Mc.) }}
\end{gathered}
$$

(14-I)

Example: A quarter-wave length phasing line for 14.25 Mc . wonld be $\frac{.340}{14.25}=16.84$ feet $=16$ fect 10 inches.

> Example: The half-wave-length line for 28.8 Mc. would become $0.84 \times 16.66=13.99$ feet $=$ 14 feet 0 inches.

Using Twin-Lead for the phasing seetions is most useful in arrays such as that of ligg. 14-333 , or any other sestem in which the element spacing is not controlled by the length of the phasing section.

Simple Arrays

Several simple directive-antemat systems using driven elements have ashieved rather wide one among amateurs. Four of these systems are shown in lig. 14-39, 'Tuned feeders are assumed in all (ases: however, a matching sertion readily ran be substituted if a nomresonant transmission line is preferred. I imensions give atre in terms of watve length: actual lengths con te eateulated from the equations for the antema and from the equation above for the resonant tranmission line or matching section. In cases where the transmission line proper connects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave point.

At A and 13 are two-element and-fire arrangements using close spacing. They are electrieally equivalent; the only difference is in the method of connecting the feeders. 13 may ako be used on the second harmonic, although the spacing is not optimum (Fig. $14-35$) for such operation.

I elose-spared four-clement armay is shown at C. It will give ahout 2 (d), more gain that the two-element array.

The antennat at , rommonly known as the "extended double-Zepp," is designed to take adrantage of the greater gain possible with collinear antomas having greater than halfwave center-to-center spacing, but without introducing feed complications. The elements are made longer than a half-wave. The gain is 3 (th, over a single half-wave antema, and the broadside directivity is fairly sharp.
The antemats of A and 13 may be mounted rither horizontally or vertically; horizontal suspension (with the elements in a plane paral(el to the ground) is reeommended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for roverage over a wide horizontal angle. The system at (${ }^{(1,}$ when monated horizontally, will have a sharper horizontal pattern than the two-element arrays because of the effect of the eollinear arraugement. The vertical pattern will be the same as that of the antennas in A and B.

Directive Arrays with Parasitic Elements

Parasitic Excitation

'The antenna arrays previously deseribed are bidirectional; that is, the will radiate in directions both to the "front" and to the "back"
of the antema system. If radiation is wanted in only one direction, it is necessary to use different element arrangements. In most of these arrangements the additional elements receive
power by induction or radiation from the driven element, generally called the "antenna," and reradiate it in the proper phase relationship to achieve the desired effect. These elements are called parasitic elements, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line.

The parasitic element is called a director when it reinfores radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the

Fis. 14-40 - Gain vs, element spacing for an antenna and one parasitic element. 'The reference point, 0 db ., is the field strength from a half-wave antema alone. The greatest gain is in direction \boldsymbol{A} at shacings of less than 0.14 wave length, and in direction B at greater spacings. The front-to-back ratio is the difference in db. between curves A and B. Variation in radiation resistance of the driven element also is shown. These curves are for a selfresonant parasitic element. At most spaeings the gain as a reflector can he increased by slight Iengthening of the parasitic rlement: the gain as a director can be inereased hiv shortening. This also improves the front-to-back ratio.
parasitic-element tuning, which usually is adjusted hy changing its length.

Gain vs. Spacing

The gain of an antenna with parasitic elements varies with the spacing and tuning of the olements, and thus for any given spacing there is a tuning condition that will give maximum gain at this spaeing. The maximum front-to-back ratio soldom, if ever, oceurs at the same condition that gives maximum forward gain. The impedance of the driven element also varies with the tuning and spacing, and thus the antenna system must be tuned to its final condition before the match between the line and the antenna can be completed. However the tuning and matching may interlock to some extent, and it is usually necessary to run through the idjustments several times to insure that the best possible tuning has been obtained.

Two-Element Beams

A 2-element beam is useful where space or other considerations prevent the use of the
larger structure required for a 3-element beam. The general practice is to tune the parasitic element as a reflector and space it about 0.15 wave length from the driven element, although some successful antennas have been built with 0.1-wave-length spareing and director tuning. Gain is. element spacing for a 2 -element antenna is given in Fig. 14-40, for the special case where the parasitic element is resonant. It is indicative of the performance to be expected under maximumgain tuning conditions.

Three-Element Beams

Where room is available for an over-all length greater than 0.2 wave length, a 3 -element beam is preferable to one with only 2 elements. Once the over-all length has been decided upon, the curves of Fig. $14-+1$ can be used to determine the proper spacing of director and reflector. If, for example, the distance between director and reflector can be made 0.4 wave length, Fig. 14-41 shows that a spacing of $0.15 \mathrm{D}-0.25 \mathrm{R}$ gives a gain of 7.8 db ., and a spacing of $0.25 \mathrm{D}-0.15 \mathrm{R}$ gives a gain of 8.2 db. (onviously the latter is the better choice, atthough the practical difference might be difficult to measure, and practical (mechanical) considerations might call for using the more balanced $0.2 \mathrm{D}-0.2 \mathrm{l}$ construction and a gain of 8.1 db .

When the over-all length has been decided upon, and the element spacing has been determined, the element lengths can be found by referring to Fig. $14-42$. It must be remembered that the lengtlos determined by these charts will vary slightly in actual practice with the element diameter and the method of supporting the elements, and the tuning of a beam should always be checked after installation. However, the lengths obtained by the use of the charts will be

Fig. 1.fll-Gain es, element spacing for 3-element beams using a driven element and a dirertor and a reflector. The 0-dh. reference level is the field strength from a half-wave-length antenna alone. These curves are for the system tuned for maximum forward gain.
'The flement spacing shown is the fraction of a wavelength determined by $\frac{98 t}{f(116 .)}$. Thus a wave length at 14.2 Mc. $=981 / 11.2=69.3$ feet. A spacing of 0.55 wave length at 14.2 Me . nould be $0.15 \times 69.3=$ 10.1 feet $=10$ feet 5 inches.
close to correct in practically all cases, and they can be used without checking if the beam is difficult of access.

The preferable method for checking the beam is by means of a field-strength meter or the S -meter of a communications receiver, used in conjunction with a dipole antenna located at

Fip. 14-12 - Element lengths for a 3-clement beam. I'hese lengths will hold elosely for tuthing elements supported at or near the center. 'The radiation resistance (I) is useful information in plaming for a matching system, but it is subject to variation with height above mromed and must be eonsidered an approsimation.

I'he driven-element length (C) inas require modifica. tion for tuning out reartane if a "l". or gammamateh feed system is used, as mentioned in the text.

A 0.20 - 0.2 IR heam cut for 28.6 Me. wond have a director length of $452 / 28.6=15.8=15$ feet 10 inches, a reflector length of $400 / 28.6=1 \overline{4} .1=17$ feet 1 inch. and a driven-element length of $470.5 / 28.6=16.15=16$ feet 5 inches.
least 10 wave lengths away and as high as or higher than the beam that is being checked. A few watts of power fed into the antenna will give a useful signal at the observation point, and the power input to the transmitter (and hence the antenna) should be held constant for all of the readings. Beams tuned on the ground and then lifted into place are subject to tuning errors and camot be depended upon. The impedance of the driven clement will vary with the height above ground, and good prabetice dietates that all final matching between antenma and line be done with the antenna in place at its normal height above ground.

Simple Systems: the Rotary Beam

Two- and 3-element systems'are popular for rotary-beam antennas, where the entire antemna system is rotated, to permit its gain and directivity to be utilized for any compass direction. Thes maty be mounted either horizontally (with the plane eontaining the elements parallel to the earth) or vertically.
A 4-clement beam will give still more gain than a 3 -element one, provided the support is suffirient for at least 0.2 wave-length spacing betwern elements. The tuning for maximum gain involves many variables, and complete gatin and tuning data are not available.

The element: in close-spaced (less than onequater wave-length element spacing) arratys preferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less ohmic resistance but also has lower Q; both these factors are important in close-spated arrays because the impedance of the driven clement usually is quito low compared to that of a single half-wave dipole. With 3-and 4-rlement close-spared arrays the radiation resistane of the driven element mity be so low that olnnie losses in the conductor can consume an appreciable fraction of the power.

Feeding Close-Spaced Arrays

Any of the usual methods of feed may be applied to the driven element of a parasitic array. The preferred methods are shown in Fig. 14-43. Tuned feeders are not recommended for lengths greater than a half watve length unless open lines of ropper-tubing eondurtors are used.

Four versions of the popular T-mateh are shown, for two-wire lines of Twin-Lead at A, for single coaxial line at I3 and 1), and for donble coasial line at C. The mateh is adjusted by moving the shorting bars, keeping them equidistant from the conter, until the minimum s.w.r. is obtained on the line. If the s.w.r. minimum is not 1.3 or less, the transmitter frequeney should be shifted to find the frequeney where the minimum s.w.r. occurs. If it is higher than the original test frequency, increase the antenna element length slightly. The parasitice element lengths taken from lig. $14-42$ should not require much adjustment unless considerably different spacing is used, but it may

Fig. 14-43-Recommended methods of feeding the driven antenna element in close-spaced parasitic arrays. 'The parasitie elements are not shomn. A, 3, C., I), "I". match; \mathbf{F}, "gamma" mateh; \mathbf{F}, delta matching transformer; G, coasial-line quarter-wave matehing section; If, folded dipole. Adju-tment is discussed in the text. Variable capacitors can be installed at "x" to simplify matching.
be necessary to change the position of the shorting bars and the length of the antenna element once or twice before the s.w.r. at the test frequency is acceptable. The matching section may be made of the same type of conductor as the element and spaced a few inches from it. The length of the matching section will be greater with higher-impedance lines and with wider element spacing. A good starting point for a 28 -Mc. wide-spaced ($0.2 \mathrm{D}-0.15 \mathrm{R}$) beam fed with 300 -ohm Twin-Lead is 28 inches earh side of center. A similar antenna and line on 14 Mc . might require about 50 inches each side.
The gamma match, show'n in Fig. 14-43E, can be considered as one-half a "T" mateh, and the same principles hold. However, when the lengt h of the clement is changed, in an effort to minimize the s.w.r., only the side to which the movable bar is connected should be changed - the other side should remain at one-half the length obtained from Fig. 14-12. With 52 -ohm coaxial line feed, the length of the matching element may run around 15 to 20 inches in a 28 -Me. beam, and twice this value in a 14 - Mc. array.
An alternative to adjusting the element length for tuning out the residual reartance is to use a smatl variable capacitor in series at the junction of the coaxial cable and the matching section of the gamma or " T " match. A small $140-\mu \mu$ l. receiving-type variable is adequate at powers of afewhundred watts, and it can be weatherprofed by mounting it in a small plastic cup. The ' T -match of Fig. $1+-43 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ or D requires two capacitors, one in earh side.
The delta matching transformer shown at F is probably easier to install, mechanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by cherking the standing-wave ratio on the line as adjustments are made. Dimension b should be about 15 per cent longer than a.
The coaxial-line matching section at G will work with fair accuracy into a close-spaced parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as t quarter-wave-length transformer, and, if its characteristic impedance is 70 ohms (RG$11 / \mathrm{U}$), it will give a good match to a 600 -ohm line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismateh, and therefore the standingwave ratio, will be less than 2 -to-1. The length of the quarter-wave section may be calculated from

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246 V}{\rho} \tag{14-5}
\end{equation*}
$$

where $l=$ Velocity factor
$f=$ Frequency in Mc.
Example: A quarter-wave transformer of RG-11/U is to be used at 28.7 Mc. From the table in Chapter Thirteen, $V=0.66$.

Length $=\frac{246 \times 0.666}{28.7}=5.67$ feet

- 5 fect 8 inches

The folded-dipole antenna, Fig. 14-43H, presents a good match for the line when properly designed. Details are given in Chapter Thirteen. Different impedance step-up ratios can be obtained by varying the number of conductors or their diameter ratio.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exart for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 kc . at 28 Mc . However, the antemnat can be made to work satisfactorily over a wider frequency range by idjusting the direetor or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

As mentioned in the preceding parigraphs, the use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or hoth directors and reflectors might be used. 1 broadside-collinear array can be treated in the same fashion.

- RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the satme in a reeciving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer and higher the wire, the more energy it abstracts from the wave. Be-
cause of the high sensitivity of modern receivers, sometimes only a short length of wire strung around the room is used for a receiving antenna, but such an antenna cannot be expecterd to give good performance, although it is adequate for loud signals on the 3.5 - and 7 -Mc. bands. It wilt serve in emergencies, but a longer wire out doors is always better.

The use of a tuned antenna improves the operation of the receiver, because the signal strength is greater than with a wire of random length. Where local electrical noise is a problem. as from an electrical appliance, a measure of rolief can of ten be obtained by locating the antemna as high above and ats far as possible from the noise sonree and power lines. The lead-in wire from the center of the antenna, should lin a coasiab line or shielded twin-conductor cable (R(i-62/U). If the twin-conductor cable is used, the conductors connect to the antenna binding posts and the shickl to the ground binding post of the reeriver.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner. If the relay is one with a 115 -volt a.c. coil, the switch or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in lig. 14-4. If coaxial line is used, the use of a coaxial relay is recommended, although on the lower-frequeney bands a regular switch or change-over relay will work almost as well.

Fig, 14-44-Antenna changeover for receiving and transmiting in two-w ire line (A) and coaxial line (13). The low-pass filter for TVI reduetion should be comnected between switeh or relay and the transmitter.

Antenna Construction

The use of good materials in the antenna system is important, since the antenna is exposed to wind and weather. To keep electrical losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low dielectric loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enameded copper-clad steel wire should be used. It is best to make feeders and matching st ubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-clad steel wire is difficult to handle unless it is under considerable temsion at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be earefully soldered. Open-wire TV line is excellent up to several hundred watts.

In building a two-wire open line, the spacer insulation slould be of as good quality as in the antenna insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels

Fik. 14-45 - Details of a simple 40 -foot "A"-frame mast suitahle for erection in locations where space is limited.
can be attached to the feeder wires by drilling small holes and binding them to the feeders.

At points of maximum voltage, insulation is most important, and Pyrex glass or ceramic insulators with long leakage paths are recommended for the antenna. Insulators should be cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufliciently in the clear when strung from one chimney to another or from a housetop 10 a tree. Small trees usually are not satislactory as points of suspension for the antena because of their movement in windy weather. If the antenna is strung from a point near the center of the trunk of a large tree, this difliculty is not so serious. Where the antenna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying climatic conditions.

Telephone poles, if they can be purchased and installed economically, make excellent supports because they do mot ordinarily require guying in heights up) to 40 feect or so. Many low-rost television-antema supports are now available, and they should not be orerlooked as possible antenna aids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. 14-45 is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be selected. The completed mast may be protected by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stikes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, fiat area of roof.

By using $2 \times 3 \mathrm{~s}$ or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-46 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the " A "-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of 2×3 s with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two

Fig. 14-16 - A simple and sturdy mast for heights in the vicinity of 40 feet, pivoted at the base for cass erection. The height ean he extended to 50 fiet or more by using $2 x$ is instead of $2 \times 3 \mathrm{~s}$.
lege are bolted to a length of 2×4 which is: set in the ground. A short length of 2×3 is phaced between the two legs about hatfway up the bottom section. to maintain the spacing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 sertion should be set in the ground \therefore that it faces the proper direction, and then made vertical be lining it up with a plumb bob. The holes for the bolts should be drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in wace through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in phace and the mast pushed up, using a ladder or another 20 -foot 2×3 for the job). As the mast goes up, the slack in the guys can be taken up so that the whole structure is in some meatsure continually supported. When the mast is vertieal, bolt is shouht he slipped in mace and both 4 and $/ 3$ tightemed. The lower guys ran then be given a final tightening, leaving those at the top a little sack until the antemat is pulled up, when they should be adjusted to pull the top section into line.

GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. I Heavier wire or stranded cable may be used for taller poles or poles installed in lorations where the wind velocity is likely to be high.

Nore than three guy wires in any one set usuatly are unnecessary. If a horizontal antema is to be supported. for guy wires in the top set will be sufficient in most casers. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna. Intermediate guys should be used in sots of three, one running in a direction opposite to that of the antennas, while the other fwo are spared 120 degrees cither side. This leaves a clear space under the antenna. The guy wires should be adjusted to pull the pole slightly: back from vertical before the antemat is hoisted so that when the antemat is pulled up tight the mast will he straight.

When raising a mast that is bige enough to tax the a vailable facilities, it is some advantage to know noarly exactly the length of the guys. Those on the side on which the pole is lying can then be fastoned temporarily to the anchor: theforehand, whichassures that when the pole is: raised, those holding opposite guys will be able to pull it into nearly-vertical position with no danger of its getting out of control. The guy lengths can be figured by the right-anglodtriangle rule that "the sum of the squares of the 1 wo sides is equal to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. To this should be added the square of the pole lengh to the point where the guy is fastened. The square rowt of this sum will the the length of the gus.
(Guy wires should be broken up by stratia insulators, 10 avoid the possibility of resonatue at the transmitling frequenes. Common prattiere is to insert an insulator mear the top of bach guy, within a fow feet of the pole, and then cut each section of wire betwoen the insulators to a length which will not bo resomant either on the fundamental or harmonies. An insulator every 25 feed will be satisfactory for frequencies up to 30 Mc . The insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may he a tedious joh if the guy wires are long and of large gatuge. The simple time- and finger-satving

Fig. 14-47-Using a lever for twisting heavy guy wires.
device (piece of heavy iron or steel) can be made by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in the sketeh. By passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Guy wires may he anchored to a tree or buikling when they happen to be in convenient spots. For smatl poles, a 6 -foot length of 1 -inch pipe driven into the ground at at angle will suffice. . Idditiontal Bracing will be provided bey using two pipes, as shown in Fig. 1+-48.

halyards and pulleys

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the

Iig. $14-18$ - Рірк guy anchors. Ont pipe is sufficient for small masts. but two installed as shown will pro. vide the additional strength required for thelargerpoles.
choice of a pulley and halyath for a high mast sime replarement, once the mast is in position, may be a major undertaking if not entirely. impossible.
(Galvanized-iron pulleys will have a life of only

Fis, 14-fy- In ans tenna lead-in panel may be placed over the tof sash or umber the lower sash of a window. Sulastituting a smaller height sash in half the window will simplify the weatherproofing prohlem where the sash overlap.
a year or so. Ripmerially for constal-areat instathations, marine-t ype pullers with hardwood borks and hronze wheels and bearings should be used.

For short antennas and temporay installations, heavy clothesline or window-sash cord may be used. However, for more permanent jobs, $3 / 8$-inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replaced about once a year to insure against breakage.

It is advisable to carry the pulley rope bark up to the top in "endless" fashion in the manner ol a flat hoist so that if the ant enna breaks close

 through insulators or window glass.' 3 - Coing through a full-tength sereen, a ellat is fastened to the frame of the sereen on the inside. Clearance holes are cut in the cleat and also in the sereen.
to the poke, there will be a means for pulling the hoisting rope back down.

BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. 14-50, to remove strain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a wisdow frame which provides that surfares for lead-in insulators. ('ement or rubber gaskets may be used to waterproof the pxposed joints.

Where such a procedure is not permissible,

Fig. 14.5l - Low.loss lightning arresters for transmit-ting-antenna installations.
the window itscif usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replated by phate glass, a stronger job will result. Plate glass may be obtaned from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastoned to bolts fitting the holes. Rubber gaskets will rentor the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raisod. If the window has a full-length sorren, the scheme shown in Fig. 14-50B may be used.

As a loss permanent method, the window may be raised from the hottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made woatherproof by making an overlapping joint between the board and window sash, as shown in Fig. 14-49, or by using weatherstrip material where neressary.

Coaxial line can be brought through clearance holes without additional insulation,

LIGHTNING PROTECTION

An ungrounded radio antenna, particularly if large and well chevated, is a lightning hazard. When grounded, it provides a measure of protection. Therofore, grounding switehes or lightning arresters should be provided. Wxamples of construction of low-loss arresters are shown in Fig. 1+5i. At A, the arrester ehectrodes are mounted by means of stand-off insulators on a fireproof ashestos hoard. . It B, the eleetrodes are enclosed in a standand steel outlet bos. The gaps should be made as small as posible without danger of breakdown during operation. lightning-arrester systems require the best ground connertion obtainable.

The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with clips for connection to the feeder wires may be used. The ground lead should be of short length and run, if possible, directly to a driven pipe or water pipe where it enters the ground outside the building.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antenna at will, thus seruring the berefits of power gain and direetivity in any desired compasis direction. A favorite mothod of doing this is to construct the antenna so that it can be rotated in the horizontal plane. The use of such rotatable antemnas is usually limited to the higher frequencies - 14 Mc. and above - and to the simpler antenna-elemont combinations if the structure size is to be kept within practicable hounds. For the 1.1-, 21- and 28-Me. bands such antennas asually consist of two to four elements and are of the parasitic-array type described earlier in this chapter. At 50 Mc . and higher it becomes possible to use more elaborate arrays because of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mechanical support for the antemna eloments, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system

Elements

The antonna clements usually are made of metal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important considuration when close-spaced elements are used.

Aluminum alloy tuhes are generally used for the elements. The elements frequently are constructed of sections of telescoping tubing making
length adjust ments for tuning quite easy. Filectrician's thin-walled ronduit also is suitable for rotary-heam clements.

The element longths are made aljustable by sawing a b - to 12 -inch slot in the ends of the larger-diameter tubing :und elamping the smallor tubing inside. Homemade clamps of alumimum can the built, or hose clamps of suitable size can be used. An extmple of this construction is shown in lig. 1+52. If steel clamps are used, they should be cadmium- or zine-plated hefore instablation.

If sted elements are used, sperial precumtions should be taken to prevent rusting. The elements should be coated both inside and out with slowdrying aluminum paint. For coating the inside, the paint may be poured in one end while rotating the tubing. The excoss paint may be caught as it comes out the bottom end and poured through again until it is certain that the contire inside wall has been covered. The ends should then he plugged up with corks sealed with glyptal varuish.

Supports

The supporting framework for a rotary lram usually is mate of wood or metal, using as lightwoight construetion as is consistemt with the peo quired strength. (ienerally, the frame is not roquired to hold much wright, hut it must he extensive enough so that the antenna elements can

Fig. $14-52-$ Details of telescoping tubing for lream
elcnients. elcments.
be supported without excessive sig, and it must have sufficient strength to stand up under the maximum wind in the locality. The design of the frame will depend on the size and strength of the clements and the method used to rotate the antenna.
The general preference is for horizontal clements, primarily because less hoight is required to clear surrounding obstructions when all the antenna elements are in the horizontal plane. This is important at 14 and 21 . Mc. where the clements are fairly long.
The support may be coupled to the mast by any convenient means which permits rotation or, alternatively, it may be firmly fastened to the mast and the latter rotated in bearings affixed to the side of the house.

Netal is commonly used to support the elements of the rotary heam. For 28 Ilc., a piece of 2 -inch diameter duraluminum tubing makes a good "boom" for supporting the elements. The elements can be made to slide through suitable holes in the boom, or special clamps and brackets can be fashioned to support the elements. Fittings for TV antenuas can often be used on 21- and 28-Mc. heams.

Nost of the TV antenna rotators are satisfactory for turning the smaller beams.

With all-metal construction, delta, "gamma" or "T"-match are the only" practical matching methods to use to the line, since anything olse requires opening the driven clement at the center, and this complicates the support problem for that element.

"Plumber's-Delight"' Construction

The lightest beam to build is the so-called "plumber's delight" - an array constructed entirely of metal, with no insulating members between the elements and the supporting structure. Suggesterd constructional details are shown in ligg. 14-5:3, $14-54,14-55,14-56$ and $14-57$.

The boom cau be built of two lengths of 3 -inch diameter $6 \mathrm{IS}-\mathrm{T} 6$ dural tubing of 0.072 -inch wall thickness, as shown in Fig. 14-53. The two sections are spliced together with a three-foot length of 6×6 oak, turned down at each end to fit inside the tulbing. The center of the hlock is left square to provide a flat surface to attach to the vertical rotating pipe. It each extremity of this boom is cut a hole the exact diameter of the parasitic elements. A two-foot length of $3 / 4$-inch pipe, complete with flange mounting plate, is bolted to the top surface of the oak block, and a single guy wire is run to each end of the hoom. An egg insulator and a turnbuckle are plated in

Fig. 14-54 - The center element section is held in the boom with a $1 / 4-28$ machine serew, mut and lock washer. The goy wire attarhes to the head of the bolt.
each guy. The turnbuckles should be tightened until there is no say in the boom when it is supported at the center, and then safoty-wired. Finally the center block should be given a good coat of paint or varnish.

The elements can he made of three 12 -foot lengths of dural tubing, the two outside lengths telescoping inside the center section. The ends of the center section should be slotted for a distance of about 4 inches with a haek saw, but it is advisable to do the slotting after the center sections have been assembled on the boom. The parasitic-element center sections are fastened to the boom with $1 / 4$-inch bolts, as shown in Fig. $14-54$, while the driven element is secured in a rade made of half sections of iron pipe welded together, as shown in Fig. 14-55. The cradle is bolted to the boom with three $1 / 4$-inch bolts, and the driven element is held fast with two bolts or with adjustable air-craft-tubing clamps.

The feed line for the antenna ean be any balanced line, of from 200 to 600 ohms impedance, and it is most conveniently coupled through a "T"-match. This "T"-match assembly can be made from two t-foot lengths of dural tubing joined together by a piece of bromnstick, as shown in Fig. 14-57. The "T" is connected to the antenna by two clamps fashioned of 1 -iuchwide brass strip.

A convenient method for supporting the boom atop the pipe used to rotate the beam is shown in Fig. 14-56. A "U"-channel into which the hoom will fit is welded to the end of the pipe. Holes are drilled in the side of the channel corresponding to holes in the boom. The boom is hoisted up and positioned between the two flanges and a bolt run through the flanges and the boom. The boom ean then be swung into a horizontal position and the socond bolt put in place.

Feeder Connections

For heams that rotate only 360 degrees, it is common to bring off feeders by making a short section of the ferder, just where it leaves the rotating member, of flexible wire. Enough slack should be left so that there is no danger of break-

Fig. 14.53 - The loom is made of iwo 10 -foot lengths of dural tubing slipped over a 3 -foot oak bloch and held in place with 2 inch word sorews. Guy wires from the center ald strength to the brom stricture.
ing or twisting. Stops should be placed on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up."

For continuous rotation, the sliding contact is simple and, when properly built, quite practicable. The chief points to keep in mind are that the contact surfaces should be wide enough to take care of wobble in the rotating shaft, and that the contact surfaces should be kept elean. Spring contacts are essential, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition. sliding contacts preferably should he used with nonresonant open-wire lines, so that the line current is low.

The prssibility of poor connections in sliding contarts can he avoided by using indurtive coupling at the antenna, with one coil rotating on the antemna and the other fixed in position, the two coils being arranged so that the coupling does not change when the antema is rotated. A quarter-wave feader sustem is connected to at tumed pirk-up, rircuit whose inductance is coupled to a link. The link coil connerts to a 1 wisted-pair transmission line, but any type of line surh as flexible comaial cathle an be used.

Fig. 14.55- The elamp for the driven element is made

The eircuit would be adjusted in the same way as any link-coupled cirruit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling rireuit tunes to the transmitting frequency. The system is equivalent to a link-coupled antemna tuner mounted on the pole, using a parallel-tuned tatak at the end of a quarter-wave line to centerfred the antenna. lor constant coupling, the two coils should be rigid and the pole should rotate without wobles. The two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

There are other variations of the inductivecoupled system. The tuned circuit might, for instance, he plared at the end of a 600 -ohm line. and a one-turn link used to eouple directly to the center of the antenna, if the construction of the rotary momber permits. In this case the roupling can be varied hy changing the L / C ratio in the tuned circuit. For merchanical strengt h the conpling coils prefabably should be mate of $1 /$-ineh copper tubing, braced with insulating strips to keep them rigid.

Fig. 14-56 - The mounting plate is made from a length of "U" channel iron cut and drilled as shown. the boom is raised vertically until one set of bolt hole-s is in line and a bolt is slipped through. "the boom is then swang into its horizontal position and the other bolt is put in place.

Rotation

It is convenient but not essential to use a motor to rotate the beam. If a rope-and-pulley arrangement can be brought into the operating room or if the pole can be mounted near a window in the operating room, hand rotation will work.

If the use of a rope and pullevs is impract inable. motor drive is about the only altemative. There are several complete motar driven rotators on the market, and they are easy to monnt, ennvenient to use, and require little or no matitenanec, (ienerally suraking, light-weight units are better beatuse they reduce the tower load.

The speed of rotation should not be ton great - one or $11 / 2$ r.p.m. is about right. This requires a considerable gear reduction from the usual 17.0-r.p.m. speed of small induction motors; a large redurtion is advantageous berause the gear train will prevent the beam from turning in wather-vane fashion in a wind. The usual beam does not require a great deal of power for rotation at slow speed, and a $1 / 8-\mathrm{hp}$. motor will be ample. I reversible motor should be used. Wiar-sumphas "prop piteh" motors have found wide application for rotating $1+$-Me. heams, while 'TV motators can le used with many. 28-Me. lightweight beams.

Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. Even commercial units will last longer if treated with glyptal varnish. I3e sure that the surfaces are clean and free from grease brfore painting. (irease can be removed by brushing with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

The power and control leads to the rotator should be run in electrical conduit or in lead covering, and the metal should be grounded.

A Compact 14-Mc. 3-Element Beam

A 20 -meter beam no larger than the usual 10 -meter beam can he made by using centerloaded elements and close spacing. Such an antenna will show good directivity and can be rotated with a TV-antenna rotator.

Constructional details of the elements are

(A)

Fig. 14-58 - Dimensions of a compact 14-Mc. beam. A - Side view of a typiral element. 'Th -antenna "I" clamps hold the support arms to the hoom. Birnbach 11 i6 insulators support the dements. I' - Top plan of the beam showing elempnt spacing and loading-coil dimensions. Elements are made of aluminum tubing. Construction of the loading eoils and adjustment of the elements are disoussed in the text. Endsection lengihs of 11 inches for the rellectur, 40 inches for the driven element, and 10 inches for the director will be close to optimusn.
clamps can be used for this purpose. The boom is a 12 -foot length of $11 / 2$-inch o.d. 61ST aluminum tubing, with 0.125 -inch wall.

The line is coupled and matched at the center of the driven element through adjustment of the link wound on the outside of the Lucite tubing. To check the adjustment of the elements, first resonate the driven element to the desired frequency in the 14-Mc. band with a griddip oscillator. Then resonate the director to approximately 14.8 Mc., and the reflector to approximately 13.6 Mc. This is not critical and onty serves as a rough point for the final tuning, which is done by use of a conventional fieldstrength indicator. (heck the transmitter loading and readjust if necessary. Adjust the director for maximum forward gain, and then adjust the reflector for maximum forward gain. At this point, check the driven element for resonance and readjust if neeessay. Turn the reflector toward the field-strength indicator and adjust for back cut-off. This must be done in small steps. Do not expoct the attenuation off the sides of a short beam to be as high as that obtained with full-lengt h elements. The s.w.r. of the line feeding the antenna can be checked with a bridge, and after the elements have been tuned, a final adjustment of the s.w.r. can be made by adjusting the coupling at the antenna loading coil turns and spacing. As
shown in Figs. 14-58 and 14-59. The loading coils are space-wound by interwinding plumb line (sometimes known as chalk line) with the No. 12 wire roils. The eoil ends are secured by drilling small holes through the polystyrene bar, as shown in Fig. 14-59. The coils should be sprayed or painted with Krylon before installing the protective Lucite tuhes.

The beam will require 4 foot lengths of the tubings indicated in Fig. 14-58.A. For good telescoping, element wall thickness of 0.058 inch is recommended. The ends of the tubing sections should he slotted to permit aljustment, and secured with (-lamps, so that the joints will not work loose in the wind. Perforated ground

Fig. 14-59-Detailed sketeh of the loading and coupling coils at the center of the driven element, and its monnting. Similar loading coils (see text) are used at the centers of the director and retlector.

A "One-Element Rotary" for 21 Mc.

The directional properties of a simple half-wave-length antenna beoome more apparent at higher frequencies, and it is possible to take advantage of this fact to build a "one-clement rotary" for 21 or 28 Me. To take advantage of the directional propertios of the antemat, it is only necessary to rotate it 180 degrees. It can be rotated by hand, as will the deseribed, or by a small TV antenna rotator.

The antemat is made from two pieces of $1 / 2$-inch diameter electrieal thin-wall steel tuhing or conduit. This tubing is readity available at any electric supply shop. It comes in 10 -foot lengthe and, while 20 feet is short for a half-wave antennat 21 Me ., with loading the length is just about right for 52 -ohm line feed. (A half-watve-length antenna would normally be fed with 72 -ohm cable, since the antenna offers a good mateh for this impedance vatue. In this antema system, the shorter clements, plus the smatl coil, offer a good match for 52 -ohm cable.) If aluminum tub)ing is available, it can be used in place of the conduit, and the antenna will be lighter in weight. As shown in Figs, 14-60 and 14-61, the two pieces of tubing are supported by four stand-off insulattors on a four foot long 2 by 2. The coax fitting for the feed line is mounted on the end of one of the lengths of tubing. A mounting point is made be flattening the end of the tubing for at length of about $1 \frac{1}{2}$ inches. The tubing ean be flattened by squerzing it in a vise or by laying the end of the tubing on a hard surfare and then hammering it Hat. This will provide enough spare to accommodate the coax fitting (Amphenol type 8:3-1R). A $5 / 8$-inch hole will he needed in the flat section to clear the shell of the coas fitting.

The coil, L_{1}, is made from $1 / 8$-ineh diameter
copper tubing. It consists of 5 turns spaced 1/4 inch apart and is 1 inch inside diameter. The coil is connected in series with the inner conductor pin on the coas fitting and the other half of the antenna. To secure a good comection at the coas fitting, the coil lead should be wound around the imner-conductor pin and soldered. The other end of the coil can be conneeted with a serew and nut.

Mounting

The antenna can be mounted on a 1 -inch floor flange and held in place by two 2 -inch bolts, as shown in Fig. 14-60. The floor flange can be connected to a 12 -foot length of 1 -inch pipe which will serve as a mast. Television antenna wall mounts can be used to support the mast.

In the installation shown in Fig. 14-62, 19-inch wall mounts were used in order to eloar the eaves of the house. A 2 -inch long piece of $11 / 4$-ineh pipe was used as a sleeve, and it was clamped in the U bolt on the bottom wall mount. A $1 / 4$-ineh hole was drilled through the mast pipe approximately. 6 inches from the bottom. Then at $11 / 2$-inch boit was slipped through the hole and the mast was then mounted in the sleeve on the bottom wall mount. The bolt ated as abearing point against the top of the sloeve. Another $1 / 4$-inch hole was drilled through the mast about three feet above the bottom wall mount. A piecer of $1 / 4$-inch metal rod, six inches long, was foreed through the hole so that the rod projected on carh side of the mast. To turn the mast, a piece of rope was attached to each end of the rod and the rope was broughinto the shack, so that the antenna could be rot tated by the "arm-strong" method. Obviously. one could spend more money for at "de luse" version and use a TV antenna rotator and mast.

Fig, $14-60-(1)$ IViagram of the ?l- Me, antenna and monnt ine. The I bolts that hold the $\boldsymbol{2}$ liy 2 to the flow flange are stamdard 2-inch TV' mast type Inolts. (B) Imore detailed draw. ing of the coil and coax-fitting mountings. The $1 / 4$-inch spacing hetween turns is not critical. and they can vary us much as $1 / 16$ inch without any apparent harm to the match.

Fig. 14-61- I close -up of the coil and eroas fitting mountings. Be sure that the cuil docen'l short out to the outer comburtor when soldsering the coil end to the inner conductor pin on the coas fitting.

R(i-8 L 52-ohm cona cable is recommended to fored the intenati. For power inputs up to 100 Wiatts, the smatler and less expensive R(i-58 L^{-} cith he used. However, when you hay RG-58'L he sure that the line is made by it reputable manuliaturer (stwh as . Imphenol or Betden). Some of the line mate for TY installations is of inferior (fuality and is likely to hawe higher losses. The feredline was fod up through the mast pipe and through it $3 / 4$-inch hole in the 2 by 2 . An Amphemol 8:3-1NP fitting on the end of the coax line eomerets to the female fitting on the antemat.

Coupling to the Transmitter

It may be foum that, when the feed line is roupled to the transmitter, the antenna won't take power. Since the line is terminated at the
antenna in its chatruteristic impedance of 52 ohms, the output of the final r.t. amplifier must be adjusted to couple into at 22 -chm load. Where the out put coupling deviere is a varpiable link, atl that maty be needed is the correct setting of the link. If the link is fixed, one end of the link can be gromided to the transmitter chassis and the ot her end of the link connected in series with at smatl variable capabitor to the immer conductor of the ferd line. The outer condoctor of the coax is gromded to the trimsmitter chassis. The ratpacitor is tuned to the point where the fintan amplifier is properly lowded. For transmitters hatving a pi-motwork output cireuit, it is morely a matter of adjusting the net work to the point where the amplifier is propery lowded.
(From ©ST, Jinualy, 1955.)

Fip, A.(12- Oner-all view of the antenna and mounting. 'The feed line comes ont of the loottom of the mant aned throuab the wall into the shach.

CHAPTER 15

Wave Propagation

Much of the appeal of amatedr eommunication lies in the fact that the restults ate not always predictable. Transmission condtions on the same frefuency vary with the vear, season and with the time of day. Although these vartiations usually follow certain established patterns, manypeceuliar effects can be observed from time to time. Every radio annateur should have some understanding of the known facts ahont radio wave propagation so that he will stand some chance of interpreting the umisual conditions
when they oreur. The observant amateur is in an exellent position to make worthwhile contributions to the scionce, provided he has sufficient backgromed to understand his results. He maydiseover new facts ahout propagation at the veryhigh frequencies or in the mierowave region, as amateurs have in the past. In faet, it is through amateur efforts that nust of the extended-range possibilitios of various radio frequencias have been discovered, both by areident and belong and carreful investigation.

Characteristics of Radio Waves

Radio watee, like other forms of electromarnetic radiation such as light, travel at a spered of $300,000,000$ meters per second in free space, and can be reflected, refracted. and diffracted.

As described in the chapter on fundamentals, an clectromagnetic wave is composed of moving fields of electric and magnetic foree. The lines of force in the two fields are at right angles, and are

Fis. 15.1-Reprecentation of electrostatic and electromagnetic lines of force in a radion wave. Arrows indicate instantancons directions of the field- for a wase tratseling tonvard the reader. Reversing the direction of one set of lines would reserse the direction of travel.
mutually perpendienatr to the direction of tatern. A simple representation of a water is shown in Fig. 15-1. In this deawing the clecerio limes aro perpendicular to the earth and the magnetie lines are horizontal. There eonld, however, hater and position with respert to earth so loug as they remain perpendieular to each other.

The plane containing the contimuous lines of electric and magnetic force shown be the grid- or mesh-like drawing in Fig. Io-1 is called the wave front.

The medium in which electromagnetie waves travel has a marked itstuence on the speed with
which they move. When the medium is empty space the spered, as stated atbove, is $300,000,000$ meters per serond. It is almost, but not quite, that great in air, and is murh loss in some other substances. In dielectrics, for example, the spered is inversely proportional to the dielectric ronstant of the material.

When a wave meets a good conductor it cannot penetmate it to any exment (although it will trawe through a dielectrin with ease boratuse the eloctrice lines of force are practioally shortcircuiterl.

Polarization

The polarization of a radio wave is taken as the direation of the lines of fores in the chectric field. If the edectric limes are perpendieular to the eath, the wave is satid to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, wasully mantain their polarization in the same plane as was gromerited at the antemas. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapilly.

Spreading

The field internity of a wate is inversedy proportional to the distance from the sonere. Thus if one recoving point is twied as far from the tramsuitter as another, the field strength at the more distant point will be jast hatf the fiodd strongth at the nearer point. This results from the fand that the ermergy in the wave front must be distributed over a greator areat as the wate noves away from the soures. This inverse-distance law is based on the assumption that there is nothing in the medium to absorb energy from the wave as it tratele, which is true in free spate but not in practical communieation along the ground and through the atmosphere.

Types of Propagation

According to the altitudes of the paths aloug which they are propagated, radio waves may
be classified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon tramsmitting wave length, the ionospheric wave may or may not be returned to earth by the effects of refraction and reflection.

The tropospheric wave is that part of the total madiation that undergoes refraction and reflertion in regions of abrupt change of diclectric ronstant in the troposphere, such as the boundaries between air masses of differing temparature and moisture content

The ground wave is that part of the total madia-

Fig. 15-2 - Showing how both direct and refleeted waves may be received simultanemsily.
tion that is directly affected by the presence of the earth and its surface features. The ground wave has two components, One is the surface wave, which is an earth-guided wave, and the other is the space wave (not to be eonfused with the ionospheric or sky wate). The space wave is itself the resultant of two eomponents - the direct wave and the ground-reflected wave, us shown in Fig. 15-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Wexept for distances of a fow miles, nearly all amateur communication on frequenediss below 30 Mc, is be means of the sky wave. Cpon leaving the transmitting antemna, this wave travels upward from the earth's surface at such an angle that it would eontinue out into space ware its path not bent sufficiently to bring it batk to carth. The medium that causes such bending is the ionosphere, a region in the upper atmosphere, ahowe a height of atout 60 miles, where free ions and electrons exist in sufficiont quantity to have all appreciable offert on the speed at which the waves travel.

The ionization in the upper atmosphere is believed to be caused bey ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a sories of layers of varying densitises of ionization oceurring at different horights. Fach haver eomsists of a central region of realatively dense imization that tapers off in intersity both above and below.

Refraction

The greater the intensity of ionization in at layer, the more the path of the wave is bent. The broding, or refraction (often also called reflection), also depends on the wave length; the longer the wave, the more the path, is lont for a given degree of ionization. Thus low-frequenery waves are more readily bent than those of high frequener. For this reason the lower frequencies - 3.5 and 7 Mc, - are more "roliable" than the higher frequencies - 14 to 28 Me.; there are times when the ionization is of such low value that waves of the latter frequency range are not bent enough to return to earth.

Absorption

In traveling through the ionosphere the wave gives up some of its energy bey setting the ionized particles into motion. The energy absorption from this catuse inereases with the wavelongth; that is, absorption is greater at lower frequencies. It also increases with the intensity of ionization,
and with the deasity of the atmosphere in the ionized ragion.

Virtual Height

Athough an ionospheric laver is a region of eonsiderable depth it is convenient to assign to it a definite height, ealled the virtual height. This is the height from which a simple refleetion would give the same effert as the gradual bend-

Fig. 15-3 - Bending in the innosphere, and the echo or rellertion methow of determining irmal height.
ing that actually takes place, as illustrated in Fig. 15-3. The wave traveling upward is hent batek over a path having an appreciable radius of turning, and a monsurable interval of time is consumed in the turning process. The virtual hoight is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E layer. The average height of the region of maximum ionization is about $\mathbf{7 0}$ miles. The air at this height is sufficiently dense so that the ions and electrons set free by the sun's radiation do not travel far before they meet and recombine to form neutral particles, so the layer can maintain its normal intensity of ionization only in the presence of continuing radiation from the sun. Hence the ionization is greatest around local noon and practically disappears after sundown.

In the daytime there is a still dower ionized
area, the D region. D-region ionization is proportional to the height of the sun and is greatest at noon. The lower amateur-band frequencies (1.8 and 3.5 M(") are almost eompletely absorbed by this layer, and only the high-angle radiation is reflected by the E layer. (Lower-angle radiation travels farther through the 1) region and is ablsorbed.)

The second prineipal layer is the F layer which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly. The ionization decreases after sundown, reaching a minimum just before sumbe. In the daytime the F layer splits into two parts, the F_{1} and F_{2} layers, with average virtual heights of, respertively, 140 miles and 200 miles. These layers are most highly ionized at about local noon, and merge again at sumset into the F laver.

SKY-WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wave leaves the earth, the less the bending required in the ionosphere to bring it back. Also, the smaller the angle the greater the distance between the point where the wave leaves the carth and that at which it returns. This is shown in Fig. 15-4. The vertical angle that the wave makes with a tangent to the carth is called the wave angle or angle of radiation.

Skip Distance

More benting is required to return the wave to carth when the wave angle is high, and at times the bending will not be sufficient unless the wave angle is smaller than some ritional value. This is illustrated in Fig. 15-4, where A and smaller angles give useful sigmals while waves sent at higher angles penetrate the lawer and are not returned. The distance between \dot{T} and h_{1} is. therefore, the shortest possible distance, at that particular frequeney, over which communication by ionospheric refraction can be accomplished.

The area between the end of the useful ground wave and the begiming of ionospheric-wave reception is called the skip zone, and tho distance from the transmitter to the nearest point where the sky wave returns to earth is called the skip distance. The extent of the skip zome dejends upon the frequency and the state of the ionosphere, and also upon the height of the laver in which the refraction takes place. The higher layers give longer skip distances for the same wave angle. Wave angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the iono-
sphere will he reflected back down to the transmitting point. If the frequency is then gradually increased, eventually a frequeney will be reached where this vertical reflection just fails to oceur. This is the critical frequency for the laver under consideration. When the operating freguency is below the critional value there is no skip zone.

The eritioal frequency is a useful index to the highest frequeney that "an be used to tramsmit over a sperified distance - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle A in lig. lo- +is , for example, at a frequency of 14 Mc., and if a higher frequency would skip, over the rereiving point R_{1}, then 14 Mr. is the m.u.f. for the distance from T to R_{1}.

The greatest possible distance is covered when the wave leaves along the tangent to the carth: that is, at zero wave angle. C'nder average conditions this distance is ahout 4000 kilometers or 2500 miles for the F_{2} layer, and 2000 km , or 1250 miles for the E layer. The distanes vary with the laver height. Frequencios above these limiting m.u.f.'s will not be returned to earth at any distance. The $4000-\mathrm{km}$. m.u.f. for the l_{2} layer is approximately 3 times the eritical frequency for that layer, and for the E layer the $2000-\mathrm{km}$. mu.u.f. is about 5 times the eritieal frequency.

Absorption in the ionosphere is least at the maximum usable frequence, and increases very rapidly as the frequeney is lowered below the m.u.f. Consequently, best results with low power always are sereured when the frequency is as close to the m.u.f. as possil:le.

It is readily possible for the ionospheric wave to pass through the E laver and be refracted hack to earth from the F, F_{1} or F_{2} layors. This is because the critical frequencies are higher in the latter layers, so that a signal too high in frequency. to be returned by the E layer can still eome back from one of the others, depending upon the time of day and the existing conditions.

Multihop Transmission

On returning to the earth the wave can be refleeted upward and travel again to the ionosphere. There it may oner more be refracted, and

Fig. 15.1 - Refraction of sky waves, showing the critical wave angle and the ship zone. Wavea leaving the transmitter at angleabove the critical (greater than A) are not bent enough to be returned to earth. As the angle is decreased, the waves return to earth at increasingly greater distances.
again bent back to earth. This process may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances because of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the values mentioned in the preceding section. However, ground losses absorb some of the energy from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water), and there is also absorption in the ionosphere at each reflection. Hence the smaller the number of hops the greater the signal strength at the receiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the recoiving point, in which case the difference in path lengths will cause a phase difference to exist between the wave eomponents at the rereiving antenna. The total field strength will be the sum of the components and may be larger or smatley that one component alone, since the phases may be such as either to aid or oppose. Since the paths change from time to time, this causes a variation in signal strongth called fading. Fating catn also result from the combination of single-hop and multihop waves, or the combination of a ground wave with an ionospheric or tropospheric wave. The latter condition produces an area of severe fading in the region where the two waves have about the same intensity: better reception is obtaned at either shorter or longer distances where one component of the wave is considerably stronger than the other.

Fading may be either rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere, the latter oceurring when transmission eonditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voice-modulated transmission, involving side bauds differing slightly from the carrier in frequency, the carrier and various side band components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effect, known as selective fading, causes severe distortion of the signal.

Scatter

Even though the operating frequency is above the m.u.f. for a givan distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called scatter, is caused by random reflections from distances beyond the skip zone. Such reflections can occur when the transmitted energy strikes the earth at a distance and some of it is reflected back into the skip zone to the receiver. Other possible scatter sources are "patches" of ionization of different density than the average, of sporatic- E clouds (see later section). scatter signals are weaker
than those normally propagated, and also have a rapid fade or "flutter" that makes them easily recognizable.

OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher critical frequencies in the E layer in summer, averaging about 4 Me. as against a winter average of 3 Nc. The l layer shows little variation, the critical frequency being of the order of 4 to 5 Mc. in the evening. The F_{1} layer, which has a critical frequency near s Mc. in summer, usually disappeats entirely in winter. The daytime maximum critical frequencies for the F_{2} are highest in winter (10 to 12 Mc.) and lowest in summer (around 7 Mc.). The virtual height of the F_{2} hayer, which is about 180° miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg. North in the Western hemisphere, and are subject to considerable variation in other parts of the world.

Very marked changes in ionization also ocrur in step with the 11-year sunspot cycle. Although there is no apparent direct correlation between sunspot activity and eritical frequencies on a given day, there is a definite correlation between average sunspot activity and critical frequencies. The critical frequencios are highest during sunspot maxima and lowest during sunspot minima. During the period of minimum sunspot activity the lower freouencies - 7 and 3.5 Mc . - frequently are the only usable bands at night, At such times the 28-Mc. band is seldom useful for long-distance work, while the 14-Mc. band performs well in the daytime but is not ordinarily useful at night.

Ionosphere Storms

Certain types of sunspot activity cause considerable disturbances in the ionosphere (ionosphere storms) and are accompanied by disturbances in the earth's magnetic field (magnetic storms). Ionosphere storms are characterized by a marked increase in absorption, so that radio conditions become poor. The critical frequencies also drop to relatively low values during a storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hours to several days. Since the sun rotates on its axis once every 28 days, disturbances tend to recur at such intervals, if the sunspots responsible do not become inartive in the meantime. Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Sporadic-E Ionization

Scattered patches or clouds of relatively dense ionization oceasionally appear at heights approximately the same as that of the E layer, for rea-
sons not yet known. This sporadic- E ionization is most prevalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and carly summer, but is present in some degree a fair percentage of the time the year 'round. It accounts for a good deal of the night-time short distance work on the lower frequencies (3.5 and 7 Mc .) and, when more intense, for similar work on It and 28 Mc. Exceptionally intense sporadic- E ionization is responsible for work over distances execeding 40) or 500 miles on the $5(1-M c$. band.

There are indications of a relationship between sporadic- E^{\prime} ionization and average sunspot activity, but it does not appear to be directly related to daylight and darkness since it may occur at any time of the day. However, there is an apparent tendency for the ionization to peak at mid-morning and in the early evening.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than normal ground-wate distances on 28 Mc and higher frequencies. The (ffect ean be observed on 28 Mc., but it is generally more marked on 50 and 144 Me. The subjeet is treated in detail later.

- PREDICTION CHARTS

The Central IRadio Propagation Laboratory of National Bureat of Standards offers prediction charts three months in advance, by means of which it is possible to prediet with considerable accuracy the maximum usable froquener that will hold over any path on the earth during a monthly period. The charts can be obtained from the Superintendent of Doruments, U. S. Government Printing Office, Washington 25, 1). C. for 10 cents a copy or $\$ 1.00$ per vear. They are called "CRl'L-D Basic Radio Propagation Predictions."

- PROPAGATION IN THE 3.5 TO 30-MC. BANDS

The $1.8-\mathrm{Mc}$., or " 160 -meter," band offers reliable working over rauges up to 25 miles or so during darlight. On winter nights, ranges up to several thousand miles are not impossible. Only small sections of the band are currently available to amateurs, because of the presence of the loran service in that part of the spectrum. The pulsetype interference sometimes caused by loran ean he reatily eliminated by using an audio limiter in the receiver.

The 3.5-Mc., or " 80 -meter," band is a more useful hand during the night than during the daylight hours. In the daytime, one can seldom hear signals from a distance of greater thatn 200 miles or so, but during the darkness hours distances up to several thousand miles are not unusual, and transoceanic contacts are regularly made during the winter months. Inaring the summer, the static level is high in some parts of the world.

The 7 -Me., or " 40 -meter," band has many of the same chatracteristics as 3.5, except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stattions as far as the other side of the world, the sigmals following the darkness path. The winter months are somewhat botter than the summer ones. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The 14-Me., or " 2 (h-meter," band is probably the best one for long-distatnce work. Huring the high portion of the smmpot cyele it is open to some part of the world during pratically abll of the 24 hours, while during a sunspot minimum it is generally useful only during dasylight hours and the dawn and dask poriods. There is practically always a skip zone on this hand.

The 2l-Mc., or "15-meter," band shows highly variable characteristics depending on the sunspot eycle. I uring sunspot maxima it is useful for long-distance work during a large part of the 24 hours, but in vears of low sumspot achivity it is almost wholly a davtime band, and sometimes tmusable even in daytime. However, it is often possible to maintain communication over distances up to 1500 miles or more by sporadic- E ionization (deseribed later), which may oecur either day or night at any time in the sunspot cyele.

The 27-Mc. ("11-meter") and 28-Me. (" 10 meter") bunds are generally considered to be IN ${ }^{\text {bands during the daylight hours and good }}$ for local work during the hours of darkness, for about half the sumspot evele. At the very peak of the sunspot eycle. they masy the "open" into the late evening hours for 1 X communication. At the sumspot minimum the be bands are usually "dead" for long-distance communication, by means of the Fa layer, in the northern latitudes. Nevertheless, sporadic- E propagation is likely to occurat any time, just as in the case of the 21-Me. band.

Propagation Above 50 Mc .

The importance to the amateur of having some knowledge of wave propagation was stressed at the beginning of this chapter. An understanding of the moans by which his signals reach their destination is an even greater aid to the v.h.f.
worker. Each of his bands shows different charateristics. and knowledge of their peculiarities is as yet far from complete. The observant user of the amaterur v.h.f. assiguments has a good opportunity to contribute to that knowlodge, and
his emjomment of his work will be greatly enhanced if he knows when to expect unusual propagration conditions.

CHARACTERISTICS OF THE V.H.F. BANDS

An outstanding feature of our bands from 50 Mr. up is their ability to provide consistent and interference-free commmication within a limited range, All lower frequencios are subject to varying conditions that impair their effectiveurss for work over distanees of 100 miles or less at least part of the time, and the heaver oecupancy they support results in severe interference probiems in areas of dense population. The v.h.f. hands, being much wider, can hathde many times the amateur population without crowding, and their characteristics for local work are more stable. It is thas to the advantage of amateur radio as a whole to make use of 50 Me, and ligher hands for short-range communieation whrever possible.

In addition to reliable local coverage, the v,h.i. bands also exhibit several forms of long. distance propagation at times, and use of 50 and 14t Me, has been lakion up in recent vears by many isolated amateurs who must depend on these proputgation peculiarities for all or most of their contacts. It is particularly important to these operaters that they understand common propagation phenomenat, The material to follow supplements information presented carlier in this chapter, dealing with wave propagation only as it atferets the orcopants of the world above 50 Ne. First let us eonsider the bands individually.

50 to $54 \mathrm{M} / \mathrm{c}$. This hand is borderline territory between the D. D frequencies and those normally. employed for local work. Thus just about every form of wave propagation found throughout the radio speretrum appears, on oreasion, in the 50Me, region. This has contributed greatly to the popularity of the $50-\mathrm{Me}$, band.

During the peak vears of a sumspot evele it is occasionally possible to work 50-Me. D. . of world-wide proportions, by reflection of signals from the F_{2} layer. Sporadir- E skip provides contacts over distances from 400 to 2500 miles or so during the early summer months, regardless of the solar cycle. Reflection from the iturora regions allows 100- to (600-mile work during pronounced ionospheric disturbances. The ever-changing wather pattern offers extension of the normal coverage to ats much as 300 to 500 miles. This develops most often during the warmer months, hut maty oecur at any season. In the absence of any favorable propagation. the average wellrquipped $50-$ Mr. station should be able to work regularly over a radius of 75 to 100 miles or more, depending on local terrain.

144 to 148 Mc.: Ionospheric effects are greatl! reduced at 144 Me . F_{2}-later reflection is unlikely, and sporadic-E skip is rare. Aurora IN is farly common, but signals are generally weaker than on 50 Me , Tropmsheric effects are more pro-
nounced than on of Mr., and distanes covered during favorable weather conditions are greater than on lower bands, Dir-mass boundary bending has been responsible for communication on $1+1$ Me over distaners in exeress of 1100 miles, and 50 -mile work is fatly eommon in the warmer months. The reliable range under normal conditions is slightly less than on 50 Me ., with comparable ecquipment.
$220 \mathrm{~h} / \mathrm{c}$, and Higher: Ionospheric propagation is unlikely at 220 Me. and up, but tropospheric bending is more prevalent than on lower hands. Amatrur experience on 220 and 420 MI . is showing that they ean be as useful as 144 Ma ., when comparable equipment is used. Under minimum conditions the range maty be slightly shorter, but when signals atre good on $14+$ Me, they maty he better on 220 or 420 . Even above 1000 Me. there is evidence of tropospheric DX.

- PROPAGATION PHENOMENA

The various known means by which v.h.f. signats may be propagated over unusual distances are discussed below.
F_{2}-Layer Reflertion: Most contacts made on 28 Mre and lower frequencies are the result of refleetion of the wave by the F_{2} laver, the ionization density of which varies with solar artivity, the highest frequencies boing reflected at the peak of the 11 -vear solar cyole. The maximum usable frequency (m, uf.) for f_{2} reflecetion ahso follows other well-defined eyeles, daily, monthly, and seasonal, all related to conditions on the sun and its position with respert to the earth.

At the low point of the 11-year ceycle, such as in the carly ' 50 s, the m.u.f. may reach 28 Me, only during a short poriod eath spring and fall, whereas it may go to t 0 Mc . or higher at the peak of the cerele. The fall of 1946 saw the tirst atuthentic instances of long-distance work on 50 Me. by Fo-layer reflection, and as late as 1950 contacts were made in the more favorable areas of the world be this medium. The rising eurve of the current solar crole again made F_{2} INX on 50 Mc , pessible in the low latitudes in the winter of $1955-6$. It is experted to spread farther north and south in the following two to three years, Loss of the $50-\mathrm{Me}$, hand to television in Lurope and Australia will limit the seope of $50-\mathrm{Me}$. DK in vears to eome.

The F_{2} m.u.f. is readily determined by ohsorvation, and it may be cestimated quito aconately for any path at any time. It is predictable for months in advance, enabling the v.h.f. worker to arrange test schedules with distant stations at propitious times. As there are numerons commercial siguals, both harmonirs and fundat mental transmissions, on the air in the range between 28 and 50 Mc ., it is possibie to determine the approximate m.u.f. by careful listening in this range. Daily observations will show if the m.u.f. is rising or falling, and once the peak for a given month is determined it can be assumed that amother will orear about 27 days later, this rycle coinciding with the turning of

Fig. 15.5 - The principal means hy whieh s.h.f. signals may be returned to earth, showing the approximate dia. taners over which they are effertive. The F2 layer, highest of the refleeting layers, may provide 50. Ic. DX at the wrak of the 11 -vear sumpot cycle. Such communication may be world-wide in seope. Sporadic ionization of the E region produces the familiar "short skip" on 28 and 50 lie. It is most common in early summer and in late Derember. but may ocrur at any time, regarilless of the sunspot eycle. Refraction of v.h.f. waves also takes place at airmass houndaries in the lower atmonphere, making possible communication over distanees of several hundred miles on all v.h.f. bands. Normally it exhihits no skip zone.
the sum on its axis. The working range, via F_{2} skip, is roughly comparable to that on 28 Me., though the minimum distance is somewhat longer. Two-way work on 50 Mc . by reflection from the F_{2} layer has been aceomplished over distances from 2200 , to 11,000 miles. The maximum frequeney for F_{2} reflection is believed to be about 70 Mc .
Sporadic-E Skip: Patchy concentrations of ionization in the E-lityer region are often responsible for reflection of signals on 28 and 50 Mc. This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May, June and July, during norning and early evening hours, but it may occur at any time or season. Multiple-hop effects may appear, when ionizition develops simultaneously over large areas, making possible work over distances of more than 2500 miles.
The upper limit of frequency for sporadic- E skip is not positively known, but seattered instances of $1+4-\mathrm{Mc}$. propagation over distances in excess of 1000 miles indicate that E-lityer reflection, possibly aided by tropospheric effects, may be responsible.
Aurora Effect: Low-frequeney communication is oectasionally wiped out by absorption in the ionosphere, when ionospheric storms, associated with varriations in the carth's magnetic field, occur. During such disturbances, however, v.h.f. signals may be reflected back to earth, making communieation possible over distances not normally workable in the v.h.f. range. Magnetic storms may be acconpanied by an aurora-borealis display, if the disturbance occurs at night and visibility is good. Aiming a directional array at
the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station.
Aurora-reflected signals are characterized by a rapid flutter, which lends a "dribbling" sound to 28 -Mc. carriers and may render modulation on 50 - and 144 -Mc. signals completely unreadable. The only satisfactorymeans of communication then becomes straight c.w. The effect may be noticeable on signals from any distance other than purely local, and stations up to about 800 miles in any direction maty be worked at the peak of the disturbance. Unlike the two methods of propagation previously described, aurora effect exhibits no skip zone. It is observed frequently on 50 and 14. We. in northe:stern U. S. A., usually in the early evening hours. The highest frequency for auroral reflection is not yet known, but pronounced disturb;uces have permitted work by this medium in the $220-\mathrm{Mc}$. band.
Tropospheric Bending: The most common form of v.h.f. DX is the extension of the normal operating range associated with easily observed weather phenomena. It is the result of the ehange in refractive index of the atmosphere at the boundary between air masses of differing temperature and humidity characteristics. Such airmass boundaries usuatly lip along the western or southern edges of a stable slow-moving area of high barometric pressure (fair calm weather) in the period prior to the arrival of a storm.
A typical upper-air sounding showing temperature and water-vapor gradients favorable to v.h.f. DX is shown in Fig. 15-6. An increase in temperature and a sharp drop in water-vapor
gratient are seen at about $40(0)$ feet, in eomparison to the U. S. Standard Atmosphere curves at the left.

Such a favorable condition develops most often in the late summer or early fall, along the junction betwern air masses that may have come together from such widely-separated points as the Gulf of Mexieo and Northern Canada. Under stable weather conditions the two air masses may retain their original character for several
wave range, and there is good evidence to indirate that our assignments in the u.h.f. and s.h.f. portions of the frequency spectrum may someday support communication over distances far in excess of the optical range.

Scatler: Forward seater, both ionospheric and tropospherie, may be used for marginal communication in the v.h.f. bands Both provide very weak but consistent signals over distaners that were once thought impossible on frequencies

Fig. 15-6 - Upper-air conditions that produce extended-range communication on the v.h.f. lands. At the left is shown the I. S. Standird Atmosphere temperature curve. The humidity curve (dotted) is that which would result if the relative humidity were $\mathbf{0} 0$ per cent from the ground level to 12.000 feet elevation. There is onls slight refraction under this standard condition. At the right is shown a sounding that is typical of marked refraction of v.h.f. waver, figures in paremheses arr the "mixing ratio" - grams of water vapor per kilogram of dry air, Note the sharp breah in hoth curves at about 1001 feet. (From Collier, "t'pper-Air Conditions for 2 - Meter DX," QST, Septembar, 195.5.)
days at a time, usually moving slowly east ward across the eometry. When the path between two v.h.f. stations separated bey fifty to several humdred mikes lies along such a boindary, signal frevels run far above the average value.

Many factors other than air-mass movement of a continental charater provide inereased v.h.f. operating range. The ronvection along coastal areas in warm weather is a good example. The rapid eooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is a nother, producing a rise in signal strongth in the period around sundown. The early-morning hours, when the sun heats the air aloft, lefore the temperature of the earth's surface begins to rise, may be the best of the diy for extended v.h.f. range, particularly in clear, calm weather, when the barometer is high and the humidity low:

The v.h.f. enthusiast soon learns to correlate various weather manifestations with radiopropagation phenomena. By watehing temperatture, harometric pressure, changing clond formations, wind direction, visibility, and other easilyobserved weather signs, he can toll with a reasonable degree of aceuracy what is in prospect on the v.l.f. bands.

The responsiveness of radio waves to varying weather conditions increases with freguency. The 50-Me. band is more sensitive to weather variations than is the $28-\mathrm{Mc}$. band, and the $144-$ Mc. band may show strong signats from far beyond visual distances when lower frequencies are relatively inactive. It is probable that this tendency continues on up through the micro-
higher than about 30 Mc .
Tropospheric seatter is prevalent all through the v.l.f. and minrowave regions, and is usable over distances up to ahout 400 miles. Ionospheric seatter, augmented by meteor bursts, brings in signals over 600 to $1: 300$ miles, on frequencies up to about 100 Mc. Lït her form of soatter requires high power, large antennas and c.w. technique to provide offertive communication.

Back scatter, of the type heard on lower hands, is also heard oeretsionally on 50 Mr., when F_{2} or sporadic-E skip is present.

Reflections from Meteor Trails: Probably the least-known means of v.h.f. wave propagation is that resulting from the passage of moteors across the signal path. Reflertions from the ionized meteor trails may be noted as a Doppler-effeet whisthe on the carrier of a signal already being received, or they may cause bursts of reception from stations not normally receivable. Ordinarily sueh reflections are of little value in communie:ttion, sinee the increases in signal strength are of short duration, but meteor showers of considerable magnitude and duration may provide fluttery signals from distances up to 1500 miles or more on both 50 and 144 Me.

As meteor-hurst signals are relatively weak, their detertion is greatly aided if high power and high-gain antemnas are used. Two-way communieation of sorts has been carried on by this medium on 50 and $14+\mathrm{Mc}$. over distances of 600 to $\$ 300$ miles, through the use of short c.w. transmissions and frequent repetition.

V.H.F. Receivers

(iood receiving facilities are all-important in v.h.f. work. High sensitivity, adequate stability athe good signal-to-noise ratio, needesary attributes in a rereiving system for 50 Me, and higher frequencies. are most readily attaned through the use of a converter working into a communications receiver designed for lower frequencies. Though receivers and eonverters for the v.h.f. hands are available on the amatear market. the amateur worker ran build his own with fully as grod results, usually at a contsiderable saving in cost.

Basidally, modern v.h.f, receiving equipment is little different from that emploved on lower frequencies. The same order of selectivity may be used on all amateur frequencies up to at least 450 Mr. The greatest practical selectivity should Ire employed in v.h.f. reception, as it not only allows more stations to operate in a given band, but is an important factor in improving the signal-to-noise ratio. The effertive sensitivity of a receiver having "rommunication" solectivity. can be made much better than is possible with broadhand systems.

This rules out converted radar-typer receivers and others using high intermediate freguencies The superregenerative reeciver, a simple but broadband deviee that was popular in the early. days of v,h.f, work, is now used primelpally for portable operation, or for other applications where high sensitivity and selectivity are not of prime importance. It is rapathle of surprising performance, for at given mumber of tulxes and components. but its lack of seleretivity, its poor sighal-to-moise ratio, and its tenderney to radiato a strong interforing signal have eliminated the superregenerator as a fixed-station receiver in areas where there is approciable v.h.f. adivity.

R. F. AMPLIFIER DESIGN

The noise generated within the reereiver itself is an important fartor in the effectiveness of wh.f. receiving gear. At lower frequeneids, and (1) a considerable extent on 50 Me., external mose is at limiting factor. At 144 Mo. and higher the recejver noise figure, gain and selectivity determine the ability of the system to respond to weak signals, Proper selleetion of r.f, amplifior tulnes and appropriate cirreuit design aimed at low noise figure are more important in the v.h.f. reeciver "front end" than mere gain.

Triode or Pentode?

Certain triode tubes have been developed with this end in view. 'Their superiority owor pentode types is more pronounced as we go
highor in frequeney. Berause of the limitation on sensitivity imposed by external moise at that frecuence. triode or pentode rat. amplifiers give about the same results at 50 Ma. That the perntode types, whieh offer the advantages of hetter seloetivity and simpler circuitry: are often used for so-Mc, work. But at $14 . \mathrm{II}_{\mathrm{c}}$. the mewer triodes designed for r.f. amplitior sorviere give fully as muth gain as the pentodes, and with lower internal noise. With the exerption of the simplest unit. the equipment deseribed in the following pages incorporates low-noise r.f. amplifier terchniques.

Neutralizing Methods

When triokes are und is r.f. amplifiers some form of neutralization of the grid-plate caphatitanee is required. This can be caparitive, as is commonly used in fransmitting applications, or induetive. The alternative to neutralization is the use of grounded-grid teehnigue. ('ircuits for v.h.f. triode r.f. amplifier stages are given in Figs. It 6 -1 through 16 -4.

1 dual triode operated as a noutralizod push-pull amplifier is shown at $16-1$. This ar-

Fig. $16-1$ - Schematic diagram of a push-pull r.f. amplifier for viluf, applications. 'This circuit is wellsulted to ner with antenna systems having halances lines. Coil and capacitor vadues mot siven depend on the frequeney at which the amplifier is to be wasd. veutralizing capacitancer. C. mas be built nif by twist. ing ends of insulaterl leads tokether,
rangement is well alapted to v.h.f. preamplifier applieations, or as the first stage in a converter, partieularly when a balaneed transmission line such as the popular 300-ohm Twin-Lead is used. It is relatively selective and maty reguire resistive loading of the plate circuit, when used as a promplifier. The loading affert of the following circuit may be suffidient to give the reguired hand width, when the push-pull stage is indurtively roupled to the mixer.

A triode amplifier having excellent nowe figure and broadband characteristies is shown in Fig.

Fig. $16-2$ - Circuit of the casconde r.f. amplifier. Coupling capacitor, in $_{1}$, may be omitted if spurious receiver rexponsen are not a problen. Veutralizing ninding, L_{s}, should resonate at the signal friquency with the gridplate capacitance of the first tube. Base comnections are for 117.4 and 6.51 , but other simall trionles may be used.

16-2. Commonly called the easeode, it usess a triode or triode-connerted pentode followed hy a triode grounded-grid stage. This cireuit is extremely stable and uncritical in adjustment. At 50 Me. and higher its over-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is aceomplished by the roil I_{N}, whose value is such that it resonates at the signal frequency with the grid-phate capacitance of the tubre. Its inductance is not eritical; it may be omitted from the cireuit without the stage going into oscillation, but neutralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the cascode rircuit. The example shown in Fig. 16-2 uses the 417 A , followed by a GAJ.4. Two 6AJts would work almost equally well, as would the GAM4, 6AN4 and 6.J4. Pin connections in Fig. 18-2 should be changed to suit the tubes selected.

A simplified version of the cascode, using at dual triode tube designed espectally for this application, is shown in Fig. 16-3. By reduring stray capacitance, through direct coupling between the two triode sections, this circuit makes for improved performance at the frequencies above 100 Mc . The two sections of the tube are in series, as far as plate voltage is concerned, so

Fig. 16.3-Simplified cascode circuit for use with dual triodes having separate cathodes. Coil and capacitance values not given depend on frequency. Bifilar r.f. chokes are occasionally used in heater leads.
it requires higher voltage than the other eireuits shown.

The neutralization process for the cascode and neutralized-triode amplifiers is somewhat similar. With the circuit operating normally the neutratizing adjustments (capacitance of C_{N} in Fig. 16-1; inductance of L_{N} in Figs. 16-2 and $16-3)$ can be set for best signal-to-noise ratio. The best results are obtained using a noise generator, adjusting for lowest noise figure, but carcful adjustment on a weak signal provides a fair approximation. Noise generators and their use in v.h.f. receiver adjustment are treated in July, 1953, QST, p. 10.

Grounded-grid r.f. amplifier technique is illustrated in Figs. 16-4 and 16-25. Here the input is in the cathode lead, with the grid of the tube grounded, to act as a shield between cathode and plate. The grounded-grid circuit is stable and easily adjusted, and is well adapted to broadband applications. The gain per stage is low, so that (wo or more stages may be required.

Tubes well-suited to grounded-grid amplifier sorvice include the 6.I4, 6AN4, 6AJ4, 6AM4, $6 \mathrm{GBC} 4,417 \mathrm{~A}$ and 416 B . Disk-seal tubes such as the "lighthouse" and "pencil tube" types are often used as r.f. amplifiers above 500 Mc., and the new ceramic tubes show great possibilities for r.f. amplifier service in the u.h.f. range.
(ireat care should be used in adjusting the r.f. portion of a v.h.f. receiver, whatever circuit is used. If it is working properly it will control the noise figure of the entire system.

Reducing Supurious Responses

In areas where there is a high level of v.h.f. activity or extensive use of other frequencies in the v.h.f. range, the ability of the receiver to operate properly in the presence of strong signals maty be an important consideration. Special tube types, otherwise similar to older numbers, have been developed for low overload and crossmodulation susecptibility. The $6 \mathrm{BC8}$, which may be used as a replacement for the 613Q7A or $6 B Z 7$, is one of these.

Modification of the converter design can also improve performance in these respects. In general, the gain ahead of the mixer stage should be made no more than is necessary to achieve good noise figure characteristics. The plate voltage on the r.f. amplifier should be kept as high as practical, to prevent easy overloading.

Rejection of signals outside the desired frequency range can be improved by the use of high- Q tuned circuits ahead of the first r.f. amplifier stage. Television transmitters are particularly troublesome in this respect, and one or more coaxial-type circuits inserted in the lead from the antenna to the converter may be necessary to keep, such signals from interfering with normal reception.

A common cause of unwanted signals appearing in the tuning range is the presence of oscillator harmonirs in the energy being fed to the mixer of a crystal-controlled converter. This may be prevented by using a high oscillator frequency, to

Fig. 16.4- Grounded-grid amplifier. Position of tap on plate coil should be adjusted for lowest noise figure. Low gain with this rircuit makes two stages necessary for most applications. R.f. chohe and coil values depend on frepuency.
common use of pentode mixers in v.h.f. work is in the interest of simplicity of circuit layout, as in multiband converters employing bandswitching.
Occasionally oscillation near the signal frequeney may be encountered in v.h.f. mixers. This usually results from stray lead inductance in the miver plate circuit, and is most common with triode mixers. It may be corrected by comecting a small caparitanere from plate to cathode, directly at the tube sorket. Ten to 25 $\mu \mu$. will be sufficient, depending on the signal frequency.

OSCILLATOR STABILITY

When a high-selectivity i.f. system is employed in v.h.f. reeeption, the stability of the oscillator is extremely important. Night variations in oseillator frequency that would not be noticed when a broadhand i.f. amplifier is used beome intolerable when the passband is reduced to crystal-filter proportions.

One satisfactory solution to this problem is the use of a crystal-entrolled oscillator, with frequency multipliers if meded, to supply the injection voltage. Sueh a converter usually. employs one or more broadhand r.f. amplifier stages, and tuning is done by tuning the receiver with which the converter is used to cover the desired intermediate frequency range.
mixer ($16-5 \mathrm{~A}$) and the oscillator portion ($166-6 \mathrm{~A}$)
would be a triode. Dual-triode tubes ($\mathbf{6 . J 6}, 12 \mathrm{~A} 77$ and many others) would combine $16-513$ and 16-6A. In dual triodes having separate cathodes some extermal coupling may be required, but the rommon cathode of the $6 . \mathrm{J} 6$ will provide sufficient
injection in most cases. If the injertion is more common cathode of the 6.56 will provide sufficient
injection in most cases. If the injertion is more than necessary it can be reduced by dropping the oscillator plate voltage, cither directly or by increasing the value of the dropping resistor.
A pentode mixer is less subject to oscillator pulling than a triode, and it will probably require
less injection voltage. In a pentode mixer, its less injection voltage. In a pentode mixer, its plate current should be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer sereen voltage. A
keep down the number of multiplications, and by shielding the oscillator and multiplier stages from the rest of the converter.

Signals at the intermediate frequency may ride through a converter. This ran be prevented by keeping down capacitive interstage roupling in the r.f. cireuitry, and by shiclding the converter and the receiver antenna terminals. The problem of receiver responses is dealt with in "Communications Receiver Hints for the V.h.f. Man," (Ss'T', April, $195 \overline{5}$, p. 56.

MIXER CIRCUITS

The mixer in a v.h.f. converter may be either a pentode or a triode tube. Pentodes give generally higher output, and may require less injoction. When used without a preceding r.f. amplifier stage, the triode mixer may provide a bottor noise figure. With either tube, the grid circuit is tuned to the signal frequency, and the plate circuit to the intermediate frequency.

A simple pentode mixer is shown in Fig. 16-5A, with a triode mixer at 13. A dual-triode version (push-push mixer) is shown at C. The push-push mixer is well adapted to use at 420 Me., and may, of course, be used at any lower frequeney. Dual tubes may be used as both mixer and oscillitor, combining the circuits of Figs. 16-5 and 16-6. A 6C'8 could use its pentode as a -jor ($16-5 \mathrm{~A}$) and the oscillator portion (16-is)

Fig. 16.5-Typical v.h.f, miner cireuits for pentode (A), single triode (B) and push-push triode (C). Cörcuits A and 18 may be used with one portion of various dualpurpose tobes. Plate current of pentorle (A) should be held at lowest asable value.

Fig. 16-6- Reconmended oscillator eircuits for tunable v.h.f. converters. Dual-triode-version (B) is recommended for 220 or 420 Mc. R.f. choke coil and capacitor values not given depend on freguency.

When a tunable oscillator and a fixed intermediate frequency are used, special attention must be paid to the oscillator design, to he sure that it is mechanically and electrically stable. The tuning capacitor should be solidly built, preferably of the double-bearing type. Splitstator capacitors specifically designed for v.h.f. service, usually having bati-bearing end plates and special construction to insure short leads, are well worth their extra cost. Leads should be made with stiff wire, to reduec vibration offects. Mechanical stability of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.

Recommended oscillator circuits for v.h.f. work are shown in Fig. 16-6. The single-ended oscillator may be used for 50 or 144 Mc. with good results. The push-pull version is recommonded for higher frequeneses and may also be used on the two lower bands, as well. Circuit A works well with almost any small triode, or one half of a 6.56 or $12 \mathrm{~A}^{\prime} \mathrm{T}^{\circ}$. The 6 JJ is well suited to push-pull applications, as shown in circuit 16-6ib.

THE I.F. AMPLIFIER

Superheterodyne receivers for 50 Me. and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 per ernt of the signal frequency is commonly used, with 10.7 Me. being set up as the standard i.f. for commercially-built f.m. receivers. This particular freguency has a disadvantage for 50-Me, work, in that it makes the receiver subject to image response from 28 -Mc. signals, if the oseillator is on the low side of the sigmal frequeney. A spot around 7 Mc. is favored for amateur converter sorvice, as practically all eommunications recoivers are capable of tuning this range.

For selectivity with a reasonable number of i.f. stages, double conversion is usually emploved in complete receivers for the v.h.f. range. A $\overline{\mathrm{T}}$ - Mc. intermediate frequencr, for instance, is changed to 455 ke ., by the addition of a second mixer-oscillator. This procedure is, of course, inherent in the use of a v.h.f. converter ahead of a communications receiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-rocoiver combination may be inadequate. This can be corrected by building an i.f. amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to permit operation of the converter with receivers of
widely-different performance. If the receiver has an s-meter, its adjustment mas be loft in the position used for lower frequencies, and the converter gatin set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band f.m. or unstable signals of modulated oscillators is desired, a converter may be used ahead of an f.m. broadeast roceiver. A superregencrative detector operating at the intermediate frequency, with or without additional i.f. amplifier stages, also may serve as an i.f. and detector system for reception of wideband signals. 13y using a high i.f. (10) to 30 Mc . or so) and by resistive loading of the i.f. transformers, almost any desired degree of band width call be secured, providing good voice quality on all hut the most unstable signals. Any of these methods may be used for reeeption in the microwave region, where stabibized transmission is extremely difficult at the eurrent state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. rereiver is the superregenerator. It affords fair sensitivity with few tubes and elementary circuits, but its weaknesses, listed earlier, hatve relegated it to applications where smatl size and low power consumption are important considerations.

Its sensitivity results from the use of an alternating quenching voltage, usually in the range between 20 and 200 ke., to interrupt the normal oscillation of a regenerative deteretor. The regeneration can thus be inereased far beyond the amount usable in a straight regenerative circuit.

Fig. 16-7-Superregenerative detector circuit for self. quenched detector. Jentode tube may be used, varying screen voltage by means of the potentiometer to control regeneration.

The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used. Regeneration is usually controlled by varying the late voltage in triode detectors, or the sereen voltage in the case of pentodes. A typical circuit is shown in Fig. 16-7.

Crystal-Controlled Converters for 50,144 and 220 Mc .

The family of converters shown in Figs. 16-8 through 16-16 was dexigned to provide optimum reception on all v.h.f. bands. (rystal-controlled injection is used to insure stability, and the r.f. circuit design provides the lowest practical noise figure for cach frequency. Sperial attention has been paid to the reduction of spurious responses, often a troublesome point in broadband converter design. A separate converter section for carh band connects to a common i.f. amplifier and power supply by means of a single plug and cable. This carries the mixer output, and plate and filament voltages.

The R.F. Circuits

A pentode r.f. amplifier (6CI36) is used in the 50 -Mc. converter in the interest of simplicity. With proper design. such a stage can be made to deliver a satisfactory noise figure at 50 Mc . Its performance is quite adequate; it will be found that outside noise picked up by the antenna will be the limiting factor in weak-signal reception, even in a quiet receiving location.

The 144-and 220-Mc. converters have modified caseode cireuits with dual triodes ($613 Q^{7} \mathrm{~A}, \mathrm{tBH} /$ or $613 / 75$) in the first stages. The 220 -Mc. converter has an additional pentode stage, to build up the gain and improve the ability of the converter to reject unwanted frequencies. it will bo noted that the converters differ somewhat as to circuitry in other respects, but this was done primarily to show examples of various circuit terhniques, rather than because of any superiority of one approach over another. This applies particularly to the methods of coupling between stages.

When a fixed injection frequenor is used with : variable intermediate frequency, the r.f. and i.f.
circuits of the converter must be made broadband, to avoid the need for realjusting them as the reereiver with which the converter is used is tumed across the i.f. range. Spurious responses, both at the i.f. range and at frequencies adjacent to the desired signal frequencios, pose a sperial problem. Band-pass characterist ies are attained through the use of over-eroupled double-tuned circuits in the converter r.f. cireuits. These circuits prosent a high impedance at the signal frequence, but they look like st short circuit to signals in the i.f. range that are pieked up by the antenna.

Spurious responses that might develop ats thr result of the injection of unwanted frequencies at the mixer grid are reduced by the use of a separato tube for the mixer, and coupling the injertion voltage from the multiplier stage through a link. Isolation of the mixer and multiplier stages is further increased in the 141- and 220-2le. ronverters by the installation of a shield partition along the middle of the bise plate.

Crystal Oscillator Details

Crystal froquencies were selected so that all bands would start at the same spot on the communications recoiver dial: in this case \quad T(M) ke . Crystal frequencies, multiplier details and i.f. tuning ranges are shown in Table 16-I. Other i.f. tuning ranges that may be Detter suited to somm communiations reavers maty be employed by suitable alteration of the arystal and multiplier frequencies.

I fairly high oscillator frequency is desimable. to redure the possibility of oscillator harmonies appearing in the tuning range, ase well as to keep down the number of multiplier stages. Farform-

Fig. 16.8 - (irystal. controlled convert. ars for $-200,114$ and 50 Me. (l.tor.) with their common i,f. amplitier and power supply, Ill chassis are standard sizes. revuiring a ninimum of metal work.
verter in this series uses a readily-ohtamable erystal operating on its third overtone. This may result in a frequency of oscillation that is not exartly three times that marked on the crystal, but it is close enough for ordinary calibration purposes. Overtone crystals of the desired froquency maty be obtained on order, at somewhat higher priees than for fundamentad-type erystals. Conventional operation of erystals in the 7 -Me. range, making up the multiplication with additional stages, is not reommended beranse of the difficulty in avoiding birlies from orystal harmonics. In the overtone circuit, no frequency lower than the overtone at which the crystal ascillates is heard.

Layout

Fach converter is built on a single 5×7-ineh aluminum plate, and mounted on a standard chassis that serves as shielding and case. The three $5 \times 7 \times 3$-ineh chussis are bolted to the lack of the i.f. unit. to be deseribed later. In this way each converter is a separate entity, permitting the constructor to build iny one of them, omitting those hands in which he may not be interested. The shape of the i.f. unit is not important, and it could very readily be built in more compaet fashion if less than the there converters are planned. The method of construction shown requires a minimum of metal work, and a converter can be rebuilt or replaced without alfecting the operation of the others.

Is only three tubes are used in the 50 Me. converter they are arranged in at single line down the middle of the base plate. The other models have the oscollator-multiplier and amplifier-mixer soctions separated by a vertical shich partition.

THE 50-MC. CONVERTER

The simplest of the three converters is the 50 Mc. unit, shown in Figs. It-9 and $16-10$. The ref. and mixer stages use 6 CHB6 pentodes and a til6 serves as crystal owillator and multiplier. A

$\begin{gathered} \text { TABLE 16-I } \\ \text { Cryatal-Controlled Converter Data } \end{gathered}$				
Band (Mc.)	Injection (Mc.)	$\begin{gathered} I . F . \\ (M c .) \end{gathered}$	Crystal (kc.)	Oxertone 8 Mulliplication
50	43	7-11	7106	$3 \mathrm{rd} \times 2$
144	137	7-11	7611	$3 \mathrm{rd} \times 3 \times 2$
220	213	7-12	7100	$3 \mathrm{rd} \times 5 \times 2$
420*	38:	(0)-i.4*	7074	$3 \mathrm{rd} \times 3 \times 3 \times 3 \times 2$
420**	406	26-30*	7.118	same
* For covering 432 to 436 Mc. only. To tune the rest of the band additional crystal frequencies or a wider i.f. tuning range must be used.				

somewhat lower noise figure could have been obtained with a triode r.f. amplifier, but the design shown has a noise figure under 5 db . With the considerable external noise pieked up by the antenna at 50 Mc ., even in a quict location, there is little to be gained in weak-signal reeeption by going lower than this figure.

The bottom view of the converter, Fig. 16-9, shows the r.f. amplifier socket and components at the left side. A small shield aeross the socket isolates the grid and plate rircuits. The r.f. plate tuning rapacitor, C_{2}, is near the renter. The plate eoil, L_{3}, is the lower of the two coils in the middle of the photograph, with the mixer grid coil, L_{4}, just above it. An enameled-wire link may be seen running from this coil to the doubler plate coil, L_{10}, at the lower right. The oscillator indurtance, L_{9}, is at the upper right corner.

Two mothods of antema coupling are shown in the schematic. Fig. (16-10, but the constructor need install only the one that is suited to the type of transmission line he intends to use to feed his antenna system. If coax is used, connection is male directly to the r.f. amplifier grid eoil, L_{2}. This same type of connection may be used with a batun for balanered lines, or the coupling winding, L_{1}, may be added. In some instances it may be desirable to connest a trimmer between J_{1} and L_{2}, as shown in the 220 - Me. converter, if spurious signals are a problem

Fig. 16.9-Bottont view of the 511. Vr. converler. the r.f. amplifier socket, divided liv a shield partition. is at the left. Crs:tal oscillator and multiplier components are at the right, with the mixer in the mid. dle.

Fig. 16.10 - Schematic diagram of the 50-Me, cryatal-controlled converter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-\mathbf{2 0}-\mu \mu \mathrm{f}$. min. variable (Johnson 20 2111). $\mathrm{C}_{4}-50-\mu \mu \mathrm{f}$. min. pader (Hammarlund IIAlP(50).
 $\mathrm{I}_{1}-3$ turns fine ins. nire wound over cold end of lia. $1.2, \mathrm{~L}_{4}-9$ turns No. 20 tinned, $1 / 2$-ineh diam., $9 / 16$ inch Iong (B \& W Viniduetor No. 3013).
I. 3 - $10 \frac{1}{2}$ turns similar to L_{2}. These reils are mounted in line with their wold ends $1 / 8$ ineh apart.
L5 - No. 28 enamcled wire close-wound one inch on $3 / 8$-inch slug-tuned form (National XR-9)). Lacquer and dry hefore winding I.6. Wind on upper portion of form.
Adjustment of the converter is vary simple. First the oseillator and multiplier are tuned up, with the r.f. and mixer tubes out of their sorkets. or with their plate voltage removed. Proper adjustment of the overtone oscillator follows prattiee outlined in the introductory portion of (hapter Seventeen, and the doubler portion need only be resonated for maximum output initially. This (:an be checked with a G(l)ma, pilot lamp connected across a one-turn loop coupled to the cold end of L_{10}. The frequency of the output should be checked to be sure that the right overtone and harmonie are being used, and the oseillator tested to see that it is controlled by the crystill.

Now a signal source will be helpful. This can be a signal generator, an amateur signal, or the harmonic of a receiver or transmitter oscillator of known frequency, If the signal is derived locally it should be possible to hear it with only the mixer and oscillator-multipher stages running, and with no pick-up antenna. If a weak signal is used it may be necessary to put a temporary coupling winding (similar to L_{1}) on the mixer grid coil, L_{4}. Peak this eircuit and the slug in the mixer plate circuit for maximum response. The plate voltage should be removed from the r.f. stage during this period, but the tube should be left in the socket with the heater voltage on.

Next feed the signal into the r.f. stage, by either of the coupling methods shown, and peak L_{2} and L_{3} for maximum response. There should be a considerable rise in noise as the adjustments
$L_{8}-10$ turns same wound over cold end of L_{5}.
$\mathrm{L}_{7}, \mathrm{~L} 8$ - Leop of No. 22 phameled wire inserted in cold ends of L_{4} and L_{10}. connerted ly link of sam. material. Fasten in plate with cement.
$L_{0}-13$ turns ${ }^{2} 0.20$ tinned, $5 / 8$-inch diam., $3 / 4$ inelt long. tapped at $31 / 2$ turns from erystal end (B X W No. 300).
$\mathrm{L}_{10}-8$ turns similar tor L_{2}.
J_{1} - Coaxial fitting.
J_{2} - Crystal socket for antenna terminal.

are made, so the noise level ean be used as an indieation of resonanere in the absene of a test signal.

The ronverter is now realy for final aljustment. for best sigmal-to-noise ratio and uniform response arross the band. The first can best be done with a moise generator, though a test signal can be used. Noise ligure will be afferted prithripally by the tuning of the first stage, and by the adjustment of the antemat roupling. Wateh for improvements in the margin of signal over noise. rather than maximum gain, as these two chararteristies may not orcur eoincidentally. The coupling between L_{3} and L_{4} afferts the passhand of the system and the tuming of these cireuits and the slug in the mixer plate winding con be statsgered to provide uniform response afross the band. Peaking of the imput circuit may be neresssary as the recejver is tuned aroross the entire band, though a setting ram be made for the middle of the range most used and this will hold for at least a mogaryele either way: Receiver noise can be used as a cherk on the uniformity of response, in the absence of signals.

The amount of injection from the multiphier should be set at the least that will provide satisfactory performance. This will not be at all critical, but more injection than needed will increase the tendency to spurious response. It is controlled by the size and position of the coupling loops, L_{7} and L_{8}. In the original model they are about twothirds the diameter of the windings in which they

Fig. 16.11 - The $1+1$. Mc. converter is separated into two parts hy a shield partition. At the sop are the ref. an! mixer stakes, with the oscillator and multiplier portion below the shicld.
are inserted. The loop can the made small enough to slip, through between the strips of polystyrene on the Miniductor, and then spread to give the desired coupling. Cement the loops in place when this is achieved.

THE 144-MC, CONVERTER

The 2-meter eonverter is shown in Pigs. I6-1I and 16-12. From the photograph it may be seen

that the r.f. and mixer components are separated from the oscillator-multiplier chain by a shield partition. The r.f. portion is in the upper hatf of the pieture. Use of small plastic trimmers for the tuned circuits saves enough space so that the additional tule is handled without crowding.

The r.f. eireuit is the simplified cascode, using any of the several dual triodes designed for this application. Double-tuned circuits in the r.f. plate and mixer grid provide bandpass response

Fig. 16-12 - Schematic diagram and parts information for the 1H.Vc, converter,
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3,3} \mathrm{C}_{55}, \mathrm{C}_{8}-\mathrm{l}$ - to $8-\mu \mu \mathrm{f}$. plastic trimmer (Erie 832.10),
(4 - $50-\mu \mu \mathrm{f}$. min. trimmer (Ilammarlund MAPC.50).
L. -5 turns \o. 20 tinned, $1 / 4$-inch diam. \djust spacing for neutralizing: see text.
$I_{1}-6$ turns No. 20 timed, $1 / 4$-inch diam,, turns spaced diam. of wire. 'lap at $21 / 2$ turns.
$\mathrm{I}_{12}-4$ turns V . 20 enam. $3 / 4$-inch diam., $3 / 8$ inch long.
$\mathrm{L}_{3}-3$ turns, No, 20 enam., $3 / 8$-inch diam, $5 / 16$ inch long. I_{2} and L_{3} are in line, with their cold ends $1 / 8$ inch apart.
L4-No, 28 enam, close wound 1 inch on $3 / 8$-inch slugtuned form (National XR-91). Laequer and dry before winding L_{5}. Wind on upper pertion of forn.
$\mathrm{I}_{5}-10$ turns, same, wound over cold end of L_{4}.
La- 12 turns Vo. 20 tinned, spaced diam, of wire, $5 / 8-$ inch diam. Tap at $31 / 2$ turns.
L_{7} - 11 turns Vo. 20 enam., $3 / 8$-inch diam., $8 / 4$ inch long.
$\mathrm{L}_{48}-8$ turns like $L_{7}, 5 / 8$ inch long. L_{7} and L_{8} are in line with their cold ends $3 / 6$ inch apart.
L.9 - 4 turns like $L_{7,}, \frac{3}{8}$ inch long.

LAO, $_{1}$ L 11 - 1 turn insulated wire at earh end, linking L_{3} with I_{9}.
J_{1} - Coavial fitting.
J_{2} - 4 -pin male chassis fitting (Jones P-30:-AB).
$\mathrm{RFC}_{1}, \mathrm{RFC} 2$ - Bifilar-wound r.f. chokes. Twist two pieces of No. 26 enameled wire together and wind 15 turns on $1 / 4$-inch diameter.
and help to attenuate unwanted signals on other frequencies. The oscillator-multiplier circuit is similar to the 50-Mc, converter, exrept that the second half of the $6 J 6$ is a tripler. This is coupled through another pair of double-tuned circuits to an additional doubler stage.

The order of frequency multiplication can be altered to take care of local interference conditions. Should it turn out that unwanted sigmals are brought in as a result of frequeneies appearing in the multiplier chain, the second stage ran be made a doubler and the pentode a tripler. The use of link coupling, and the isolation afforded by the shield, should reduce spurious responses to negligible proportions in most locations, however.

The first steps in adjustment of the $14+\mathrm{Mc}$. converter are similar to those outlined for the 50-Mc. model. The only additional work required is the neutralization of the 6BQ ${ }^{7}$ stage. This is done by adjusting the spacing of the turns in L_{N} for lowest noise figure, as indicated with a nowe generator, or by best signal-to-noise ratio on a test signal. The inductance is not extremely eritical, and it may be set somewhat on the lowinductance side of the largest value that can lo used without oscillation developing in the r.f. stage.

Other than the neutralization, only the tuming of the input circuit will affect the noise figure materially. This is also best done with a noise generator. It will be found that best results will be obtained with $L_{1} C_{1}$ resonated somewhat on the low-frequency side of the point that produres maximum gain. The tap on L_{1} should be ret higher on the eoil than the point that gives maximum signal response. The objective, as in the other adjustments outlined above, is best signal-to-noise ratio, rather than maximum gain.

Uniform response arross the band can be attained by stager-tuning the r.f. plate, mixer grid and mixer plate circuits. Injection roupling should be set as low as will deliver optimum performance. This can be controlled by the position
of the coupling loops, L_{10} and L_{11}, or by varying the output of the pentode stage by raising or lowering the value of the screen dropping resistor.

- THE 220-MC. CONVERTER

Circuitry and layout for the 220-Mc, converter, Figs. 16-1:3 and $16-14$, are very similar to the 1.4-Mc. model, except that an additional stage is used following the casoode, and an additional shied divides the socket of this stage. This helps to make up for the somewhat lower gain of the caseode at the higher frequener, and it improves the rejection of unwanted signals considerably. The latter eondition has been found to be troublesome in 22()-Mc. work, particularly in areas where TV and f.m. broadeasting stations are in opraition.

No tuning capbuitors are used in the r.f. circuits, the coils being tumed to the desired frequency by adjusting the turn spacing until they resonate properly with the tube capacitances that appear aross them. I variation on the doubletuned cireuit is used in which a center-tapped eoil serves ats both grid and plate indurtance. This type of cirruit is well alapted to use at frequencies where tube rapacitance beromes a limiting factor in the performance of r.f. amplitiors.

A different form of i.f. output coupling is shown in this eonverter, though it works indentically to the method used in the othor models. Note that the mixer plate coil is lowded by a folotohm resistance in this retse. The i.f. must cover from 7 to 12 Mr. for the 220-Mr. band, an a broader response is required. The value of this resistane can be altered ta attain the desired degree of uniformity, though fower values than the one shown will result in lower over-all gain.

The taning capacitor in the ingut cirenit tanes out the reactance of the line to the antenna. It may not be meensany in some installations, but it is likely to be helpful in reducing spurious responses. The same technique may also be applied

Fig. 16.13 - 'Ilıe 220-Mc. crystal-controlled converter. Vote that two shields are used one separating the injection and r.f. chains, the other dividing the sochet for the 6:AK.5 r.f. stage R.f. components occupy the lower half of the as. semilly.

Fig. 16-1.1 - Schematie diagram and parts information for the $2 \underline{2} 0$. Vle. converter.
$\mathrm{C}_{1}-50 \cdot \mu \mu \mathrm{f}$. miniature variable (IIammarlund NIIC. 50).
$\mathrm{C}_{2}-\mathrm{B}-\mu \mu$ f. pamict trimmer (Viria 532-10).

($:_{1}$ - $3-30-\mu \mu \mathrm{C}$, mira trimmer.
I_{-1} - 3 turns V_{1}. 20 tinned, $1 / 4$-inch diam., $1 / 4$ inch long, center tapped.
$L_{\mathrm{N}}-5$ turns Vo. $^{20} 20$ tinnol, $1 / 4$-inels diam. Adjust spacing for mentralization: sere text.
I.2, l.3-7turns V., ed timud, spared 1 diam., $1 / 4$-inch tiam., center-taperel.
I_{4} - \o. 28 enam. wound ont inch on $3 / 8-\mathrm{inch}$ slugthmed form (\ational \R-9|).
to advantage in the other converters, when spurious signats are bothersome.

Bdjustment procedure is similar to that outlimed for the $11+$ - Me, molel, exerept that the spaceing of the burns in the r.l. coils must be aljusted, rather than tuning them by capacitors. As in the 114-Xle. converter, the orter of frequeney maltiplication can he altered to take care of any extreme local interierence problems resulting from near-hy TV, f.m. or other high-powered stations that may ride through as spurious responses. The oscillator can be operated on its fifth overtone instead of the third, making the second and third stiges operate as doubler and tripler, or viee versa. Fifth-overtone operation of the oscillator will reguire more care in adjustment of feedhack than is the case with the third.

The coupling between L_{8} and L_{43} will be a factor in holding down spurious responses. It should be set at the lowest value that will allow satisfactory performance, ly altering the position of the coupling loops, L_{9} and L_{10}, or ber varying the vatue of the sereen-dropping resistor in the last fre-quency-multiplier stage.

If a noise genorator is available, and care is used in making the adjustments, it should be possible to achieve noise figures under 6 dt), for the $220-\mathrm{Mc}$. converter and 5 dt , for the 111 - and 50-Mc. models.
L_{5} - I2 turns No. 20 timed, spaced one diam., $5 / 8$-inch diam., tapped at $31 / 2$ turns (B \& 4 No. 310π).
$\mathrm{L}_{6}-4$ turns $\mathrm{Non}_{0} \cdot \frac{20}{}$ tinned, $1 / 2$-inch diam., $1 / 4$ inch long (13 \& W Viniductor No. 3003).
Ly - 5 turns lihe L. . . n and L_{7} are in line with their cold ends spaced $1 / 8$ inch.
L.s - $21 / 2$ turns No. 20 enam., $1 / 4$ inch long.
$L_{9}, L_{10}-2$ turns insulated wire between turns of L_{x} and L_{3}, connected ly link of same material.
J_{1} - Coaxial fitting.
$\mathrm{J}_{2}-$ Male 4 -prong chassis fitting (Jones P-304-AB).

- V.h.F. RECEIVING BALUNS

As pointed out in the preceding converter doseriptions, coaxial antenna input circuits are preferable in v.h.f. reecivers where single-ended cireuitry is employed. Where long transmission lines must be used, however, the losses in coaxial line discourage its use in feeding the antenna system. Particularly on 144 Mc. and higher, many amateurs prefer close-spaced open-wire lines for runs of 50 feet or more between the operating position and the antenna.
The advantages of coaxial input coupling and the low losses of open-wire balanced lines can both be retained if some means of coupling between the balanced line and the unbalanced receiver input eircuit is provided. Such a device, usually called a "balun," is shown in Fig. 13-2:31). V.h.f. receiver baluns are usually made of small coaxial line such as $\mathrm{R}(\mathrm{i}-59 / \mathrm{U}$, and installed at the converter input terminal. The propagation factor of the line should be taken into aceount, making the actual length of the folded portion (iā per cent of a half-wave. The straight portion may be any convenient length, though it is usually a wave length or less.
A 3-band balun for v.h.f. receiving use may also be made by using the coils from a so-called "elevator transformer" for this purpose that can

Fig. 16-15 - Bottom view of the i.f. and nower supply unit with bot tom cover removed. Power components are at the left. A smaller chassis may be usped if less than the three eonverters are to lie huilt.
be obtained from some TV receiver parts distributors. Such a batun would consist of two pairs of coils, conneeted in parallel at one end and in series at the other. The parallel end is wired to at coaxial connector and the series end to a crestal socket or a pair of binding posts. The assembly should be housed in a copper or aluminum box that may be as small as $1 \times 11 / 2 \times 21 / 2$ inches.

Like the coaxial-line balun, this converts from balaneed to unbalaned termination, and provides a 4 -to- 1 impedance transformation in the process. The coils are designed for use across the v.h.f. TV range, 54 to 216 Mc ., so they will serve well for all three amateur v.h.f. bands, $50,1+1$ and 220 Mc. See Fig. 1:3-2 4 for comnertions.

THE I.F. AMPLIFIER AND POWER SUPPLY

The i.f. amplifier (Figs. 16-15 and 16-16) serves two useful purposes. It builds up the gain, for receivers that may be poor performers at 7 No. N, and it provides a means of controlling the over-all gain of the system without disturbing the gatin or S-meter controls on the receiver itself. The repeiver may thus be operated exately ins it would be on 7 İe, and the gain of the converter adjusted so that v.h.f. signals will be received
similarly to those on lower frequency bands.
It is obvious from the photographs that the i.f. and power supply unit could have bern built in a smaller space. If the builder is considering only one or two of the converters he may wish to do this, but where all three are used the arrangement shown is a convenient one. The i.f. chatsis is a standard sizo, $3 \times 4 \times 17$-inch aluminum, to which a bot tom plate is added for shielding. Rubber feet can be attached to the two ends of the base, and one on each of the converters at the rear, to prevent the eombination from maring a receiver top.
The heater voltage, the plate voltage and the i.f. imput lead are all ramed on shieded wire to a t-pin plug. This is connerted tos whichever converter is to be used at the moment, and no other changes other than plugging the antenma into the proper jack are required in changing from one v.h.f. band to another. The shielded wires in the rable are bonded together several times and then wrapped with plastie tape. The eonaial fitting for the romertion to the recosver is at the extreme right on the rear wall of the i.f. chansis.

The only adjustment required in the i.f. unit is to set the coil slugs (on moise or signal) so that the response will be as nearly flat as possible aeross 7 to 11 Mc .

Fig. 16.16 - Schenatic diagram and parts information for the i.f. and power supply unit used with the crystalcontrolled converters.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-$ No. 28 enameled wire rlose wound 1 inch on $3 / 8$-inch slug-tumed form (Xational XR-91). laçuer and dry before adding coupling wind. ing. W ind on upper portion of form.
$1,3, L_{4}-10$ turns same wound over cold ends of L_{1} and l. 2.
J_{1}-Coaxial fitting.
P_{1} - Female 4-pin on end of cable (Jones S-304-CCT).

A One-Tube Converter for 21, 28, 50, 144 or 220 Mc.

The erystal-controlled converters described on the previous pages are typical of the type of equipment that must be used in v.h.f. reception if optimum results are to be experted. It is possible to start in with simpler deviers, however, and still do an aceptable job. The one-tube converter shown in Figs. 16-17, 16-18 and 16-19 is designed for the begimer or casual v.h.f. operator who wants the simplest thing that will give usable reception.

Provision is made for any amateur band from 21 to 220 Mr ., but the converter should not be thought of as a multiband deviee in the usual sense. To keep its construetion as simple as possible, and to make it work satisfactorily on 144 or 220 Mr ., the coils are not made plug-in.
volts d.c. at about 12 ma . will be required. A simple selenium-rectifier supply can be built for the converter, as shown, if the necessary power camnot be taken from the receiver.

Construction

The converter was designed with an absolute minimum of parts. Note that it is shown without a panel, for instance. One can be added if the builder wishes, but it is hy no means a neerssity. A standard $5 \times 7 \times 2$-inch aluminum chassis (premier A(CH-426) is used, and no brackets or other metal parts need be made. Fig. 16-20 shows the locations of all holes. The frontview photograph shows the tuning capacitor, C_{6}, on top of the chassis with the trimmer $\left(C_{5}\right)$ and

Fif. 16.17- One-tube eomserter. with IHA-V10. arillatur tumed cirenit in plare. Selenium rectifier power sulply, shown ilnged onto rear of the converter, may be omitted it power is taken from the receiser.

To change from one hand to another the coils must be unsoldered and another pair installed in their place. The 21- and 28-Mc, bands are covcred with a single pair of coils by resetting the associated trimmer eapacitors, but separate sets of coils arre needed for 50,144 or 220 Ne.

A single $6 J 6$ tube serves as mixer and oscillator. The input cirenit, $L_{1} C_{1}$, tunes to the signal frequency. linergy from the oseillator, tuned by $L_{2} C_{5} C_{6}$, beats with the signal to produce the intermediate frequeney, approximately 7 Me., in the plate circuit of the mixer stage. The coil L_{3} is tuned to this frequeney, and the output is fed into at communications receiver through L_{4} and a coaxial cable attached to J_{2}. The oscillator tunes 7 Me. lower than the signal frequency.

The ronverter power can be taken from the communications receiver in most cases. Receivers usually have an atecessory socket on the rear wall for this purpose. Consult the receiver instruction book for the type of plug and connections needed. An a.c. voltage of 6.3 at 0.45 amp . and 75 to 150

144-Mc. coil soldered in place. The feed-through bushing near the edge of the chassis serves as a tie point for R_{3} and holds the coil rigidly in position. Immediately behind C_{6} the 6 d6 and the tuning adjustment for L_{3} are visible. The dial is a National type K. Note that a large knob (National type HRT-M) is substituted for the one that comes with the dial to smooth out the tuning. The dial index is mounted below on the front wall of the chassis instead of above, for obvious reasons. The 0 to 100 seale may be used for logging, or a calibration may be drawn on stiff white paper and cemented to the dial surface. The small knob to the left is the mixer grid cirenit trimmer, C_{1}.

A power supply is shown plugged into the biuk of the converter. If the power plugs are positioned so that this is possible, it will save making up a connecting cable. The supply is built in a $4 \times 2 \times 2$-inch utility cabinet. The layout is not important, and it can be built in some other form if desired.

Fig. 16.18-Schematic diagram and parts information for the simple converter.
C_{1} - $\mathbf{1 5}-\mu \mu \mathrm{f}$. variable (I ammarlund $\mathrm{MF}-15$).
$\mathrm{C}_{2}, \mathrm{C}_{8}-100-\mu \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{3}-10-\mu \mu \mathrm{f}$. ceramic (connect close to plate pin).
$\mathrm{C}_{4}-47$ - $\mu \mathrm{\mu}$. ceramic.
$\mathrm{C}_{5}-45-\mu \mu \mathrm{f}$. ceramic trimmer (Wallory $\mathrm{SI}^{\prime}-5.5 \%$: one for each band required).
$\mathrm{C}_{6}-$ Split-stator variable. about $12-\mu \mu$. per section (Hammarlund IFI)-15X with 2 rotor plates and 1 stator plate removed from cach section).
$\mathrm{C}_{8}-0.001-\mu \mu$. ceranic.
$\mathrm{C} 9, \mathrm{C} 10-16 \mu \mathrm{f}$. $2.50-\mathrm{v}$. electrolytic.
$\mathrm{h}_{1}-1$ meqohm $1 / 2$ watt.
$\mathrm{H}_{2}-10,000$ ohtms, $1 / 2$ watt.
R_{3} - 1000 ohtme, $1 / 2$ watt.
$\mathrm{R}_{4}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-3300$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-22$ ohms, $1 / 2$ watt.
L_{i} - 21, $28 \mathrm{Mc} .-16$ turns No. 20 tinned, $3 / 4$-inch diam., I inch long, tapped 4 turns from ground end. (B \& W Miniductor No. 3011.)
50 Mc . - 7 turns No. 20 tinned, $5 / 8$-inch diam., ${ }^{3}$ /h inch long, tapped 2 turas from ground end. (13 \& U $3(M)$.)
144 Mc. -2 turns $1 / 2$-inch diam. No. 12 tinned wire, spaced $1 / 4$ inch, tapped $3 / 4$ turn from ground end.
$20 \mathrm{Mc}-1$ turn $1 / 4$-inch diam. No. 12 tinnel wire tapmed near center.
 as in photo.
50) Mr. - Turns B \& W 3M07 c.t. Add (cs as in photo.
111 Ve.- Hairpin limp of No. 12 tinned wire. 1 inchlong, 1 inch wide, e.t. Connect Cs to C ib terminals.
220 Me. - Mairpin lowp of No. I2 tinned wire. $3 / 4$ inch long, $3 / 6$ ineh wide with $3 / 8$-ineh learls: c.t. Connert (os $5 / 8$ ineh from raparitor terminals; sec photo.
 (Aatimal XR-91).
L_{4} - 4 turns No. 21 d.c.e. or eramed at moter end of t_{3}. $\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Pheno jark= (Cinch 8113 or two Cineh 811 single jarka).
J_{3} - 4 -contact male chassis fitting (Amphenol 861RC1'1).
J_{4} - 4 -eontart female ehassis fisting (Amphenel z8RSi).
P' - Ilinevole line plas.
s_{1}-S.p.s.t. toggle swith.
(R_{1} - 20 -ma. sellonium rectifier (rederal $11 . \overline{9}$).
' l_{1} - Power transformer, 1.50 volts at 2.5 ma.; 6.3 volts at 0.3 amp. (Merit P'3046).

Fig. 16.19-13ottom view of the converter, showing the principal parts mambered as they appear on the selicmatio diagram.

Pig. 16.20 - Layont drawing of the converter chassis, showing size and lowation of all holes.

The various components visible in the bottom view are labeled for ease in identification. Wost of the smatl parts are grouped around the tube socket noar the center of the chassis. There is very little wiring to be done other than soldering in these resistors and rapacitors by their leads. Below the tube socket are the slug-tuned L_{33} and a two-terminal tie point supporting R_{4}. L_{3} is held in place by passing its leads through hol ss in the plastie rings supplied with the NR-91 coil form. L_{4} is wound around the by-passed end of L_{3} and is cemented or doped in place. Its leads are then twisteal and run over to the output connector on the back of the chassis. If the dual connertor shown is not available, two standard phono jacks can be substituted.

The mixer grid cireuit is visible above and to the left of the tube socket. C_{1} is mounted on the front wall of the chassis and L_{1} is soldered across its terminals. A short piece of eoax (RG-58/U or $\mathrm{IR}(\mathrm{i}-59 \mathrm{C})$ is run from the input connector to the grid cirevit. Here the braid is grounded to the rotor of C_{1} and the inner eonductor is tapped onto L_{1} in the proper place. Note the two $3 / 8$-inch holes drilled between the tube socket and the tuning caparitor. These are for the leads from (${ }_{4}$ and I'in I of the 6, 6, which pass through the chassis near the centers of the holes. The tule socket should be mounted as shown with Pin 1 adjacent to the large hole near the middle of the chassis.

The third photograph shows the coils for 15, 10,6 and $1 \frac{1}{4}$ meters, the 2 -meter coils heing on
the converter when the pietures were made. The oseillator coils with their trimmers (C_{5}^{\prime}) and decoupling resistors $\left(R_{3}\right)$ are in the back row, and the mixer grid coils are in the front row. It is not necessary to use separate trimmers for each oscillator coil, but doing this eliminates the need for readjustment when changing eoils. The use of separate decoupling resistors does away with repeated soldering to the coil center tap. The coils for 50 Mc. and below are made of sections of $13 \& W$ Miniductor. It will be easier to solder to these if the turns earh side of the desired one are bent toward the center of the coil. The higher frequency eoils are made from No. It wire as described in the parts list.
The oscillator eapacitor, C_{6}, was modified slightly to secure more bandspread on the higher ranges. The end stator plate and the last two rotor plates of earh section should be removed by twisting carefully with long-nosed pliers. This leaves four stator and three rotor plates in each section. If the converter is to be used on 144 or 220 Me . only, the handspread may be increased by removing more plates, but it is advisable to leave them on until the proper frequencies are found.

Adjustment

The mixer has the best noise figure with a plate voltage of about 75 , so R_{4} should be made a suitable value to provide this drop. If a different supply voltage is used it may be advisable to change the value of R_{4} to reduce the mixer voltage to atout 75 . This is not eritical, though, and anything 20 volts or so either side is perfectly satisfuctory. liven a 90 -volt " 13 " battery will do for a plate supply.
First apply filament voltage and see that the GJ6 heater lights up. Now apply plate voltage. Cherk to see that the oscillator is working. If a milliammeter is available (10 to 100 ma . full scale) connert it in series with R_{3} to measure oscillator plate current. This should be about 6 ma. and should rise when the oscillator coil, L_{2}, is touched with a pencil lead. If it is much higher, and does not change, the tube is not oscillating. Recheck the oscillator wiring for a mistake, or try another 6 J 6.
The frequency of the oseillator may be cheeked with a calibrated receiver, if one is available, or use a grid-dip meter or an absorption-type wavemeter with fairly aceurate calibration. The grid-dip meter will show output when coupled to L_{2} and tuned to the frequency of the oseillation. Tuning an absorption wave meter coupled to L_{2} to the oscillator frequency will canse a flieker in oscillator plate current. At 220 Mc . it is also possible to use a Lecher wire system to measure the frequency as outlined in the measurements chapter.
The oscillator should be adjusted (by C_{5}) to tune below the desired signal frequency by the amount chosen as the i.f. For the 21-Mc. band the oscillator tunes at least 14 to 14.45 Mc . For 28 Me , it should eover at least 21 to 22.7 Mc . For the 6-meter band it must tune 43 to 47 Mc .,
and so on. The trimmer capacitor, C_{5}, and, if necessary, the coil, L_{2}, aro adjusted to set the oscillator to the proper range. Actually roverage will be somewhat more than the width of the band, and the desired range should be centered on the dial by varying C_{5}. The roverage mentioned above is obtained by rotating C_{6}, of course.

Now connect the converter output to the rereiver antenna terminals. The ronverter is normally operated on top of the communications receiver, or elose alongside it, in a convenient operating position. A coaxial cable is made up with a male phono-type coaxial fitting on one end, with enough caible to reard from the converter to the receiver antemat terminals. Most receivers have a three-terminal antenna comertion block. One of these terminals is grounded. The middle one and the one at the opposite end from the grounded one are normally used for doublet antemat romections. Connect the middle one and the grounded terminal togother, and make this combination the point of comedtion for the outer eonductor of the coavial cable. The inner condurtor goes on the remaining antennat terminal.

The mixer plate coil, L_{3}, maty be tumed to about 7 Mc . with a grid-dip moter, or it can be peaked on noise with the recoiver set at this frequency and the converter rumning. The grid circuit, $L_{1} C_{1}$, maty be checked with a grid-dip meter. It may also be peaked for maximum response to a signal generator connected to the input, or it ran be peaked on noise or signals with the antenna comered to the converter. Some improvement on wak signals may he possible through adjustment of the position of the tap on the gride roil, and the mixer plate voltage should be chereked to see that it is somewhere near 75 volts. On the higher bands tuning C_{1} will shift the oscillator frequency, so that retuning the signal as this adjustment is made: may be required.

The exact frequency used for the i.f. is not important, so it can be set to suit two requirements. First, it should not be at sueh a spot that a strong local 7 -Mc. signal will ride through.

Should interference develop at any time on the intermediate frequener, the setting of the main receiver dial mary be changed slightly to clear the trouble. It is also usually easior to shift the i.f. slightly than to reset the oscillator, in order to make the dial calibration eome out right. With a signal of known frequence avaibable, the converter dial cam be sot for that spot and the main receiver retuned to make the signal come in at the desired spot.

The 15-, 11-, and $10-$ meter bunds are rovered he one pair of coils. It is neressary, of course, to reset the oscillator trimmer, C_{5}, for cach band to the proper range. An alternative would be to use sepanate coils and trimmers for each band ats is done on the higher ranges. Bandspread obtained with the original converter using it $\overline{-}$-Mc. i.f. wats as follows: 21.0-21.45 Me. - (0.5 divisions: 26.9627.2:3 Me. - 12 divisions; 28.0-2!.7 Mc. - 67 divisions: 50-54 Mr. - 7. divisions; 14t-148 Mr. - 65 divisions; and 220-225 Mo. - 30 divisions. More bandspread can be ohtained on the higher ranges by removing more plates from the tuning capacitor, but this will not permit full coverage on the lower bands.

Performance

On 21 and 28 Mc., at least, this simple converter will usually provide atl the sensitivity that can be used, as external noise is normatly the limiting factor in weak-signal reception on these bands. At $\mathbf{5 0} \mathbf{0}$ Me. and higher the norise generated within the converter tends to limit the overabll sensitivity. Thus the addition of a low-monser.f. amplifier may make a considerable improvement in reception in the v.h.f. ranges.

A rascode-type preamplifier, such ats that shown in Fig. 16-22, is ideal for $114-\mathrm{Mc}$. use and the same basio eirenit maty be used for ofo and 220 Me : amplifiers as well.

The greatest difliculty with tumable converters is instability in the oscillator. For most v.h.f. operators the only satisfactory solution to this problem is the use of crastabeontrolled converters such as those shown elsewhere in this chapter.
(Originably described in October, 1955, QST', page 27.)

Fig, 16.21 - Coils for the nne-tube converter. 'Top row are the orcillator coils, with trimmers (C.5) at. tached. Corresponding mixer coila below. I.eft to right sets for 21 to 28 Me., 30 Me. and 220 Me. The 144-Ne coils appear in the converter photographs.

Low-Noise Preamplifier for 144 Mc.

The triode preamplifier shown in Figs, 16-22 to 16-2t will improve the sensitivity and signal-tonoise ratio of receivers or converters for 144 Mc .

Fig. 16.22 - 'T'wo-meter preanplifier using two 6 \J4 tubes. Adjustments are (left to right) input tuning capacior, shog of noutralizing wimding, and the gate tuning eaparitor of the serond stage.
that are defieient in these respects. Two separate triode tubes are shown. Jut any of the dual triodes designed for v.h.f. amplifier sorviere may be used similarly. The circuit may be adapted to use on

Fig. 16.23 - Schematic diakram and parts list for the low-noise preamplifier.
Ch, C_{2} - Plastic trimmer, 1 to $8 \mu_{\mu} \mathrm{f}$. (Erie style 532-10).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C} ; \mathrm{f}$ - $\mathbf{0}, 001 \mathrm{f} \mu \mathrm{f}$. dish ceramic.
1_{1} - 68 , whme, $\frac{1}{2}$ wath, carbon.
$\mathrm{H}_{2}-0.4^{-}$megohm, $1 / 2$ watt.
R_{3} - $4=0$ ohme, $1 / 2$ watt, earhon.
1.1 - 1 turns \o. 16 timned. $1 / 4$-ineh diam., spared 1 diameter, tappere at $13 / 4$ turns from kround end.
1.2-4 turns No. 24 on $1 / 4$-inch slug-tuned form.
1.3-5 turns Xo. 18 enam.. $1 / 4$-inch diam.. spaced half diameter.
$1_{4}-2$ turns insulated nire wound over cold end of L_{3}.
J_{t} - Coaxial antenna fitting.
P_{1} - Coasial phag on calile of suitable length to reach converter input.
$11_{6} \mathrm{C}_{1}-22$ turns No. 22 enam., "后-inch diam., closewound.
$1 \mathrm{HCC}_{2}$, KFC. -18 turns each, No. 24 enam. $1 / 4-$ inch diam. 'I'wist wires together before winding. Coat turns with honsehold cement.

50 or 220 Mc., by suitable alteration of coil and capacitor values.

Pin connertions given on the schematie diagram, Fig. 16-23, are for the 6A.J4 or 6.1.IT4. Other tubes such as the $6.1 N 4$ and 417 A will work equally well, if pin connertions shown in the tube data section of this Hondbook are followed. Slightly different values of cathode bias resistor may be needed if tuhes other than the 6.154 are used.

The preamplifior is housed in a standard 3×4 $\times 5$-inch aluminum utility box. The components were mounted on a sheet of flashing eopper and the preliminary work of wiring was done with this plate as a chassis. The plate was later fastened to the inside of the top of the box. The parts could be mounted on the box diredtly, but they are more arcessible if the work is done as described alove.

Looking at the interior view, Fig. 16-24, we see the coax fitting. the first tabe socket and the input cirruit at the left. Between the tuhe sockets, at the center of the copper base plate, is the slugtuned neutralizing winding, L_{2}, A small copper shichd divides the serond socket, isolating the input and output circuits. This shield is not always needed, but it may be an aid to neutralization. At the far right are the output circuit and the bifilar-wound r.f. chokes for the heater circuit of the seeond stage. The tuning raparitors, C_{1} and C2. are plastic trimmers of a design that allows a saving in space and offers lower minimum capacitance and lead inductance than conventional flatplate trimmers.

The five grid pins of the 6.1.J4 may be strapped together or used individually, as layout requirements dictate. In this instance, lin 4 is used for

Fig. 16-24 - Interior view of the 14-Me. r.f. amplifier. A small shield across the second tube socket isolates the input and output circuits. The atmplifier is built on a copper plate, which is then fitted to the top of a standard aluminum utility box.
the hot end of L_{1}, with the trimmer, C_{1}, connected to Pin 3. In the second stage, I'ins 3 and 4 are tied to the grid side of R_{2}, and Pin 1 is by-passed by C4. See Aug., 1953, QST' for details.

Adjustment

A noise generator will make the adjustment of the amplifier easy, as it is then only necossary to peak the plate circuit (by C_{2}) for maximum gain, and then adjust the indurtance of L_{3} and the setting of C_{1} for lowest noise figure. It is possible to follow this routine using signals or a signal generator, but it is a more difficult process.

If a signal is to be used, peak the second plate circuit for maximum response first. Then tune the input cireuit for maximum also, if the amplifier does not oscillate. If it should oscillate, vary the setting of the slug in L_{2} to stop it, before attempting to peak any other adjustments. In adjusting
the input circuit, watch for best signal-to-noise ratio, now, rather than for maximum gain. This will show up somewhat on the high-rapacity side of the maximum-gain point, as the rotor of C_{1} is turned into the stator.

The position of the $t_{\text {ap }}$ on L_{1} can be adjusted in the same way. The optimum point will be higher on the coil than the point at which maximum gain is observed. If the amplifier is adjusted at 146 Mc . it should not be necessary to repeak it arross the entire band.

An amplifier of this sort should not be expected to produce a large improvement in reception when it is used ahead of a converter that already has a good triode front end, but installed ahead of a pentode amplifier, and particularly a converter having a band-switching r.f. circuit, it will help considerably in the reception of weak signals, loy increasing the margin of the signal over noise.

Receivers for 420 Mc .

For best signal-to-noise ratio, receivers for any frequency should have the highest degree of selectivity that can be used successfully at the frequency in question. With crystal control or its equivalent in stability accepted as standard practice on all hands up through 148 Mc., there is litthe point in using more bandwidth in receivers for these frequencies than is necessary for satisfar:tory voice reception, a maximum of about 10 ke . Such communication seleetivity is now being used successfully by most workers on 220 and 420 Mc., too, but it imposes several problems not encountered on lower bands.

First is the matter of oscillator instability in the converter. Even the best tunable oscillator at 420 Mc . suffers from vibration and hand-capacity effects sufficiently to make it difficult to hold the signal in a 10 -ke. i.f. band width.

Then, there are still some unstable transmitters being used in work on 220 and 420 Mc. It is out of the question to copy these on a selective receiver.

Last, searching a band 30 megacycles wide is excessively time-consuming when communica-tions-receiver selectivity is used in the i.f. system.

There is no single solution to these problems, but the best approach appears to be that of breaking up of the band into segments for different types of operation. This is being done by mutual agreement among $420-\mathrm{Mc}$. operators at present, as follows: 420 to 432 Me . - modulated oseillators and wide band f.m., 432 to 436 Mc. -crystal-controlled c.w., a.m. and narrow-band f.m.; 436 to $450-$ television.

The first segment can be covered with a superregenerative receiver, a superheterodyne having a wideband i.f. system, or a converter used ahead of an f.m. broadcast receiver. The high selectivity required for best use of the middle portion makes a crystal-controlled or otherwise highly stable converter and communications receiver eombination almost mandatory. Amateur TV is usually received with a converter ahead of a standard TV
receiver, tuned to some channel that is not in use locally.

Many of the tubes used on the v.h.f. bands are useless at 420 Mc ., and the performance of even the best u.h.f. tubes is down compared to lower bands. Only the lighthouse or pencil-triode tubes and a few of the miniatures are usable, and these require modifications of conventional circuit terhnique to produre satisfactory results.

Crystal diodes are often usert as mixers in 420Me. receivers, as in this frequency range they work nearly as well as vacuum tubes. The over-ail gain of a converter having a erystal mixer is alrout 10 (ll). lower than one using a tube, so this difference must be made up in the i.f. amplifier. The noise figure of a receiver having a erystal mixer and no r.f. stage includes the noise figure of the i.f. amplifier following the mixer, so best results require that the i.f. anplifier employ low-noise technicques diseussed earlier in this chapter. If the i.f. is 50 Me. or higher it is particularty important that a low-noise triode be used for the first i.f. stage.

Crystal diodes of the type used in radar mixers, such as the 1×21 series, are well suited to $420-\mathrm{Mc}$. mixer service, though care must be taken to avoid damage from transmitter r.f. energy. Other types of crystal diodes such as the 1×72 and CK7 710 will stand higher values of crystal current, and their use is recommended.

Few conventional vacuum tubes work well as mixers at 420 Me . and higher. The 6.56 is useful where a balanced input circuit is desired, as in Fig. 16-513. For single-ended circuitry the 6AM4 and $6.1 N 4$ are recommended. They may be used in grounded-grid or grounded-cathode circuits.

For high-selectivity coverage of the 432- to 436-Mc. segment of the band, a common practice is to use a crystal-controlled converter working into another converter for either the 50 - or 144 Mc. band, tuning the latter for the four-megacyele tuning range.

A 420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in Figs. 16-25 through $16-27$ is capable of a gain or more than 15 db . and its noise figure can be as low as 6 dt , with careful adjustment. It will make a large improvement in the sensitivity of any converter or receiver that has no r.f. stage, or one that is working poorly.
The design shown is for either the 6AJ4 or GAM4, but with suitable socket and pin-connection changes the 417 A and 6AN4 will work equally well. It is a grounded-grid amplifier with a half-wave line in the plate cirruit. The antenna is comected to the cathode of the tube through a coupling eapacitor. As the input impedance of the grounded-grid stage is low, nothing is gained by the use of a tuned circuit in the cathode lead. Output is taken off through a coupling loop at the point of lowest r.f. voltage along the line.

The amplifier is built in a frame of flashing copper that serves as the outer conductor of the tank rircuit. The whole assembly is 10 inches long and $11 / 4$ inches square, execpt for the bottom, which is about $13 / 4$ inches wide. Fdges are folded over with lips $1 / 4$ inch wide which slide into a bottom cover made from copper sheet $21 / 4$ by 10 inches in size, with its edges bent up, $1 / 4$ ineh wide on each side.

The plate circuit is made of $1 / 4$-inch copper tubing tuned by a copper-tab capacitor at the far end from the tube. Plate voltage is fed in at the point of minimum r.f. voltage, which in this

Fig. 16.26 - Schematic diagram of the $420-\mathrm{Mc}$. r.f. amplifier.
$\mathrm{C}_{1}-5(0)-\mu \mu \mathrm{f}$, ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-100() \cdot \mu \mu \mathrm{f}$. ceramic feed-through (Fric style 2.40.4).
$\mathrm{C}_{4}-$ Copper tabs, $7 / 8$-inch diam.; see text and photographs.
$h_{1}-150$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-470 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{L}_{1}-1 / 4-\mathrm{inch}$ copper tubing, $73 / 8$ inches long, tapped $23 / 8$ inches from plate end.
$L_{2}-L$ Loop of insulated wire adjacent to L_{1} for $3 / 4$ inch. $\mathrm{J}_{1}, \mathbf{J}_{2}$ - Coaxial fitting.
RFC1, RFC_{2}. RFC3- 9 turns No. 22, 3/8.inch diam., spaced one diam.
instance is about 5 inches from the open end. The antenna is connected to the cathode through a coupling rapacitor. The input impedance of the grounded-grid amplifier is so low that nothing is gained by using a tuned circuit at this point. The eathode and heater are maintained above ground potential by small air-wound r.f. chokes.

The tube socket is two inches in from the end of the trough, and is so oriented that its plate commetion, l'in 5 , is in the proper position to conmeet to the line with the shortest possible lead. A copper shielding fin is mounted across

Fig. 16.25 - A highly effective r.f. amplifier for $\mathbf{4 2 0} \mathbf{M c}$. The tank circuit is a half-wave line made of flashing copper. Coaxial fittings are for input and output connections. Ileater and plate voltages are brought in on feedthrough by-pass capacitors just visible on either side of the 6 AJ 4 tube.
the interior of the trough $21 / 8$ inches from the end, dividing the socket so that Pins $3,4,5$ and 6 are on the plate side of the partition.

Ninimum grid-lead inductance is important. This was insured by bending all the grid prongs down against the ceramic body of the socket, and then making the mounting hole just big enough to pass this part of the socket and the prongs. They were soldered to the wall of the trough.

Input and output connections are coaxial fittings mounted on the side wall of the trough. B-plus and heater voltage are brought into the assembly on feed-through capacitors mounted on the same side of the trough as the tube. Connection to the inner conductor of the line is made with a grid clip, so that the point of connection can be adjusted for optimum results.
The copper tubing is slotted at the plate end with a hack saw to a depth of about $1 / 4$ inch, and a strip, of flashing copper soldered into this slot to make the plate connection. A copper tah about the size of a one-cent piece is soldered to the other end of the tubing to provide the stationary plate of C4. The line is supported near the low-voltage point by a $1 / 4$-inch-thick block of polystyrene. This is centered at a point $51 / 4$ inches in from the tube end of the trough assembly. The hole for the 13 -plus feed-through is $41 / 4$ inches from the same end.

The movable plate of C_{4} is soldered to a screw running through a nut soldered to the upper

Fis. 16.27-13othom view of the 420-We. r.f. amplifier, with the slip-on cover removed. The inner (rmductor of the tank eireuit is held in place lyy a block of poly. atyrene. monded near the low. voltage point on the line. The pate-voltage ferdthrough and output empling lowp may he seron at the left of this support. Heater, sathode and antenna-rireuit ennponents are in a separate come. bartment at the thlue end of the asambly. The line is tuned at the oplosite end by a handmade eqper-tall capasitor.
surface of the trough at a point 3 inch in from the open end. If a fine-thread serew is available for this purpose it will make for a asier tuning. though at $6 / 32$ thread was used in this model. This made a wohbly contact, so a coil spring was installed between the top of the drough and the knols to kerep some tension on the adjusting serens.
Adjustment of the $\mathbf{4 2 0 - M}$. amplifier is made easior if a noise gemerator is used, though it is not as important as in the (ase amplifiers with tuned imput cirruits. If the amplifier is working properly there will be an appreriable rise in nowe as the plate circuit is tuned through resomanere, and it maty broak into oscillation if operated without load. When commerted to a following stare, with a reasomably-matehed antenna plugged into. J_{1}, the amplifier should not osciltate unless the coupling loop, L_{2}, is much too far from the imner conductor.

When the amplifier is operating stably and tuned to a test sigual (or to a peak of response to a noise gememator), the next step is to lowate the optimum pesition for ferding the plate voltage into the line. This may be done hy ruming a pencil lead sowly up and down the inner conductor, until a soot is found where touching the lead to the line has little or no effere on the operattion of the amplifier. The plate voltage elip should be placed at this point and the provess repeated, moving the elipslightly until it is at the minimumvoltage point precisely, This adjustment should be made at the midpoint of the tuning range over which the amplifier is to be used.

The position of the coupling loop should then be adjusted for best signal-to-moise ratio. This will probably turn out to be with the insulated wire lying aganst the inner conductor for a distance of about 3 to 1 inch, starting at the minimum-voltage point just located.

- A CRYSTAL-CONTROLLED CONVERTER FOR 432 MC.

The converter shown in Figs. 16-28 through l $6-31$ is designod to provide high sonsitivity and signal-to-noise ratio in reereption of signals in the 4:30- to $4.36-\mathrm{Me}$, range. It uses a grounded-grid r.f. amplifier stage similar to the one shown in Fig. 16-25, working into a rrystal-diode mixer.

The intermediate frefuenery, with the design eonstants giver, is in to 54 Mr., though lower frequencies could be used by suitable modifications of the injertion chain.

Crystal-controlled injeetion on 382 Me. is provided by two (iJdis operating as overtone oscillat-tor-tripler and tripler-doubler, respectively. Is only a small amount of r.f. is required at 382 Me.,

Fis. 16.28 - A crystal-controlled converter for 432 (1) 136 Me . R.f. and miver stages are in copper suli. assemblies at the right. (scillator, multiplier and i.f. amplifier are on tha beft side.
this line-up is not difficult to buid or adjust. An inexpensive 7 - Me. erystal is used. An i.f. pre amplifier stare follows the arretal mixer. This may or may not be needed, depending on the performane of the reeciver or converter that will serve as the tunable i.f. Low-noise amplifieation in the i.f. stage is a fartor in the over-all performance of the syistem, su use of the built-in i.f. stage is recommended.

Construction

The converter is built on a $7 \times 11 \times 2$-inch aluminum chassis, with the r.f. and miser portions in a copper subassembly that mounts on the top of the chassis, at the right side as seen in

Fig. 16-29-1nterior siesw of the r.f.amplifier and miver assemblios. 'The: r.f. eirutut is a half-wave line. 'Ihe shorter assembly is the guartur-wave line using a crystal dionlo mixer.

Fig. 16-28. The oscillator-tripler and triplerdoubler (6.Jos are at the left front, with the bibQ7a i.f. amplifier at the rear. The mixer line is the short portion of the eopper assembly, with the r.f. amplifier line at the right. In the bottom view, Fig. 16-29), the injection-chatin and i.f. amplifier components are visible.

Fig. $16-29$ is an interior view of the r,f. and mixer lines. These are made as two separate assemblies, joined by short length of copper tubing that is visible in the top view. Both tank cirruits are $1 \frac{1}{4}$ inches square, with $1 / 4$-inch eopper tubing imner conductors. They are mate from shorts of flashing eopper $41 / 4$ inches wide. The mixer eompartment is $5 \frac{1}{2}$ inehes long and the r.f. portion is 10 inches long.

The r.f. amplifier is similar structurally to the one described previonsly, exept for the method of coupling tretwern it and the erystal mixer. This is done with a grid elip on eath line and a ceranic compling capacitor. The lead from the cajacitor, inside the amplifier lines, is brought through a half-inch length of copper tuhing that is soldered into the walls of both lines. The lead is imsulated with spagheti sherving.

The B-plus feed to the r.f. stage should the at the point of minimum r.f. voltage, $17 / 8$ inches from the plate and of the eopper tubing. The coupling tap is one inch out from the 13 -plus feedpoint. The eoupling point on the mixer line is 1 ineh from the ground end. The erystal diote is inserted in at smatl hole in the mixer inner comducter, 1^{3} inches from the ground end. The imer conductors of the r.f. and mixer lines are
$7: 3 / 16$ and $\overline{3}$ inehes long, respectively. Nixer tuning is done with a small phastic trimmer, C_{10}, while the r.f. plate circuit is tuned with a handmade tab caparitor, C_{9}, similar to C_{4} in Fig. 16-26.

Note the r.f. bypass, ('s, on the outside of the mixer line. This is mate from a piere of copper $7 / 8$ ineh in diameter, insulated from the line housing by a piege of vinyl plastie. Two thicknesses of the maturial commonly used for small parts envelopes are satisfatery. The ervstal, which mut he any of the u.h.f. diodes, is slipped through at close-fit hole and is held in place by the wire soldered to its outside terminal.

Plate and filament voltages are fed into the assombly on foed-through hy-pass eaparitors, visible in the top-view photograph. Antenna connoection is made through a eosaxial fitting on the end of the r.f. assembly. A crystal-current jark, a 1 -pin power fitting and two i.f. connectors are on the end wall of the chassis. The seeond conxial connector was installed so that tests could be made with and without the i.f. amplifier stage.

Wiring in the power circuits is done with shielded wire, in ease that TVI might result from the oscillator or multiplier stages. The addition of a bottom plate and power-lead filtering would then be effertive. Injection and i.f. coupling leads are also made of shielded wire, this serving in place of coas line that is harder to handle.

The output of the injection chain is coupled into the miser line by means of a loop, L_{8}, that is not visible in the photographs. This loop is mounted on the copper base plate that is under

Fig. 16-30- Bottom viaw of the $432-$ Mr, converter. showing the ossillator, multiplier and i.f. amplifier circuits.

Fig. 16-31 - Wiring diagram and parts list for the 432-\ic. erystalcontralled converter. Values kiven are for an i.f. of $\mathbf{3 0}$ to i i Mre
C_{l} - $75-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAP' C^{2} 75).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \dot{C}_{4}-20-\mu \mu \mathrm{f}$. minialure trimmer (Johnson 20M11).
$\mathrm{C}_{5}-25-\mu_{\mu}$ f. miniature trimmer (Hammarlund $\mathrm{IA}^{\prime} \mathrm{C}_{\mathrm{C}}$. 25).
 Mr"-500).
Cs - Handmade copper-tab bypass: see text.
Cg - Handmade copper-tab variahle: sere tevt.
(io - 0.5- to $5-\mu \mu$ f. plastic trimmer (Frie style $532-08$ ()R5).
$L_{1}-131 / 2$ thrns Vo. 20 tinned, $3 / 8$-ineh diam., $7 / 8$ ineh long, tapped at $41 / 2$ turns ($B \times \mathbb{W}$ Miniduotor No. 300%).
$\mathrm{I}_{2}-5$ turns No. 20 tinned, $1 / 2$ inch diam., $3 / 8$ inch long (13 \& $\mid 1$ Viniductor Vo. 3003).
$\mathrm{I}_{3}-2 \frac{3}{4}$ turns similar to L_{2}.
1.4 - 2 turns No. 12 tinned, $1 / 4$-inch diam., $1 / 4$ inch long.
I.5-1 turn ins. wire between turns of $L_{\text {s }}$. May be inner conductor of shielded wire, with braill removed.
the mixer and r.f. assembly. Its size and proximity to the mixer imner conductor are not particularly eritical, as there is a surplus of injection under ordinary conditions of operation.

Adjustment

The first step in putting the converter into operation is to tune up the oseillator and multiplier stages. This process is similar to the adjustment of a transmitter and will not be detailed here. Cherk to sec that the proper fregucncies appear as indicated on the sehematic diagram. (only enough power at 382 Mc . is needed to develop, about 0.5 ma . of crystal current. Anything from 0.2 to 1.0 ma . is satisfactory. Adjustments should be made with no plate voltage on the r.f. stage,

Now connect the converter to a $50-\mathrm{Mc}$, receiver or converter and peak the i.f. amplifier
I_{6} - Half-wave line, $1 / 4$-ineh copper tuling, $73 / 16$ inches long.
I_{7} - Quarter-wave line, $1 / 4$-inch copper tuhing, 5 inchew long.
Ls - lanp of insulated wire 1 ineh fonk and $1 / 2$ inch high projeet ing through base plate on which line assemblies are momed. Way be made from inner conductor of shiplided wire, with hraid removed from last two ineloss.

L_{10} - 6 turns similar to L_{2}
Lh - 11 turns No. 22 enam. elose-womel on $3 / 8$-inch slug-tuned form (National X11-91).
$\mathrm{L}_{22}-1$ turns No. 28 silk or enamel wound over cold end of L_{11}.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting.
J_{3} - Closed-circuit jack.
$\mathrm{J}_{4}-4 \cdot$ - hin male chassis fitting.
RFC - 10 turns No. 22 tinned, $1 / 8$-inch diam. Space turns diam, of wire.
circuits at about 52 Me. on noise. Next apply plate voltage and feed a signal into the r.f. stage. Peak the r.f. and mixer capacitors for maximum response at about 434 Mr. These adjustments can be made on noise also, if the circuits wero close to resonance originally. If a noise generator is not available, the margin of signal over receiver noise that is obtained on a received sigmal is atso usable, if adjustments are made with care.

The points of comertion for the B -plus and the coupling taps on the r.f. and mixer lines are critical adjustments, but if the dimensions given above are followed earefully the points should be close to optimum. Adjustments can be made and cherked readily if the r.f.-mixer assembly is mounted in plare temporarily with a few selftapping serews. (Originally described in January, 1954, (QST, p. 24.)

V.H.F. Transmitters

Transmitter stability regulations for the joMe. band are the stme as for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Mc., but ineorporation of 144 Mc . and higher in the usual multiband transmitter is generally not feasible. lather, it is usually more satisfartory to combine 50 and 144 Mc., since the two bands are close to a third-harmonie relationship. At least the exciter portion of the transmitter may be made to cover the requirements for bot h these bands very readily.

Though no stability restrictions are imposed by law on operation at 144 Me. and higher amateur bands (other than that the entire (emission must be kept within the limits of the hand in question), experience has demonstrated the value of using crystal control or its equivalent in v.h.f. work. ('rystal-controlled transmitters and reecivers having the minimum band width meerssary for voier rommunieation make it pessible for hundreds of stations to operate without undue interference in a band that would appear arowded if occupied by a dozen or lass stations using broad-band receivers and unstable transmitters.

The use of narrow-band communications sustems also pays off in improved efficiency in both transmitter and receiver. It is this fuctor, perhaps more than the interference potentialities of the wide-band systems, which makes it dosirable to employ advanced terhniques at 220 and even 420 Me. Stabilized transmitters for these bands are not too difficult to build, and their use is highly recommended.

Choice of tubes suitable for this type of work is quite limited, but the advanced amateur who is
interested in making the most of the interesting possibilities afforded by this developing field will tre satisfied with nothing less. The 420 -Mc. band is much wider than our lower v.h.f. assignments, however, and interference is not likely to become a limiting firctor in this band for a long time to come, Thus it may be more important, in many localities, to get activity rolling with any sort of gear, leaving perfection in design to come along the the ned develops.

At 420 Mc. and in the higher amateur assignments most standard tubes cannot be used with any degree of success, and special tubes designed for these frequencies must be employed. Those types have extremely close electrode spacing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Me., but best performance is obtained with the "lighthouse," "perneil tube," or coaxial-electrode types built especially for u.h.f. applications, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission being permitted above 52.5 Mc . and narrow-band f.m. anywhere. Where suitable receivers are available to make best use of such emissions, either wide-band or narrow-band f.m. can provide effective v.h.f. communication Their use is particularly advantageous in congested areas where the freedom from interference to broadcast and television reception they enjoy may permit operation when an amplitude-modulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in ('hapter Six may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some lower frequency, usuatly around 6,8 or 12 Me ., multiplying to the operating frequency in one or more additional stages, or he can use a high initial frequency and thus reduce the number of multiplier stages required or eliminate them entirely. The first approach has the virtue of employing low-cost crystals, and it usually results in better stability, but high-frequency erystals may effect a considerable economy in power consumption, an important factor in portable or emer-gency-powered gear.

CRYSTAL OSCILLATORS

Crystal oscillator stages for v.h.f. transmitters may make use of any of the circuits shown in Chapter 6, when crystals up to 12 Mc. are employed, but cortain variations are helpful for higher frequencies. Crystals for 12 Mc . or higher are usually of the overtone variety. Their frequency of oscillation is an approximate multiple of some lower frequency, for which the crystal is aetually ground. Thus $24-\mathrm{Mc}$ c crystals commonly used in 144-Mc. work are 8-Mc. cuts, specially treated for overtone characteristics. Until recent yars such crystals were tricky in operation and subject to excessive drift if operated at high crystal current. The overtone crystals now being supplied are approximately as stable as those
designed for fundamental operation, and they are easy to handle in properly designed circuits.

Best results are usually obtained with overtone crystals if some regeneration is added. This makes for easy starting under load and greater output than would be obtainable in a simple triode or tetrode circuit. Regenerative circuits, with constants for 8 - or 24 -Me. crystals, are shown in Figs. 17-20 and 16-10. Triodes are shown, but the same arrangement may be used with tetrode or pentode tubes. The important point in cither case is the amount of regeneration, controlled by the number of turns below the tap in L_{g} of Fig. 16-10 or the capacitance of the smaller of the two bypasses in the $13+$ lead to the oscillator in Figs. $17-20$ and $17-2: 3$. There should be only enough feedback to assure casy ervstal starting and satisfactory operation under load; too much will result in random oseilation not under the control of the erystab.

Overtone operation is possible with standard fundamental-type erystals, using these circuits. Practically all will oscillate on their third overtones, and fifth and higher old overtones may be possible. Adjustment of regeneration is more critical, however, if the rrystals are not ground for overtone characteristics. It should also be noted that the frequency may not be an exact multiple of that marked on the erystal holder, so care should be used in working with erystals that are near a band edge.

Crystals ground for overtone service ran be made to oscillate on other overtones than the one marked on the holder, A 24 -Me erystal, actually an 8-Mc. cut, may be made to oscillate on 40 , 20 , 72 Me. or even higher odd multiples of its 8-Me. fundamental frequency. The circuits shown in the constructional material later in this chapter may be used in this way, but there are several circuits that have been developed especially for use with high-order overtones that may serve the purpose better. For a more complete discussion of overtone oscillator techniques, sece QST for April, 1951 , page 56 , and March, 1955 , page 16.

Crystals are now available for frequencies up to around 100 Mc . They are somewhat more expensive and more critical in operation than those for 30 MI . and lower, however, so they have not been used widely in amateur work, except where a saving in power is important. Cse of $50-\mathrm{Me}$. erystals is made oectionally a a means of preventing radiation of the harmonics of lower frequency crystals that might cause interference to television reception.

FREQUENCY MULTIPLIERS

Frequeney multiplying stages in a v.h.f. transmitter follow standard practiee, the principal precaution being arrangement of components for short lead length and minimum stray capacitance. This is particularly important at 14 Me . and higher. To reduce the possibility of radiation of oscillator harmonics on frequencies that might interfere with television or other services, the lowest satisfactory power level should be used.

Low-powered stages are casier to shield or filter, in case such steps become necessary.

Common practice in v.h.f. exciter design is to make the tuned circuits capable of operation over the whole range from 48 to 54 Mc ., so that the output stage can drive either an amplifier at 50 to 54 Mc. or a tripler from 48 to 144 Mc. Tripling is often done with push-pull stages, particularly when the ontput frequeney is to be $14 t$ Me. or higher. The output eapacitances of the tubes in such push-pull circuits are in series, permitting a better $L /($ ' ratio than is possible with single-ended circuits.

AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Mc ., but for 144 Me. and higher the tube types are limited to those having low input and output capacitances and compact physical structare. Leads must be as short as possible, and soldered connertions should be avoided in high-powered circuits, where heating may be great enough to reach the melting point of the solder used.

Phug-in coils and their associated sockets or jack bars aro gonerally unsatisfactory for use at 144 Me. and higher because of the stray inductance and capacitance they introduce. One way around this trouble is the dual tank eircuit shown in Figs. 17-24 and 17-25. Here the tank rircuit for 144 Me . is a conventional tuned line, with its shorting har made as a removable plug. When the stage is to be used on another band the short is removed and a coil is plugged into the jark. the line then serving as a pair of plate leads. Surh an arrangement will operate as afficiently on 111 Me. as if it were designed for that band alone, vet it cath be made to work properly on any lower band.

At 220 Mc . and higher it may be necossary to employ half-wave lines as tumed rireuits, as shown in lig. 17-29 ($/{ }_{1}$ in plave). Here the tuning rapacitance, instead of being connected directly in parallel with the outpot capaeitance of the tube, is at the far end of a half-wave line. Pate voltage is fed into the line near the middle, at the point where the r.f, voltage is lowest. The proper point can be located by first operating the stage with the voltage fed in near the middle of the line, and then touching a pencil point along the line to locate the spot where the least effect on the grid or plate current is noted. This chock should be made with the pencil in an insulating mount, if dangerous values of plate voltage are used.

Neutralization of trionle amplifiers for 50 and 144 Me, can follow standard practice, but the stray inductance and eapacitance introduced by the noutralizing circuits may be excessive for 220 Me , and higher. In such instances groundedgrid amplifiors may be used as shown in lig. 16-25, modified for transmitting use. Driving power is applied to the gathode circuit, with the grid arting as a shield. Grounded-grid amplifiers are stable, but they require high driving power. Some of the drive appears in the output, so both
the driver and amplifier must be modulated when amplitude modulation is used. For this reason the grounded-grid amplifier is used mainly for f.m. applications.

Tetrode and pentode amplifiers may operate without neutralization, but it is advisable to plan for it in the original layout. With such tubes as the 829 or 832 enough neutralizing caparitance can be obtained by rumning short lengths of stiff wire up through the chassis alongside the tube plates, crossing them over to the opposite gricl terminals below the chassis. Neutralization is adjusted by trimming or bending the wires.

Instability shows up frequently in tetrode amplifiers as the result of ineffective sereen bypassing, in which case conventional cross-over neutralization will aceomplish little or nothing. The solution lies in series-resonating the sorech circuits to ground, as shown in Fig. 17-25. The r.f. choke and caparitor values vary with frequency, so screen neutralization is essentially a one-band device.

FREQUENCY MODULATION

Though f.m. has not enjoved great popularity in v.h.f. operation, probably because of lack of suitable recrivers in most v.h.f. stations, its possihilities should not be overlooked, particularly for the higher bands. At 420 Me ., for instance, the efficioncy of most amplifiers is so low that it is often difficult to develop sufficient grid drive for proper a.m. service. With f.m, any amomet of grid drive may be used without affecting the audio quality of the signal, and the modulation process adds nothing to the plate dissipation. Thus considerably higher power can be run with f.m. than with a.m. before damage to the tubes develops or the signal is of poor quality.

Frequener modulation also simplifies transmitter design. The prineipal ohstacle to greater use of f.m. in v.h.f. work is the wide variation in selectivity of v.h.f. receivers, making it difficult for the operator to set up his deviation so that it will he satisfactory for all listeners.

TVI PREVENTION AND CURE

Interference to television reception is not ordinarily so serious a problem with v.h.f. gear as with erfuipment for lower amateur bands, where more harmonics of the operating frequeney fall within the television channels. The principal causes of TVI from v.h.f. transmitters are as follows:

1) Adjacent-channel interference in Channel 2 from 50 Me .
2) Fourth harmonic of 50 Mc . in Channels 11 , 12 or 13 , depending on the operating frequency.
3) Radiation of unused harmonies of the oscillator or multiplier stages. Wamples are 9 th harmonic of 6 Mc ., and 7 th harmonic of 8 Mc. in Channel 2: 10th harmonic of 8 Mc. in Channel 6; 7th harmonic of $25-\mathrm{Mc}$. stages in Channel 7 ; 4 th harmonic of 48-Mc. stages in

Channel 9 or 10; and many other combinations. This may include i.f. pickup, as in the cases of $24-\mathrm{Mc}$. interference in receivers having 21-Mc. i.f. systems, and 48-Mc. trouble in 45-Mc. i.f.'s.

1) Fundamental blocking effects, including modulation hars, usually found only in the lower channels, from $50-\mathrm{Mc}$. equipment.
2) Image interference in Channel 2 from 144 Me., in receivers having a 45 -Mc. i.f.
(i) Sound interference (picture clear in some cases) resulting from r.f. pickup by the audio rircuits of the TV receiver.

There are many other possibilities, and u.h.f. TV in general use will add to the list, but nearly all ran be corrected completely, and the rest can he substantially reduced.

Items 1, 4 and 5 are receiver faults, and nothing can be done at the transmitter to reduce them, except to lower the power or increase separation between the transmitting and TV antenna systems. Item 6 is also a receiver fault, but it can be alleviated at the transmitter by using f.m. or f.w. instead of a.m. phone.

Treatment of the various harmonie troubles, Items 2 and 3, follows the standard methods detailed elsewhere in this Handbook. It is suggested that the prospective builder of new v.h.f. equipment familiarize himself with TVI prevention techniques, and incorporate them in new eonstruction projects.

Use as high a starting frequency as possible, to reduce the number of harmonics that might cause trouble. Select crystal frequencies that do not have harmonirs in TV channels in use locally. Example: The 10th harmonic of 8-Mc. erystals used for operation in the low part of the $50-\mathrm{Mc}$. band falls in Channel 6, but 6-Mc. crystals for the same frequency range have no harmonic in that channel.

If TVI is a serious problem, use the lowest transmitter power that will do the job at hand. Much interesting work can be done on the v.h.f. bands with but a few watts output, particularly if a good antenna system is used.

Keep the power in the multiplier and driver stages at the lowest practical level, and use link coupling in preference to capacitive coupling, particularly in the later stages.

Plan for complete shielding and filtering of the r.f. sections of the transmitter, should these steps become necessary.

Use coaxial line to feed the antenna system, and locate the radiating portion as far as possible from TV receivers and antenna systems.

Some v.h.f. TV tuners have removable strips that can be replaced with double-conversion inserts for u.l.f. reception. For a number of channels the first conversion frequency may then fall in or near the $1+4-\mathrm{Mc}$. band. Where this method is employed for u.h.f. reception the receiver is very sensitive to $144-\mathrm{Mc}$. interference. The cure for this receiver fault is to replace the strips with others having a different conversion frequency, or use a conventional u.h.f. converter for reception of the channels from 14 up .

High-Power Transmitter for 50 and 144 Mc.

The gear described in the next several patges shows how transmitting equipment for two v.h.f. bands ain be roordinated in design so ats to work from a single exeiter. If the buidere so desires, the station may be operated from one set of power supplies and spereh equipment, with a single set of meters measuring the important currents in both transmitters. Farch item can be used by itself, or they combine readily to cover loth 50 and $1+4$ Me., at a power level approwhing the legal limit.

In order of their deseription ther are an cxcitern eapable of delivering up to 40 watts output at 48 to 54 Me., a companion amplifier for the 50-Mc. band, a tripler-driver-amplifier for 1 Ht Mr., and a duat antema coupler for foeding $50-$ and $14+$ Mc. antennas having batanced lines. Their physical appearance is such that they combine neatly. for rack mounting, as seen in fig. 17-1.

THE EXCITER

Though it is shown mounted on the same panel as the $50-\mathrm{Mc}$. amplifier in lig. 17-2, the exeiter unit might well be used atone, ate a versatile 50)Me. transmitter capable of rmming up to about

65 watts imput. Provision is mate for taking off 48-Mr. output at two power levels, through J_{3} or J_{2}, the latter being used for driving the $1+t-$ Me. tripler to ine described later.

The exiter is emmplotely shiehded, and its power leads are filtered to prevent radiation of hamonies bey the power cable. In addition, there are built-in traps to absorb umwanted oscillator harmonies that might otherwise be passed on to the amplifier, or to the antennat. Harmonies of this kind are part icularly troublesome when they fill in Chamel 2, which is so close to the operating frequeney that a filtor in the antenna line is relatively indfertive aganst them.

The interstage coupling circuits are of bendpass design. Once they are promerly adjusted they reguire no further tuming, when the froqueney is changed over a I-Mc. range. Thus only the crystal switch and the output plate rirenit need be adjusted when changing frequeney.

Circuit Details

 8 , 12, or 24 Mc. for $1+4-\mathrm{Mr}$, opration, or $6.2 \overline{5}$, $8.34,12.5$ or $2 \overline{5}$ Mc. for 50 Mc . Its plate circuit tumes $2+$ tis 27 Me., quadrupling, tripling or douhing the rerstal frequency. (Crystals at 24 to 27 Me , are overtome ents that oseillate at one-third the marked fre (furney in this (irruit.) A serjes-lumerl tratp, $L_{1} \mathbf{r}_{1}$, in the ossillator plate circuil absorthe the thind hamonio of ti-Ma. (rystals. This 18-Mc. (mergy otherwise would pass on to the next sitige, where it would be tripled to a frecpurnere in Chamed 2, This harmonir has beron found to bre an common callise of zot-Mc.

 trap. C'4 $/ 4$, in the grid cirenit. is tumer to the Th hamomic of X-Ma, whestats. The two traps thas prevent radiation of omerge in Chamel 2 , the most critia:al fransmitter problem a ti-melor math is likely to encounter in correecting TVI. They wan be modifiod for other fre-

[^2]Fig, 1\%-2 - "Iho 50 Me, r.f unit. Fixciter. left portion on the asembly, also serves on lit De. Amplifier utilizes a 4.12 .5 d , 4.2501 or $1-100 \mathrm{~A}$.

quencies to suit local problems. An example is the loth harmonic of 8 -Mc. crustals, that falls in Chamed 6 . A trap for the 5 th hamonic of the erystal frequency should take care of this.

The (61-16 amplifier stage has a shant-fed pinetwork plate cireuit. For best stability over the entire operating ratuge the stage is nentratized. The choke, RP('4, is provided to short out the d.e. voltage that would appear on the output cirruit if ('y should break down. The choke in the phate lead, $R P^{\prime} \mathrm{C}_{5}{ }_{5}$, is for parasitic oscillation supprossion. Note that each of the there eathode loack is hypassod separately at the socket. The exater may be kered in the (il-46 cathote jack, IA.

Double-tuned band-pass eirenits betwern the oseilator and doubler, and between the doubler and final, provide essentially fat response from 48 to 52 Me., or 50 to 54 Me. A petentiometer in the doubler screen cirenit provides excitation control for the 6146 , and may be used to eompronsate for variations in drive that maty appear at some spots in the band.
The link winding on the doubler plate circuit, L_{6}, is for the purpose of taking off low-level 48 Ne. out put to drive the tripler in the $144-\mathrm{Mc}$. r.f. unit. Note that the kering jark in the 6146 cathode circuit is the open-cirenit type. Removing the key thus disables the 6146 stage, when the first two stages are loeing used in this wat. Separate heater and filament switches on all units allow them to be oprated separately. Highvoltage supplies may be left comected to all r.f. umits, energizing only the filaments and heaters in the ones bring used.

Construction

The exciter is built on in $5 \times 10 \times 3$-inch aluminum chassis, with a bottom plate and a perforated atuminum cuge to complete the shielding. The smatl knols at the lower left of the front view are for the erystal switel and the excitation control. The erystal switch hats 12 positions. Ten are for the crystals on the multiple arystal socket
(Johnson No. 126-120-1). (Me more crystal position is provided on the front panel (it convenience if you want to use a frequency not covered by the 10 (erystals in the multiple socket), and the 12 hh switch position is for an external v.f.o. It connerets the $5 \overline{6}$ (i) ig grid to the cosxial v.f.o. input fitting, and shorts out $R P C_{1}$ and its parallel capacitor. The stage then functions as a frequency multiptior. The output frequency of the v.f.o. could thus be in the 6 -, 8 - or 12 -Mc. range. Above the excitation control may be seen the knols for the 6146 plate and output coupling capanitors.

Three coaxial comnectors are on the rear wall of the exciter. The one at the outside edge is for v.f.o, input. The ot hers are the doubler and 6146 output fittings. Two t-terminal steatite strips handle the various power and metering leads. Adjacent to each terminal except the ground connection is a fecd-through by-pass capacitor to take the power lead through the chassis.

TV1 that might result from radiation of harmonics by the power leads is prevented by filtering of each lead. The feed-through bypasses are commected to the exciter circuits through r.f. chokes, the inner ends of which are again bypassed with small disk reramie capacitors. All power leads are made with shielded wire, bonded at intervals to the chassis.
The side view shows the multiple erystal socket at the front of the chassis. Separate crystal sockets may be used if desired. The oscillator and doubler tubes are in the foreground. The trap capacitors, C_{1} and C_{4}, are adjacent to these tubes, while ('2 and C 3 are between them, a bit off their center line. To the rear of the 5763 doubler are C_{5} and C_{7}. The grid tuning capacitor for the $6146, C_{6}$, is just visible inside the amplifier compart ment.

A separate lead is provided for each power cirruit. Fixed bias for the 6146 is brought in from the bias supply that is part of the high-power amplifier assembly. This bias is desirable to prevent the plate current from rising too high when
the excitation is backed off. If the exciter is used alone, fixed bias is unneressary, Wexternal meters can be connected in any of the ritruits at the terminal strips.

The sides, back and top of the amplifier cage are Reynolds "Io-It-Yourself" perforated aluminum sheet, now avalable in many hatrdware stores. The pieces are joined together at the eorners with lengths of $3 / 8$-inch almonum angle Which can be bought or lunt up from sheet stock. The tuning and loading caparitors are mounted on the front of the cage, so this part should be a pireer of solid sheet steck rather than the perforated material. The dimensions of the cage are not critical. The original is $53 / 4$ inches deep, $25 / 8$ inches aross, and $41 / 4$ inchas high. Wake provision for removing the top and outside sheets of perforated stock for convenience in servicing, when the exriter is mounted against the amplifier unit. Extension shafts and couplings bring out the amplifier controls to the panel.

Inside the cage, the 6146 can be seen with its socket mounted above the chassis on $1 / 2$-inch metal sleeves. The cathode and soreen bypasses should connert to separate ground lugs on the top of the chassis, with the shortest possible leads. This wiring can be done conveniently before the socket is mounted on the chassis if nuts are used temporarily to hold the ground lags in plare over the socket mounting serews. The nertratizing adjustment, C_{8}, is mounted on the rear wall of the cage, and wired to the $61+6$ phate erlip and the feed-through bushing with $3 / 8$-inch wide strips of thin copper. A reramic insulator mounted on the wall near the 6146 plate rap supports the junetion of $R F^{\prime} C_{5}, R F^{\prime}$, and $r_{9}{ }^{\prime}$.

An ordinary tie point supports the other end of RF' ' 3 and the shielded power lead. The plate coil, L_{8}, wan be seen in back of the 5763 doubler tubre, wired between the stators of (${ }^{10}$ and $C_{11} . C_{12}$ and $R F_{4} C_{4}$ are mounted near C_{11}, and hooked between its stator har and a ground lug. A short length of R(i-58/U coas runs down through a hole in the chassis from C_{11} over to J_{3}.

Most of the parts visible in the below-ebassis: view can be ident ified from our deseription of the pande rear, and topside layouts. The oseillator rathode choke, RF' (", ran be sem monnted upright near the oscillator tuthe and ervatal sockets. Both 57 tim sockets should be oriented so that Pins 4 and 5 are adjacent to the outside chassis wall. L_{1} is visible betwern ('1 and the oseillator tube socket. L_{2} and L_{3} rum betwern this sookent and that of the doubler. These coils arre made from a siugle longth of Miniductor stork with the spee ified number of turns removed to provilke sparing betweon them. The same applies to I_{0} and $/ 27$. These are to the left of the 6146 sorkett. L_{4} is hetwren the doubler sorket and ('4. The trap coils are momed with their axes vertiond, to minimize coupling to the hand-pass coils. L_{6} is wound around and remented to the by-passed end of L_{5}.

The power lead ref. chokes are monnted between single-terminal tie points on the rear lip of the chassis and the ferd-through caparitors. The disk ceramic hypasses are then applied at the tio points. A singleterminal tie point mounted under RFC ${ }^{2}$ holds one end of the 330 (3 -ohm doubler sereen resistor and the lead over to the terminal strip at the rear. A double tie point is mounted bet wern the two 5 ghis sorkets to support the bypassed ends of L_{2} and L_{3}. Another over meare the rear of the chassis supports the cold end of L_{5} and the hot tom of the doubler grid resistor.

Wiring will be simplifed be the following procedure. Before mounting the crystal switch, ground one terminal of each crustal sorket through a bus wire. Comect short lengths of timed wire to the other terminal of earh sorket that will be under the switch. Then when the latter is installed. the wires can be run to the proper contacts and soldered in place. Note that the front wafer of the switeh is used for shorting out RFC C_{1}, while the erystal sorket connertions are made to the rear wafer, which is more aceressible. The vefo. input socket is comneeted to the proper switeh contart. with a length of RG-58/U roax.

Fig. $1-3$ - Side siew of the eweiter, with coner remoned. Band-pass coupting circuita eliminate front-panel tuning controls excent for erystal switeh and output stage taning.

Fig. 17.1 - Schematic diagram of 18 - 51 -Mc, exciter. All capacitances less than . $001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All $.001-\mu \mathrm{f}$. capacitors are dish eeramic. All resistors are $1 / 2$ watt unless otherwise specified.
(., ((.2, C $\mathrm{C}_{3}-35-\mu \mu \mathrm{f}$, miniature trimmer (H ammarlund M1 P P(:-35).
C_{4} - $\mathbf{1 0}-\mu \mu \mathrm{f}$. miniature variable (Hammarhond M IC. 10).
(is, (is - 20) $-\mu \mathrm{f}$. miniature variable (Hammarlund M1.10-20).
C : - $\mathrm{B} 0-\mu \mu \mathrm{f}$. miniature trimmer (Hammarland M4P(:-50).
(is - \quad in- $\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund HAP(:-1.)

(:II- $1(k)-\mu \mu \mathrm{f}$. miniature variable (IIammarlund MAPC:- $1(0) 13$).
(:12-I(K)- $\mu \mu \mathrm{f}$. $\mathbf{I (K) X}$)-volt mira.
 tralah $\mathrm{F}^{\prime 2} \mathrm{~T}$ - (IONO)
$1.1-16$ turns No. 24 , 5 - inch diam., 32 t.p.i. (B \& W Miniductor No. $3(\mathrm{KRO})$.
$\mathrm{I}, 2, \mathrm{I}, 3-12$ turns earh Sn. 20, $8 / 8$-ineh diam., 16 t.p.i. (B \& W Miniductor No. 300:), Make from one piece of Winiductor with 5 turns removed between eoils. (iold ends are adjacent.

In assembling the power lead filtering components at the rear of the chassis, the disk ceramie bypasses cin most casily be momed on the tie points hefore the latter are fastened inside the chassis. Wiring up the power leads should be done before the r.f. chokes are mounted in place.

THE 50-MC. AMPLIFIER

Though the exciter and amplifier are pictured on a single panel, the possibility of using either by itself should not be overlooked. The expiter will make a fine low-powered transmitter, and the fimal amplifier may be used with any exciter delivering 15 watts or more.

It will take up to the legal limit of power with a $4-400 \mathrm{~A}$ tube, 750 watts with a $4-250 \mathrm{~A}$, or 400 watts with a $4-125 \mathrm{~A}$.
l.4-2 turns \o. $20,1 / 2$-inch diam., 16 t.p.i. ($13 \& W$ Miniductor Vo. $3(0) 3$).
$1.5,1,7-6$ turne So. 20. $1 / 2$-inch diam., 16 t.p.i. (B N W Miniductor No. 3(0)3). Make from one piece of Miniductor with 3 turns removed between coils.
L. 6 - 2 turns hookup wire wound around cold end of L_{5} and eemented in place.
L.s-I turns No. 18, $8 / 4$-inch diam., 8 t.p,i. (B \& W Miniductor Vo. 3010).
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ - (ioaxial chassis fitting (Amphenol 83-1R).
J_{4} - Open-circuit phone jach.
h_{1} - 25 , (MK) -chm i-watt pot.
R_{2} - $33,($ (HO)-ohm 3 -watt (3100,000 -ohm 1 -watt in parallifl).
RFC. 2.5 -min. r.f. choke (V ational R-100S)
 (Ohmite Z.50).
$\mathrm{RFC} \mathrm{C}_{5}-6$ turns \o. 22 tinned wirc, $1 / 4$-inch diam., spaced one-nire diam.
 high value 1 -watt resistor.
S_{1} - 2-pole 12-position miniature ceramic rotary (Centralal PA-2005).

The plate circuit is a larger version of the one used in the 6146 stage of the exciter, a shunt-fed pi-network. Operation is completely stable without neutralization, probably because the natural neutralized freguency of the tubes is close to 50 Me. Provision was originally made for neutralization, but it was found to be unnecessary. Parasitie suppression devices were not required, but if the layout is varied appreciably from that shown, the builder should eheck for both types of instability with great care.

The jack in the filament center-tap lead is for keying, or for insertion of a grid-bias modulator. A bias supply that delivers about 50 volts negative for the 6146 and 150 for the final amplifier is included in the final stage assembly. Filament transformers for the exeiter and final are also part of this unit. Separate filament switehes are in-
eluded; one for the expiter and the other for the final tube and the btower motor. Power lata except the high voltate, are brought in on an 8pin plug.

Building the Amplifier

A $12 \times 10 \times 3$-inch ahminum rhassis is used for the amplifier unit. Thus, it may be combined with the expiter on : $10 \frac{1}{2}$-inch rack pand, if desired. The amplifier controls mounted near the panel bottom are, left to right, the input link reactance capacitor, ('1; the grid tuming caparitor, C_{2}; and S_{1} and S_{2}. S_{1} applies a.e. to the transformer for the exciter heaters and to the bias supplies. S_{2} applies ace. to the filament transformer of the amplifier and stats the cooling fin. Above the switches on the pamel are the amplifier plate tuning and loading controls.

On the rear of the chassis, coaxiat comentors for r.f. input and output are monnted at either end. Between them are the high-voltage conneetor for the plate supply, the cathode cireuit jack, and a fitting for the remaining power and meter leads.

Above the chassis, the $4-250 \mathrm{~A}$ tube is som near the front of the ehassis. Note that its socket is mounted on $1 / 2$-inch slecves. Holes 3 s inch in diameter are drilled in the chassis directly underneath those provided in the sorket for the passage of cooling air. Holes are also drilled adjacent to the cathode, grid, and sereen pins to pass their

leads. Bypassing of cathode and serren is done above the chassis. The heat radiating plate eonnector for the $\mathbf{4}-250$ a was eut down to four fins to reduce the over-all height requirement. The filament transformer, T_{3}, and the sereen modulation choke, la, are also topside.

The amplifier plate circuit compononts are 16 the left of the tube. The tuning caparitor, ('s. originally a neut rablizing fapabitor, is mounted on the side wath of the shiedding assembly. Two modifications should be made to the neut ralizing unit before monnting. The eircular plates supplied should be replaced with larger ones, 3 inches in diameter, to increase the available tuning range. The bearing assembly of the rotor disk must be temporatily removed, and a strap of copper run between the sorew holding the bearing in placo and the opposite (grounded) and of the squarr ceramic insulating pillar. This grounds the cat paritor rotor. Two copper straps must be inserted between the stator disk and its insulator, to connert the stator with the blocking cilpacitor, C_{5}, and with L_{3}.

The borking raparitor, the shunt-feed ref. choke, $R P_{C}$, and the high-voltage bypass, C'6, are assembled into one unit before mounting in the amplitier. This is done with the aid of the hardware supplied with the TV-t ype high voltage (aparitors. The by-pass capacitor, on the botom of the stack, is equipped with one threaded terminal and one tapped one. The latter is on the bottom end, for fastening the assembly to the chasois. Thare threadeal Iuminal serews into the $21 / 2$-inch reramic insulator upon which RRY 2 is wound. The ends of the choke winding are secured by lugs at cach end of the insulator. Cobshould ho. fitted with a thenaled lemminal at the lower coll far serewing into the top of the insulator. This also serves to faston the $3 / 4$-inch wide strip) of copper which runs up to the $4-250 \mathrm{~A}$ plate crap. Finally, the longer of the two copper strips eoming from the stator of C^{\prime} z is serewed to the top of \mathbf{C}_{5}. A $1 / 2$-inch feed-through bushing brings the high-voltage up to the hot sidf. of ("6. The loading capacitor, ('s, is monnter on the ehassis divectly undermeath ('z. The plate coil. La, gets rather warm when the rig is operated at high power livel, so both of its ends must be bolted in platere rather than soldered. One end is lent around and lastemed under ia

Fïr. 17-5-Kottom view of toc 30. Wc. exriter, showing handpass circuits and TVI protertive monanres.

Fig. 17.6 - Interior of the an. Wr. final amplifier. Plate tuning capacitor i- modified neutralizing unit, left.

mat provided on the stator of C_{8}. The other is bolted to the shont length of copper strap previonsly fastemed to the stator of C_{7}. A lenget h of IR (i-8 Lemaxial cable is run between ca and $J_{2 .}$. At the capacitor cond, this cable is comneeted to lugs under the stator and frame monnting sere.ws.
solid shere aluminum is used for the entelosure of this unit, as it must be reasonably airtight exrept for holes direetly above the tube itself. The side that supports ('a must be of fairly heavy stock for rigidity. Home-lent $3 / 4$-inch angle stock was used to hold the assembly together. If the over-all height of the unit is kept to just about that of the $10 \frac{1}{2}$-inch rack panel, there will be enough clearance above the tube plate connector.

Most of the under-chassis components are visible in the bottom view. The gride eireuit is near the front edge of the chassis. Copper strap conneets the tube socket grid pin with the stator of $C_{2} . L_{2}$ then is soldered between this strap and a tie point. L_{1} is slid inside the cold end of L_{2}, and eemented lightly in place.

The cooling fan sucks air in from the side of the amplifier near the back corner. The motor is mounted on an aluminum bracket. The fan as supplied will blow, rather than suck, so the blades must be bent back to reverse their pitch. A small piece of aluminum window screening shields the hole cout in the chassis side for the fan. Bias supply components occupy the lower left
quarter of the bottom view. Layout and wiring of this portion of the rig is anything but eritical. Shelded wire was used for all power leads. Bypassing at the power comector should be done with very short leads, and C_{14} should be mounted as chose as possible to the high-voltage connector.

Adjustment and Operation

In initial setting of the exciter controls can be made bofore power is applied, if a grid-dip meter is available. The series traths, $L_{1} C_{1}$ and $L_{4} C_{4}$, introduce varying amounts of reactance across the tuned cireuits when the y are adjusted, so some further adjustment will be needed after these are set up finally, but the following procedure will result in a close approximation.

Disconneret one end of L_{3}, Fig. 17-4. Couple the griddedip meter to L_{2} and tume it with C_{2} to about 24.5 Mr. Leaving the setting of r_{2} at that position, lift one cond of L_{2}. Reconnect L_{3} and resonate C ${ }_{3} L_{3}$ to about 25.5 Mr. Reconnect L_{2}, and the fircuits should be sot for operation on 48 to 52 Me. For 50) to 54 Mr ., the frequencies should be 25.5 and 26.5 . Mc e.

Procedare for the second band-pass circuit is similar exerpt for the frequencies involved. For 48 to $52 \mathrm{Mc} \cdot$, disconnert L_{7} and tune $C_{5} L_{5}$ to 49 Me. Recommer L_{7} and diseonnert L_{5}, tuning $L_{3} C_{6}$ to 51 Me. Reronneret L_{5}. For the 50 - to $54-$ Ite range these frequencies would be about 51 and 5.3 Mc.

Fig. 17.7 - Schematic diagram and parts list for the 4.250 .1 amplifier. All capacitors marked .001 μ f. are 600-volt disk ecramie.
$C_{1}-50-\mu \mu f$. miniature variable (Ifammarlund \|f-iz()).
$\mathrm{C}_{2}-15-\mu \mu$. miniature variable, donble-spaced (IIammarlund $11 \mathrm{~F}^{-15} 15$).

 Dnbilier 11 MISOT'S).
$\mathrm{C}_{7}-$ I Diak-type raparitor with 3 -inch diam. plates (made from Millen lisoll).
$\mathrm{C}_{8}-250$ - $\mu \mu$ f. variable, doubte-spaerd (Johnson 250. -20).

$J_{1,} J_{2}-$ Convial chatsis filting (Implimol H3-IR). J_{3} - Colosed-cirruit phone jark.

C C_{2} - 20-ma, selenium revilier (Fedaral 1159).
L_{1} - 5 turns So. 24. 1/2-ineh diam., 32 t.p.i. (IS \& W Minidurter So, $3(10-1)$.
$\mathrm{I}_{2}-1$ turns No. $18,8 / 4$-inh diam., 8 t.p.i. (IS $\mathbb{N} W$ Winiduelor So, 3010).
Conned a sourece of 6.3 volts a.ce at 2.5 amperes or more between the ground and heater terminals, and a low-range metor from the doubler grid retum terminal to ground. Insert arystals for the desired frequency rango. Apply about 200 volts d.e. to the oscillator platesereon terminal through a $50-$ or lon-mat meter. Current should be 20 to 30 mat., and grid current in the following stage should be about 0.5 mat, when the voltage is increased to the normal 330 volts. Tourch up the tuning of the hand-pass cirenit, if necossary, to got uniform response across the desired range.

The trap circuits can be adjusted at this point, tuning for minimum signal at the frequency to be attenuated in each case. A receiver tuming to the harmonic frequencies is helpful. These will be about 18 to 20.25 Mc . for the first trap and 56 to 60 Mc . for the second, if they are for Chamel 2. A TV receiver on the chamels to be proterted may also be used, meroly tuning the traps for minimum TVI, Some slight readjustment of the
L.3-6 turns No. 12 tinned wire, 1 -inch diam., spaced twice wire diam
L_{4} - Filter chooke, abont 10-hy, 100-ma, ('Triad C. 10 X).

131 - Blower molor and fan (Allied cat. No. i2llili).

$\mathrm{K}_{2}-\overline{\mathrm{J}}(0)$ ohms 2 watts (2 lOMO-ohm 1 -watt resistors in parallel).

 (\ational CS.2).
$S_{1}, S_{2}-$ Simgle-phate simgle-throw loggle switeh.
 (1-30X).
'I'2- Filament transormer, 6.3 wolsa at 3 amp. ('lirial fr- 16 D$)$.
'I's-rilameat transformer, $\overline{3}, 2$ valts cot. at 15 am . ("Trial ド-JJl).
band-pass ribenit may be meded after the final trap tuning is done.

Now remove the grid current meter and ground the molering terminal in the doubler grid cireuit. Conneet a meter (0 to $\overline{5}$ ma. or more) between the terminals provided for measuring the 6146 grid eurent. Sat the sereen potentiometer, R_{1}, to about the middle of its range and apply about $2(6)$ volts to the doubler plate-sereen input terminal. Adjust the band-pass cireuit, $L_{5} C_{5}, L_{7} C_{6}$ for nearly uniform response across the desired range, using the (646 grid current as the output indieation. There should be at least 2 mat across a 4 -Mc. range when the doubler plate voltage is raised to :300). Note that the screen potentiometer controls the input to the doubler, and through it the exritation to the $614(\mathrm{~s}$.

The 48-Mc. output coupling adjustment, $L_{6} C_{7}$, may be cherked at this time. The line to a $144-$ Mr. tripler stage should be connected to J_{2}, and the series esiparitor, ('i, adjusted for maximum grid current in the driven stage. Recheek the
adjustment of the band-pass circuit after this is done.

The 6146 amplifier stage had to be neutralized for stable operation. Its adjustment was not critical, however, and C_{8} could be set anywhere near minimum capacitance with good results. Start out with its plates meshed about $1 / 8$ inch. With grid drive applied but no plate or screen voltage, tune the dil46 phate circuit through resonance, trying varions settings of $C^{\prime} 8$ until there is no grid current dip at resonance.

A load for the 61.16 output cirenit is now required. This can be a 40 - or 60 -watt lamp, with a $50-\mu \mu$ f. caparitor in series to tune out its reactance. Adjust it for minimum reflected power, as indicated on an s.w.r. bridge. With the load conneeted and grid drive on, apply 300 to 400 volts to the amplifier plate and screen terminal. Tune ('10 for maximum indicated output. loading can be adjusted by varrying (C_{11}, retuning C_{10} after earh movement of C_{11}.

Recherk for neutratization at this point, working for at setting of C_{8} at which minimum plate current, maximum grid current, and maximum output all occur at the same setting of the plate tuning capacitor, C_{10}. The input can be run up to about 65 watts with plate modulation and $35-40$ watts output should be obtaned. Higher input can be run on c.w. Plate voltage should not exreed about 400 with plate modulation, though it can be somewhat more for c.w.

Now make a final check on the trap cirmuits, if necessary: In case TVI is experienced, muljust the traps while someone watches the TV screen, and see whether any improvement is possible. Remember that the traps shown were designed primarily to redure Channel 2 interference. Where the trouble is with other channels, the traps can be modified to reduce the offending harmonic as required. A low-pass filter or a 4 th harmonic trap, will he needed if there is hatmonic interference in Chammels 11-1:3.

The amplifier as shown furnishes heater voltage and protective bias for the exciter. Hook together the 6.3 -volt and ground terminals of the two units, and connert the bias output pin on the amplifier to the 6146 grid return in the exciter.

Apply 115 volts a.c. to the appropriate pins on the amplifier power plug. When S_{1}, Fig. 17-7, is closed, the exciter heaters and the bias supplies are energized. The bias voltages are about 50 and 150 negative for the driver and amplifier, respectively. Closing S_{2} lights the amplifier filament and starts the fan motor.

For the initial testing of the amplifier disconneot its fixed bias supply, by lifting the connection between R_{1} and R_{2}, so that instability will be more evident. Comnect the output of the exciter through a length of coaxial cable to J_{1}. Hook a 0-25- or 0-50-mat. meter to the terminals provided for measuring grid earrent. Turn on the exciter and adjust the driver output and amplifier input for maximum grid current. Set this current bet ween 10 and 15 ma . with the excitation control, R_{1}, in the exciter. To insure proper adjustment of the amplifier grid circuit, insert an s.w.r. bridge unit such as a Mieromatch in the coax comnerting the driver and amplifier, and tune C_{1} and C_{2} in the amplifier alternately for minimum reflected power. Adjust the driver tuning for maximum forward power.

Never apply sereen voltage without having the plate voltage on also, and do not operate the amplifier without load. Either will result in excessive serven dissipation, and almost certain tube failure if continued for any length of time. A usable dummy load for testing can be made by connecting two or more 100 -watt lamps in parallel. A variable series capacitor, $50 \mu \mu \mathrm{f}$. or more, will be helpful in making the lamp load something like 50 ohms, resistive, at this frequency.

It is well to start with something less than maximum voltages in testing. If the plate voltage is under 1000 and the sereen voltage about 200 to 300 volts, little harm oan result if something is not quite right. With the dummy load connected, apply plate and sereen voltages. Set C_{8} near the middle of its range and tume C_{7} for maximum output. If this ocrurs at or close to the end of the tuning range of C_{z}^{\prime}, adjust the sparing of the turns in the plate coil accordingly. Adjust C_{8} for maximum output, returning C_{7} as required. If the grid current dropped below 10 ma . under load,

Fig. 17.8 - Bottom view of $50 . \mathrm{Mc}$. exciter and amplifier. Note that the tho units are built separately, thoush they mount together on a ringle panel. Amplifier unit ineluders bias and filament supplies for both.

increase the drive with the doubler screen potentiometer in the exeiter.

Cherk now for stability: Briefly rut off the drive and see if the amplifier grid current drops to zero. If it doesn't, the amplifier either needs neutralization, or it has a parasitic oscillation. If no grid eurrent shows with drive removed, note whether, when drive is applied and the amplifier is tuned properly, maximum output, minimum phate current and maximum grid current all oeror at the same plate taning. If they do, the amplifier is operating satisfactorily.

If oscillation does show up, cherk its frequency. If it is much higher that the operating frequeney (probably over 150 Mc .) v.h.f. parasitie suppression measures are in order. If it is in the 50-Me. region, neutralization will be required. These troubles are most common in multiband designs, and unlikely in a layout of this sort. Neutralization of the eaparity-bridge type, like that in the exciter, can be incorporated readily, and parasitic suppression is covered in detail elsewhere in this Mandbook. Neutralization may require additional grid-plate raparitance in some la youts. Provision was made for neutralization in the original layout (explaining the plugged hole in the front panel), but it was found to be unnecessary.

When the amplifier is operating stably, the plate and sereen voltages may be increased in accordance with the tube manufarturer's ratings, for the type of operation intended. Operating conditions are different for the three tubes which can be used and they should follow the manufacturer's recommendations. This is not to saty that variations from the published data are umsafe or undesirable. Any of the values can le varied over quite a range if the maximum rating for each tube element concerned is not expereded. In this connection, it is highly desiratbe to provide continuous motering for the grid, sereen, and plate currents. This, with a knowledge of the applied voltages, will help insure proper operation and make correct adjustment a simple matter.

A 144-MC. DRIVER-AMPLIFIER
The unit shown in Figs. 17-9 through 17-14 is a three-stage tripler-driver-amplifier that may be used with the exciter just described. I)riving power at 48 Mc . may be taken from the doubler stage (by connerting to J_{2} in Fig. 17-4) or from the output stage, rumning at low power. Almost any 50-Me. transmitter of 3 to 5 watts output could be used loy substituting a suitable crystal and retuning the stages for operation at 48 to 49.3 Ma. If a small 1f4-Me. transmittor is available, the tripler stage may the dispensed with, in which case about $\mathbf{5}$ watts drive on 14 Me , is required.

This section of the station is built in two parts. The tripler and driver stages are in the smatl portion at the right of Pig. 17-9, with the final stage at the left. . Il are push-pull stages, the tripler and driver using dual tetrodes. The tripler is an Amperex 63660, followed by an RCA 6524 straight-t hrough amplifier. This drives a pair of $4-125 \mathrm{As}$ in the final stage.

Input to the $4-125.1 s$ can be up to 600 watts on a.m. phone, or 800 watts on c.w. or f.m. By suitable adjustment of soreen and plate voltages the power can be dropped as low as 150 watts input and still maintain good efficiency. Some means of reduring power is highly desirable, as most operation on 144 Me can be carried on satisfactorily with low power.

The Driver Portion

The tripler and driver stages, Figs. 17-11 and 17-12, both operate well below their maximum ratings. Self-tuned grid circuits are used in each stage. This simplifies construction, and in the case of the driver stage, reduces the possibility of self-oscillation. With a surplus of drive avatiable, the grid circuit of the 6.524 maty be resonated as low as 1:30 Me. There is little tendeney to tuned-plate tuned-grid oscillation, therefor, and neutralization is not required.

Tripler and driver are built on a standard $5 \times 10 \times 3$-inch otuminum chissis, with the tripler at the back. Its plate cireuit is tuned from the front panel by an extension shaft. Omission of the acreen bypass on the tripler is intentional as the stage works satisfactorily without sereen bypassing.

The 6524 is easily over driven. This may be corverted by squeezing the driver grid coil turns

Fig. 17-9-The high-power 2. meter rig, with shiflding enclonures in place. The small unit at the right houses the tripler and driver stages.

Whes together, lowering the resomint frequenes until the desired 2.5 to 3.5 mat. is obtained actoss the band. The farther it cian be resonated below 14t Me, the less likelihood there is of self-oscillattion in the driver stage.
The bin2t is mountel horizontally, and holes are drilled in the chassis under the tube to allow for air circulation, Plate leads are made of thin phesphor bronze or comper, bent into a semicircle, comereting the butterfly cappacitor and the heatdissipating combectors. This allows the latter to be removed for changing tulnes, without putting undue strain on the phate pins. The conncetors have to be sawed or filed down on the insides to fit on the fi5 24 pins. The eoupling link at the driver phate eirenit is tuned, to provide effieient transfer of energy to the amplifier grids.
small fred-through bepassess are used in the driver sereen cirevit. C_{5} is mounted in the alluminum plate that supports the 6524 socket, and C_{6} is in the chassis surface.

Amplifier Features

Design of the +125.1 grid circuit is important in arhieving efliciont transier of energy from the driver stage. The input capareitame of the large totrodes is so high that a tuned grid cirenit of cenventional design cannot tre used at $1+4$ Me., so a half-wave line is substituted, as shown in Figs. 1-1:3 and 17-14. The input coupling link is series tuned, permitting adjustment for minimum standing wave ration on the coaxial line comere ting it to the driver stage out put link. The grid line, $L_{1} L_{20}$ is made of $1 / 4$-inch copper tubing, to redure heat lossos.

Maintaining the $4-125.1$ sereens and filkment leads at gromul potential for r.f. is necessary for stability. To this end. the tube sorkets are monuted alove the chassis, rather than helow. They are chevated only enough to allow the sorket contacts to forar the chassis, and are monnted corner to corncr. with the inner comers almost tourhing. The grid line is brought up through $1 / 2$-inch chassis holes and soldered directly to the grid continets. This determines the line spacing, about $1 \frac{1}{2}$-inches center to center.
The inner filament terminals wi each socket are grounded to the chassis. The others comect to feed-through bypasses with the shortest prossible leads. These are joined under the chasssis with at shiekted wire and tied to the filament transformer. The r.f. whokes in the sereen leads are

Fin. 17.10- Kears iow of the 1.12.51 final stage. 'The split-stator capacitor near the middle of the pieture in the sorcen neutralixing acljustment. The ghate line is tunel with a caparcitor made from parts of a neutralizims unit, mounted on ceramie taml offs.
under the chatssis, their wire leads coming up through Millen type 32150 feel-through bushings inserted in chassis holes under the sareen terminats. The two sereen terminals on each soeket are strappeal together with a $3 / 8$-inch wide strip of flashing eopper. The serven nentralizing caparitor is mounted is close to the sockets as possible and still leave room for the shaft couphing on its rotor. Leatls to its stators are athout one half inwh lomg.

More compact and symmetrieal design is possible if a modified single-section capacitor is used for C $_{6}$. It should the the type having supports at hoth ends of the rotor shaft. The Millon 19140 and Hammarlund M(C140 are suitable units for the purpose. The stator bars are sawed at each side of the center stator plate. The front rotor plate is removel, making a split-stator variable with 4 plates on each stator and 8 on the rotor. This procedure may not be applicable to all $1+40-\mu \mu f$. capuaitors, but any methox that results in a balwed unit having alout $50 \mu \mathrm{ff}$, per section should do.
Construction of the final plate eirenit should be clear from Fig. 17-10. Tuning is done with parts of a disk-type neutralizing celparitor (Millen 1a011) mounted on ceramic stand-offs $31 / 2$ inches high. Thase are made of one l-inch and one 2^{16}-inch stand off each, fastened togother with a threaded insert. Conneetion to the lines is made with copper or silver strap, $41 / 2$ inehes from the plate end. Silver plating of all tank circuit parts is a worth-while invest ment, though it should not be considered a necessity. A shaft coupling designeal for high-veltage service is attarched to the threadenl shaft of the movable plate, and this is rotated with a shaft of insulating material brought out to the front panel.

A word alkent the extension shafts is in order at this point. If they are of metal they may have a serious detuning offeet in some cirenits, even though they are comeded through insulating eouplings. Bakelite rox is fine, but since the insulating qualities are of no importance, 1/4-inch wooden doweling will do the job just as well. Lucite or polystyrene rod will not stand

Fig, 17-11 - Schematic diagram of the tripler and driver stages of the high-powered 2 -meter transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10.5 \mu \mu \mathrm{f}$. per-section butterfly variable (Johnson 101.1315).
$\mathrm{C}_{3}-\Omega-\mu \mu \mathrm{f}$. serewifriver-alljustment variahle (liammarlund AP(C-25).
$C_{4}-25-\mu \mu \mathrm{f}$, miniature variable (Bud I,C-1642).
$\mathrm{C}_{5}, \mathrm{C}_{6}-\mathbf{5 0}(\boldsymbol{0}-\mu \mu \mathrm{f}$. feed-throngh by-pass (Centralab Fi'500).
$\mathbf{K}_{1}-11,000$ ohms 2 watts (two $22,000-\mathrm{ohm}$ l-watt resisters in parallel.)
$R_{2}-50,000$ ohms 2 watts (two 100,000 -ohm 1 -watt resistors in parallel).
$L_{1}-2$ turn insulated wire around center of L2. Twist leads to J_{1} and C_{3}.
L. -13 turns No. $20,5 / 8$-inch diam., $7 / 8$-inch long, center tapped ($\mathbb{S}^{(1)} W$ Miniductor No. 300-).
$\mathrm{L}_{3}-3$ tnrns No. 14 cnamet, $3 / 4$-ineh diam., spaced lig incl, center-tapped.
the heat and should not be used.
The final rhassis is aluminum, 10 by 12 by 3 inches, matehing up with the driver chassis to fit into at standard 10^{\prime} e-inch rack pancl. Complete enclosuro is a must for 'TVI prevention, and it pays dividends in improved stability by providing chective isolation of circuits that tend to give trouble in open layouts.

The enclosures wre made by mounting ${ }^{3}$-inch aluminum angle stork around the adges of the chassis of both units and rutting the sides and covers to fit. It was not intended to cool the
I. 4 - 2 turns No. 18 enamel, same as L_{3}, inserted at center.
Ls- 2 turns No. 18 enamel, same as $I 6$, inserted at cemter.
L. 0 - 4 turns No. 14 enamel, $1 / 2$-inch diam., turns spaced wire diameter.
$L_{7}-2$ turns No. 1.1 enamel, 1 -inch diam., spaced 1/4 inch.
Ls - 1 turn No. 14 enamel between turns of $L_{\text {a }}$.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting, female (Amphenol 83-1 K).
J_{3}, J_{4}, J_{5} - Closed-circuit jack. Insulate J_{5} from panel and chassis.
M. A_{1} - External meter not shown in photo, 200 ma.
S_{1} - Toggle switeh.
T1 - Filament transformer, 6.3 volts, 3 amp . (U'TC S.5.5).
driver unit originally, so the enelosure was mude of perforated aluminum. The blower for the final provided plenty of air, however, so three holes were made in the walls of the two chassis to allow some of the air flow to go through the driver enclosure as well. The chassis are bolted together where the vent holes are drilled. The man flow is up through the amplifier chassis, around the $+1-125.1 s$, and out through the $1 / 4$-inch holes drilled in the top cover above the tubes. Holes in the amplifier chassis are drilled to line up with the ventilating holes in the $4-125.1$
 sockets. All other holes and cracks are sealed with household erment to confine the air to the desired pathe, and bot tom covers are fitted tightly to both units.

Fig. 17-12 - Sicke view of the tripler and driver stages. Coil adjacent to the 6,360 tripler tube is the grid coil for the 6.52t driver. Plate leads for the: Iriver tube are flexilite copper straps, to jeermit removal of the tulse from its sesket. Screwdriver adjustment at the lower right is the reactaller thining capacitor for the tripler iuput link.

The somewhat random appearance of the front panel is the result of the development of the unit in experimental form. A slight rearrangement of some of the noneritical romponents could be made to arhieve a symmetrical panel layout readily enough.

Operation

The two units hatve their own filament transformers. Plate supply requirements are 300 volts at 50 ma. for the tripler, 400 volts at 100 mat. for the driver, $3(0)$ to 400 volts at 75 mat. for the final sereens and 1000 to 2500 volts at 400 ma . for the final plates. The driver plates and final sereens maty the run from the same supply, but more flexibility is possible if they are supplied separately. A variable-voltage supply for the final sereens is a fine way to control the power level.

In putting the rig on the air the stages are fired up separately, beginning with the tripler. A jack (J_{3}, in Fig. $1 \overline{7}-11$) is provided on the front panel for moasuring the 6330 grid eurent. About 1 ma. through the 150,000 -ohm grid resistor is plenty of drive. The serios capareitor, (${ }_{3}$, in the link can be used as a drive adjustment, if more than neressary is available.

Next plug the grid meter into the 6524 grid current jack, J_{4}, and tune the $6: 360$ plate circuit for maximum grid current. If it is higher than 3 to 4 ma. increase the inductance of the grid coil, L_{6}. hev squerezing its turns closer together. Now apply plate and sereen voltage to the 6524 , and chere for signs of self-oscillation. If the plate circuit is tuned down to the same frequency as that at which the grid coil resonates with the tube caparitance, the stage may oscillate, but if it is stable aeross the intended tuning range there should be no operating difficulty resulting from at tendency to oscillate lower in frequency, and no neut malization should be needed.

Comert a coaxial line between the driver output and the final grid input preferably with a standing-wave bridge connected to indicate the standing-wave ratio on this line. Tune the driver plate cirenit and its series-tuned link for maximum grid current in the final amplifier. Adjust the final grid tuning, C_{1}, for maximum grid current, and the series eatuatitor, C_{3}, in the link for minimum reflected power on the s.w.r. bridge. Adjust the coupling loop position for maximum transier of power, using the least coupling that will achieve this end.

Adjust the sereern neutratizing capacitor, C_{6},

Fig. \quad-13 - Schematic diakram of the $1 \cdot 12.5 \mathrm{~A}$ anplifier for 141 Me .
$\mathrm{C}_{1}-30-\mu \mu \mathrm{f}$ - per-section -phit-stator variable (llammarlund |1F|)-30X).
(:2 - Ilate tuming capacitor made from Millen 150) 1 newtralizing unit: sere text and phato.
(:3-2-mpf, miniature variable (Bud Id:-16-12).
C. Cs, $\overline{5}(0) \cdot \mu \mu$. fecd-through byopas: (Centralal)

 sire text.

(is - 0.25- 5 f. tubular.
R_{1} - 5000 ohms, 10 watts.
$\mathbf{I}_{1}, \mathrm{I}_{2}-1 / 4$-inch copper tohing, liz inches long, spaced $11 / 2$ inchres exnter to renter. Wend around $11 / 2$ inds radiu-. I inch from grid end.
I_{3} - Loon made from 5 inthes Xo. It enamel. Portion coupled to lime is 1 inch long earh side, about $3 / 8$-inch from line.
$L_{A}, L_{5}-1 / 2$-inch copper tubing 12 inehes long, spaced $11 / 2$ inches ecnter to eenter. 1Bend aronnd 2 .inch radius to make line 4 inches high. Attach Ciz $+1 / 2$ inches from plate end.
$L_{6}-$ Leop made from 7 inches No. 11 enamel. Sides spaced $11 / 4$ inches.
1.:-5-hy. (min.) 100 -mal, rating filter chohe.
J_{1}, J_{2} - Coanaial fitting, female (Amphenol 83-11R).
$\left\|A_{1},\right\| A_{2}, ~ \| A_{3}$ - Exiternal meters, not shown; 100, 200 and 300 ma.
A - Notor-hlower assembly, 17 c.f.m. (Ripley lne., Middle town, (ionn., Type 8133).
RPC: - V.h.f, solenoid choke (Ohmite \%/-14). Four required.
s_{1} - I'oggle switeh.
S_{2} - Rotary jack-type switelt (Mallory $\mathbf{7} \mathbf{2}(0)$.
'I' - Filament trandformer, 5.volt l3amp). (Chicago

for maximum final grid earrent, with the plate and screen voltages off. Do not attempt to rum the final stage without load. With a fixed sermen supply the sereen dissipation goes very high when the plate load is removed or made too light. It is important to moter the sereen current at all times. With $4-125 \mathrm{As}$ danger to the plates can be detected by their color, but the sereen current is the only indication of possible damane to that element.

There is no suitable inexpensive dummy loat for testing a v.h.f. rig of this power level. The best load is probably atn internat. This can be an indoor gammat-matehed dipole, fed with roas. Its series capacitor should tre adjustod for at standing-wave ratio close to $1: 1$. The Mieromatch can be used in this operation, but adjustments should be made at less that full power. Wateh for any sign of heating in the bridge mit.

The position of the eompling loop, $L_{\text {fin }}$, should be adjusted for maximum transiore of anergy to the antenna, kerping the coupling as loose as possible. The series rapatitor, (", fan be used ats a loading adjustment thereatter. If the sereen voltage is contimuously variathle it will be fonmed that there is an optimum value around 325 to 350 volts.

Below are some conditions under which the rig has beren operated experimentally:

Staye	$E_{\text {p }}$	I_{3}	E_{88}	$1 s{ }_{\text {sc }}$	$I_{\text {g }}$
Tripler	300 ง.	3.5 ma.	-	-	$1 .$. ma. $^{\text {m }}$
Driver	100 v .	92 ${ }^{\text {a }}$ \%a,	-	8 ma.	3-4 ma,
Final	1000 v .	300 ma,	400	(8) ma,	22 п1a,
Final	2000 vi.	3.00 ma,	350	4.5 ma,	20
Final	2500 s	400 ma.	320% 。	40 ma.	18

The first and third conditions given for the final stage represent extremes, both excerding the tuhes' ratings in somo wity, so they are not recommended. . It low plate voltages the sereen hats to be run above recommended ratings to make the tubes draw their full rated plate eurrent and operate efliciently. At high plato voltages the serem dissipation drops matredly. The use of $4-125 \mathrm{As}$ at a full kilowitt input exereds the manufacturer's maximum ratings, and is done at
the user's risk. To operate suffly, the maximum plate voltage for voide work at $14 t$. Me. should probably not go over 2000 . At this level the tubes will hadle 600 watts input on voire, and $\overline{50} 0$ watts on (ew. easily.

Modulation and Keying

Kering is done in the serven rirenit of the driver stage, and in the sereen and plate cireuits of the tripler. ('athode keying of the driver was attempted, but it catused instability troubles, so wats aboundoned. The serren mothod makes the key hot, so in insulated key or at kering relay must be used in the interest of satety. The ke ying jack must be insulated from the panel.

Fixed lias for the tinal implitier is provided bey the VlR-tube method. When the tube ignites at the applieation of drive, the eapacitor (', charges. Removing exatation stops the flow through the VIR tube and lraves the nogative chatge in the capaceitor applied to the amplifier grids. The efferetiveness of this sustem reguires at low-leakage ratparitor for ('s.

Modalation is applied to the plates only. A choke of about to hemers is commereded in the sereen lead. or the modulation ram be supplied through a soreen winding on the modulation transformer. The by-pass value in the sereen circuit should be low rough to avoid afferting the higher audio frequemies. Oreasionablly andio resonature in the sereen choke maty ratuse a singing effere on the modulation. If this develops, the rhoke maty be shunted with a resistor. ['se the highest value that will stop the singing.

In mentralizing the + -125.1s it maty be fomme that what apmeats to be the best setting of the sererol "ilparitor will result in a very large drop in grid eurrent when plate voltage is appliod. The setting may be altored slightly, raising the full-losad griel enrrent. without adversely atfere ing the stability of the amplifier. The finat cherek for neutralization is twolold. There should be no aseilation when drive is removed: and maximum grid current, minimum plate cumont and maxi-

Fig. 17.1.1-1 ndarechatisis virw of the 2-meter transmiller. Iripler arid and plate rircuits are at the upper left. (haly lwo of the threse jacks wa the fromt patnel show in the lowser 'eft. The halfowate line uaed int the 4.125A prid circuit is the main item of interest in the amplifier sections. Bush units are fitted with hottom covers. to proside shiedring and confine the flow of conding air to the desired areas.

Fig. 17.15 - Antenna couplers for 50 and 141 Ve. designed for use with the high-power transmitters on the previous pages.
mum output should all show at one setting of the plate tuming capatitur. The latter condition may be ohsorved only when the amplifier is "preated without fixed hias.

ANTENNA COUPLERS FOR 50 AND 144 MC.

The antenna romplers shown in Figs. 17-15, and at the top of Fig. 17-1, can be used with io2-
 lines of any imperdance from 200 to bion ohms or more They were designed for use with the highpower transmittors described previously, hat may be used at any power level.

Construction

The two romplers are identical rirenitwise. They are built inside a standard 3 by the 17 -inch alumimm rhassis, with a bottom plate lo comphate the shichling. The panel is $31 / 2$ inches high. If only one compler is reduired, a is hy + be binch mility las ran be used. Tominals on the back of the chassis include al coaxial ingut fitting and atwo-pest output fitting for each compler. Tha cireuit diagram, Fig, 17-16, sarves for both.
 available stock, though they can be made by hat if desired. The roupling winding, L_{1}, is inserted inside the humed ribenit. The polyethyleme strips (on which the eoils are wound keep the two coils from making clectical contart. so no support other than the wire lauds is needed.

Lade to L_{1} are brought out bet ween the turns of L_{2}, and are insulated from them be two steeves of spaghetti, one inside the other. I oo not use the soft vingl tyon of sleeving, as it will melt too readile if, through an aceident to the antemat system, the roil shonld run hot. In the Ift-Ma. compler the positions of the coils are reversed, with the fumed circuit, L_{2}, st the conter, and the coupling coil outside it.

Similar tuning capacitors are used in both couplens, but some of the plates are removed from the one in the $14+$-Mle, cirenit. This provides easier tuning, though it has little effect on
the minimum capacitance, and therefor on the size of the roil.

Adjusting the Couplers

An antenna coupler can be adjusted property only if some form of standing-wave bridge is eonnered in the line between the transmitter and the coupler. If it is a pewer-indicating type, so much the luetter, as it then can be used for adjusting the transmitter loading, and the work can be done at nomal framsmitter power.

With the bridge set to read forwand power, adjust the eouplor caparitors and the transmitter thming roughly for maximum indiration, Now set the bridge to read reflected power, and adjust the antenata compler eapaceitors, first one and then the other, until minimum reflected power is

Fig. 1 : 16 - Circonit and parts information for the v.fif. antema couplers.

CA - $100-\mu \mu \mathrm{f}$, variable for 50 Me ., $50-\mu \mu \mathrm{f}$, for 144 He . (H ammarlund $\mathrm{MC}(-\mathrm{I}(\mathrm{K})$ and $\mathrm{II}(\mathrm{C}-50)$.
($2-35-\mu \mu$ f. per-section split-stator variable, 0.0 - -im (h spacing (Hammarlund MCD. 355 S). Reduce to 4 stator and 4 rotor plates in cach seetion in $1 \mathrm{H}-\mathrm{Mc}$ coupler for easicr tuning; see text.
J_{1} - Coasial fitting, female.
J_{2} - 'Two- most terminal assembly (National FHII),
L_{1} - 50 Mc.: 4 turns No. 18 tinned, I ineh diameter, $1 / 8$-inch spacing (1 ir-1)ux No. 808'T).
141 Me.: 2 turns No. 1.4 enam.. 1 inch diameter, $1 / 8$-inch spacing. Slip over I_{2} liefore mounting.
I 2 - 50 Ne.: 7 turns No. 1.4 tinned, $1 \frac{1}{2}$ ineh diameter, $1 / 4$ inch spacing (I (1)ux No. 120.4). Tap $11 / 2$ turns from each end.
14 Mc : 5 turns No. 12 tinned. $1 / 2$ inch diameter, inch lonk. Tap $11 / 2$ turns from each end.
acheved. Unless the line imput impedanee is very highly reactive, it should be possible to get the reflected power down to zero, or very elose to it. Adjustment of the coupler is now eomplete. Tuning for maximum transfer of power from the transmitter is done entirely at the transmitter.

Progressive Station for 50 and 144 Mc .

The three units shown in ligg 17-17 are designed to serve several purposes. The two smailler ones are completer r.f. sections for use on 50 and 144 Me, at the 15 - to 25 -watt level. The other is an amplifier capable of running up to 125 watts, phone or e.w., on both bands. The exciters may be keyed or modulated also, and their low power consumption makes them ideal for mobile service or home-station operation at moderate power.

The separate 25 -watt rigs are as similar as possible, mechanically and electrically, the tubes and many of the parts boing interehangeable. Circuitry is similar, and their design is amed at moderate duplication cost and ease of construction, Both are assembled on 5×10-inch aluminum plates that fasten to standamd 3 -inch chassis of the same size. Covers of perforated aluminum $31 / 2$ inches high provide shielding and prevent damage to components when the rigs are used for mobile service.

Circuitry

The oscillators use a third-overtone eircuit, with 8- or 24-Mc, erystals for $14 t$ Me, and 8,4 - or $25-\mathrm{Me}$. crystals for 50 Mc , in one hatli of a 12. ${ }^{1 T}$ T' dual triode. The other triode doubles to 50 Me , or triples to $\overline{7} 2 \mathrm{Me}$. The 50 - Me, doubler drives a 2 lide implifier. An extrat state is needed in the 141-Me. rig. This is another $12 \mathrm{~A}^{\prime} \mathrm{T}$, with its triodes connerted in parallel, doubling to 144 Mc. The amplifier is a 2 E26. Neutralization and interstage coupling mothods differ in the two amplifier stages, but operating conditions are generally similar.

The amplifier for higher power has a pair of 6146 tetrodes, with changeatble tank cireuits for operation on both bands. Input and output capareitances of such tubes are too high to permit use of ordinary plug-in coil arrangements on 144 Me., so a quartor-wave line for $1+4$ Mc. and a plug-in coil for 50 Mc. are used in the plate circuit. No tuning eapacitance is used in the
grid cireuit, the plug-in inductances being resonated by the input capacitance of the tubes alone.

Figs. $17-24$ and $17-25$ show how the plate eircuit works, A $14+$-Me. line of strips of flashing copper is completed at the far end from the tubes by means of a combined plug-in short and B-plus comeretion, $P_{2}-L_{4}$. The tuning capacitor, C_{2}, is tapped down the line 2 inches to minimize its loading efferet on the line at 144 Me. At 50 Me. the line is merely the pair of connecting leads to the plug-in coil assembly, $L_{4}-L_{45}$. Separate output coupling arrangemente are provided for the two bands, but these are tuned by a common series capacitor, C3. The $144-$ Me coupling loop is fitted with a 300 -ohm-line plug, fitting into the crystel socket, J_{4}, visible in lig. $1 \overline{7}-24$. It is removed when the $50-$ Me. coil is plugged into the coil socket, J_{3}.

Of special interest is the protertive circuit used to keop the 6116 plate curront within bounds when drive is removed. A $12.1 \mathrm{~L}^{7} 7$ serves as at combined cathole follower (right in lig. $1-25)$ and d.e. amplifier (left). Normatly the d.c. amplifier is cut off by the bists devoloped :uross the amplifior grid lak. Voltage applied to the eathonde follower is determinad by the voltitge divider. Its eathode follows the voltage on its grid, so : adjustment of the potentiometer allows the desired voltage to be applied to the 6146 sereens. Loss of drive removes bias, causing the d.e. amplifier to conduct heavily. Voltage drops across the 1 -megohm resistor in its phate circuit, and this low voltage is applied to the 6146 screens through the cathode follower.

This simple devire not only protects the amplifier tuhes in citse of drive fatilure, but it serves as a convenient means of controlling input. for tuning up or for local work where less thatn full power may be desirable. With a 40)-volt supply, input to the 6146 s can be varied from 20 to more than 125 watts without changing loading adjustments.

Fig. 17-17- 120 -walt Iransmittor for 30 and 1.11 Mc . The top unit is the amplitior, the two lewar smits are r,f, see. tions for Irising the amplifier on cillur band.

BUILDING THE EXCITERS

l'arts bayout for the low-power rigs is not particularly eritical, except that $144-$ Me, r.f. leads must be kept extremely short. All parts exerpt the output and power comnectors are mounted on the aluminum plates. Leads to the connectors

Fig. 17-18 - Top view of the 50-Mc. rig, with cover removed.
are made long enough so that they ean be fastened in place on the batrk wall of the chassis and still permit the plate to be lifted for adjustment or serviding. Wiring of all power leads is done with shiclded wire as an aid to TVI prevention.

Oscillator components are arranged identically in the two units. Looking at the top view of the 50-Mc. rig, lig. 17-18, we see, left to right, the erystat, oseilator-doubler tube, doubler plate tuning, $21: 26$, final plate tuning (front) and antomatseries trimburt (ivar), The sorew aljustr ment in the lower left corner is the oscillator plate-coil slug.

The 2-meter rig is photographed the other way around, to show the power connector and coasial fitting. The 12AT7 patalled doubler is in the middle. Just in buck of it is the :uljust ment for C_{2}. The $2{ }^{\prime}: 2$ g grid trimmer, \prime_{3}, is to the right ind in back of the amplifier tube. The phate coil, upper left, partially hides its trimmer. In the foreground is the antemna series trimmer, C_{5}.

The 50-Mc. bottom view, Fig. 17-19, shows the oseillator-doubler parts at the right. Doubler plate and amplifier grid coils are near the middle. The 2126 plate coil is to the left of the tube's socket; the tuning capacitor below. The smaller coil is L_{5}, with ('3 above. The 14 t - Me, bottom view is more open, and requires little explatition. Note the difference in the mounting of the interstage coupling coils in the two units.

Testing the 50.Mc. Rig

Checking the operation of the transmitters is made easy by the power connertion method shown in Fig. 17-20. Each power lead is brought out to a separate terminal on the power fitting, J_{2}, so that meters can be connected temporanily in each eircuit. A power supply dolivering 6.3 volts a.ce, or d.c. at 1.5 : imp. and 200 to 300 volts at 100 ma . is suitable for test work.

Apply plate voltage through it $50-$ or $100-\mathrm{ma}$. moter and lin 3 , and check for osciltation, tuning the slug in L_{1} for a kick in plate current. Current will be 10 to 15 ma. Listen to the note in a receiver tuned to the frequency of oscillation (25 to 27 Mc .) or a harmonic thereof. If the oseillator is erystat controlled, there should be no more than a slight shift in frequeney as the hath or a motal object is moved near the plate coil, L_{1}.

Next connert the supply directly to lin 3 and foed bin through the test meter. If a lowrathge meter, $0-10$ mat. or so, is available, connect it botween lin 5 and ground to masare the 2 E 26 grid carront at the same time. Tune the donhler plate cireuit, (1 , and the oseillator plate coil slug for maximum grid current. It should be possible to develop 2 mat or more with these circuit praked. llate current in the doubler will be 15 mat. or less.

The position of the doubler plate and amplifier grith coils (sere Fig. 17-19) is not critical, but they should not be end to end as in the $14+$ - ILe. unit. laesonanee in the 2 li26 grid rireuit can be chereked with briss and powdered-iron slugs. Inserting either should catuse the grid current to drop. A rise with a brass slug indicates that L_{2} is too large. A rise with the iron slug shows that it is too smatl.

Noutralization is the next step. The mounting elip of the plastid-sleneve trimmer. C_{4}, is soldered to the stator post of C2. It should be adjusted to the point where tuning the plate circuit

F'is, 17-19 - 13otiom of the 50-Mc. r.f. section. Note that power and output connectors are wired to their respective cables, for mounling in the chassis.
through resonance with drive (but no plate voltage) applied causes no kick in grid current. A change in the value of the grid bypass is required if neutralization is not complete within the range of adjustment on C_{4}. If C_{4} is set at minimum when noutralization is approaching, increase the value of the grid by-pass to about $500 \mu \mu$ f. and try atgain.

Now connert the plate supply to Pins 3,4 and 7 , and run the metered lead to Pin 8, to monasure final plate current. Use a 15 - or 25 -watt limp for a load, tuning C_{2} for minimum plate current. Tune C_{3} for greatest lamp brilliance, cherking C_{2} again for minimum plate current. If neutrolization is exactly right, minimum

Fig. 17-20 - Schematic diagram and parts information for the 50-Vlc. transmitter.
$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. midget variable (Hammarlund $\mathrm{HF} \cdot-1 \overline{5}$).
$\mathrm{C}_{2}-1.5-\mu \mu \mathrm{f}$. midget varialite, double spaced (Ifammarlund 11 F゙・15 \mathbf{S}).
(3_{3} - $-31-\mu \mu \mathrm{f}$, midyet variahte (Hammarlund IIF-50).

R_{1} - 33.01010 whms, 3 watts (3 100, 14010 -ohmi 1 -watt resistors in barallel).
L_{1} - 21 turns Yo. 30 enam. elnsewonnd on $3 / 8$-inch alux-tuned form (National X Rh-9]),
$\mathrm{L}_{2}-53 / 4$ turns No. $20,5 / 8$-inch diam., $3 / 8$ inch Iong
(18 \& W Miniductor No. 3007).
I_{3} - Same as L_{2}, but $61 / 4$ turns.
$L_{4}-5$ turne No, $20,3 / 4$-inch diam., $1 / 2$ inch long (B \& II Do. 30 (0).
$\mathrm{L}_{5}-6$ turns. Vi. $20,1 / 2$ diam., $3 / 8$ inch long ($13 \& W$ No. 31913).
J_{1} - Conaxial cutput fitting (Amphrool 83-113).

$\mathrm{P}_{1}^{\prime}-8$-pin female calle comnector (1 mphenol 78-pl's).

plate current and maximum grid curront will show at the same setting of C_{2}. Failing to achieve this exatetly, set ('4 wo that no grid current appears when drive is removed and plate and soreen voltages are left on. Chere this only briefly, as the plate current will be exressive under this condition if the tube is not oscillating.

The rig is now ready for operation. lor voice work, apply modulated voltage to the plate and sereen through Pins 7 and 8. For cew, the transmitter may be keyed in the rathode lead, lin is to ground, directly, or in the serem lead, l'in $\overline{7}$ to 13 -plus, with a relty or shock-proof key. should sereen keying not cut the 2 E 26 off completely, the doubler plate lead can be keyed at the sime time, provided both are fed from the same supply: The oscillator and doubler, or the doubler alone, can be keyed if fixed bias is connected between Pin 5 and ground.

Approximate operating conditions follow, With 300 -volt plate supply, input will be about 15 watts at best loading. (Off-resonatnee phate current - 70 mab. (irid current - 2 mat. Sereen durrent-4 to 5 mit. Plate curbent, 12AT7 stages- 15 mat, abth or lese Plate athe soreen maty lo fed from separate sourer of 400 to 500 volts. Maximum input should then not exceed ahout 35 watts.

The 144-Mc. Transmitter

Exeept for the extrat doubler stige and the differences made necessary by the higher frequency, the 2 E 26 rigs are built, tested and operated quite similarts. Staight inductive coupling is used between the doubler plate and $21: 26$ grid cirenits in the 2 -metor tramsmitter, and the spacing of the two coils must be ardjusted
for maximum energy transfer. The amplifiep plate circuit is mounted above the deck, for short plate loads. The 2E2t is neutralized by inserting at small inductance in series with the sereon lead (L_{5} in Fig. 17-2:3).

The amplifier tank cireuits are sories tuned. Output coupling is done with it single-turn loop, L_{7}, made of the imer conductor of the coas used to complete the cirenit to the output comneretor, J_{1}.

The oscillator circuit is identical to the $50-$ Me. rig, except that hoth oscillator athd triplor plate circuits ate fed from a single pin on J_{2}. The cable eonnections for the $50-$ Me, rig still :upply, exeept that the too0-ohm resistor in the tripler phate lead must be disconnected temporarily to measure the oscillator plate current alone.

Testing the oscillator, tripler and doubler stages is routine otherwise. Adjust the spacing between L_{3} and L_{4}, and cherk neutralization before applying plate voltage to the 2E26. Check

Fig. 17.21 - Top rear view of the 114. Mc, exciter. transmitter, showing powar and output connectors on back of the chassis.
for neutralization as ill the 50-Mc. rig, altering the number of turns or turn spacing in L_{5}, if necessary.
The amplifier may be keyed in the sereen lead, but no provision is made for opening the

Fig. 17-22 - 'The 2-treter rik is laid out in similar fash. ion, exrept that the final plate direnit is ahove the chassis.
cathode lead as this of enen leads to instability at Ift Mc. Note here astability prectution that may be needed is the iddition of external grounding relips of the 2 lisel shiold ring. Theser iure visible in the photograph, Foig. 17-2!. If sereern keying doces not completely ent of the $2162 t$ plite current, idditional stages maţ be keyod simultaneously: Fixed biats rombereded betwern lin ö and ground masy ako be used if eatroer steqes thath the seremen are kerent.

Best-sounding e.w, will be had if the $12 \mathrm{~A}^{\circ}$ doubler phato abled amplifiel sereen abe keyed abd the oseillator is run from il sepletrate souree. preferably regulated. "lha" power ("able seotup) shown ablows the power supply problem to be
solved in any of several ways, to suit one's own requirements. A convenient operating setup, for two bands is to leave both rigs connected to a common power source, energizing the heater circuits of the one to be used at the moment.

All $1 / 4$-inch shafts are fitted with knobs for abjustment when the eovers are removed. The top surface of (eich knob is slotted with a haek saw, to a depth of about 116 inch, to allow for serewdriver adjustment with the eovers in phace. Holes fitted with rubber grommets are plated over eath adjustment.
(This equipment orjginally desoribed in October, 1954, (2sT, page 16.)

THE 2-BAND 125-WATT AMPLIFIER

The exciters just deseribed were designed as soparate rigs so that athyone interpested in just one of the bands rath make his low-powered rig for that band only. The convenience and performance obtainable with the two rige more than offeete the small extra cost.

In going to a higher power level, however. the investment in tubes and parts needed is great enough so that building for both bands in a single unit heromes attractive "eonomieallys. The amplifier shown in Fige $17-21$ sarrifices little in performance to arhieve its two-band operattion, and the cost is only slightly more than for a similar setup for either band alone.

Construction

The amplifier is built on is $6 \times 16 \times 3$-inch aluminum chassis, with sides of perforated aluminum fastened in place be aluminum angle stock brackets in a manmer similar to the exciters, exeept that controls are brought out through the

$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. variable (Hammarhond HF, H).
Ci, Cis-I- $8-\mu \mu$. plastic trimmer (lirie inis-10).
Ca-1.i-muf. double-spaced variable (llammarlund 11F-1.iN).

$I_{-1}-20$ turns No. 28 enam, on $3 / 8$-inch slug-tumed form (Vational XR-9I).
 wire diam. (13 \& $\mid 1$ No. 3002).
L 3 - 2 turns No. $3(0) 2$.
I_{4} - 1 turns Xo. 30 H , center-taphed.
$\mathrm{L}, 5-27$ turns $\mathrm{Co}, 30$ enam, on 1 -watt resistor (Ohmite 7.235).

Lob - 4 turns Vo. 12 tinnerl, spaced $1 / 4$ inch, $3 / 4$-inch diam., cemter-tapped.
L. -1 turn ${ }^{3}$-inch diam., made from inner condurtor of R(C-59)/L eqax connecting to J_{1}.
RF'C1-0hmite $/$ - 1 II.
J_{1} - Coaxial ontput fitting, female (Imphenol 83-1 R).
J_{2} - B-pin power titting, male (Imphenol FR.PP'8).

Fig, 17-24 - The push-pull 6116 amplifier for $\mathbf{3 0}$ and 14 We. 'Ihe .30- Mr, coils are in place. On the cover in the foreground are the wrid coil, the antenna conpling loop and the plate-line shorting plug, all for 1/1. Mc, operation.
front on insulated flexible couplings. A gridcurrent jack, a filament switeh and the sereornvoltare cont rol are on the front wall of the ehassis. On the back are coaxial fittings. power combertor and the $12.1{ }^{2}$ - socked. Linderside are the filament transformer, sereen audio choke, a few rosistors and the power wiring.
Two aluminum mounting bratede are roquired. There are $f^{1} 2$ inches wide and $23 / 4$ inches high when folded :s slown in Fig. 15-2।. Dimensions otherwise are not important. The 6116 sookets are $2 \frac{1}{2}$ inches apout, centered $1!\underline{2}$ inchers above the chassis. Note that the are on tha tube side of the bracket. Three 3 s-inch holes under cath sorket pass the serexth, control grid and heater romnertions. The eathode and the cold side of the heater rirevit are grounded direetly to the bracket on the tube side.

The screen neutralizing capacitor, ('1, is hehl in plare ly the same serews that hold the sorkets The grid eoil sorket, J_{2}, the two seremer r, chokes and their $0,001-\mu$ f. hepass are hidden from viow by ("t. This whole assombly should be made and wired before momnting it in phare It is $\overline{5}$ inches from the end of the chassis, and
 inches to the right of the first one. Note that the plate tuming ("ilp:uitor, ('2, is mounted on a polystyreme plate with its rotor above ground. A grounded rotor at this point maty introduce stray resontmers and cume parasitio oscillations higher than the operating frequenery.

Though shichling may not be too important in the operation of the exelters, other than for merchanical protection and for TVI prevention, use of a rover is definitely recommended for the amplifer. Cests with and without the shiedding have shown that stable operation is attaned mueh more readily with the shielding in plaree.

Testing and Use

A single supply of 400 volts or less may be used on both phates and serecons of the (31 the for
testing. Jigher than $H(x)$ volts maty be applied to the plates atone if at separate supply of 300 volts is available for the sorrems. Higher that for volts should not be appliad to both eloments as the elamp tule will not hold the plate current within safo limits if thive is removed.
Without plate or sereen voltage on the amplifier, wherk the grid cirenit to see that drive can he ohtatere on either 50 or $1+11$ Me. Theme Should le at least 5 to 6 mat. grid current with wither 2 Fi26 driver rumning at 300 volts on the plate. There will be a surplus of drive on 50 Ma ., ordinarily, so if the gride cirenit is not examery resonated it maty not be foo important. The 141-Ma, grid cireuit an be resonated for maximum grid eurvent be changing the shate of the loop, L_{2}. Spreading its sides firther aphet fowers the resonatht freguencr; bringing them eloser together rases it. The position of the coupling hoop, L_{1}, should to adjusted for maximum grid rurrent as this is done.

With grid drive applied, tune the plate cirenit through resonanee and wateh for variation in grid curvent. Ddjust the sereen mentralization trimmerr, C_{1}, until there is no kiek in grid courent at plate resonamere. The reguired setting maty be differemt for the two bands.

Next test the damp rireuit operation. Apply phate and sereen voltage as shown in Fig. 17-25 and metsure dith plate current with no drive appled. With the potentiometrer arm sot at the ground end, the plate current should be 125 mat of less with no excitation. At to volts this is 50 watts imput, the maximum sitfo plate dissipation for a par of $61-46 \mathrm{~s}$. The tubers should not lor operated in this waty for long periods, hat it is satie for ce w. kesing or normal short tests.
Now commert a 100 -watt lamp arrose the output coaxial fitting. Apply drive and phate and sereen voltage. Tune (i2 for minimum phate currat or maximum lamp brilliance, Adjust ('3 for greatest output, rotuning ('2 for minimum phate reurent meanwhile. Set the reopling so

Fig. 17-25 - Schematic diagram and parts list for the twobland v.h.f. amplifier.
$\left.\mathrm{C}_{1}-\mathrm{ION}\right)$ - $\mu \mu \mathrm{ff}$ - per -section split-stator variable (IIammarlund (IFD-100).
$\mathrm{C}_{2}-30-\mu \mu \mathrm{f}$.-per-section, double spaced (Itammarlund IHFI)-30X).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$. variable (Hammarhned 1 HF .in).
$\mathrm{L}_{1}-50$ Mr: 2-turn link around L_{2}. 141 MC:: I Iair, in Ioop $11 / 2$ indhes long, $1 / 2$ inch wille. Made from $51 / 2$ inches No. 16 timed. Cuver with insulating sleeving. Solder into P_{1}.
$\mathrm{I}_{2}-50$ M/r.: 8 lurns No. 14 timed, $11 / 2$-inch diam., 2 inches long, exnter-tapped; 5 -pin base (3 \& W
 tapped and wo insulation.
I_{3} - Shown as heavy lines. Flashing copper strips $1 / 4$ inch wide, 3 inches long. Inner edges are ${ }^{13 / 6}$ ineh apart. Beml over $\frac{1 / 6}{}$ ineh fur soldering to plate caps. Conneet $C_{2} 2-2$ inches from tule end.
that the plate current is no more than 300 ma . with a 400 -volt plate supply when the antema series caparitor is tuned for maximum output. This is the maximum rating for cew, operation. For plate-modulated phone 250 ma . would be advisable, particularly at $1 / 4$ Me. Rerheck neutralization by removing drive. (irid current should dron to zero. If it does not, resed (${ }_{1}$ earefully until there is no sign of grid current.

Once the amplifier is working correctly it may be operated in several ways. At 50 Me . inputs as high as 180 watts cath be run on c.w. if the sereen voltage is held low enough so that the platu imput will he no mome than 50 watis with the drive momoved.

Fir. 17-26-Bottom view of the v.h.f. amplifier. Power connector, coax fittings and clamp tulie are mounted on the rear wall, filament transformer is at the right and the screen-lead choke near the middle.

Simple Transmitter for 220 and 420 Mc .

The transmitter in ligs. 17-27-17-30 is for the neweomer who wants to start with simple gear, going on to something better when he has gained construction and operating experience. It is built in two units, with the idea that the modulator eat be retained when the r.f. portion is disearded.

The r.f. section is a simple oscillator with two 6.AFt or 6.ATt tubes in push-pull. Its plate
pending on the plate voltage and whether a (ilt or bla tube is used. It may be considered as a long-term investment that will be suitable for use with any r.f. section of up to 20 watts input that may be constructed at a later date.

Construction

The two units are buit on identieal 5 by 7 by 2 -inch aluminum rhassis, comerting by

Fig. 17-27 - 'The simple transmitter for 200 and livo Mr. is made in two parts. "1he modulator, left. may be retained for twe with more advanced r.f. sertions than the simple oscil. lator slown at the right. The two units may he mhaged together or connected hy a cable.

eirenit is changed from a quarter-wave line at 220 Me, to a half-wave line at 420 Me . by phegging in suitable terminations at the end of the tuned sirenit.

Beratse the oseillator is modulated direetly it will have considerable frequeney modulation, and the signal will not be readable on selective receivers unloss the motulation is kept at a very low level. Where a broader recoiver is in use at the other end of the patha higher modulation lavel ean be employed.

The modulator is designed for it erystal misrophone. It delivers 3 to 10 watts output, de-
means of a plug on the osedlator and a sorket on the modulator. Power is fed through it similar plug on the bark of the motulator. Arrangement of parts in the modulator is not critiond, but the oscillator should be exactly as shown.

Sorkets for the tubse are one inch absart eonter to eronter, 23,1 inch in from the end of the chassis. ('1 is at the exact center of the chassis, with $J_{2} 1 \frac{1}{2}$ inches to its left, as seron in lig. 17-28. At the far left is a crystal socket. used for the antenna terminad, f_{1}, One-inch eremmic standoffs are mounted on the sorews that hold J_{2} in place. These support the antennt roupling loop, L_{2}.

Testing and Use

A power supply delivering aloont 200

Fig. 17-28-13ottomview of the osaillator unit, showing the two-hand tank circuit. I'he line ter. minations, wills heir pro. tecting mas removed, are in the foremround. At the Joft is the 2.2 1 - Mr, plug, wilh the 120-Mc, ore at the right.

Fig, 17.29-Schematic diagram and 'parts information for the two-band oseillator and modulator.
$\mathrm{C}_{1}-10.5-\mu \mu \mathrm{f}$.-presection butterlly variable (Johnson 101.1315).
$\mathrm{L}_{1}-231 / 2$ inch pieces No. 12 timerd, spared $1 / 2$ inch. bend down $3 / 4$ inch at tube end and $1 / 2$ inel at socket end. K.f. clookes connect $5 / 8$ inct from bend at tulue end. Comnect C_{1} at 1 inch from lowd at sucher end.
$L_{2}-1$ Iairpint lewp $21 / 4$ inches long and $1 / 2$ inch wide, No. 10 , covered with insilatine sleping.
J_{1} - Crystal sucket used for antemia terminal.
volts d.e. at 50 ma . or more and 6.3 volts at 1 amp. or more is needed. Plug the units together or commert them by a cable. With a cable, a milliammeter may be connected betwern the So. 4 pins to motare the oscillator plate current. Otherwise the meter should be conneeted temporatrily between Pin 4 of I_{3} and Jin 3 of J_{2}, in place of the wire shown in Fig. 17-29.

Plate current should be about 25 to 30 ma . If the stage is oscillating there will be a fluctuation in current as the plate line is touched with :un ineulated metal ohject. I o not hold the metal in the hands for this test ! The frequency is best eheeked by means of Lecher wires, a technique that is covered in the chapter on measurements.

With the dimensions given the range with P_{1} plugged in should be about 405 to 450 Me . With Γ_{2} plugged in the frequency should fall within the 220 -Mc.

Fif. 17-30-I.onhink at the undervide of the modulator.

A Tripler-Amplifier for 432 Mc .

(Only tubes designed esperitlly for u.h.f. service will work satisfactorily at 420° Mc. and higher. The various small reeriving triodes made for u.h.f. TV use will work well in low-powered frequencer multipliers and r.f. amplifiers for transmitting, hat the trend is to tetrodes. Several of the latter are now available.

The tripler-amplifier shown in Figs. $1 /-31$ to 17-3:3 delivers up to 20 watts output on 432 Me.

Fir. 17.31- A tripler-amplifier for 432 Mc , using dital telrodes. Shidfled construetion and forced. air eowling are employd.

When driven on 144 Me. by any 2 -meter unit delivaring 10 watts output or more In phatemodulated service the output is 12 watts, Tubes are R 1 C'S (65212 dual totrodes, but with slight modification Amperex 6252s or 5×0 4. may he used. With 6252s the output will he about the
 to 40 watts with higher plate voltates. The 832.1 maty also be used. but the output will be no more than 4 or 5 watts. Foreed-air cooling and shielding are recommended.
The tripher tube is mounted vertically, at the left, with its sorket 1 le inchers bolow the chansis. There is just room under the soreket for the selfresontunt input riveuit, L_{2}. The :mplifier is horizontal, with its sorket mounted in batek of a plate that is 8 inches from the left edge of the $3 \times 1 \times 17$-inch alumimum chassis. The shideing anclosure is 31 inchos wide by $31 / 2$ inches high. A eroling fin is mounted on the rear wall of the chassis. Air circulates around the tripher tube through its 2 -inch hole, flowing out through
holes in the top cover. Holes are drilled in the chassis under the amplifier tube, and in the cover over it. With a bottom plate fitted to the chassis there should be enough air flowing through both top vents to lift a paper briskly when the fan is started.

Half-wave lines are used in all d:32-Mre circuits. The grid cireuit of the amplifier is capacitively coupled to the tripler plate line, the two over-

lapping about $1 \frac{1}{4}$ inchess. The spacing between them must be adjustide carefully for maximum grid drive Plate voltage is fed to the limes through small resistors. These should be ronnereted at the point of lowest rif. voltage on the lines. The amplifier grid r.f. chokes are coonneted at the tuine socket.

Note that the plate line capacitors, (${ }^{1}$ and ('2, have their rotors floating. This is important. Groundiag the rotols, or use of capabeitors having motab end plates, may introfure multiple r.f. pathe and eirevit unbabanes. The eapacitors have small metal mounting brackets that are not commered direetly to the rotors, but even so it Wis nerossary to resort to polyst yrene mounting plates for hest circuit balane and efficienere. Holes $3 / 4$ inch in dianctor are punched in the front wall to pass the rotor shafts.

Testing

The tripler-implifier is designed to operate in conjuntion with a Iff-Ma, transmillar such ans

Fis, 1-az-lawhing into the triplereamplilier with the top cowir atme frout plate remosid.

Fig．17．3．3－Schematic diagram for the 432－Me．tripler－amplifier．
$\mathrm{C}_{1}, \mathrm{C}_{2}-10-\mu \mu \mathrm{f}$－per－section split stator，double spaced （Bud I．C．－I661）．Do not use metal end－plate or grombled－rotar twiges．
$\mathrm{R}_{1}, \mathrm{~K}_{2}-23, \mathrm{~B}(\mathrm{~K})$ ohms， 2 watts（1wn 17,000 ，whm ！－watt resistors in parallel）．
I．-2 turns Ao， 20 enam， $1 / 2$－imh diam，Insert bee tween turns of l_{2} ．
$\mathrm{I}_{2}-4$ turns No． 16 enam．， $1 / 2$－inch diam．， $1 / 2$ inch long， center－taprid．
1，3－Copper strap on heat－lissipaling comnertors， 31 自 inche long．＇1wist（\％）degrees 1／2ind from plate end．Spare 3 年 in ind．
I_{4}－Copper strap $2^{2 / 3}$ imehes lomg，sellemed to grial

the 2 \＆26 rig shown in Fig．17－2：3．A phate supply of 300 volts at 200 mat．is nereded（ 600 volts maty be used with 580．fs）．Apply power to the 1 H －An ． driver stage and adjust the spacing of the turns in L_{2} and the degree of roupling betwern L_{1} and L_{2} for maximum tripler gride current．This should be about 3 mit．

Next appls pate and sereen voltage to the tripher and tune（＇）for maximmong grid current in the amplifier，with no pate or sereern voltage to the latter．Sdiust the position of the grid lines with respert to the phate arenit．read－ justing f＇1 whenever a change is mande，until at least 1 mak grid current is ohtained．

Now（onnere a lamp load across the output torminal，I_{2} ．Ordinary house lamps are not suit－ able．A fatir load can be made by comorting 6 or more biuc－bead pilot lamps in paradel．This can be done by wrapping a $1 / 4-$ inch copper strap

15 －Copper strap $37 / 8$ inches long，fastened to heat－ dissipating emmectors，space $3 / 4$ inch．All tank circuits of haslaing eopper $1 / 2$ inch wide．
L6－Compling loop，No， 20 enam．L－skaped mortion is 1 inela long and $5 / 8$ inch wide．Mount on 3 －inch ceramic stand－offs．

J_{2}－Crotal socket need for antenna terminal．
J3， I_{4}－Chesed－errenit jach．
$\mathrm{J}_{5}-5$－pin mate chassis comector（ 1 mphenol 86. R（P）
II－Motor－hhower atsembly， 17 effm．（Ripley Inc．， Middletown，Comn．，「ype 8133．）
around the brass hases and soldering them all together．Then anothere stratp should be soldered to the lead terminals，Apply plate and sereen voltage and tune（＇2 for maximum lamp brilliance． It should be possible to develop a very bright glow in the ti－lamp lond with a plate current of ahout 100 mit．at 300 volts．

Cut drive very briofly to chock for oscilation in the final stare．Grid eurrent should drop to zero．The serecon and grid resistors shown are for operation with phate modulation．More input can berm if the sereen or grid resistane is deremsed， but this should be done only when the rig is to be used for f．m．or c．w．servide．

Operating conditions are about as follows： tripler grid current－ 2 to 3 mat．；amplifier grid current－ 3 to 4 mit．；tripler plate and sereen current－ 00 mar ；amplifier plate and screen current－ 110 mar；output－ 12 watts．

Exciter-Transmitter for 220 Mc .

Construction of a stable transmittor for 220 Me, is not difficult, and while simple oscillatortype rigs such as the ond shown in Fig. 17-29 maty suffice for short-range work, a arestal-controlled or otherwise stabilized rig is highly worth while. . 1 low-powered transmitter of stable design need not be costly, as inexpensive tubes can be used throughout. A further eronomy ran be mado be selecting at crastal frequency in the lowar part of the band, so that the same erystal may be amployed for the upper portion of the 2-meter band as well.
The transmitter shown in Figs. 17-35, 17-36 and $17-37$ delivers 5 to 10 watts output. The final stage may be modulated for voice work, or the unit may be used as an exciter to drive higher-powered stages. Four tubes are reguired. The first two are 6CLus, serving as oscillatornultiplier and single-ended tripler. The third stage is a push-pull tripler using an Amperex 6.360 dual tetrode. This drives a similar tube as at straight-through amplifier on 220 N1e.

Cristal frequencies should lio between 8.5 and 8.33 Me., or 12.22 to 12.5 Me. If the same (rystill is to be useful for 2-metor work it must be betwern 8.15 and 8.22 Mc , or 12.22 and 12.3:3 Mc.

A balanced plate cireuit is used in the multiplier, so that its output can be eaparitively coupled to the (i360 triplor grids. In rase of insufficient grid drive to the bi360 tripler, try putting a small plastic trimmer between the low side of L_{2} and ground, to balanere up the eapare $\mathrm{i}-$ tances on either side. It was not needed in the original, but it would be well to remember the suggestion.

The 60360 pash-pull tripler to 220 Me. is indurtively conpled to the push-pull final stage. No neutralization is shown in Fig. 17-36, Should neutralization be needed. a method for ashoreving it is given later, ()utput from the final 6is60 plate circuit is taken off through coan, and provision is made for tuning out the reartance of the link. with C4.

Construction

The tramsmitter is built on a flat plate of sheret. aluminum 5 hy IO inches in size. This is screwed to a standard aluminum ehassis of the samme dimensions, that serves as both case and shiodding. If more complete shiclding is required, a perforated motal cover may be made to go over the top, as was done with the 6 - and 2 -meter rigs in Fig. 17-17. All parts exerpt the power and roxxial output connectors are mounted on the top plate. The two connectors mount in holes in the rear wall of the chassis. The mounting serous are held in place on the fittings with nots and other muts on the outside of the chassis hold the fittings in position.

The tube sorkets are along the centerline of the plate, two inches conter to center. with the oseillator socket $13 / 8$ inch in from the right end. as seen in the photographs. The erystal soreket and the oscillator phate coil. L_{4}, maty be sern at the lower and upper right, resperetively, in the bottom view. The tripler plate tuning caparitors: are midway botwern their respertive sorckets.

Exerpt for the power leads, there is no "wiring' in the usual sonser, as all r.f. leads should be extremely short. The deroupling resistors and r,f. chokes in the various power cireuits are supported on tie prints. Three single-lug strips and two double-lug enes are noeded. All the power wiring is done with shiolded wire, as an aid to TVI prevention. The coils L_{22}, L_{23} and L_{4} are soldered directly to the stator support hars of their trimmers. with the shortest possible leats.

Adjustments

The power supply shoud deliver at least 3 amperes at ti .3 volts, at.e. or d.c... and 200 to $3(30 \mathrm{k}$ volts d.e...at 200 mat. If a 300 -volt supply is used for the testing, the tubes ain low proterted from excessive drain by comnerting a otoo-rhm 10 watt resistor in sorios with the power supply lead. The power comertors. J_{1} and I_{1}, make provision for metering all plate circolits exerpt those of the oseillator and first tripler. The power

Fig. 17.35 - Whe 290. If , tetrode tranemitter. Mt the right are the foci.f ers =ial osaillator and mattiplier sares. with the 6:360 tripler and amplifier in the center and left, respectively. The rig is built on a sheret of aluminum which is screwed to an inverted chassis.

Fif. 17.36 - Sehematic diagran and parts information for the 200-Me. tetroly transmitter. Wesistors are half watt unkenotherwize sperified. Caparitor value \times helow $0,(0) 1$ are in $\mu \mu$ f.: all ecramic.
Cit $-11-\mu \mu \mathrm{f}$. miniature buttertly variable (Iohnsm L_{4} - 2 turns same as $I, 3$, centerotapped, Adjust turns (1才BH1).
(2. ($: ~=-\mu \mu \mathrm{f}$. miniature butterfly variahle (Johmson . $\mathbf{2} 1311$).
$\mathrm{Ci}_{\mathrm{A}}-1.5-\mu \mathrm{f}$. miniature (Johm*on 1.5 All).
1.1-14 turns No. 28 cnam. om $3 / 8$-ineh irom-slus furm (National XR-91).
 tapped (B\& 11 Miniductor No. 3(M13),
 tapped. Space twice dianneter of wire. ceceplof for $1 / 8$-inch space at ernter. -pacing and degree of coupling to L_{3} for masimum krid current.
La-2 turns ame as I. 5 . close wound. Adjust mastion at center of $/ .5$ for maximum outpiat.
J_{1} - 8-pin mate chassis fitting (Amphemol 86 -RCPP).
J_{2} - Coavial litting, female ((mphenol 83-1 H).
P_{1} - 8 -contaet power cable connector, female (Amphemol -8-RS8).

$\mathrm{RF} \%, \mathrm{RFO}_{3}-17$ turns No. 28 enan!, on high value 1-watt rexistor, or use ohmite \%.235.
leads to these arr shown romereted together, to l'in 2 of J_{1}, hut during testing they should be fed separately through a milliammeter. as deseribed below.

Comeret : 0-50 or 0-100 milliammeter betwern J'in 2 of I_{1} and the oscillator plate-screedi circuit. at the low side of the 22.000 -ohm sereen-dropping resistor, point A on the sehematic. Be sure that the tripler plate and screen resistors atre disconnerted for the time being. to prevent this stage from drawing current. Apply 200 to 300 volts dice. through l'in 2 of I_{1}, and lome the plate ciredit of the osedlator to the third harmonie of the arystal freguence. Listening on this frequency (24.45 to 25 Mre, depending on choiere of crestal) a large increase in signal strengt haould be noted as the coil is tumed through resonamere. A double "herek on frequency with a catibrated grid-dip or absorption wave meter is recommended. (sseillator plate-screcon current will be about 20 mat.

Now connert the oscillator plate-screen power lead direetly to l'in 2 on J_{1}, and insert the moter in the load to the tripler phate-sereen cireuit. point B on the diagram. Apply voltage and tune the tripler plate cireuit for maximum output at 73.35 to 75 Mc , A 2 -volt $\mathbf{6 0}$-mat. pilot lamp with a singlo-tarn loop of insulated wire. about a half inch in diameter. maty be compled to L_{2} to scrve as atn output indicator". The 6CLd tripler plate-sereen comrent will be about the same as the oseillator, around 20 mat, at $3(0)$ volts.

Now wire the power leads to these two stages as shown in the diagram. Lave the $3(\mathrm{k})$-voll lead comberted to Pin 2 of I_{1}, and romeret a 100 (mat. meter het ween lins 2 and 4 , to measure the 6360 tripler plate-screen rurrent. A low-range milliam-
meter, about 0-10 mas., should be comneeted between Pin $\overline{5}$ and Pin 1 , to measure final grid current. Tune C2 for maximum indiation on this meter. With no plate voltage on the final stage. there should be at least 3 mad. grid current. Adjust the spating bet ween L_{3} and L_{4} carefully, retuning Cacach time, for maximum grid current.
solder a jumper bet weren l'ins 2 and 4 on J_{1}. so that voltage will be supplied to the 63360 tripler. Connect at temponary jumper lotweon l'in 2 and Pin $\overline{7}$. to ferd voltage to the final screen, and connect the $0-100$ milliammeter betwern Pins 2 and 8. to measure final plate courent. A 10- or 15-watt light bulb masy the used as a temporary dummy load, comected to I_{2}. Apply voltage and thine C $_{3}$ for minimum plate current, or for maximum output as indicated in the lamp load. Adjust C_{4} for best output. The setting of C_{4} and the degree of roupling between L_{5} and L_{6} will be different for an intema, however, as the lamp is not a good load at this frequency.
If the stage is completely stable, maximum output, maximum grid current amd minimum plate current should all ocrur at the same setting of the plate tuning capacitor, \mathbf{C}_{3}. Another cherk for neutralization is to cut the drive for a brief prodiod be removing plate and sereen voltage from the tripler. Girid current should drop to zero when this is done. If it does not, the final stage is oscollating, and must be meutralized. In the original model, there was no artuas' self osedilation, but the stage was not completely stable until as small amount of neutralization was added.

This is done very simply with the fi330. The leals are so arranged within the tube that all that is required for neutralization is a very

Fig. $17-37$ - Butlom view of the 220. Ve 1 ransmitter, showing all parts exeept the tubes and ervatal. Note the method of attaching the power and coavial fittings. Vals hadil their mounting s.rews in plate. so that they can be fatemed to the rear wall of the chamsis.
small caparitance botween lins 3 and 6 , and between Pins 1 and 8. A stuh of No. 18 wire ahout $3 / 8$ inch long is soldered to l'in 6 , with its opposite end "looking" at l'in :3. A similar stub is soldered to l'in 8 , with its freer end adjacent to I'in 1. The ends ean then be bent toward or away from the grid pins to give the required capacitance.

When all stages have beren adjusted correetly, the plate voltage may be inereased to :300 on all stages, to run the maximum power of which the tubes are capable. C'urrent drains indieated on the schematio diagram are for 300 -volt operattion. Staying at 250 volts or less allows more conservative operation, and may he well worth while, in the interest of longer tule life. There is no great advantage to be gained from pushing tho fubes excessively, as doubling the power output will not less than one s unit improvement in signal level at the receciving end.
In feeding power to an antenna system using coasial line, it is merely neressary to comeret the coax to the output fitting, J_{2}, and adjust the coupling and (${ }_{4}$ for maximum radiated power. If $300-$ ohm Twin-Lead or open-wire line is used to feed the antenna, coupling to the transmitter is done with a coaxial balum, An antenna system
designed for 300 -ohm balanced lines maty be fed with 75 -ohm coax similarly.

If the rig is to be used as a complete transmitter r.f. section, the final plate and screen will probably be modulated. This is done by running the lead to bin 6 on the power pling to the secondary of the output trimaformer of the modulator. Any modulator unit eapable of supplying about io watts of adio power mas be used.

One or more amplifier stages may be added to build up the r.f. power level. As interstage coupling efficiency is likely to be poor at this fredueney the following stage should not operate at ats high a power level as would be aceepted prartier on lower frequencies. Suitable tubes for 220-Ne, :mplifier stages following this exciter are the $8: 32.1$, the 6252 and the 5894.1 or $960: 3$. An amplifier using the (i252 wis doseribed in (S゙T for May, 195t, page 18. ()ther ONT reforcones that may be of interest to 220 - Ne, workers are listed below.
"Coaxial Tank Amplifier for 220 and 420 Me," - Mix, 1931, page 39.
"220-Me. Station for the Beginner," - ()ctober, November and Derember, 1953.
"Crystal ('ontan on 220 Mr." (All-triode transmitter, 10 watts) - Fobruary, 1954 , page 16 .

V.H.F. Antennas

While the baside primeiples of antemmat design remain the same at all fregueneies where eonventional dements and ramsmission lines are used, eertain asperts of v.h.f. work call for changes in antemat terhnigurs above 50 Ne. Here the physidal size of arrays is reduced to the point where some form of antemat having gain over a simple halfwave dipole ram le used in almost amy location, and the rotatable high-gain direational array has beconte at standard feature of all well-equipped v.h.f. stations. The importanere of antemna gain in v.h.f. work camot be over-emphasized. By ne other means (ran so batge a romurn be ohtained from a small investment as rosults from the erection of a good direcetional array.

DESIGN CONSIDERATIONS

At 50 Mr. and higher it is usually important to have the antemat work well over atl or most of the hand in question, and as the bands are wider than at lower frequencias the attention of the desigmer must be forused on broad fregueney response. This may be attamed in some instances through sabrificing other qualities such as high front-toback ratio.

The loss in a given lengh of transmission line rises with frequeney. V.h.f. feedlimes should be kept as short as possible, therefor. Matching of the impedineres of the antennat and transmission line shonld be done with care. and in open loeat tions a high-gain antemat at relatively low herght mate be preferable to a low-gatu system at groat height. Wherever possible, however, the v.h.f.

Fig, $18-1$ - Combination turing and matehing stab for , hi,f. arraym. Sliding ehort is used to thme omt reantance of the drisen element. 'liransmission line, either halanced or cook, is emmected at the ponint of lowsex stand-ing-wave ratio. Adjustment procedure is outined in test.
arraw should be well above heavy foliage, buildings, power lines or other obstructions.

The physical size of a v.h.f. array is usuatly more important than the mumber of elements. is f-element array for 4.32 Me may have as murh gain over a dipole as a similarly -designed armay for $1+4 \lambda e$, hut it will interergt omly one-third as
much encrgy in receiving. Thus to be equal in
 the $1+\frac{1}{-\lambda}$. antemma in rapthere area, reguiring three times as many colements, if similar clement configurations are used in both.

Polarization

Larly v.h.f. work was done with simple antemass and sine the vertical dipole gave as good results in all directions as its horizontal counterpart offered in only two directions, vertical polarization beeame the acereped standard. Later when high-gain antemas came into use it Was only matural that these, too were put up vertioal in areas where v.h.f. activity was already well establisherl.

When the diseovery of various forms of longdistance propatation stirred interest in v.h.f. operation in areas where there wats no previous experioners, many newromers statted in with horizontal arrays, these having beom more or less standard practier on frecguencies with which these operators were familiar. As use of the same polarization at luoth ende of the path is neenessury for best results, this latek of stamdardization rosulted in a conflict that, even mow, has not yet been completaly resolved.

Tests have shown no large differenee in results over long bat he though evidenere points to it slight superionity for horizontal in certain kinds of terrain, but vertical has other factors in its favor. Horizontal arrays are generally casior to build and rotate. Where ignition noise and other forms of man-made int orferenee are present, horizontab systoms usually provido better signal-to-noise ratio. Nimple is or 4 -ekment arrats are more offeretive horizontal than vertiral, as their radiat tion patterns are broad in the plane of the elemonts and sharp in at plane perpendicular to them.

Vertical systems can provide uniform coverage in ath direetions, a feathme that is possible only with fairly complex horizontal arrays. (aian can be built up without introducing directivity, an impertant feature in net operation, or in locations where the installation of rotatable systems is not possible. Mobile opration is simpler with vertical antemats Foar of incroased TVI has kept v.h.f. men in some densely-populated areas from adopting horizontal as a stindard.

The factors favoring horizontal have been predominant on 50 Me ., and today we find it the standated for that hand. exeept for emergenoy net operation involving mobile mits. The slight advantage it offers in WX work hats acereleated the trend to horizontal on $1+4$ Me. and higher hands. though vertical polarization is still widely used. The pieture on 14. 220 and 420 Mr . is still eonfinsed, the tendeney being to follow the locat
trend. The neweomer should eheek with Iocal amateurs to see which polarization is in general use in the area he expects to cover. Eventual standardization should be a major objective, and to this end it is recommended that horizontal polarization be establishod in areas where activity is developing for the first time.

IMPEDANCE MATCHING

Because line losses increase with frequeney it is important that v.h.if antennas systems lee matched to their transmission lines carefully. lines commonly used in v.h.f. work inchude open-wire, usually 300 to 500 ohms impedance, spaced $1 / 2$ to two inches; polvethylene-insulated flexible lines, available in 300 . 150 and 72 ohms impedance; and coaxial lincs of 50 to ! 00 ohms impedance.
The various methods of matching antenna and line impedtuce are deseribed in detail in the chapter on transmission lines. Matrhing deviess commonly used in v.h.f. arrays fed with batanced lines include the folded dipole in its various forms, Fig. 1:3-17, the "T" Match. Fig. 13-21, the "Q" section, Fig. 13-13, and the adjustable stub, Fig. 18-1. The gamma match, useful for feeding the driven element of a parasitic array with coaxial line, is shown in schematic form in lig. 13-21. Balaneed loads such as a split dipole or a folded dipole ean be fed with coax through a balun, as shown in Fig. 13-2:31). Practical examples of the use of these deviees are shown in the following pages. The principhes upon which their operation depends are explained in Chapter I3, with the exception of the adjustable stub of Fig. 18-1.

The Corrective Stub

The adjustable stub shown in Fig. 18-1 provides a means of matching the antenna to the transmission line and also thang out reactane in the driven element. It is, in effect, a tuning deviee to which the transmission tine may be connected at the point where impedances match. Both the shorting stub and the point of commetion are made adjustable, though once the proper points are found the comections may be made permanent.

For antenna experiments the stub may be made of tubing, and the connections made with sliding elips. In a permanent installation a stub) of open-wire line, with all connertions soldered, may be more satisfactory merhanically. The transmission line may be open-wire or Twin-lead, connerted directly to the stub, or coaxial line of any impedance, which should be connected through a balun.

To adjust the stub start with the short at a point about a quarter wave langth below the antenna, moving the point of connertion of the transmission line up and down the stub until the lowest standing-wave ratio is achieved. Then move the shorting stub a suall amount and readjust the lime connection for lowest s.w.r. again. If the minimum s.w.r. is lower than at
the first point cherked the short wis moved in the right direction. Continue in that direction, radjusting the line connection each time, until the s.w.r. is as rlose to $1: 1$ as possible. When adjustments are eompleted the portion of the stub helow the short can be cut off, if this is desirable meehanically.

TYPES OF V.H.F. ARRAYS

I ireetional antennat systems commonly used in amateur v.h.f. work are of three general types, the collinear, the Yagi, and the plane reflector

Fig. IR. 2 - Inserts for the elods of itue elements in a v.l.f. array provide a means of aljnsiment of length for optimmm proformance. Short pieces of the element material are sawed lengthwise and compressed to fit inside the element ends.
array. Collinear systems have two or more driven elements end to end, fod in phase, usually backed up by parasitic reflectors. The Yagi has a singlo driven element, with one or more parasitic eloments in front and in batck of the driven element, all in the same plane. The plane-reflector array has a large reflereting surfare in back of its driven element or elements. This maty be a sheet of metal, a metal screen, or closely-spaced rods or wires. The reflector may be a flat plane, or it can be bent into several forms, such as the corner and the parabola.
lexamples of all three types are deseribed, and each has points in its favor. The collinear sustems such as the 12 - and 16 -rlement arrays of Figs. 1812 and 18-1:3 require little or no adjustment and they present few feed problems. They work well over a wide band of frequencies. lagi, or parasitic arrays, Figs. 18-5 to 18-9, depend on fairly precise tuning of their elements for gain, and thus work over a narrower frequency range. They are simple mechanically, however, and usually offer more gain for a given number of elements than do the collinear systems. I'lancand corner-reflector arrays are broadband devices, having broad forward lobes and high front-to-back ratio. They arr easily adjusted, hut somewhat cumbersome mechanically.

ELEMENT LENGTHS AND SPACINGS

Designing a v.h.f. array presents both merhamical and electrical problems. The electrical problems are basie, and their solation involves choosing the type of performance most desired. . Mechanical design, on the other hand. can be subject to almost endless variations, and the form that the array will take can usually be derided by the materials and tools availatble. One common

TABLE 18-I Dimensions for V.H.F. Arrays in Inches				
Freq. (Mc.)	52*	146*	222.5*	435*
Lriven Element	106.5	38	$247 / 8$	$12^{3} 4$
Change per Me.*	2	0.2.)	0.12	0.03
Refleetor	1111/2	40	261/8	133*
1 1st Wirector	1011/2	36	235/8	121/8
2nd 1 lirector	$9491 / 2$	35) 31	233/8	12
3 rd Director	971/2	3.$)$	23	117/8
1.0 Wave length	23.4	81	52	27
0.62 .5 Wave length	147	501/2	32.5	$16^{3}{ }_{4}$
0.5 Wave length	117	401/2	26	13.5
0.25 Ware length	1381/2	201/4	13	$\mathrm{Ci3}_{4}$
0.2 Wave length	47	10	101/2	53/4
0.15 Wave length	35	12	7\%/4	4
Batun loon (eoas) 76 26.5 $163 / 4$ $83 / 4$ * Jimensions given for element lengths are for the middle of each band. For other fremuencies adjust longths as shown in the third line of table. Wxample: A dipule for :0.0 Me, would be $100.5+4=110.5$ iuches. Apply rhange figure to parasitio cloments as well. For phasing lines or mathing sections, and for spacing betwern elements, the midband figures are sulficiently ancorate. "lhes apply only to open-wire lines. D'arasitio-element bengths are ontimum for 0.2 wavelength spationg.				

source of materials for amateur arrays is com-merrially-huilt TV antennas. They can often In revamped for the amateur v.h.f. bands with a minimum of effort and expernse.
bimensions for Yagi or collinear arrays and their matching deviecs can be taken from Table 18-1. The driven element is usually cut to the formula:

$$
\text { Length (in inches) }=\frac{5510}{\text { Freq. (Nc.) }}
$$

This is the basis of the lengths in Table 18-I, which are suitable for the tubing or rod sizes commonly used. Arrays for 50 Mc . usually have $1 / 2$ to 1 -inch clements. For $144 \mathrm{Me} \cdot 1 / 4$ to $1 / 2$-inch stock is common. Rod or tubing $1 / 8$ to $3 / 8$ inch in diameter is suitable for 220 and 420 Ne. Note that the olemont lengths in the table are for the middle of the band concerned. For peaked performance at ot her frequencies the element lengths
should be altered aceording to the figures in the third line of the table.

Reflector clements are usually about 5 pereent longer that the driven element. The director noarest the driven clement is 5 percent shorter, and others are progressively shorter, as shown in the table. Parasitic clements should also be adjusted areording to line 3 of the table, if peak performance is desired at some frequency other than midhand.
latasitic element lengths of Table 18-I are based on element sparings of 0.2 wave length. This is most often used in v.h.f. arrays, and is suitable for up to 4 or 5 clements. Other spacings can be used, however. If the clement lengths are adjusted properly there is little difference in gan with reflector spacings of 0.15 to 0.25 wave length. The closer the reflector is to the driven element,

Fig. 18.3 - Ommidirertional vertical array for 111 Mr. Vile. ments of alumimum clothesline wire are monnted an ceramic tatodoff insulators acrewed tu a wowlen pulte. Predline shown is $\begin{aligned} \text { IV-ohm coas, with }\end{aligned}$ a halun al the feedproint. I'win-leal or ollore 3uloohm balanced line mas alse be nseil. but it shoulal the brought away hortzontalls from the supportiak pole and oldoments for at least a platiter wavelenkih. Coax may be taped to the support.

the shorter it must be for optimum forward gain, and the greater will be its effect on the driven element impedance.
birectors may also be spaced over a similar range. Closer spacing than 0.2 wave length for arrays of two or three elements will require a longer director than shown in Table 18-I. Thus it can be seen that close-spared arrays tend to work over a narrower frequency range than widespaced ones, when they are tuned for best performance. They also result in lower drivenelement impedance, making them more difficult to feed property. Spacings less than 0.15 wave length are not commonly used in v.h.f. arrilys for these reasons.

Practical Designs for V.H.F. Arrays

The antenna systems pictured and described herewith are examples of ways in which the information in Table 18-1 can te used in arrays of proven performanes. Dimensions cam be taken from the table, except where otherwise noted. If
the buiker wishes to experiment with element adjustment, a simpte method is shown in Fig. 18-2. With elements $1 / 2$ inch or larger diameter a piece of the element material can be used. It is sawed lengt hwise and then compressed to make

CHAPTER 18

Fig. 18-4-1 Dimensions and supporting method for the 14.-Mc. vertical array.

a tight fit inside the end of the element.

A readily-available material often used for elements in arrays for $14 t$ Itr, and higher is aluminum clothesline wire. This is a stiff harddrawn wire about $1 / 8$ inch in diameter. It should he used in preference to a similar-appearing wire commonly sold for TV grounding purposes. The latter is too soft to make satisfactory elements if the length is more than about two feet.

A Collinear Array for 144 Mc.

Wherea vertically-polarized array having some gatin over a dipole is nereded, yet direetivity is undesirable, collinear halfwave clements may be mounted vertically and ford in phase, as shown in Figs. 18-3 and 18-4. Such an array may have 3 elements, as shown, or: F . The impedamer at the renter is approximately 300 ohms, permitting it, to be fed direetly with TV-type line, or through a coaxial balum, as in the model shown. Either 52 - or 72 -ohm line may be employed without serious mismateh.

The array is made from two pieces of aluminum chothesline wire about ! $1 /$ inches long overall. These are lwent to provide a 38 -ineh top section, a folded-hack 40 -inch phasing loop, and a l!-inch renter section. Thase elements are monnted on ereamic pillars, which are fastened to a round wooden pole. Smatl clamps of sheet aluminum are wraped around the elements and serewed to the stand-offs. A cheaper but somewhat lows desirable method of mounting is to uso TV sereweve insulators to hold the alements in plate.

Feeding the array at the contor with a comaxal balum makes a neat arrangement. The balum loop may be taped to the vertiont support, and the
coaxial line likewise taped at intervals down the mast. The same type of construction can be applied to a $220-$ Mc. vertirat collinear arma, using the tengt hs for that band given in Table 18-I.

PARASITIC ARRAYS

Single-bay arrays of 2 to 5 elements are widely used in 50-Mr. Work. These may be built in many different ways, using the dimensions given in the table. Probably the strongest and lightest structure results from use of aluminum or charab tuhing (usually $11 / 4$ to $11 / 2$ inches in diameter) for the boom, though wood is also usable. If the elements are mounted at their midpoints there is no need to use insulating supports. Usually the elements are run through the boom and clamped in place in a mamer similat to that shown in Fig. 18-10. Where a metal boom is used tha joints between it and the elements must be tight, as any movement at this point will result in noisy reepption.

2.Element 50-Mc. Array

The 2-dement antenna of Fig, 18-5 was designed for portable use, but it is also suitable for fixed-station work with minor modification. The 2 moter arras above it is deseribed dater. The elements are made in three sections, for portability, using inserts similar to that shown in lige is-2. The driven element is gammat matehed for coax feod, and the parasitie clement is at 0.15 -wave length spared director. Details of

Fig. 18-5 - Two-element 50. Ve, and four-element 144 Wr. arrays designed for portabie use. Support is sectional 'I'S masting clamped to var door handle. Bilements of SO. V1. array are made in three sections. for stowing in back of car. Intenna for 141 Mc. is cut-lown TV array. Both use gammat matah, as shown in Fig. 18-6.

Fig. 18-6 - Details of the gamma mateli for the 50. Ve. portable array. In a permanent installation the variable capacitor should tre monnted in an inverted plastic cup or other device to protect it from the weather. 'I'he qamma arm is about 12 inches long for $50 \mathrm{Mc}, 5$ inches for It 11 Mc.
the gamman section, the boon and its supporting (lamp are shown in Fig. 18-6. The arm is about 12
 Clean, tight connections betwern the arm and elomont are important. Where the array is to be monnted promanently ont doors the eapacitor may be protected from the weather by mounting it in an inverted platstio cup. More detaits on this array are givin in August, 1955, (5 , T.

3-Element Lightweight Array

The 3-element 50-Mr. array of Fig. 18-7 woighs only 5 pounts. It uses the closest spacing that is practical for v.h.f. applications, in order to make an antenna that could be used individually or stacked in pairs without requiring a comborsome support. The elements are half-inch aluminum tubing of $1 / l$ li-inch wall thickness, attached to the $1 \frac{1}{4}$-inch dural boom with aluminum castings mate for the purpose. (Willand Radeliff, Fostoria, ()hio, Type HASL.) I3y limiting the chement spacing to 0.15 wave longth the boom is only 6 fret long. Two boons for a stacked array (I'ig, 18-11) can thus be rut from a single 12 -foot length of tubing.

The folded-dipole driven clement has No. 12 wire for the fed portions. These wre mounted on $3 / 4$-inch cone standoff insulators and joined to the outer emels of the matin portion by means of metal pillars and $6 /: 32$ serews and nuts. When the wires are pulled up tightly and wrapped :monnd the sorew, solder should be sweated over the nuts and serew ends to soal the whole agitinst weather corrosion. The same treatment should be used at eard st inndoff. Mount is soldering lug on the coramie cone and wrap the end of the ling around the wire and solder the whole assembly together. These joints and other portions of the arrasy may be sprayed with clear lacquer as an additional protection.

The inner ends of the folded dipole wre $1 \frac{1}{2}$ inches apart. Slip the dipole into its aluminum arsting, and then
drill through both eloment and casting with it No. 36 drill, and tap with $6 / 32$ thread. Suitable inserts for mounting the stand-ofis can be made by cotting the heads off $6: 32$ serews. Taper the cout cond of the serew slightly with a fike and it will sorew into the standoff readily.

Cut the dipole length uecording to Table 18-I, for the middle of the frequency range you expect to use most. The reflector and director will be appoximately 1 percent longer and shorter, respertively. The eloser spacing of the parasitic elements (0.15 wave length) makes this deviation from the dimensions of the table desirable.

The single 3 -etement array has a feed impedance of about 200 ohms at its resonant frequency. Thus it maty be fed with 52 -ohm eotax and a balun, A gamma-matched dipole may also be used, ats in the 2 -clement array. If the gammat mateh and 72 -ohm coax are used, a balun will convert to $: 300$-ohm balaneed feed, if Twinlead or 300 -ohm open-wire TV line feed is desired. If the dimensions are selected for optimum performance at 50.5 Mre the arraty will show good preformance and faitly low standing-wave ratio over the range from 30 to 51.5 Me .

A closerup of a mounting method for this or tury other array using a round boom is shown in Fig. 18-8. Four TV-twpe [" bolts clamp the horizontal and vertical members together. The metal plate is about 6 inches square. If $1 / 4$-inch sheret aluminum is available it may be used alone, though the photograph shows a sheret of 1 ltiiuch stock backed up by a piece of wood of the same size for stiffening.

High-Performance 4-Element Array

The 1 -edement array of Fig. 18-9 was dewigned for maximum forward gatin, and for direct feed with 300 orhm babatheed tratnsmission line. The parasitie clemonts may he any diameter from $1 / 2$ to 1 inch, but the driven eloment should be made as shown in the sketch. The same gencral arrangement maty he used for a 3 -element array, except that the solid portion of the dipole shonld

Fig. 18.7 - Lightweight 3-element 50-Me. array. Feedline is 52 . ohm coax, with a balun for connection to the folded-dipole driven element. Bahun may be coiled an shown, or taped to supporting pipe.
be $3 / 4$-inch tubing instead of 1 -inch. With the element lengths given the array will give nearly uniform response from 50 to 51.5 Me., and usable gain to above 52 Mr . It may be peaked for any portion of the band by using the information in Table 18-I.

If a shorter boom is desired, the refleet or spateing can be reduced 100.15 wave tength and both

Fig. 18-8-Closeup phetograph of the boom mounting for the 50 - Mle array. A sheet of aluminum 6 imehes square is backed up hy a piece of wood of the same size. Thetyed elamps hold the lesmand vertiral support together at risht angles. At the left of the monnting assembly is one of the aluminum crastings for hodding the beam elements.
directors spaced 0.2 wave length, with only a slight reduction in forward gatin and bandwidth. Such a fedement array is shown in Jig. 18-16.

S-Element 50-Mc. Array

As aluminum or dural tubing is usually sold in 12-foot lengths this dimension imposes a paratioal limitation on the const ruetion of a a $\mathbf{3}$ - Me. beam. A i-element array that makes optimum use of a 12-foot boom may be built aceording to Table 18-1. If the aluminum easting method of mounting elements shown for the 3 -element array is employed the weight of a $\overline{0}$-clement heam can be held to under 10 pounds. The gamma mateh and coaxiabline are recommended for feeding such an array, though a balun and 72 -ohm coax can be used for the rotating portion of the line, converting to bataneed fred at the anchor point, as shown in Fig. 18-20.

Filements should be spaced 0.15 wave length, or about 36 inches. With 5 or more chements, good bandwidth ean be serelred by tapering the element lengths property. A dipole 110 inches long, with a lli-ineh reflector, and directors of 105, 10:3 and 101 inches respectively will work wall over the first two megacereles of the band, provided that the s.w.r. is adjusted for optimum at 51 Mc .

144-MC. PARASITIC ARRAYS

The main features of the arrays described above can be adapted to $1+4-3 l$ e antematas, but
the small physieal size of armars for this frequence. makes it possible to use larger numbers of elements with ease. Few 2 -meter antemas have less than 4 or 5 elements, and most stations use more, nither in at single bay or in stacked systems.

Parasitic arrays for 144 Me, can be made readily from TV antemas for Chamels 4,5 or 6 . The relatively close spacing normally used in TV arrays makes it posihle to approximate the recommended 0.2 wave length at Itt. Nre., though the clement spacing is not a critical factor. A t-edement antay for $1+4$ Me. made from a Chanmel ${ }^{6}$ TV' Yigi is shown in Fig. 18-5. It is fed with at gammar mateh and 52 -ohm coax, and was dosignod primarily for portable work. As most TV antemas are designed for 300 -ohm feed the same feed sustem can be emplored for the 2 meter array that is made from them.

If one wishes to build his own Yigi antennas from available tubing sizes, the boom of a 2 meter antemat should be $3 / 4$ to 1 inch aluminum or dural. Dhements cath be $1 / 4$ to $1 / 2$-inch stock, fastened to the boom as shown in Fig. 18-10. Recommended spacing for up to f dements is 0.2 wave length, though this is not too critical. Gamata match fered is recommended for coas, or a folded dipole and balun may be used. If bataneed line is to be used the folded dipole is

Fig. 18.4 - Details of a ledement 50-Mr. array designed for 300 -ohm halanered feed. Vilement lenghis and spaciugs were derived eqperimentally for optimum berformaner ower the first $1 . \overline{3}$ mergarycles of the band.
recommended, the + to 1 ration of ronduetor sizes locing about right for most designs.

Very high gain can be obtatued with long Yagitupe artays for 141 Ne. and higher frequeneies, though the bandwidth of such antemas is considerably narower than for those having up to for $\overline{5}$ elements. The first two divertors in long Yagis are usually spared ahont 0.1 wavelength. The third is spaced atoout 0.2 , inereasing to 0.1 wave length or so for the forward directors. Highest gain is ohtained when all direetors are made the same length, but better front-to-back ratio and lower side bobe content results if the director longths are tapered $1 / 8$ to $1 / 4$ inch per director. Tapering the element lengths also widens the coferetive bandwidth. There is more on long Yagis in (bST for January and september, lanti.

STACKED YAGI ARRAYS

The gain (in power) obtainable from a single Yagi array ean be more than doubled by stacking
two or more of them vertieally and feeding them in phase. This refers to horizontal systems, of course. Vertically-polarized bays are usually stacked side by side. The principtes to follow apply in either case.

The spacing between bays should be at least one half wave length, and more is desirable. For dipoles or lagis of up to three elements optimum spacing betwoen hays is about $5 / 8$ wave longth, hat with longer ligis the spacing can be increased to one wave length or more. Bays of 5 elements or more, spaced one wave length, are commonly used in antennts for $1+1 \mathrm{Me}$, and higher frequencics. optimum spacing for long Yagis is about two wave lengths.

Where half-wave stacking is to be employed, the phasing line betweon bays can be treated as a double " Q " section. If iwo bays, each designed for 300 -ohm fored, are to be stacked a half wave longth apart and fed at the midpoint between them, the phasing line should have an impedance of about 380 ohms. No. 12 wire spared one inch will do for this purpose. The midpoint then can bo fed cither with 300 -ohm line, or with $\mathbf{i 2}$-ohm eome and a balum.

When a spacing of $5 / 8$ wave length bet weco bays is employed, the phasing lines can be coas. (The velocity factor of coan makes a full wave length of line actually about $5 / 8$ wave length physically.) The impedaner at the midpoint between two bays is slightly less than half the impedance of either bay alone, due to the compling betwere bays This effect decreases with increased spacing.

When two bays are spaced a full wave length the coupling is relatively slight. The phasing line can be any open-wire line, and the impedane at the midpoint will be approximately half that of the individual bays. Predieting what it will be with a given set of dimensions is difficult, as many factors come into play. It will usually be of a value that can be fed through the combination of a " Q " seretion and a transmission tine of 300 to 450 ohms impedance. An adjustable " Q " section, or an adjustable stablike the one shown in Fig. 18-1, may be used when the antemat impedance is not known.

Fig. 18.10- Model showing method of assembling allmetal arrays for 144 Mc, and higher frequencies. Dimen. sions of elamps are given in Fig. 18-15.

Fig. 18-11-Stacked array for 50 Ne. using two of the 3-rement haye of Fig, 18-4. Phasing systom and Hesible section for rotation are of coavial lines. A "(9" section matehes this (1, 400-olm open-wire line for run to the station.

The starked :3-over-3 for 50 Mc., Fig, 18-11, uses a coaxial phasing line and an additional section of coax to provide for the flexible portion of the feedline. Each bay is fed with a balun and halfwave section of RG-8 U cable. These are joined at the conter between bays with a Tere fitting. Is each bay has an impedance of 200 ohms, two 50 -ohm leads are paralleled at the renter, resulting in an impedance of about 20 whms, when the coupling effert betwern bays is included. A flexible section of 50 -ohm coax one wave length long, with a bahum at the end, steps this up to about 80 ohmes. A " Q " seection of $1 / 4-$ inch tubing $3 / 4$ inch center to center steps this up to the point where it can be fed with 450 -ohm open-wire TV line.

The 'Twin-Five" for 144 Mc.

A popular stacked array for 14t-Mc. work is the Twin Five, originally developed by W2PAU In this design two \bar{b}-elennent amays of standard design are stacked a full wave length apart. If the folded-dipole driven elements are constructed so that the individual bays have a feed impedance of about 400 ohms the midpoint of the open-wire phasing line con be fed with 52 -ohm coas and as halun. Where open-wire line is desired, the impedameres can be matehed through at "()" section of athout 300 ohms imperdance. If the ronstructor is in doubt as to the artual ferd impedance to be matched, the stub arrangement of Fig. 18-1 will

I Brown-"The Wide-Spread T'win-live" CQ, Mareh, 1900.
take care of a wide range of impedanees and lines to be matehed. Dimensions can be taken from Table 18-I.

An effective 20 -element array can be made by using two of these arrays side by side, with fullwave spacing horizontally also. The impedance at the midpoint of the horizontal phasing line will then be about 10) ohms, which is still well within the range of " Q " seetions of practical dimensions.

LARGE COLLINEAR ARRAYS FOR 144 MC. AND HIGHER

High gain and vory broad froguoney rosponso are desirable chatactoristics found in curtains of halfwave elements ferl in phase and barked up by reffectors. The reflector can be made up of parisitic elements, or it ean be a soreon extending approximately a quarter wave length beyond the conds of the driven clements. There is not a large difference between the two types of rellectors, exept that higher front-to-back ratio and somowhat broader frequency response are achieved with the plane reflector.

12. and 16-Element Arrays

Two collinear systems that may be used on 144,220 or 420 Me, are shown in liges. 18-12 and 18-1:3, Wither may be fed directly with 300-ohm transmission line, or through coaxial line and a balun. In the 12 -clement array, Fig. 18-12, the reflectors are spaced 0.15 wave length in back of the driven elements, while the 16 -element array, Pigs, 18-13 and 18-16, uses 0.2 wivelength spacing. Dimensions may be taken from Table 18-I, and figures for the middle of the band will give good performane a ross either bathe

Fig. 18.12 - Vilement arrangement and ferd system of the ISedement array. Rellectors are spaced 0.15 wave length behind the driven elements.

The supporting frame for either array maty be made of wood or metal. Details of a metal support for the 12 -element array are shown in Figs. 18-14 and 18-15. Note that all elements are mounted at their midpoints, and that no insulators are used. The elements are mounted in front of the supporting frame, to keep metal out of the fied of
the array. This method is proferable to that Wherein mechanidal hatance is maintained through mounting the driven elements in front and the reflectors in back of the supporting structure.

Two 12-clement arrays may be mounted one above the other and fed in phise, to form a 24 clement array. This is done in the $\mathbf{4} 20-$ - Inc. array

Fig. 18.13 - Sehematie drawing of a 16 echemem array. I variable "(") kection may be inserted at the feed point if aceratate mathing is desired. Reflector spacing is 0.2 wave lengtif.
of Fig. 18-17. The two midpoints are connected through a phasing line one wave length long, and the eenter of this phasing line fed through a "Q" seetion. The impedince at the midpoint is about 150 ohms, requiring a $255-$ ohm " Q " section for fording with 400 -ohm open-wire line.

Combination of collinear arrays may be carried further. Pairs of 16 -element systems fed in phase are common, and even 64 -element arrays (416 clement beams fed in phase) are used in some leading stations on $1+4$ Mc. Configurations of 32 to $6 t$ elements are not difficult to build and support at 220 or 420 Me. Examples of 16 - and 24 -element arrays for 220 and 420 Ne. are shown mounted back to back in Fig. 18-17.

ARRAYS FOR 220 AND 420 MC .

The use of high-gain antenna systems is almost a neressity if work is to le done over any great distance on 220 and 420 Me . Experimentation with antenna arrays for these frequencies is fascinating indeed, as their size is so small as to permit trying various element arrangements and feed systems with ease. Arrays for 420 Me, partieularly, are convenient for investigation and
demonstration of antemna principles, as even high-gain systems may be of table-top proportions.
Any of the arrays described previously may be used on these bands, but those having large num-

Fig. 18.14 - Supporting framework for a 12 .element 14.-Nce array of all-metal design. Bimensions are as follows: element supports (1) $3 / 4$ by 16 inches: horizontal members (2) 3/4 liy 40 inches: vertical members (3) 3 hy Ho inches: vertical support (4) $11 / 2$-ineh diameter, length as refuired; reflector-to-driven-element sparing 12 inches. Parts not shown in sketch: Jriven elements $1 / 4$ by 38 inches: reflectors $1 / 4$ by 40 inches: phaving lines No. 18 spaced 1 inch, 80 inches lonk, famed out to $31 / 2$ inches at driven elements (transpose each halfwave section).
bers of driven elements in phase are more readily adjusted for maximum effertiveness.

A 16 -element array for 220 Mc , and a 24 element array for 420 Mc. are shown mounted back-to-batk in Fig. 18-17. The 220-Mc. portion follows the 16 -element design already deseribed. It is fed at the center of the system with 300-ohm tubular Twin-Lead, matched to the center impedance of the array through a " Q " section of $7 / 16$-inch tubing, spaced about $1 \frac{1}{2}$ inches center to ernter. This spacing was adjusted for minimum standing-wave ratio on the line.

Flements in the array shown are of $7 / 16$-inch aluminum fuel-line tubing, which is very light in weight and easily worked. The supporting structure is dural tubing, using the clamp assembly methods of Fig. 18-14.

The 420-Mc. array uses two 12 -element assemblies similar to Fig. 18-12. mounted one above the other, atout one half wave length separating the bottom of one from the top of the other. The two sets of phasing lines are joined by means of one-wavelength sections of Twin-Lead at the middle of the array. This junction, which has an impedanee of around 150 ohms, is fed with 300 ohm tubular Twin-Lead through an adjustable "Q" section.

Lelements in the 420-Mc. array are cut from
thin-walled $1 / 4$-inch tubing. Their supports are the 716 -inch stock used for the 220 -Mc. elements. Shots were cut in the ends of these supports to take the elements, and a 4 , 10 screw was run through both pieces and drawn up tightly with a nut. The horizontal supports were fistened in holes drilled in the vertical mombers, and were also held in place with a $6 / 32$ serew and nut. The small size and light weight of the 420-Mr. arruy did not require the use of clamps to make a strong assembly.

The two one-wavelength sections of 300 -ohm line are $213 / 4$ inches long, taking the propagation factor into abeount. The "()" seetion may be any conveniont sizo tubing. $1 / 4$ to $1 / 2$ inch diameter. It should be made adjustable, as matehing is important at this frequency. Dimensions for both arrays can be taken from Table 18-1.

MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

At v.h.f. the lowest possible ratuation angle is essential, and the coasial antenna shown in Fig. 18-18 was developed to eliminate feeder radiation. The center eonductor of a 70 -ohm roncontric tramsmission line is extended onequarter wave beyond the end of the line, to art as the upper hatf of a half-wave antenna. The lower hati is provided by the quarter-wabe sleeve, the upper end of which is commeted to the outer conductor of the conerontric line. The sleeve acts as a shicld about the transmission line and very

Fig. 18.15- Wetail drawings of the clamps used to assemblo the all-metal 2 -nteter array, 1,13 and C are before bernding into " ${ }^{1 " \prime}$ shape. The right-angle bends should be made first, along the doted lines as shown, then the plates may be bent around of piece of pipe of the promer aliameter. Sheet stock should be 3 6-inch or heavier aluminum.
little current is induced on the outside of the line by the antema field. The line is non-resonant, sine its charabteristie impedance is the same as the eonter imperamee of the half-wave antemat. The sleceve may be made of copper or brass tubing of suitable diameter to dear the transmission

Fif. 18-16 - 116 - 16 ment array for 111 Ve. tsing the all-metal construction methods ontlined in Figs. 18-11 to 18-13, Whe 4 -element arriay for $\overline{\mathrm{D}}$) We, herlow is also all-metal dexign.
line. The eonxial antema is somewhat diflionlt to construct, but is superior to simplar systems in its performance at low radiation athgles.

Broadband Antennas

Certain typers of antemnas used in television are of interest bectuse they work achoss at wide band of freduencies with redatively uniform response. At wery-high frequencios an antemat marle of small wire is purely resistive only over a very small firgtences range. Its ($)$, and therefore its selectivity, is sufficiont to limit is optimum performance to a harmw frepurney ranqe, and readjustment of the length or thang is required for mach narmw slier of the speetram. With tuned transmission lines, the affective length of the antennat can be shifted lig retuning the whole system. However, in the rase of antemas fed hy matehed-impedanee lines, any apperedable freque ney change requires an actual mechanieal adjustment of the shstem. Otherwise, the resulting mismateh with the line will he sufficient to canse signifieant reduction in power input to the sutemmat.

A properly designed and ronstrued wideband antemnat, on the other hand, will exhihit very neaty constant input impedamer over soveral megacyeles.

The simplest method of oltaining a broatband chatacteristie is the His of what is termod a "cerlindrisal" antentas. There is no mote that a conventionsal doublet in which large-diameter tubing is used for the eldments, The use of a relatively large diameter-to-length ratio fowers the (Q of the antemat, thus brodening the resonance characteristic.

As the diamoter-to-length ratio is increased, end effects also increase, with the result that
the antema must be made shorter that thinwire antemat resonating at the same frequener. The reduction factor maty be as muth as 20 per cent with the tubing sizes commonly used for anmaterur antemas at v.h.f.

Plane-Reflector Arrays

At 220 Me, and higher, where their dimensions become practicablie, plane-reflector armas are widely used. Exarpe ats it afferets the impedtamer of the system, as shown in Fig. IS-I!, the sparing betwern the driven elements and the reflerting plane is not particularly cribical. Maximum gain oceurs around 0.1 to 0.15 wave length, which is also the region of lowest impedaneer. Highest impedane appeas at about 0.3 wave lengeth. A plane reflector spared 0.22 wave length in batek of the driven elemonts has no efferet on their feed impedathere. As the gain of a plamerefleator army is nearly constant at spacing from 0.1 to 0.25 wave length, it may be seen that the spacing may tre varied to ardiave an imperdane match.

In advantage of the plane reflecter is that it may be used with two drivern element shatems, one on catels side of the phater, providing for two band operation, or the ineorporation of horizontal and vertieal polarization in a single structure. The gatin of a planereflector array is slighty higher than that of a similar mumber of driven elements backed up by parasitic reflectors. It also has a broater freguences response and higher front-tothark ratio. To ardieve these ends, the reflecting plane must be larger than the area of

Fig. $18.17-\mathrm{A} 21$-cllement array for 120 Mc, and a 16. cloment for $2 \boldsymbol{2} 0$ mounted back-to-back on a single support.
the driven elements, extending at least a quarter wave length on all sides. Chicken wire on a wood or metal frame makes a good plane reflector. Closely-spared wires or rods maty he substituted,

Fig. 18.18-Coavial antenna. The insinlated inner conductor of the F (0-ohm concerssric lise is eonmeoted (1) the quarter-wave metal rod which forms the upper half of the athteblat.
with the spacing between them rumning up to 0.1 wave hength without appreciathe redurtion in dfectivemess.

Corner Reflectors

In the eorner reflector two plane surfaces are sot at an angle, usually lotwoen ta and ! 0 degrees, with the antemat on a lime biserting this angle. Maximum gain is obtained with the andemat 0.5 wave length irom the wertex, but eompromise designs can be built with closer spacings, There is no focal point, as would be the case for at parabolie reflector. (omer angles greater than so degrees cath be used at some sarrifice in gatin. At leses than !o degrees the gain inereases, but the size of the reflecting sherets must be incerased to realize this gain.

At a sparing of 0.5 wave length from the vertex, the impediane of the driven alement is approximately t wiee that of the same dipole in free space. The impedanere derorases with smaller spacings and comer angles, as shown in Fig. 18-1!9. The gain of a corner-reflector arraty with a !o-degrer angle, 0.5 wave length spacing and sides I watro fength long is approximately 10 dt . Prineipal advantages of the comer reflector are broad froquency response and high front-to-hack ratio.

Cone Antennas

From the cylindrieal antemat various specialized forms of broadly-resomant radiators have been evolved, including the ellipsoid, spheroid, cone, diamond and double diamond. of these, the conieal antenna is perthaps the most interesting. With large angles of revolu-
tion, the variation in the characteristic impedance with changes in frequency can be reduced to a very low value, making such an antennat suitable for extremely wide-band operation. The cone may be mate tip either of sheet metal or of multiple wire spines. I variation of this form of conical antenna is widely used in TV reception.

Parabolic Reflectors

A plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highlydirective antenna system. If the parabolie reflector is sufficiently large so that the distance to the foral point is a number of wave lengths, optical conditions are approached and the wave arross the month of the reflector is a plane wave. However, if the raflector is of the same order of dimensions as the operating wave length, or less, the driven radiator is appreciably coupled to the reflecting sheet and minor lobes oceur in the pattern. With an aperture of the order of 10 or 20 wave longthe, sions that may be practical for microwave work, a beam-width of approximately 5 degrees may the arhieved.

A reflecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antenna must be located at the focal point. The most desirable focal length of the parabola is that which places the radiator along the plane of the mouth: this length is equal to one-half the mouth radius. At other foral distanes interference fields may deform the pattern or cancel a sizable portion of the radiation.

- FEEDLINE IDEAS FOR ROTATABLE ARRAYS

Where armas are to be rotated, the method of connerting the transmission line may present a

Fig. 18.19 - Feed impedance of the driven element in a corner-retlector array for cormer anglew of 180 (fiat shert). $9\left(0,60 \text { and } 5 \text { degreer. }{ }^{*} 1\right)^{*}$ is the dipme-tovertex spacing.
problem, partieularly if open-wire line is used. This coun be handod in several was, some of which may also take catre of matching prohbems at the sume time.

If coaxial line is employed throughout the entire run from antemat to rig the rotation problem catn bo taken ware of hy making a fow turns of coas around the towor or supporting

Fig. 18-20- Flevible sec. tions of line for rotatable arrays may be made of coav (1) or Tlwin-lead (13). If the rotating seftions are a half wavelength or ang multiple thereof the antemia impedance is re. prated at the anchor point. If they are a tumar. ter wavelenztle or wedd multiple theroof they may he employed as matching seetions. if the drisen ole. ment in A is designed for coaxial fred the upprer
mast betweon the antemna :und a fixed anchom point just below it. (oaxial line may also be used for the rotating portion of an array that is designed to bo fed with open-wire or other balanced line, as shown in loig. 18-20.1.

If the feed impedane of the arrey is 300 ohms, and the line is that impedture, $75-0$ han coas maty be used for the batuns and comereting lead. The latter may be any length in that caso, as impedances will be matehed all along the
line. However, if the array and its main transmission line are other than 300 ohms impedance, the same mothod may be emploved by making the commerting line between the two balms any multiple of a half wave length long. Either 52- or 70 -ohm cond ean be used in this case, as the intenna impedance will be repeated at the anchor point.

There may be antenna and line impedance combinations that can be matched with the use of " Q " sections of 72,150 or 300 ohms. If any of these values is suitable for a matehing section, the functions of matching and flexible rotating sertions ratn be combined in a " Q " section of Twin-lead of suitable impedance, as shown in Fig. 18-20]3. The flexible seetion should then be an odd multiple of a quarter wave length long. I section of 'lwin-lead one half wavelength or multiple thereof may also be used as an im-pedanee-repeating flexible lewd. The tubular line
lalun shomld the onitted.
of the heave-duty variety normally used for transmitting purposes is most suitable for theso applications.

Where a long run of open-wire tine is to be used from the tower anchor point to the station, it should be supported on strain insulators, one in cach comductor, at both ends of the rum. The polyethylene spreaters used in TV line are not suffieiontly strong to be used for supporting the line in runs of more than a few feet.

Mobile and PortableEmergency Equipment

The amateur who goes in for mobile oporattion will find plenty of room for exerelising his individuality and developing original ideas in equipment. Each installation has its spectal problems to be solved.

Most mobile receiving sistems are designed around the use of a h.f. converter working into a standard car broadeast recoiver tumed to 1500 kc . which serves as the i.f. and audio amplifiers. The car recoiver is modified to take a noise limiter and provide power for the converter.

While a few mobile transmitters may run an input to the final amplifier as high as 100 wat ts or more, an imput of about 30 watts normally is considered the pratetieal limit unless the ear is equipped with a special battery-charging system. The majority of mobile operators use phone.

In contemplating a mobile installation, the car should be studied carefully to determine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make hest use of that space. The location of the converter should have first ronsideration. It should be placed where the controls can be operated conveniently without distracting attention from the wheel. The following list suggests spots that may be found suitable, depending upon the individual car.

On top of the instrument pancl
Attached to the steering post
Inder the instrument panel
In a unit made to fit between the lower lip of the instrumont panel and the floor at the center of the car

The transmiter power control can be placed close to the recemer position, or included in the converter mit. This control normally operates relays, rather than to switch the power eircuit directly. This permits a
minimum length of heavy-current battery (ifrouit. Frequency within any of the phone bands sombtimes is changed remotoly by means of a stopping-switeh system that swit ches erystals. In most cases, however, it is neressary to stop the rar to make the several chamges requived in changing hands.

Depending upon the size of the transmitter unit, one of the following places may be found convernient for mounting the transmitter:

In the glove compartment

Cuder the instrument panel
In a unit in combination with or without the converter, built to fit between the lower edge of the instrument panel and the floor at the ennter
On the lodge above the rear seat an
In the trunk
Most mobile antomas consist of a vertical whip with some systom of aljustable loading for the lower frequencios. Power supplies are of the vibrator-transformer-rectifier or motor-generator type operating from the car storage battery.
["nits intended for use in mobile installations should be assembled with greater than ordinary care, since they will be subject to considerable vibration. soldered joints should be woll made and wire wrap-arounds should he used to aboid dependence upon the solder for mochanical strength. Self-tapping serews should be usod wherever feasible, otherwise bock-wathers should be provided. Any shafts that are normally operated at a permanent or semi-permanent setting should be provided with shaft lorks so they camot jar out of aljustment. Where wires pass through metal, the holes should be fitted with rubber grommets to prevent chafing. Any cathling or wiring between units should be securely clamped in phate where it cannot work loose to interfere with the operation of the car.

Noise Elimination

Filectrab-noise interforence to remption in a car may arise from several different sources. As examples, trouble may be experienced with ignifion noise, generator and voltage-regulator hatsh, or wheel and tire static.

A noise limiter added to the car broadeast roeriver will go far in reducing some types. espercially ignition noise from passing cars as well as your own. But for the satisfactory reception of woaker signals, some investigation and treat-
mont of the rar's electrical system will be neressary.

Ignition Interference

Fig, 19-1 indicates the measures that may be taken to suppress ignition interference. The celparitor at the primary of the ignition coil should be of the roasial type; ordinary types are not aftective. It should be placed as close to the coil terminal as possible. In stubborn eases, two

of these capacitors with an r.f. choke between them may provide additional suppression. The size of the choke must be dettrmined expurimentally. The winding should be made with wire heavy enough to carry the coil primary current. A 10,000 -ohm suppressor resistor shoulal be inserted at the center tower of the distributor, a 5000 -ohm suppressor at each spark-plug tower on the distributor, and a $10,000 \mathrm{ohm}$ suppressor at each spark plug. The latter may be built-in or external. A good suppressor element should be molded of material having low capseritance. Several concerns manufacture satisfactory suppressors. In extreme eases, it may be neeressary to use shielded ignition wire. The 1431 Pontiace car was equipped with suppressor ignition wires, the resistance boing distributed throughout the length of the wire. This is somewhat superior to lumped resistance and may be used if the lead lengths are right to fit sour car. They should not be cut, hut used as they are sold.

Generator Noise

Generator hash is caused by sparking at the commutator. The piteh of the noise varies with the speed of the motor. This type of noise may be eliminated by using a 0.1 - to $0.25-\mu$. coaxial capacitor in the generator armature circuit. This capacitor should be mounted as near the armature terminal as possible and directly

Vig. 14.2 - The right wat to install Jopasiers the re dace interference from the regulator A capacitor shomid lever be connected arroos the gemerator fidd lead with. out the small series resistor indicated.
on the frame of the generator.
To reduce the noise at 28 Me., it may be necessary to insert a parallel trap, tuned to the middle of the hand, in series with the generator output lead. The coil should have about 8 turns of No. 10 wirr, spare-wound on a 1 -inch diameter and should beshunted with a $30-\mu \mu$, mie:a trimmer. It can be pretuned by putting it in the antema lead to the home-station reeciver tuncd to the middle of the band, and adjusting the trap to the point of minimum noiser. The tuning may need to be peaked up after installing in the rar, since it is fairly critical.

Voltage-Regulator Interference

In eliminating voltage-regulator moise, the use of two coaxiad capacitors, and a resistor-micacapacitor combination, as shown in Fig. 1!)-2, are effertive. A 0.1- to (0.25-mi, echasial capacitor should be placed between the battery terminal of the regulator and the battory, with its ease well grounded. Another catpacitor of the same size and type should be placed between the generator torminal of the regulator and the generator. A 0.002- μ f. miat rapacitor with a fohm earlon resistor in series should be connceted between the fied terminal of the regulator and ground. Never use a capacitor across the field contacts or betweren field and gromed without the resistor in series, sinere this greatly redures the life of the regulator. In some cases, it may be neressary to pull double-bratid shielding over the leads bet wern the generator and regulator. It will be advisable to run new wires, grounding the shielding well at both ends. If regulator noise persists, it may be neressany to insulate the regulator from the ear body. The wire shielding is then eonnerted to the regulator case at one end and the generator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on smooth dry streets. Front-wher static colferetors are available on the market to eliminate this variety of interference. They fit inside the dust cap and bear on the end of the axle, effectively grounding the wheel at all times. Those designated particularly for your car are preferable, since the universal type does not always fit well. They are designed to operate without lubrication and the end of the axle and dust cap should be cleaned of grease Infore the installation is made. These collectors require replacement about every 10,000 milas.

IRar-wheel collectors have a brush that bears against the inside of the brake drum. It
may be necessary to order these from the factory through your dealer.

Tire Static

This sometimes sounds like a leaky power line and can be very troublesome even on the broadcast hand. It can be remedied byinjocting an antistatic powder into the inner tubes through the valve stem. The powder is marketed by Chevrolet and possibly others. Chevrolet dealers can also supply a convenient injector for inserting the powder.

Tracing Noise

To determine if the receiving antenna is picking up all of the noise, the shielded load-in should be discomneeted at the point where it connects to the antennal. The motor should be started with the recciver gain control wide open. If no noise is heard, all noise is boing picked up via the antemna. If the noise is still heard with the antemna discomneded, even though it may be redured in strength, it indieates that some signal from the ignition system is being pieked up by the antenna transmission line. The lead-in may not be sufliciently-well shielded, or the shield not properly grounded. Noise matyalso be pieked up through the battery circuit, although this does not normally happen if the recoiver is provided with the usual r.f.echoke-ind-hypass caparitor filter.

In case of noise from this source, a direct wire from the "hot" battery terminal to the receiver is recommended.

Ignition moise varies in repetition rate with engine speed and usually can be recognized by that characteristie in the carly stages. Later, however, it may resolve itself into a popping noise that does not always correspond with engine speed. In such a case, it is a good idea to remove all leads from the generator so that the only source left is the ignition system.

Regulator and gencrator noise may be deterted by racing the engine and cutting the ignition switch. This eliminates the ignition noise. Generator noise is charaterized by its musical whine contrasted with the ragged raspy irregular noise from the regulator.

With the motor ruming at idling speed, or slightly faster, ehecks should be made to try to determine what is bringing the noise into the tiold of the antema. It should be assumed that any rontrol rod, metal tube, stecring post, etce, pissing from the motor compartment through an insulated bushing in the firewall will carry noise to a point where it can be rediated to the antema. All of these should be bonded to the firewall with heavy wire or hraid. Insulated wires can be stripped of r.f. by bepassing them to ground with $(0.5-\mu$, metal-case capardors. The following should not be overlooked: Iattery lead at the ammeter, gisoline gatuge. ignition switch, headlight, backup and baillight leads and the wiring of any acerssories rumning from the motor compartment to the instrument panel or outside the cur.

Fig. 19-3-1 iagrams showing addlition of noise limiter to car recciver, A - Usual circuit. 1 - Modification. C_{1}, $(\mathrm{a}-100 \cdot \mu \mu \mathrm{f}$. mica.
($\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{6}-0.01-\mu \mathrm{f}$. paper.
(:5-0.1- f f, paper.
$R_{1}-4$, ,000 olims.
$\mathrm{R}_{2}, \mathrm{R}_{10}-1$ megohm.
$13_{3}-1 / 2$ megohm.
K_{7}, Ks. K_{9} - 0.17 megohm.
J_{4} - 10 megolims.
H_{5} - $1 / 4$ megohm.
$R_{6}-0.1$ megohm.
${ }^{\prime} \mathrm{I}_{1}$ - I.f. Iransformer.
$V_{1}-$ Second detertor.
The firewall should be bonded to the frame of the car and also to the motor block with heavy braid. If the exhaust pipe and mulller are insulated from the frame by rubber mountings, they should likewise be grounded to the frame with flexible copper braid.

Noise Limiter

Fig. 19-3 shows the alterations that may be made in the existing ear-rereiver circuit to provide for a noise limiter. The usual diodetriode second detertor is replaced with a type having an extra independent diode. If the car reeceiver uses oftal-base tubes, a (ises (iT may the substituted. Tho 7×7 is a suitable replacement in recoivers using loktal-type tubes, while the 6Ts maty be used with miniatures.

The switch that cuts the limiter in and out of the circuit may be located for convonience on or near the comverter panel. Regardless of its placement, however, the leads to the switch should be shielded to prevent hum pick-up.

A Bandswitching Crystal-Controlled Converter

Figure 19-4 through 19-8 show a handswitehing erystal-controlled motile converter covering bauds from 80 to 10 methers. The tuning of the oscillator is fixed, and the r.f. :umplifier is broalhanded. Signals across the band are tuned in by adjusting the broadeast receiver which is used as: tunable i.f. amplifier. Prequence stabilit, is much superior to that of the usual tunable converter. Coils and erystals for unneeded bands may le: omitted.

While the converter draws 20 mat at 150 volts, tests have shown that the performance is ensemtially unchanged with the plate input reduced to 5 ma. at tis volts. If you are reluctant to dig into the receiver to bring out a $13+$ lead, you can operate the converter from a small 13 batery.

The Circuit

The circuit diagram is shown in Fig, 1! $1-5$, A GAK̄̈ is used as in r.f. :mplifier, and a fiJf dual triode as the frequency converter. The r.f. circuits comsist of shag-cored coils tuned by the tube capacitances. However, a trimmer, C_{3}, is intcluded so that the amplificr grid cirevit can be poaked up for the particular :antema in use, or in going from one end of the band to the other.
A pair of wave traths, $C_{1} L_{1}$ and ('2 L_{2}, at the input are provided to mimimize interference from local hroadast stations.

For frequencies alove 7 Mc., the oscillator section of the converter works att harmonies of the reystal fremucney. At these frequencies an oscillator circuit is used which limits the osecillator output essentially to the desired harmonic frequeners. (nn 3.5 and 7 Mc., the crystals work at the fundamental, and the circuit is a simple Pierce, L_{6} loeing eliminated on these bands.

For the sake of simplicity in the diagram, only a single set of coils (the 14-Me. set) is shown. Other eofils and crystals are wired similarly to their respective switch points. hwitch section Sare is not used as an active switeh, its point terminals merely sorving as a most convenient tiepoint strip for supporting the junction of the cristals and L_{6} coils. In the case of the 7 -and 3.5 -Mc positions, where no L_{6} coil is used, the corresponding switch points are simply wired together, as indieated.
$S_{1 A}$ and $S_{1 B}$ shift the antenna from the converter to the broadrast receiver, while $S_{1 C}$ turns off the converter filaments.

An accompinying table shows the crystal frequency, the h.f. osidilator frequency, and the range over which the broadeast receiver must be tunced to cover each of the ham bands.

Since the range of the broadeast reeceiver is :tpproximately 1000 ke . ($1500-550 \mathrm{ke}$), the tuning range with any single crystal is limited to 1 Mc . However. this is more than adequate for all except the 10 -meter hand. For full coverage of this hand, two crystals are used, as indicated in the table. The il-meter hand is not normally included, but values are given so that this band may be substituted for one of the 10 -meter ranges if desired.

Construction

The converter is built into a $2 \times 7 \times 7$-inch aluminum chassis. The top cover (actually at bottom plate for the chassis and not shown in the photographs) is a flat piece of aluminum measuring 7 hy 9 inches. The extrat inch of overtap on each side provides lips for fistening the converter to the bottom cover of the bromedast receiver by means of machine serews and metal spacers.

The aluminum bracket for the large subassembly should be made first. This subbessembly is shown to the left of the bandswitch in Fig. 19-4, and in Figs. 19-7 and 19-8. The latter identify the components, indicating the holes that must be drilled for the tubes, coils and r.f. chokes.

Fig. 19-4-Front view of the bandswitching eryctal-eomstrolled mobile converter. The mit is built into a $\div \times \div \times 2$-ineh alumimum chasss, The subassembly, shown in Figa. $19 .-$ and 19.8 , is to the lefi of the bandswitch. It includes the 28 - Mc. coils, the tubes, and most of the small compos nents. The suromel sultassembly to the right contains all remainine coils, The controls for C_{3} to the left, and st to the right, are spaced 2 inches from the handswiteh shaft. lloles along the right side are for adjusting the coil shass. Bandswiteh wafers are in alphabeticalorder, $\$_{2 A}$ to $\$_{2 F}$, front to rear.

Fig. 19.5 - Cirenit diagram of the erystal-controlled mobile eonverter. All resistors $1 / 2$ watt. *lndicates a tubular ceramic capaeitor; all other fixed capacitors dish ceramic. Values below 0.001 uf. are in $\mu \mu \mathrm{f}_{\mathrm{z}}$

C3-35- $\mathrm{C}_{\mathrm{f}} \mathrm{f}$. variable (Ifammarlund HF-35),
I_{1} throngh I_{6} - See coil chart.
$J_{1}, J_{2}-$ RCi-type phono jach.
$\mathrm{J}_{3}-3$-prong male chassis connertor (Cinch-Jones 1'303 \13).
IRFC $-2.5 \cdot \mathrm{mh}$, r.f. choke (National IR-100S).

 (Centralah P' A.2007 or l'A-5 wafer monnted on PA. 300 indrex).
S_{2} - 6-pole (o-position selocetor witch (6 Centralab) I'A. 18 wafers momited on P'A. 30 indes).
Xtat - Ser whart (lames K nights ispe II-IT or International eryatal type l'A-9).

When the bracket has been drilled, place it against the rear wall of the chassis, $3 / 4$ inch in from the left side, and mark the momiting holes in the ehassis. Then slide the bracket against the left-hand side of the chassis and spot the shugadjusting holes and the 1 -inch holes that permit removal of the tubes.

Before assembling the unit, the antenna coils $\left(L_{3}\right)$ should be wound on each of the two L_{4} forms. Wach of the North Ilills coil forms has an extra sot of terminals that may be used as tie points for the switeh ends of the L_{3} windings.
At the conclusion of the wiring of the subassombly, connect power leads that will run to S_{10} and J_{3}, and at tach a 2 -inch length of wire to lin 5 of the 6 J 6 . The free end of the latter will be eonnerted to $S_{2 p}$ later.
The remaining slug-tuned eoils are mounted as a second subassembly on a bracket the same in size as the first, although the mounting lips must be bent in the opposite directions. The eoils are arranged in three groups of four coils. The coils are eentered at the corners of a $3 / 4$-inch square. The first square is centered on the strip and at $5 / 8$ inch from the front edge of the strip. The seeond square is eentered $21 / 2$ inches from the front edge, and the last square is centered $35 / 8$ inches hark. At the center of each of the two squares toward the front, a hole is drilled for a 1 -inch 6 - 32 serew. A soldering lug and a $3 / 4$-inch metal spacer are slid over the surew to provide comenient grounding terminals.

Before the coils are mounted, this bracket should be placed against the rear wall of the chassis, and $3 / 4$ inch from the right-hand side and its mounting holes marked in the chassis. Then,
as before, it should be slid against the right-hand side of the chassis while the slug-adjusting holes are spotted in the wall of the chassis.

The first group of coils toward the front are the r.f. grid coils, $L_{3}-L_{4}$, and the phate coils. L_{55}, are in tho serond group. With the slug serows facing you, the 80-meter coils are at the upper left, the 40 -meter coils are at the upper right, the 20 -metere coils at the lower left, and the 15 -meter coils at the lower right. The third group of eoils at the rear include the trap eoils, L_{2}, at the upper left, and L_{1} at the upper right. Below are the 20 -meter oscillator coil (L_{f}) to the left, and the 15 -meter oscillator coil to the right. The antomat coils, L_{3}. should be wound on their corresponding gridereil forms (I_{4}) before assembling.

Coil Chart for the Mobile Converter					
Band	Turns, 1.3	Ind. Range, μ h.		Type No.	
		$L_{\text {A } 4-I .5}$	L_{6}	$L_{\text {, } 4-L .5}$	L_{6}
$3.5-4$	30	61-103	-	120-6	-
7-7.3	8	18-36	-	120-E	-
14-14.3is	4	5-9 9	18-36	120-C	120- F
21-21.45	3	3-5	5-9	120-13	120-C
$26.103 \quad 27.23$	3	2-3	3-5	120-A	120-13
28-28.9	3	2-3	3-5	120-A	120-13
28.75-2!1.7	3	±-3	3-5	120-A	1:0-13
Note: L_{1} and $/ 2$, Fig, $19-5$, are Types 120-F (36-6.4 $\mu \mathrm{h}$.) and $120-\mathrm{E}$, respertively. L_{3} is wound with fine magnet wire ($20-30$) at grounded end of L_{4}.					

| Erequency Chart for the Mobile | | Converter |
| :---: | :---: | :---: | :---: |

Only a single loy-pass capacitor is shown in the diagram as ('6. Aetually, there are three of them. One is at the junction of the cold ends of the two 10-meter coils, one for the 3.5- and 7-Me, coils, and one for the 14- and 21-Mc. coils.

The Bandswitch

The bandswiteh is made up from Centralab, Switchkit parts as indieated under Fig. 19-5. In assembling the switeh, all wafers should be placed on the assembly rods so that the rotor or "arm" terminal is the second terminal to the loft. of the upper assembly rod, as viewed from the front.

The erystals can be soldered to the switch contacts before the switeh is mounted in the ehatsis.
l'rongs taken from an octal socket and slid over the crystal-holder pins are a good means of connereting the crystals to the switeh wafers.

The fiber mountings of the input and output
phono commetors will meed to be clipped off so that they will fit between the chassis and the subaswembly brackets, These jacks should be mounted next, and the coax leads run to $S_{\text {LA }}$ and Sus, kerping the leads along the bottom corners of the chatssis.

Then the two subassemblies can be mounted and connertions made to the bandswitch. In addition to the connertions shown in the diagram, the handswitch terminals immediately to the left of the upper tie rod (as viewed from the front) on $S_{2 a}$ and $S_{2 B}$ should be romnerted together, and then to the ground terminal at the socket of the $6 . \lambda K 5$. This grounds the inative L_{3} and L_{4} coils.

As a last operation, the power leads are fished out through the mounting hole for J_{3}, and connections to J_{3} are made before it is mounted.

Power Supply

The converter requires 0.625 ampere at 6 volts for the heaters, and anything between 5 mat at 45 volts to 20 ma. at 150 volts for the plate supply. This can be taken most conveniently from the car broudeast reeriver by connecting two leads to an audio-output-stage sorket. Dlate voltage should be taken from the sereen terminal. This voltage will usuatly be about 200 , and ean be dropped down to the desired value with a series resistor. A 10,000 -ohm 2 -watt resistor will usually be about right - at least, it will serve as a starting point for adjustment to the desired value. The hot filament and plate-supply leads, plus a ground lead, ean be brought to a connector mounted on the broadeast rereiver, or run in the form of a cable, shiedded wire should be used for the rable.

Adjustment

With a small antema, such as a molile whip, tight coupling to the antenna is essential fur tust signal rosponse. It is also important in avoiding regeneration in the r.f-amplifier stage. Therefore, esperially when the antema is a small one, it

Fig. 19.6-Space between the handswiteh index head and the fromt wafer is 516 inch. Sucreeding spacings thetween wafers, front to rear, are 131 s ,
 the shaft is cat off rlose to the list wafer to provide space for J_{3} at the rear, but the asiembly rods extend through the rear of the chassis, Shield phomo jacks at the rear are for antenna to the right, and hroadeast reseiver to the laft. Capped looles alony the rixhthand side are for tulne removal. The smatler ones are for 10 -meter slug adjustment. (irystals. leetween $S_{2} 1$) and $\$_{2} \mathrm{~m}_{\mathrm{m}}$ left toright, are for 3.5. 7,21 , and the high end of 28 Vr. 'Ihose far 11 Mc . and the low end of 28 Mr., mounted horizontally, are hidden liy the three crystals to the left.

Fig. 19.7 -The lirackel for thic sibh. ansemby is. 0 解 by 17 g inches, with \%/inall lips, 'lubreremoval holes are 1 ind in diametor, spacing le. ween brachet and orar pate is ! 3/b imhers.

should le resonatht. This is usuatly the case in at mobile instablation where the antemat must be mater resonant for transmitting.

The high-frequency oscillator should be chereked first, listening on a communications roediver at the oscillator frequencies listed in the tahle. No adjustment of the oscillator is necessary at 3,5 and 7 Me., luat at the higher frequencios the slugs of the L_{6} corils must be adjusted for most stahle outpat. Net the remedere to the desimed fregueney and adjust the slug mitil the oseilator signal is heard. To make sume that the wefllator is arestal-antrolled. jar the eonverter. If the signal is arestal-omitrolled. wo amont of jarming should dhange the frequeney. If it is mot cryst alrontrobled, the slug should bo adjusted carafully until the weillator looks in with the erystal.

The ref, amplifier may now be lised up, hand by tand, by tuning in a signal from a generator or the antemata, and then adjusting the amplifier
grid and plate coils for maximum rexponse. The grid-eoil slug should he wlusted with signals near the high-frepuener end of the band. and with r_{3} sot mear minimam caparitanes. The athtemat compling should then be adjusted to the point where a slight peak in at sigmal or barkground

When interferame from docal browleasting stab tions is experienmed, the slug of L_{1} should the adjusted to minimize the strongest brandeant signal foward the low-fregumey cod of the broadasast batud, while the slug of 1 an shoulal he likewise adjusted for the strongest signal toward he highfrecturney and of the hand. These two adjustments will wisually sure to attrmate most other broadeast sighals in betwern the two extromes of frequolor. Mowerer. other combinations may bro advisable, depmading on the freguencies of the lowal stations.
(Origimally described in QST', Jamuary, 1055.)

Fis. 19.8 - 1 !ur tube. sochel momotinu mate is 3^{3} by 13 ithoros
 rommed to char the monter coil forms. Ilales obronite lla imber coil forms are 3 inch: thone claring the r.f.
 Small rompuoratis
 the 以ater wo as tordear the hamdswitd.

A Crystal-Controlled Converter for 50 Mc .

The 50-Me mobile converter shown in ligs. 19-9 through 19-1:3 combines simplicity with up-to-date v.h.f. design practice, Although only three tubes are used, the converter includes a stage of r.f. amplification phas dual conversion with crustalecontrolled oscillators. The choide of i.f. results in at high order of image rejection. A car broadeast receiver is used th the tumable i.f. for the unit and also supplias the necossary plate power.

An antenna peaking eapacitor is the only operating-type control on the converter. Four low-frequeney crystals, any one of which may be plugged into the front of the unit, provide setertion of 1-Mc. segments of the ti-meter range. With this arrangement, a tuning range of 1 Mr. is ob)tained with earh full swing of the broadeast receiver tuning diat.

The circuit diagram is shown in Fig, 19-10. . (6I)(\% is used as an r.f. amplifier. ('1 is the gridcirenit peaking capacitor. Output from the (6) (\% is coupled through a simple band-pass eircuit, (${ }_{5} L_{3} C_{6}{ }_{6} L_{4}$, to a $12 \mathrm{AT}^{7}$ mixer. The serend half of the $12 . \mathrm{TT}^{-}$is operated as a crystal oscillator at 43.5 Me, to provide injection voltage for the mixer. Thus, the i.f. output for the mixer is set by the freduener of the incoming j0-Mte signal and will fall within the 6.5- to $10.5-\mathrm{Mc}$, range.

A serond band-patss circuit, ${ }_{8}{ }^{8}{ }^{\prime}{ }_{10}{ }^{\prime}{ }_{11} L_{5} L_{6} L_{6}$, is connected betwern the plate of the mixer and the grid of a Type fibis ronverter tube. The oscillator section of the fibit uses crustats ground for 5.95 , 6.95, 7.95 and 8.95 Mr, Theso erustals, in the order listed, provide 1-Mc, i.f. ranges (from the 6il3:17) beginning at 0.55 Me . L_{7} is a slug-t uncel plate coil for the converter tube.

A resistor, R_{6}, is comenerted betwern the control grid of the (il3At and ground. Its purpose is 10 fatten out the response of the low-frequency (6.5 to 10.5 Me .) roupling circuit. S_{1} performs the switching necessary in shifting from 50 Me . to
broadeast input. Heator circuits for both 6.3- and 12.6-volt aro shown in Fig. 1!1-10.

Construction

The converter is built into a $2 \times 5 \times 7$-inch aluminum chassis. The top cover (actually a hottom plate for the chassis, and not shown in the photographs) is a flat pioce of ahominam measuring s to ! inches. The extra inch of owerlap ont each side provides lips for fastening the converter to the bottom of the brodedat reeciver he means of mathine sorews and metal phacers.

The subassembly is shown centered in the (hassis in Figs, 1!-!) and 19-11, and in two detail photographs. Figs. 19-12 and 19-1:3 identify the components in the subassembly. When the bracket has been bent and drilled, place it against the inside bottom surfare of the chassis and mark the mounting holes in the chassis. Then place the bracket against the rear wall of the chassis and use it as a template to mark the position of the l-inch holes that permit removal of the tubes.

The positions of J_{1}, J_{2} and the cable grommet may now be marked on the rear wall of the chassis and mounting holes for $\left(1, S_{1}\right.$ and the rerstal socket for y_{2} may be spotted on the front wall. Mount (i with the shaft hardware and with the threaded monoting foot facing toward s_{1}.

When mounting components in the subassembly, oricnt the tube sockets in the following manner: dins 3 and f of l_{1} facing toward the top of the bracket ; Pin $\overline{7}$ of F_{2} a and line \ddagger and o of V_{3} peinting towat the bottom of the bracket. One-tominal tie-point strips. held in place by the socket hardwares, should be mounted at the bottom of V_{1}, to the right of V_{2} (as saen in Fig. 19-1:3) and at the top of 1_{3}^{-}. A 2 -terminal tiom point strip should tre mounted to the right of V_{1}.
The ti-inch clearance holess for L_{5} and t_{6} are spaced $7 / 8$-inch between renters and are lowated in between the sorkets for l_{2} and F_{3}. A rubber grommet, mounted in the bracket just above the socket for V_{3}, passess a load botwern Pin! of

Fig. 19-12 shows the socket for Y_{1} mounted alowe the !2ATT. Adjustmintit serems for $C_{5}{ }_{5}, \mathrm{C}_{6}, C_{8}$ and (' 16 are atson visible in this viow. A 3 -terminal tio-point strip to the right of V_{3} supports the

Fig. 19-9. The input tming capacitor (C_{1}). the antemna-heater switch $\left(S_{1}\right)$, and the low-frumenes ervestal (F_{2}) are in line from left io risht on the front "all of the chaseix. A metal partitioni. Hosumbed along ilw renter line of the chassis. supports the tulies, the" s.h.f. crystal (\boldsymbol{F}_{1}), and most of the r.f. componemts.

Fig. 19.10 - Cirruit diagram of the 50. Mc. erystal.controlled mobile converter. All resistors $1 / 2$ watt. * Indicates a mioa capacitor: all other fixed capacitors dish ceramic. Values below 0.00$] \mu \mathrm{f}$, are in $\mu \mu \mathrm{f}$,

 lal, 829-10).
(:10-3-30- $\mu \mu \mathrm{f}$. ceramic trimmer (National M-30).
$L_{1}-11 / 2$ tarns insulated magnel wire ($20-30$), closewound over grounded end of L_{2}.
$L_{2}, \mathrm{~L}_{2}, \mathrm{I}_{4}-7$ turns Vo. ${ }^{2} 0$ tinned, 7 í inch long, $3 / 2$ inch diam. ($13 \mathbb{N}$ W 3003), See text.
las 1.6 - ${ }^{9}-18-\mu h$. slug-tuned coil (Vorth Hills Electric 120.13).
$1, i-10 . \bar{i}-2(M)-\mu h_{1}$, slug-tuned coil North Mills Vilectric 120-11).
output end of C_{15} and the ansociated coas loide the grounded sides of the coaxial cable and ratpateitor (${ }_{14}$, and the $13+$ end of R_{11}.

To assure mechanical stability, the coils for the first hand-pass (eircuit (L_{3} and L_{4}), and those of the $4.3 .5-\mathrm{Mr}$, oscillator ($L \times \mathrm{and} L_{9}$) are made up as follows: $L_{3} L_{4}$ is made from an 18-turn length of type : 300.3 Miniductor having 1 turns removed at the exatel center. Ino not break the support betrs when removing the tums, and be sure to leave leads approximatoly $3 / 4$ inch long at both conds of rach winding: $L_{x} L_{y y}$ is made from a 12-turn length of 'ryper 2003 Miniductor having the tenth turn removed (without breaking the sup) ports), thus leaving a! !-turn coil for the oseillator plate circuit (L_{8}) and at 2-turn (L_{9}) for suapling injection voltage to the mixer grid.

Fig. 19.1]. Cennecturs J_{1} and J_{2} are monnted in that order, from right to left. on the rear watl of the comortor, Shiedded mower leads pass throush a bubler grommed at the bower risht-lamel borners Gus-inch holes. cosorod with shap-in ventilating phaks, permit the removal of tubes. I ropprer fate, loeated inside the unit at the upher right-hand eorner. prowides shielding belween the srid and plate coils for the r.f. amplifier.

L, -9 turns Vo. 20 tinned, 16 inch long, $1 / 2$-inch diam.

$\mathrm{L}_{9}-2$ turns No, 20 tinned, $1 / 8$ inch long, $1 / 2$ inch diam. (B\& K 3003). See text.
$\mathrm{J}_{1}, \mathrm{~J}_{2}-$ RCA-type phono jack.
$\mathrm{P}_{1}-3$-prong male plug (Cinch-Jones P-303-CCT).
$\mathrm{RFC} \mathrm{F}_{1}-750-\mu \mathrm{h}$. r.f. choke (National $\mathrm{K}-33$).
S_{1} - 3 -pole 5 position (used as 3 p.d.t.) selector switch (Centralab PA -2007 or PA-5 wafer mounted on PA. 300 index).
$Y_{1,} Y_{2}$ - Crystals. See text (International Crystal type FA.9)

When the subassembly has been completed, it may be mounted and the interehassis wiring completed. However, the alignment of the tuned eireuits is more ronveniontly handled if the subassembly is worked on out in the open. This procedure neressitates that the input eircuit, ('1 $L_{1} L_{2}$, be mounted temporarily at one corner of the bracket (adjacent to V_{1}).

Testing

The converter requires 0.9 ampere at 6 volts - or 0,45 ampere at 12 volts - for the heaters,

Fig. 19-12-The sub. assembly hracket measures $17 / 8$ by $61 / 4$ ineles and has a $3 / 8$ inch monnting lip at the bettom. The support nlate for L and Lof meanares 5 年 hy $11 / 2$ inches and i- mombed on a 1,2 -inch metal pillar. los and lon pass through 1 g-inch holes pmehed in the sultassembly brachet.
and approximately $1: 3$ mat, at 150 volts for the plate supples. If the car radio delivers much in excess of 150 volts, it is dosirable to limit the input of the converter by means of a dropping resistor.

If liat response of the band-pass circuits is to be oltained a signal generator for alignment should be on hand. The gemerator should eover 6.5 to 10.5 as well as the 50 -Mre. band. On the other hand, a generator is not neeressary if the converter circuits are to be peaked for maximum response in one seetion of the 6 -meter band. It is advisable to obtain a grid-dip meter for use during the alignment.

The simplest aligiment (for peaked response at one ched of the hand is aceomplished by first rherking atl tuned airenits for resonance as indieated her a gridedippor, Resonate ('s L_{3} and $\left({ }_{6} L_{4}\right.$ at about 0.5 Me. Musite the band limit of interest, and then adjust the mixer-converter rompler for resoname at either 7 or 10 Me, depending on which end of the 50-Mr. hand is being favored. Peak the rouplers at 52 and 8 , 5 Me., respertively, if most of the operation is to take plater at the erenter of the ti-meter band.

S Di-Me. sigual should now be fed to the emvertar and a means for making relative output measumements should be provided. The over-all response of the converter will be broadened
if the various tuned cirenits are stagger tuned.
Alignment of the intorstage coupler for bandpass characteristios is a somewhat more complex task. Wach half of each eoupler must be independently resonated at the center of its range. This means that $r_{5}{ }_{5} L_{3}$ and ${ }^{6}{ }_{6} L_{4}$ must card be peaked at 52 Mr. and that (${ }_{8} L_{5}$ and L_{6} must both be resonated at 8.5 Me . Resonant frequendios may be checked with a grid-dip meter providing one half of a coupler is not allowed to interart on the other half during the measurements.

After the couplers have been resonated, the converter should be spot cherked through the entire 50-Mc. band to make sure that the over-all response is failly flat. Very slight adjustment of C_{5} and C_{6} may improve the response curve of the oo-Me. eoupler and the capacitance of 810 will determine the spread of the (6.5- to $10-\mathrm{Me}$, band-pass circuit. A rapacitane of approximately. $25 \mu \mu$ f. is optimum for the cireuit.

After the aligmment has been rompleted, the suhasembly mate be mounted in the chassis and the permanent witing completed. The smatl copper shield shown in the rear view of the converter may now be bent into shape and momed on the mounting foot of (${ }_{1}$. In making a final bonoh test of the unit, Fig, 19-10 may be referred to for typieal voltages.
(Originally deseribed in (QN゙T, Nov., 19\%5.)

Fig. 19.13-'Ihis - iew identilies the components mounted on the front of the subasuembly. Spacing In tween the tulne sochel comter= is 2 ' 2 inndro. 'The enamelocovered leads learing the unit at the left and the right eonneet to Cil. 2 and lo. rispertinely. The calore at the lower left is terminated at Pland is.

A Simple Mobile Converter for 144 Mc.

The 14t-Mte, motile converter shown in Figs. 19-14 through 19-16 may be operated from the receiver power supply: The output frequency of the converter is 1.5 Me ., permitting it to be used with an automobile broadeast receiver.
Two 12.1T' twin-triodes are used, canh as a mixer-oscillator, the first eonverting the signal frequeney to 11.1 Me, the serond working from this frequence to 1500 kr . Plate voltage for all circuits is stabilized by an 0132 regulator tube. The sensitivity of the converter is quite good, and satisfactory image rejection is obtained through the double conversion.

Circuit Details

The first mixer has a tumed gride coil and its plate circuit is tumed to 11.4 Mr. We C_{2} and L_{3}. The oscillator tunes from 132.6; to 1365.6 Mre. It uses the seremen section of the first 12.AT7 and, beating with the ineoming signal, produces an i.f. of 11.4 Me, which is then eapacitance coupled to the grid of the scrend mixer. C_{6} is the band-set capacitor and C_{7} is the bandspread capacitor. Stray coupling between grid pins at the sorket gives adequate injection.
The serond 12AT7 serves as another mixeroscillator combination, converting the $11.4-\mathrm{Ml}$. i.f. to 1500 ke . for working into a car radio. A trap $\left(C_{3} L_{4}\right)$ is connected in series with the coupling eaparitor betwere the two mixer cirrenits. This trap is tuned to It.t Me. and attenuates image response at a frequency removed from the signal frequeney by 300 kc .
The plate circuit of the mixer is tuncl to 1500 ke. by L_{5}, and a fixed capacitor, C_{5}. A short length of coaxial cable is used between the out put jack, J_{2}, and the receiver.
The oscillator for the second mixer is crystal controlled at 12.9 Me. and has its plate circuit tuned by means of C_{8} and L_{7}.

Construction

Figs. 19-14 and 19-16 illustrate how the eonverter is built into a hiamCAB (Profect Mfy. Co.) Type $\mathrm{A}-10$-A chassis-ceabinet assembly.

Fig. 19-14-The ehassis for the 11 H - We. conserter measures $1 \frac{1}{2}$ by 17/s by $6 \frac{7}{3}$ inches and the pancl is : inehes sumare. 'The cover for the unit (not shown in the photograph) measures 5 by 5 by 7 inches. I Vational AX vernier dial, mounted on the panel, is used for tuning the hand. spread capacitor, Ciz. Control hows for C_{1} and s_{1} are at the botton of the panel. L_{3}, L_{4} and L_{E} are mounted on a small aluminum sitip to the left of I_{2}. I_{1} is lecated at the fromt of the chassis, just to the left of C7. The 0132 regulator tube is at the rear of the converter. Yit and $L_{\text {, }}$ are located to the right of $1 / 2$.

The photographe elcarly show the arrangement of parts and the only real preatutions to be ohserved is that of providing aderquate isolation betwern L_{7} and the rest of the coils.

A threc-terminal tio-point strip, mounted to the reat of the 0132 sorket (Fig. 19-16), provides terminals for the d.e. input leads and support for R_{3}. A two-terminal tic-point strip is mounted between the socket for V_{2} and the front panel and is used for the support and termination of $R_{1}, R_{2}, C_{9}, C_{10}$ and RFC'1. Many of the other components are mounted directly on the terminals of the slug-tuned coil forms. C_{6} is mounted directly alowe ('z by means of leads made with $3 / 8$-inch copper strap.
The rear wall of the chassis (see Fig. 19-16) must be added to the commercial chassis.

Testing

Power requirements for the converter are 150 volts at 17 mat. and 6 volts at 0.6 amperre (or 12 volts at 0.3 ampere). A receiver capable of tuming to 1500 kc . should he coupled to the converter by a short length of coaxial cable and the receiver adjusted for normal opreation at this frequency. If a signal gencrator is to be used, it is connerted to the input jack. J_{1}, and if a getarator is not available, the converter should be boupled to a low-impedanere antermas sistem.

If preliminary testing is to be done with noise, the converter and the reeciver are turned on and the converter output coil. L_{55}, adjusted until the noise level is at maximum. The low-frequencer oscillator should now be adjusted by means of L_{7} until a further increase in mose level is heard.

Now introduce a test sigmal at 146 Mc . With ('7 sot at half capacitance, ('6 is adjusted until

Fig. 19.15 - Schematic diagram for the 144 Me. mohile ronverter. All resistors $1 / 2$ watt unless otherwise specified. Capacitor values below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. 1110.001 and 0.01 capacitors are dish eeramic. * Indicates a silver-mica capacitor. Other fixed caparitors are tubular ceramic.
Ci_{1} - Approx. 8 - $\mu \mathrm{f}$. variable (Itammarlund $111: 15$ reduced to 2 stator and 1 rotor plate).
Co - $9-\mu \mu \mathrm{f}$. miniature variable (Johnison 9 V 111).
C: - $8-\mu \mu \mathrm{f}$.-persection variable (Bud IC:-1659).
la - 4 turns No. $2 \cdot 2$ enam. interwound het wern turns at cold coud of 1.2 .
$\mathrm{I}, 2-4 \frac{1}{2}$ turns No. 16 timned. $3 / 8$-inch diam. $1 / 2$ inch long.
$\mathrm{I}_{3}, \mathrm{~L}_{4}, \mathrm{~L},-\mathrm{Cl}$ - Stur-tuned; induetance range $2-3 \mu \mathrm{~h}$. (Aorth lifls Fileetrie type 120-1).
the test signal is heard. Chere the high-frequeney oserillator at this point to make sure that it is adjusted to the low-frequeney side of the 144-Xte. band. ('1. $L_{33} . L_{5}$ and L_{77} should now be tuned for maximum converter sensitivity.
L_{5} - Slug-tunced: inductaner range 64-105 $\mu \mathrm{h}$. (North Hills File tric type 120-(B)
$I_{0}-4$ turns Vo. $16, \frac{5}{5} / 16$-inch diam., $3 / 4$-inch long.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - RCA-type phono jack.

RPC $C_{1}-2-\mu$ h. r.f. choke (National iR-00).
$\mathrm{S}_{1}-3$-pole 5 -position (usid ats 3-p.d.t.) selector switch (Centralat, P'-2006 or P'A-s) wafer monnted on P'A-300 index).
h_{1} - 12.9.Me. crystal (International type F (-9).
The eonverter bandspread cotn be adjusted by changing the $L /$ ' ration of the first oscillator, by altering the spaceing betweren turns of L_{66}. ('6 must be reset each time the inductance of the eoil is varied. The coupling betworn L_{1} and L_{2} should be adjusted for maximum response.

The 14.t-Me. trap is adjusted by. tuning to the high side of the signal frequeney until the image is heard, and hy then adjusting L_{4} until the image response is attenuated. (Orizinally deseribed in QST, Dec., 1955. .)

Fig. 19.16 Holen of $5 / 8$-inth diameter, punched in the chassie to the left of the woeket for l_{2}, fear the forms for $I_{3,} I_{4}$ and I_{3}. Freed-through bushings. mounted in the ehassis to the right of li. carry r.f. leads between $J_{1,}$ and $\mathrm{C} \%$ I twoterminal tie-point strip, supported lis the mounting fout of C_{1}, is used to tor. minate the Jeads for L_{1} and the grounded end of L_{2}. J_{1}, J_{2} and a grommet for the d.e. input calle are located on the rear wall of the chassis.

A 6-Band Mobile R.F. Assembly

The circuit and constructional details of a 6-hand transmittor for mothile work are shown in Figs. 1! -17 through 1!-21. Maximum power iuput will vary from about 30 watts with a 300 volt supply to approximately 65 watts at 600 volts.

Alultiband tuners in the output cireuits of the last two stages cover all 6 hands. The two tuners are ganged to a single control. The output circuit of the oscillator covers the 3.5 - and 7 -.he.

Fig. 19.17-1'ront view of the 6-band mobile transmitter. 'The control knob, for \dot{s}_{2} is located in butwen the meter and the dial for Co and Cis. S_{1} is olieredy below the erystal socket, with the kiols for for and (is to the left and right, respertively, J_{1} and J_{5} are at the bottom of the $47 / 8 \times 6 \frac{1}{4}-$ imeh panel. The perforated aluminum (rover is ')'s inches deep and has a hole punched in the left side to permit adjustment of C_{1}.
bands with a single coil. (C_{1} adjusts feedback for best erystal performanere. (2 may be used as an excitation control, L_{2} and L_{5} are v.h.f. parthsitie suppressors. R_{3} is importatht in leveling off and broaldening the response of the driver output cirruit. It is also an important aid in stabilizing
the last two stages. ('s provides a tracking adjustment. $S_{1 A}$, in the contral position. grounds the sereen of the 61.46 while adjusting the two preereding stages, and $S_{\text {ab }}$ selects wither of twout put links, L_{4} for 80 - and to-moter output, and L_{99} for the other bauds. Latang cau be adjusted he ('6.
S_{g} switches the 10-mat. moter to read phate current of "ath stage, grid current of either of the last two stages, or modulator plate eurent. In and h_{2} increase the meter reading to a maximum of 50 ma. Similarly, R_{5} and R_{6} increase the fullseale metor reading to 250 mat. δ_{4} is the comnector for the power-supply cable, while $/_{3}$ takes a cable from the modulater unit (see Fig. 1!-23). J_{5} is a microphone jack with a contact for a push-to-talk circuit.

The types 6.417 and $688: 3$ are 12 -volt versions of the types 5763 and $61+6$, respertively, and maty be used without modification of the circuit.

Construction

The pand, chassis plate, partition and com-nector-mounting bracket are made from Aleos 2SH-1t atuminum sheet 0.06 t inch thick. The cover that houses the unit is cout from perforated aluminum sheret 0.051 ineh thick. Lengths of 1/2 $\times 1 / \frac{1}{2} \times 16$-inch aluminum angle stock are used in the assembly.

The panel is $47 / 8$ by $61 / 4$ inches, and a rearview sketch is shown in lig. 19-20. Langths of angle stork, drilled and tapped to acemmontate mathine surews, are fastened along the four edges of the panel, on the inside. The strips of angle must be sot in from the edges of the panel by the thickness of the cover material. The angles are fastened to the lane of the panel by 6 - 32 somews in the No. 28 holes skirting the edges of the pathed. The two pieces that meet at the upper right-hand corner (ratr view) must be filed out to Clear the round ease of the meter. They must also be drilled to clear the No. 4 screws used to mount the instrument.

Fig. 19.18 - Is ser.n in this top view of the mobsile tramamiter, I_{t} is loreated to the right of the milliammeter, juil alouse J_{2}. La is menmend an al-inch cont insulator ted the right of ciz, and i-4 is muported by the stator torminals of (i3. $\left(\mathrm{S}_{\mathrm{s}} \mathrm{R}_{1} R_{1}\right.$ and RFi.4 are kronped to the lower rizht of a feed-throughinsulator used for the plate leand of I_{2}. The follo is mounted on the risht side of the ahminmon par-
 are in lime lelow the thlue.

Fig. 19-19 - Wiring diagram of the six-band mobile transmitter.

C1 - 3-30- $\mu \mu \mathrm{f}$. trimumer.
Ci - $\quad 110-\mu \mu \mathrm{f}$, variable (IIammarlumd VC:-1|0-玉).
 W(Cl)-1 10-W). (Canged to single control.)

 saramble-wonnd on 1 -megohm, $1 / 2-$ wall resistor.
 Vo. 31 wam., comerted in parallel and seram-be-womed on 1 -merelin. $1 / 2$-wath resistor.
 diam, (13 \& 11 3008).
L_{2} - I'arasitic rhoke: 4 turns No. 16, $1 / 4$-ineh diam., turns spated wire diam.
$L_{3}-6, \mu h .: \geq 0$ turns Vo. $21,5 / 8$ inch longs. $3 / 4$-inch diam. (BS IV 3012).
 diam, (13 \& $\mid 113000^{-}$).
I_{4} - P'arasitic: ehoke: ob turus Vo. 16, 1/4-inch diam., turns spaced wire diam.
 diam. (B \& V 301.5).
Lz - $5.2 \mu \mathrm{~h} .: 18 \frac{1}{2}$ turns lo. $2.4,{ }^{4}$ เ inch long, $3 / 4$-ineh diam. (13 N V 3012).

Iolos marked A and B are used for fastoning a $51 / 8$-inch length of angle across the back of the panel to serve as a support for the front edge of the chassis plate. The holes in the angle should be located so that the top surface of the chassis plate will be 2,32 inches up from the bollom edge of the panel. The ehassis plate must be notelned so that its front edge will fit flush against the larek of the panel.

The partition on which the 6146 is mounted is made from a $531 / 32 \times 3$-inch piece of aluminum. Bend at 3 -inch meunting lip along the bottom edge, and then rlip or round off the two toperners to clear the cover when it is slipped on.
Sow fasten the chasis-zupporting angle to the panel. slip the frome erger of the chassis plate overe the angle, and hold it there while you slide the partition upatanst the berels of the panel, keeping the bottom lip of the partition tight against the rhansis. Then, using the panel as a template. seribe a hole in the partition that matrones hole C
$1.8-2.8 .5 \mu \mathrm{~h} .: 161 / 2$ turns No, 20 , 1 inch long, $3 / 4-\mathrm{inch}$ diam. (13 \& W 3011).
$1.9-0.1 \mu \mathrm{~h} .: 1$ turns No. 20 , $1 / 4$ inch lonks, $3 / 4$-indi diam. (13 \& W 301I).
Note: Sere text for additional data on $L .8$ and $L 9$.
$J_{1}-$ Midget closed-rimenit jack.
J2-Coaxial-cable connector (Amphenol 83-1K).
J3-8-pronk female chassis connector (Imphenol 78-s8).
$J_{4}-8$-prong male chassis connector (Amplicnol 80-(:1'8).
Js - Vidget Zeironit microphone jach.

Sta - 1-pule 6-position (3 used) selector switeh (Centralal, P'1-1).
$S_{13}-1$-pole ll-position (3 used) selector switeh (Centralabl'1-11).
Note: Sia and sib mounted on (ientralah I'A-300 index assermbly.
s_{2}-2-pole 6-position selector switeh (Centralab 1'S-2003 or PA-3 sertion on 1' A -300 index).
Unless otherwise specified, all resisters are $1 / 2$ watt, and all fined capacitors are dish ceramic. * Indicates a mica capacitor. All values below 0.0)ll μ f. are in $\mu \mu$ f.
(Fig. 19-20) in the panel. Noteh out the mounting lip of the partition to clear the reramic base of the rear tuning capacitor when the latter is mounted.

The 61.46 socket is centered on the partition with its mounting holes in a vertical line. and the grid terminal to the loft as viewed from the rear of the partition. The socket is mounted on $3 / 4$-inch spuers. A to-inch alearanere hole should be drilled in the partition opposite the grid terminal.

Considarable time will be saved if the disk cremmies and leads comnerting to the socket are atterched and soldered before the socket is mounted permanently.

The partition is plared 4^{3} iti inders from the pancl, and another 'o-inch hole limed with a rubber grommet, is drilted in the chassis, direetly: In low the socket, to pass filament, cathode, and sareren leads.

The bracket that supports J_{2}, J_{3} and J_{4} (see bottom view) should now be labricated. ('se a
$2 \times 63 / 4$-inch piece of aluminum. The bracket has a $3 / 8$-inch mounting lip bent up along one side, and $3 / 4$-inch baces bent up at the ends. The finished height of the bracket should be $1^{5} / \mathrm{s}^{\text {inches }}$ and the length $5 \frac{1}{4}$ inches. When the brateke is finally mounted, it is held in pare by machine screws that pass through the chassis and then thread into a 5 -inch length of angle centered along the edge, on the opposite face of the chassis plate.
'Temporarily mount the pand components, and the partition, with the 6146 inserted in its sorket, and the amplifier tank capacitor, ('4, in place. Soribe lines on the ehassis, atong the inner edges of the ceramic bases of ('3 and ('4, across the rear of C_{4}, and mark hole centers directly under the inside stator terminals of the caparitor. C4. The latter will indicate the positions of the foedthrough insulators that support L_{8} and L_{9} (see Fig. 19-21). Now make marks on the chassis indicating the rearmost edges of all panelmounted parts, and also draw a line aross the chassis, holding the seriber against the front of the partition.

All components may now be removed from the chassis so that the positions of the tube sockets, r.f. chokes and other small components mat he marked. The socket for l_{1} is centered $3^{3} / 16$ inches back from the panel and $3 / 4$ inch from the side of the chassis. V_{2} is centered $13 / 4$ inches below V_{1} (top view). l'ins 4 and 5 of each socket should face toward the rear of the chassis.

In addition to the feed-through insulators for $L_{8}-L_{9}$, and the plate lead of 1_{2}. another must be provided for the lead betwern the erystal socket and l_{1}. Also, holes lined with rubler grommets should be provided in the chassis for the leads that connect to $s_{2}, R F C_{4}$, and $R P C^{\prime}{ }_{5}$.
L_{1} and L_{3} are fastened to their respective coneinsulator supports with Duco cement. Allow the cement to dry overnight before mounting these units.

A lug soldered to the last turn (plate end) of L_{6}, and then mounted on a $1 / 2$-inch cone insulattor, provites support for this coil. 'lhe cold end of $I .7$ is supported in a similar mamer.

No. 12 timed wire is used to support the plate and of L_{88}, and the C_{6}^{\prime} ends of both L_{7} and L_{99}.

The $L_{8}-L_{9}$ assembly is mate from a singlo length of 13 \& W Mimiductor. ['se a $201 / 2$ tum length of Type 3011 , and break the winding at 4 turns from one end, leaving the support bars intact. After heavy leads have been soldered to the four free ands of the asambly, mount and then wire as shown in Fig. 19-19.

The shatits of ('3 and ('f arr ganged with a motal coupler (Nillen 'Type 3!1003).
('s is mounted on a bracket, 1 inch high, wit? a $1 / 2$-inch lip, made from a $5 / 8$-inch strip of aduminum.

For operation with a plate supply delivering between 300 and 500 volts, a 20,000 -ohm 2 -watt screch-dropping resistor $\left(R_{4}\right)$ works well.
h_{3} is a pair of 12,000 -ohm 1-watt resistors connereded in parallel.

A four-terminal tie-point strip to the rear of I_{1} and V_{2} comnects to the $13+$ ends of R_{8}, R_{10} and $R F C_{2}$, and to the meter side of R. A singleterminal strip provides a junction point for C_{7}, R_{7} and $R P^{\prime} C_{1}$.

The five seetions of the cover are held together by machine serews. These serows pass through the perforated aluminum and then thread into the lengths of angle that run along all closed edges of the cover. A cutout measuring $19 / 4$ b $51 / 8$ inches is made in the rear wall.

Adjustment

If it is not convenient to use the motile supply for initial testing of the transmitter, any a.c.operated supply delivering between 300 and 150 volts at about 150 ma . may be used. If the voltage is higher than :300, it should be fed into Terminal

Fig. 19-20-I ayout drawing of the panel (rear view) for the sixband molite transmitter.

3 of J_{4}, and a dropping resistor connered betwern Terminals 3 and 4 . This resistor should have a value of 50 ohms for each volt that the pown supply delivers above 300 volts. Thus, a power supply delivering sion volts should have a dropping resistance of $50 \times 50=2500$ ohms. The enegative terminal of the supply should be connereded to Terminal 7 of J_{4}. Heater connecetions are made at Trmminals 1 and 7 of J_{4}.

For 3.5- and $\overline{\mathrm{T}}$-MC. output, 3.5-MLe. crystals may lo used, id-Me, crystals are used for $2 \overline{7}-\mathrm{Mc}$. output, and 7 -Mc. ©rystals mas be used for 14-, 21-, ind 28-Mc., oprration. The ospillator output (arouit may le rexomated at any of these crestal
 tion appears to be sluggish, ('1 should be adjusted for maximum artivity. It 300 volte, the osedlator offeresoname phate eurrent should be athout 30 mat. At resonamee, the plate current should drop to aloout 6 ma., and the grid curvent to I_{2} should simultameonsly peak at 1.5 to 2 mat.

With exeitation at the grid of F_{2}, the output direnit of $\mathrm{I}^{2} 2$ cat be resotated by adjustment of the gragetaning control. Resonance at $3 . \overline{5}$ Me. should be found with the ganged tuning condensers wot woll toward maximum capacitance. Resonanee at It Me, should oreur at about $\overline{5}$ per cent of maximum caparitaner. Resomaner at 21,7 , and 28 Mc., in that order, should rome at approximatoly 3 a, 20, and 10 porr cont of maximum. This stage is operated straight through on 3.5 Ma', and as a doubler to $\overline{7}$ Mr., using a $3 . \bar{j}-$ Me. resstal. With a $\bar{\sigma}$-Me. erystal, it is used ats a doulder to 14 Mre, a tripler to 21 Mr ., and ats a quadrupler to 28 Me. It is also used as a quadrupher in obtaining output at 27 . Ace, using li-Me. rrystals in the oscillator,

At resonance, the plate current to V_{2} should be approximately 10 mas., and grid current to the $61 / 4$ should riun 4 mat, or more on $3 . \overline{5}$ and $\overline{7}$ Mc. and at least 3 ma . on the remaining bands.
l'late voltage can be applied to the amplifier by placing a jumper betwern Terminals 3 and 6 of J_{3}. Whenever it is desired to cut off the amplifier while adjusting the precerding stages, this can he done be turning sis to the rentral position in which sia grounds the sereen of the 6 H 46 .

For proliminary tracking adjustments, C_{5} should first fre set at mimimum salacitance. Nor-mal-grid current for the 6 il 16 is approximately 3 ma, If it exereds this value appreriably, expitation may lox reduced by dotuning ('2 in the oseillator cirwuit slightly to the high-frectuency side of resonamer.

With proper excitation applied, the meter switch should now be turned to read amplifier phate current, and the gang control adjusted to resonance as indicated by the dip in phate current. The lowding should then be adjusted, by means of ('fi, so that the plate current at resonather is at elose to 100 mat as possible.

With the gang control adjusted areurately to amplifier phate-cenerent dip, the meter should be witehod to read the grid current of 13 . If a readjustment of the gang control is necessary to obtain maximum grid current to $\mathrm{l}_{3}^{\prime}, \mathrm{C}_{5}$ should be readjusted slightle, and the process repeated. If the load is not too seriously reartive, an adjustment of ('s should be found where maximum grid current and minimum plate current in l's oerur at the same setting of the geing control. So long as the load is very close to resistive, this same adjustment should hold for all bands. (Originally

Fig, 19.21 - In this bot. tom vien of the mohile transmilter, Co and Cis are to the laft and the right. respertively, uf st, sia is the section chosest to the pandel. I_{1} (monnted on a $1 / 2$-imeh rome insulator), (it and RH' 2 form a triangle to the rear of (.2. Thas plateorirenit ford-ilhromgh, RFO_{2}, and the thbe wochet - all for l_{2} are to Hee rear of siss. $L_{\text {a }}$ and ta are monnted parallel with the rear of the chassis and the $/$.a. 1 a asembly is sumportad by fredelimoigh insulator above and to the left of $/ .6, J_{2}, / 3$ and J_{4} are mounted on an aluminum lirateket thown at the bottom of the whotopraph.

A 25-Watt Mobile Modulator

Figs. 19-22 through 19-25 show a 2 2j-wat mo bile modulator. Whild designed primarily for use with the preceding r.f. assembly, it is obvious that it ran be used with any mobile or fixedstation transmitter whose input does not exered 50 watts.

Fig. 19-2:3 shows the sehematio of the mondulator with an input circuit suitable for a crystal microphone. A resistancerooupled speech amplifier using a single 12ANT drivers a patir of blan operatm ing as Class Al3, amplifiers. R_{5} is the gain eontrol. Bias for the 6Lfos is developed auross h_{7}.

Fig. 19-2: shows the changes in the sperehamplifier cireuit neeresary to adapt it for use with a carbon midrophone. D.e. voltage for the mierophone is ohtained by connerting the misrophone in series with the spoerh-amplifier cathodes.
J_{1} is used for all of the voltage leads entering and leaving the audio ehassis. The pin numbering and the wiring of J_{1} are arranged to correspond with those of J_{3} of the r.f. unit.

Two photographs of the unit show how a large sheet of plain aluminum is bent to form a ehassis measuring $11 / 2$ be $11 / 4$ by $61 / 4$ inches. 1 ength of $1 / 2$-inch angle, fastened flush with the bottom edges of the end walls, provide surfaces to which the bottom cover may be fastened.

The two (iLd surkets are mounted in line with $21 / 4$ inches betwern conters, and are centered back from the front of the chassis hy a distance of $27 / 8$ inches. The interstage transformer, T_{1}, is eentered $13 / 4$ inches back from the front of the chassis. The

12 ANt orcupies the spare between T_{1} and the front edge of the chassis. The is centered over the rut-cut to the rear of the didis.
"The arrangement of parts shown in fige. 1!-25 is the one used when the sperech amplifior is wired for erystal-microphone input. Resistors R_{1}. R_{2}, R_{3} and R_{6} (Fig. 19-23) are grouped around the 12AX7 tube socket, and (C_{1} is conneeted betwern

Fig. 19.22 - The nodulator in the foregroumd is laid out on a homemate chassis measuring $11 / 2$ by $41 / 4$ ly 6.516 inches, with $1 / 2$ inch lipe along the sides. The interstage tranaformer. T_{1}, is centered betwern the shielded 12AX7 and the 6L6s. The momblation tranaformer is at the rear of the chassis. J_{1} and the wain contro! are mounted on the front wall of the unit. The silles of the chassis are enclosed by the perforated cover when the latter is slipped in place.

Fig. 19.2.3 - Circuit diagram of the 25-watt modulator wired for crystal-microphone input. I'nless othernise specified, all resistors $1 / 2$ watt
R_{9} - See text.
$\mathrm{J}_{1}-8$-prong male connector (Amphenol 86.CP8).

T1- Interstage audio transformer, single plate to pushpull grids. secondary-to-primary turns ratio 3 to 1 (Triad A.31X).
T_{2}-Iniversal modulation transformer, 30 watts (t"C S-19).

Fig. 19.24-Gircuit diakran of the carlan-minorophone imput cracuit for the $2 \boldsymbol{n}$-watt mentulator. All resisturs, 1/2 watt. 'T1 same as T_{1} in fig. 19.2.3.

Pin \bar{a} of the sorket and ground, with the shortest leauls possible The interstage coupling capacitor, ('3. mounted paraillel with the front wall of the ehassis, is supported by Pin (o of the socket at one end :und by the input terminal of the gain control. h_{5}, at the othere end. A one-terminal tie-point strip, located directly above the right-hand 61.6 socket (Fig. 1! -25) serves as the common comnection point for R_{3}, R_{4} and C'4. Bedden type 888 B wire is used wherever shiched leads are shown in the eirenit diagram.
The top viely of the modulator shows the perforateal cover in the lackground. Langths of $1 / 2-$ inch angle, hedd in pate by means of self-titpping screws, are run along the closed edges (inside) to hold the box toget her.

Testing

If the modulator is to be bench tested before it is installed in a vehicle, it is converient to use ate. for the heaters, In this case, the 6.3 -volt transformer should be rated at not less than 2 amp, and must be comerted to Terminals 1 and 7 of J. Plate voltage for the 12A.57 may he obtained diverelly from a 300 -volt supply conneded to Terminal 2 of J_{1}, or it maty be taken from the (illo plate supply via a dropping resistor connected betarern Torminals 2 and 4 of J_{1}, if the plate supply for the tid is delivers 360 volts - the most desirable voltage for the tubers - the 1 -wath dropping resistor should have a value of 22,000

ohms, provided the sperech amplifier has been wired for erystal-microphone imput. If the gromaded-grid input cirruit has been used, a 15,(OH-0hm resistor will be satisfictory, If the voltage applied to Terminal 4 of J_{1} is other than Btio volts, the correct value of dropping resistance may be based on a rombined platerecurent flow for the 120.57 of "ither 4.5 mat, (erystal-micro)phone input) or 6.6. mat. (rarbon-microphone input).

If a satio-volt supply is connered to Terminal 4 of J_{1}, it is not neressary to employ R_{9} of Fig. 19-23. On the ot her hand, if the plate supply output is in excess of 360 volle by any sulstantial amount, it is advisable to redure the plate voltage for the Cildis by means of a resistor (R_{9}). This resistor should have a value of 10 ohms for catch volt that the power supply delivers alowe 360 volts.
During the bench testing of the audio cirenits, it is convenient to load the serondiry of T_{2} with a slider-type $2 \overline{\text { jowath }}$ resistor having a value equal to the r.f. lead impedanere ($/$, mit) with which the medulator will exentually work (sere (hapter 10).

The chart furnished with the universal modulation transformer should be consulted for the conneetions that will permit a match betwern the !9000-ohm plate-to-phate lowd of the 6 L .fs and the ant icipated r, f. load resistance.

Mrethods of test ing audio eirenits are treated in detail in the modulator equipment chapter. However, a quick-and-ensy test of this unit caln be made by tapping either at spaker or a pair of headphomes arross a portion of a 25 -watt lowal resistor. Ther resistor should be comected across Terminals 3 and 6 of J_{1} and the slider should bre $^{\circ}$ adjustend to give reasonalhle output level. of course, it is both danyerous and unneressary to apply d.e. voltage to the secondary of T_{2} during this chorek.
The microphone should be comereded bet ween Terminals 7 and 8 of J_{1} and power applicol. Figs. 19-23 and 19-24 show the approximate potentials that may be expected throughout the circuit provided that all 3 tubes are behaving properly. Plate current for the bilis should ielle at approximat ely 88 mat and should rise to $1(6)$ ma. or so with the application of voice modulation, If a milliammeter has beron inserted in the phatevolt:ge leed external to Terminal I of J_{1}, it will register the $6 i d i$ sereen-eurrent swing of 5 to 17 mat as well as the plate drain.

In an act ual mohile installation, the modulator unit may tre segatated from the r.t. assembly log any conveniont distance. The cable used to connere J_{1} of the modulator with J_{3} of the r.f. section sheuld the made with individually-shicelded leads. (O) riginally deseribed in Qsit, Nov. 1954 and leb., 1! 1 5. 5

Fig. 14.2 .3 - Jhatom view of the 2.5.watt modulator. A cut-ont measuring $13 / 4$ by $21 / 4$ inches, horated at the end of the dhasion mon ides anress to the mondulation trans. formor terminals, C_{5} and K_{z} are mombted on a the-point strip at the lower loft-hand corner and C_{6} and H_{i} are centered hetwern the cutout and the ol. 0 tube sockets. Cis is lowated at the upher right-hand corner, just to the right of (.2. Component symbols refer to F'ig. 14.23.

A 10-Watt 50-Mc. Mobile Transmitter

The arystal-eontrolled motile transmitter shown in Figs. 19-26 through 1!3-30 is complete with spered implifier and modulator viromits. The r.f. amplifier oprentes with a dee input of 10 to 12 watts, and the entire trathemitter lomets the car battery only slightly more thath doess a standard automobile broadeast receiver.

A meter-switching circuit is inchaded and provision is made for pushtith-talk control of extermal antennat ind power relays. An inexpensive

Circuits

The oscillator-mabler seetion of the transmitter uses al 1 ype $12 \mathrm{~A}^{\prime}$ 't dual triode as shown in the circuit diagram, Fieg. 1!-28. Gur half of the tule. ViA, oferatos ith an overtone weillator using a 20 - Mre, erystal. The phate cireuit. (${ }_{1} L_{1}$, is resonated at 25. . We andoutpat from the stater is cequacitanese coupled to the doubler tuber l'as.

The doubler circuit is resonsted at $50-$ Me, by

Fí. 19.26-I'hc 50. Me, molile transmitter is linily into al $\div \times 11 \times 3 . \mathrm{inch}$ aluminame rhassis (Premier A(:H-I2S). sion the front wall is llanked by the moter at the loft and J_{1} and s_{2} at the right. The control shaft for C is contered in butwern the crostal sochet and the nultiplier toming control. C.2, 'The alliplifier tuming caparitor. G3, in all the lower right-hand rorner directly below the onaput capmeritur. Ci4.

vibrator-type supply rated at 300 volts and 100 mat will power the eomplete transmitter.

The exciter and the adido tubes may he wired for either (i - or 12 -volt operation. A 12 -volt equivalent (type 6417) may be sulstituted for the type 5763 in the r.f. :mplifier without modification of the circuit.
the parallel-tuned plate tank, $C_{2} L_{2}$. Output from the doubler is rapacitance coupled to the r.f. :mplifier tuber, l_{2}.

The r.f. amplifier works straight through at $\overline{5} 0$ Me., use's grid-leak bias and hats a balimed phate rircuit $\left({ }^{*}{ }_{3} L_{3}\right)$ so that at conventional neutralizing system mat he used, (rof is the neut raliz-
fig, 19.27-- An interior vien of the 50. No, mobile transmitter with the $-\times$ H-inch lootom aoser remosed. Is sroll in this sien, the r.f. subassembly at the right is 3 ind hes down from the top of the unit. 'Whe bracket supporting the andio romponents at the left is 4 inclees down from the top cidge, I_{2} andel J_{3} are momented on the wall Io the rear of the r.f. lubser,

Fig. 19-28-Sehematic diagram of the 50-Me. mohile transmitter. Capacitors below 0.001 are in $\mu \mu \mathrm{f} . \mathrm{C}_{13}$ is an electrolytir capacitor. * Indirates a tubular erramic. All other capracitors mot identified below are disk ceramic. All resistore cerept R_{2} are $1 / 2$ watt.
C., $1: 2, C_{1}-1, i,-\mu \mu$. midget variable (Hammarlund WIC. 15).
$C_{3}-11-\mu \mu \mathrm{f}-\mathrm{p} \cdot \mathrm{r}$-scrion lintorfly variable (Ilammarhund MA(:BF-II).

J_{1} - Thres-rirruit microphone jack.
J_{2} - B-wontart (\% used) malc connector (Amphenol 86 . R(CP8).
J_{3} - Coaxial-cable comector (S()-239).
$1.1-2.2 \mu \mathrm{~h} . \mathrm{I} 18$ turns ino. $20,5 / 8$-inch diam., $1 \frac{1}{8}$ inches long (BN゙N 3067).

 diam., $3 / 4$ inch long (BN Cl :300\%).
ing capacitor. Output from the amplifior is coupled to the antennat ferdine vita a sories-t uned coupler, (${ }_{4} L_{4}$, and the output jack, J_{3}.
One half of a type 12A1 - is used in the ground-ed-grid input circuit of the sperech amplifier. The serond half of the tube, I 3n, operates in a Chass A driver stage whieh is, in turn, transform(recoupler to a Class I3 modulator. The modulator tulx, I_{4}, is at type $12 A \times \overline{7}$. D.e voltage for at s.b. carbon mierophone is ohtained by connecting the midrophone in series with the cathodes of the $12 \mathrm{~A} \mathrm{~T}^{7}$.
S_{1} switches the bolma, neter to read plate current of the r.f. stages, grid current of the r.f. amplifier, or modulator plate current.
S_{2} is the heater on-off switch. Heater circuits for both 6 - and 12 -wolt operation are shown in Fig. 19-28. The push-to-talk contact of the microphone masy loe returned through J_{1} to terminal No. 1 of J_{2} for the control of external antenna and power redays.
I_{4} - Output linh, 3 turns No. 20 insulated wire, close-nound over center of i_{3}.

$\mathrm{RFC}, \mathrm{RFC}_{3}-\bar{i}-\mu \mathrm{l}$, r.f. chohe (Ohnite $\left.Z-50\right)$.
$18 \mathrm{FC}_{2}-1.8-\mu \mathrm{h}$. r.f.choke (Ohmite $Z .1+1$).
S_{1} - 2 -pole 5 -pmsition phenolic- selector switeh (Centralal, I. 111 or 2 'Type II wafers mounted on P'-121 index).
s_{2} - S.p.s.t. thggle switeh.
T1-Driver transformer, single plate to Class Bgrids (Thordarson 201):6).
T_{2} - IO-watt modulation transformer, variable ratio, (1)
Y_{1} - 25. Vc. erystal (International Type FA-9).

Construction

Figs. 19-26, 19-27, 19-29 and 19-30 show clearly the arrangement of all components. Before the parts are mounted on the subassemblies, it is advisable to use the brackets as templates for locating and marking the bracket-mounting holes in the main chassis.

The tubular trimmer, C_{10}, used as the neutratizing capacitor has a rated minimum capacitance of $1 \mu \mu \mathrm{f}$. The minimun is reduced to approximately $0.4 \mu \mu$ f. (suitable for neutralizing a 5763 or 6417) ber sliding the tubular stator plate out and away from the tuning-slug end until only half of the plate rests on the plastic form.

Leads between the r.f. subassembly and the panel-mounted components should be made with No. 14 timed wire. Ordinary hookup wire is used for all other wiring except for the coaxial lead ($\mathrm{R}\left({ }^{r}-58 / L^{*}\right)$ between L_{4} and J_{3}.

Meter shunts $R_{3}, R_{4}, R_{7}, R_{9}$ and R_{13} are mounted directly between sections of S_{1}. A 5 -terminal

Fig. 19.29-The brachet for the r.f. subassembly measures $27 / 8$ by 4 inchers and has a $1 / 2$-inch mounting lips at the bottom end. "the timerd wires evtending away from the unit should he abont $21 / 2$ inehec long, and the insulated leads at the lower left-hand corner should be approximately 15 inches long. I'in 9 of each socket faces toward the bottom of the assembly.

(1 terminal unused) tie-point strip, mounted above (${ }_{1}$ and (C_{2} as shown in Fig. 19-27, is used to support the coaxisal-cable end of L_{4} and the $B+$ ends of $R_{2}, R F C_{1}$ and $R F^{\prime} C_{3}$.

Testing

A standard abe powar supply that will deliver $3(0)$ volts at $1(0)$ mat, maty be used during tosting of the transmitior. Heater-current requirements are 1.65 amp . for 6 -volts operation and 0.825 amp. for the 12 -volt circuit. Do not connert the plate supply to the r.f. amplifier power terminal (Pin 4 of J_{2}) at this time. An overtone crystal ground for 25 Mc . must be placed in the erystal sorket and a dummy load should be avaibatbe. Five No. 4 pilot lamps connected in parallel with short leads provide a good load for testing.
Fo test the exeiter (remember that plate power is not to be fed to the amplifier at this time), turn on the heater supply, close S_{2} and switch the meter to read owillator plate current. After a fow seconds of warm-up, apply plate voltage to V_{1} and, as quickly as possible, tume C_{1} for minimum plate current. 'lo repeat, prform this operation rapidly because lins rums without bias unless the oscillator is delivering output. Switch the metor arross R_{4} and then tune C_{2} for minimum doubler-stage plate current. Now switeh the meter to the amplifier grid circuit and retune C_{1} and C_{2} for maximum grid cur-
rent. Current readings now available should show oscillator and doubler phate currents of 10 mat , each and an amplifier grid current of 3 mat. or so.

Now, slowly rotate the amplifier blate capacitor, ('3. through its full range while ohserving the grid-current reading. If the current suddenly fluctuates during the tuning of ('3. adjust the neutralizing eapacitor, (${ }_{10}$, until this effert is eliminated.

Thurn off the plate supply and eomere a jumper betweron Pins $: 3$ and 4 of J_{2}. Commed the dummy loat to J_{3}, adjust \boldsymbol{C}_{4} to minimum (atpaccitance, switeh the meter across h_{9}, and then turn the plate supply on. Adjust (${ }_{3}$ for minimum amplifior plate curront - :uproximately $2 \overline{5}$ mat. Nimultaneornsly inerotse the caparitance of ' $_{4}$ and readjust ('3 for plate-rireuit resonance until the plate current is 35 to 40 mat. and the lamp load indieates maximum output.

Voiee signals applied to the miserphome should canse the hamp lowd to show increased brillianee, and the modulator plate current should rise 20 to 2 . ma a above the 10 -signal value of 6 mat.
Either a 50 -IIC. whip or a $\overline{5}$-inch broadeast antenna may be coupled to the tramsmittor in the mohile installation.

If the microphone has no push-to-talk switeh, the relays may be oprated by means of a s.p.s.t. toggle siviteh conneded between J_{1} and ground.
(Originally described in (SST, I ece. 1956.)

Fis. 19.30 - The $27 / 8 \times 6$-inch hrachet for the audio revtion hav a $1 / 2$-inch mounting lip along the hottom odue. Tuhe nochete for $1 / 3$ and $I 4$ are mounted with lin 9 of rarh facine tomard the tup of the assemblus. Wires for comnection to $\mathrm{B}^{2}+$, J_{1} and S_{2} shonld be 9 or 10 incles lomg.

A Band-Changing Transmitter for 50 and 144 Mc.

Figs. 19-31 through 19-35 show eircuits and constructional details of a compact transmitter covering the th- and 2 -meter bands. Band-changing is done entirely by the panel controls. The
circuit resonant at approximately 15 Me, C_{5} hats sufficient range to tune the oscillator output circuit from 21 through 36 . Me. This circuit is tumed to 25 Me. for $50-$ Me. output from the transmitter,

Fig, 10.31 - The erystal is momberi atowe the merter switch. to the left of the amplifier grid. tuming control. "The tuning hmol for the oseillator is at the lower lefthand side of the outpont switch, sj. Cantrols fur the output and amplifier plate cirruits are at the right. The unit mas bw user! vertieally beriontating flue meter. Ventilating holes should he drilled in the end used ase the top.
unit is only 3 inehes deep, and therefore is suitable for inst roment-panel mounting.

Output on cither hand may be obtaned using crystals in the 8 -, 12-. or 25-Mhe ranges. Although it is possible to oparate the 2 l 26 output stage at higher voltage, the unit is designed primarily to work from a 300 o-volt loo-ma, supply. I singlo 200-ma. supply should take rare of hoth this unit and a modulator in the latter case. Changing from one band to the other is accomplished through the use of wide-range tanks in the exaiter, and a multicirouit tuner in the output. Metering eireuits are included.

Circuit

The circuit of the unit is shown in Fig. 19-33,
 the driver stage. The oscillator has a fixed cat hode

Fig. 19-33 - Cirenit diagram of the v.h.f. mobile transmitter. L'nless otherwise sperified, all resistors $1 / 2$ watt. Values helow $0 .(0) 1 \mu$ f. are in $\mu \mu$ f.

($51 \%-1.3-\mu \mu \mathrm{f}$ - -per-sevtion variable (IIammarlund IIFI). 15-X).
$\mathbf{L}_{1}-1.9$ нh.. $3 t$ turns No. 2.2 enam., $1 / 4$-inch diam., dose-womind.
$1,2-0.4 t \mu \mathrm{~h} ., 6$ turns No. 20 tinned, $1 / 2$-inch diam., $3 / 8$ ind long (13 \& 11 300:3).
$1.3-0.15 \overline{5}$ h.. 3 turns No. 18 timned, $1 / 2$-inch diam., $3 / 8$ inch long (13 \& W 3002).
1.4-0.36 Hh . (sere text).
I. -0.2μ h. (ser text).
lof - See text.
J_{1} - Imphenol rovaxial conneetor.
$J_{2}-8$-prong male conneetor.
RACi-National type R-50) r.f. elaoke.

RIGA-National type di-loos r.f. choke.
S_{1}, s_{2}-2-pole 6 -prosition miniature selertor switch. si used ats s.p.d.t. (Ciontralal, D'S-2(m)i).
modulator is commerted to the trinsmitter, connert the secondary of the modalation transformer betwern l'ins 5 and 8 of I_{2}, comnect th.v. to the 2 lisk to lin 8 , and then return the +h.v. lead of the modulation-transformer primaty to l'in 7 .

Construction

A $3 \times 5 \times 1(1-$ inch aluminum h hassis is used as the housing for the transmitter. The construction is made easier through the use of subassemblies. Fig. 10-34 is a view of the useilatormultiplier section. The bracket supporting the components has $3 / 8$-inch lips along the right and bottom edges for fastening to the chassis.

Fig. 1!--32 shows a \%-shaped partition spaming the chassis. This can be made and installed most catsily in two pieces overlapping and fastened together at the center. The height is made to fit the chassis depth. In Fig. I! 1 -32, the segment lengiths, from leit to right, are $21 / 2,11 / 8$, and $21 / 2$ inches. 1 ips are bent at the ends and along the bottom for fastening to the chassis. A $11 / 4-$ inch
 inches and supports mont of the components for the eveiter stagos. (iz, with one end floating free is at the upper right-hand corner. 'lhe wire leaders at the hot tom of the plate eommert to the oscillator tank, meter switeh and power connector, as shown hy Fig. 19-33.
hole is punched in the center of the segment on which the 2V26 is mounted, while a small feedthrough bushing (Millen 32100) is set in the other segment. I'osition this bushing so that ''12, which is mounted on it, will be at the right level, and clear of the partition segment to the reat. The 2 Vit i socket is mounted on $5 / 8$-inch spacers. Prongs $1,2,1,6$ and 8 , and the sereen bypass, r_{9}, should be returned direetly to ground on the socket side of the partition. A 2-terminal tie point to the rear of the sorket supports the heater lead and the h.v. end of the sereen resistor, R_{11}.

Voltage and Current Chart for the V.H.F. Mobile Transmitter												
Oscillator				Multiplier				. 1 mplifier				
Crystal Fref., Mc.	$E_{\text {s }}$	$\begin{aligned} & I_{\mathrm{p}}, \\ & \mathrm{Ma}_{\mathrm{N}} \end{aligned}$	Freq. Mc.	$E_{\text {c }}$	$E_{\text {s }}$	$\begin{gathered} I_{\mathrm{p}} \\ M a . \end{gathered}$	Friq. Me.	E_{g}	$\begin{gathered} I_{\mathbb{R}_{1}} \\ M, \end{gathered}$	E_{s}	$\begin{gathered} I_{\mathrm{p}} \\ \mathrm{Ma} \end{gathered}$	Friq. Mc.
8.3	210	20	25	-80	210	25	50	-190	4	135	45	50
12.5	235	15	"	-120	215	27	*	-210	4.5	120	*	"
25.0	210	20	*	-60	210	25	'،	-185	4	145	"	"
8.0	210	20	24	-85	250	25	32	-155	3.2	170	50	144
12.0	220	16	21	-140	255	27	،	-190	4	155	47	"
"	225	18	36	-115	215	*	-	-215	4.5	150	"	*
24.0	210	21	21	-65	250	"	-	-140	3	180	50	"

inches from same end.

Testing

For 50-Mc. operation, the rrystal frequency must lie within one of the following ranges: $8.33: 3$ to 9.0 Me. 12.5 to 13.5 Mc.; 25.0 to 27.0 Mc. With a small B battery for fixed bias and a $300-v o l t$ supply connected to the exciter, but not the amplifier, tuning of the exciter at 50 Me. requires only that the oscillator and the multiplier be reso-

In constructing the multicireuit lumer, first redure the 300613 \& 11 . Minidurtor to at total of $141 / 4$ turns. Without breaking the supporting bars, clip, the winding at points that will leave 5 full tums at one rond and $31 \frac{1}{4}$ turns at the opmosite end. The 6 turns left intaet betwedn end windings are used as the output coupling inductance, L_{6}. short leads of No. 16 wire should now be soldered to the free ends of the three windings. Also, solder a short lead $1 \frac{1}{4}$ turns in from the $1+1$-Me. end of the coupling roil. This should place the tap at the top of the eoil when it is mounted.

In mounting parts on the chassin, (enter J_{2} on the rear wall $11 / \frac{1}{4}$ inches from the exeiter end of the chassis, and J_{1} in the lower eorner of the amplifier emel. On the panel side, the shafts for C_{17} and C_{18} are 1 inch from the right end. S_{1} is centered $27 / 8$ inches from the right end, while the controls for ('s and (${ }^{12}$ are $13 / 4$ inches in. I panel beating is needed for ' ${ }_{12}$, which is fitted with an insulating shalt coupling. The remaining two controls are $65 / 8$ inches from the righthand end. The moter is at the lefthand end.
The subassemblies may now be positioned while the mounting holes are marked. The bracket for the 5 ghts is placed $31 \frac{1}{4}$ inchers from the left-hand end of the chassis, while the rear end of the Z-shaped partition for 2E26 comes at $51 / 8$ SFEECH AMP?
$12 A \times 7$
mated at 25 and 50 Me. respectively.
Before testing the amplitior, turin the supply off and connert a jumper between Pins 3 and 5 of J_{2}, and connere a 115 -volt 10 -watt lamp to the output connertor. S_{1} should be set at the 50 - Me: positicn. Apply power and resonate C ${ }_{17}$, indicated by a dip in plate current. This should come well toward minimum capacitance. Set Gis near full caparitance and retune C_{1}; for resonance. (The amplifier data in the chart were taken with the dummy load. In operation, the currents will depord upon lowding.) If biasing voltages aro checked, use a v.t.v.m., or a general-purpose test instrument with a radio-frequence choke inductance of at least 1 mh . connected in series.

In tuning up for $1+t-M c$. output, work with the exiter stages only at first, using a erystal in any one of the following frequency ranges: 8.0 to $8.222 \mathrm{Me}, 12.0$ to $12.33: 3 \mathrm{Me}$. 24 to 24.66 t ; Me. If a 12-Mc. crystal is selected, the oscillator maty be tuned to either 24 or 36 Mc . In either easie, the multiplier must be tuned to 72 Mc . by C_{12}. The oscillator is always tuned to $2 t$ Me, with erystals in the 8 - and $2+$-ile. ranges.

Fir. 1 $19-35$ shows the circuit of an appropriate modulator.
(R.f. section originally described in QST, Nov., 1953.)
$\begin{array}{cc}\text { ORIVER } & \text { MODULATOR } \\ \text { GN7 } & 6 N 7\end{array}$

Fig. 19.35- Cireuit of modulator for the 50. and 111- Xc, mobile transmitter. Pin numbers on modulation transformer leats refor to J_{2} in lige. [9.33.

\mathbf{I}_{2} - Clase 13 modulation tramaformer (Stancor A-381s: 500)-ohm tap).

The Mobile Antenna

For mobile operation in the range hetween 1.8 and 30 Mc ., the vertical whip antemna is ahmost universally used. Since longer whips present mechanical difficulties, the length is usually limited to a dimension that will resonate as a quarterwave antenna in the 10 -meter band. The car body serves as the ground connection. This antenna length is approximately 8 feet.

Fig. $19-36$ - The quarterwave whip at resonance will show a pure resistance at the feed point X.

With the whip length aljusted to resomance in the 10 -meter band, the impedance at the feed point, X, Fig. 1!)-36, will appear as a pure resistance at the resonant frequeney. This resistance will be composed almost entirely of radiation resistance (see index), and the efficiency will be high. However, at frequencies lower than the resonant frequener, the antenna will show an increasingly large capacitive reactance and a decreasingly small radiation resistance.

Fig. 19-37-At frequencies below the resonant frequency, the whip antenna will show capacitive reactaner as well as resistance. R_{R} is the radiation resistance, and C'A represents the capacitive reartance.

The equivalent circuit is shown in Fig. 19-37. For the average 8 -ft. whip, the reactance of the capacitance, C_{A}^{\prime}, may range from about 150 ohms at 21 Me, to as high as 8000 ohms at 1.8 Mc., while the radiation resistance, R_{R}, varies from about 15 ohms at 21 Mc . to as low as 0.1 ohm at 1.8 Mc. Since the resistance is low, considerable eurrent must flow in the circuit if any appreciable power is to be dissipated as radiation in the resistance. Yet it is apparent that little eurrent can be made to flow in the eircuit so long as the eomparatively high series reactance remains.

Eliminating Reactance

The caparitive reactance can be canceled out by connerting an equivalent inductive reartance, L_{1}, in series, as shown in lig. 19-38, thus tuning the system to resonance.

Vifortunately, all coils have resistance, and this resistanee will be added in serios, as indicated at R_{c} in ľig. 1!-39. While a lavge coil may radiate some energy, thus addling to the radiation resistance, the latter will usually be negligible compared to the loss resistance introduced. However, adding the foil makes it possible to feed power to the eireuit.

Ground Loss

Another element in the circuit dissipating power is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antenna. Little information

Fig. 19.39 - Equivalent cireuit of a loaded whip anFig. 19.39 - Fquivalent circuit of a doalded whip anantenna, IL, an equivalent inductive reactance. Re is the loadink-eroil resistance, R_{G} the yroumd-loss resistance, and R_{R} the radiation resistance.
is available on the values of resistance to be expected in practice, but some moasurements have shown that it may amount to as much as 10 or 12 ohms at 4 Me. At the lower fremuencies, it may constitute the major resistance in the circuit.

Fig. 19-39 shows the circuit including all of the elements mentioned above. Assuming ('A lossless and the loss resistance of the coil to be represented by Re, it is seren that the power output of the transmitter is divided among three resistances R_{c}, the coil resistance; $h_{i} ;$, the ground-loss resistance; and R_{R}, the radiation resistance. Only the power dissipated in R_{1} is radiated. The power

Fig. 19.40 - Graph showing the approximate capacitance of short vertical antennas for various diameters and lengths. These values should be approximately halved for a center-loaded antenna.

Approximate Values for 8-ft. Mobile Whip						
Base Loading						
$f_{k c}$.	Londing L ulu,	$\begin{gathered} \text { Rc (0.50) } \\ \text { Ohins } \end{gathered}$	$\begin{gathered} \text { Re }(Q 300) \\ \text { Ohms } \end{gathered}$	μ_{R} Ohms	$\text { Feed } l^{*}$ Ohms	Matchinu Luh.*
1800	3.55	77	13	0.1	23	3
3500	77	37	6.1	0.35	16	1.2
7200	20	18	3	1.35	15	0.6
14.200	4.5	7.7	1.3	5.7	12	0.28
21.250	1.25	3.4	0.5	14.8	16	0.28
9\%9.000		. \cdot		-	36	0.23
Center Loading						
1800	700)	158	23	0.2	34	3.7
3800	130	72	12	0.8	22	1.4
7200	40	36	6	3	19	0.7
14.200	8.6	15	2.5	11	19	0.35
21.2.50	2.5		1.1	27	29	0.29
$R_{\mathrm{C}}=$ Loodingeoil resistance; $R_{\mathrm{K}}=$ Radiation resistance . * Assuming loading coil $Q=300$, and including estimated ground-loss resistance. suggested coil dimensions for the reguired loading inductances are shown in a following table.						

developed in R_{c} and R_{G} is dissipated in heat. Therefore, it is important that the latter two resistanees be minimized.

MINIMIZING LOSSES

There is little that cun be done about the nature of the soit. Jowever, poor elertrical contact between large surfares of the car body, and esperialiy betwern the point where the feed line is grounded and the rest of the body, can add materially to the ground-loss resistance. For example, the feed line, which should be grounded as close to the base of the autemna as possible, may be commerted to the bumper, while the bumper may have poor contare with the rest of the body because of rust or paint.

Loading Coils

The areompanying table shows the approximate loading-roil inductance required for the various bands. The graph of Fig. 19-40 shows the approximate caparitance of whip antennas of various average diameters and lengths. For 1.8 , t and 7 Me., the loading-coil inductance required (when the loating eoil is at the hase) will be approximately the inductance required to resonate in the desired band with the whip caparitance taken from the graph. For 14 and 21 Me , this rough calculation will give more that the required inductance, but it will server as a starting point for final experimental adjustment that must always be made.
. Heo shown in the table are approximate values of radiation resistance to be expected with an
ically feasible), field Surt wh collfor Ale, maty show a Q of 30 or more, with a resistance of 12 ohms or less. This reduction in loading-coil resistance may be equivalent to increasing the transmitter power by 3 times or more. Nost low-lows transmitter plug-in coils of the 100-watt size or larger, commercially produced, show a Q of this order. Where larger inductanee values are required, lengths of lowloss space-wound coils are avaibable.

Suggested Loading-Coil Dimensions					
$\underset{\substack{\text { Reqंd } \\ L_{\mathrm{uh}} .}}{ }$	Turns	$\begin{aligned} & \text { Wire } \\ & \text { Size } \end{aligned}$	Diam. In.	$\begin{array}{\|c\|} \hline \text { Lengeth } \\ I n . \end{array}$	$\begin{aligned} & \text { Form or } \\ & \text { \&\& } W_{Y} T_{u p e} \end{aligned}$
700	190	22	3	10	Polystyrene
345	135	18	3	10	Polystyrene
130	100	16	$21 / 2$	10	Polystyrene
$\underset{77}{77}$	$\begin{aligned} & 75 \\ & 29 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\frac{21 / 2}{5}$	$\begin{aligned} & 10 \\ & 41 / 4 \end{aligned}$	Polystyrene 160 T
$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 28 \\ & 34 \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & \text { 8OB less } 7 \text { t. } \\ & \text { 80T } \end{aligned}$
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 28 / 4 \end{aligned}$	80 B less 18 t . 80 T lews 12 t.
$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\stackrel{2}{21 / 2}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	4013 less $4 t$. 40T less 5 :
$\begin{aligned} & 4 . \overline{0} \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\stackrel{2}{21 / 2}$	$4_{4}^{11 / 4}$	$\begin{aligned} & 40 \mathrm{~B} \text { less } 10 \mathrm{t} \text {. } \\ & 40 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{aligned} & 28 \\ & 23 / 8 \end{aligned}$	$\frac{2}{41 / 2}$	$\begin{aligned} & 15 \mathrm{~B} \\ & 15 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 1.25 \\ & 1.85 \end{aligned}$	6	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{aligned} & 18 / 4 \\ & 288 \end{aligned}$	$\frac{2}{41 / 2}$	$\begin{aligned} & 10 \mathrm{~B} \\ & 10 \mathrm{~T} \end{aligned}$

Center Loading

The radiation resistance of the whip can be approximately douthed by phacing the loading coil at the center of the whip, rather than at the base, as shown in Fig. 19-41. (The optimum position varios with ground resistance. The renter is optimum for average ground resistance.) Ilowever, the inductance of the loading coil must be

Fig. 14-AI - Pacing the loading coil at the renter of the whip antenna, instead of at the basa, increases the radia. tion resistance, although a larger eobil musi the used.

今力
approximately doubled over the value required ant the base to tune the system to revonance. For a coil of the same (), the coil resistance will also be doubled. But, even if this is the case renter loading represents a gain in antemat officience, esperially at the lower frequencies. This is lecause the ground-loss resistane renatins the same, and the increased radiation resistance becomes a larger portion of the total areuit resistamee, even though the coil resistance also increases, llowevor, as turns are added to a loading coil (other factors loing equal) the inductance (and therefore the reactance) increases at a greater rate than the resistance, and the larger coil will usually have a higher Q.

Top Loading Capacitance

Sine the coil resistance varies with the inductance of the loading coil, the coil resistance can be reduced by reduring the number of turns. This can be done, while still mantaining resonance, by adding caparitance to the protion of the antenna above the eoil. This capacitance can be provided by athaching a caparitive surface as high up on the antenuat as is mechanically

Fig. 14-42- (Caparitanes of phores, disks and eslin. ders in froespace. Thuse values are appreximately those to be evperted when used with top-luaded whip antennas. 'The rylimeter length is assumed to be equal to its diameter.
called, may consist of a light-wright metal ball, cylinder, disk, or wheel structure as shown in Fig. 1!1-43. Fig. 1! $1-42$ shows the approximate added capacitance to be expected from toploading devices of various forms and dimensions. This should be added to the eapacitance of the whip above the loading coil (from Fig. 19-10) in determining the appoximate inductance of the lowding coil.

When reinter lowding is used, the amount of caparitance to be added to permit the use of the same loading inductace required for base loading is not great. and should be serionsly considered, since the total gain made by moving the eoil to the center of the antemmatis be quite marked.

Tuning the Band

Esperially at the lower frequencies, where the resistance in the circuit is low compared to the coil reatance, the antenna will represent a very high-Q circuit, making it meessary to retune for relatively smatl changes in frequeney. Whiie many methods have been devised for tuning the whip over a hand, one of the simplest and most efficient is shown in the sketches of liges. 1!-4t and 19-45, and the photograph of Fig. 19-46. In this cove, a standard 13 \& W^{\prime} plug- in coil is used as the loading eoil. A longth of large-diameter

Fig, 19.13- The top-loaded f.Mc, antenna used by W6SCX. 1 The loarling coil is a $13 \mathbb{N} \mathbb{N}$ transmitting eroil. The coil can be tuned by the sariable link whirly is connected in series with the two halves of the eroil.

Fig, 19.44- Details of rod construction. Jimentions can be varied to suit the whip diameter and the huilder"s convenience. Adjustment of red lengeths is deseribed in the text.
polystyrene rod is drilled and tapped to fit between the upper and lower sertions of the antemma. The asembly also serves to (elamp a paif of metal brackets on each side of the polvstyrene block that serve both as support and rommertions to the lowdingeroil jack bar.

A $1 / 8$-inch steal rod, about 15 inches long, is brazed to eath of two large-diameter washers with holes to pass the threadod end of the upper

Fig. 19-45 - Construction details of the mounting for the rods and plug-in eoril.
section. The rods form a loading capacitance that varies as the upper rod is swang away from the lower one, the latter heing stationary, Enough variation in tuning can be obtamed to cover the 80-meter bind. lig. 19-44 shows the top washer slightly smather to farilitate marking a frequency sale on the stationary washer, after the upper washer has been marked with an index. After the movable rod has been set, it is clamped in prosition by tightening up the upper antenma section. (Original description appeared in QST', September, 1953.)

Fir, 19.46 - NBAIN's adjustahle capacity hat for tuning the whip antenna wer a band. The coil is a $13 \mathbb{N} \mathbf{W}$ type 3 loo-meter coil, with a tirn or two removed. SprealIng the rocts apart increases the cablacitance. This simple top losader has suffirient raparitance to permit have use of aprosimatty the same loadingoeroil inductance at the canter of the antentiat is would normally be required for lase loading.

FeEding the antenna

It is usually found most conveniont to feed the whip antenna with coax line. Unlews very low-Q loading coils are used, the fred-point impedance will always the appreciably lower than 52 ohms - the characteristic impedance of the commonly-used coax line, RG-8/U or RG(i-58/L. Since the length of the transmission line will seldom exceed 10 ft ., the losses involved will be negligible, evenat $2!$ Me, with a fairly-high s.w.r. However, unless a line of this length is made reasonably flat, diffieulty may be encountered in obtaining sufficient coupling with a link toload the transmitter output stage.

One method of obtaining a mateh is shown in Fig. 19-47. A small induetance, L_{m}, is inserted at

Fig. 19-47-4 methorl of matching the loaded whip to 52 -ohm coax calble. L_{L} is the loading coil and L_{M} the matching coil.

the base of the antenna, the louting-coil indurtance being reduced correspondingly to matintain resonance. The lime is then tapped on the coil at a point where the desired loading is obtanted. The table (page tr2) shows the approximate induetance to be used between the line tap and ground. It is advisable to make the experimental matehing coil larger than the value shown, so that there will be provision for varying either side of the proper position. The mitehing eoil can also be of the plug-in type for changing bands.

Adjustment

For operation in the bands from 29 to 1.8 Me., the whip should first be resonated at 29 Me. with the matching coil inserted, but the line disconneeted, using a grid-dip) oscillator coupled to the matching coil. Then the line should be attached, and the tap varied to give proper loading, using a link at the transmitter end of the line whose reactance is approximately 52 ohms at the operating frequency, tightly coupled to the output tank circuit. After the proper position for the tap has been found, it may be necessary to readjust the antenna length slightly for resonance. This can be cherked on a field-strength meter several feet away from the car.

The same procedure should be followed for each of the other hands, first resonating, with the g.d.o. coupled to the matching coil, by adjusting the loading coil.

After the position of the matching tap has been found, the size of the matehing coil can be reduced to ondy that portion between the tap and ground, if desired. If turns are removed here, it
will be neessary to reresonate with the loading coil.

If an entirely flat line is desired, a s.w.r. indicator should be used while adjusting the line tap. With a good match, it should not be neressary to readjust for resonance after the line tap has been sot.

It should be emphasized that the figures shown in the table are only approximate and may be altered considerably depending on the type of car on which the antennia is mounted and the spot at which the antenna is placed.

ANTENNAS FOR 50 AND 144 MC.

A common type of antennai employed for mobile operation on 50 and 144 Me. is the quarter-wave radiator which is fed with a coaxial line. The antenna, which may be a flexible teleseoping "fish pole," is mounted in any of several places on the car. Quite a grod match may be obtained hy this method with the 50-ohm coaxial line now avalable; however, it is well to provide some means of tuning the system, so that all variables ean be taken care of. The simplest tuning arrangement consists of a variable capacitor connected between the low side of the transmitter coupling coil and ground, as shown in Fig. 1!1-18. This capacitor should have a maximum caparitance of 75 to $100 \mu \mu$ f. for 50 Mr ., and should be adjusted for maximum loading with the least coupling to the transmitter. Some

method of varying the coupling to the transmitter should be provided.

Bibliography

Swafford, "Improved Coax F eed for Low-Frequeney Mobile Antennas," QST, 1)ec., 1951.
Roherge \& McConnell, " Let's (io High Hat!," QST, Jan., 1952.

Belrose, "Short Antennas for Mobile Operation," QST, Sept., 19\%3.
linsmore, "The 'Hot-Rod' Mobile Antenna," QsT, Sept., 1953.
l'icken \& Wambsaanss, "Remote Mobile-Antenna Resonating," QNT, Dec., 1953.
Webster, "Mobile Loop Antennas," QST, June, 1954.
Tilton, "Have You Tried V.H.F. Mobile?" QsT, Sept., 19.44.

Hargrave, "Automatic Mobile Antenna Tuning," QST, May, 195.
Morgan, "Tuning the Mobile Antenna from the Driver's seat," QST', Oct., 195.".

A Signal/Field-Strength Meter for Mobile Use

Separate moters for moasuring signal and fiold strength are used in many mobile installations. The unit shown in Figs, 19-4! through 1!-51 permits a single I-ma, meter to be used for making both types of measurements. The cost of the dualpurpose indicator is very little more than that of cither instrument alone.

The unit is small enough for mounting either above or under the dashboard of a ear, or it may be stored in the glove compartment when not in use. It is housod in a $4 \times 5 \times 3$-inch gray hammertone box. A simple toggle switeh changes from one function to the other. Power drawn from the broaldast reeriver for the S-meter circuit is less than $2 \frac{1}{4}$ watts.

The field-strength moter can be used installed in the car ats an antema-resonane indicator or as an output indicator for transmittor adjustments, or it ran easily be removed for antennapattern plotting, adjustment of other mohile installations or ceven for use in the home station. The sensitivity adjustment makes the indicator usoful over a wide range of field strengths.

One handy feature of the S-meter arrangement is the sensitivity control. This eontrol can be adjusted to provent extremoly strong signals from pinning the meter. When working with woik signals, the rontrol may be adjusted to provide a noticeable meter deflection.

The cirenit of the indicator is shown in Fig. 19-50). A 12 AN is used in the s-meter section. One grid is returned directly to chassis and the second grid is commected to the sensitivity eomtrol, R_{1}. The input end of R_{1} is returned, via I_{2} and a shideded rable, to the a.v.e. line in the browdeast reeciver, The plates of the $12 . \mathrm{N}^{-7}$ are connected in pratlel and then, through a singlo lead, to J_{2}. Fig. 19-50 shows heater wiring for both 6 - and 12 -volt operation. l'in 9 of the tule is not used in the 12 -volt circuit.
For S-meter operation, the meter and R_{2} are switehed arross the rathode terminals of the tube by s_{1}. The 500-ohm potentionmeter, h_{2}. becomes a zero-adjust eontrol. Wero reading is obtained with R_{2} adjusted for equal voltago at Pins 3 and 8 of the $12 . \ \times \overline{0}$. After an initial zero adjustmont, the application of a.v.e, voltage through h_{1} will drive the cathode of $V_{1 A}$ negattive with resperet to the rathode of V '21s, thus upsetting the badance and rausing an upward deflection. For a given a.v.e. voltage, the amplitude of the defleetion will be cont rolled by h_{1}.

The rircuit of the ficll-strength section is made artive by switching the moter and P_{2} into the cireuit and by applying r.f. through I_{1}. Tho amount of r.f. fed to the cireuit may be eontrolled by adjusting the length of the pick-up antemat attitehed to $I_{1} . R_{2}$ is a shunt to prevent off-scale readings when masuring strong r.f. fields.

Construction

As shown in Fig. 19-49, the Triplett model 22-T moter is mounted on the front panel of the utility box. S_{1} and R_{2} aro bolow the moter with a 1 12-inch spare bet ween mounting centers. Wach control is contered $13 / 8$ inches up from the bottom of the panel.

The bottom view shows the [-shaped chassis made from $1 / 16$-inch thiek aluminum stock. Tho width, depth and height of the whessis are 275 . 3 and $111 / 1$; inches, respectively. Panol-mounted controls (R_{2} and S_{1}) elamp the chatssis against the rear of the front panel as shown in Fig. 19-51.

The socket for the $12.1 N$ is centered 1 inch in from the rear odge of the chassis, L_{1} is located just to the front of the tule socket as sean in Fig. 1!)-19. L_{1} is a North Hills tope 120-11 indurtor having an inductance range of 105 to $200 \mu \mathrm{~h}$. However, aby coil that will resomate around 3.9 Mc. (and still fit into the (hassis) with the

Fig. 19.49 - A front view of the signal/ficld-strongth meter. The zero-adjust eontrol is to the right of the toggle switth, S. The meter registers either signal or fiell strength, fepending tupon the setting of the thagle switch.
circuit eapacitance may be used. A hole in the front of the socket, fitted with a rubler grommet, passes the leads between the meter and the toggle switch. R_{1}, J_{1} and J_{2} are mounted on the rear wall of the chassis.

Fig. 19-5I shows the r.f. choke and the disk eapacitors for the field-strength circuit mounted on at 2-terminal tie-point strip at the right side of the unit. The extra terminals on the slugtuned coil are used for mounting the 1 N:3.t crystal diode.

Installation

Heater, plate and a.v.e, voltages for the Smeter are obtained from the ear broadeast reeeiver and should be brought to the indicator through shielded leads. The heater lead may bo tapped onto the hot side of any reaver tube (it is a good ideat to stay (elear of the rectifier tube) close to a hole or reeeptacle provided for the output rable. The plate lead maty be eomereded to the soreen pin of an audio output tube sorket or to any other point delivering approximately 150 volts (highor voltages merely increase the current (drain unneecessarily). A serias resistor may also be used to drop the voltage.

It is frequently possible to spot the a.v.e. lime by tracing back from the control grid of either the r.f. amplifier tulx or the converter. The grid of eiwh tube is usually returned to the a.v.e. bus through a $1 / 2$ - to $1-m e g o h m$ resistor. If you tost a junction for a.v.e. voltage, just commert a highresistanee d.e. voltmeter betwern the puint and ground and watch for a negative reating that increasers with increased signal input. local broadeast stations ean supply the test signals.

After the interunit cabling has been completed, the reeciver may be returned to the dash of the car. The performanee of the S-meter may now be

Fig. 19.50 - Cireait diagram of the signal/fieldstrength meter.
cherked by tuning in signals - either amateur or brombeast - and observing the deflection of the meter. If broadeast station signals cause only a small deflertion, it imelieates that R_{1} is adjusted toward minimum sensitivity. In that case, readjust R_{1}, zero the meter by means of R_{2}, and try again. It is necessary to reset the zero-adjust control earh time that the sensitivity control sotting is altered. If signals temd to pin the meter, the sensitivity can be reduced by adjustment of K_{1}.

The field-strength moter can be most quickly tested by using the mobile transmitter as the source of signal. Either a short length of wire, the broadeast antemat, or an insulated fender guide may be used as the r.f. piek-up. Just terminate the pick-up antenna at J_{1}, throw S_{1} to the proper position, adjust h_{2} for maximum resistance arose the milliammeter, turn on the transmitter and wateh the needle. Langthen the piek-up antemas if the meter deflection is not great enough, or regulate the shunt, R^{\prime}, if the reading is too high.
L_{1} should ordinatily require adjustment only if the indicator is used for checking at $\overline{5}$ meters. In that rease. it is advisable to increase the sonsitivity to maximum by resonating the eobl. (Orjginally descrilned in QST, sept., 1955.)

Fig, 19-5I - R_{1} is at the rear of the unit, just belon the $1-m h, r$ f. chose. J_{1}, on the rear wall of the chassin. j* a miniature nylom tip jack. The baek cover for the metal hox that mormally enchoses the meter is punched to clear the components mounted on the rear wall of the chatris.

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage battery as the source of power. The tuhe types used in equipment are chosen so that the filaments or heaters may be operated directly from the battery. Iligh voltage may be obtained from a supply of the vibrator-transformer-rectifier type or from a small motor-generator operating from the battery.

Filaments

Because tubes with directly-heated cathodes (filament-type tubes) have the advantage that they ein be turned off during receiving periods and thereby reduce the average load on the battery, they are preforred by some for transmitter applications. However, the choice of types with direct heating is limited, especially among those for f-volt operation, and the saving may not always be as great as anticipated, because directiy-heated tubes may require greater filament power than those of equivalent rating with indireetly-hoated cathodes. In most cases, the power required for transmitter filaments will be quite small compared to the total power eonsumed.

Plate Power

Under steady running conditions, the vi-brator-transformer-rectifior system and the motor-generator-type plate supply operate with approximately the same efficiency. IIowever, for the same power, the motor-generator's over-all efficiency may be somewhat lower because it draws a heavier starting current. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Converter units, both in the vibrator and rotating types, are also available. These operate at 6 or 12 volts d.c. and deliver 115 volts a.e. This permits operating standard ase-powered equipnent in the cear. Alhough these systems have the atvantage of flexibility, they are less efficient than the previously-mentionet systems berause of the additional losses introduced by the transformers used in the equipment.

Mobile Power Considerations

Since the car storage battery is a low-voltage sourece, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is important that the resistane of the battery ceirecuit be held to a minimum by the use of heavy conductors, no longer than necossary, and good solid connections. I heavy-duty relay should be used in the line between the battery and the plate-power unit. An ordinary toggle switch, located in any convenient position,
may then be used for the power control. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trunk, for instance) the 6- or 12 -volt cable should be of the heavy military type.

A complete mobile installation may draw 30 to 40 amperes or more from the 6 -volt battery or better than 20 amperes from a 12 -volt battery. This requires a considerably increased demand from the car's battery-charging generator. The voltage-regulator systems on cars of recent years will take care of a moderate increase in demand if the car is driven fair distances regularly at a speed great enough to insure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it may be necessary to modify the charging system. Special commu-nications-type generators, such as those used in police-car installations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits by tightening up slightly on the voltage-regulator and eurrentregulator springs. This should be done with caution, however, checking for excessive generator temperature or abnormal sparking at the commutator. The average 6 -volt car generator has a rating of 35 amperes, but it may be possible to adjust the regulator so that the generator will at least hold even with the transmitter, receiver, lights, ete., all operating at the same time.

Another scheme that has been used to increase generator output at slow driving speeds is to decrease slightly the diameter of the generator pulley. This means, of course, that the generator will be running above normal at high driving speeds. Some generators will not stand the higher speed without damage.

If higher transmitter power is used, it may be necessary to install an a.c. charging system. In this system, the generator delivers a.c. and works into a rectifier. A charging rate of 75 amperes is easily obtained. Commutator trouble often experienced with d.c. generators at high current is avoided, but the cost of such a system is rather high.

Some mobile operators prefer to use a separate battery for the radio equipment. Such a system can be arranged with a switch that cuts the auxiliary battery in parallel with the car battery for charging at times when the car battery is lightly loaded. The auxiliary battery can also be charged at home when not in use.

A tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with clips to make a connection to the battery of another car in case the operator's battery has been allowed to run ton far down for starting.

The Automobile Storage Battery

The success of any mohile installation depends to a large extent upon intelligent use and maintenance of the car's battery.

The storage battery is made up of units consisting of a pair of coated lead plates inmersed in a solution of sulphuric acid and water. Cells, each of which delivers about 2 volts, can be connected in series to obtain the desired battery voltage. A 0 -volt battery therefore has three cells, and a 12 -volt battery has 6 cells. The average stock car battery has a rated capacity of 600 to 800 watt-hours, regardless of whether it is a 6 -volt or 12 -volt battery.

Specific Gravity and the Hydrometer

As power is drawn from the hattery; the acid content of the electrolyte is reduced. The acid content is restored to the electrolyte (meaning that the battery is recharged) by passing a current through the battery in a direction opposite to the direction of the discharge current.

Since the acid content of the electrolyte varies with the charge and discharge of the battery, it is possible to dotermine the state of charge by measuring the specific gravity of the electrolyte.

An inexpensive device for ehecking the s.g. is the hydrometer which can be obtained at any automohile supply store. In cherking the s.g., enough electrolyte is drawn out of the cell and into the hydrometer so that the calibrated bull, floats freely without leaning against the wall of the glass tube.

While the readings will vary slightly with batteries of different manufacture, a reading of 1.275 should indicate full charge or nearly full charge, while a reading below 1.150 should indicate a battery that is close to the discharge point. More specific values can be obtained from the car or battery dealer.
leadings taken immediately after adding water, or shortly after a heavy discharge period will not be reliable, because the electrolyte will not be uniform throughont the cell. Charging will speed up, the equalizing, and some mising can be done hy using the hydrometer to withdraw and return some of the electrolyte to the cell several times.

A hattery should not be loft in a discharged condition for any appreciable length of time. This is especially important in low temperatures when there is danger of the electrolyte freezing and ruining the battery. A battery discharged to an s.g. of 1.100 will start to freeze at about 20 degrees F., at about 5 degrees when the s.g. is 1.150 and at 16 helow when the s.g. is 1.200 .

If a battery has been run down to the point where it is nearly discharged, it can usually he fast-charged at a hattery station. Fast-charging rates may be as high as 80 to 100 amperes for a 6 -volt battery. Any 6 -volt battery that will asccept a charge of 75 amperes at 7.55 volts during the first 3 minutes of charging, or any 12 -volt battery that will arcept a charge of 40 to 45 amperes at 15.5 volts, may be safely fast-charged
up to the point where the gassing becomes so exerssive that clectrolyte is lost or the temperature rises above 125 degrees.

A normal battery showing an s.g. of 1.150 or less may be fast-charged for 1 hour. (One showing an s.g. of 1.150 to 1.155 may be fastcharged for 45 minutes. If the s.g. is 1.175 to 1.200 , fast-charging should be limited to 30 minutes.

Care of the Battery

The battery terminals and mounting frame should be kept free from corrosion. Any corrosive aceumulation may be removed by the use of water to which some household ammonia or baking soda has been added, and a stiff-bristle brush. Care should be taken to prevent any of the corrosive material from falling into the cells, Cell caps should be rinsed out in the same solution to keep the vent holes free from obstructing dirt. Battery terminals and their cable clamps should be polished bright with a wire brush, and coated with mineral grease.

The hold-down elamps and the battory holder should also be whered oerasionally to make sure that they are tight so that the battery will not be danaged by pounding when the car is in motion.

Voltage Checks

Although the readings of s.g. are quite reliable as a measure of the state of charge of a normal battery, the neressity for frequent use of the hydrometer is an inconvenienere and will not always serve as a conclusive cheek on a defective battery. Cells may show normal or almost normal s.g. and yet have high internal resistance that ruins the usefulness of the battery under load.

When all cells show satisfactory s.g. readings and yet the battery output is low, servier stations cherk each coll be an instrument that measures the voltage of each rell under a heavy load. Under a heavy load the cell voltages should not differ by more than 0.15 volt.

A load-voltage test can also be made by measuring the voltare of each eell while closing the starter switch with the ignition turned off. In many cars it is uecessary to pull the central distributor wire out to prevent the motor starting.

Electrolyte Level

Water is evaporated from the clectrolyte, but the acid is not. Therefore water must be added to each ecll from time to time so that the plates are always completely covered. The level should be checked at least oner per work, esperially during hot weather and comstant operation.

Distilled water is preferred for replenishing, but clear drinking water is an acerptable substitute. Too much water shouhd not be atded, since the gassing that accompanies charging may fore clectrolyte out through the vent holes in the caps of the colls. The electrolyte expands with temperature. (From QST', Iugust, 1955.)

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.c. lines is available, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

Ther most practical supply for the average individual amateur is one that operates from a car storage battery. Such a supply may take the form of a small motor generator (ofton ealled a gencmotor), a rotary converter, or a vibrator-transformer-rectifier combination.

Dynamotors

A dynamotor differs from a motor gencrator in that it is a single unit having a double armature winding. One winding serves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from 6-, 12-, 28- or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Genemotor is a term popularly used when making reforence to a dynamotor designed especially for automobile-receiver, soundtruck and similar applications. It has good regulation and eflieiency, combined with economy of operation. standard models of genemotors have ratings ranging from ?50 volts at 50 ma . to 400 volts at 375 ma . or (60) volts at 250 mat. The normal efficioney averages around 50 per cent, increasing to better than 60 per cent in the higher-power units.

Successful operation of dynamotors and genemotors requires heavy direct leads. mechanical isolation to reduce vibation, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked oceasionally to make certain that no looseness has developed.

In mounting the genemotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the transmission of vibration mechanieally. The frame of the genemotor should be grounded through a heavy flexible connertor. The brushes on the high-voltage end of the shaft should be bypassed with 0.002- μ f. mical capacitors to a common point on the genemotor frame, preferably to a point inside the end eover close to the brush holders. Short leads are essential. It may prove desirable to shield the entire unit, or even to remove the unit to a distance of three or four feet from the receiver and anternat lead.

When the genemotor is used for receiving, a filtor should be used similar to that described for vibrator supplies. A $0.01-\mu \mathrm{f}$, bito-volt (d.e.) patper capacitor should be comberted in shant aeross the output of the genemotor, followed by a 2.5 -mh. ref. choke in the positive high-voltage load. From this print the output should be rum to the receiver power terminals through a smooth-
ing filter using 4 - to $8-\mu$. capacitors and a 15 - or 30 -henry choke having low d.e. resistance.

D.C.-A.C. Converters

In some instances it is desirable to utilize existing equipment built for 115 -volt a.c. operation. To operate such equipment with any of the power sourees outlined above would require a considerable amount of rebuilding. This ran be obviated by using a rotary converter capable of changing the d.c. from 6-, 12-or 32-volt batteries to 115-volt 60-cyele a.c. Such converter units are built todeliveroutputs ranging from 40 to 250 watts, depending upon the battery power available.

The conversion efficiency of these units averuges about 00 per cent. In appearance and operation they are similar to genemotors of equivalent rating. The over-all efficiency of the converter will be lower, however, because of losses in the a.c. rectifier-filter circuits and the neressity for converting heater (which is supplied direetly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up t ransformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformor. The circuit is made and reversed rapidily by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting squarewave doc. pulses in the primary of the transformer eanse an alternating voltage to be devernped in the secondary. This high-voltage a.c. in turn is rectified, either by a vacuum-tube rectifier or by an additional syonehonized pair of vibrator contaets. The rectified output is pulating d.c., which may be filtered by ordinary moins. The smoothing filter can be a single-sertion affair, but the output capacitance should be fairly large - 16 to 32μ f.

Fig. 1!)-52 shows the two types of cireuits. At A is shown the nonsynchronous type of vibrator. When the hattery is disconnected the reed is midway betwoen the two eontacts, touching meither. On closing the battery circuit the magnet coil pulls the reed into contatet with one contare point. ealusing current to fow through the lower half of the transformer primary winding. Simultanoously, the magnet coil is short-cimuited, deenergizing it, and the reod swings batek. Incertia carries the reod into contare with the upper point, casuing current to flow throurh the upper half of the transformer primary. The magnet coil again is energized. and the cyele repeats itself.

The synchronous circuit of Fig. 19-5213 is
provided with an extra pair of contacts whieh rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and seoondary windings are eorrect. The proper connertions may be determined by experiment.

The buffer eapacitor, (e2, arross the transformer secomdary, absorbs the surges that oecur on breaking the current, when the magnetic fied collapses practically instantaneonsly and hence canses very high voltages to be induced in the secondary. Withont this eapacitor excessive sparking oceurs at the vibrator contaets, shortening the vibrator life. Correct values usually lie between 0.005 and 0.03 m ., and for $250-300$-volt supplies the eaparitor should be rated at 1500 to 2000 volts d.e. The exact caparitance is critical, and should be dotermined experimentally. The optimum value is that which results in least battery curcont for a given reetified d.e. output from the supply. In practioe the value can be dotermined by observing the degree of vibrator sparking as the caparitance is ehanged. Whon the system is operating properly there should be practically no sparking at the vibrator contact s. A 5000 -ohm resistor in series with (${ }_{2}$ will limit the secomdary current to a safe value should the capmeitor fail.

Vibrator-transformer units are available in a varioty of power and voltage ratings. Represontative units vary from one delivering 125 to 200 volts at 100 ma . to others that have a folo-volt output rating at 150 ma. Nost units come supplied with "hash" filters, but not all of them have built-in ripple filters. The requirements for ripple filters are similar to those for a.e. supplies. The usual efficiency of vibrator packs is in the vicinity of 70 per cont, so a 300 -volt $200-m a$. unit will draw approximately 15 amperes from a 6 -volt storage battery, special vibrator transformers are also avalable from transformor manufacturers so that the amateur may build his own suphly if he so desires. These have dic. output ratings varying from 150 volts at 40 ma , to 330 volts at 135 ma .

Vibrator-type supplies are also available for operating standard a.e. equipment from a 6 - or 12-volt storage battery in power ratings up to 100 watts contimuous or 125 watts intermittent.

"Hash" Elimination

Sparking at the vibrator contants causes r.f. interference ("hash." which can be distinguished from hum by its harsh, sharper piteh) when used with a receiver. To minimize this, r.f. filters are incorporated. consisting of $R P^{\prime} C_{1}$ and C_{1} in the battery cireuit, and $R F C_{2}$ with C_{3} in the d.c. output eirenit.
liqually as important as the lash filter is thorough shiceding of the power supply and its connecting leads, since even a small piece of wire or metal will radiate enough r.f. to cause
interference in a sensitive amatcur reociver.
Testing in connection with hash elimination should be carried out with the supply operating a recoiver. since the interference usually is picked up on the receiving-antenna leads by radiation from the supply itself and from the battery leads, it is advisable to keep the supply and hattory as far from the receiver as the eonnereting catbes will permit. Three or four feot should he ample. Tha miorophone cord likewise should the kept away from the power supply and its leads.

The power supply should be built on a metal chassis, with all unshiclded parts underneath. . bottom plate to eomplete the shielding is advisable. The transformer case, vibrator eover and the metal shell of the tube all should be grounded to the chassis. If a ghass tube is used it should be enclosed in a tube shield. The battery leads should the evenly twisted, sinere these leads are more likely to radiate hash than any other part of a well-shichded supply: Experimenting with different values in the hash filters should eome after

Hig. 19.52 - Basie tymes of vilrator powersupply rircuits. 1 - Nonsyuchromous. I\$ - Symehronous.
radiation from the battery leads has been redured to a minimum. Shielding the leads is not often found to be particularly hedpful.

- PRACTICAL VIBRATOR-SUPPLY CIRCUITS

A vibrator-type power supply mat be designed to oprate from a storage battery only, or in at combination unit which may be operated interchangeably from either battery or 115 volts at.c.

An example of the latter-type circuit is shown in Fig. [!-533. It eonsists essentially of I wo transformer-rectifier sustems - one for 115 volts a.c. and the other a vibrator system to operate from a (0 -volt storage battery. i common filter is used for the two systems. In interchanging botwen a.c. and d.e. operation, the rectifier tulse is shifterd to the appropriate socket, while the filament comuedions are mado to the proper output terminals. If desined, two recetilier tubes masy be used and the ehangeover made through suitable switehes.

Fig. 19-.33 - (ireuit of a combination a.c.. d.c. power supply for emergency work.

C: C_{1} - $0.01-\mu \mathrm{f}$. 600 -volt paper.
Ci2 - 8-4 C .450 -voll electrolytir.
C: $3-32-\mu \mathrm{C}$. 450 -velt electrolstic.
C. $-0.005-100.01-u f$. 1600.voli paper.
C. -500 - C . electrolytic, 25 volts or higher.

$\mathrm{R}_{1}-4700$ ohmis, 1 watt.
$\mathrm{h}_{1}-10$ - to $12 \cdot \mathrm{hy}$. filter choke, 100 ma . (not over 100 ohms) (Stancor (C.2303 or equivalent).
RFC. - 2.5.mh. r.f. ehooke.
RFC: $2-5$ turns Vo. 12 on l-inch form, close-womed.
$\mathrm{s}_{1}, \mathrm{~s}_{2}$-Thgerle switeh.
' l_{1} - Power transformer: $2-5$ to 300 whts r.m.s. each side of center tap, (IM) to 1,0 ma.. (6.3-volt filament winding.
' T_{2} - Vilirator transformer (stancor P'. 61.31 or similar).
VIB - Vibrator mit (Mallory 5001', 294, ete.).

IR.f. filters for reducing hash are ineorporated in both primary and secondary cirruits. The secondary filter consists of a $0.01-\mu \mathrm{f}$. paper capacitor directly across the reetifier output, with a 2.5 -mh. r.f. choke in series ahead of the smoothing filter. In the primary circuit a low-inductance choke and high-capacitance capacitor are neoded bocause of the low imperdance of the circuit. A choke of the specifications given should be adequate, but if there is trouble with hash it may be benefieial to experiment with other sizes. The wire should be large - No. 12, preferably, or No. 14 as a minimum. Manufactured chokes such as the Mallory IzFis8:3 are more rompact and give higher induetane for a given resistance because they are bank-wound, and may be sulstituted if ohtainable. (${ }_{5}$ should he at least $500 \mu \mathrm{f}$.; even more eaparitance may help in bad cases of hash.

The compartness of selenium roctifiers and
Fig. 19.54 - A typical combination a, c. ol.c. power pack for low-power emergeney work. The two transformers are mounted at either end of the ehassis. The filter capacitor is at the left, the two rectifier sochets at the center and the vilurator to the rear. The circuit is shown in Fix. 19.53.

the fact that the y do not reguire filament voltage make them particularly suited to comparet lightweight power supplies for portable emergency work.

Fig. 19-55 shows the circuit of a vibrator pack that will deliver an output voltage of 400 at 200 ma . It will work with either 115 -volt ac. or 6 -volt hattery input. The circuit is that of the familiar voltage tripler whose d.c. output voltage is, as a rough approximation, three times the peak voltage delivered by the transformer or line. An interesting feature of the circuit is the fact that the single transformer serves as the vibrator transformer when operating from 6 -volt d.c. supply and as the filament transformer when operating from an a.r. line.

The vibrator transformer, T_{1}, is a dualsecondary 6.3 -volt filament transformer con-

Fig. 19-.55 - (:irrouit diagram of a compart vibrator-a.e. portable power supply using selenium rectifiers.
C_{1} - $\mathrm{f}(\mathrm{N})-\mu \mathrm{f}$. 2(0). volt electrolytic.
$\mathrm{C}_{2}-60-\mu \mathrm{f}$. 100 -volt clectrolytic.
C_{3} - ($\mathrm{C}(\mathrm{O}-\mu \mathrm{f}$, (n$)(0$-volt electrolytic.
CA $-25-\mu f$. 25 -volt eleetrolytie.
$\mathrm{C}_{5}, \mathrm{C}_{6}-0.5 \cdot \mu \mathrm{C}, \stackrel{2}{2}$-volt paper.
$\mathrm{C}_{7}-0,007-\mu \mathrm{C}, 1500$ volt paper
$\mathrm{K}_{1}-25,000$ ohms, 10 watts.
$\mathrm{L}_{1}-25-\mu \mathrm{h}$. 20-amp. choke.
$\mathrm{S}_{1}-115$-volt toggle switch.
\mathbf{S}_{2} - l.p.d.t. heavy duty knife switch.
$\mathrm{S}_{3}-25 \cdot \mathrm{amp}$. s.p.s.t. switeh.
'T1 - See text (U'J'C. S-63).
V-Heavy duty vibrator (Cornell-Dub. 4123).
neeted in reverse. The filament windings must have a rating of 10 amperes if the full load current of 200 ma . is to be used. The vibrator also must he capable of handling the current. The hash-lilter choke, L_{1}, must carry a current of 20 amperes.

The following table shows the output voltage to be experted at varions load eurrents, depending upon the size of capacitors used at C_{1}, C_{2} and C_{3}.

$C_{1,} C_{2}, C_{3}$	Output l'oltage at			
(μ f.)	50 ma .	100 ma.	150 ma	200 ma.
60	455	430	415	307
40)	425	$3!10$	360	331)
20	400	340	2s;	205

In operating the supply from an a.ce line, it is always wise todet ermine the plug polarity with respect to ground. ()therwise the reetifier part of the circuit and the transformer circuit cannot be commected to artual ground exeept through hepass capacitors.
(O)risinally deseribed in (SST by Woco.)

GASOLINE-ENGINE DRIVEN GENERATORS

For highor-power installations, such as for communications control eaters during emergeneies, the most practieal form of independent power supply is the gaswline-engine driven generator which provides standard 115 -volt biorever supply.

Such gencrators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to ten kilowatts, or big emough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary (6- or 12 -volt battery used in starting. Fitted with self-starters and adequato muillers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate continuously at full load.

The output frequeney of an engine-driven generator must fall between the relatively narrow limits of 50 to 60 cycles if standard (i0)-cycle transformers are to operate efficiently from this source. A 60 -cyde electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the seeond hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronisu.

Output voltage should be checked with a voltmeter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaceurate.

Noise Elimination

Electrieal moise which may interfere with reroivers operating from engine-driven a.c. gencrators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the
generator and one side of the output. The ground lead should be short to be effective, otherwise grounding may act ually increase the noise. A water pipe may be used if a short connection can be made near the point where the

Fig. 19-56 - Conneetions used for eliminating interference from gas-driven Linerator plantio. C: should he I ${ }_{\mu} \mathrm{f}$., 300 volts, paper. While (i2 may he $1 \mu \mathrm{f}$. with a voltage rating of twier the d.e. ontput voitage defivered by the generator. X indicates an adoled comertion betwern the slip ring on the grounded site of the line and the generator frame.
pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosien the brush-holder locks and slowly shift the position of the brushes while cherking for moise with the receiver. Usually a point will be found (abmost always different from the factory setting) where there is a marked decrease in noise.

From this point on, if neressary, bypass capacitors from various brush holders to the frame, as shown in Figg, 19-56, will bring the hash down to within 10 to 15 per cent of its original intensity, if not cutirely eliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is connected into the seeond detector.

POWER FOR PORTABLES

Dry-crell batterins are the only practical source of supply for equipment whish must be transported on foot. From certain eonsiderations they may also be the best source of voltage for a receiver whose filaments may be operated from a storage battery, since no problem of noise filtering is involved.

Thoir disadvantages are weight, high eost, and limited current capability. In addition, they will lose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uncenomical if not used more or less eontinuously.

Dry " 13 " batteries are made in a varioty of sizes and shapos, from a 45 -volt unit weighing about 1 lb . that has an intermittent service rating of 20 hours at a drain of 20 ma , to a $12-\mathrm{lb}$. unit rated at 130 hours at 40 ma . "A" batteries for filament service range from a (j-volt unit weighing $1 \frac{1}{2}$ Ibs, delivering in intermitent sorvire an average of 60 ma . for 150 hours, to a $6 \frac{1}{1}-1 \mathrm{l}$, 1.5 -volt unit having a service life of 870 hours at 200 ma . Miniature batteries, suitable for hand-portable use, are also available.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater variety of tool: available, by taking a little thought and eare it is possible to turn out a fine piece of equipment with only a few of the eommon hand tools. A list of tooks whieh will be indispensable in the eonstruction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Long-nose pliers, fineh .
Diagonal cut ting pliers, 6 -inch.
Wire stripsur.
Screwilriver, 6- to 7 -inch, $1 / 4$-inch hade.
Screwdriver, 4 - to \bar{j}-inch, $1 / 8$-inch blade.
scrateh aul or seriber for murking lines.
Combination square, 12 -inch, for laying out work.
Hand drill, $1 / 4$-inch chuck or larger, 2 -speed type preferable.
Flectric soldering iron, 100 watts, $1 / 2-\mathrm{in}$. tip.
Hack saw, 12-ineh bades.
Center punch for marking hole centers.
Hammer, ball-peen, 1-fb, head.
Heavy knife.
Yardstick or other straightedge.
Carpenter's brace with adjustable hole cutter or socket-hole punches (see text).
Large, coarse, flat file.
Large round or rat-tail file, $1 / 2$-inh diameter.
Three or four small and medum files-flat, roumb, half-round, triangular.
Drills, particularly 1/-inch and Nos. 18, 28, 33, 42 and 50.
Combination oil stone for sharpening tools.
Solder and soldering paste (noneorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

Bench vise, 4 -inch jaws.
Itin shears, $10-\mathrm{in}$ h, for cutting thin sheet metal,
Taper reabur, 1/2-inch, for enlarying small holes.
Tazer reamer, 1-inch, for enlargine holes.
Countersink for brace.
Carpenter's plan', 8-10 1:-ine'h, for wowiworking.
Carpentor's saw, crosserut.
Motor-driven emery wherl for grinding.
Long-shank screwdriver with serew-bolding clip for tight placers.
Set of "spintite" sorket wrenches for hex nuts. Set of small. flat, open-end wrenches for hex nuts. Wood chisel, $1 / 2$-inch.
Cold chisel, $1 / 2$-inch.
Wing dividers, 8 -inch, for scribing circles.
Set of machine-serew taps and dies.
Dusting brush.
Socket punches, esp. $5 / 8^{\prime \prime}, 8 / /^{\prime \prime}, 11 / 8^{\prime \prime}$ and $11 /^{\prime \prime}$.
panels and metal chassis for assembly and wiring, It is an exeellent idea for the amateur who does constructional work to add to his supply of tools from time to time as finances permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, esperially the drill press, grinding head, band and cireular saws, and joiner. Although not essential, they are desirable should you be in a pesition to arquire them.

Twist Drills

Twist drills are made of either high-speed steel or carbon steel. The latter type is nore common and will wsually be supplied unless - pecifir reguest is made for high-speed drills. The earbon drill will suffice for most ordinary equipment construction work and costs less than the high-spred type.

While twist drills are available in a number of sizes these listed in boldfaced type in Table 20 -I will be most commonly used in construction of amateur equipment. It is usually dosirable to purehase several of rach of the commonly-used sizes rather that a standard set, most of which will he used infrequently if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyane which mat be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum cach time. This makes it easier to maintain the rather eritioal surface angles required for best cutting with least wear. Occasional oilstoning of the cutting edges of a drill ar reamer will extend the time betwern grindings.

The soldering iron can be kept in good rondition by kepping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is mot being used. After ath period of use. the tip should be removed and cloaned of any seale whieh may have arcumulated. An oxidized tip may be cleaned by dipping it in sal ammoniae while
hot and then wiping it elean with a rag．If the tip becomes pitted it should be filol until smooth and bright，and then timed immedi－ ately by dipping it in solder．

Useful Materials

Small stocks of various miserellanenus ma－ terials will be required in constructing radio apparatus，most of which are avalable from hardware or radio－supply stores．A representa－ tive list follows：

Sheet aluminum，solid and perforated． 16 or 18 gatuge，for brackets and shielding．
$\sqrt[3]{2} \times \frac{1}{2}$－inch aluminum angle stock．
$1 / 4$－inch diameter round brass or aluminum rod for shaft extensions．
Machine serews：Round－head and flat－head， with muts to fit．Most useful sizes： $4-36$ ， 6－32 and $8-32$ ，in lengthe from $1 / 1$ inch to 112 ind hes．（Nickel－phated iron will be found satisfactory except in strong r．f． fiedds，where brase should be used．）
Bakelite，lucite and polystyrene semas．
Suldering lugs，pand bearings，pubber grommets，terminal－lug wiring strips，var－ nishod－cambrie insulating tabing．
Shieded ：und anshielded wire．
Timed hare wire，Nos．22， 14 and 12.
Machine serews，mits，washers，soldering lugs，ete．，are most reasonably purehased in quantities of a gross．

－CHASSIS WORKING

With a few essential tools and proper pro－ cedure，it will be found that building radio gear on a metal chassis is no more of a chore than building with wood，and a more satisfaco tory jol results．Ahuminum is to be preforred to steel，not only because it is a superior shichling material，but hecause it is much easier to work and to provide good chassis contacts．

The placing of components on the chassis is shown quite dearly in the photographs in this IIandbook．Aside from certain essential dimensions，which usually are given in the text， exact duplieation is not necessary．

Much trouble and energy an be saved by spending sulficient time in planning the job． When all details are worked out beforehand

Fig．20．1－Methom of measuring the leeights of ea－ pacitor shafts．etc．If the equare is andjustable，the end of the scale should be set flush with the face of the head．

Number	TABLE 2O－I Numbered Drill Sizes		
	$\begin{gathered} \text { Diameter } \\ (\mathrm{mils}) \end{gathered}$	Will Clear Screw	Drilled for Tapping Iron． Steel or Brass＊
1	2×8.0	－	－
2	221.0	12－24	－
3	213.0	－	14－24
4	209.0	12－20	－
5	205.0	－	－
6	204.0	－	－
7	2111.0	－	－
8	199.0	－	－
9	$19 \% .0$	－	－
10	193.5	10－32	－
11	191.0	10－2．4	－
12	18：0	－	－
13	$18 \mathrm{~s}, 0$	－	－
14	182.0	－	－
15	180.0	－	－
16	177.0	－	12－24
17	17：3．0	－	－
18	169.5	8－32	－
19	1663,0	－	12－20
20	161.0	－	－
21	159.0	－	10－32
22	$1 .: 7.0$	－	－
23	1.51 .0	－	－
24	152.0	－	－
25	113.5	－	10－24
26 27	117.0 1.4 .0	二	二
28	140.0	6－32	－
29	136.0	－	8－32
30	128.5	－	－
31	120.0	二	－
3：	116.0	－	－
33	113.0	4－36，4－40	－
3.4	111.0	－	－
35	110.0	－	6－32
36 37	116.0	－	－
38	101.5	－	－
39	099.5	3－48	－
40	098.0	－	－
41	$0: 16.0$	－	－
42	093.5	－	4－36，4－40
43	089.0	2－50	－
448	0	二	3－48
46	0×1.0	－	－
47	178.5	－	－
48	076.0	－	2－50
49	173.0	－	2－56
50	070.0	－	－
51 52	067.0	二	二
53	0109.5	－	－
54	0\％．）． 0	－	－
＊Use one size larger for tapping bakelite and hard rubber．			

the actual const ruction is greatly simplified．
Cover the top of the chassis with a piece of wrapping paper or，preferably，cross－section paper，folding the edges down over the sides of the chassis and fastening with adherive tape． Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactury arrangement hats been found，keep－ ing in mind any parts which are to be mounted underneath，so that interferences in mounting may he avoided．lhace capacitors and other parts with shafts extending through the panel first，and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the ehassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole ecnters of each acourately on the paper. Wateh out for capacitors whose shafts are off renter and do not line up with the mounting holes. Do wot forget to mark the centers of sombet holes and holes for leads under i.f. transformers. ete, as well as holes for wiring leads. The smatl holes for soeket-mounting serews aro best loeated and center-punched, using the socket itself as a template, after the matin center hole hats bern cut.

Hy means of the square, lines indicating arrurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line. the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which require mounting underneath may be located and the mounting holes drilled. making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge

Fig. 20.2-To cut rectangular holes in a chassis corner, holes mave the filed out as shown in the shaded portion of B, making it positite to start the hach-saw thade along the cutting line. A shows how a single. conded handle may be constructed for a back saw blade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, monnt on the chassis the capacitors and any other parts with shafts extending to the panel, and measure accurately the height fof the center of each shaft above the chassis, as illustrated in Fig. 20-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other pimel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apmaratus mounted. Holes for terminals ete., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutfing Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may be started with a smaller drill and reamed out with the larger drill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may he filed out to larger diameters with roum files. Another method possible with limited toots is to drill a sories of small holes with the hand drill along the inside of the diameter of the large hole, phacing the holes as close together as possible. The center may then he knocked out with a cold chisel and the edges smoothed up with a file. Tajer reamers which fit into the carpenter's brace will make the job easier. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved counterclockwise.

For socket holes and other large round holes, an adjustable cutter designed for the purpose may be used in the brace. Oceasional applieation of machine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. The most convenient device for cutting socket holes is the socket-hole punch. The best type is that which works by turning a take-up serew with a wrench.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously deseribed, but is more easily done by drilling a $1 / 2$-inch hole inside each rorner, as illustrated in Fig. 20-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punches which are now a vailable also may be of considerable assistance in cutting out large rectangular openings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

- Construction notes

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use panel bearings of the nonmetal type unless the caparitor shaft is grounded. The melal bearing should be con. nected to the chass is with a wire or grounding strip.

This prevents any possible danger of shook.
The use of fiber washers between ceramic insulation and metal brackets, serews or nuts will prevent the ceramie parts from breaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it may be marked with soratches as deep as possible along the line of the rut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to waken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job casier. "("'-elamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet.

Bends maty be made similarly. The sheet should be scratched on both sides, but not so decply as to cause it to break.

Finishing Aluminum

Atuminum chassis, pancls and parts may be given a sheen finish by trating them in a caustic bath. An enamelled container, such as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in cold water in a proportion of $1 / 4$ to $1 / 2$ can of lye per gallon of water. The stronger solution will ilo the job more rapidly. Stir the solution with a stick of wood until the lye erystals are complete dissolved. Be very careful to avoid any skin contact with the solution. It is also harmful to clothing. Suflicient solution should be prepared to cover the piece completely. When the aluminum is immersed, a very pronoune bubbling takes place and ventilation should be provided to disperse the eseaping gas. A half hour to two hours in the solution should be sufficient, deponding upon the strength of the solution and the desired surface.

Remove the aluminum from the solution with stieks and rinse thoroughly in cold water while swabbing with a rag to remove the blark deposit.

DECIMAL EQUIVALENTS OF FRACTIONS			
1/32.	. 03125	17.32	.53125
1/16	. 062.5	$9 / 16$. 868.8
3.32.	. 003375	$11^{3} 32$.	. 04.375
1/8.	.125	इ 8.	. i 2 S
5/32.	. 15625	2132.	.6052.5
$3 / 16$. 1875	1116	.687.
732.	. 21875	23, 32.	. 71875
1/4.	. 25	3/4.	
9/32.	.28125	25/32..	.7812i
5/16	. 3125	13/16	.8125
11/32.	. 34375	$27 / 32$.	. 84375
3/8	. 375	7/8.	. 875
13/32.	. .4062j	29/32,	. 00625
7/16.	. . 4375	15/16	. 9375
15/32...	. 46875	31/32..	. 96875
1/2...	. . 5	1.	

Then wipe of with a rag soaked in vinegar to remove any stubborn stains or fingerprints. (See May, 1050 , (SST for a method of coloring and anodizing aluminum.)

Soldering

The seeret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat should be applied so that the solder will melt when it comes in contact with the wires being joined, without touching the solder to the iron. Always use rosin-rore solder, never acid-core lixept whereabsolutely neeressary, solder shouk never be depended upon for the medhamial strength of the joint: the wire should be wrapped around the terminals or clamped with soldering terminals.

When soldering erystal diodes or earbon resistors in plate, esperially if the leads have been cut short and the resistor is of the small $1 / 2$-watt size, the resistor lead should the gripped with a par of pliers up clone to the resistor so that the heat will be conducted away from the resistor. Overhating of the resistor while soldering can cause a permanent resistance change of as much as 20 per cent. Also, mechamical stress will have a similar effert, so that a small resistor shoukd be mounted so that there is no appreciable meehanical strain on the leads.

Trouble is sometimes experienced in soldering to the pins of coil-forms or male cable plugs. It helps first to tin the inside of the pins bex applying soldering paste to the hole, and then flowing solder into the pin. Then immediately clear the solder from the hot pin by a whipping motion or be blowing through the pin from the inside of the form or plug. Before inserting the wire in the pin, file the nickel plate from the tip. After soldering, round the solder tip off with a file.

When sokdering to sorkets, it is a good idea to have the tube or coil form inserted to prevent solder running down into the socket prongs. It also helps to condurt the heat away when soldering to polystyrene sockets, which often soften under the heat of the iron.

Wiring

The wire used in connecting up amateur equipment should be selected considering both the maximum current it will be called upon to handle and the voltage its insulation must stand without breakdown. Also, from the consideration of TVI, the power wiring of all transmitters should be done with wire that hats a braded shielding rover. lieceiver and andio direuits may ano require the use of shielded wire at some points for stability, or the elimination of hum.

No. 20 stranded wire is commonly used for most receiver wiring (except for the highfrequency cireuits) where the current does not exceed 2 or 3 amperes. For higher-current heater circuits, No. 18 is available. Wire with cellulose aretate insulation is good for voltages up to about 500 . For higher voltages, thermoplastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hook-up

Fig. 20.3-Cablestripping dimensions for Jones Typo P-101 Iluges, Smatler dimensimes are for $1 / 4$-ind plage. the larger dimensions for 12 -inch pluge. As indiatard in C, the remaining copper hraid is womed with hare or timed wire to make a sung fit in the stere of of the plug.
wire an easy jol are available (m, the manket.
In cases where power leads have soveral brameres in the chassis, it is convenient for use liber-insulated tie points or "lug strips" as anchorages or junction points. Strips of this tyme are also useful as insulated supports for resistors, r.f. chokes and ripacitors. High-voltage wiring shond have exposed points held to a minimum, and those which cannot he avoided should be rendered ats inacomsible as possible to acodental contare or shomt-rireuit.
Where shieded wire is called for and capacitance to ground is mot a faceor, Buden typer 8885 shielded grid wire may be used. If capabitance must be minimized, it may be necessary to use a pioce of car-radio low-capacitance lead-in wire, or coaxial cable.

For wiring high-frequency cirenits, rigid wire is often used. Bare soft-drawn timed wire, sizes 22 (1) 12 (depending on medhanical reguiremonts), is suitable. Kinks can be removed hes stretching a piece 10 or 15 feet long and then cutting into short lengths that can be handed conveniently. 12.f. wiring should be rum diredty from point to point with a minimum of sharp bends and the

Fig. 20-4-Dimensions for stripping $1 / 2$-inch calle to fit Amphenol 'lype 83.1SI' (1'..259) plug.

Fis. 20-3- Method of asembling $1 / 4$-inch cable, Am.

wire kept well suated from the ehassis or other grounded metal surfaces. Where the wiring inust pass through the chassis or a partition, a elearance hole should be cut and lined with at rubber grommat. In case insulation beromes neressary, varnished cambric tubing (spaghetti) can be slipped over the wire.

In transmitters where the peak voltage does not exceed 2500 volts, the shiedded grid wire mentioned above should le satisfictory for power circuits. For higher voltags, I3den type S6ati, Bimbach tepe 1820, or shiedted ignition rable can be used. In the case of filament circuits carraing heavy current, it may be necessary to use No. 10 or 12 bare or enameled wire, slipped through spagheti, and then covered with eoppler brat pulled tightly over the spaghetti. The ohapter

Fig. 20.6-Stripping dimensions for Amphemol 82-830 and $82-839$ physinn comnectors. 'The longer exponsed braid is for the first type.

(C)

RIGHT

Fig. 20.7 - Vethods of laning rables. "The method shown at (: is more seroure. Jut takre more time than the methorl of B. The latter is usually adequate for most amalatur requirmatht.
on IVI shows the manner in which shied ded wire should te applied. If the shiedding is simply slid batck over the insulation and solder flowed into the end of the brame the braid usually will stay in pate without the neressity for rotting it bak or binding it in place. The thatid should be hurnished with samdpaperoma knifesw that solder will take with a minimum of heat to protert the insulation underneath.
R.t. wiring in transmiters usually follows the method doweribed above for removers with due reperet to the voltages involved.

Power and cont wol wing extermal the transmitter chassis preferably should be of shicheded wire hound into at calole. Fig. 20-7 shows the cotrext methonds of lawing cathers.

Coaxial Plug Connections

(onsiderable finme and mouble can be samed in making rable commertions to maxial pluge by sharting out with the comert stripping dimensions. Fig. 2:-3 shows how the and of the cable should be propard for eomereting to Jones 'Type P-101 plugs. After the expeseed braid hats been wound, it should the carefully timed, applying no more heat than is neressary, to avoid molting the imner insulation, A small amomot of solder also should the flowed into the shereve of the phag. "Then, when the cable is insurted in the slever, the comeretion can the made secure by hodding the irme against the shereve matil the solder inside melts. While joining the two, the plug may be
had by insorting it in a lowe drilled in a board. Figs, 29-1, 20-8: and $20-6$ show details of comerotions of differnot types of Amphemel plages and
 (1) the wire with a sharp knife at a distance of 1:盾 inch from the end of the wire and remove the insulation and shielding in one piece. Then
 may' be slid hack onto the wire.
. Iter the brad in Fig. $20-5$ hats been frayed batek, it will be neerssary to fike the brad down as murh as possible to make it fit the plug.

COMPONENT VALUES

V Values of composition resistors and small capacitors (mirat and reramic) are sperified thromghout this Mamflook in terms of "preforred values." In the prelerred-number sys(om, all values represent (approximately) a monstant-precentage inerase over the next lower value. The batse of the system is the number 10. Only two signifieant figures are Heded Table 20-11 shows the proferved values besed on tolerance steps of 20,10 and 5 per erent. All other values are expresed by multiplying or dividing the base figures given in the table by the appropriate power of 10 . (For example, renitar values of 33,000 whms, 6800 ohms, atm 1 bo ohms are obtained by maltiplying the base figures by 1000 , 100 , and 10 , respericels.)
"Tokerance" meaths that a variation of plus or minus the percentage given is considered salisiantors. Forexample, the arthal resistame of a " 1700 -ohm" 20-per-rent resistor ean lie athehere betwern 3700 athd stoto ohms, approximatels. 'lhe permisable variation in the same resistance value with 5 -per-cent tolerance

would be in the range from 4500 to 4900 ohms, approximately.

Only those values shown in the first column of Table $20-$ II are available in 20 -per-cent tolerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in j-per-cent tolerance.

In the component specifications in this Handbook, it is to be understool that when no tolerance is specified the largest tolerance a vailable in that value will be satisfactory,

Values that do not fit into the preferrednumber system (such as $500,25,000$, ete.) easily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20-per-cent resistor used in the example above. It would not, however, be usable if the tolerance were specified as 5 per eent.

- COLOR CODES

Standardized color codes are used to mark values on small components such as composition resistors and mica capacitors, and to identify leads from transformers, ete. The resistor-caparitor number color code is given in Table 20-1II.

Fixed Capacitors

The methods of marking "postage-stamp" mica rapacitors, molded piper capacitors, and tubular reamic capacitors are shown in Fig. 20-8. Cipacitors made to American War Standards or Joint Army-Navy specifications are marked with the 6 -dot code shown at the top. Practically all surplus capacitors are in this category. The 3-dot RL:TM. 1 code is used for rapacitors having a rating of 500 volts and $\pm 20 \%$ tolerance only; other ratings and tolerances are covered by the 6-dot RETM.I code.

> Examples: A capacitor with a 6-dot code has the following markings: Top row, left to right, black, yellow, violet; bottom row, right to left, brown, silver, red. Nince the first color in the top row is black (significant figure zero) this is the AWS code and the caparitor has mica diclectric. The significant figures are 4 and 7 , the decimal nultiplier 10 (brown, at right of sccond row), so the capacitance is $470 \mu \mu \mathrm{f}$ The tolorance is $\pm 10 \%$. The final color, the characteristic, deals with temperature coefficients and methods of testing, and may be ignored.
> A capacitor with a 3 -dot code has the following colors, left to right: brown, Dlack, red. The signifieant figures are 1,0 (10) and the maltiplier is 100 . The capacitance is therefore $1000 \mu \mu \mathrm{f}$.
> A capacitor with at li-dot code has the following markings: Top row, left to right, brown, black, black; bottons row, right to left, black, gold, blue. Sinee the first color in the top row is neither black nor silver, this is the RETMA code. The significant figures are 1,0,0 (100) and the decimal multipler is 1 (black). The capacitanee is therefore $100 \mu \mu$. The gold dot shows that the tolerance is $\pm 5 \%$ and the blue dot indicates 600-volt rating.

Ceramic Capacitors

Conventional markings for ceramie capaci-
tors are shown in the lower drawing of Fig. 20-8. The colors have the meanings indicated in Table $20-1 \mathrm{~V}$. In practice, dots may be used instead of the narrow bands indicated in Fig. 20-8.

> Example: A ceranic capacitor has the following markings: Broad hand, violet: narrow bands or dots, green, brown, black, green. The significant figures are $\mathbf{i}, 1$ (in1) and the decinal multiplier is 1 , so the eapreitance is $51 \mu \mu \mathrm{f}$. The temperature coefficient is -7.50 parts per million ber degree C ., as given by the broad hand. and the capacitance toleranere is $\pm 5 \% / 6$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the (omposition type) are color-coled as shown in

Fig. 20.8-Color coding of fixed mica, molded paper, and tuhular ceramie capacitors. The color sode for mica and molded raper capacitors is given in Table 20-III. Table 20-1V gives the color code for tubular ceramic capacitors.

Fig. 20.9 - Color conling of fixed componition resistors The color cole is given in Talle 20-III. The colored areas have the following significance:
A - First significant figure of resistance in ohms.
13-Second significant figure.
C - I Decimal multiplier.
() - Resistance tolerance in per cent. If ne color is shown. the tolerance is $\pm 20 \%$.

Fig. 20-9. Colored bands are used on resistors having axial leads; on radial-lead resistors the colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.
Examples: A resistor of the type ghown in the
lower drawing of l-ig. 20.9 has the following
color bands: A, red; B , red; C, orange; I), no
color. The significant figures are $2,2(22)$ and the
decimal multiplier is 1000 . The value of resist-
ance is therefore $2:, 000$ ohms and the tolerance
is $\pm 20 \%$.
A resistor of the type shown in the upper draw-
ing has the following colors: borly (A), blue;
end (B), gray; dot, red; end (D), pold. The
significant figures are 6,8 (68) and the derimal
multiplier is 100 , so the resistance is 6800 ohms.
The tolerance is $\$ 5 \%$.

I.F. Transformers

Blue - plate lead.
Red-" $13 "+$ lead
Green - grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secondary of the i.f.t is centertapped, the second diode plate lead is green-

Color	TABLE 20-III Resistor-Capacitor Color Code			
	Significant Figure	t Decimal Multiplier	Tolerance (\%)	Voltage Rating*
Black	0	1	-	-
Brown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1000	3*	300
Yellow	4	10,000	4*	400
Green	5	100,(0)0	i**	500
Blue	6	1,600,000	§*	600
Violet	7	10,000, CMO	7*	760
Gray	8	160,000, (4x)	8*	$8(0)$
White	11		! ${ }^{\text {\% }}$	(1m)
Gold	-	0.1	5	l(MN)
Silver	-	0.01	111	20N0
No color	-	-	20	50 O

TABLE 20-IV Color Code for Ceramic Capaeitors					
Color	Significant Fipure	Decimal Multiplier	Capacitance Tolerance		Temp. Coeff. p.p.m./deg C.
			More than $10 \mu \mu \mathrm{f}$. (in \%)		
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		- 80
Orange	3	1000			-150
Yellow	4				-
Green	5		± 5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	0.01		0.25	30
White	9	0.1	± 10	1.0	500

and-black striped, and black is used for the center-tap lead.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - "B" + lead (this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
(ireen-grid (finish) lead to secondary.
Black - grid roturn (this applies whether the secondary is plain or center-tapped).
Yellow-grid (start) lead on eenter-tapped secondaries. (Gireen may be used for this lead if polarity is not important.)
Sote: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish.
Black - start.

Loudspeaker Field Coils

Black and Red - start.
Yellow and Red - finish.
Slate and Red - tap (if any).

Power Transformers

1) Primary Leads Black If tapped:

Common. Black Tap....... . Black and Yellow Striped Finish. Black and Red Striped
2) High-Voltage I'late Winding Red Center-Tap. . . Red and lellow Striped
3) Rectifier Filament Winding. Vellow Center-Tap. V Vellow and Blue Striped
4) Vilament Winding So. I...........Green Conter-Tap. . Grem and Yellow Striped
b) Fíhment Winding So. 2. Brown Center-Tap. Brown and Yellow Striped
(i) Fïlament Winding No. 3....... . . Slate Center-Tap. . Slate and Vellow Striped

COPPER-WIRE TABLE

$\begin{gathered} \text { Wirr } \\ \text { sizr } \\ A \\|, I^{\prime} \\ (B \\| S) \end{gathered}$	$\begin{aligned} & \text { Jiam, } \\ & \text { in } \\ & \text { nils } \end{aligned}$	$\begin{gathered} \text { C'ircular } \\ \text { Mil } \\ \text { Area } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	('urrent ("arrying ('apmaitys at \%00 ('..ひ. per Amp.	Dinm. in mm.	Nearest British N.W.G. No.
			Enamel	S.S.C. ${ }^{4}$	$\begin{aligned} & \text { D.S.C. }{ }^{5} \\ & \text { or } \\ & \text { S.C.C. } \end{aligned}$	D.C.C. ${ }^{\text {i }}$	S.C.C.	Enamel S.C.C.	D.C.C.	Bare	D.C.C.				
1	28:1.3	83:390	-	-	-	-	-	-	-	$3.9+7$	-	.1261	119.6	7.348	
2	2-7. 6	16830	-	-	-	-	-	-	-	4.977	-	. 150.3	14.8	6, $\mathrm{B}, 44$	3
3	23: , -	-204519	-	-	-	-	-	-	-	6.276	_	. 20019	$\therefore \mathrm{B}$	5, $\times 2.4$	4
4	201.3	11740	-	-	-	-	-	-	-	7.91 .4	-	. 2533	59.6	5. 189	5
5	181.4	33.3100	-	-	-	-	-	-	-	9,980	-	. 3148	47.3	4.1201	7
6	$16 \pm .0$		-	-	-	-	-	-	-	12.58	-	.4028	37.5	4.115	8
7	144,3	-10x:0	-	-	-	-	-	-	-	$15.8{ }^{\circ}$	-		29.7	$3.86{ }^{\text {a }}$	9
8	128.5	16:210	7.6	-	7.4	7.1	-	-	-	20.01	19.6	- $6+0.5$	23.16	3,26.4	9 10
9	111.1	13030	8.6	-	8.1	7.8	-	-	-	25.23	21.6		23.6 18.7	3.26 .4 -3.905	10
10	101.4	10:380	9.6	-	9.3	8.9	87.5	84.8	80.0	31.82	30.9	1.018	14.8	2.588	12
11	(0).74	8234	10.7	-	10.3	9.8	110	10.5	97.5	+6, 10	38.8	1.281	11.8	2.305	13
12	80.81	(6i)30	12.0	-	11.5	10.9	136	131	121	50.59	48.9	1.619	9.383	$\underline{2.053}$	14
13	71.14	5178	13.5	-	12.8	12,0	170	10:	150	(63. 80	61.5	2.042	7.40	1.828	15
14	(6.4.08	+107	15.0	-	14.2	13.8	211	198	183	80.44	77.3	2.875	-8.87	1.828 1.628	15
15	57.07	32.57	16.8	-	15.8	14.7	262	250	223	101.4	97.3	3.247	4.65	1.45)	17
16	50.80	2583	18.9	18.9	17.9	16.4	321	314	271	127.9	119	4.094	3.69	1.291	18
17	45.26	20.48	21.2	21.2	19.9	18.1	397	$37:$	3:99	161.3	150	5. 16i3	2.93	1.150	18
18	40.30	1624	23.6	23.6	22.0	19.8	493	454	349	203.4	188	(6.510		1.024	
19	35. 64	1288	26.4	26.4	24.4	21.8	542	538	479	2 5 5.5	188 $2: 37$	6. 8.210 8.210	2.32 1.81	1.027 .0116	18 20
20	31.64	1022	29.4	29.4	27.0	23.8	775	725	625	323.4	298	10.35	1.46	.8118	$\stackrel{21}{21}$
21	28.44	810.1	33.1	32.7	29.8	26.0	940	89.5	75.4	407.8	298 370	13.35)	1.16	.8118 .723	21 22
22	25.35	6.42 .4	37.0	36.5	34.1	30.0	11.00	1070	910	514.2	461	16.46	1.188	. 13138	$\because 3$
23	22.57	509,	41.3	40.6	37.6	:31.6	1416	13010	1080	648.4	\% 8.4	20.76	. 728	- B 733	24
24	20.10	404.0	46.3	45.3	+1.is	35, 6	1700	1 F 70	1260	817.7	74%	26.17	. 877	(i) 69	25
25	17.60	320.4	51.7	50.4	45.6	38.6	20.60	1910	1510	1031	903	33.00	. 458	. 4.477	26
24	15,94	254, 1	58.0	55.6	50.2	11.8	2.300	2360	1750	1306)	1118	+1,62	. 3183	.4 .87 .4049	26 7
27	$1+.20$	201.5	64.9	(i1.5	53.0	15.0	30:50	2780	2020	1639	1122	+1.62 52.48	.363 .288	- 40.40 .36006	97 29
28	12.64	159.8	72.7	18.6	60.2	48.5	3670	33:3\%)	2310	-2067	1759	112.18 636	.288 .228	. 3 +i010	29 30
29	11.26	126.7	81.6	74.8	65.4	\$1.8	4300	$3!100$	2700	$2 \mathrm{CiO7}$	2907	83.44	. 181	. 2859	31
30	10.03	100.5	90.5	$8: 3.3$	71.5	5.5 .3	5040	+660)	3020	3287	20.34	105.2	. 14	. 2516	33
31	8.928	79.70	101	92.0	77.5	54.2	500	5280	,	414i	2768	132.7	.114	2268	34
32	7.050	(i3.21	113	101	83.6	62.6	7060	(\%250)	-	5227	3137	1197.3	. $0: 19$. 2019	34 36
33	7.080	50.13	127	110	90.3	66.3	8120	7:360	-	(659]	4697	211.0	.0972	(2019	36 37
34	6.305	39.75	143	$1 \because 0$	97.0	70.0	(\%i\%)	8.310 8.00	-	88	61697 6168	211.0 266.0	.072	. 1793	37 38
35	5.615	31.52	$1: 8$	132	104	73.5	10900	8700	-	10480	6737	335.0	. 015	. $1+26$	-38-38
36	5.060	25.06	175	143	111	77.0	12200	10700	-	13210	7877	423.0	.036	. 1270	39-40
37	4.483	19.83	198	154	118	80.3	-	-	-	16 itg 0	1309	533.4	. 028	. 1131	$39-40$ 41
38	3.1665	15.72	224	1615	126	83.6	-	-	-	21010					41 42
39	3,53.31	12.47	$\because 48$	181	133	86.6	_	二	-	26 L 00	$11!07$	812.6 848.1	.022 .018	.1107	$\begin{array}{r} 42 \\ 43 \end{array}$
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14:222	1069.1	. 0181	. 08978	$\begin{aligned} & 43 \\ & 44 \end{aligned}$

[^3]

Measurements

It is practicatly impossible to oprate an amaterar station without making measurements at one time or another. . It hough quite arode measurements often will suffiere, more refined "fuipmont and mothods will field more and better information. With adequate information at hathd it beromes possible to adjust a piere of equipmont for optimum performance quiekly and surely, and to dosign circuits along ostal)lisherd principles rather than deponding on cut:mdeltry.

Measuring and test equipment is valuable during constraction, for testing eomponents before installation. It is prartically indispensable in the initial adjustment of radio gear, not only for establishing operating values but also for tracing possible arrors in wiring. It is likewise nereded for forating breakdowns and deforetive romponents in cxisting equipment.

The hasie measurements are those of current, voltage, and frepuenes. Determination of the values of rirenit Mements -resistaner, induetance and eapacitanere - are ahmost equatly im-
pertant. The inspere ion of wave form in atadiofrequence cirenits is highly useful. For these purposes there is avatable a wide assort tment of instruments. both complett and in kit form: the latter, particularly, compare very favorably in cost with strictly homo-built instruments and are fremuently more satisfartory hoth in appearanere and calibeation. The home-huilt instruments deseriberl in this chapter are ones having features of particular usofuhuss in amateur applications, and not ordinarily avaitable commererally.

In using any instrument it should always be kept in mind that the acreuracy depends not only on the inherent amerares of the instrument itself (which, in the rase of commerefally built units is usually within a few per eront, and in any event should be sperified by the manufacturer) but also the ronditions under which the measuremont is made. Sarge errors ran be introdured by failing to reeognize the existenere of eomditions that affer the instrument readings. This is particularly true in rertain types of ref. masurements, where stray effeds are hard to eliminate.

Voltage, Current, and Resistance

D.C. MEASUREMENTS

A diferet-eurront instinment - Volthoter. athe moter, milliammeter or miorosmmotor - is a devier in which magnotio foree is used to defleret a pointer over at cablibratad walde in proportion to the eurrent flowing. In the D'Arsonval type a coil of wire to which the pointer is attacherd. is pivoterl betwern the poles of a permanent magnet. and when current flows through the eoil it ratheses amgurtio firld that interatots with that of the magnet to canse the eoil to then. The turning forer is extrime against a sumal spring att tachod to the woil and the pointer deflemotion is direetly mopertional to the rurment.

A less expensive trone of instrument is the moving-vane typr, in which a pivoted soft-iron Vame is pulled into a coil ot wire bes the magnetio fieded set up, when eurment fows through the eoil. The farther the bime extemes into the eroil the greater the magnetie forere on it, for a given rhamge in carment, so this tyer of instrmment does not hatve "linestr" defleretion - that is, the serife is ramped at the low-rument end and spreat out at the high-erurent end.
'The same basie instrumont is used for moasuring aither eurment or voltage. Comel-quality instruments:ar"mbale with lailly high sensitivity
that is, they give fall-seale pointer deflertion with very small eurronts - when igntended to be nserl as voltmetors. 'The' sensitivity of instrumonts intonded for modsuring large corrents can be lower", but a highly solnsitive instrament can be. and fropuobly is. used for mosisurement of currents much groater than needed for full-scale deflextion.

Panel-monnting instruments of the l'drsonval type will give a lower refferetion when monnted on iron or stery pinnels thitn when monnted on nonmetgnolie material. Romdings motes be as murh ats ten pereent low. Hereoially eadibrated metrers should be ohtained for monnting on surh pitmels.

- VOLTMETERS

Only a fraction of a volt is reguired for fullscale defleetion of a sensitive instrument (l milliampere or less full seate) so a high resistanere is comerted in serines with it. Fig. 21-1. for measuring valage. Kinowing the current and the resistance, the voltage ean easily be malentated from ohm: Latw. The meter is calibuated in terms of tho voltage drop amos the series resistor or multiplier. I'ractically any desired full-scalo

Fig. 21-1 - Ilow voltmeter multipliers and milliammeter shmots are connected to extend the range of a d.c.meter.
voltage range can be obtained by proper choice of multiplier resistance. and voltmeters frequently have several ranges selected by a switch.

The sensitivity of the voltmeter is usually axpressed in "ohms per volt." A sensitivity of 10000 ohms per volt means that the resistance of the voltmoter is 1000 times the full-sale voltage, and by Ohm's Law the current required for fullscale deflection is 1 milliampere. A sensitivity of 20.000 ohms per wolt, another commonly used value, means that the instrument is a 50 -mieroampere meter. The higher the resistance of the voltmeter the more accurate the measurements

Fig. 21.2 - Fffert of voltmetrer resistance oll arenracs of readings. It is assumed that the thece resistane of olore sorean rirenit is constant at luo kilohms. The actual rurrent and voltage without the voltmeter connertad are 1 mas, and loo wolts. The soltmeter rearlings will differ beramer the differant ty bes of meters draw different amomes of eurrent through the lī0-kilohm resistor.
in high-resistance cirruits. This is berause the current flowing through the voltmeter will cause a change in the voltage between the points across which the moter is comected, compared with the voltage with the meter alnent, as shown in Fig. 21-2.

Multipliers

The required multipliar resistance is found by dividing the desired full-scale voltage he the current, in amperes, required for full-scale deflection of the meter alone. Ntrictly, the internal resistance of the meter should be subtracted from the value so found, but this is seldom neeressary (exrept perhaps for very low ranges) because the meter resistance will be negligibly small compared with the multiplier resistance. An exception is when the instrument is already provided with an internal multiplier, in which case the multiplier resistance required to extend the range is

$$
R=R_{\mathrm{m}}(n-1)
$$

Where R is the multiplier resistance, R_{m} is the total resistance of the instrument itself, and n is the factor by which the scale is to be multiplied. For example, if a 1000 -ohms-per-volt voltmeter having a calibrated range of $0-10$ volts is to be exteneled to 1000 volts, R_{m} is $1000 \times 10=$ 10,000 ohms, n is $1000 / 10=100$, and $R=$ $10,000(100-1)=990,000$ ohms.

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's Law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scale voltage and I the full-scale reading of the instrument in milliamperes.

Accuracy

The accuracy of a voltmeter depends on the calibration areuracy of the instrument itself and the accurary of the multiplier resistors. Goodquality instruments are gencrally rated for an abecuracy within plus or minus 2 percent. This is also the usual aceurace rating of the basic meter movement.

When extending the range of a voltmeter or converting a low-range milliammeter into a voltmeter the rated atcruracy of the instrument is retained only when the multiplier resistance is precise. Precision wire-wound resistors are used in the multipliers of high-guality instruments. These are relatively expensive, but the home ronstructor "an do quite well with 1 'o tolerance composition resistors. They sheuld be "derated" when used for this purpose - that is, the actual power dissipated in the resistor should not be more than $1 / 4$ to $1 / 2$ the rated dissipation - and care should be used to avoid overheating tho body of the resistor whele soldering to the leads. These preceutions will help prevent permanent change in the resistance of the anit.

Ordinary eomposition resistors are generally furnished in 10% or 5% tolerance ratings. If possible errors of this order can be accepted, resistors of this type may be used as multipliers. They should be operated below the rated power dissipation figure, in the interests of long-time stability.

MILLIAMMETERS AND AMMETERS

A microammoter or milliammeter can be used to moasure currents larger than its full-seale reading by commerting a resistance shunt across its terminals as shown in Fig. 21-1. Part of the current flows through the shunt and part through the meter. Knowing the meter resistance and the shunt resistance, the relative currents can casily le calculated.

The value of shunt resistaner reduired for a given full-sale current range is given by

$$
R=\frac{R_{\mathrm{m}}}{n-1}
$$

where R is the shunt, R_{m} is the internal resistane of the meter, and n is the factor by which the
original meter scale is to le multiplied. The internal resistance of a milliammeter is preferably determined from the manufacturer's catalog, but if this information is not available it can be determined by the method shown in Fig. 21-3. Do not attempt to use an ohmmeter to measure the internal resistance of a milliammeter; it may ruin the instrument.

Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary copper wire if no resistance wire is available. The Copper Wire Table in this Handbook gives the resistance per 1000 feet for various sizes of copper wire. After computing the resistance required, dotermine the smallest wire size that will carry the full-scale current (250 circular mils per ampere is a satisfactory figure for this purpose).

Fig. 21.3-Determining the internal resistance of a milliammeter or mieroanmeter. R_{1} is an adjustable resistor having a masimum value about twiee that neresinary for limiting the current to full seale with R_{2} disconneeted: adjust it for exactly full-scale reading. Then connect K_{2} and adjust it for exactly half-scale reading. The resistance of K_{2} is then equal to the internal resistance of the meter, and the resistor mas the removed from the eircuit and measured separately. Internal resistanees vary from a few ohms to several hundred ohms, depending on the sensitivity of the instrument.

Measure off enough wire to provide the reguired resistance. Arcaracy can be chereked by causing enough current to flow through the meter to make it read full scale without the shunt; connecting the shunt should then give the correct reading on the new full-seale range.

Current Measurement with a Voltmeter

A current-measuring instrument should have vory low resistance compared with the resistance of the circuit being measured; otherwise, inserting the instrument will eause the corrent to differ from its value with the instrument out of the circuit. (This does not matter if the instrument is left permanently in the circuit.) However, the resistance of many cireuits in radio equipment is quite high and the circuit operation is affected little, if at all, by adding as much as a fow hundred ohms in series. In such cases the voltmeter method of measuring current, shown in Fig. 21-4, is frequently convenient. A voltmeter - or low-range milliammeter provided with a multiplier and operating as a voltmeter - having a full-scate voltage range of a few volts. is used to measure the voltage drop across a compara-

Fig. 21-4- Voltmeter method of measuring current. This method permits wing relatively large values of resistance in the shunt, standard a ahues of lixed resistors frequently being usable. If the multiplier resistance is 20 times the shant resistance (or more) the error in assuming that all the current flows through the shunt will not be of consequence in most practical applications.
tively high resistance acting as a shunt. The formula previously given is used for finding the proper value of shunt resistance for a given scale-multiplying factor, R_{m} in this case being the multiplier resistance.

D.C. Power

Power in direct-current eircuits is determined by measuring the current and voltage. When these are known. the power is equal to the voltage in volte multiplied by the current in amperes. If the current is measured with a milliammeter, the reading must be divided by 1000 to convert it to amperes.

RESISTANCE MEASUREMENTS

Measurement of d.c. resistance is based on measuring the current through the resistance when a known voltage is applied, then using Ohm's Law. A simple circuit is shown in Fig. 21-5.

Fig. 21.5-Mcasuring resistance with a voltmeter and milliammeter. If the approximate resistance is known the voltage can he selected to cause the milliammeter, M / A, to read about half scale. If not, additional resist: ance should be first conneeterl in series with R to limit the current to a safe value for the milliammeter. The set-up then measures the total resistance, and the value of R ran be found ly subtracting the known additional resistance from the total.

The internal resistance of the ammeter or milliammeter, M / A, should he low eompared with the resistance. R. being measured, since the voltage read by the voltmeter, V, is the voltage across .$/ / A$ and R in series. The instruments and the d.c. voltage should he chosen so that the readings are in the upper half of the seale, if possible, since the percentage error is less in this region.

An ohmmeter is an instrument consisting
fundamentally of a voltmeter (or milliammetor, depending on the circuit used) and a small dry hattery as a soure of d.e. voltage. calibrated so the value of an unknown resistance ean be read directly from the salale. Typieal ohmmeter circuits are shown in Pig. 21-6. In the simplost type, shown in Fig. 21-6i.1, the moter and battery are comeeted in series with the unknown resistance. If a given deflection is ohtained with terminals $A-B$ shorted, inserting the resistanee to be measured will cause the meter reading to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measurement, e is the voltage applied ($A-B$ shorted),
E is the voltmoter reading with R connected, and
R_{m} is the resistance of the volt meter.
The circuit of lig. 21-6id is not suited to masuring low values of resistance (below a hundred ohms or so) with a high-resistance voltmeter. For such measurements the rireuit of Jig. 21-613 can be used. The milliammeter should be a $0-1$ ma. instrument, and h_{1} should be equal to the battery voltage, e, multiplied by 1000 . The unknown resistance is

$$
R=\frac{I_{2} R_{m}}{I_{1}-I_{2}}
$$

where R is the unknown,
R_{m} is the internal resistance of the milliammeter,
I_{1} is the current in ma. with R disconneeted from terminals $A-B$, and
I_{2} is the current in ma. with R commeded.
The formula is approximate, but the error will be negligible if e is at least 3 volts so that R_{1} is at least 3000 ohms.

A third eircuit for mosisuring resistance is shown in lig. 21-6C. In this case a high-resistance voltmeter is used to measure the voltare drop across a reference resistor, R_{2}, when the unknown resistor is comected so that current flows through it, R_{2} and the battery in series. By suitable choire of h_{2} (low values for low resistance, high values for high-resistance unkmowns) this eircuit will give equally good results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, $h_{\text {m }}$, is always very high (o) times or more) compared with the resistance of R_{2}. A 20, (060-ohms-per-volt instrument (50 - - amp. novement) is gencrally used. Assuming that the current through the voltmeter is negligible compared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E}-R_{2}
$$

Fig. 21.6-Ohnmeter cireuits. Values are discussed in the text.
where R and K_{2} are as shown in Fig. 21-6C, e is the voltmeter reading with $A-B$ shorted, and
E^{\prime} is the voltmeter reading with R connected.
The "zaro adjuster," R_{1}, is used to set the voltmoter reading exactly to full scale when the meter is calibrated in ohms. I 10,000 -oshm variable resistor is suitable with a 20,000 ()-ohms-per-volt moter. The battery voltage is usually: 3 volts for ranges up to foo,(on) ohms or so and 6 volts for highor ranges.

A. C. Measurements

Several types of instruments are available for measurement of low-frequency alternating rorrents and voltages. The bettor-grade panel instruments for powr-line frequencos are of the dynamometer type. This compares with the D'Arsonval movement used for der measurements, but instead of a permanent magnet the drammometer movemont has a fiold coil which, together with the moving eoil, is romnereted to the a.e source. Thus the forere on the moving coil will be exerted in the same divertion on both hatves of the a.re cercte.

Moving-vane type instruments, described earlier, also are used for a.c. measurements. This is possible because the pull exerted on the vane is in the same direction regardless of the direction of current through the eoil. The calibration of a moving-vathe instrument on a.e. will, in general, differ from its d.e. culibration.

For moasurements in the audio-frequency range, and in applieations where high impedane is required, the rectifier-type a.c. instrument is
generally used. This is essentially a sensitive d.e. meter of the type previously deseribed, provided with a rectifier for converting the a.ce. to d.e. A teppeal rectifier-type voltmeter circuit is shown in Fig. 21-7. The half-wave meter reetifirr, ($/ R_{1}$, is generally of the eopper-oxide type. Such a rectifier is not "perfect" - that is, the appliration of a voltage of reversed polarity will result in a small current flow - and so C'Ra is used for climinating the effert of reverse curvent in the meter circuit. It does this be providing a lowresistance path across ($/ R_{1}$ and the meter during the a.e. alternations when ($/ R_{1}$ is not condurting.

lig. 21.7-Rectirer-tyme ace voltmeter cirenit, with "linearizing" resistor and diode" frr back-current correetion.

Resistor R_{2} shunted arross.$/_{1}$ is used for improving the linearity of the eirenit. The effeetive resistance of the copper-oxide rectifier dereases with increasing rurrent through the reatifior, leading to a ralibration scale with nomuniform divisions. This is overome to at considerable extent be" "hleding" several times as mueh current through R_{2} as flows through $/ /_{1}$ so the reetifier is ahwas carrying a fairly latge current.

Berause of these expedients and the fact that with half-wave rectification the average current is only 0.45 times the r.m.s. value of at sime watve producing it, the impedance of a rectifier-typer voltmeter is rather low compared with the resistance of a dice, voltneler using the same meter. Vialues of 1000 ohms per volt are representative, when the d.e. instrument is a $0-200$ miero:mmeter.

The d.e. instrument responds to the average value of the reetified alternating current. This average eurrent will vary with the shape of the a.se wave applied to the rerefifier, and so the meter reading will not be the same for different wave forms having the same maximum values or
the stme r.m.s. values. Hence a "wave-form error" is always present unless the a.e. wave is very dosely simusodal. The actual calibration of the instrument usually is in terms of the r.m.s. value of a sine wave.

Modern reetifier-tipe a.c. voltmeters are capable of good accuracy, within the wave-form limitations mentioned above, throughout the audio-frequencer range.

- COMBINATION INSTRUMENTS THE V.O.M.

Since the same basic instrument is used for moasuring current, voltage and resistance, the three functions can readily be combined in one unit using a single meter. Various models of the "v.o.m." (volt-ohm-milliammeter) are available commercially; both completely assembled and in kit form. The less expensive ones use a $0-1$ milliammeter as the basie instrament, providing voltmeter ranges at 1000 ohms per volt. The more elaborate moters of this trpe use a microammeter - 0-50 microamperes, frequently with voltmeter resistances of 20,000 ohms per volt. With the more sensitive instruments it is possible to make resistance measurements in the megohms range. A.e. voltmetor scales also are frequently included.

The v.o.m., even a very simple one, is among the most useful instruments for the amateur. Besides current and voltage measurements, it ran be used for chareking continuity in circuits, for finding dofective components before installation - shorted repacitors, open or otherwise defective resistors, etc. - shorts or opens in wiring, and many other cheeks that, if applied during the construction of a piece of equipment, save much time and trouble. It is equally useful for servicing, when a component fails during operation.

THE VACUUM-TUBE VOLTMETER

The usefulness of the vacuum-tube voltmeter (v.t.v.m.) is based on the fact that a vacuum tube (can amplify without taking power from the source of voltage applied to its grid. It is therefure possible to have a voltmeter of extremely high resist-
C_{1} - $0.002-100.00 \mathrm{~B}-\mu \mathrm{f}$. mica.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$. 1060 to -300 volts, paper or mica.
K_{1} - 1 megohm, $1 / 2$ walt.
K_{2} to K_{5}, inchusion- To give desired voltake ralles.s, totaling II mekohms.
$\mathrm{K}_{6}, \mathrm{~K}_{7}-2$ to 3 mexohms.
R_{8} - $\mathbf{1 0 , 0 0 0}$ onh m variable.
$\mathrm{K}_{\mathrm{B},} \mathrm{K}_{10}-2000$ to 30060 ohms.
R_{11} - 5000 to 10,0100 -ohm poten. tiometer.
$\mathrm{H}_{12}-10,000$ to 50,000 ohms.
$\mathrm{R}_{13}, \mathrm{R}_{14}$-App. $2-, 060$ ohms. A 50,1000 ohm shider type wire-womed can be used.
R_{15} - 10 megohuts.
$\mathrm{h}_{16}-3$ megohms.
R_{17} - $\mathbf{1 1}$-mesohm variable.
N - Mieroammeter, range from

V_{1} - Wual trinde, os it or IOALi 7 .
V_{2} - Dual dionde, 6116 or 6.1 LJ

Fig. 21-8 - Vacumm-tube voltmeter circuit.
ance, and thus take negligible current from the circuit under measurement, without using a d.c. instrument of exceptional sensitivity.

The v.t.v.m. has the disadvantage that it requires a source of power for its operation, as compared with a regular d.c. instrument. Also, it is susceptible to r.f. pick-up when working around an operating trunsmitter, unless well shielded and fittered. The fact that one of its terminals is grounded is also disadvantageous in some cases, since a.c. readings in partieular may be inaceurate if an attempt is made to measure a circuit having both sides "hot" with respect to ground. Nevertheless, the high resistance of the v.t.v.m. more than compensates for these disadvantages, especially sinee in the majority of measurements they do not apply.

White there are several possible circuits, the one commonly used is shown in Fig. 21-8. A dual triode, V_{1}, is arranged so that, with no voltage applied to the left-hand grid, equal currents flow through both sections. Under this condition the two eathodes are at the same potential and no current flows through . $1 /$. The currents can be adjusted to balance by potentiometer $R_{\text {II }}$, which takes care of variations in the tule sections and in the values of cathode resistors R_{9} and R_{10}. When a d.c. voltage is applied to the left-hand grid the current through that tube section rhanges but the current through the other section remains unchanged, so the batanere is upset and the meter indicates. The sensitivity of the meter is reguhated by R_{8}, which serves to adjust the calibration. R_{12}, common to the cathodes of both tube sections, is a ferd-back resistor that stabilizes the system and makes the readings linear. R_{6} and C_{1} form a filter for any a.e. component that may be present, and R_{6} is balanced by R_{7} commerted to the grid of the second tube section.

To stay well within the linear range of operation the scale is limited to 3 volts or lass in the average commercial instrument. Higher rangesare obtained by means of the voltage divider formed by R_{1} to R_{5}, inclusive, As many ranges as desired can be used. Common practice is to use 1 meg ohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive, 10 megohms, thus giving a total resistance of 11 megohms. constant for all voltage ranges. R_{1} should be at the probe end of the d.e. lead to minimize caparity loading effects.

Values to be used in the cireuit depend ronsiderably on the supply voltage and the sensitivity of the meter, M. R_{12}, and $R_{13}-R_{14}$, should be adjusted so that the voltmeter circuit can be brought to balance, and to give full-seale deflection on $1 / /$ with about 3 volts applied to the grid. The meter conncetions ean be reversed to read voltages that are negative with respect to ground.

A.C. Voltage

For measuring a.c. voltages the reetifier circuit shown at the lower left of Fig. 21-9 is used. One serction of the double diode, V_{2}, is a half-wave rectifier and the second half acts as a balancing deviee, adjustable by R_{17}, to eliminate contact
potential effects that would cause a constant d.c. voltage to appear at the v.t.v.m. grid.

The rectifier output voltage is proportional to the peak amplitude of the a.c. wave, rather than to the average or r.m.s. values. Since the positive and negative peaks of a complex wave may not have equal amplitudes, a different reading may be obtained on such wave forms when the voltmeter probe terminals are reversed. This "turnover" effert is inherent in any peak-indicating deviee, but is not neerssarily a disadvantage. The fart that the readings are not the same when the voltmeter eonncetions are reversed is an indication that the wave form under measurement is unsymmetrical. In some measurements, as in audio amplifiers, a peak measurement is more useful than an r.m.s. or average-value measurement berause amplifier capabilities are based on the peak amplitudes that must be handled.

The scate calibration usually is based on the r.m.s. value of a sine wave, R_{8} being set so that the same seale can be used cither for ate or d.e. The r.m.s. reading can casily be converted to a peak reading by multiplying by 1.41 .

CALIBRATION

When extending the range of a d.c. instrument calibration usually is nogessary, although resistors for voltmeter multipliers often can be purrhased to close-rnough tolerances so that the new range will be acouratoly known. However, in calibrating an instrument surh as a v.t.v.m. a known voltage must be availahle to provide a starting point. Fresh dry eells have an open-circuit terminal voltage of approximately 1.6 volts, and one or more of them may be commeted in series to provide several calibration points on the low range. Gas regulator tubes in a power supply, such as the OC3, ODO3, etc.. also provide a stable source of voltage whose value is known within a few per cont. Once a few such points are determined the voltmeter ranges may be extended readily by adding multipliers or a voltage divider as appropriate.

Shunts for a milliammeter maty be adjusted by first using the meter alone in series with a source of voltage and a resistor selected to limit the current to full seale. For exampte, a $0-1$ milliammeter may be comerted in sorles with a dry cell and a 200 -rhm variable resistor, the latter being adjusted to allow exactly 1 milliampere to flow. Then the shunt is added arross the moter and its resistance adjusted to reduee the meter reading by exactly the seale fartor. n. If n is 5 , the shunt would he adjusted to make the moter read 0.2 milliampere, so the full-scate current will be 5 ma. Csing the new scale, the second shunt is added to give the nost range, the same procedure being followed. This can be earried on for several ranges, but it is advisable to chork the meter on the highest range against a separate meter used as a standard, since the errors in this process tend to be cumulative.

Measurement of Frequency and Wave Length

ABSORPTION FREQUENCY METERS

The simplest possible frequencr-measuring device is a resomant circuit, tunable over the desired frequency range and having its tuning dial calibrated in terms of frequency. It operates by extracting as small amount of energy from the oscillating cirenit to be mestured. the frequeney being determined by the tuning setting at which the energy absorption is maximum (Fig. 21-9).
. Ithough such an instrument is not cipable of

Fig. 21.9 - Thsorption frequency meter and a typical application. The meter consists simply of a calibrated resonant circuit l.C. When conpled io an amplifier or oseillator the tube plate current will rise when the frequency meter is tuned to resonance. A flashlight lamp may be connected in series at X to give a visual indieation, but it decreases the selectivity of the instrument and makes it necessary to use rather close coupling to the circuit leing measured.
very high accuracy, because the Q of the tuned circuit ramot be high enough to avoid uncertainty in the exact setting and beratuse any two coupled circuits interact to some extent and change eath others' tuning, the absorption wave meter or frequency meter is nevortheless a highly useful instrument. It is rompart, inexpensive, and requires no power supply. There is no ambiguity in its indieations, as is frequently the case with the heterodyne-type instruments deseribed later.
When an absorption meter is used for checking a transmitter, the plate current of the tube connected to the circuit being checked can provide the necessary resonance indication. When the frequency meter is loosely coupled to the tank circuit the plate current will give a slight upward Hicker as the meter is tuned through resonance. The accuracy is greatest when the loosest possible coupling is used.

A receiver oscillator may be checked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary ew. reception. When the frequency meter is coupled to the oscillator eoil and tuned through resonance the heat note will change. Again, the coupling should be mate loose enough so that a justpereeptible change in beat note is observed.

In approximate cadibration for the wave meter, aderfuate tor most purposes, may be obtained by comparison with a calibrated receiver. The usual receiver dial calibration is
sufficiently aceurate. A simple oseillator circuit covering the sume range ats the frequency meter will he useful in calibration. Set the reeriver to a given frequency, tune the oscillator to zero beat at the same frequency, and adjust the frequency meter to resonance with the osrillator as described above. This gives one cabibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequency v s. dial settings on the frequency meter.

INDICATING WAVE METERS

The plain absorption meter requires fairly close coupling to the oscillating circuit in order to affect the plate current of a tube sufficiently to give a visual indication. However, by adding a rectifier and d.c. microammeter or milliammeter, the sensitivity of the instrument can be incrossed to the point where very loose coupling will suffice for a good reading. A typical circuit for this purpose is given in Fig. 21-10, and Figs. 21-11 and 21-12 show how such in instrument can be constructed.

The rectifier, a crystal diode, is coupled to the tuned enveuit $L_{1} C_{1}$ through a coupling coil, L_{2}, having a relatively small number of turns. The step-down transformer action from L_{1} to L_{2} provides for efficient energy transfer from the highimpedance tuned circuit to the low-impedance rectifier eircut. The number of turns on L_{2} can be adjusted for maximum reading on the d.c.

Fig. 21-10- Circuit diagram of indicating wave meter.
C_{1} - $50-\mu \mu \mathrm{f}$. variable (Johnson 50R12).
$\mathrm{C}_{2}-0.002-\mu \mathrm{f}$. disk ceramic.
CH_{1} - (ieneral purpose germanium diode (1 N 34 , ete.) J_{1} - Phono jach.
\mathbf{J}_{2} - Chosed-eircuit phone jack.
M_{1} - 1.c. microammeter or 0.1 milliammeter.

Frea. Range	Coil Data		Coil Length, In.
	Turns, L_{1}	Turns, L2	
3-6 Me.	60	5	close-wound
6-12 Mc.	29	5	$11 / 4$
12-25 Mc.	13	2	1
23-50 Me.	51/4	1	1/2
50-100.110.	$11 / 2$	1/2	1/4
9)-2.25 Me.	See luelow		

All except $91-22.3-3 \mathrm{M}$. coil wound with Vo. 24 enam. wire onl 1 -inch diameter 4 -prong forms (Nillen 450(1). L_{2} interwound at loottom of L_{1}, using smaller wire where necessary. The $90-225 . \mathrm{Mc}$ e enil convists of a hairpin losep of K_{o}. 11 tinned wire just plearing the botton of the coil form, which is eut to $5 / 8$-ineh length. L_{2} is a similar hairpin of No. 16 wire bent over so it almost touches L_{1}.

Fig. 21.1]-"'he indiating wave meler, phas-in roils, and piek-ap cables. 'The meter in buile in a lakelite mular case mosmring $6 \frac{1}{4} \times 38 / 4 \times 2$ inehere. The 3 -imeh dial is cout from at piece of aluminnom and has a paprer hambcalibrated scate cemented on. Ilairline indicators are edear mastic mounted on small metal pillars. I 2 -imoh dec instrument is nised. Piek-up lonepsare
 soblered to the puda of the eablem "line lomger adalde (5 feret) is masthil to 30 De:s the shorter (I3 inches) can he used for the fill fredurncy rampe. Thoth are RC.-58/I .
milliammeter; when doing this, use a fixed value of coupling betwern L_{1} and the sourece of encrge. The proper mumber of turns for this purpose will depend on the sensitivity of $.1 /_{1}$. The coil dimensions given in lig. 1 are for a 0 - 000 microammoter but will also be satisfactory for a 0 - 1 milliammoter. Lass than optimum roupling is preferable, in most rases, since herivy lowding lowers the Q of the tuned cireuit $L_{1} f_{1}$ and makes it less selecetive. The roupling is redured by redueing the number of turns on I_{2}.

The wave metor can be used with a piek-un) loop and roaxial line comerted to J_{1}. Binergs pieked up hy the loop is ferd through the rathle to L_{2} and thener rompled to $L_{1} G_{1}$. This is : convenient methert of eotpling the wave meter to arenits where it would be physirally differult to sercure inductive compling to I_{-1}. The piek-up cable should not be self-resonant, as at trans-mission-line seretion, at any frequeney within the range in which it is to be used, so two (eable lengths are provided. The longer one is useful up to 30 Me , and the shortor at all frequencies up to the maximum usoful fredueney of the wawe meter (225 Mr. .)
By plugging a heanse into the ontput juek (phones having 2000 ohms or greater resistance
should be used for greate sodsitivity) the wave moter ean he used as a monitor for modulated transmiswions.

The bakeliter rase is a desimalle foature simere the instrmment can be brought dose to cirenits being cheoked without the danger of shori"ireniting any of their wiring. This could oreme with a motal-rased unit.

In addition to the uses mentioned earlier, a meter of this type maty be used for final adjustmont of neut atization in r.f. amplifiers. For this purpose the pirk-up loop may be loosely compled to the plate tank eooil. In this ease L_{1} may be removed from its socket and the moter used as ath untuned reetifier. This redueres the sensitivity. and insures that the r.t. piekup is only from the lank coil to which the loop is closely coupled.

LECHER WIRES

At very-high and ultrohigh fremueneies it is prosible to determine frequener by actually measuring the length of the wave gemeated. The measurement is made by observing standing wates on a twowire parablel tranmission line or Lecher wires. Such a line shows pronounced resomance effects, and it is pos-

 meter. Only the milliammotor and pluma jach ara mountied on the remosalila pamel. The tuning rabaritor is menntod writalls on an alumimum bracket fiatorival to the bettom of the cast: 'l'he crstal diode is monntidi lurlwerol a coil-senchat promes atme at lie pocint. The phomo jach for the pick-tep cablew is at the lower right.

Fig. 2I-13-One end ufa typical leeher wire system. "The" wire is \o. Iobaresolid-oropmerantema wire (hard-llawn). The turnlowkles are hald in place by a $3_{16} \times 2$-inch bolt through the anctor bloch. "the other end of the line, which is contereted to the pieh-up loos, should be insulated.
sible to determine quite accurately the current loops (points of maximum current). The physical distance betwern two conserutive current loops is equal to onc-half wave length. Thus the wave length ean be read directly in meters (39.37 inches $=1$ meter: 0.30137 inch $=1 \mathrm{~cm}$.), or in centimeters for the very show wave lengths.

The Lecher-wire line should be at least a wave length long - that is, 7 feret or more on 141 Mc. - and should be entirely air-insulated exept where it is supported at the gods. It may be made of copper tuling of of wires stretched tightly: The spacing betwern wires should not exceed athout? per cent of the shortest wave lougth to be measured. The positions of the current loops atre found by means of a "shorting bar," which is simply a metal strip or knife edge which can be slid along the line to vary its effective length.

Making Measurements

For moasuring the frequency of a transmitter, a convenient and fairly sensitive indirator can be made ly soldering the ends of a one-tum loop of wire, of about the same diameter as the transmitter tank coil, to a low-rurrent flashlight bulb. The loop should he conpled to the tank coil to give : moderately bright glow. A coupling loop should be eomerted to the ends of the Lecher wires and brought near the tank eoil, as shown in Pig. 21-14. Then the shorting bat should be slid along the wires outwatd from the tramsmitter until the lamp, gives a sharp dip in brightness. This point should be marked and the shorting bar moved out until a second dip is obtaned. The distance betwern the two points will be equal to half the watve length. If the measurement is made in inches, the frequence will be

$$
F_{\mathrm{Mc}}=\frac{590 .}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc}}=\frac{150}{\text { lengih (meters) }}
$$

In checking a superregenerative receiver, the Lecher wires maty be similaty coupled to the receiver coil. In this case the resonathe indiation may be obtaned by setting the receiver just to the point where the hiss is olbtatined, then the the har is slid atong the wires
a spot will be foum where the receiver goes out of oscillation. The distance betwern two such spots is equal to a half wave length.

The shorting har must be kept at right angles to the two wires. A sharp edge on the bar is

Fis. 21-1.4-Coupling a Lecher wire systent to a transmitter tank coil. I'ypical standing-wave distribution is -hown by the dashed lint. Ithe distance X between the positions of the shorting liar at the current loops equals one-half wave length.
desirable since it not only helps make good contart hut also delinitely locates the point of contast.

Lecourate readings result when the loosest possible coupling is used between the line and the tank eoil. Careful measurement of the exact distane between two current loops also is essential.

- HETERODYNE METHODS

Heterodyne methods of frequency measurement make use of a stable oscillator generating either a known frequency or one that is variable over a known range. Mcasurement consists in comparing the unknown frequency with the known frequency of the oseilator, using an ordinary receiver for detecting both. This method is more arcurate than others, beatuse frequeney differences of less thatn a evele can be observed by aral (beat-note) methods, and the oseillator can be cablibated to practically any degree of precision bey comparison with standard frequencirs transmitted from WWV and WWVII.
('are must be used in heterodye frequency measurement because in most cases harmonics are used and the measured frequency can be in error by a large fator if the wrong harmonic is piaked. . Nso, a superheterodyne receiver will give many spurious responses in the presence of a strong signal and harmonies, so these must be rerognized and ignored in making measurements. In general, heterodyme mothods are most useful in meaturing frequences to a high degree of accurary after the frequency is known approxi-
mately from other methods. The absorption wave meter is useful for making the first approximation and thus eliminating the possible gross errors.

Frequency Measurement with the Receiver

An ordinary receiver has the essential elements nereded for frequener measurement. Its dial readings must be calibrated in terms of frequency, of course. before measurements can be made. Mamufatured receivers are generally. so calibrated: the arraracy of the catibration will vary with the receiver motel, but if the receiver is well made and has good inheront stability, a bandspread dial cablbration rat he relied upon to within perhaps 0.2 per cent. For most aredurate measurement, maximum response in the recejver should be determined by means of a carriep-operated tuning indieator (such as an s-meter), the receiver beat oscillator being turned off. If the receiver has a erystal filter, it should be set in at farly "sharp", position to inerease the atecuracy.

When checking the frequency of your own transmitter, the receiving antennat should be disconnected so the signall will not overload or "bloek" the recoiver. Also, the r.f. gain should be reduced as a further precaution against overloading. If the receiver still books without an antennat the frequency mity be checked by turning off the power amplifier and tuning in the oscillator alone. It is difficult to avoid bocking under almost any conditions with a regenerative receiver. and so this type is not very suitable for checking the frequency of one's own transmitter.

- THE HETERODYNE FREQUENCY METER

The heterodyne frequency meter is an ascilbator with a precisc frequency calibration. The oscillator must be so designed and eonstructed that it can be accurately calibrated and will retain its calibration over long periods of time.
The oscillator used in the frequency meter must be very stable. Merhanical considerations are most important in its eonstruction. No matter how good the instrument maty be electrically, its ascouracy cannot be depended upon if the merchanical construction is Himss. Frequeney stability can be improved by avoiding the use of phenolic and thermoplastic insulating materials (bakelite, polystyrene, ete.) in the oscillator circuit, employing only high-grade ceramies instead. Plug-in coils ordinarily are not areceptable: instead, a solidly-built and firmly-mounted tuned circuit should the permanently installed. The oseillator panel and chassis should be as rigid as possible.

For amateur purpenses the most useful type of meter is one covering the amateur hands only. The v.f.o.s deseribed it the chapter on transmitters are typical of the circuits and eonstruction since they are designed with the same considerations in mind - i.e., to tre highly stable
both clectrically and mochanically. Hence a good v.f.o., if accurately calibrated in frequenco, is also a good heterodyne frequency meter.

Calibration must be done by comparing the oscillator frecpueney at various points in its range. with signals of known frequency. The best method is to calibrate from a secondary fregueney standard, deseribed in the next seretion, at intervals of, say, 100 ke . and fill in the calibration curve by interpolation. The oscillator usually works over the approximate range $1750-2000 \mathrm{kc}$., harmonies locing usod for the higher amateur bands. If the rabibration is done on the highest range - 28-32 Mr . - at intrervals of 100 ke . it is equivalent to having calibration points at intervals of $100 / 14$ $=6.25 \mathrm{ke}$. on the fundamental-frerguency range.

THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is it highlystable oscillator generating a fixed frequeney, usually 100 kc . It is nearly always erystal-controlled, and inexpensive loor-ke. crystals are availathle for the purpose. Nince the harmonics are multiples of 100 kr . throughout the spertrum, some of them can be eomprered directly with the standard frequencies transmitied by WWV.

Hi̊. 21-15- Cirruait for arystal-controlled frequency standard. Tubes sucls as the 6iki, 6sili7, GAL6, ete., are suritable.
(is - $5(1-\mu \mu$ f, varialile.
Ci2- $150-\mu \mu \mathrm{f}$, mica.
(.3-0.002:- -10 f. mica.
(4 - $0.01 \cdot \mu$ f. paper.
C
$R_{1}-0.47$ megolm, $1 / 2$ watt.
$R_{2}-1000$ obmis
R_{2} - 1000 ohms, $1 / 2$ watt.
R_{3} - 10.1 megohm, $1 / 2$ watt.
R_{4} - 0.15 megohn, $1 / 2$ watt.
The edges of most amateur hands also are exact multiples of 100 kc ., so it beromes possible to determine the band edges very aceurately. This is an important consideration in amateur frequency measurement, since the only regulatory requirement is that an amateur tranmission be inside the assigned hand, not on at sperifie frequency.

Intervals of 100 ke , are sometimes too elose for aceurato identification of a given harmoniar. so susedial crystals that operate at both 1000 and $10 \mathrm{k}) \mathrm{kc}$. are availahle. Intervals of 1000 ke . are sufliciontly far apart to avoid confusion. since the average reereiver calibration is good enough to provide positive identification. Once the 1000-ke. harmonic's are spotted, it is easy to

Fig. 21-16 - A compact frequency standard and harmonic amplifier for generating either 100 - or 1000 -ke. intervals throughout the spectrum to 1.01 Mc . It has a aelf-rontained power suphly uning the transformer shown in the upper part of the photo. The output control is at the upper left, and the rotars switch in the foreground is the harmonic-amplifier hand snited. The dual eryntal in letueen the band suiteh and output contral. The togkle switch at the lower left corner of

count off the low-ke. intervals from the known 10(0)-ke. points.

Manufacturers of lo0-ke. ervistals usually supply fircuit information for their particular crystals. The circuit given in Fig. 21-15 is representative, and will generate usable har-
monirs up to 30 Mc . or so. The variable capaeitor C_{1}, provides a means for adjusting the frequency to exactly 100 ke . Harmonic output is taken from the circuit through a small eapaeitor, C_{5}. There are no particular constructional points to be observed in buidding such a unit. Power for the tube heater and plate may be taken from the supply in the receiver with which the unit is to be used. The plate voltage is not critional, but it is recommended that it be taken from a $1013-150$ regulator if the receiver is equipped with one.

Sufficient signal strength usually will be secured if a wire is run between the output terminal connected to C_{5} and the antenna post on the reeeiver. At the lower frequenoies a metallic connertion may not be necessary.

Figs. 21-16 through 21-18 show a compart standard, eomplete with power supply, that will give usable harmonics from both $I(x)$ and 1000 ke. up through the 144 -Mc. band. It uses a dual crystal, either fundamental frequency being selected by a switch, s_{1}, and the output of the oscillator is fed to a erystal-diode reetifier to increase the amplitude of the high-order harmonics. These harmonies are then amplified in the second tube, a stage having broadly-tuned plate riveuits contering in the higher-frequency amateur hands, switched in or out as required. A gain control, R_{7}, is provided in the amplifier cirruit for regulating the output amplitude. The whole unit is constructed in a $5 \times 3 \times 4$ box of the typer having its own chassis, the small size being used so the unit ean he squerad into limited space on the oprating table. It can be put on a larger chassis and box if desired. sine the construction is not eritical. Suflicient signal strength in the reeeiver should be secured by eonnecting a short
fig. 21.17 - Cirruit diagram of the frequeney standard and har. monic amplifier.
$C_{1}-25-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAP'C2.).
$\mathrm{C}_{2}-3{ }_{2} \mu \mathrm{f}$. $(21 / 2$ inches of 7,ochm 'Twin-l fad).
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.1-\mu \mathrm{f}$. paper, 400 volts.
C_{5} - $2 \mathbf{0} 0$ - $\mu \mathrm{f}$. ceramic.
$\mathrm{C}_{6}, \mathrm{C}_{\mathrm{i}}, \mathrm{C}_{9}-0.001$ - f . Jisk ceramir.
Cis_{8} - $\mathbf{1 0 (0) - \mu \mu \mathrm { S } \text { . ceramic. }}$
Cio. CH-20. 26 . electrolytic, 2.51 volte.
$\mathrm{R}_{1}-1.7$ mequhm, $1 / 2$ watt.
R_{2} - $22,(\mathrm{KNO}$ ohmen, $1 / 2$ watt.
$\mathrm{K}_{3}, \mathrm{R}_{4}, \mathrm{H}_{5}$ - 0.47 megohm, $1 / 2$ watt.
$R_{8}-470$ ohnins, $1 / 2$ watt.

$\mathrm{R}_{8}-12,000$ olms, 1 watt.
$R_{9}-1000$ ohns, I watt.
I_{1} - I-mh. r.f. choke (National 18.5().

I .2 - 4- $\mu \mathrm{h}$ r.f. choke (National if-60).
I. 3 - 2- $\boldsymbol{\mu}$ li r.f. cluke (National li-(6)).
$1.4-0.5 \mu \mathrm{l}$. (1 - $\mu \mathrm{h}$. r.f. chokr, National ll-33, with 10 turns removed).
Ls - 3 turns No. 16, $1 / 4$-inch diam., $3 / 8$ inch long.
$\mathrm{CH}-\mathbf{5}-\mathrm{ma}$. seleninum rectifier.
J_{1} - 'Tip jach.
$\mathbf{R F C} 1-0.5-m h$. r.f. choke (National 18.50).

$\mathrm{RFC}_{2}-5$-mh. r.f. choke (National R-100s).
S_{1} - S.p.s.s.t. tomkle witel.
S_{2} - S.p, s, t. tugkle switeh mounted on R_{7}
S_{3} - 1 -pole (oposition selector swith: shorting type (Centralab 2500).
T_{1} - Power transformer, 1.50 volts, 2.3 ma.: 6.3 volts, 0.5 amp . (Merit P-3046).

XTAL - 100 -1000-kc. dual frequency crystal (Valpey DFS).

StANDARD FREQUENCIES AND TIME SIGNALS

Standard radio and adudio freguencios are broadeast continuonsly from WIIV, operated by the Central Radio Propagation Laborth tory, National Bureau of standards, Wiahhington, D. (., on the following radio frequencies: $2.5,5,10,15,20$ and 25 megaryoles per second. Nimilar broadeasts are given from WWVH, Pumene, T. H., on 5, 10 and 15 Mr. The modulations consist of 1-e.p.s. pulses and +40 or (iof e.p.s. tone.

Tramsmissions are as shown above, with the following exceptions: The IIIV' transmissions are interrupted for a 4 -minute period heginning at approximately 15 minutes after the hour; the W'WVII trammissions are interrupted for 4 minutes following geth hour and half hour, and for periods of 34 minutes legiming at 1900$)$ [niversal Time.

Time Signals

The $1-\mathrm{e} . \mathrm{p}$.s. modulation is a \bar{b}-milliserond pulse at intervals of precisely one socond, athd is heard as a tick. The pulse tramsmitted by WIVT consists of 5 cyeles of 1000 arele tonc: that transmitted by WWVII eonsists of of arales of 120 -reride tone. ()n the WWV transmissions, the $H\left(\begin{array}{l}\text { - or borer ber tome is }\end{array}\right.$ banked out begiming 10 milliseronds before and ending 25 milliseconds attor the pulse. On the WIVIII transmissions, the pulse is superimposed on the tone. The pulse on the 5ath second is omitted, and for additional identification the zero-serond pulse is followed by another 100 milliseconds later.

Accuracy

Transmitted frequenmes areacenrate within 1 part in 100 million

Propagation Notices

During the amouncement intervals at $191 / 2$ and $49 \frac{1}{2}$ minutes after the hour, propagation notices applying to transmission paths over the north Atlantic are transmitted from WWV on 2.5, $5,10,15,20$, and 25 Mr . Similar fore cousts for the North Parific are tramsmited from IIWVH during the amouncoment intervals at ! and 30 minutes after the hour.

These notices, in telegraphic combe, consist of the letter \mathcal{N}, W, or U followed by a number. The lotter designations apply to propagation conditions as of the time of the broadeast, and have the following signiticance:

$$
\begin{aligned}
& \text { W - Ionowh herip disturbance in progress or ex- } \\
& \text { paremed. } \\
& \text { U - Unstable conditions, but communication } \\
& \text { mosilld with high power. } \\
& \mathrm{N}-\mathrm{Now} \text { warninц. }
\end{aligned}
$$

The mumber designations apply to experterl propagation conditions during the subsergent 12 hours and lave the following signilicatore:

Dillil	Fiomectisf
1	Inumssilda
2	Viors Proor
3	Puor
1	Pair to lmor
5	F゙air
6	Frair to (ional
7	Gionl
8	Yery (ieond
9	Excrllent

piece of wire to the output terminal, but on very high frequencies it may be neressary to connect the wire to one antomna post on the receiver.

Adjusting to Frequency

In either Fig. 21-1.) or 21-17 the frequency can be adjusted exactly to 100 ke , be making use of the IIIVV transmissions tabulated in this chap-
ter. Sclert the WIWV fredurnery that gives a good signal at your location at the time of day most convenient. Tune it in with the receiver b, f.o. off and wat for the period during which the modulation is absent. Then switch on the 100 -kc. oscillator and adjust its frequencer, by mans of Ci, until its hamonic is in zero beat with IIWV. The exart setting is easily found by ob-

F゙ig. 21.18 - Mullow-ehassis view of the frequen'g standard. 'Tle' I \31 harmonie generater is at the upper left. 'The variahle rape aritor at the boltom is for atljustment of the oseillator frepmeney to exatily 100 ke . It the upher rikht, mounted on the rear lip of the chassis, is the selenium rectiliter for the powiry shiply. 'The filter raparitor is just below it. small resistors and raparitors are eroupal aroumd the tube sockets.

serving the slow pulsation in batkground noise as the harmonic comes close to zero beat, and adjusting to where the pulsation disappears or oceurs at a very slow rate. The pulsations can be observed even more meadily bey switching on the reeriver's b.fo., after approximate zero beat has been secured, and observing the rise and fatl in intensity (not frequency) of the beat tone. For hest results the WWI signal and the signal from the 100-ke, oseillator should be about the same strength. It is advisable not to try to set the l(o)-ke, wscillator during the periods when the WWV signal is tone-modulaterd, sinere it is difficult to tell whether the harmonic is being adjusted to zero beat with the carrier or with one of the side bathds.

Frequency Checking

The secondary standard provides signals of known frequency that ean be tuned in on the station receriver. Dotermination of the fresueney of a transmitter is then carried out he the method deseribed abrlier under "lirequeney Weasurement with the Recreiver," using these moints as positive identification of band edges. By using the known 100-kr, points the recoiver calibration can be corrected so that. by interpolation, the frequeney of a signal lying between the calibration points can be determined with good aceuracy.

More Precise Methods

The methods described in this section are quite adequate for the primary purpose of amateur frequency medsurements - that is, determining whether or not a transmitter is operating inside the limits of an amateur hand, and the approximate frequeney inside the band. For measurement of an unknown frequency to a high degree of acruracy more advanced mothods can be used. Areurate signals at closer intervals ean be obtained by using a multivibrator in conjunction with the $100-k e$, standard, and thus obtaining signals at intervals of, say, 10 ke , or some other integral divisor of 100 . Temperature control is frequently used on the 100 -ke oscillator to give a high order of stability (Collier, "What Price Precision"", (SST, september and (otober, 1952). . Mso. the secondary standard ran be used in conjunction with a variable-frequency interpolation oscillator to fill in the standard intervals (Woodward, ${ }^{\circ} .1$ Linear Beat-Frequeney Oscillator for Frequency Measuremont," (SS'T, May, 1951). An interpolation oscillator and standard can be combined in one instrument, one application of this type having been described in QST for May, 1949 (Grammer, "The Additive Frequency Meter").

Test Oscillators

THE GRID-DIP METER

The grid-dip meter is a simple vatcuum-tube oscillator to which a microammeter or low-range milliammeter has been added to read the oseillator grid current, A 0-1 milliammeter is sensitive enough in most (atses. The grid-dip meter is so called herause if the oscillator is coupled to a tuned "ireuit the grid current will show at decrease or "dip" when the oscillator is tuned through resonance with the unknown cireuit. 'The reason for this is that the external circuit will
absorb energy from the oseillator when both are tuned to the same frequency; the loss of energy from the oscillator circuit causes the feedback to decrease and this in turn is accompanied by a decrease in grid current. The dip in grid current is quite sharp when the cirenit to which the oseillator is coupled has reasonably high Q.

The grid-dip meter is most useful when it covers a wide frequency range and is compatly constructed so that it can be coupled to circuits in hard-to-reach places such as in a transmitter or receiver chassis. It can thus be used to check
tuning ranges and to find unwanted resonances of the type described in the chapter on TVI. Since it is its own source of r.f. energy it does not, like the absorption wave meter, require the circuit being cheeked to be energized. In addition to resonance checks, the grid-dip meter also can be used as a signal source for receiver alignment and, as described later in this ehapter, is useful in measurement of inductance and capaeitance in the range of values used in r.f. circuits.

Figs. 21-19 to 21-21, inclusive, show a grid-dip meter of quite compact const ruction using pluy-in

Fig. 21.19 - A compart and light-weight grid-dip meter for one-hand operation. It is built in a $15 / 8 \times$ $21 / \times \times 4$-inch "Channel-loch" box and uses six plug-in coils to cover the range 1600 ke , to 160 Mc , The power supply and milliammeter for reading grid eurrent are in a separate unit.
eoils to cover a continuous frequency range of 1600 ke . to 160 Mr ., and thus useful in all amateur hands up through 144 Ne. as well as for rhecking for resonances in the low group of v.h.f. TV ehannels, the nost important from the standpoint of harmonic 'TVI. It is small and light, and can be hele and tuned with one hand sinere the dial extends slightly over the edges of the box so it can be operated with the thumb. The milliammeter is not contained in the oseillator itself but can be mounted separately in any convernicht spot for viewing. Fig. 21-22 shows the milliammeter mounted in a standard moter case which also contains the power supply for the oscillator. The cable connecting the two units can be any desired length.

The oscillator circuit, shown in Fig, 2I-20, is a grounded-plate llartley, with the eathode tap adjusted for maximum sensitivity - that is, for greatest change in grid current when tuning through resonaner with a coupled circuitrather than for maximum grid current. For satisfactory operation at the highest frequeney, the leads in the tuned circuit should be kept as short as possible, and the tuming capacitor, C_{1}, is mounted so that its rotor and stator terminals are praetically touching the corresponding pins on the eoil socket. The tube socket is mounted on a bracket made from aluminum and plaeed at an angle so that the tube can be removed. The eathode connection between the tube socket and
the coil socket is madic of flat copper strip to reduce its inductance as much as possible.

Coils for the two low-frequeney ranges are wound on the outsides of the forms in normal fashion, but with the exception of the highest range the remaining coils are lengths of $13 \& W$ Miniductor mounted inside the forms. I hairpinshaped eoil is used for the highest range. As the coil forms are polystyrene, which softens at relatively low temperatures, eare must be used in soldering to the pins. It is helpful to drill a metal plate, a few inches square and $\frac{1}{18}$ inch or so thick, so the coil pins will fit sungly; then if the plate is pressed firmly against the bottom of the form during soldering the heat will be conducted away from the polystyrene rapidly enough to prevent softening, if the soldering operation is not prolonged.

I tramsparent dial (out from a pioco of $1 / 8$-inch Plexighas (ohtaimable at hobly stores) is used so the calibration cat be plated on top of the box, where there is more room for lettering, A hairline indicator is seratched on the dial, which is also provided with a standard small knob, fastened to it by small mathine serews threaded in from the bottom.

The power supply shown in Fig. 21-22 uses a miniature power transformer with a selenium rectifier and a simple filter to give approximately 120 volts for the oscillator plate. The potentiometer shown in Fig. 21-2:3 is for adjustment of plate voltage. In any grid-dip metor the gride current will be different in different parts of the frequeney range, with fixed plate voltage, so it is ordinarily necessary to choose a plate voltage that will keep the reading on seale in the part of

Fig. 21-20- Cirruit diagram of the grid-dip meter.
 $\left.\mathrm{C}_{2}-100\right)_{\mu \mu} \mathrm{f}$, reratmic:

Cis- O.OI- f . dish ceratnic.
$\mathrm{R}_{1}-22,0000$ ohms, $1 / 2$ watt.

Coril Datat, L_{1}					
Freq, Range	Turns	Hire	Dismeter	Turnx/inch	Tap*
$1.59-3.5 \mathrm{Mc}$.	139	32 enam.	34 in .	Close-wound	32
3.45-7.8 3c.	40	32 enam.	$3 / 4 \mathrm{in}$.	Close-wound	12
7.55-17.5 Mr.	40	24 tinned	$31 / 2 \mathrm{in} . \ddagger$	32	14
$17.2-40 \mathrm{Mc}$.	15	20 tinned	1/2in. \ddagger	16	5
$37-85 \mathrm{Mc}$.	4	20 tinned	H/2in. \ddagger	18	11/3
$78-160 \mathrm{Mc}$.	Hairpin of No. 14 wire, $3 / 8 \mathrm{in}$. apacing, 2 inches long including coil form pins. Tapped $1 / 6 \mathrm{in}$. from ground end.				
*Turns from ground end.					
$\ddagger \mathrm{B}$, \& W. Miniductor or equivalent.					
Coil forms are Amphenol $24-5 \mathrm{H}$, 3 - -in , diameter					

Fig. 21.21-The grid. dip oscillator is buil on the I shhaped portion of the bens. © 3, C. 4 and 6 de are grounded to a soldering lug at the leflof the sencket. W ires in the power and meter eable terminate at a l-point terminal strip at the laft.

the range where the grid current is highost. This usually results in rather low grid curvent at some other part of the range. With variable plate voltage this compromise is unneressary.

Fig. 21.22- Power supply and milliammeter for the arid-dip meter are contained in a meter canes The emontral on thp is for varying the plate voltage to mantain the gride eurrent in the proper resion.

The inst rument maty be calibrated by listening to its output with a calihrated reeceiver. The calihration should be as areurate as possible, although "freguency-meter aceuracy" is not required in the applieations for which a gridedip meter is useful.
The gridedip meter may be used as an indieat-ing-tape ahsorption wave moter by shutting off the plate voltage and using the grid and rathote of the tule as a diode. Howewe, this tepe of cirruit is not as sensitive as the ervistal-deteretor tapushown carlier in this chapter, bereause of the highresistanee grid heak in series with the meter.

In using the grid-dip moter for therking the resonant frequency of a circuit the conpling

Fig. 21-23 - Circuit diagram of the power supply for the grid-dip meter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{f}$. electrolytic, 150 volts.
$R_{1}-1000$ ohms, $1 / 2$ watt.
R_{2} - (I.1-mequhm potentiometer.
'J1 - Power transformer, 6.3 volts and 125 to 150 volts. (Nerit P-3016 or equivalent.)
CR - 20-ma, selenium rectifier.
MA-0-1 d.e. milfiammeter.
should be kept to the point where the dip in grid current is just pereceptible. This reduces interartion betwern the two cirenits to a minimum and gives the highest accuracy. With too-close coupling the oscillator frequencr maty be "pulled" by the circuit being checked, in which case different readings will be ohtaned when resonance is approached from the high side as compared with approaching from the low side.

AUDIO-FREQUENCY OSCILLATORS

A useful atcessory for testing audio-frequency amplifiers and modulators is an audio-frequency signal generator or oscillator. Checks for distortion, gain, and the ordinary troubles that oreur in such amplifiers do not require elaborate equipmont ; the primeipal requirement is a souree of one or more andio tones having a good sine Wave form, at at voltage level adjustable from a few volts down to a few millivolts so the oscillator can tre substituted for the type of microphone to be used.

An casily-constructed oscillator of this type is shown in ligg. 21-24 to 21-26, inclusive. Three andio frequencies are avabiather approximately 200 , (90) and 2000 cerles. These three frequencies are sufficient for testing the frequency response of an amplifier over the range needed for voice rommunigation.

The cirenit usas a double triode as a cathodecoupled oscillator, the serond section of the tube providing the feredback necessary for oscillation through the eommon rathode comnection. The 3-watt lamp in this ferd-hack loop acts ats a variable resistance to control the oscillation amplitude and thus maintain the operating conditions at the point where the best wave form is generated. This operating point is set by the "oscillation control," R_{1}. The frequeney is determined by the resistance and capacitance in the coupling circuit between the first-section plate and second-section grid. Various values of capacitance can be selected by moans of S_{1} to set the frequency. The actual frequencies measured in the unit shown in the photographs are given on the diagram. They may be either increased or decreased by using smaller or larger capacitances, respectively:

Fig, 21-2t - Bottom siew of the andio amitlater. show. ing the power-sidply compritenta and amplitude-ron. trol lamp, I_{1}. The lanp is monnted lis wires soldered to its base. The seleniunt reetifier is supported by a iosprint strip. Placenent al reaistors. which are hidhen hy the other components, is bot eritical. Ilife mit fits in a $1 \times$ i $\times 0$ imbh box.

Ontput is taken from the rathode of the second triode section. bither the full output, I. 5 volts. or approximately one-tenth of it ceth be selected by s.e. On either of these two ratuges smooth control of output is provided be Re.

The selfecontanod power supply uses at sumbll transformer athd at selonimm rectilier to develop atpproximately loo volts. Ilum is roduced to a negligible level by the filter consisting of the 8-henry choke and 20 - μ f. capmeritors.

An oscilloseope is useful for preliminary

Fig. 21.26 - Inside siow of the audion orillator. The a.c. witch. $x_{i s}$ is tumuled on the output control at the left on the pancel. 'the coramin wapacitors in the fropurnesdetermining circosits ate monomed on the rotary switch, sin at the risht, siz is athose the euber, and T_{1} is on the
 aduminum $31 / 2$ inches dever with $11 / 2$ ineh lips. R_{2} is mounted on the near lip at the lirfo.
chereking of the uscillator since it will show wave form. R_{1} should be sot at the point that will Pusure as illation on thl three frequeneres when switching from one to the other.

Fig. 2/-25-Circuit diagram of the andio owillator. Gaparitances helow 0.001μ. are in $\mu \mu$. Fixed resistors are ${ }^{1} 2$ watt unlese otherwise indisatod.

CR1-20-ma, selenium rectilier.

 $\mathrm{R}_{1}, \mathrm{R}_{2}$ - Vohme controls. $\mathrm{S}_{1}-2$-pole 5 -position (3 used) rotary switch.

S_{1} - Pbow. Lomgle (momnted on R_{1}).
T_{1} - Power transformer. 150 volta, 2.5 ma.; 6.3 volts, $0 . \overline{5}$ amp. (Merit 1-3016).

R.F. Measurements

R.F. CURRENT

R.f. current-measuring devices use a thermocouple in conjunction with an ordinary d.c. instrument. The thermocouple is made of two dissimilar metals which, when heated, generate a small d.c. voltage. The thermocouple is heated by a resistance wire through which the r.f. current flows, and since the d.c. voltage developed is proportional to the heating, which in turn is proportional to the power used by the heating element, the deflections of the d.e. instrument are proportional to power rather than to current. This causes the calibrated seake to be compressed at the low-current end and spread out at the highcurrent end. The useful range of such an instrument is about 3 or 4 to 1 ; that is, an r.f. ammeter having a full-scale reading of 1 ampere can be read with satisfactory accurary down to about 0.3 ampere one having a full sale of 5 amperes can be read down to about 1.5 amperes, and so on. No single instrument can be made to handle a wile range of currents. Neither can the r.f. ammotor be shunted satisfactorily, as can be dome with d.e. instruments. because even a very small amount of reactaner in the shant with cause the readings to be highly dependent on frequency.

R.F. VOLTAGE

An r.f. voltmeter is a rectifier-type instrument in which the r.f. is converted to d.e., which is then measured with a d.c. instrument. The hest type of rectifier for most applications is a crystal diode, such as the $1 N 34$ and similar types, hecause its capacitance is so low as to have little effect on the behavior of the r.f. circuit to which it is connected. 'lhe primeipal limitation of these rectitiors is their rather bow value of safe inverse peak voltage. Vacumotube diodes are considerably better in this respert. but their size. shunt capacitanee, and the faet that power is reo quired for hating the cathode constitute serious disadvantages in many applications. Typical cireuits for ervstaladiode r.f. voltmeters are given in Fig. 2l-27.

One of the principal uses for such voltmeters is as null indicators in r.f. bridges as described later in this chapter. Another useful application is in measurement of the voltage betwern the conductors of a roaxial line. to show when a transmitter is adjusted for optimum output. In eithor raso the voltmeter impedance should be high compared with that of the circuit under measurement, to avoid taking appreciable power, and the relationship between r.f. voltage and the reading of the dec. instrument should be eas linear as possible - that is. the d.e. indication should be dirently proportional to the r.f. voltage at all points of the seale.

All rectitiers show a variation in resistance with applied voltage, the resistance being highost
when the applied voltage is small. These variations can be fairly well "swamped out" by using a high value of resistanee in the d.c. circuit of the rectifier. A resistance of at least 10,000 ohms

Fif. $2 /-27$ - ll.f. voltmeter eircuits nsing a erystal rectifier amd dic, microammeter or 0-1 milliammeter. 'Thererruit at A is suitable for measuring low moltages up to about 20 volts maximum. B is for measuring the voltage betwern the conductors of a eoaxial line. The total resistance of K_{2} and K_{3} should the of the order of 7500 ohms, with the ratio of K_{2} to R_{3} chosen to apply not more than 10) volts (for an s.w.r, of 1 to I) to the crystal circuit, based on the unmodulated carrier power in the line, R_{1} should the not less than $10,(\mathbb{O N}$) ohme for a (1) 1 milliammeter, and should be increased in proportion to the sensitivity of the meter (e.g., $20,(\mathrm{KN})$ ohms for a $0-\bar{O}(N)$ microammeter, $\mathrm{J}(\mathrm{N},(\mathrm{ON})$ ohms for a $0-\mathrm{I}(\mathrm{O})$ micro. ammeter). Ci and C_{2} should be 0.(N) μ f. or more. In IB, J_{1} and J_{2} ar. coraxial connectors. The volmeter is preferably huilt in a shielded box, the $2 \times 4 \times 4$ size being large enomgh to contain the whole instrment.
is neecsary for reasomably good linearity, and higher values are beneficial. For this reason a fairly sensitive d.c. instrument should be used if possible, a $0-100$ microammeter, although a $0-1$ milliammeter will serve quite well in many cases. A v.t.v.m. is ideal for the purpose since its extremely high imput resistance exceeds anything that is practical with an ordinary microammeter. High resistance in the di.e. circuit also raises the imperdance of the r.f. voltmeter and reduces its power consumption.

The basie voltmeter circuit is shown in Fig. 21-27. , and is simply a half-wave rectifior with a meter and a resistor, R_{1}, for improving the linearity. The time constant of $C_{1} R_{1}$ should be large compared with the period of the lowest radio frequency to be measured - a condition that can casily be mot if R_{1} is 10,000 ohms and C_{1} is 0.001 $\mu \mathrm{f}$, or more - so C_{1} will stay eharged near the peak value of the r.f. voltage. The radio-frequene: choke may be omitted if there is a low-resistance d.e. path through the cireuit being measured. C_{2} provides additional r.f. filtering for the d.e. circuit.

A practical arrangement for measuring the r.f. voltage in a coaxial line from a transmitter is shown at I3, A voltage divider, $R_{2} R_{3}$, is connerted across the line, the resistance values being chosen so the inverse peak voltage rating of the rectifier is not exceeded. This rating is 60 volts for the $1 N 34$, which limits the rim.s. voltage that may be applied to the erestal to a maximum of 21 volts. If the approximate power carried by the line is known, the voltage ean easily be ealculated if the line is flat. I standing-wave ratio of 4 to 1 will eause the voltage to be twice the caleulated value at a voltage loop, and 100 per cent modulation also doubles the voltage. Since it is unlikely that the s.w.r. will exceed 4 to 1 in a propery operated coax line, the safety factor will be adergate if the voltage divider is designed on the basis of applying one-fourth the rated value of voltage, or about 5 volts, to the rystal. The total resistance in the divider should be about 100 times the line impedance so the power consumed by the voltmeter will not exceed 1 per cent of the power in the line. Composition resistors should be used, allowing 1 watt dissipation in R_{2} (which usually dissipates practically all the voltmeter power) for each 100 watts in the line. The necessary dissipation can be built up by using resistors in series.

In constructing such a voltmeter care must be used to prevent stray coupling lotween the line and any part of the voltmeter, and also between the voltage divider and the erystal rectifier cireuit. Also, the resist or or resistors comprising R_{2}, should be kept away from grounded motal, in order to reduce stray capacitance.

Calibration

Calibration is not neressary for purely comparative measurements. A calibration in actual voltage requires a known resistive load and an r.f. ammeter. The setup is the same as for r.f. power measurement as deseribed later, and the voltage calibration is obtained by calculation from the known power and known load resistance, using Ohm's Law: $E=\sqrt{P R}$. As many points as possible should be obtained, by varving the power output of the transmitter, so that the linearity of the voltmeter can be ehecked.

I Mifferent voltage ranges may be secured, with a fixed voltage divider, by changing the value of R_{1}. It is advisable to ealibrate on the lowest range and then, with a fixed value of power in the line, increase h_{1} until the desired scale factor is obtained.

- R.F. POWER

Measurement of r.f. power requires a resistive load of known value and either an r.f. ammeter or a calibrated r.f. voltmeter. The power is then either $I^{2} R$ or E^{2} / R, where R is the load resistance in ohms.

The simplest method of obtaining a load of known resistance is to use an antenna system with coax-coupled matching circuit of the type described in the chapter on transmission lines. When the circuit is adjusted, by means of an
s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the bridge was designed (52 or 75 ohms). Fig. 21-28 shows a convenient way of mounting an r.f. ammeter for measuring current in a coaxial line.

Fig. 21-28-R.f. ammeter mounted for comerethy into a coasial line for measuring bowar. "W-inch" instrn- 2 ment will fit into a $2 \times 4 \times 1$ metal hox. The shunt capacitanee of an ammeter mounted in this way bat a nesligible effect on the arcuracy at frequencies as hish as 30 Mr , if olar instrument has a bahelite case. Vatalcased meters should be mounted on a bakelite wanel which can in turn le monated in a coutont whel chars the meter case ly about $1 / 4$ inch.

The instrument can be inserted in the line in place of the s.w.r. bridge after the matching has beren completed, and the transmittor is then adjusted - without touching the matching circuit - for maximum current. A0-1 ammeter is usoful for measuring the approximate range $5-50$ watts in 52 -ohm line, or $7.5-75$ watts in 75 -ohm line: ia 0-3 instrument can be used for 13-450 watts in 52-ohm line and 20-675 watts in 7io-ohm line: The accurace is usually greatest in the uppor half of the scate.

An r.f. voltmeter of the type described in the preceding section also can be used for power measurement in a similar setup. It has the advantage that, because its seale is substantially linear, a much wider range of powers can be measured with a single instrument.

INDUCTANCE AND CAPACITANCE

The ability to measure inductance and capacitance frequently saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscillator, described earlier in this chapter.

For measuring inductance, the coil is com-
(A)

Fig, 2/-29 - Setups for measuring inductance and capacitance with the grid-dip meter.

Fig.2I- $30-\mathrm{A}$ convenient mounting, using bindingpost plates, for L and C standards made from commer. cially-available parts. The capacitor is a $100 \cdot \mu \mu \mathrm{f}$. silver mica unit, mounted so the lead length is as nearly zero as possihle. 'The indurtanee standard, $5 \mu \mathrm{~h}$., is 17 turns of No. 3015 S \mathbb{N} N Miniductor, I-inch diameter, 16 turns per inch.
nerted to a capacitane of known value as shown at A in Fig. 21-29. With the unknown coil connected to the standard eaparitor, the pick-up loop is coupled to the eoil and the oscillator frequeney adjusted for the gridereurent dip, using the loosest coupling that gives a deteretable indiration. The inductance is then given by the formula

$$
L_{\mu l_{0}}=\frac{25,330}{C_{\mu \mu \mathrm{l}} f_{\mathrm{Mc}}^{2}}
$$

The reverse procedure is used for monsuring ratacitance - that is, a coil of known indurtance isused as a standard as shownat 13 . The unknown "apateitance is

$$
C_{\mu \mu \mathrm{I} .}=\frac{25,330}{L_{\mu \mathrm{l} .} f_{\mathrm{Mc} .}^{2}}
$$

The accurary of this method depends on the accuracy of the grid-dip meter calitration and the accuracy with which the standard values of L and C are known. Postage-stamp silver-mica capacitors make satisfactory capacitanee standards, since their rated tolerance is ± 5 per cent. Fiqually good inductance standards can be made from commercial marhine-wound coil material.

A single pair of standards will serve for moasuring the L and C values commonly used in amateur equipment. A good choice is $100 \mu \mu \mathrm{f}$. for the (apacitor and $5 \mu \mathrm{~h}$. for the coil. Based on these values the chart of Fig. 21-31 will give the unknown directly in terms of the resonant frequeney registered by the gridedip neter. In measuring the frequency the coupling between the grid-dip moter and resomant rircuit should be kept at the smallest value that will give a definite indication.

A correction should be applied to measurements of very small values of L and C to inelude the efferets of the shunt caparitance of the mounting for the coil, and for the inductance of the leads to the capacitor. These amount to approximately $1 \mu \mu \mathrm{f}$. and $0.003 \mu \mathrm{~h}$., respertively, with the method of mounting shown in Fig. 21-30.

Coefficient of Coupling

The same equipment can be used for measurement of the coefficient of roupling between two coils. This simply requires two measurements of inductance (of one of the coils) with the coupled coil first open-circuited and then short-cireuited. Connect the $100-\mu$ f. standard capacitor to one coil and measure the indurtaner with the terminals of the second roil open. Then short the terminals of the second coil and again measure

Fig. 21.31 - Chart for determining unknown values of L and C in the range 0.1 to $100 \mu \mathrm{~h}$. and 2 to $1000 \mu \mu \mathrm{f}$., using standards of $100 \mu \mu \mathrm{f}$. and $5 \mu \mathrm{~b}$.
the inductance of the first. The reefficient of coupling is given low

$$
k=\sqrt{1-\frac{L_{2}}{L_{1}}}
$$

where $k=$ coefficient of coupling
$L_{1}=$ indurtaner of first roil with terminals: of second coil open
$L_{2}=$ indurtance of first coil with terminals of second coil shorted.

R.F. RESISTANCE

Aside from the bridge methods used in trans-mission-line work, deseribed later, there is relat tively little need for measurement of r.f. resistance in amateur pratier. Also, measurement of resistance bu fundamental methods is not pratoticable with simple equipment. Where such measurements are made, they are usually based on known charateristies of available resistors used as standards.

Most types of resistors have so murh inherent reactance and skin effert that they do not ant like "pure" resistance at radio frequencios, but instead their effective resistane and impedance vary with frequency. This is esperially true of wire-wound resistors. (omposition (arbon) resistors as a rule have negligible inductance for frequencies up to 100 Mr , or so and the skin offect also is small, but the shunt cepawitane cannot be neglected in the higher values of theser resistors, since it redued their impedance and makes it reartive. However, for most purposes the capacitive efferets can be considered to be negligible in composition resistors of values up to 1000 ohms, for frequencies up, to 50 to 100 Mc .. and the r.f. resistance of such units is practically. the same as their dee resistane. Inene they ean be considered to be pratically pure resistanee in such applications as r.f. bridges, etce, provided they are mounted in such a way as to avoid marnetice eoupling to other cireuit components, and ara not so close to groumed metal parts as to give an appreriable increase in shont caparitance.

Antenna and Transmission-Line Measurements

Two principal types of moasurements are made on antenna systems: (1) the standing-wave ratio on the tramsmission line, as a means for determining whether or not the antenna is properly. matched to the line (atternatively, the input resistance of the line or ant eman may be measured) : (2) the comparative radiation fiold strongth in the vicinity of the :untenna, as at mans for checking the directivity of ab bam antemat and as an adid in adjustment of clement tuming and phasing. Both types of measurements cath be made with rather simplo equipment.

FIELD-STRENGTH MEASUREMENTS

The radiation intensity from an antenna is measured with a device that is essentially a very simple receiver equipped with an indicator to give a visual representation of the comparative signal strength. Such a field-strength meter is used with a "pick-up antenna" which should always have the same polarization as the antema being cherked - e.g., the pick-up antemna should Ine horizontal if the transmitting antenna is horizontal. Care should be taken to prevent stray pickup by the fiedd-strength meter itsolf or by any transmission line that maye eonmert it to the pickup antenna.

Fiedd-strength masurements prefarably should be made at a distance of several wave lengths from the transmitting antenna leing tested. Measurements male within a wave length of the antema may be misleading, because of the possibility that the measuring equipment maty he responding to the combined induetion and radiation fields of the antema, rathor than to the radiation fied alone, Also, if the piek-up antemat
has dimensions comparable with those of the antemat under test it is likeles that the conpling betwere the two antemas will be great mough to cause the piek-up anterna to tend to become part of the radiating system and thus result in misloading field-strength reatings.

A desirable form of pick-up antenna is a dipola installed at the same height as the antema boing tested, with low-imperlaner line such as $\overline{6}$-oblim Twin-Laad eonmerted at the center to trathefor the r.f. sigual to the field-strength meter. The lenget of the dipole need only lee great amough to give adequate motor readings, A half-wave dipele will give maximum sensitivity, but such length will not be needed unless the distance is several wave lengths and a relatively insonsitive moter is used.

Field-Strength Meters

The erystal-detector wave meter deseribed carlier in this chapter may be used as a fieldstrength meter. It may be coupled to the transmission line to the pick-lip antemna through the coaxial-cable jack, J_{1}.

The indications with a erystal wave moter connected as shown in Fig. 21-10 will tend to be "spuate haw" - that is, the meter readime will be propertional to the square of the r.f. voltage. This exagyerates the afferet of relatively small addjustments to the antenni system and gives a false impression of the improvement secured. The moter reading ealn be made more linear be conneethig a fairly large resistance in series with the milliammeter (or microammeter). Ahout 10,000 ohms is required for good lineatity. This considerahly redures the semsitivity of the moter. but the lower sensitivity ean be compensated for by making the pick-up antemat sufficiently large,

Transistorized Wave Meterand Field-Strength Meter

A sensitive fiodd-strength moter cen be made by using a transistor as a d.e. amplifier following the erystal rectifier of a wave meter. A cireuit of this type is shown in lig. 21-32. Depending on

Fir. 2/-32-I'ransistor Ile amplifier applied to the wave meter of trig. 21 -10 to inerease a-nsitisits. Components not listed lwhow are the same as in Fig. 21-10.
B_{1} —small lashlipht arll.

\mathbb{R}_{1} - O.l-mexolim wiume control.
$\mathrm{R}_{2} \mathrm{~K}_{3}-1 \overline{\mathrm{I}} \mathrm{m}$ ahms. ' $_{2}$ watt.
S_{1} - Enp.e.t. togyle (onl-off switeh).
the chatureristies of the particular transistor used, the amplifiration of curvent mate he 10 or more times, so that a 0 - 1 milliampere il.e. instrument beromes the equivalent of at sensitive mierotmmeter.

The eireuit to the left of the dashed line in Fig. $2 l-32$ is the same as the watvemeter rement of Fig. 21-10, and the transistor amplifior can easily be aceommodated in the asse shown in Figs 21-11 and 21-12.

The transistor is comereted in the eommonemitter cirenit with the rectified d.e. from the arystal diode flowing in the bese-emiter eircuit. Since there is a small residual current in the collecter cirenit with no current flowing in the haseemitter cirenit, the d, e. meter is commeted in a bridge arrangement so the residual current atu Ine hatanered out. This is areomplished, in the absence of any signal input to the transistor base, by adjusting R_{1} so that the voltage drop arross it is equal to the voltage drop, from collector to rmitter in the thansistor. R_{2} and R_{3}, heing of the same resistance, have equal voltage drops aceoss them and so there is mo differenere of potential aroms the moter tominats until the collector rarrent increases lowase of curvent flow in the hascomitter circuit.

The collector current in a circuit of this tape is mot strictly proportional to the besse current, particularly for low vahues of base current. The moter readings are wot directly proportional to the fied strengeh, therefore, but tend toward "square law" respouse just as in the rase of a simple diode with little or no resistanere in its d.e. cireut. For this reason the d.e meter, $/ / /$, should not have too-high sensitivity if reasomably linear response is desired. A $0-1$ milliammeter will be sutisfitctory.

The zero batane should be dheeked at intervals while the instrument is in use, since the
residual current of the transistor is sensitive to temperature changes.

IMPEDANCE AND STANDING-WAVE RATIO

Adjustment of antenma matehing sustems require some motus either of mobsuring the input imperdance of the antenna or tamsmission line or meisuring the standing-wave ratio. "Bridge" methods are suitable for bither morasurment.

There are many variotice of bidge circuits, the two shown in Fig. 21-333 being among the most popular for amateur purposes. The simple resistinne bridge of Fig. 21-33: A consists essentially of t wo voltage dividers in parallel across a source of voltage. When the voltage drop arooss R_{1} equals that arross R s the drops across R_{2} and R_{1}, are likewise edpabl and there is no differenor of potential bet wern points A and B. Henee the voltmeter reading is zero and the bridge is satid to be "halamed." If the drops achoss R_{1} and R_{s} are not equal, points A and B are at different potentials and the voltmeter will read the difference. The operation of the cirenit of Fig. 21-3:33 is similar, except that one of the voltage dividers is rapacitive instond of resistive.

Beratase of the charatereristies of practical eomponents at radio frequencies, the circuit of Fig.

Fig. 21 -3:3- Basichridge circuits. (1) Resistance bridye; (B) resistance erapacitance bridpe. The latter circuit is used in the" Micromateho." with R: a vers low resistance (I ohm or less) and the ratio) (i//is aljusted accordingly for a desired line impedance.
21-33.3.1 is hest suited to applications where the ration $R_{1}^{\prime} R_{2}$ is fixed. This type of bridge is particularly woll suited to measurement of standing-wabe ratio. The cirenit of Fig. 21-3:313 is well adiapted to apphirations where a variable voltage divider is essemial (since C_{1} and C_{2} may readily be made variable) as in measurement of unknown valuces of R_{1}.

S.W.R. Bridge

In the circuit of Fig. 21-33A, if R_{1} and R_{2} are mate equal, the bridge will be habanced when $R_{\mathrm{L}}=R_{\mathrm{s}}$. This is true whether R_{J}, is an actuad resistor or the input resistance of a perfectly mate hed transmission line, provided R s is chosen to ergual the whatateristie imperdance of the line. liven if the line is not properly matched, the bridge will still be balanced for power traveling
outward on the line, since outward-going power sers only the Z_{0} of the line until it reaches the load. However, power refiected back from the load does not "sce" a bridge cirenit and the reflected voltage registers on the voltmeter. From the known relationship between the outgoing voltage and the reflected voltage, the s.w.r. is easily calculated:

$$
\text { S.W.R. }=\frac{V_{\mathrm{o}}+V_{\mathrm{r}}}{V_{\mathrm{o}}-V_{\mathrm{r}}}
$$

where V_{0} is the outgoing voltage and V_{r} is the reflected voltage. The outgoing voltage is equal to $E / 2$ since R_{s} and R_{1}. (the Z_{0} of the line) are equal. It may be measured either by disconnecting R_{L} or shorting it.

Measuring Voltages

For the s.w.r. formula above to apply with reasonable accuracy (particularly at high stand-ing-wave ratios) the current taken by the voltmeter must be inappreriable compared with the eurents through the bridge "arms." The voltmeter used in bridge circuits employs a reystal diode rectifier (see discussion carlier in this chapter) and in order to meet the above requirement - as well as to have linear response, which is equally neressary for calibration purposes should use a resistance of at least 10,010 ohms in serics with the milliammeter or mieroammeter.

Since the voltageapplied to the line is measured by shorting or disconnecting R_{1}, (the line imput terminals), while the reffected voltage is measured with R_{L} connected, the load on the source of voltage E ' is different in the two measurements. If the regulation of the voltage soure is not perfect, the voltage E will not remain the same under these two conditions. This can lead to large errors. Such errors can be avoided by using a second voltmeter to maintain a check on the voltage applied to the bridge, readjusting the

Fig. 21-34- Bridge circuit for s.w.r. measurements. This circuit is intended for use with a d.c. voltmeter, range 5 to 10 volts, having a resistance of 10,000 ohms per volt or greater.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-\mathbf{0 . 0 0 5}$ or $0.01-\mu \mathrm{f}$. disk ceranic.
$\mathrm{R}_{1}, \mathrm{R}_{2}-47$-ohm composition, $1 / 2$ or 1 watt.
$\mathrm{R}_{3}-52$ - or 75 -ohm (depending on line impedance) composition, $1 / 2$ or 1 watt; precision type preferred.
$\mathbf{R}_{4}, \mathbf{R}_{5}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial connectors.
Meter connects to either "input" or "lridge" position as required.
roupling to the voltage source to maintain constant applied voltage during the two measurements. Since the "input" voltmeter is simply used as a reference, its linearity is not important, nor does its reading have to bear any definite relationship to that of the "bridge" voltmeter, except that it range has to be at least twice that of the latter.

A practical cireuit incorporating these features is given in Fig. 2l-34.

If the bridge is to be used merely for antenna adjustment, where the objod is to scrure the lowest possible s.w.r. rabler than to measure the s.w.r. arectrately, the voltmeter requirements are not stringent. In this case the objert is to get ats close to a "mull" or halance (that is, zero reading)

F'ig. 21-35-A simple bridge circuit useful for imped-ance-matehing in coavial lines.
Ci, $\mathrm{C}_{2}-0.00 .5$ or 0r 0.01- $\mu \mathrm{f}$. dish ceramic.
$R_{1}, R_{2}-17$-ohm composition, $1 / 2$ watt.
$R_{3}-52$ - or $\overline{-5}$-ohm (depending on line impedance) compsition, $1 / 2$ watt: precision type preferred. $\mathrm{R}_{4}-\mathrm{I}(0) 0$-ohm composition, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coavial connector.
The meter may be a $0-1$ milliammeter or d.c. volt. neter of any type having a sensitivity of l(N) ohnms per volt or greater, and a full-scale range of 5 to 10 volts. Vegativeside of meter connects to ground.
as possible. At or near exact balance the voltmeter impedance is not important. Neither is it neerssary to maintain constant imput voltage to the bridge. This simplifies the bridge circuit considerably, lig. 21-35 being a pratical example. The const ruction of a bridge of this type suitable for antenna and transmission line adjustments is shown in Fig. 21-36.

Bridge Construction

A principal point in the construction of an s.w.r. bridge is to avoid coupling between the resistors forming the bridge arms, and between the arms and the voltmeter circuit. This can be done by kreping the resistance arms separated and at right angles to each other, and by placing the crystal and its commerting leads so that the loop so formed is not in inductive relationship with any loops formed by the bridge arms. Shielding between the bridge arms and the erystal circuit is helpful in reducing such couplings, although it is not always necessary. The two resistors forming the "ratio arms," R_{1} and R_{2}, should have identieal relutionships with metal parts, to keep the shunt capacitances equal, and also should have the same lead lengths

Fig. 21.36 - An inexpensive bridge for matehing adjustments using the circuit of Fig. $21-35$. It is huilt in a $15 / 8 \times 21 / 8 \times 1$-inch " $($ "hannel-loch" trox. "The standard resiftor. Ra. liridges the two coav conmectors. I pit jack is provided for connection to the d.c. meter, 0-I ma. or $0-500$, a.; the meter negatise can be connected to the case or to one of the coav littings.
so the inductancers will balance. Leads should be kept as short as possible.

Testing and Calibration

In a bridge intended for s.w.r. measurement (Fig. 21-34) rather than simple matehing, the first check is to apply just enough r.f. voltang, at the highest frequency to be used, so that the bridge voltmeter reads full scale with the load terminals open. Otserve the input voltage, then short-circuit the load terminats and readjust the input to the same voltage. The bridge voltmeter should again register full scale. If it does not, the ratio arms, R_{1} and R_{2}, probably are not exactly equal. These two resistors should be carefully matehed, although their atetual value is mot eritical. If a similar test at a low frequemey shows better babanere, the probable eause is stray inductance or capacitance in one arm not balanced by equal strays in the other.

After the "short" and "open" readings have been equalized, the bridge should be wherked for null balance with a "dummy" resist ance, equal to the line impodanee, connected to the load termimals. It is convenient to mount a half- or 1-watt resistor of the proper value in a coax comeretor, kerping it centered in the connector and using the minimum lead length. The bridge voltmeter should read zero at all frequencies. A reading above zero that remains ronstant at all froquencies indicates that the "dummy" resistor is not matched to R_{3}, while readings that vary with
frequency indicate stray reactive effects or stray coupling between parts of the bridge.

When the operation is satisfactory on the two points just described, the null should be chereked with the dummy resistor connerted to the bridge through several different lengths of transmission line, to consure that R_{3} actually matehes the line imperdance. If the null is not completer in this test both the dummy resistor and R_{3} will have to be adjusted until a gooel mateh is ohtained. With eare, composition resistors can be tiled down to raise the resistance, so it is best to start with rosistors somewhat low in value. With each change in K_{3}, adjust the dummy resistor to give a good null when ronnered direetly to the bridge, then try it at the ond of several different lengthe of line, contimuing until the null is satisfactory under all conditions of line length and frequency.

With a high-impedance voltmeter, the s.w.r. realings will closely approximate the theoretieal curve of Fig. 21-37. The calibation can be checked by using composition resistors as loads. Adjust the transmitter coupling so that the bridge voltmeter roads full scale with the output terminals open, and then cherek the input voltage. Connert various values of resistanee arross the output terminals, making sure that the input voltage is readjusted to be the same in earh case, and note the reading with the moter in the bridge position. The s.w.r. is given by

$$
S . \mathrm{I}^{\prime} . R .=\frac{R_{\mathrm{L}}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{I}}}
$$

where R_{0} is the lime impedanee for which the bridge has been adjusted to null, and k_{1} is

Fig. Y/.37-Standing-wave ratio in terms of meter reading (relatise to full scale) after setting outgoing voltage to full scale.
the resistance used as a load. Use the formulat that places the larger of the two resistances in the numerator. If the readings do not correspond exactly for the same s.w.r. When appropriate resistors above and below the line impedance for which the bridge is designed are used, a possible reason is that the current taken by the voltmeter is affecting the measurements.

Using a 0-100 microammeter, a 20,000-ohms-per-volt voltmeter on a 5 -volt or higher range, or a v.t. voltmeter, the difference bet ween "up" and "down" s.w.r. measurements should be negligible, provided the load resistors used for this test can be measured (at d.e.) with sufficiont areurare. Values over 1000 ohms or so should not be used at the higher freguencies.

Using the Bridge

The operating procedure is the same whether the bridge is used for matching or for s.w.r. measurement. Apply power with the loud terminals wither open or shorted, and adjust the input until the loridge voltmeter reads full scable. Because the briage operates a very low power lovel it may be neressary to couple it to a low-power driver stage rather than to the final amplifier. Alternatively, the plate voltage and excitation for the final amplifier mar be reduced to the point where the power output is of the order of a few watts. Then connert the load and observe the voltmeter reating. For matching, adjust the matehing network until the best possible mull is obtamed. For s.w.r. measurement, note the r.f. input voltage to the bridge after adjusting for full-seale with the loand termmats open or shorted, then connert the load and readjust the transmitter for the same input voltage. The bridge voltmeter then indirates the standing-wave ratio as given ly Fig. 21-37.

Antoma sustems are in general resonant systoms and thus exhibit a purely-resistive impedance at only one frequency or over a small band of frequencies. In making bridge measurements, this will canse errors if the r.f. energy used to operate the bridge is not free from hamonies and other spurions components, such as frequencies lower that the edesired oprating freduence that may le ted through the final amplifier from a frequency-doubler stage. When a good mull camnot be secured in, for example, the course of adjusting a matehing section for l-to-1 s.arr., a check should be made to rusure that only the desired measuroment froqueney is present. A rrestal wave meter coupled to the load usually will show whether energy on undesired frequencies is present in signifieant amounts. If so,
additional selectivity must be used between the source of power and the measuring circuit.

Bridge for Monitoring S.W.R.

The low power level at which resistanco-trpe bridges must operate is a disadvantage when the bridge is used ats an operating adjumet - e.g., for the adjustment of matching cirruits when changing bands, or for readjustment of such rircuits within a hand. For this purpose a bridge is needed that will earry the full power output of the transmitter without absorbing an appreciable fraction of it.

The bridge shown in Figs. 21-38 to 21-40, inclusive, is such a device. It makes use of the combined effects of inductive and raparitive coupling between the center conductor of a roaxial line and a length of wire parallel to it. When the couphed wire is properly terminated in a resistance, the voltage induced in it bey power travelling along the line in one direetion will tre bataned out in the errestal-reetilier r.f. voltmeter circuit, but power travelling along the line in the opposite direction will canse a voltmeter indieattion. If the bridge is adjusted to mateh the Z_{0} of the eowxial line being used, the voltmeter will respond only to the refleceted voltage, just as in the rase of the resistance-type bridges. The power consumed in the bridge is below one watt, even at the maximum power permited amaterar transmitters.

The sensitivity of this terpe of bridge is proportional to frequency, so higher power is reguired for a given voltmeter defleetion at low than at high frequencies. Typieal values of rectified current are as follows, with a hridge adjusted for a characteristic impedanere of 52 ohms:

Band	$10 \mathrm{Watts:} \mathrm{R.F}$.	50 W'atts R.F
1.8 Mc .	25 mit.	$100 \mu \mathrm{al}$.
3.5 Mr.	$70 \mu \mathrm{a}$.	$250 \mu \mathrm{il}$.
7 Me .	$200 \mu \mathrm{it}$.	1 ma .
14 Mc .	750μ \%	Over 1 mas.
21-28 Mc.	Over 1 mat.	Over 1 ma .

A current of 1 ma , on 3.5 Ml . can be obtained with a power level of somewhat over 200 watts.

Fige. 2l-is - S.w.r. bridge ("Monimatch") that can be left in the coax line for continuous monitoring of matehing and power output. The lux is a slip-cover type (Premier $\ \mathrm{MC}(1011$) measuring 12 by $21 / 2$ by 2 inches. The layont is the same as the eireuit diagram, Fig. 21-39.

Fin. $21-39$ - (irent of the "Monimateh" s.n.r. and power indicator. Approximate distances between $R_{1}, ~ C R_{1}$ and (:R2 along the coupting wire are subjert to linal adjustment as deseriled in the Irve
(i, (in-I Jish reramie.
 rete.)

Ja, Ja Insulated til jacko.

These corments are for $R=$, the resistame in series with the der. metrer, ergatl to moro.

The circuit of lig. 2l-39 has two sum hridge rifenits hack-to-hack su ather the incident on refleeted voltage can be read simply he throwing Sto the proper position.

The essential comestretion details are given in Figs. ol-3! and $\because(-10$. The line sedtion consests of atrongh made of thin she copher or ahomimme (for the comaial outer conductor) with an innor conductor of ${ }^{1}$-inch coppor tabing. A buhing bength of slighty over if iurches is manimed, as shown in Fig, 2i-39. Its ands are soldereal to tha

The roupling wire is supported loy h_{1} at its conter and ber ${ }^{\prime} h_{1}$ and ${ }^{2} / R_{2}$ towards its outer ends. The lauls to these eomponents shoulal be
R_{1} - For 52 -ohm lime: 68 ohms, 1 -watt composition; for E-ohm line: 4^{-6} whms, 1 -watt composition.

R_{2} - Volume control.

S_{1} - S.p.d.t. toxgle.
kept short. Tia puints are used to support the (athode-emunection ands of the diodes and the
 d.e. milliammeter are throngh pin jarks in the mit shown.

I dammy antenna of the same resistanee as the Z_{0} of the line should be used to adjust the bridge. A suitable dammy may be made be eonnocting four 220 -ohm t -watt composition rosisfors in paratlel for 5 -othm line (or four 300 -ohm resistors for 7 anobm line), kerping the connecting leats as short as posible. The transmitter maty be used ats a sumer of power providing its output can be reduced to about 4 watts, or a 10 -watt lamy, maty he conncetod in series in the line from the transmitter to the bridge if the tramsmiter powre cannot be reduced below 50 watts. With

Fig. 21.10-A: Methorl of mounting end of troush to road fitting. 13: Constraction of trough at ends. C: Cross. serction of trough, inmer combuctor, and coupling wire.
power applied (preferably at 28 Mc .) through J_{1} and the dummy comnected to J_{2}, adjust the position at which $C R_{1}$ is connected to the coupling wire until the meter reading is zero with S_{1} in the "reflected" position. Then apply power through J_{2} with the dummy connected to J_{1} and make a similar adjustment to the position of (' R_{2} with the meter swited in the "incident" position. The bridge is then ready for use with the normal commertions (r.f. input to J_{1}, line connected to J_{2}).

With S_{1} in the "incident" position the meter gives a relative indieation of power output, and thus is useful for transmitter funing. With S_{1} in the "reflected" position the meter reading will be zero when the line is properly matehed.
(Described in October, 1956, QST'.)

Impedance Bridge

The bridge shown in Figs. 21-11 to 21-43, inclusive, uses the basid circtit of Fige. 21-33B and incorporates a "differential" eapacitor to obtain

Fig. 21.41-An RC bridge for measuring unknown values of impedance. "l'he bridge operates at an r.f. input voltage tevel of about 5 volts. The aluminum box is 4 by 5 by 6 inches.
an adjustable ratio. When a load of unknown value is connected in place of R_{L}, the $C_{1} C_{2}$ ratio may be varied to attain a balance, as indicated br a null reading. The capacit or settings can be calibrated in terms of resistance at $l_{\text {L }}, s_{0}$ the unknown value can be read off the cabibration.

The differential capacitor consists of two identieal capacitors on the same shaft, arranged so that when the shaft is rotated to increase the capabeitance of one unit, the caparcitance of the other decreases. The pratetical eireuit of the bridge is given in Fig. 21-42. Satisfactory operthtion hinges on ohserving the same constructional prectations ats in the case of the s.w.r. bridge. Although a high-impedance voltmeter is not essential, since the bridge is awates adjusted for a mull, the use of such it voltmeter is advisable beranse its better linearity (particularly at the low readings) makes the actual null settings more arcurately observable.

With the circuit arrangement and eapacitor shown, the aseful range of the bridge is from about 5 ohms to $4(0)$ ohms. The cablibration is such that the percentage acourace of reading is approximately constant at all parts of the scabe. The midscale value is in the range $50-75$ ohms, to correspond with the Z_{0} of coaxial eable. The reliable frequency range of the bridge includes all amateur bands from 3.5 to 54 Mc.

Checking and Calibration

A bridge eonstrueted as shown in the photographs should show a complete mull at ath frequeneies within the range mentioned above when a 50 -ohm "dummy" load of the tripe deseribed earlier in commertion with the s.w.r. bridge is connected to the lowd terminals. The bridge mas
 position resistors of different values in the $5-400$ ohm range as loads, in cath case bataneing the bridge be adjusting ('a for a null reading on the moter. For highest aceuracy, the test resistors should be measured on a precision rosistance bridge, if possible, since the hest tolerane normally ohtainable in surh resistors is ± 5 per cent. The leads between the test resistor and J_{2} should be as short as possible, and the catibration preferably should tre done in the $3.5-\mathrm{Me}$. Dand where stray inductance and cababitance will have the least effect. The cabibration should be cheeked on the highest-frequency band to be used and

Fig. 21.42 - (ircuit of the imped. ance loridge. Resistors are composition. $1 / 2$ watt except as noterl. lixed capacitors are ceramic.
C 1 - I)ifferential caparitor. II- 161 $\mu \mu$ f. per sertion (Millen 28801).
CR_{1} - Germanimm disale ($1 \times 3+$, 1N48, etc.)
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial connectors, chassis tym.
$\mathrm{M}_{1}-0-500$ microammeter.

Fig. 2/-4.3-- All conmponents except the meter are mannted on one of the removable sides of the bor. The , ariable caparitor is mounted on an 1 -ahaped piece of alumimum (with half-inch lips on the inner edge for twalting to the box side) 2 inches wille, $21 / 4$ inehes high and $23 / 4$ inchem derpe to whield the capacitor from the wher components. 'The terminals project through holes a- shown, with aseriated components mounted directly (on) them and the load eonnector, I_{2}. Since the rotor of C. mast mot be gremoled, the eapacitor is operated by all evtemsion shaft and insulated compling.

Ihe leal from J_{i} to (ia should no directly from the input connector to the capacitor terminal (lower risht) to which the (68-ohm resistor is attached. 'The 4700-ohnn resistor is sobldered acroses J_{1}.
the dial realings should be identical with the lowfrequency catibration. At 30 to 50 Ne. the mull masy not be quite complete at the extremes of the resistance range beeanse at these freopuencies stray inductance and capacitance in the test resistor and its leads are not nexligible. However, the endrent indicated by the meter at the minimum point should not be more than about 5 per enent of the current indieated when the bridge is thrown as far out of balance as possible by varying Cus.

Using the Bridge

Strictly speaking. a simple bridge can measure only purely resistive impedances. When the load is a pure resistance, the bridge can be balaneed to a good null (meter reading zero). If the load has a reactance component the null will not be complete: the higher the ratio of reactance to resistanee in the load the poorer the mull reading. The operation of the bridge is such that when an exaet mull cammot be secured, the readings approvimate the resistive compenent of the load for very low values of impedance, and approximate the total impedance at very high values of impedance. In the mid-range the approximation to cither is poor, for loads having considerable reartance.

In using the bridge for adjustment of matehing networks C_{1} is set to the desired value (usually the Z_{0} of the coaxial line) and the matching network is then adjusted for the hest possible null.

PARALLEL-CONDUCTOR LINES

Bridge measurements made directly on paral-lel-eondurtor lines are frequently subjert to eonsiderable error becouse of "antemat" currents flowing on such lines. These currents, which are either indued on the line by the field aromed the antema or coupled into the line from the transmitter by stray caparitance, are in the same phase in both line wires and honee do not batanee out like the true transmiswion-line currents. 'lhey will nevertholess actuate the bridge voltmeter, causing an indication that has no relationship to the standing-wave ratio.

S.W.R. Measurements

The effect of "antenna" currents on s.w.r. measurements can be largely overeome by using a coaxial bridge and eoupling it to the paralledconductor line through a properly-designed impedance-matching circuit. A suitable circuit is given in Fig. 21-41. An anterna roupler cam be used for the purpose. In the babaneed tank circuit the "antema" or parallel components on the line tend to balanee out and so are not passed on to the s.w.r. bridge. It is assential that L_{1} be coupled to a "rold" peint on L_{2} to minimize capabitive conpling, and also desirable that the center of L_{2} be grounded to the chassis on which the cirenit is mounted. Vabues should be such that $L_{2} C_{2}$ cab be tumed to the operating frequency and that L_{1} provides sufficient compling, as described in the trans-mission-line chapter. The measurement procedure is as follows:
(onnert a noninductive ($1 / 2-$ or 1 -watt carbon) resistor, having the same value as the characteristie impedance of the parallel-conductor line, to the "line" terminals. Apply r.f. to the bridge, adjust the taps on L_{2} (keeping them equidistant

Fig. 21-41 - Cirenit for using coaxial s.w.r. bridge for measurements on parallel-conductor lines. Values of eircuit components are identical with those used for the similar "antemna-roupler" eircuit discussed in the ehapter on transmission lines.
from the center), while varying the caparitaner of C_{1} and C_{2}, until the bridge shows a mull. After the null is obtained, do not touch any of the circuit adjustments. Next, short-circuit the "line" terminals and adjust the r.f. input until the bridge voltmeter reads full scale. Remove the shortcircuit and test resistor, and connect the regular transmission line. The bridge will then indicate the standing-wave ratio on the line.

The circuit requires rematching, with the test resistor, whenever the frequency is changed appreciably. It can, however, be used over a portion of an amateur band without readjustment, with negligible error.

Impedance Measurements

Mounnrments on parabliol-ronductor lines amd ot her babluced lowds ran the mate with the impedane bridge previonsly deseribed by using it hahat of the type shown shematieally in Fig.
 turns rita io and thus provides a 4 to- 1 step-down

Fig. 2/-15- Tuncal balun for compling belween balamed and unbalanced lines. L_{1} and L_{2} should lee Guilt as a bifilar winding to get as tight rempling as

Freq. Mre	I.1. 1.2	0.1	C_{2}
28	3 turn canh on - -ineh form, exflally spared weribimeh. total.	$1 \mu \mu$,	$12010 \mu \mathrm{f}$.
14	Same as: 28 V1.	3') $\mu \mu$ f.	
7	8 turns of liat-ohm - parims herwran tirns. ont 23/4-inch dia, form.	Vome	$10.1001 \mu \mathrm{f}$.
3.5	Same as \% Me.	$0: \mu \mu \mathrm{f}$.	(0.(0) 1.7μ \%

 ceramic, (wite may be parallided to obtain proper eabaritance.
in imperdane liom at bablumed lown to the output (eirenit of the brider, one side of which is gromeded.
 :and so shand be construeted as abifilar winding. The eirenit is resontard to the oprotatig frequeney by \boldsymbol{r}_{1}, and C_{2} sirves to than out : my residnal rewtane that maty berem heremmer the compling berweon the fwo redis is not guite perfert.

Fig. 21-4ti shows ond method of eonstmuting such athelom. The two interwond coils are mate as neinly identical :as possible, the"finish" and of the first being combered to the "state" rat of the serond through a shom loud muning undev the winding inside the form. The eenter of this leal is tapped to give the eomertion to the shed side of the coste commecter. f'shombla behosen to resonate the cinenit at the center of the hater
for which the belm is designed with J_{1} opent, and Co is adjusted to resomate the circuit to the same Proguenery with both J_{1} and the "load" terminals shorted. The frequemey cherks may be made with a grid-dip, moter. (For further dotails. see Qsto for August, 1953.).

With the halum in use the bridge is operated in the same wity as provionsly desoribed, exerpt that all impedture readings must be multiplied by t. The hatho atso maty be used for s.w.r. measurements on 3 on-ohm line in eombuntion with a resistame bridgedesignad for ä-uhm convial line.

The "Twin-Lamp"

A simple and inexprosive standing-wave madicator for 3ow-ohm lite is shown in Fig. 21-7\%. It "unsists only of two flashlight lamps atud at short piere of 300 othm lime. Whan latid flat against the line to be chereked, the compling is

Fif. 21-17- 'The "t win-lamp" standing-wave indrator
 for fialanion.
such that outsoing power on the lime ramses the lamp turatest to the tramsmitaer to light, while refleded puser lights the latmp weatest the loath. The power input we the line should be adjusted to mike the bamp nearest the tramsmitter light for full billiance. If the litu is propery matched and the rethered pewer is very low, the lamp towath the antomat will be dark. If the sw. w. is high, the two lamps will glow with macticatly erghal beilliance.

The length of the pieere of 300t-atum tine nereded in the twin-lamp will depend on the transmitere

Fig, $2 /-46$ - Balun contionction
 mas be bised for the bitilar wind. ing in place of the ordinary wire shown. Stmmetrias comelrulion with tixh compling betwern the two coils is "eselutial lor youl per. formance.

Fip. 21.48-W"iring diarram of the "twindamp" standing-wave indicator.
power and the operating freguency, A few inches will suflice with high power at high frequoncies, while a foot or two may be needod with low power and at low frezuencies.

In constructing the twin-lamp, cut one wire in the exact center of the piece and peel the ends back on either side just far emough to provide leads to the flashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the main transmission line at some convenient point. (se the lowest-current flashlight bulbs or chat lamps available. solder the tips of the bulls together and comect them to the bare point in the transmission line, then solder the cuds of the rum portion of the short piece to the shells of the bulbs.

Figs. 21-17 and -48 should make the construction clear.

Installing the twin-tanp on a line introduces a discontinuity in the line impedance which causes the s.w.r. from the twin-lamp back to the trammitter to differ from the s.w.r. existing between the antema and twin-lamp. For this reasom it is desirable to remove it after s.w.r. cheeks have been madre. It is convenient to mount the t win-lamp on a short length of line fitted to a 300 -ohm plug at one end and a mating socket at the other. If similar plugs and sockets are used on the transmitier and regular transmission line, the whole test unit can be inserted and taken out at will.
The twin-lamp will respond to "antenna" current: on the transmission line in much the same way as the bridge circuits diseussed earlier. There is therefore always a possibility of error in its indicat ions, unless it hav been determined by other means that "antemat" currents are inconsequential compared with the true transmission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signats at both abdio and radio frequencies and con therefore be used for many types of mesurements that are not possible with instruments of the types discussed earlier in this chapter. In amateur work, one of the principal uses of the seope is for displaying an amplitudomodulated signal so at phone transmitter can be abljusted for proper modulation and continuously monitored tw keep the modulat ion persentabe within proper limits. For this purpose a very simple circuit will suffice, and an oscilloscope de-
with that of a home-built instrument of eomparable design, they are recommended for serious consideration by those who have need for or are interested in the wide ringe of measurements that is prossible with a fully-equipped scope.

CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, at vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them considerable velocity, then formed

Fig. 21.49 - Typieal construction for a cathode-ray tube of the electrostatic-deflection type.
signed expressly for this purpose is described in this section.

The versatility of the seope can be greatly increased by adding amplifiers and linear deflection eircuits, but the design and adjust ment of such cireuits tends to be complieated if opt imum performance is to be secured, and is somewhat outside the field of this chapter. special components are generally required. Oscilloseope kits for home awembly are avatilable from anumber of suppliers, and since their cost compares very favorably
into a beam, and finally allowed to strike a sperial translument sirreen which flumesces, or gives off light at the print where the beam stikes. A beam of moving electrons can be moved laterally, or deflected, by eleetric or mannetic fiolds, and since its weight and inertia are negligibly small, it can be male to follow instantly the variations in periodically-changing fields at both audio and radio frecuencies.

The electrode arrangement that forms the electrons into a beam is called the electron gun.

In the simple tube structure shown in Fig. 21-49, the gun consists of the cathode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube. Anode No. 1 is operated at a positive potential with respect to the cathode, thus accelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practically parallel straight-line paths. The electrostatic fields set up by the potentials on anode No. 1 and anode No. 2 form an electron lens system which makes the electron paths converge or focus to a point at the fluorescent screen. The potential on anode No. 2 is usually fixed, while that on anode No. 1 is varicd to bring the beam into focus. Inode No. 1 is, therefore, called the focusing electrode.

Electrostatic deflection, the type generally used in the smaller tubes, is produced by deflecting plates. Two sets of plates are placed at right angles to each other, as indicated in Fig. 21-10. The fields are created by applying suitable voltages between the two plates of each pair. Usually one plate of each mir is connected to anode No. 2, to establish the polarities of the vertical and horizontal fields with respect to the beam and to each other.

Formation of Patterns

When periodically-varying voltages are applied to the two sets of deflecting plates, the path traced by the fluoreseent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. liig. 21-50) shows how such patterns are formed. The horizontal sweep voltage is assumed to have the "sawtooth" waveshatpe indicated. With no voltage applied to the vertical plates the trace simply sweeps from left to right across the sereen along the horizontal axis $X-X^{\prime}$ until the instant H is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime \prime}$ in the absence of any deflecting voltage on the horizontal plates. Jlowever, when both whatges are present the position of the spot at any instant depends upon the voltuges on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the artaz position B^{\prime} on the sereen. The resulting trace is easily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth sworp-voltage wave shape, such as is shown in lig. $21-3$, is ealled a linear sweep, because the deffection in the horizontal direction is diectly proportional to time. If

the sweep were perfect the fly-back time, or time taken for the spot to return from the end (H) to the begiming (I or A) of the horizontal trace, would be zero, so that the line $I I I$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time cannot be made zero in practicable sweep-voltage generators it can be made quite small in comparison to the time of the desired trace $A M$, at least at most frequencies within the audio range. The line $I^{\prime} I^{\prime}$ is called the return trace; with a linear sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-hark time than during the time of the man trace.

The linear sweep shows the shape of the wave in the same way that it is usually represented graphically. If the period of the a.c. volage applied to the vertical plates is considerably less than the time taken to sweep horizontally across the sereen, several cycles of the vertical or "signal" voltage will appear in the pattern.

For many amateur purposes a satisfictory horizontal sweep is simply a do-cyde voltage of adjustable amplitude. In modulation monitoring (described in the chapter on amplitude modulation) adio-frequency voltage can be taken from the modulator to supply the horizontal sweep. For examination of adio-frequency wave forms, the limear sweep is essential. Its froquency should be adjustable over the entire range of audio frequencies to be inspected on the oscilloscope.

Lissajous Figures

When simusoidal a.e, voltages are applied to the two sets of deflecting plates in the oscilloscope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the ratio between the two frequencies is constant and com be expressed in integers a stationary pattern will be produeed. This makes it possible to use the oscilloseope for determining an unknown freduency, provided a variable frequency standard is available, or for
determining calibration points for a variablefrequency oscillator if a few known frequencies are available for comparison.

The stationary patterns obtained in this way are called Lissajous figures. Examples of some of the simpler Iissajous figures are given in Fig. 21-51. The frequency ratio is found by counting the number of loops along two adjarent edges. Thus in the third figure from the top there are three loops along a horizontal cdige and only one along the vertical, so the

Fig. 21.51 - Iissajons figures and correspondang frequeney ratios for a 90 -degree phase relationship foet ween the voltages applied to the two sets of deflecting plates.
ratio of the vertical frequency to the horizontal frequency is 3 to 1 . Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertieal edge, giving a ratio of + to 3. Assuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical plates,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edge.

An important application of Lissajous fig-
ures is in the calibration of audio-frequency signal generators. For very low frequencies the (60-cycle power-line frequency is held accurately enough to be used as a standard in most localities. The medium audio-frequeney range can be covered by comparison with the 440 - and 600 -cyele modulation on the WWV transmissions. An oseilloscope having both horizontal and vertical amplifiers is desirable, since it is convenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattern size. It is possible to calibrate over a 10 -to-1 range, both upwards and downwards, from earh of the latter frequencies and thus cover the andio range useful for voice communication.

- SIMPLE OSCILLOSCOPE FOR MODULATION CHECKING

The 2-inch oseilloscope shown in Fig. 21-52 includes all the features necessary for modulation cherking and monitoring, including tuned-rirenit r.f. input to the vertical plates. A filament supply and source of a.c. sweep voltage are incorporated, so the only external requirement is the d.c. supply for the c.r. tube anodes. This may be taken from the transmitter power supply, since the current drain is negligible. Although the tube will operate with as little as 500 volts, at least 750 volts is recommended for sufficient pattern brightness, and voltages up to 2500 are permissible.

For constructional convenience, compactness, and inexpensive magnetio shielding of the tube, the unit is constructed in a $3 \times 4 \times 17$-ineh steel chassis, which is mounted on a $31 / 2 \times 19-$ inch relay-rack panel. The tube face is viewed through a 2 -inch hole in the panel and chassis, using a small mirror to reflect the image. A chart frame with a clear window is used to cover the panel hole.

The right-hand seetion of Fig. 21-5.3 shows the tule connections. Controls are provided for spot intensity, focusing, and horizontal and vertical centering of the pattern. The values specified for the voltage-divider string are satisfactory for voltages up to about 1500 d.c., but for voltages between 1500 and 3000 an additional 1 -megohm 1 -watt resistor should be connected in scries with the one shown. This may require inserting additional resistance (0.1 to 0.25 megohm) in sories at " X " to make the forus control cover the proper range. The fixed capacitors should have a voltage rating appropriate to the voltage actually used. Capacitance values are not critical; up to 0.01μ f. may be used if available in the proner voltage rating.

Fig. 21.52-I'wo-inch oscilloscope for rack mounting, Every. thing needed for modulation monitoring is included except the highowoltage dic. supply, which can be ohtained from the trans. mitter.

 Caparitances are in af, unless indicated otherwise. Pixed calaceitors are ceramic. loon volts working or higher, according in d.e. voltage used, sier text for explanation of " λ !.
T_{1} - small audion ramsformer, I-to-1 turns ratio.
$L_{1}-1 . \pi=11 c: 3 / 4$ indh windine of Vo, 30 mam.
3.5 to $\overline{2} 9$ Mc.: 30 turns No. 29 enam., close-wound.

13 to 30 Me: 7 Iurns No. 22, tength $3 / 4 \mathrm{in}$.
$1,2-2$ ar mure turas as mereseary for suffiriont complines. All coils wound on l-inch diameter forms (Millen 15001).

A tuned input circuit is provided, using plug-in coils to cover the various bands. The $100-\mu \mu$. eaparitor makes a convenient "Ileight" control for the pattern, and the tumed cirenit insures adequate pattern height evon from a bow-power transmitter. The r.f. may be picked up with a
held by two semicircular brackets made from ahuminum strips '6 inch wide and mounted on 1 -ineh stand-off insulators. The mirror, which is held to a wood strip by Dueo cement. the strip int turn being bolted to the chassis, should be ent to block off the left-hand (internal view) section

 is conseructed in a 3 by 1 hy 17 chansis momated on a $31 / 2^{-}$. inch relay rack pand. The steet phassis with hotom plate (nent down) shielde the tule from stray mametie fields.

1- or 2-turn link at the transmitter tank or antennat tank circuit, if the latter is used, and connected to the scope through it length of small coax cable.

Line-frequency a.e, is used for the horizontal sweep for obtaining a wave-envelope pattern. An iuput is also provided for audio from the modulator, for the trapezoidal pattern. Full deflection requires about 7 is volts (peak) for each 1000 volts used on the rer. tube. using the defleetion plate connections shown in Jig. 21-i.3.

The parts layout is such as to give short eonnections between the r.f. circuit and the vertical deflertion plate terminals on the tube socket, and to place the two transfomers as far as possible from the tube and thus reduce the possibility of trouble from stray fields. The tube srclest is
of the chassis, which contains the pilot light.
The rentering potentionneters do not require frecuent handling and are controlled from the rear. Berause they are at high voltage they are insulated from the chassis by monting them on a bakelite plate fastened to the raar wall by hadfinch pillars. The shafts are cut short and slotted for serewdriver adjustment. An insulated sorewdriver should be used. The intensity and foomsing eontrols are mounted on the panel either side of the window. The a.c. switch is on the intensity eontrol.
The d.e. supply used preferably should be one that does not vary in output voltage during modulation: e.g., the Class (amplifier supply is preferathe to the Class B modulator supply.

Assembling a

Station

The actual location inside the house of the "shack" - the room where the transmitter and receiver are lowated - deponds. of course, on the free space available for amaterar artivities. Fortunate indeed is the amatenr with a separate rom that he call reserve for his hobly, or the few who can have a sperial smatl building separate from the main house. However, most amateurs must share a roon with other domestie artivities, and amateur stations will bo found turked away in a comer of the living room, a bedrom, a large closet, or even under the kitehen stove! A spot in the cellar or the attic can almost be elassed as a sepanate room, although it may lack the "linish" of a normal room.

Regardless of the location of the station, however, it should be designed for maximum operating convenionce and safety. It is foolish to have the station arranged so that the throwing of several switches is required to go from "receive" to "tramsmit," just as it is silly to have the equipment arranged so that the oparator is in an uncomfortable and aramped position during his operating hours. 'The reason for building the station as safe as possible is obvious, if you are interested in spending a number of years with your hobby!

- CONVENIENCE

The first consideration in any amateur station is the operating position, which inrlades the operator's table and chair and the pieces of equipment that are in constant use
(the receiver, send-receive switch, and key or microphone). The table should he as large as possible, to allow sufficient room for the re--eiver or recoivers, frequency-meaturing erguipment, monitoring equipment, control switehes, and keys and mierophones, with enough spate hoft over for the loghook, a pad and poncil, and perhaps a large ash tray. Suitable space should he included for radiogram blanks and a call book, if these acoessorios are in frequent use. If the table is small. or the number of pieces of equipment is large. it is often necessary to build a shelf or ratels for the ansiliary equipment, or to mount it in some less convenient location in or under the table. If one has the facilities, a semierircular "console" can be huilt of wood. or a simpler solution is to use two small wooten rabinets to support a table top of wood or Masonite. A flush-type door will make an exere lent table top. Home-built tables or consoles can be finished in any of the available oil stains, varnishes, pants or larquers. Many operators use a large piece of plate glass over part of their table, since it furnishes a good writing surface and can cover miscollaneons charts and tables, prefix lists, operating aids, callendar, and similar arressories.

If the major interests never require frequent band changing, or frequency changiug within a band, the transmitter cath le located some distance from the operator, in a location where the meters can be observed from time to time (and the color of the tube phates noted!). If frequent band or frequency changes are a part

This station shows a logical arrangement of the units, eombined with ade fuate operating space and storage rom for magazines athd lowks. Powor sup)blics and modulator are at the risht, wits amitehes in the tor pianel. Grithe lenk, from left to right, boll-watt ratn-
 arninumen in this station is buil from The Radio Amuterr's Ilantlinok de-

of the usual operating procedure, the transmitter should be mounted close to the operator, either along one side or above the receiver. so that the controls are easily accessible without the need for leaving the operating position.

A compromise arrangement would place the v.f.o. or crystal-switched oscillator at the operating position and the transmitter in some convenient location not adjacent to the operator. Since it is usually possible to operate over a portion of a biud without retuning the transmitter stages, an operating position of this type is an advantage over one in which the operator must leave his position to make a change in frequency.

Controls

The operator has an excellent chance to exercise his ingenuity in the location of the operating controls. The most important controls in the station are the receiver tuning dial and the send-receive switeh. The receiver tuning dial should be located four to eight inches above the operating table. and if this requires momating the receiver off the table, a smail shelf or brarket will do the trick. With the single exception of the amateur whose work is almost entirely in traffic or rag-chew nets, which require little or no attention to the receiver. it will be found that the operator's hand is on the receiver tuning dial most of the time. If the tuning knob is too high or too low. the hand gets cramped after an extended period of operating, hence the importance of a property-lorated receiver. The majority of e. w^{-}. operators tune with the left hand, preferring to leave the right hand free for copying messages and handling the key, and so the receiver should be mounted where the knob can be reached by the left hand. Phone op-
erators aren't tied down this way, and tune the communications receiver with the hand that is more convenient.

The hand key should be fastened securely to the table, in a line just outside the right shoulder and far enough back from the front edge of the table so that the elbow can rest on the table. A good lopation for the semiautomatic or "bug" key is right next to the handkey, although some operators prefer to mount the automatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The best location for the microphone is directly in front of the operator, so that he doesn't have to shout across the table into it, or run up the speech-amplifier gain so high that abll manner of external sounds are picked up. If the microphone is supported by a boom or by a flexible "goose neek," it can be placed in front of the operator without its base taking up valuable table space.

In any amateur station worthy of the name, it should be necessary to throw no more than one switeh to go from the "receive" to the "transmit" condition. In phone stations, this switch should be located where it can be easily reached by the hand that isn't on the receiver. In the case of e.w. operation, this switch is most con veniently located to the right or left of the key, although some operators prefer to have it mounted on the left-hand side of the operating position and work it with the left hand while the right hand is on the kes, Fither location is satisfactory, of course, and the choice depends upon personal preference. Some operators use a foot-controlled switch. which is a convenience but doesn't allow too much freedom of position during long operating periods.

If the microphone is hand-held during

Here's an oprrating ennsole that was designed with operating convenience in mind. W:EBG Pmilt it almost entirely ont of $84^{\prime \prime}$ plyword, with strips of 2×2 along the bottom edyes for caster supporta. It is assenthed with lwits so that it can be readily dismanted for shipping. Orerzall dimensions ate $48^{\prime \prime}$ wide, $401 / 2^{\prime \prime}$ high, with the horizontal desk' top $16^{\prime \prime}$ wide and the aloping portion $15^{\prime \prime}$ wide.
phone operation, a "push-to-talk" switch on the microphone is convenient, but hand-held microphones tie up the use of one hand and are not too desirable, although they are widely used in mobile and portable work.

The location of other switches, such as those used to control power supplies, filaments, phone/c.w. change-over and the like, is of no particular importance, and they can be located on the unit with which they are associated. This is not strictly true in the case of the phone/c.w. DX man, who sometimes has need to change in a hurry from c.w. to phone. In this case, the change-over switch should be at the operating table, although the artual change-over should be done by a relay controlled by the switch.

Fig. 22.1 - In a station assembled for maximum case in frequeney or hand ehanging, the transmitter should be located next to the oprerating position, as shown above. On the operating table, the receiver is in front of the operator and v.f.o. or erystal-switching oseillator on the left. (The v.f.o. or cryatal oscillator could be part of the transmitter proper, but most operators seem to prefer a separate v.f.o.)

The frequeney standard and other auxiliary equip. ment can be mounted on a shelf above the receiver. 'I'he operating table can be an old desk, or a top supported by two small wooden cabinets. The "send-receive" switch is to the right of the telegraph keys - other switehes are on the transmitter or the individual units.

The above arrangement can be made to look cleaner by arranging all of the equipment on the talle behind a single panel or a set of panels. In this case, provision must be made for getting behind the panel for servieing the units.

If a rotary beam is used the control of the heam should be convenient to the operator. The direction indicator, however, can be luated anywhere within sight of the operator, and does not have to be located on the operating table unless it is included with the control.

Frequency Spotting

In a station where a v.f.o. is used, or where a number of crystals is available, the operator should be able to turn on only the oscillator of his transmitter, so that he can spot accurately his location in the band with respect to other stations. This allows him to sce if he has anything like a clear channel, or to see what his frequency is with respect to another station. Such a provision can be part of the "send-reccive"
switch. Switches are available with a center "off" position, a "hold" position on one side, for turning on the oscillator only, and a "lock" position on the other side for turning on the transmitter and antenna relays. If oscillator keying is used, the key serves the same purpose, provided a "send-receive" switch is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillat or frequency.

For phone operation, the telegraph key or an auxiliary switch can control the transmitter oscillator, and the "send-receive" switch can then be wired into the control system so as to control the oscillator as well as the other circuits.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating, examine your station to find what causes the fatiguc. It may be that the chatir is too soft or hasn't a straight back or is the wrong height for you. The key or receiver may be located so that you assume an uncomfortable position while using them. If you get sleepy fast, the ventilation may be at fault. (Or you may need sleep!)

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control circuits will make it an casy job to change units in the station. If the station is planned in this way from the start. or if the rules are recalled when you are rebuilding. you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a single pair of wires from the outlet over to the operating table or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in lig. 22-3. The circuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an inconspicuous point on the operating table, where it terminates in a multiple outlet large enough to handle the required number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything else that is not switched on and off during transmit and reccive periods. The coil power for control relays should also be obtained from this circuit. The power for this circuit can come from a wall outlet or from the transmitter line, if a special one is used.

The third circuit is the one that furnishes

Contest operating is the major interest at this station. and to that end all eontrols are within sasy reach of the opreator. The "tulueleser if.a." to the" left of the reeciver sits: on the powererontrol panel. (Ex-W'20.MO), L.ribomon. I. I., N. J.)
power to the plate-supply transformers for the r.f. stages and for the modulator, (Nee chapter on Power supplies for high-powor considerations.) When it is oprined, the transmitter is disabled exerpt for the filaments, and the tramsmitter should be safe to work on. Jowever, ond alwatys feels safer when working on the transmitter if he has thmed off every power supply pertaining to the tramsmitter.

With these three rimenits established, it beeomes a simple matter to arrange the station for different eombitions and with new units. Anything on the operating table that runs all the time ties into the first rireuit. Any new power supply or r.f. unit gets its filament power from the serond cirenit, Since the thimd circuit is controlled by the send-receive switeh (or relay), any power-sumply primary that is to be switched on and off for sond and receive commets to cireuit No. 3.

Fias. 22.2- When litule space is a a alatole for the ama. teur station, the equipmernt hats to twe spotted where it will fit. In the abose arrangement, the transmitter. montalator amb powor supplifes (separate units) are sambwiched in alomgside the oprerating tahle and on a shelf alove the table, The amtemat tming anit is momented oser the feed-thromgh insulators that bring the anteman line into the "shack." and lowdoneaker and small power supplies are mounted under the table 'ITwe operating position is dean, howeser, with the w. fo. roreiver and keys at talle level. 'The toming knol, of this receiver would be uncomfortatbly low if the receivar waren't ratised by the wondon areh. athed ihe "send-riereive" witch is mounted ont the rixbt-hame side of thio arch. next to the hand kes: Intercomberting leade should lee eabled along the bach of the table amb table leges, to keep, them ineonspicuons.

Break-In and Push-To-Talk

In c.w. "poration. "break-in" is any system that allaws the tramsmitting operator to hear the other station's signal during the "kev-up" periods between characters and letters. This allows the semding station to be "hroken" by the receiving station at ally time, to shorten ralls, ark for "fills" in messages. and speed up "peration in general. With present terhnigues, it reguires the use of a separate reociving antenna or a "The box" and, with high power. some means for protereting the rereiver from the tramsmitter when the key is "down." Several mothouls, applirable to high-power stations, are deseribed in (hatpter Bight. If the transmitter is fow-powered (50 watt: or sot), no sperial equipment is required except the separate rocoiving antenna and a recoiver that "reoovers" fast. Where break-in operation is used, there should be a switch on the operating table to turn off the plate supplies when adjusting the osillator to a new frequence although during all break-in work this switeh will be elosed.
"Push-to-talk" is an expessiun derived from the "push" switchon some miderphones. and it means a phone station with a single control for all rhange-over functions. Striotls speaking, it should apply only to a station where this single semb-reweive switch must be hed in plate during tramsmission periods, hut any fast-acting witch will give practically the salme effert. A rontrol switrh with a center "off" position, and one "hold" and one "locks" prsition, will give more flexibility thath a straisht "push" switch, The one switeh must control the transmitter power supplies, the reeriver "om-off" circuit and if one is used, the antemat change-over relay. The receiver control is meressans to disable its ontput daring temsmit promeds, to avoid aroustie feredtach.

Switches and Relays

It is dangerons to use an overloaded switeh in the power eircuits. After it has been used for some time, it may fail. leaving the power on the cireuit even after the switeh is thround to the "off" position. Fior this reason. large switches. or relays with aldequte ratings, should be used to control the plate power. Relays are rated by
coil voltages for their comtrol (irenits) and by their contad chrment ratians.

When relays athe used, the semberexive switeh closes the cirenit to their eroils. thas dosing the relay eontacts. The relay contacts are in the power airenit boing contmoled. and thus the switeh hamdles only the relay-coil rurrent.

SAFETY

Of prime importance in the layout of the station is the persomal satiety of the uperatos and of visitors, invited or otherwise, daring normal operating pratice. If there are smatl Whildren in the honse. every step must be taken to prevent their aceidental contan with power leads of any voltage, A herked rom is a fine ideat, if it is possible, otherwise housing the tansmitter and power supplies in metal rabiHets is an expellent, althengh expensiver, somtion. Saloking a motal cabinct, a wooden cabibet or a woden framowork eovered with wire serenen is the next-hest solution. Many stations hawe the power supplies housed in metal rabilates in the operating foom or in at eloset or bascmont, and this abinet or entry is kept lonked - with the kes out of reach of everyone but the operator. "the power leads are ran through embluit the themsuitter, msing ignition cable for the high-voltage leads. If the power supplies and tramsuntery are in the same "abinet a lonk-type main switeh for the ineommen lime power is a mond preantion.

1 simple substitute for a lock-type main switch is an ortinary line phug with a short
connereting wite betwern the two pins. By wining a female reroptache in sorios with the main power line in the transmitter, the short ing plug will act as the main satety lock. When the phag is removed and hiddon, it will be impossible to encrgize the transmitter, and a st ranger or child isn't likdy to spot or susperet the open receptarele.

An cescontial adjunet to any station is a shorting stick for discharging athy high voltage tog ground before any work or coil changing is Howe in the transmitter. Even if interloeks and power-supply bereders are used, the failure of one or more of these components maty leatve the tamamitter in a dangerous combition. The shorting stick is made by mounting a smal metal hook, of wire or rod. on one end of a dry stick or bakelite rod. I pioere of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common groumd of the tramsmitter, and the stick is humg alongside the tramsmitter. Whonever the power is turned off in the transmittor to work on the rig, or to change coils, the short ing stick is first used to toud the serobal high-voltage loads (tank eaparitor, filter capacitor, tube phate ronmection. ete.) to insure that there is no high voltage at any of these points. This simple device has saved many a life. Lese it!

Fusing

A minor hazart in the amatear station is the posibility of tire throush the falure of a component, If the failure is complete and the componemt is large, the house fuses will gene

A mondern home-male cabinet ran be nised to house the entire station if it is designed closely around the transmitter
 Iotat one-inch air puse should be left around cach unit for air circulation and. for the same reason. the backe of the compartment- should be left open, 'The reeciver compartment also bouses the microphone, hey, (biser and -witch control pancl. (IV' $1 \mathrm{KZ} / \mathrm{F}^{\prime}$, Ludlow, Kv.)

crally blow, However, it is unwise and inconvenient to depend upon the house fuses to proteet the lines running to the radio equipment, and every power supply should have its primary cireuit individually fused, at about 150 to 200 per cent of the maximum rating of the supply. Circuit brakers cam be used instead of fuses if desired.

Wiring

Control-eircuit wires running between the operating position and a transmitter in another part of the room should be hidden, if possible. This can be done by running the wires under the floor or behind the base molding, bringing the wires out to terminal boxes or regular wall fixtures. Such construction, however, is generally only possible in claborate installations, and the average amateur must content himself with trying to make the wires as ineonspicuous as possible. If several pairs of leads must be run from the oporating table fo the transmitter, as is generally the case, a single piece of rubber- or vinyl-covered multiconductor cable will always look noater than sereral pieces of rubber-covered lamp cord, and it is much easier to sweep around or dust.

The antenna wires always present a problem, unless coaxial-line feed is used. Open-wite line from the point of entry of the antenna line should always be arranged neatly, and it is generally best to support it at several points Many operators prefer to mount their antennatuning assemblies right at the point of entry of the feedline, together with an antemma changeover relay (if one is used), and then the link from the tuning assembly to the tranimittor can be made of inconspicuous coaxial line or

Twin-Lead. If the transmitter is mounted near the point of entry of the line, it simplifies the problem of "What to do with the feeders?"

Underwriters' Code

The National Electrical Safety Code, Pamphlet 70. Standard of the National Board of liere Underwriters deals with clectric wiring and apparatus. The Code was set up to protect persons and buildings from the celectrical hazards arising from the use of edeetricity, radio, ete. Artiele 810 is cotited "Radio Equipment." The seope of this article, section 8101, says, "The artide applies to radio and television receiving equipment and to amatour radio transmitting equipment, but not to the equipment used in carrier-rurrent operation."

The Boand of Fire Conderwriters sets up the code as a minimum standard for good praticer. Dost cities adopt the eode, or parts of it, either antirely or with certain amendments which maty apply to that particular city. It is up to the city to enforere these rulas. When a violation is reported, periodie chereks arr made by an inspertor until a corrertion is made and to insure against future recurroner. The National Electrie Code is only a minimum standard, and compliance with its males will assure less operating failures and hazards, and greater safety

A coper of the pamphlet is available by writing the National Joatrd of Fire Cinderwriters in vour city. or at 85 John Street, Now York 38, New York. Ask for pamphlet No, 70.
l'arts of the Underwriters' Code deal with power witing and, in addition to the requirement of the use of Underwriters laboratory approved materials and fittings have the following to say of dired intorest to amatemes:

Athough the operating console pietured helow is a pretty large itemas it stames, the methon of remstrurtion is such that it can be brohen down into three eavily-mosable sections. WIRIL built this from 2×2 stock for the frames. $1 / 2$-inch ply wend for the desh top, and masonite for the sides and tops, (arefal finishing (plent y of elhow grease with sandpaper and a good paint job), together with a formica top and some chrome trim, produces a very striking eonsole, Setups such as this can make your ham operating a real pleasure.

Fig. 22.3 - Power circuits for a high-power station. A shows the outlets for the receiver, monitoring equipment, speech amplifier and the lihe. The oullets should lie momnted inconspicuously on the operating table. B shows the transmitter filament circuits and control-relav circuits, if the latter are used. Co showa the phte-tratsformer primary circuits, controlled by the power relay. Where 230 - and 11.5 -volt primarics are controlled simultaneously, point " X " should conncet to the "neutral" or common. A heavy-duty switeh can be used instead of the relay, in which case the antenna relay would be connected in circuit C.

If 115 -wolt pilot lamps are used, they can be connected as shown. Lower-voltage lamps must be connected across suitable windings on transformers.

With "push-to-talk" operation, the "send-receive" switch can be a d.p.d.t. affair, with the second pole controlling the "on-off" circuit of the receiver.
"All switches shall indicate clearly whether they are open or closed.
"All (switeh) handles throughout a sustem . . . shall have uniform open and elosed positions.
". . . supply circuits shall not be designed to use the grounds normally as the sole conductor for any part of the cireuit."

The latter means that wire conductor should be used for all parts of the power circuit. Dependence should not be placed on water pipes, ete., as one side of a circuit.

General

You can check your station arrangement by
asking yourself the following questions. If all of your answers are an honest "l'es," your station will be one of which you can be proud.

1) Is your station safe, under normal operating conditions, both for the operator and the visitor?
2) Is the operating position comfortable, even after several hours of operating?
3) Do you throw not more than one switeh to go from "receive" to "transmit"?
4) Does it take only a short time to explain to another amateur how to work your station?
5) Do you show your station to visiting amateurs or laymen without apologizing for its appearance?

BCI and TVI

Every amateur has the obligation to make sure that the operation of his station does not, berause of any shorteonings in equipment, cause interference with other radio serviees, It is unfortunately true that much interference is direetly the fatult of browdrast and TV reerober construction. Nrevertheless, the amateur can and should help to alleviate interference even though the responsibility for it does not lie with him.
sucressful handling of interference cases roquires wiming the listemers cooperation. Here are a few pointers on how to go about it.

Clean House First

The first step) oloviously is to make sure that the transmitter has no ratiations outside the bands assigned for amaterur use. The best cherek on this is your own atm. or TV recelver. It is alwates convincing if you can say - and demonstrate that vou do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto umused hand or type of emission - that might be expected to change the interferener situation, chere with your neighbors. If no one is experiencing interference, so much the better: it dows no harm to keep the neighomhood aware of the fact that you are operating without bothering anyone.

Should you change location, announce your presence and conduct occasional tests on the air, requesting ancone whose reception is being spoiked to let you know about it so steps maty be taken to eliminate the trouble.

Act Promptly

The average person will tolerate a limited amount of interference, but no one can be expeeted to pat up with frequent and extemed interruptions ${ }^{0} 0$ programs. The sooner you take steps to eliminate the interferenee the mure agrexable the listener will be: the longer he has to wait for you, the less willing he will be to coopurate.

Present Your Story Tactfully

When you interfere, it is natural for the eomplainant to assume that pour transmitter is at fatult. If you are certain that the trouble is not caused by harmonics or other spurious emissions from vour transmitter, explain to the listener that if it is simply the presence of your strong signal on his rereiving anteunat that ratuses the difficulter, and that some modifieations will have to be marle in the receiver if he is to expect inter-ferenco-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all posisible. entist the help of another amat eur and have him operate your transmitter while you soe what happens at the affected receiver. You can then detemane for yourself where the trouble is most likely to be.

Avoid Working on the Receiver

If your tests show that the fault has to be remedied in the receiver itself, to not offer to work on the receirer. It is not vour fault that the reoriver design is defertive. Recommend that the work be done be a reliable serviceman, and offer to advise the latter as to the cause and cure if necessary.

In General

In this "public relations" phase of the probLem a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what you say about the receiver - no one takes kindly to hearing his possessions derided. If you diseuss your interference problems on the air, to it in a constructive wayone caldulated to increase listener cooperation, not destroy it.

Causes and Cure of BCI

Interforenoe with a.m. broadeasting usuatly falls into one or more rather woll-defined categories. A knowledge of the general types of interference and the methods requived to eliminate it will lead to a rapid apprasal of the situation athd will avoid much cut-and-tre in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitio oscillations are a frequently unsusperted
source of such radiations, and no transmitter can be considered satisfactory ant it has been thoroughly charked for both low- and highfrequency parasitics. Vory often parasities show up only as transients, ratusing key clicks in c.w. transmitters and "splashes" or "burps" on modulation peaks in atm. tranmitters. Methods for deterting and eliminating parasitics are diselused in the trammitter chapter.

In c.w. fransmitters the sharp make amil break that occurs with unfiltered keying causes
transients that, in theory, contain frequency components through the entire radiospect rum. Practically, they are of en strong enough in the immediate vidinity of the transmitter to cause serious interference to broadenst reception. Kary elicks (an be eliminated by the methods detailed in the chapter on keying.

A distinction must be made between clicks generated in the transmitter itself and those set up by the mere opening and closing of the key contacts when current is flowing. The latter are of the same nat ure as the clicks heard in a receiver when a wall switeh is thrown to turn a light on or off, and may be more troublesome nearbe than the clicks that act ually go out on the signal. I filter for climinating them usually has to be installed as close as possible to the key contacts.

Overmodulation in a.m. phone transmitters generates transients similar to key clicks. It ean be prevented cither by using atomatic systems for limiting the modulation to 100 per cent, or by eontinuously monitoring the modulation. Wethods for both are deseribed in the chapter on amplitude modulation. In this connection, the term "overmodulation" means any type of nomlincar modulation that resalts from overloading or inaderpate design. This can oreur even though the actual modulation percentage is loss than 100.

BCI is frequently made worse by ratiation from the transmitter, power wiring, or the r.f. transmission tine. This is because the signal causing the interference, in such cases, is radiated from wiring that is noarer the broadeast receiver than the antenna itself. In such cases much depends on the mothod used to couple the transmitter to the antemal, a subject that is discussed in the chapters on transmission lines and antemas. If it is at all possible the antemma itself should be placed so that it is not in close proximity to house wiring, telophone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Relatively few superhet brondeast receivers have any r.f. amplifieation preededing the mixer, so that the selectivity at the signal frequency is not especeitally high. The result is that strong signals from nearhy transmitters, wen though the transmitting frequency is far removed from the broadeast hand, can fore themselves to the mixer grid. They will normally be eliminated by the i,f. selectivity exeept in cases where the transmitter freguence is the image of the broadeast signal to which the reeciver is tuned, or when the transmiter frequency i so related to a harmonic of the hroadeasi recuiver's local oscillator as to produce a beat at the intermediate frequence:

These imane and oscillator-harmonic responses tune in and out on the broadeast rereiver dial just like a broadeast signal, exerept that in the case of harmonic response the tuning rate is more rapid. since most receivers use in intermediate frequency in the neighbor-
hood of 450 kr ., the interference is a true image only when the amateur transmitting frequency is in the 1750-ke. band. Oscillator-harmonic responses occur from 3.j- and 7-Mc. transmissions, and sometimes even from higher frequencies.

The problem is to reduce the amplitude of the amateur signal in the front end of the BC reroiver. If the receiver uses an external antenna a wavetrap at the receiver antema terminals may help. It may atso be helpful to reduce the lengt h of the receiving antema - and particularly to avoid a longth that might be noar resonance at the transmitter frequency - or to change its direction with respert to the transmitting antenma. If the signal is being picked up by the antemat it will disappear when the antenna is discomereded. If it is still presont under these circumstances the pick-up is in the set wiring or the power circuits. A line filter may be tried for the latter. Pick-up, on the set wiring ean only be cured bev installing some shielding around the r.f. "ireuits. (opper window sereening eut and fitted to size will usually do the trick.
since images and harmonic responses occur at definite frequencies on the receiver dial, it is always possible to choose an operating frequeney that will not give such a response on top of the broadeast stations that are favored in the vicinity. While your signal may still be heard when the reeriver is tuned off the local stations, it will at least not interfere with program reception.

Cross-Modulation

With phone transmitters, there are occasionally cases where the voice is heard whenever the broadeast receriver is tuned to a BC station, but there is no interferrnce when tuning between stations. This is cross-modulation, a result of rectification in one of the early stages of the reeciver. Recrivers that are susceptible to this trouble usuatly also get a similar type of interference from regular broadeasting if there is a strong local BC station and the receiver is tuned to some other station.

The remedy for cross-modulation in the rereiver is the same as for images and oseillatorharmonic responses - reduce the strength of the amateur signal at the receiver by means of a wave-trap, line filter, or shielding, as required. The trouble is not ahwas in the recerver, however, since cross modulation can oceur in any rectifying dircuit - such as a poor contart in water or steam piping, gutter pipes, ind other conductors in the strong field of the transmitting antema.

Audio-Circuit Rectification

The most frequent cause of int erference from operation at the higher frequencies is from rectification of a signal that by one means or another gets into the audio system of the receiver. In the milder cases an amplitudemodulat ed signal will be heard with reasonably good quality, but is not tunable - that is, it is present no matter what the frequency to
which the receiver dial is set. An unmodulated carrier may have no observable effect in such cases beyond causing a little hum. However, if the signal is very strong there will be a reduction of the audio out put level of the receiver whenever the carrier is thrown on. This causes an annoying "jumping" of the program when the interfering signal is keyed. With phone transmission the change in audio level is not so objectionable because it occurs at less frequent intervals. Also, ordinary rectification gives no audio out put from a frequency-modulated signal, so the interference can be made almost completely unnoticeable if f.m. or p.m. is used instead of a.m.

Interference of this type is most prevalent in a.c.-d.c. receivers. The pickup may occur in the audio-circuit wiring or the interfering signal may get into the audio circuits by way of the line cord. Power-line pickup ean be treated by means of line filters, but pirkup in the receiver wiring requires individual attention. Remedies that have been found successful are described in the sections following.

CHECKING AND CURING BCI

When a case of broadcast interference comes to your attention, set a definite time to conduct tests and then prepare to do the job as expeditiously as possible. As suggested before, got another amateur to operate your transmitter while you do the actual observing and testing at the listener's receiver. If you have a small broadcast receiver of your own that does not show interference, take it with you to demonstrate to the listener that the trouble is not in your transmitter but in his receiver. The procedure outlined below will save time in getting at the source of the trouble and eliminating it.

1) Determine whether the interference is tunable or not. This will usually indicate the methods required for elimination of the trouble, as it will show which of the general types of interference discussed above is present.
2) If the set has an external antenna, disconnect it and turn the volume control up full. If the interference is no longer present, it is merely necessary to prevent the r.f. appearing on the antenna from entering the set. If wave traps reduce the amplitude of the interfering signal but do not eliminate it entirely, try a short piece of wire as a receiving antenna. Alternatively, the antenna may be relocated. It should be placed as far as possible from the transmitting antenna, and should run at right angles to it to minimize coupling.
3) If the interference persists after the antenna is disconnected, check for r.f. on the power line by using a sensitive wave meter such as that described in the chapter on measurements to probe along the a.c. cord that connects the set to the power source. (This test also should be made with receivers using built-in loops.) Checks should be made at the transmitter frequenc y, and also at harmonic frequencies. If r.f, is cletected in
the line, bypass both sides of the acc. line to ground with 0.005- μ. ceramic capacitors at the point where the line cord enters the set. (A) simple plug-and-socket adapter can be made up for this purpose.) If this does not completely eliminate the interference, try a line filter designed for the operating frequency.
4) If it is evident that the interference is being pieked up on the receiver wiring, explain the situation to the owner and tell him that the exact cause cannot be determined without removing the chassis from the cabinet, and that, in any event, the receiver will have to he modified if the interference is to be eliminated. Recommond that the actual work be done by a radio serviceman. Offor to check into the cause yourself, if he will allow you to take the set to your shop) (with the understanding that you will not make any changes in the receiver without his (xpress permission) so the serviceman can be told what needs to be done.

Fig. 23.1-Two methols of eliminatine r.f. from the grid of a combined detector/firit-audio stake. At A, the value of the yrid leak is reduced to 2 or 3 megohm: and a mica bypass capacitor is added. At B, hoth grid and cathode are hypassed.
5) In the event that the owner allows you to take the receiver, set it up near your transmitter and check to see if the amplitude of the interfering signal is changed by various settings of the receiver volume control. If it is, the r.f. is ontering the sot ahead of the volume control. If it is unaffected by the volume control, it is getting into the audio stages at a point following the volume control.
6) Pin the source down, if it is ahead of the volume control, by removing one tube at a time until one is found that kills the interference when it is removed. In sots using seriesconnected filaments, this will be possible only if a tube of equal heater rating, and with ail but the heater pins clipped off, is substituted for the tube.
7) Determine which element (or elements) of the tube is picking up the interference by touching each tube pin with a test lead about three feet long. The lead, acting as an antenna, will cause the interference to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have been determined, the trouble can be eliminated by shielding the leads connected to the tube element that is affected, and by shielding the tube itself. Grid leads are the principal offenclers, especially the long leads that run
from a tube cap to a tuning capacitor terminal.
8) If the pickup is found to be in the audio system - as is the case in many sets, especially when the transmitter is operating at 28 Mc . or higher - it can be eliminated by one or another of the methods shown in ligs. 23-1 and

Fig. 23.2 - l sing a B . (0)O-ohm resistor to form a low-pass litter with the tube capacitance. The resistor must he mounted at the tule ping, between the grid and all wother grid eonnections.

23-2. Fig. 23-1A is a method that has proved successful with many a.c.-d.c. receivers. The value of the grid leak in the combined detector/first-audio tube (usuatly a 12 s (27 or its equivalent) is reduced to 2 or 3 megohms. The grid is then bypassed for r.f. with a $250-$ $\mu \mu$ f. mica condenser. Fig. 2:3-113 is a similar mothod. A third method that has worked in a.c.-d.c. receivers requires only that the heater of the detector/first-atudio stage be bypased to ground with a $0.001-\mu \mathrm{f}$. capacitor. The method shown in lig. 23-2 uses a 75,000 -ohm $1 / 2$-watt resistor to form, with the tube capacitance, a low-pass filter. The resistor is connerted betwern the grid pin of the tube and all other wires conneded to the grid. In all cases, both sides of the ate. line should be bypassed to chassis with 0.001- to 0.01- $\mathrm{\mu f}$. capateitors.

Wave Traps and A.C. Line Filters

A wave trap eonsists of a parallel-tuned circuit that is connected in series with the broad-

Fig. 23.3 - A simple wave trap cireuit. I. and C must resinate at the frequency of the interfering signal. suitable eonstants are tabulated below.

Band	C	L	
3.5	$1110 \mu \mathrm{f}$.	$16, \mu \mathrm{~h} . .32 \mathrm{tarns}$	m2, 1', diam., ${ }^{\prime \prime \prime}{ }^{\prime \prime}$ lang
7	101) $\mu \mu \mathrm{f}$.	${ }^{6} 1910$	H22.1" ${ }^{\prime \prime}$
14	$50 \mu \mu$ ¢	3.511	\#18. $1^{\prime \prime}$ I', ${ }^{\prime \prime}$
21	3.5 , $\mu \mu \mathrm{f}$.	2.212	\#18.1", ${ }^{\prime \prime \prime}$
28	$25 \mu \mu \mathrm{f}$.	1.50	\#18, 1" ${ }^{\prime \prime}$

cast antenna and the antenna post of the receiver. It should be dexigned to resonate at the frequency of the interfering signal. The eireuit of a simple trap is shown in Fig. 23-3. If interference results from operation in more than one amateur band several traps may be connected in series, each tuned to the center of one of the
bands in which operation is contemplated. To adjust the wave trap, have another licensed amateur operate the transmitter while you tune the trap for maximum attenuation of the interference.

A common form of a.c. line filter is shown in Fig. 23-4. This type of filter will usually do some good if the signal is being picked up on the house wiring and transferred to the set by way of the line cord. The values used for the coils and capacitors are in gencral not critical. The effectiveness of the filter will depend consideratly on the ground comnection used, and it may be necessary to try grounding to several different possible ground connections to secure

Fig. 23.4 - A.c. line filter for receivers. The values of C_{1}, C_{2} and C_{3} are not generally eritical; capacitances from 0.001 to 0.01μ f. can be used. L_{1} and L_{2} can be a 2 -inela winding of No. 18 enameled wire on a balfoinch diameter form.
the best results. A filter of this type will usually not be very helpful if the signal is being picked up on the line cord itself, which may be the case when the transmitter is on v.h.f. In such a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Irig. 23-5 is often more effective than the untuned type when only one frequency needs to be climinated. After installation, the condenser is simply adjusted to reduce the interference to the greatest possible extent. It is advisable to mount either type of filter in a small shield box, to prevent pickup in the filter and to make it less conspicuous.

Fig. 23.5-Resonant filter for the a.e. line. A single capacitor totoes hoth L_{1} and L_{2}, which are unitycoupled, one wound on top of the other. Constants for amateur hands are tabulated below.

Band	C	$L_{1} \cdot L_{2}$
3.5	$\begin{gathered} 110+1.50 \\ \text { (lixed) } \end{gathered}$	25 t . No. 18. $11 / 4^{\prime \prime}$ dia. $\times 23 / \mathrm{g}^{\prime \prime}$ long
7	$110 \mu \mu$.	
11	$1010 \mu \mathrm{f}$.	12 t. No. 18, $11 / \mathrm{m}^{\prime \prime}$ dia. $\times 28 \mathrm{~m}^{\prime \prime \prime}$ long
21	$50 \mu \mu f \text {. }$	10 t. No. $18,11_{4}^{\prime \prime}$ dia. $\times 23^{\prime \prime}$ long
28	$2.5 \mu \mu \mathrm{f}$.	

[^4]
Interference with Television

Intorference with the reception of television signals usually presents a more difieult probnem then interference with atm. broudensting. In BCOI cases the interference almost always can be attributed to deficient selectivity or spurious responses in the BC receiver. While similar deficiencies exist in many television receivers, it is also true that amatour tramsmitters gonorate harmonics that fall inside many or all telerision
chamels. There spurious radiations cause interference that ordinarily (:ammot be eliminated by anything that may be done at the receiver, so must be prevented at the transmitter itself.

The over-all situation is further complicated by the fact that television broadeasting is in three distinet bands, two in the v.h.f. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his transmitting on frequencies loblow 30 . We the 'TV' band of principad interest is the low v.h.f. band betwern 5) and 88 Ne. If harmonic matiation ratu be reduced to the point where no interferener is catused to Chamels 2 to (i, inclusive, it is almost certain that any harmonic troubles with channels above $17+\mathrm{Me}$. will disappear also.

The relationship between the v.h.f. television chamels and hamonies of amateur bands from $1+$ through 28 Mr. is shown in Fig. 2:3-(i, Jarmonios of the $\overline{-}$ - and 3.5-Mc. hands are not shown because they fall in every television channel. Howrver, the harmonies above 51 Me. from these bands are of such high order that they are usually rather low in amplitude, although they may he strong onough to interfere if the television receiver is quite close to the amaterur transmitter. Low-order harmonies - up to about the sixth are usually the most difficult to climinate.

Of the amateur v.h.f. bands, only $\overline{0} 0$ Me. will have hamonics fatling in a v.h.f. television channel (ehamels 11, 12 and 1:3). IIowever, a transmitter for any amatour v.h.f. band may camse interference if it has multiplier stages sither tuned to or having harmonies ith one or more of the v.h.l'. TV chammels. The r.f. energy on such frequentcies can be radiated dirertly from the tramsmitting circuits or coupled bey stray means to the transmitting antenna.

Frequency Effects

The degree to which transmitter harmonics or other undesired radiation actually in the TV channel must be suppressed depends principally on two fartors, the strength of the 'TV signat on the chamel or chammels affected, and the relationsinip between the frequency of the spurious ratiation and the frequencions of the 'TV pieture and somul carricos within the channel. If the T'V' signal is very strong, interference can be eliminated by
comparatively simple methors. Inowerer, if the TV signal is vory" woak, as its "fringe" aroas where the recoived piofure is visibly degraded by the appearance of set moise or "snow" on the serem, it may be neressary to go to extreme measures,

In either case the intensity of the interferenes depends very gratly on the exart fregueney of the interfering signal. liig. 2:3-7 shows the placement of the pieture and sound carriers in the standard TV channel. In (Chamel 2, for example, the picture carrier frequency is $5!+1.25=$ 55.25 Me. and the sound camber frequency is $60-0.25=59 . \overline{5} \quad$ Me. The serond harmonic of
 $5 t=2.02 \mathrm{Al} \cdot$, above the low edge of the chamel and is in the region marked "severe" in Fig. $2: 3-\overline{6}$. The the other hand, the seromed harmonic of $29,500 \mathrm{kc}$. ($59,000 \mathrm{kc}$, or $59 \mathrm{M}(\cdot)$) is $5!-\overline{5} \boldsymbol{5}=5$ Me. from the low edge of the chanmel and falls in the region matred "Mild." Interforenere at this frequency has to be about 100 times ans strong ats at $\overline{50}, 020 \mathrm{kr}$. to cause rlferts of equall intemsity.

Fig. 2:3-6 - Relationship of amateme. hame hatmonues to v.h.f. 'T ehammels. Harmonide interferme from transmiters opratimg lerlow 30 Ver is most lihely 10 lee serious in the low chanmel gromp (51 to 88 Me .).

 relative intusity of interferane ath the lowation of the imterfering siknal within the channel is variod without changing its atrength. The three regions are wot arthatly sharply defined as shown in this drawink. lut merge into ome another prathatlys.

Thus an operating frequeney that puts a hamonic: near the pieture carrior requires about to dhe more harmonid suppression in order to avoid interforence as compared with an operating Prequeney that puts the hamonic noar the upper edge of the chammel.
For at region of 100 kr . on wo exther side of the sound carrior there is another "sovere" region Where at spurious radiation will interfere with recrption of the sound program, and this region atso should tre awoded. In gencrat. at sigmal of intensity orpal th that of the pieture carrier will
 is in tho "Mild" region Shown in fig. 2:3-7, but the same intemsity in the "severe" region will uthery destroy the pieture.

Interference Patterns

The visible eflome of interforener vary with the tyer and intensity of interferonere (omplete "blackout," where the pieture and sennd dimappear eomplotedy, beaving the serem dark, oceurs only when the trammitter and beceiver
 dinarily causes the pietme to be broken up, leaving a jumble of light and dark lines, or turns the picture "negative" - the momatly white parts of the picture turn hatek and the normatly batek parto burn white "(ross-hatchimg" - diagomal hats or lines in the pieture - accompanies the

F'ig. 23-8 - "Cross-hatching," catherd by the beat lie. twere the pioture carrior and ant interforing signal inside the I' chamel.
lattor, usually, and alsorerements the most common type of less-severe interference. The hats are the result of the beat between the hamonice fregueney and the pieture carter freduenes: They are broad and redatively few in number if the beat froguencer is comparatively low - near the pirture carrior - and are numerous and very
fine if the beat frequeney is very high - towad the upper end of the chamer. Typiral aroshatrhing is shown in Fig. 2:3-8. If the frequeney falls in the "Mild" region in Fig. 2:3-7 the crosshatehing may he so fine as to be visible only on Close inspertion of the pioture, in which case it maty simply canse the apparent brightness of the seren to dhange when the tramsmitter carrier is thrown on and ofr.

Whether or not eross-hatrhing is visible, ath amplitude-modulated transmittor may caluse

Fig, 23-9 - "sonnd bars" or "modulation bars" adeompansing amplitude modulation of an interfering signal. In this rase the intorfering rarrier is strong emongh to destroy the picture. lut ir mild cases the picture is visible thromph the horizontal bars. Somed hare maty aconmpany modulation even thomgh the unnodulated carrior kives no viaible cros-hatehing.
"soumd hars" in the pieture. These look about as shown in fig. 2:3-9. They result from the varibtions in the intensity of the interfering signal when modulated. Coder most rircumstanes modulation bars will not oedur if the amateur transmittor is frequency- or phasemondutated. With these types of moxulation the aross-hatehing will "wiggle" from side to side with the modulatiom.

Fixerpt in the more serore cases, there is seldom any efferet on the sound reeption when interforenee shows in the pieture, undes the frequancy is quite dose to the somed carrier. in the latter evont the sound may be interfered with even though the pieture is clean.

Reference to Fig. 2:3-6 will show whether or not harmonies of the frequency in use will fall in any television chanmels that can be recerived in the Iowality. It should be kept in mind that not only hamonies of the final fregueney may intorfere, hut also harmomis of any frequencios that may be present in buffer or frequency-multiplier
stages. In the case of $1+4-M c$. transmitters, fre-quency-multiplying combinations that require a doubler or tripler stage to operate on a frequency actually in a low-band v.h.f. channel in use in the locality should be avoided.

Harmonic Suppression

Fffective harmonic suppression has three separate phases:

1) Reducing the amplitude of harmonics generated in the transmitter. This is a matter of circuit design and operating eonditions.
2) Preventing stray radiation from the transmitter and from associated wiring. This requires adequate shiclding and filtering of all circuits and leads from which radiation ran take place.
3) Preventing harmonics from being fed into the antenna.

It is impossible to build a transmitter that will not generate some harmonics, but it is obviously advantageous to redure their strength, by aircuit design and choice of operating conditions, by as large a factor as possible hefore attempting to prevent them from being radiated. ILarmonic radiation from the transmitter itself or from its assoriated wiring olsviously will cause interference just as readily as radiation from the antenna, so measures taken to prevent harmonies from reaching the antenna will not reduce TVI if the transmitter itself is radiating harmonies. But once it has been foumd that the transmitter itself is free from harmonic radiation, devices for preventing harmonics from reaching the antenna can be expected to produce results.

REDUCING HARMONIC GENERATION

Since reasonably-efficient operation of r.f. power amplifiers always is accompanied by harmonic generation, good judgment calls for operating all frequeney-multiplier stages at a very low power level - plate voltages not exceeding $2 \overline{3} 0$ or 300 . When the final output frequency is reached, it is desirable to use as fow stages as possible in reathing the output powor level, and to use tubes that require a minimum of driving power.

Circuit Design and Layout

Harmonic currents of considerable amplitude flow in both the grid and plate circuits of r.f. power amplifiers, but they will do relatively little harm if they can be effertively bepassed to the a athode of the tube. Fig. 2:3-10. A shows the paths followed by harmonic currents in an amplifier circuit; because of the high reartance of the tank coil there is little harmonic current in it, so the harmonic currents simply flow through the tank capacitor, the plate (or grid) blocking capacitor, and the tube capacitances. The lengths of the leads forming these paths is of great importance, since the inductance in this circuit will resonate with the tube capacitance at some frequency in the v.h.f. range (the tank and blocking capaci-
tances usually are so large rompared with the tube capacitance that they have little effert on the resonant frepurney). If such a resonathere happens to oceur at or mear the same fredueney as one of the transmitter harmoniss. the effeet is just the same as though a harmonie tank circuit

Fig. 23-10-(A) I v.h.f. resomant cirnuit is formed bs the tube eapacitance and the leands through the tank and boreking rabacitors. Repular tank cobls are not shown, since they has little effere on medt resonatures, (B) I sing low-inductance caparitorz shanting the tubr elements to lower the resonamer point below the 'IV
 of vacuum or tubular construction.
had been deliberately introdued; the harmonic at that frequency will he tremendously increased in amplitude.

Such resonanees are unavoidable, but by keeping the path from plate to cathode and from grid to cathode as short as is physically possible, tho resonant frequency usually can be raised above 100 Mc . in amplifiers of modium power. This puts it between the two groups of tele visiom chanmels.

In low-frequency transmitters where physi-cally-short retum paths from plate or grid to cathode are difficult because of the shape and size of tubos and tank caparitors, the arrangement shown in Fig. 2:3-10B is frequently helpful. Caparitors (${ }_{5}$ and (${ }^{6}$ should be of the vachum or tubular type and should be mounted as close as possible to the tube connections. They form resonant rircuits in themselves with the tube capacitanee, but generally at a sufliciently high frequeney so that no ham is done. At lower frequencies than this self-resonanere, they offectively add to the tube capacitanee and thus tume the inductance of the leads through the regular tank and horking caparitors to a considerably lower frequency than the tube alome. The resonaner therefore ran be shifted to a fregueney below it Me. and again is outside the TV range. This mothod is most useful at 3.5 and 7 Mc. because it increases the tank capacitance to the point where there may be very little tank coil left, at the higher frequencies.

It is easier to place grid-circuit v.h.f. resonances where they will do no harm when the amplifier is link-coupled to the driver stage, since this gencrally permits shorter leads and more favorable conditions for bypassing the harmonics than is
the case with capacitive coupling. Iink coupling also reduces the coupling between the driver and amplifier at harmonic frequencies, thus preventing driver harmonics from being amplified.

The inductance of leads from the tube to the tank capacitor can be reduced not only hy shortening but be using flat strip instead of wire conductors. It is also better to use the chatsis as the return from the borking capacitor to cathoule. since a chassis path will have less inductance than almost any other form of eomection.

The v.h.f. resoname points in amplifier tank circuits can be found be coupling a grid-dip meter covering the $50-250$ Me. range to the grid and plate leads. If a resonance is found in or near a TV chammel, mothods such as those deseribed above should be used to move it well out of the TV range. The grid-dip moter also should be used to check for v.h.f. resonatuees in the tank coils, because coils made for 14 Mc . and below usually will show such resonames. In making the rheek, diseonnect the coil entirely from the transmitter and move the griddip meter coil along it while exploring for a dip in the 5 t-k8 Me hand. If : resonance falls in a TV chanmed that is in use in the locality, changing the number of turns will move it to a frequency where it will not be troublesome.

In many ref amplifiers the cathode eonnection of the tuk is below chassis while the plate (and somotimes the grid) connertion frequently is above. In such it case the blocking capacitor should be mounted below ehassis. If the ground roturn is made to the top, the r.f. current has to flow over the top and either through the hole for the tube sorket or else entirdy over the chassis surface before it rembes the cathode. This condition is highly undesirable not only berabe of v.h.f. resonances but becouse surh chassis currents frequently cause instability in the amplifier.

Operating Conditions

Grid bias and grid current have an important elfect on the harmonic content of the rif. currents in both the grid and plate circuits. In general, harmonic output increases as the grid bias and grid current are increased, but this is not necessarily true of a particular harmonic. The third and higher harmonies, esperially, will go through fluctuations in amplitude as the grid current is increased, and sometimes a rather high value of grid current will minimize one harmonic as compared with a low value of grid current. This charateristic can be used to advantage where a particular harmonic is causing interference, keeping in mind that the operating conditions that minimize one harmonic may greatly increase another.

For equal operating conditions, there is little or no difference botween single-ended and pushpull amplifiers in respect to harmonic generation. l'ush-pull amplifiers are frequently trouble-makcrs on ceven harmonice because with such amplifiers the even-harmonic voltages are in phase at the ends of the tank eireuit and hence appear with equal amplitude across the whole tank coil,
if the center of the coil is not grounded. Under such eircumstances the even harmonics can be coupled to the output circuit through stray capacitance between the tank and coupling coils. This does not oreur in a single-roded amplifier if the coupling coil is placed at the cold end of the tank.

Harmonic Traps

If a harmonic in only one 'TV chanmel is particularly bothersome - frequently the case when the transmitter oprates on 28 Me. - a trap tuned to the harmonic frequeney may be installed in the plate lead as shown in Fig. 23-11. At the harmonie frequency the trap represents a wery high impentatue and hence reduces the amplitude of the harmonic current flowing through the tank circuit. In the push-pull circuit both traps hase the same constants. The L / C ratio is not critical but a high-C cireuit usually will have least effect on the performance of the phate circuit at the normal operating frequenc:-

Siner there is a considerable harmonic voltage across the trap, it may radiate umbess the transmitter is woll shieded. Traps should be phared so that there is no coupling betwere them and the amplifier tank eirenit.

A trap is a highly-selective device and so is useful only over a small range of frequencies. A

Fig. 23.11- Harmonic traps in an amplifier plate circuit. L and C should resonate at the frequency of the harmonic to be suppressed. C may be a 25 - to $50-\mu \mu$. midget, and L usually consists of 3 to 6 turns about $1 / 2$ inch in diameter for Channels 2 through 6. 'The inductance should be adjusted so that the trap resonates at about half capacity of C before being installed in the transmitter. It may be checkel with a grid-dip meter. When in place, it is adjusted for minimum interference to the 'T' picture.
second- or third-harmonic trap on a $28-\mathrm{Mc}$. tank circuit usually will not be effective over more than 50 kc . or so at the fundamental frequency, depending on how serious the interference is without the trap. Because they are critical of adjust-
ment, it is better to prevent TVI ber other means, if possible, and use traps only as a last resort.

- PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interferenere will bee consed by direct radiation of spurions signals depends on the operating frecurener. the transmitter power level, the strength of the telowision sighat, and the distance botween the tramsmiter and TV receiver. Transmitter radiation can be a very serious problem if the TV signal is weak, if the TV receiver and amateur transmitter are flose together, and if the transmitter is operated with high power.

Shielding

Direct raliation from the transmitter cirenits and components can be preverned by proper shielding. To be effective, a shield must completely enclose the circuits and parts and must have no openings that will permit r.f. energy to eseape. Cafort untelely, ordinary motal boxes and cabinets do not provide good shind ding, since such oponings as louvers, lids, holes for rumbing in connertions, and so on, allow far tom much leakage.

A primary reguisite for good shiclaling is that all joints must make a good ale eftribal comneretion along their entire length. A small slit or eramk will let out a surprising amount of r.f. enorge: so will ventilating louvers and large holes surh as those used for mounting moters. (On the other hand, small holes do not impatir the shidhting verygreatly, and a limited mamber of vontilating holes may be used if they are smabll - not over $1 / 4$ inch in diametar. . Nso, wire sereen makes quite effective shielding if the wires make good ele eetriral connection where ther cross over, so the leakage through large openings dan be vely much reduced by covering such openings with screening, well bonded to all edges of the opening.

Fig. 23.12 - Proper method of bypassing the end of a shielded lead using disk erramic capacitor, 'J he 0,(0)1
 hizher voltapes. The leals are wrapped aromind the inner and onter conductors and soldered, so that the lead lengh is negligible. This photograph is athout four times actual size.

The intensity of r.f. fields about coils, caparitors, tubes and wiring decreases very ratpidly with distance, so shielding is more effertive, from a prateteal standpoint, if the eomponents and wiring are not too close to it. It is advisable to have a separation of several inehes, if possible, betwern "hot" points in the riereuit and the nearest shielding.

For a given thickness of metal, the greater the ronductivity the better the shielding. Copper is hest, with aluminum, brass and sted following in that order. However, if the thickness is adequate for struclural purposes (over 0.02 inch) and the shield and a "hot" proint in the circuit are not in clese proximity, any of these metale will be satisfartory (irater separation should be used with sted shiclding than with the other materials not only beratuse it is considerably poorer as a shield but also begume it will canse greater lossos in near-by arenits than would copper or aluminum at the same distanere. Wite soreon used as a shioh should akso be kept at some distane from highvoltage or high-eamem rif. perints, sine there is ronsiderably more leakige through the mash thath through solid metal.

Where two pieres of metal join, as in forming : corner, they should overlab at least a half inch and be fastened together firmly with serews on bolts spaced at rlose-romgh intervals to maintain firm contarl all along the joint. The eontant surfiares should be dean before joining, and should the checked ocewionably - esomially sted. Which is atmost certain to rust affer a period of time.

The leakuge through a given size of aperture in shichling increstes with frequencer, so such points as good cominuous contam, serenting of holes, and soon, berome even more impertant when the radiation to be suppressed is in the high hand --1:-2-2l6 Me. - than in the low TY hand. Hence 5ll- and $114-.21$ e, trammittors, which in gemeral will have frequener-multiplier harmonics of pedatively high intensity in this region, require special

Fig. 23-13 - Bypassing the end of a high-voltage lead. 'The cond of the shield toraill is zelldered to a lug fastened to the chassis diredty mederneath. 'The other terminal of the rapacitor is similarly loolted direetly to the chastin. When the tispase is ised at a terminal comere tion llowek the" "hen" le:al thould the soldered directly to the terminal. if posisible, but in any event conneeted to it by a very short lead.

Fig. 23-14 - Additional r.f. filtering of supply leads may be required in regions where the TV signal is very weak. The r.f. choke should be physically small, and may consist of a 1 -inch winding of $\mathcal{X}, 26$ enamiled wire on a $1 / 4$-inch form, elosewound. Manufartured single-layer chokes having an induet. ance of a few microhenrys also may be used.
attention in this respect if the possibility of interfering with a chamel received locally exists.

Lead Treatment

Even very good shiclding eatn be made completely useless when connections are run from external power supplies and other equipment to the circuits inside the shield. Every conductor so introduced into the shielding forms a path for the escape of r.f., which is then radiated by the connecting wires. Henere a step that is essential in every case is to prevent harmonie currents from flowing on the loads leaving the shiclded enrelosure.

Harmonic currents always flow on the d.c. or a.c. lads connecting to the tube circuits. I very effective means of preventing such currents from being coupled into other wiring, and one that provides desirable bepassing as well, is to use shielded wire for all such leads, maintaining the shielding from the point where the lead connects to the tube or r.f. circuit right through to the point where it is about to leave the chassis. The shield braid should be grounded to the chassis at both ends and at frequent intervals along the path.
(Good bypassing of shielded leads also is essenttial. Bearing in mind that the shiedd brad about the conductor confines the harmonic currents to the inside of the shicelded wire, the object of hypassing is to prevent their escape. Figs. 2:3-12 and 2:3-13 show the proper way to bypass. The smalltype $0.001-\mu \mathrm{f}$. ceramic disk capacitor, when mounted on the end of the shichled wire as shown in Fig. 2:3-12, actually forms a sories-resonant circuit in the $54-88-M \mathrm{C}$. range and thus reprosents practically a short-circuit for lew-band TV harmonies. The exposed wire to the conneetion terminal should be kept as short as is physically possible, to prevent any possible harmonic pickup exterior to the shielded wiring. Disk capacitors of this capacitance are available in several voltage ratings up to 1600 volts. For higher voltages, the maximum capacitance available is approximately $5(0) \mu \mu$., which is large anough for good byassing of harmonies. Alternatively, miea capacitors may he used as shown in Fig. 2:3-13, mounting the caparitor flat against the chassis and grounding the end of the shield braid directly to chassis, keeping the exposed part as short as possible. Either 0.(001- μ f. or 7 (0 ($-\mu \mu$ f. ($500 \mu \mu$.) capacitors should be used. The larger capacitance is series-resonant in Chamel 2 and the smaller in Chamel 6.

These bypasses are essential at the connectionbowk terminals, and desirable at the tube ends of the leads also. Installed as shown with shielded
wiring, they have been found to be so affeetive that there is usually no need for further harmonie filtering. However, if a test shows that additional filtering is required, the arrangement shown in Fig. 23-14 may be used. such an r.f. filter should be installed at the tube end of the shielded lead, and if more than one circuit is filtered eare should be taken to keep, the r.f. chokes separated from earh other and so oriented as to minimize coupling letween them. This is neressary for preventing harmonies present in one circuit from being coupled into another.

In difficult (ases involving Chamels 7 to 13 i.e., close proximity hetween the tramsmitter and receiver, and a weak TV signal - additional leadfiltering measures may be needed to prevent radiation of interfering signals by 50 - and $1+4-$ IIc. transmitters. A recommended method is shown in Fig. 2:3-15. It use's a shiedded lead lopassed

Fig. 23-15 - Additional lead filtering for harmonies or other spurious frequencies in the high v.li.f. TV band (171-216 Mc.).
Ci - $0.001-\mu$ f. disk ceramic.
C_{2} - $0.001-\mu \mathrm{f}$. feed-hrough bypass (Erie Style 326).
(Fur $\mathbf{B}(0)-2(0) 0$ (ovolt lead, sulbstitute Plasticon Glass mike. LSC - 251, for C. C $_{2}$)
$\mathrm{RFC}-14$ inches Vo . 26 enamel elose-wound on 3ís incle diam. form or resistor.
with a ceramic disk as deseribed ahove, with the addition of a low-inductance feed-through type capacitor and a small r.f. choke, the sapacitor being used as a terminal for the external connection. For voltages above $f(0)$, a eapacitor of compact construction (as indicated in the caption) should be used, mounted so that there is a very minimum of exposed lead, inside the chassis, from the capacitor to the connection terminal.
As an alternative to the series-resonant bypassing descrited above, feed-through type condensers such as the Sprague "Hypass" type may
be used as terminals for external comertions, The ideal method of installation is 10 mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in which the eapacitor is mounted. The principle is illustrated in Fig. 23-16.

Fig. 23-16 - The hest method of using the "lypass" type feed-throngh capacitor. Cabacitances of 0.01 to $0.1 \mu \mathrm{f}$, are satisfactory. Caparitors of this type are useful for higherorrent cireuits, such as filament and 115.nolt leads, as a sulsstitute for the r.f. choke shown in Fig. 23.14, in cases where additional lead filtoring is needed.

Neters that are mounted in an r.f. unit should te enclosed in shielding covers, the connertions being made with shichded wire with each lead bypassed as described above. The shield braid should be grounded to the panel or chassis immediately outside the meter shield, as indieated in Fig. 23-17. A bypass may also be connected across the meter terminals, prineipally to prevent any fundamental current that may be present from flowing through the meter itself. As an alternative to individual meter shielding the meters may be mounted entirely lochind the panel, and the panel holes needed for obsorvation maty be covered with wire screen that is carefully bonded to the panel all around the hole.

Care should be used in the selection of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the d.e. volt-

fig. 23.17- Veter bichding and bypassing. It is essential to shield the meter monnting bule since ila, meter will carry r.f. through it to be radiated. Suitable shields can be made from $21 / 2$ or 3 -inch diameter shield cans of the type made for enclosing coils.
age in use, but the insulation should be of mat terial that will not easily deteriorate in soldering. The r.f. characteristics of the wire are not especially important, except that the attenuation of harmonies in the wire itself will be greater if the insulating material has high losses at radio froquencies: in other words, wire intended for use at d.e. and low frequencies is preferable to cables designed expressly for carrying r.f. The attenuation also will increase with the length of the wire; in general, it is letter to make the leads as long as rircumstances permit rather than to follow the more usual practice of using no more lead than is actually necessary. Where the wiring crosses or runs parallel, the shields shoudd be spot-soldered together and connected to the chassis. For high voltages, automobile ignition cable covered with shiclding braid is recommended.
l'roper shichling of the transmitter requires that the r.f. circuits be shielded entirely from the external eomeeting leads. A situation such as is shown in Fig. 23-18, where the leads in the r.f. chassis have been shielded and properly filtered

Fip. 23.18-A metal cabinet can be an adequate shicld, hut thore will still be radidion if the leads inside can pick up r.f. from the transmitting circuits.
but the chassis is mounted in a large shield, simply invites the harmonic currents to travel over the chassis and on out over the leads outside the chassis. The shielding about the r.f. circuits should make complete contaet with the chassis on which the parts are mounted.

Checking Transmitter Radiation

A check for transmitter radiation always should be made before attempting to use low-pass filters or other devies for preventing harmonics from reaching the antenna systom, The only really satisfactory iodicating instrument is a television receiver. In regions where the ' TV ' signal is strong an indicating wave meter such as one having a erystal or tube detector maty be useful: if it is possible to get any indication at all on harmonies cither on supply leads or around the transmitter itself, the harmonies are probably strong enough to cause interference. However, the absence of
any such indication does not mean that harmonic interference will not be caused. If the terhniques of shielding and lead filtering described in the

Fig, 2:3-19 - 13 mmmy-antenna cirtuit for wecking har. monic radiation from the transmitter and learls. The matehang eirenit helps prevent harmonies in the output of the transmitter from lowing back ever the transmitter itself, which may oceur if the lampload is simply connerted to the mutput eroil of the linal amplifier, see transmission-line chapter for iletails of the matolhing circuit. 'Tuning must be adjusted by rout-and-try, as the bridge method demeribed in the transmisuien-line chateter will not worh with lamploads berause of the change in resintance when the lamps are loot.
preeding seetion are followed, the hamonic intemsity on any external leads should be far bedow what any such instruments can detere.
laadiation cherks should be made with the transmitter deliwering full power into a dummy antema, wuch as an incandescent lamp of suitable power rating, preferably installod inside the shieded enclosure If the dummy must be external, it is desirable to eomeet it through a coasmatehing cireuit such as is shown in lig. 23-19. shielding the dummy antemma circuit is also desirable, although it is not ahways necessary.

Make the radiation test on all frequencies that are to be used in transmitting, and note whother or not interference patterns show in the received picture. (These tests must be made while a TV signal is being received, sine the beat patterns will not be formed if the TV picture carrier is not present.) If interference exists, its source can be detected by grasping the various external leads (by the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might eseape from the transmitter. If any of these tests cause a change - not necessarily an increase - in the intensity of the interference, the presence of harmonies at that point is indicated. The location of such "hot" spots usually will point the way to the remedy. If the TV receiver and the transmitter can be operated side-by-side, a length of wire connerted to one antenna terminal on the receiver can be used as a probe to go over the transmitter enelosure and external leads. This device will very quickly expose the spots from which serious leakage is taking place.

As a final test, comed the transmitting antenna or its transmission line terminals to the outside of the transmitter shielding. Interference created when this test is applied indicates that weak currents are on the outside of the shield and can be conducted to the antenna when the normal antenna connections are used. Currents of this nature represent interference that can be conducted over low-pass filters, ete., and which therefore cannot be eliminated by such filters.

PREVENTING HARMONICS FROM REACHING THE ANTENNA

The third and last step in reducing harmonic TYI is to keep the spurious energy generated in or passed through the final stage from traveling over the transmission line to the antenna. It is seldom worthwhile even to attempt this until the radiation from the tramsmitter and its connecting leads has been reduced to the point where, with the transmitter delivering full power into a dumme antema, it has been determined by actual testing with a television receiver that the radiation is below the level that can cause interference. If the dummy antenna test shows enough radiation to be seen in a TV picture, it is a pratical certainty that harmonies will be coupled to the antema system no matter what preventive measures are taken.

In inductively-coupled output systems, some harmonic energy will be transferred from the final amplifior through the mutual indurtane between the tank coil and the output coupling eoil. Marmonies of the output frequeney transfered in this way can be greatly reduced by providing suffieiont selectivity betwern the final tank and the transmission line. A good deal of selectivit y, amounting to 20 to 30 db . reduction of the seeond harmonic and much higher reduction of higher-order harmonies, is furnished by a matehing circuit of the type shown in Fig. 23-19 and deseribed in the chapter on transmission lines. An "antema coupler" is therefore a worthwhile addition to the transmitter.

In 50- and 141-Me. transmitters, particularly, harmonics not directly assoriated with the output frequency - such as those gencrated in low-frequency early stages of the transmitter - may get coupled to the antenna by stray means. For example, a HA-Mc. transmitter might have an oscillator or frequency multiplier at 48 Mc . followed ly a tripler to 1 Ht Mr . Some of the 48- Me energy will appear in the plate eireuit of the tripler, and if passed on to the grid of the final amplifier will appear as a 48 -. Me modulation on the $1+4-M \mathrm{c}$. sigmal. This will cause a spurious signal at 192 Mc , which is in the high TV band, and the selectivity of the tank circuits may not be sufficient to prevent its being coupled to the antenna. Spurious signals of this type can be reduced by using link coupling between the driver stage and final amplifier (and between earlier stages as well) in addition to the suppression alforded by using an antennit coupler.

Capacitive Coupling

Harmonies and other spurious signals transferred from the tank by stray capacitance are not suppressed by an antenna coupler to the same extent as those transferred by pure inductive coupling. The upper drawing in Fig. 23-20 shows the link-coupled system as it might be used to couple into a parallel-conductor line. Inasmuch as a coil is a sizable metallic object, there is capacitance between the final tank coil and its associated link coil, and between the antenna tank

Fig. 23-20-1'he stray caparitive compling betwern coils in the upper rirouit lads to the equivalent cirenit shown below, for w, hif, harmonies.
coil and its link. Fnorgy coupled through these raparitanes travels over the link cirenit and the transmission line as though these were morely single conductors. The tumed circuits simply act ats masses of metal and offer no selectivity at all for capacity-eoupled morge, Although the antual (aparitances are smaill, they offer a very good coupling medium for frequencies in the v.h.f. range.

Capacitive coupling can be reduced be eoupling to a "cold" point on the tank coil - the cod conneeted to ground or eathorle in a single-ended stage. In push-pull circuits having a split-stator calparitor with the rotor grounded for r.f.. all parts of the tank coil are "hot" at even harmonies, but the center of the coil is "eold" at the fundimental and odd hammonies. If the renter of the tank eoil, rather than the rotor of the tank capacitor. is grounded through a be-pass condenser the center of the coil is "eold" at all frequencies, but this arrangement is not very desirable berausi it cathes the hamonic currents to flow through the eoil rather than the tank capabitor and this increases the harmonie transfer by pare inductive conpling.

With cither single-ended or balanced tank eircuits the coupling eail should be grounded to the chassis be a short, diree connertion as shown in Fig. 23-21. If the coil feeds a halaneed line or link,
it is proferable to ground its center, but if it feeds a coax line or link one side may be grounded. Coaxial output is much proferable to balaned output, because the harmonies have to stay inside a proporly installed eoas system and tend to be attemated by the cable before rowhing the antenna coupler.

At high frequencies - and possibly as low as 14 Me, - capacitive coupling can be greatly reduced by using it shiteded coupling coil as shown in Fig. $23-22$. The inner conductor of a length of eoaxial (able is used to form a one-turn eoupling coil. The outer ewnhe tor sorves as an open-eirenited shided atomed the turn, the shiold being grounded to the ehassis, "1"he shiolding has no effecet on the inductive compling. Seeanse this construetion is suitable only for ore turn. the coil is not well adapted for use on the lower frequeneres where many tums are reptired for good coupling. Shieded eoupling coils having a larger number of turns are avaitahbe commereiallys. A sheleded coil is particularly useful with push-pull amplifiers when the suppresion of wen harmonices is important.
A shieden coupling coil or comaial output will not prevent stay eaparitive roupting to the antoma if harmonie eurrents can fow over the muside of the coax line In Fig. 23-23, the arrangement at ather A or (will allow ref. to fow over the outside of the eable to the antentan sistem. The proper way to use coasial rahle is to shiods the transmitter wompletely, as shown at B, and make sure that the outer eomdurtor of the cable is a continuation of the trammitter shiclding. This

Fig. 23.22-Shielded conpline mil romiturtod from coasial rabhe.
 the roil diamener is 3 inflos or lios. berames of areater flexibitity, For

Fig. 23-2 - Methods of coupling and grounding link circuita to reduce capacitive coupling let ween the tank and link coils. Where the linh is wound over ond end of the tank eoril the side toward the loot end of the tank should be groumded, ats shown at B ,

(B)

(C)

(B)

(C)

Fig. 2.3-2.3- Kight (B) and wrong (A and C) ways to connect a coasial line to the transmiter. In either A or (S, harmonic energy eonpled by stray rapacitance to the outside of the rablife will flow withont hindrance to the antenna x stem. In B the energy casnont leave the shield and hence can liow out onl, through, not over, the cable.

Low-Pass Filters

A low-pass tilter properly installed in a coaxial line, freding either a matching eircuit (antema coupler) or feeding the antemat dirertly, will provide very gratatenuation of hamonies. When the main transmission line is of the paralledeonductor type, the coax-roupled matrehing-cireuit arrangencot is highly recommended as a means for using a coax low-pass filter.

Fig. 23.24-An inexpensive low-pass filter using silvernica pestage-stamp capacitors. The box is a 2 by 4 by 6 alomimum chassio. Wuminum shidfa, hent and folded at ther sides and hothom for fatering to the chassis, form shields hetween the tilter seretions. 'The diaxonal arratheroment of the shitelde provides extra romem for the enils and makem it easiar ter lit the shielde in the box, since liending to exart dimensions is mot essential. 'Ihe bottom plate, made from theet aluminum, estends a half inch he gond the ends of the ehassis and is provided with mounting holes in the extensions. It is held on the rhassin with sheret-metal serews.

A properly-designed low-pass filter will not introduce approciable power loss at the fundatmental frequeney if the coaxial line in which it is inserted is terminated so that the s.w.r. is low. (The s.w.r. can eavily be meatsured by meaths of it simple tridge as desceribed in the chapters on mensurements and transmission lines.) Such a filter has the property of passing without loss all frequencies below its "cut-off" frequeney, but simultameously has large attenuation for all frequencies above the cut-off frequency.

Low-pats lilters of simple and inexpensive construction for use with transmitters operating below 30 Me, are shown in Figs. 2:3-24 and 2.3-26. The former is designed to use micat caparitors of readily-available capacitance values, for compactness and low cost. Both use the stme circuit, Fig. 2:-25, the only difference being in the L and (' values. Technically, they are three-section filters having two full constant-k sections and two m-derived terminating half-sections, and their attenuation in the $51-88$-Me. range varies from over 50 to nearly 70 dh., depending

Fig. 2.3-25-Iow-pass filter virenit for attenuating harmonics in the 'I'I bands. J_{1} amd J_{2} are chassis-type coaxial connertors, In the table liclow the letters refer to the following:
 tor: in parallol for $C 2$ and (3 .
13-I'sing $\mathbf{i} 0$. and $50-\mu \mu \mathrm{f}$. silver miad capacitors in parallel for Co and Co.
 (case-style C \I-45) in parallel for Ci and Ci3.
D and \mathfrak{E} - ísing varialile air caparitors, $\mathrm{J}(\mathrm{N})$ - to $l(0)$. volt rating, adjnsted to values given (eer measurements chapter for data on measnring capacitance).

	A	13	C	I)	E.	
Z	52	.5	52	52	75	ohms
f_{0}	36	35.5	41	40	40	Mc.
f_{∞}	44.4	47	54	50	50	Mc.
f	25.5	25.2	29	28.3	28.3	Mc.
f_{2}	32.5	31.8	37.5	36.1	36.1	Mc.
C_{1}, C_{4}	B0	10	50	46	32	muf.
$\mathrm{C}_{2 .} \mathrm{CH}_{3}$	1.0	120	150	154	106	$\mu \mu \mathrm{f}$.
I.1..$_{5}$	51/2	6	4	5	$61 / 2$	turns*
I.2, L.4	8	111	7	7	91/2	turns*
L_{3}	9	13	8	$81 / 2$	$111 / 2$	(1urns*

[^5]on the fromeney and the particular set of values used. Above 174 Me , the theoretical attemuation is better than 85 (ll), but will depend somewhat on internal resonant conditions associated principally with the lead lengthe to the condensers. These leads should be kept as short as is physically possible.

The power that filters using mica capacitors can handle safely is detemmed by the voltage and eurrent limitations of the capacitors. The power capacity is least at the highest frequenes. The unit using postage-stamp silver mical capacitors is capable of handling approximately 50 watts in the 28 Me. band, when working into a properly-matched line, but is good for about 150 watts at 21 Mes and 300 watts at 14 Me, and lower freguencies. A filter with larger miow capacitors (rase type ($3 \mathrm{D}-45$) will carry about 250 watts safely at 28 Mce, this rating increasing to 500 watts at 21 Mc. and a kilowatt at $1+$ Me. and lower. If there is an appreciable mismatch between the filter and the line into which it works, these ratings will be considerably decreased, so in order to avoid capatcitor failure it is highly essential that the line on the output side of the filter be carefully matehed by its load. This can he done with an s.w.r. bridge, and the matching is easy to control if the line from the filter terminates in a matching circuit of the type described in the chapter on transmission lines.

The power capacity of these filters can be in-

Fig. 23-26-I Iow-pase filter using variable air capacitors. The lox is a 2 by 5 by 7 aluminum chassis, fitted with a hottom plate of similar construction to the one used in Fig. 23-2.4.

Figs, 23-27-Iow-pass filter for use with 50. Mc. transmitters and 52-olim lime. It uses variable air capacitors aljusted to the proper raparitance values and is suited to powers up to a hilowatt.
quency below the RETMA standard i.f. for television receivers (sound carrier at +1.25 Me.: picture carrier at 45.85 Mc.). This is to avoid possible harmonic interference from 21 Mr. and below to the receiver's intermediate amplifier. The other designs similarly rut off at +1 Me. or below, hut m in there cases is merosarily based on the capacitances avaitable in standard fixed capacitors.

Fig. 23.29- I 52 -olm low-pass filter for 1H- Ve. transmitters.
and caparitance can be measured (see chapter on measurements) the components (an be preset and assembled without further aljustment. Alternattively, the grid-dip meter method described earlier may be used. The resonant frequencies are:
$\left.\begin{array}{lr}\left.\begin{array}{lr}L_{1} C_{1}\left(I_{1} \text { shorted }\right) \\ L_{5} C_{4}\left(I_{2} \text { shorted }\right)\end{array}\right\} & 81.5 \mathrm{Mc} . \\ L_{3} C_{2} C_{3}\left(L_{2} \text { and } L_{4} \text { disconnected }\right) & 46 \mathrm{Mc} . \\ L_{1} L_{2} C_{1} C_{2}\left(L_{3} \text { disconnected }\right) \\ L_{4} L_{5} C_{3} C_{4}\left(L_{3} \text { disconnerted }\right)\end{array}\right\} \quad 58.5 \mathrm{Mc}$.

The cut-off frequency is approximately 65 Mc .
The case for the 50 -. . . fe. filter is a standard box (ICA Slip-rover, No. 29100) measuring $31 / 8$ by $1: 3$ by $25 / 8$ inches. The two end capacitors, C_{1} and C_{4}, are mounted with their two stator posts toward the ends of the filter. The two larger units are mounted in the center compartment with their rotor shafts toward the middle. The top leads from coils L_{1} and L_{5} are wrapped around the stator terminals of C_{1} and C_{4}, and the bottom leads fit directly into the coaxial input and output fittings. The outer ends of coils L_{2} and L_{4} are sollered to the coasial fitting terminals, and their inner ends are soldered to lugs supported on oneinch ceramic stand-off insulators. Leads from the stand-offs go through holes in the partitions to the bottomstator lugs on C_{2}^{\prime} and $C_{3} . L_{3}$ is soldered to the two upper lugs on these lwo capacitors, thus completing the filter circuit. Lead lengths for the coils given in the parts list are the total lengths to be left when the winding is completed, including the portions that will be used in soldering operations.

This filter will give high attenuation in Channels 4-6 and all the high-band channels, and thus will take care of most of the spurious signals generated in a $50-\mathrm{Mc}$. transmitter.

A filter for low-power 14-Mc. transmitters is shown in Fig. 2:3-29. It is designed for maximum attenuation in the $190-215 \mathrm{Me}$. region to suppress the spurious radiations in that range that frequently occur with 1H-Mc. transmitters, but also has good at tenuation for all frequencies above 170 Me. ()ptimum capacitance values are given in Fig. 2:3-28. If possible, several units of the nearest standard values available should be measured and those having values closest to the optinum used. The inductance values are too small to be measured with sufficient accuracy, so the filter should be adjusted by the following methox:

First, mount L_{1} and C_{1}, short J_{1} temporarily at its imer terminals, and adjust L_{1} until the combination resonates at $2(x)$ Me. as shown by griddip meter. Next, remove the short from J_{1} and connect L_{2} and C_{2}^{\prime}, adjusting L_{2} until the circuit formed by $L_{1} L_{2}\left({ }^{\prime}{ }_{1}{ }_{2}^{2}\right.$ resonates at $1+4 \mathrm{Mr}$. Then disconned L_{2} and mount L_{3} betweon C_{2} and C_{3}. Adjust L_{3} until the circuit $L_{3} C_{2} C_{3}$ resonates at 112 Mr . Next, discomert L_{3} and follow a similar procedure starting from the other end with L_{5} and C_{4}. Finally, reconnert all coils and a check at any point in the filter should show resonance at 1tio Me., the approximate cut-off frequence.

The rase for the Ift-Mc. filter is made from flashing copper and is $11 / 4$ inches square be $71 / 8$ inches long. The main portion of the case is cut from a single piece with the end tabs folded down and soldered to the sides. Flanges are folded over at the bottom, and a cover is made to slip over these.

Filter Installation

In order to give the hammonic attenuation of which it is capable, a low-pass filter must be installed in such a way that all the output of the transmitter flows through it. If harmonic currents are permitted to How on the outside of the connecting coaxial cables, they will simply how over the filter and on up to the antenna, and the filter does not have an oprortunity to stop them. That is why it is so important to reduce the raliation from the transmitter and its leads to negligible proportions.

Fig. 23-30 shows the proper way to install a filter between a shielded transmitter and a matehing cireuit. Note that the coax, together with the shiclds about the transmitter and filter, forms a continuous shield to keep all the r.f. inside. It is thus forced to flow through the filter and the harmonies are attenuated. If there is no harmonice energe left after passing through the filterr, shiedding from that point on is not neressary: consequently, the matehing cireuit or antema coupler does not ned to be shielded. However, the antenna-coupler chassis arrangement shown in Fig. 23-30 is desirable because it will temd to prevent fundamental-frequendey enorgy from flowing from the matching rireuit back over the transmitter; this helps climinate feed-back tronbles in audio systems.

If the antemat is driven through comsial line the matching circuit shown in Fig. 23-30 may be omitted. In that ease the line gones directly from the filter to the antennas.

When a filter deres not seem to give the harmonic attenuation of which it should be capable, the probable reason is that harmonies are bypassing it because of improner installation and inadequate tramsmitter shielding, including lead filtering. However, oreasionally thore are cases where the circuits formed by the cables and the apparatus to which they conner berome resonant at at harmonic frequeney. This greatly increases
the harmonic output at that frequency. Such troubles can be compietely overome by substituting as slighty different mable length. The most aritical length is thet commerting the transmitter to the filter. ('heceking with a grid-dip) meter at the final amplifier output coil usually will show whether an unfavorabier resonance of this tupe exists.

SUMMARY

The methods of harmonic elimination outlined in this chapter have been proved beyond doubt to be effertive even under highly unfavorable ronditions. It must be emphanized onere more. however, that the problem must be solved one step at a time. and the procedure mast be in logieal order. It cammot be done properly without two items of simple equipment: a gridedip meter and wavenctes rovering the TV hands, and a dummy antemat.

The proper procedure may be summarized as follows:
b) Take a eritical look at the transmitter on the basis of the design considerations outlined under "Reducing Itamonic Goncration".
2) Cherek all rireuits, particularly those connected with the final amplifier, with the grict-dip, meter to determine whether theer are any resor nathees in the 'TV bands. If so, rearrange the circuits so the resonamess are moted out of the critical frequeney region.
3) Conned the transmitter to the dummy ant trinat and check with the wavemeter for the presence of harmonics on leads and around the transmitter enclosure. soal off the woak spots in the shielding and filter the leads until the wavemetor shows mo indication at any hamonie fremueney.
4) At this stage, cherk for interforence with a TV rereiver. If there is interforenere, determine the ealuse by the methods deseribed previously and apply the recommended remedies until the interference disappears.
5) When the transmitter is eompletely ckean on the dummes anterna, connere it to the regular antemat and cheok for interferenee on the TV reediver. If the interference is not had, an antemat coupler or mat ching circuit installed as previously described should elear it up. Alternatively, a lowpass filter man be used. If neither the antenna coupler nor filter makes any differenere in the interference, the evidence is strong that the interferonce, at least in part, is being ratased by receiver overloading becamse of the strong funda-

Fig. 2.3-30 - 'IBe proper method of installing al low-paze filter Inetwerol the transmittor amd anterna compler or matching circout. If the anterna is fed through eoas the matheng cirenit may lue omitted hent the same construrtion should be used briween the transmitter and filter. The filter should be thoronghly shielded.
mental-frequener field about the TV antenma and receiver. (sere later section for identifieation of fundamental-freguency interference.) A coupler and or filter, installed as described above, will invariably make a difference in the intensity of the interference if the interference is caused by transmitter harmonics alone.
(b) If there is still interference after installing the eouplar and/or filter, and the evidence shows that it is probably cansed by a harmonic, more attemuation is meded. A more elaborate filter may bremersary. Ilowever, it is well at this stage to assame that part of the interference may be caluse: ber reciver owerloading, and take steps to alleviate such a condition before trying highlyelaborate filtors, traps, ete, on the transmitter.

HARMONICS BY RECTIFICATION

liven though the transmitter is eompletely free from hamonic output it is still possible for interference to oceur because of harmonies generated outside the transmitter. These result from rectification of fundamental-frequency currents induced in conductors in the vicinity of the transmitting antemat. Rectification can take place at any point where two conductors are in poor electrical eontat, a condition that frequently exists in plumbing, downspouting, BX rables erossing each other, and numerous other places in the ordinary residence. It ahso can occur in any exposed vacuman tubes in the station, in power supplies, speech equipment, ete, that may not be chelosed in the shielding about the r.f. rirruits. Poor joints anywhere in the antenat system are experially biad, and rectification also may take place in the contacts of antenna changeover relays. Another common cause is overloading the front end of the communieations receriver when it is used wifh a separate antenna (which will radiate the hamonios generated in the first tuice) for break-in.

Rectification of this sort will not only canse harmonic interference but also is frequently responsible for eross-modulation effects. It can be detereded in greater or less degree in mosit lociations, bat fortunately the harmonics thus gencrated are not usually of high amplitude. However, they can cause considerable interference in the immediate vicinity in fringe areas, esperially when opration is in the 28 -Mre band. The amplitude decerewses ripidly with the order of the harmonic, the seeond and third being the worst. It is ordinarily found that even in cowes where destruetive interference results from 28-Ne. operation the interference is comparatively mild from 11 Me., and is nogligible at still lower frequencios.

There is nothing that can be done at fither the transmitter or receiver when rectification occurs. The remedy is to find the source and eliminate the poor contact cither by separating the conductors or loonding them together. A arystal wave moter (tuned to the fundamental frequencs) is usoful for hunting the source, by showing which eonductors are carrying r.f. and, comparatively, how much.

Interference of this kind is frequently intermittent, since the rectification efficieney will vary with vibration, the weather, and so on. The possibility of corroded contacts in the TV receiving antenna should not be overlooked, esperially if it has been up a year or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When a television receiver is guite close to the transmitter, the intense r.f. sigmal from the transmitter's fundamental may overlond one or more of the receiver circuits to profluce spurious responses that cause interference.

If the overload is moderate, the interference is of the same nature as harmonic interference; it is caused by harmonies generated in the early stages of the reeniver and, since it occurs only on channols harmonically related to the transmitting frequency, is diffieult to distinguish from harmonics actually radiated by the transmitter. In such cases additional harmonic suppression at the transmitter will do no good, but any means taken at the receiver to reduce the amateur fundamental strength fed to the first tube will effect an improvement. With more severe overloading interference also will oceur on channels not harmonically related to the transmitting frequency, so such cases are easily identified.

Cross-Modulation

Cuder some cireumstances overloading will result in cross-modulation or mixing of the amateur signal and that from a loeal f.m. or TV station. For example, a $14-$ Mc. signal can mix with a $02-\mathrm{If}$ e, f.m. station to produce a beat at 78 Mc . and rause interference in Channel 5 , or with a 'TV station on Channel 5 to cause interference in Chammel 3. Neither of the chamels interfered with is in harmonice relationship to $1+$. Ic. Both signals have to be on the air for the interference to ocedr, and eliminating either at the TV recoiver will eliminate the interference.

There are many combinations of this type, depending on the band in use and the local frequency assignments to f.m. and TV' stations. The interfering frequeney is equal to the amateur fundamental frequencr either added to or subtracted from the frequency of some local station, and when interference oreurs in a TV channel that is not harmonically related to the amateur transmitting frequency the possibilities in surh frequency combinations should be investigated.

I. F. Interference

Some TV receivers do not have sulficient selectivity to prevent strong signals in the intermedi-ate-frequency range from forcing their way through the front end and getting into the i.f. amplifier. The once-standard intermediate frequeney of, roughly, 21 to 27 Mc ., is subject to interference from the fundamental-frequency output of trinsmitters operating in either the 21-
and 27 -Mc. hinnds. Transmitters on 28 Me. sometimes will catuse this type of interference as well.

A form of i.f. interference peruliar to 5()-Mc. operation near the low edge of the band oncurs with some receivers having the standard "fl-Me." i.f., which hats the sound carrier at 41.25 Mc and the picture rarrior at $45 . \overline{5} 5 \mathrm{Mc}$. A 50 -Me. signal that forers its way into the i.f. system of the receiver will cause a beat with the i.f. pieture carrier that falls on or near the i.f. sound carrier, even though the interfering signal is not atctually in the nominal pass-band of the i.f, amplifier.

There is a type of i.f. interference unigue to the $14+$-Mc. band in localities where certain u.h.f. TV chamels are in operation, affecting only those TV receivers in which double-conversion type plug-in u.h.f. tuning strips are used. The design of these strips involves a first intermediate frequeney that varies with the TV chamel to be received and, depending on the particular strip design, this first i.f. may be in or close to the $1+4-2 I \mathrm{c}$, amateur band. Since there is comparatively little selertivity in the TV signalfrequeney circuits ahead of the first i.f., a signal from a $1+4-M e$, transmitter will "ride into" the i.f., even when the receiver is at a considerable distance from the transmitter. The channels that can be affected by this type of i.f. interference are as follows:

> Receivers with
> 21-M/.
> second i.f.

Channels $1+-18$, inc.
Channels $+1-48$, inc.
Channels 6! $-\overline{1}-\mathrm{T}$, ine.

Receivers with 41-1/c. second i.f.

Chamels 20-25, inc. Channels 51-58, ine. Channels 82 and 83 .

If the receiver is not close to the transmitter, a trip of the type shown in Fig. 2:3-3:3 will be effeetive. Llowever, if the separation is small the 1H-Me. signal will be pirked up direetly on the receiver circuits and the best solution is to readjust the strip, oscillator so that the first i.f. is moved to a frequency not in the vicinity of the $144-$ Me. band. This has to be done by a competent technician.
I.f. interference is casily identified since it oecurs on all channels - although sometimes the intensity varies from chanel to channel - and the cross-hatch pattern it causes will rotate when the receiver's fine-tuning control is varied. When the interference is coused by a harmonie, overloading, or cross modulation, the structure of the interference pattern does not change as the finetuning control is varied, although its intensity may change.

High-Pass Filters

In all the above cases the interference can be (riminated if the fundamental signal strength can be reduced to a level that the receiver cim handle. To accomplish this with signals on bands below 30 Mc., the most satisfactory device is a highpass filter having a cut-off froquency between 30

Fig. 2.3-31 - High-pass filters for installation at the 'TV receiver antenna terminals. A - balanced filter for 300 .
 not use a direct groumd on the chassis of a transformerless receiver. Ground throngh a $0.001-\mu$. mica capacitor.
and 50 Mc., installed at the tumer input terminals of the receiver. Circuits that have proved effective are shown in Figs. 2:3-31 and 23-32. Fig. 2:3-32 has one more section than the filters of Fig. 2;3-31 and as a consequence hats somewhat better cut-off characteristies, All the circuits given are designed to have little or no effect on the TV^{+}signals but will attenuate all signals lower in frequency than about 40 Ne . These filters preferably should be constructed in some sort of shielding container, although shielding is not always necessary. The dashed lines in Fig. 23-32 show how individual filter coils can be shielded from each other. The capacitors can be

Fig. 23-32 - Another type of high-pass tilter for 300 . whm line. The coils mas be womed on $1 / 8 \cdot$ inch diameter plastic knitting needles. Important: Do not use a direct ground on the ehassis of a transformerless receiver. Ground through a $0.001-\mu f$. mica capacitor.
tubular ceramic units centered in holes in the partitions that separate the coils.
simple high-pass filters camot be applied sucessfully in the erte of $50-\mathrm{Mc}$. trimsmissions, because they do not have sufficiently-sharp cutoff charmeteristios to give both good attenuation att 50-5! Me, and no attenuation above $5+\mathrm{Mc}$ A more elaborate design (apablo of giving the required sharp cut-off has been deseribed (Ladd, " $50-\mathrm{II}$. TVI - Its Causes and Cures," (QST", June and July, 1954). This article adso rontains other information useful in coping with the TVI problems peculiar to 5o-Mr. operation. As an alternative to such a filter, a high-Q wave-
trap tumed to the transmitting frequency may he used, suffering only the disadvantage that it is quite selective and therefore will protect a rereiver from overlowding over only a small range of transmitting frequencies in the 50-Mc. hand. A trap of this type using quarter-wave sections of Twin-Lead is shown in Fig. 2:3-33. These "suck-out" traps, while absorbing energy at the freguconey to which they are tuned, do not affect the receiver operation otherwise. The assembly should be slidatong the TV antenna lead-in until the most effective position is found, and then fastened securely in place with scotch Tape. An

Antenna Installation

Many television receivers will respond strongly to paralled currents on the receiving transmission line. 'sually, the transmission line picks up a great deal more energy from a near-by transmitter than the television receiving antemna itsolf, causing parallel currents that should be, but are not, rejected by the receiver's input circuit. This situation can be improved by using shiclded transmission line - coas or, in the halaneed form, "twinax" - on the receiving installation. For best results the line should terminate in a

Fig. 23-3.3-Absorption-type wave trap using sections of 300 ohm line tuned to have an electriral length of $\frac{1}{4}$ wave lengtiat the transmitter frequency. Approximate physieal lengths (dimension A) are to inches for 50 Wl c. and 11 inches for $1+1$ Nc., allowing for the loading effect of the capacitance at the open end, 'Two traps are used in parallel, one on each side of the line to the receiver.

insulated tuning tool should be used for adjustment of the trimmer capacitor. since it is at a "hot" point and will show considerable hody-catpacity effect.

High-pass filters are available commereially at moderate prices. In this commetion, it shoukd be understood by all parties concerned that while an amateur is responsiblo for harmonic radiation from his transmitter, it is no part of his responsibility to pay for or install filters, wave traps, ete. that may be required at the receiver to prevent interference caused by his fundamental frequency. The set owner should be advised to get in touch with the organization from which he purchased the receiver or which services it, to make arrangements for proper installation. Proper installation usually requires that the filter be installed right at the input terminals of the r.f. tuner of the TV set and not mercly at the antema terminals, which may be at a considerable distance from the tuner. The question of cost is one to be settled between the set owner and the organization with which he deals. Some of the larger manufacturers of TV reccivers have instituted arrangements for cooperating with the set dealer in installing high-pass filters at no cost to the rereiver owner, FCC-sponsored TVI Committces, now operating in many cities, have all the information neressary for effectuating such arrangements.

If the fundamental signal is getting into the receiver he way of the line cord a line filter such as that shown in Fig. 2;3-4 may help. To be most effective it should be installed inside the receiver chassis at the point where the cord enters, making the ground commections directly to chassis at this point. It may not be so helpful if placed between the line plug and the wall socket unkess the r.f. is actually picked up on the house wiring rather than on the line cord itself.
coax fitting on the receiver chassis, but if this is not possible the shield should be grounded to the chassis right at the antemna terminals.

The use of shiedded transmission lime for the recoiver also will be helpful in reducing response to harmonics actually being radiated from the transmitter or transmitting antemas. In most roceiving installations the tranmission line is very much longer than the antema itsolf, and is consequently far more exposed to the harmonic fields from the transmitter. Much of the harmonic pickup, therofore is on the receiving transmission line when the transmitter and recoiver are quite elose together. Shielded line, plus relocation of cither the transmitting or receiving antenna to take advantage of directive effects, often will result in reducing overloading, as well as harmonic pickup, to a level that does not interfere with reeption.

U.H.F. TELEVISION

Harmonic TVI in the u.h.f. TV band is far less troublesome than in the v.h.f. band. Harmonies from transmitters operating below 30 Mc. are of such high order that they would normally be experted to be quite weak; in addition, the components, circuit conditions and construction of low-frequency transmitters are such as to tend to prevent very strong harmonics from being generated in this region. However, this is not true of amateur v.h.f. transmitters, particularly those working in the 144-Mc. and higher bands. Here the problem is quite similar to that of the low v.h.f. TV band with respect to transmitters operating below 30 Mc .

There is one highly favorable factor in u.h.f. TV that does not exist in the most of the v.h.f. TV band: If harmonics are radiated, it is possible to move the trimsmitter frequency sufficiently

Amateur Brand$144 \mathrm{Mc} .$	Harmo	ic Relationship	TA	23-1 F. Bands	d U.H.F. T	Channels	
	Harmonic	Foundimental Fireq. Range	ノ, H,F, T' (hamal Af ferted	A materir lanad	Harmonic	Fundamental Freq. Ranue	U,H.F, IV rhanmel Affected
	$4 \mathrm{th}^{1}$	$\begin{aligned} & 14.0-144.5 \\ & 14.5-146.0 \\ & 146.0-147.5 \\ & 147.5-148.0 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	$220.1 / c$.	3 rd	$\begin{aligned} & 220-220.63 \\ & 220.67 \\ & 222.627-224.67 \\ & 224.67-228 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 18 \end{aligned}$
	5 5th	114.0-144.4	5\%		$4 t h$	$\begin{aligned} & 220-221 \\ & 221-222.5 \end{aligned}$	$\begin{aligned} & 8: \\ & 8: 3 \end{aligned}$
		$144.4-14.5 .6$ $14.5 .6-145.8$	$\begin{aligned} & 5 ; \\ & 57 \end{aligned}$	420.15	2nd	$420+121$	7%
		146.8118	58			4:1-4:3	71
						42.427	77
	Gth	144-144.33	79			$427-430$ $+30-433$	78
		144.33-145.33	80			433-436	80
		14.5.33-147.33	81			436-439	81
		1.47.33-148	82			439-442	$8:$
						+42-418	83

(within the amateur band boing used) to avoid interfering with a channel that may be in use in the locality. By restricting operation to a portion of the amateur band that will not result in harmonic interferener, it is possible to avoid the neressity for taking extraordinary prerautions to prevent harmonie radiation.
The frequeney assignment for u.h.f. television consists of seventy (i-megace che chamels (Nos. 14 to $8: 3$, inchusive) beginning at 40 Mc . and ending at 890 Mr . The harmonics from amateur bands above 50 . Me. span the u.h.f. chamels as shown in Table 2:3-I Nince the assighment plam calls for a minimum separation of six channels bet weron any two stations in one locality, there is ample opportunity to choose a fundamental frequeney that will move a hamonic ont of range of a local TV' irequency.

- COLOR TELEVISION

The color TV signal ineludes a subcarrier spaced 3.58 megaceres from the regular pioture carrier (or t.s:3 Me. from the low edge of the channel) for trasmitting the color information. Harmonies which fiall in the color subcarrier region can be experted to cause break-up of color in tine reereived picture. This mos lities the chart of Pige 2:3-7 to introduce another "sivere" region centering around 4.8 Me, masared from the low-frequency edge of the chamel. Itrice with color television reception there is less opportumity to avoid harmonic intorforence by ehoice of operating frequemes. In other resperets the problem of eliminating interference is the same as with black-and-white telcevision.

- interference from tv receivers

The TV pirture tube is swept horizontally by the eleetron beam 15, $\quad \mathbf{0} 0$) times per seood. using a waveshape that has very high hamonic content. The harmonics are of appreciable amplitude even at froquencies as high as 30 Mr ., and when radiated from the receiver can cause considerable
interforenere to rereption in the amateur bands. While in some receivers motsures have been taken to suppress radiation of this nature, many sets have had no surli treatment. The interference takes the form of rather unstable, a, e, -modulated signals spateed at intervals of 15.75 ke .

Studies have shown that the radiation takes place principally in three wass, in order of their importanee: (1) from the che line, through stray coupling to the sweep circuits; (2) from the antenna system, through similar coupling; (3) directly from the pireture tube and sweren-eireuit wiring. Line radiation often ratn be reduced by bepassing the ace. line cord to the chassis at the point of entry, although this is not comphetely effertive in all cases since the coupling may take place outside the chussis berond the point where the by-passing is done Radiation from the anternat is usally suppresed by installing a high-pass filter on the reeceiver. The direst radiation requires shielding of high-potential leads and, in some reecoivers, additional bypassing in the swep rireuit ; in severe ceises, it may lo neesesary to line the cabinet with sercening or similar shielding materiad.

It is usually possible to reduce interference very considerably, without modifying the TV receiver, simply bey having a good amateur-band receiving installation. The prineiples are the sane as those used in reducing "hash" and other noise - use a good antema, sueh as the tramsmitting antema, for reception; install it as far as possible from are, circuits; use a good freder system such as a properly balaneod two-wire line or coas with the outcr condurtor groanded; use coax input to the receiver, with a matching circuit if meress:ury: and chock the reereiver to make sure that it does not pick up signals or noise with the antennai discommerted. These measures not only reduce interference from sweep radiation and ace. line noise, but also build up the strength of the desired signal, so that the overall improvement in sirnal-to-intorlerence ratio is very muth worth-while.

Operating a Station

The enjoyment of our hobly usually comes from the operation of our station once we have finished its construetion．Lipon the station and its operation depend the communication records that are made．The stamding of individuals as amateurs and respect for the capabilitios of the whole institution of amateur radio depends to a ronsiderable cextent on the practionl communicat tions established by amatenes，the aggregate of all our station efforts．

An operator with a slow，straly，rlean－cut method of sending has a big advantage over the poor operator．The terehnigue of speaking in comoneted thoughts and phrases is equally im－ portant for the voice operator．Good sonding is partly a matter of partice but patience and judgment are just as important qualitie＇s of ant operator as a good＂fist．＂

Operating knowledge embaring standard por redures，development of skill in employing e．w． to expand the station range at opreating efferetive－ ness at minimum power levels and some net know－how are all essentials in achieving a trinm－ phant amateme experienere with top，station rer－ ords，persomal results and demonstrations of What our stations ran do in pratical rommuni－ cations．

operating courtesy and TOLERANCE

Nomal operating materests in amatour radio vary considerabls．Somo profer to rag－chew， others handle tratfic，others work 1）X，othors concentrate on working rertain areas，countrios or states and still others get on for an oreasional contact only to check a new transmitter or an－ ternata，

Interferonge is one of the things we amateurs have to live with However，we eath eonduct our operating in a way dosigned to alleviate it as much as possible．Before putting the transmitter on the air，listen on your oun frequency．If you hear stations engaged in communication on that

frequency，stand by until you are sure no inter－ ference will be caused by your operations，or shift to another frequency．No amateur or any group of amateurs has any exclusive clam to any frequeney in any band．We must work together， each resurecting the rights of others．Remember， those other chaps can cause you as much inter－ ference as you cause them，sometimes more！

In this chapter well recount some fundamen－ tals of oprerating surcess，cover major procedures for sucersiful general work and inchule proper forms to ase in message handling and other fields．．Cote also the sections on sperial activities， awards and organization．These permit us all to develop through our organization more sucerss together than we could ever attain bey separate uncoordinated efforts that overlooked the pre－ erpts established through operating experience．

C．V．PROCEDURE

The best operators，both those using voice and （e．w．，observe certain oprating procedures re－ garded as＂standard pratetice．＂

1）Collos．Calling stations may call efliciontly by tranmitting the eall signal of the station ealled three times，the letters DAE，followed by one＇s own station call sent three times．（Short calls with frequent＂breaks＂to listen have proved to be the best method．）Repeating the call of the station called four or five times and signing not more than two or three times has proved exedlent practice，thus：W0日S Wゆ日S

（＂）．The general－inquiry call（Q）should be sent not more than five times without interspers－ ing one＇s station identification．The length of repoated calls is carefully limited in intelligent amateur operating．（CQ is not to be used when testing or when the sender is not expecting or looking for an answer．Never send a CQ＂blind．＂ Always he sure to listen on the transmitting fre－ quencry first．）

The directional CQ：To reduce the number of uscless answers and lessen QRM，every（XQ call should be made informative when possible．

> Exumples: A United States station looking for any Hawaiian amatent ralls：（＇Q Kili（＇Q
 Western station with tradic for the Wast Comst when looking for an interinediate relay station calls：CQ EAST CQ EANT（＇Q EAST DH WSIGW W5IGW WijfiW Ki．A station with nessages for points in Massachusetts calls：CQ MASS CQ MASS CQ MASS IEE WTC\％Y W7CZY W7CZYK．
Hams who do not raise stations readily may find that their sumbing is por，their calls ill－timed or judgment in error．When conditions are right
to bring in signals from the desired locality, you can call them. Reasonably short calls, with appropriate and brief breaks to listen, will raise stations with minimum time and trouble.
2) Ansuering a Call; Call three times (or less); send DE; sign three times (or less); after contact is established deerease the use of the call signals of both stations to once or twice. When a station receives a call but does not receive the call letters of the station calling, QRY? may be used. It means "By whom am I being called"." QRZ should not be used in place of CQ.
3) Ending Sigmals and Sign-()ff: The proper use of $\overline{\mathrm{AR}}, \mathrm{K}, \overline{\mathrm{K}} \overline{\mathrm{N}}, \overline{\mathrm{SK}}$ and CL ending signals is as follows:
$\overline{\mathrm{AR}}$ - End of transmission. Recommended after call to a specific station before contact has been estahlished.

Example: WGABC W6ABC W6ABC WoABC,
WGABC DE WOLMN WOLMN AR. Also at the end of transmission of a radiogram, inmediately following the signature, preceding identification.
K - (Go ahead (any station). Recommended after $C Q$ and at the end of each transmission during QSO when there is no objection to others breaking in.

Example: CQ CQ CQ DE W1ABC W1ABC K or W9XYZ DE W1ABC K.

KN - Go ahead (specific station), all others kepp out. IRecommended at the end of each transmission during a QSO, or after a call, when calls from other stations are not desired and will not be answered.

Erample: WHFGH DE XLGGRL $\overline{\mathrm{KN}}$.
$\overline{S K}$ - Lind of QSO. Reeommended before signing last transmission at end of a QNO.

Erample: ... $\overline{\text { SK WBLMN DE WIBCI }}$,
CL. - I am ressing station. Reommended when a station is going off the air, to indicate that it will not listen for any further calls.

Example: . . . $\overline{S K}$ WZHIJ DE W2JKL CL.

4) Test signals to permit another station to adjust receiving equipment may consist of a series of Vs with the call signal of the transmitting station at frequent intervals. Remember that a test signal can be a totally umwarranted cause of QRM, and always listen first to find a clear spot if possible.
5) Receipting for conversation or traffie: Never receipt for a transmission until it has bern entirely received. " R " means "transmission rereived as sent." Use IR only when all is received correetly.
6) Repeats. When most of a transmission is lost, a call should be followed by correct abloreviations to ask for repeats. When a few words on the end of a transmission are lost, the last uord received correctly is given after ?A.A, meaning "all after." When a few words at the beginning of a transmission are lost, ?AB for "all lefore" a stated word should be used. The quiekest way to ask for a fill in the middle of a transmission is to send the last word received correctly, a ques-
tion mark, then the next word reecived correetly. Another way is to send "?BN [word] and [word]."

Do not send words twice (QS / C) unless it is requested. Send singhe. Do not fall into the bad habit of sending double withoul a request from follows you work. Don't say "(QRII" or "(12 N " when you mean "Qlis." Don't (Q unless there is definite reason for so doing. When sending CQ, use judgment.

General Practices

When a station has recciving trouble, the operator asks the transmitting station to "(QSV"." The letter " l " i s often used in place of a decimal point (e.g., "3IR Mc.") or the colon in time designation (e.g., "2lR30 PM" "). A long dash is sometimes sent for "zero."

The law eoncerning superfluous signals should bre noted. If you must test, diseonnect the antenna system and use an equivalent "dummy" anteman, sond your call freguently when operating. Piek a time for aldusting the station apparatus when fow stations will be bothered.

The up-to-date amatelur station uses "breakin." For hest results send at a medium spered. send evenly with proper spacing. The standardtype tolograph key is best for all-round use. Regular daily practice periods, two or three periods a day, are best to acquire real familiarity and proficiener with rode.

No excuse can be madr for "garbled" eopy. Oprators should coplo what is sent and refuse to adekowledge a whole transmission until every word has heren reerived correctly. Good operators do not gurs.s. "swing" in a fist is not the mark of a good opremator. Comashal words are sent twied, the word repeated following the tramsmission of "?", If not sure, a good operator systematieally asks for a fill or requat. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an oprator has learned sending property, and comes up with a precision "fist" - not fast, but elean, steady, making wellformed rhythmieal characters and spacing beatutiful to listen to - he then bromes subject to outside pressures to his own possible detriment in everyday operating. IIe will wat to "speed it up" because the operator at the other end is going faster, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the easiest ways to get into bad habits is to do too much playing around with speeial keys. Too many operators spend only enough time with a straight key to aequire "passable" sending, then subject their newlydeveloped "fists" to the eutirely different movements of bugs, side-swipers, electronie kevs, or what-have-yous. All too often, this results in the ruination of what may have become a very good "fist."

Think about your sending a little. Are you satisfied with it? You should not be-cever. Noboly's sending is perfect, and therefore ever!!
operator should continually strive for improvement. Do you ever run letters together - like Q for MA, or P for AN - especially when you are in a hurry:" Practically everyhody does at one time or another. Do you have a "swing"? Any recognizable "swing" is a deviation from perfection. Strive to send like tape sending; copy a IVIAW Bulletin and try to send it with the same spacing using a local oveillator on a subsequent transmission.
Check your spacing in characters, between characters and hetween words occasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Pruetice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents QRII, gives more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (hut not equal) break-in efficienes.

A separate receiving antenna facilitates breakin operation. It is only necessary with break-in to pause just a moment with the key up (or to cut the earrier momentarily and pause in a phone conversation) to listen for the other station. The elick when the carrier is cut off is as effective as the word "break."
C.u. telcyraphy broak-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the QRMI. Snappy, efficient amateur work with break-in usually requires a separate receiving antenna and arrangement of the transmitter and reeciver to climinate the neerssity for throwing switches between transmissions.

In calling, the transmitting operator sends the letters " 13 K " at frequent intervals during his call so that stations hearing the call may know that break-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call can be continued.

With a tap of the key, the man on the receiving end can interrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not necessary that you have perfect facilities to take advantage of break-in when the stations you work are break-inequipped. After any invitation to break is given (and at cach pause) press your key - and contact can start immediately.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using code. In telegraphy words must be spelled out letter by letter. It is therefore but natural that ablueviations and shortcuts should have come into widespread use. In voice work, however, abbreviations are not necessary, and should have less importance in our operating procedure.

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to listen, Avoid long CQs; do not answer any.
3) Lise pusti-to-talk. (iive essential data ronrisely in first transmission.
4) Make reports honest. I'se definitions of strength and readability for reference. Make your reports informative and useful. Honest reports and full word description of signals save amateur operators from FCC tmuble.
5) Limit transmission length. Two minutes or less will convey much information. When three or nore stations converse in round tables, brevity is essential.
6) Display sportsmanship and courtesy. Bands are congested ... inake transmissions meaningful . . . give others a break.
7) Check transmitter adjustment . . . avoid a.m. overmodulation and splatter. Do not radiate when moving v.f.o. frequeney or checking n.f.m. swing, C'se receiver b.f.o. to check stability of signal. Complete testing before busy hours!

The letter "K" has been agreed to in telegraphie practice so that the operator will not have to pound out the separate letters that spell the words "go ahead." The voice operator can say the words "go ahead" or "over," or "come in please."

One laughs on c.w. by spelling out III. On phone use a laugh when one is called for. Be natural as you would with your family and friends.

The matter of reporting realability and strength is as important to phone operators as to those using code. With telegraph nomenclature, it is necessary to spell out words to describe signals or use the abbreviated signal reporting system (RST . . see Chapter Twenty-Five). Using voice, we have the ability to "say it with words." "Readahility four, strength eight" is the best way to give a quantitative report. Reporting can be done so much more meaningfully with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahead," or "Your signal is strong but you are buried under local interference." Why not say it with words?

Phone-Operating Practice

Efficient voice communication, like good c.w. communication, demands good operating. Adherence to certain points "on getting results" will go a long way toward improving our phoneband operating conditions.

U'se push-to-talk technique. Where possible arrange on-off switches, controls or voice-controlled break-in for fast back-and-forth exchanges that emulate the practicality of the wire telephone.

This will help reduce the length of transmissions and keep brother amatems from catling you a "monologuist" - agus who likes to hear himsolf talk!

Listan with care. Kerp nowse and "batckgrounds" out of your operating room to facilitate good listening. It is natural to answer the stromgest signal, but take time to listen and give seme consideration to the best sigmals, regardless of strength. Every amatour camot rum a kilowat, but there is mo reason why every amateur cannot have a signal of grod qualits, and utilize uniform operating practiors to aid in the understamdability and case of his own communications.

Interpose your call regularly and at frequent intervals. Three short calls are better than one long one. In calling ('(), one's call should certainly apporar at least once for every five or six Cos. (adls with frequent breaks to listen will save time and be nost productive of results. In identifying, always transmit your own call latt. /on't say "This is W1ABC' standing by for W'21)FF"; say "W2D)FF', this is W1ADSC, over." FC(regulations show the call of the transmitting station sent last.

Include country prefix before call. It is mot correct to sth "9RRRX, this is 1131)]." (orreet and legal use is "WOURRX, this is WIBHI," FC " regulations require proper use of calls; stations have been cited for failure to comply with this requirement.
Monitor your oun frequency. This helps in timing calls and transmissions. Transmit when there is a chance of being copied suceresfully-not when you are merely "more (QRM." Timing transmissions is an art to cultivate.

Keep modulation constant. By turning the gain "wide open" you are subjecting anyone listening to the diversion of whatever moises are present in or near your operating room, to say nothing of the possibility of feed-back, echo due to poor acoustics, and modulation excesses due to sudden loud noises. Speak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your speech amplifer; at the same time, keep far enough from the microphone so your signal is not modulated by your breathing. ('hange distance or gain only as necessary to insure uniform transmitter performance without overmodulation, splatter or distortion.

Make connected thoughts and phrases. Don't mix discomerted suhjects. Ask questions consisicmtly. Panse and get answers.

Have a pad of paper handy. It is convenient and desirable 10 jot down questions as they eome in the course of discussion in order not to miss any. It will help you to make intelligent to-thepoint replies.

Steer clear of inanities and soap-opera stuff. Our amateur radio and also our personal reputation as a serious communications worker deperd on us.

Avoid repctition. Bon't reperat back what the olher fellow has just said. Too often we hear a eonversation like this: "Okay on your new antemna there, okay on the trouble you're having
with your recoiver, okay on the company who just came in with some ice ertam, way . . . Lote.]." Just say you recoived everything (OK. bon't try to prowe it.
lise phemetios omly as required. When datrifying genuinely doubtful experesions and in getting your call identifiod poritively we suggest use of the ARRL Phonetir List. Limit such ase to mally-beressary clarificat ion.

The sperd of radiotelephone tramsmission with perfect acrorary depends abmost emindy upon the skill of the two oprators involved. One must learn to spak at a rate allowing !erfect understanding as wedl as permitting the recoiving operator to copy down the message foxt, if that is neressary. Because of the similarity of many English speech sounds, the use of alphabetical word lists has been found meressary. All voiceoperated stations should use a stamdard list as needed to identify rall sigmals or unfamiliar expressions

ARRL Word List for Radiotelephony

AldAM	John	SUSAN
B.tlitik	に1N:	THOMA
CHARLIE	LEWIS	1-N0N
DAVI)	MARY	V1C"OR
EIMWARD	NANC'Y	WHILI.IM
FRANL	OrTO	X-RAY
(ibORCE	PETER	yolne:
IIt,NRY	Ql'EEN	\%FEBRS
ID.A	ROBEERT	

Round Trables. The round table hats many advantages if run properly. It clears frequencies of interference, especially if all stations involved are on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation call be kept lively and interesting, giving cach station operator ample opportunity to participate without waiting overlong for his turn.

Round tables can become very unpopular if they are not conducted properly. The monologhist, off on a long spicl about nothing in particular, cannot be interrupted; make your transmissions short and to the point. "Butting in" is discourteous and unsportsmanlike; don't enter a round table, or any contact between two other amateurs, unless you are imited. It is bad mough trying to copy through prevailing interference without the added difficulty of poor voice quality; check your transmitter aljustments frequently. In qumeral, follow the precepts as hereinturfore outlined for the most enjoyment in round tables as woll as any other form of radiotelephone commmair:ation.

WORKING DX

Nost amateurs at one time or another make "working 1)N" a major aim. As ini every other phase of amateur work, there are right and wrong ways to go about getting best rewults in working forcign stations, and it is the intention of this section to outline a fow of them.

The ham who has trouble raising IDN stations
readily may fime that poor transmittor afliciency is not the reason. He may find that his sembing is poor, or his calls ill-timed, or his judgment in error. When conditions are right to hring in the OX, and the reegiver sensitive enough to bring in several stations from the desired locality, the waty to work 1)X is to use the appropriate frequency and timing and rall these stations, as agatinst the common practice of calling "(e) 1)N."

The call ('(Q) DX means slightly different things to amateruss in different hamds:
a) (On v.h.f., (O I)X is a gemeral call ordinatrily used only when the band is open, under favorable "skip" conditions. For v.h.f. work such a call is used for looking for new states and countries, also for distances beyond the customary "line-of-sight" range on most v.h.f. bathels.
b) (Q1)Non our 7-, 1+-, 21-and 28-Mc. bands may be taken to mean "(iencral eall to any forrign station." The term "foreigu station" usually rofers to any station in a forcign continent. (Experienced amateurs in the U. S. A. and Canada do not use this call, but answer such calls made by formign stations.)

DX OPERATING CODE (For W/VE Amateurs)

Some amaterrs interested in ISX work have canseal considerabla confusion and QLSM in their (-ffortes to work 13 X stations. The points below. if olswered by all W/NE amateurs, will go a long way towasd making 1) more conjosable for eversborly.

1. (all 1NX only ufter the calls C'Q, QIRZ?, signs sk, or phone equivalents thereof.
2.1 on mot call a 13 . station:
a. (hn the fremberns of the station he is working until you are sure the (QNO is over, This is indicated by the cuding signal $\overline{\operatorname{SE}}$ on c.w. and any indieation that the operator is listeninge. on phone.
b. Beranse son heror someone dse ralling him.
©. When he signs $\overline{K N}, \overline{A R}$, CL, or phone armivalents.
d. Pixaroly thi his frembency.
e. After he calls a dirertional C'Q, unless of course you are in the right direction or area.
2. Kerp within frefuency-bawd limits. Some IIX stations operate outside. Perhaps they can get awas with it, but you cannot.
3. Observe calling instructions of HX stations. " 101" means call ten ke , up from his freruency, * 1.51) means 1.5 ke , doun , ete.
i. Give honest reports. Many foreign stations depend on W and VI: reports for adjustment of station and erguipment.
4. Kicep your simnal clean. Key clicks, ehirus, hum or splatter give you a bad reputation and may get you a citation from $F^{\prime}\left(C^{\prime}\right.$.
5. Lasten for and call station you want. Calling ('Q DN: is not the leest assorance that the rare I)X will reols.
6. When there are several W or VE stations waiting to work a IW station, avoid asking him to "listen for a friend." Let your friend take his chances with the rest. Also avoid engaging IDX stations in rag-ehews against their wishes.
c) (Q Q I)X used on 3.5 Mc . under winter-night eonditions may be used in this same manner. At other times, under average $3.5-\mathrm{Mc}$, propagation conditions, the call may be used in domestice work when looking for new states or countries in one's own continent, usually applying to stations located over 10 ON miles distant from you.

The way to work 1DX is not to use a CQ call at all (in our continent). Instead, use your best tuning skill -and listen - and listen-and listen. You have to hear them before !ou can work them. Hear the desired stations first; time your calls well. Une your utmost skill. A semsitive wo ceiver is often more important than the power input in working foreign stations. If you can hear stations in a particular country or area, chances are that you will be able to work someone thare.

Onc of the most effective ways to work DX is to know the operating habits of the DX stations sought. Doing too much transmitting on the DS bands is not the way to do this, Igain, listemin! is effective. Once you know the operating habits of the DS station you are after you will know when and where to eall, and when to remain silent wating your chance.
Some DX stations indicate where they will tune for replies by use of " 10 (") or "151)." (Hom point 4 of the DN Operating Code.) In voice work the overseas operator may say "listening on 11,225 ke." or "tuning upward from 28,500 ke," Miny a DK station will not reply to a call on his exact frequeney.
ARLRL, has recommended some operating procedures to I)X stations aimed at controlling some of the thoughtless operating practices sometimes used by W/VL amateurs. Λ copy of these recommendations (Operating Aid No. 5) can be obtatined free of charge from AIRIRL I Ieadquarters.

In any band, particularly at line-of-sight frequences, when directional antennas are used, the directional CQ such as (Q W5, CQ north, etc., is the proferable type of call. Mature amateurs agree that CQ DX is a wishful rather than a practical type of call for most stations in the North Americas looking for foreign contacts. Ordinarily, it is as cause of unnecessary QRM.

Conditions in the transmission medium make all field ftrengths from a given region more nearly equal at a distance, irrespective of power used. In general, the higher the frequency band, the less important power considerations become. This aceounts in part for the relative popularity of the $14-, 21-$ and $28-\mathrm{Mc}$. bands among amateurs whe like to work DI.

\%	4xita	${ }^{\text {c\% }}$	哭哭	-	-	"e	\%		\%):\%ot	- otren oara
		\times	3.65	589	$569 \times$	$\times 3.5$	A1		506	6:43	Tfe-recd 6 , Aent 10
7.21	-	4 TW	7.16	369	579					7:32	
$\frac{9: 25}{1-18.53}$ W8UKS		\times	3.83	59	47	3.9	A3		001	10:05	Itam
$7: 05 \mathrm{MHK} 4 \mathrm{EL}$		x	14.03			14	A1				
		\times	14.07	7339	$559 x$	1	A			7:20	Anawered a W6
	C	KA2KW	14.07	$7469 \times$	349					7:33	First $K A$
7:37	${ }^{\text {c }}$	W6TI	14.01	589	5890					8:12	

KEEP AN ACCLRATE AND COMPLETE STATION LOG AT ALI. TIMES: F.C.C. REQUTRES IT,
A page from the official ARRL log is shown above, answoring every Govermment requirement in respect to station records. lhound logs made up in aceord with the above form ran be obtained from Ileadruarters for a nominal sum or you can prepare your own, in which ease we offer this form as a suggestion. The ARRI, log has aspecial wire biniling and lies perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and adjustment data. A stenographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contarts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each (qSO and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or separate reeords kept - but reeord must be retained for one year as required by the FCC. For the convenience of amateur station operators ARIRL stocks both logbooks and message blanks, and if one uses the official log he is sure to comply fully with the Govermment requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countries enjoy a privilege not available to amateurs in most countries - that of handling third-party mossage traflic. In the early history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the American Radio Relay League.

Thus, amateur message-handling has had a long and honorable history and, like most services, has gone through many periods of development and change. Those amateurs who hamdled traffic in 1914 would hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Irogress has been made and new methods have been developed in step with advanerement in communication techniques of all kinds, Amateurs who handled a lot of traffic found that organized operating schedules were more effective than random relays, and as techniques advanced and messages inereased in number, trunk lines were organized, spot frequencies began to he used, and there sprang into existence a number of traffic nets in which many stations operated on the same freguency to effect wider cov-
erage in less time with fewer relays; but the old methods are still available to the amateur who handles only an occasional message

Although message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a message and have never done so. As each amateur grows older and gains experience in the amatemer service, there is bound to come a time when he will be called upon to handle a written message, during a eommunications emorgency, in casual contart with one of his many arquaintances on the air, or as a result of a reguest from a nonamateur friend. IRegardless of the oceasion, if it comes to you, you will want to rise to it! Considerable embarrasment is likely to be experieneed by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message once it has been filed or received in his station.
Traffic work need not be a complicated or time-consuming activity for the casual or occasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate mossages for transmission or who receive messages for rolay or delivery should first consider that in doing so they are accepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Fortyeight hours after filing or receipt is the generallyacrepted rule among traffie-hambling amatedre, hut it is ohvious that if every amateur who rolayed the mossage allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quickly as possible.

Message Form

Onee thes responsitility is realized and acrepted, handing the mossage heromes a matter of following generally-aceepted standards of form and transmission. For this purpose, ach message is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actuatly transmitting it to know not only what each part is and what it is for, but to know in what order it should tre transmitted, and to know the various procedure signals used with it when sent hy c.w. If you are going to send at message, you may as well send it right.

Standardization is important! There is a great deal of room for expresing originality and individuality in amateur radio, but there are also times and places where such expression can only cause confusion and inefficieney. Recognizing the need for standardization in message form and message transmitting procedures, ARRL, has long since recommended such standards, and most traffie-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to year, have been at the request of ama-

Here is an example of a plain-language message in correct AMRI.form. The preamble is always sent as shown: number, station of orikin, check, place of orikin, time filed, date.
teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Rudio station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

Amateurs not experienced in mossage handling should depend on the experienced messagehamber to get a message through, if it is important; but the average amateur can enjoy operating with a message to be handled either through a local traffie net or by frec-landing. The latter may be accomplished by careful listening for an amateur station at desired points. directional
 frequencies, or hy making and kereping a schedule with another :mateur for regular work botween spercified points. He may well aim at learning and enjoving through doing. The joy and acomplishment in thus developing one's operating skill to top perferetion has a reward all its own.
The hest way to clear a message is to put it into one of the many organized trattic networks, or to give it to a station who can do so. There are many amateurs who make the hauding of traffic their principal operating activity, and many more still who participate in this activity to a greater or lesser extent. The result is a system of traffic nets which spreads to all corners of the Cnited States and covers most C. S. possessions and Canada. Once a message gets into one of these nets, regardless of the net's size or coverage, it is systematically routed toward its destination in the shortest possible time.

If you deecide to "take the bull liy the horns" and put the message into a traffic net yourself (and more power to you if you do!), you will need to know something about how tratfic nets oprorate, and the special Q signals and procedure they use to dispateh all traffic with a maximum of efficiency. Reference to net lists in QST' (usually in the November and January issues) will give you the frequency and operating time of the net in your section, or other net into which your message can go. listening for a few minutes at the time and frequency indicated should acquaint you with enough fundamentals to enable you to report into the net and indicate your traffic. From that time on you follow the instructions of the net control station, who will tell you when and to whom (and on what frequency, if different from the net frequency) to send your message. Since most nets use the special "(O " " signals, it is usually very helpful to have a list of these before you (list available from ARRL Hq.).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it, and to increase your proficiency. Many amateurs are happily "addicted" to traffic handling after only one or two brief exposures to it. Most traffic nets are at present loing conducted by c.w., since this mode of
communication seems to be more popular for record purposes - but this does not mean that high code speed is a neecessary prerequisite to working in traffic not works. There are many nets organized sperifically for the slow-speed amateur, and most of the so-called "fast" nets are usually glad to slow down to accommodate slower operators, esperially those nets at state or section level.

The significant facet of net operation, however, is that code speed alone does not make for efficiency-sometimes quite the contrary! A high-speced operator who does not know net procedure can "froul up" a wot much more completely and more quickly than can a slow operator. It is a prowen fact that a bunch of high-simed operators who are not "savvy" in net operation camot aceomplish as much during a sperified periond as an equal number of slow opergators who know not procedure. Don't let low rode speed deter you from getting into traflic work. (iiven a little time, your sped will roach the print where you can compete with the best of them. Conematrate first on learning net procedure, for most traflic nowadays is handled on mets.

Much traffic is also being handled on phone nowadays. This mode is exceptionally well suited to short-range traffic work and requires knowledge of phoneties and procedure peculiar to voice operation. Procedure is of paramount importance on phone, since the public may be listening. The major problem, of course, is QiRM.

Teamwork is the theme of net operation. The net which functions most efficiently is the net in which all partieipants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting excopt at the direction of the net control station, and do not oecupy time with extraneous eomments, even exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until all traffie is cleared. Before or after the net is the time for rag-chewing and discussion. Some details of net operation are included in Operating an Amateur Radio Station, mentioned earlier, but the whole story camot be told. There is no substitute for actual participation.

The National Traffic System

'To facilitatc and speed the movement of message traffic, there is in existencer an intrgrated national system by means of which originated traffic will normally reach its destination areat the same day the mosage is originated. This system uses the local section net as a basis. Lateh sertion net sends a representative to a "regional" not (normally (oovering a (eall areat) and eath "regional" net sends a representative to an "area" net (nomally covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear traffie to the varions section net representatives. 13y means of connerting sehedules betwen the area nets, traffic can flow both ways so that traffie originated on the West Coast rearhes the Eisst Coast with a maximum of dispateh, and viee versa. In general local sertion nets function at 1900 , regional nets at 1915. area mets at $20: 30$ and the same or different regional persommel again at 2130 . Some section nets conduct a late session at 2200 to enect traffic delivery the same night. Locat standard time is referred to in carch case.

The NTs plan somewhat spreads traffic opportunity so that casial traffie may be reported into nots for efficient handling one or two nights per week, early or late; or the ardent traflic man can operate in both early and late groups and in between to roll up inpressive totals and speed traffie reliably to its destination. Old-time traffic nen who prefer a high degree of organization and teamwork have returned to the traffic game as a result of the new system. Beginners have shown more interest in beeoming part of a sustem nationwide in seope, in which anyone can participate. The National Traffic system has vast and intriguing possibilities as an amateur sarvice. It is open to any amaterer who wishes to participate.

The above is that the briefest résume of what is of neeresity a rather complieated arrangement of nets and schedules. Complete details of the System and its opration are available to anyone interested. Just drop a line to ARLRL Headquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a national asset, is by his preparation for and his participation in eommunications emergencies. Evory amateur, regardless of the extent of his mormal operating activities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside world. It has happened many times, often in the most unlikely places: it has happened without warning, finding some amateurs totally unprepared: it can happen to you. Are you ready".

There are two principal ways in which any anateur can preare himself for surh an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergeney power (i.e., either a.c. or d.c.), and equip-

ment which can readily be transported to the scene of disaster. Mobile equipment is especially desirable in most emergeney situations.
Such equipment, ragardless of its elaboratiunss or modermess, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergencies, by no moans less fonportant than the first, is to learn to operate efficiently. There are many amatours who feel that they know how to operate effieiently who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable due to yoars of casual amateur operation to adapt themselves to snappy, albbreviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous to overrate your ability in this respect: it is far bether to assume that you have much to learn.

In general it ran be said that there is more emorgeney equipment available than there are operators who know properly how to operate during emergeney conditions, for such conditions require clipped, terse procedure with complete break-in on c.w. and fast push-to-talk on phone. The castal rag-chewing aspect of amateur radio, however cujoyable and worth-while in its place, must be forgotten at such times in favor of the business at hatd. There is only mo way to gain experience in this type of operation, and that is by practicing it. During an emergency is no time for practice; it should be done beforehand, as often as possible, on a regular basis.

This leads up to the necessity for emergency organization and preparedness. ARLRL, has long recognized this necessity and has provided for it. The Section Communications Manager (whose
address appears on page 6 of any recont issue of QST) is empowered to appoint cortain qualified amatours in his section for the purpesie of enordinating emergency conmunication organization and preparedness in sperifiod areas or communities. This appointer is known as an Emergeney Coordinator for the city or town. One is speceified for aach community. For eoordination and promotion at section level a Section Smergency Coordinator arranges for and recommends the appointments of various Fmergency Coordinators at activity prints throughout the section. limergency Coordinators organize amateurs in their communities according to local needs for emorgency eommunimation facilities.

The eommunity amateurs taking part in the local organization are members of the Amateur Radio Emorgency Corps (ARE(*). All amatcurs are invited to register in the AlR LX, whe wher they are able to phay an artive part in therir local organization or only a supporting rôle. Application blanks are available from your $\mathrm{EC}, \mathrm{SEC}$, SCM or direct from ARIRL, Headpuarters. In the revent that inquiry reveats no Emorgency Coordinator appointed for your community, your SCM would weleome a recommendation either from yourself or from a radio club of which you are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the League's publications is a booklet entitled Emergency Commmications. This booklot, while small in size, contains a wealth of information on ALREC organization and functions and is invaluable to any amateur participating in emorgeney or civil defense work. It is free to ARLC members and should be in every ama-

Before Emergency

PREPARE: yourself by proviling a transmitter-receiver setup together with an emergeney power source uron which you can depord.

TEST both the dopondability of your energeney equipment and your own operating ability in the annual ARRL Simulated Emergency Tost and the several anmal on-the-air contests, especially lield Day.

REGISTER your facilities and your availability with your local ARRI, Emergency Coordinator. If your community has no EC, contact your local civic and relief agencies and explain to them what the Amateur Service offers the community in time of disaster.

In Emergency

LISTEN before you transmit. Never violate this prinejple.
REPORT at once to your Limergency Coordinator so that he will have up-to-the-minute data on the facilities available to him. Work with local civic and relief agencies as the EC suggets, offer these agencics your services directly in the absencer of an EC .

RESTRIC"T all on-the-air work in aceordance with FCC regulations, Sce. 12.156, whenever FCC "declares" a state of communtications emergency.

QRRR is the official ARRI, "land SOS." a distress call for emergency ouly. It is for use only by a station secking assistance.

RESPE 'T the fant that the suress of the anateur effort in emergency depends largely on cirenit discipline. The established Not Control station should the the supreme anthority for priority and traffic routing.

COOPERATE, with those we serve. Be ready to hels, but stay off the air unless there is a specifie job to be done that you can handle more efficiently than any other station.

COPY all bulletins from W'1AW. Ihring time of mergency speetal bulletins will keep you posted on the latest developments.

After Emergency

REPORT to ARRL Headquarters as soon as nossible and as fully as possible so that the Amateur Service can reccive full credit. Amateur Radio has won glowing public tribute in many major disasters since 1919. Maintain this recorl.
teur's shatck. Drop a line to the ARRIRI, Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any eventuality, FCC and the Federal (ivil Defense Administrat tion (1 (CD)A), in collaboration with . DRIRI., have promulgated the Radio Amateur (ivil Fimergeney servier. RACN is a temporary peacetime sorvire, intended primarily to sorve civil defense and to continue operation during any extreme national emergeney, such as war. It shares certain segments of frequencies with the regular Amateur service on a honexrlusive basis. Its regulations have been made a sub-part of the familiar amat teur regulations: that is, the present regulations have become sub-part A, the new IR. ICRN regulat tions being atded as sub-part I3. Copies of both parts are induded in the latest edition of the ARIRS. license $1 /$ ammal.

If firiy amatrour participated, we would still be far short of the total operating personmed required properly to imploment RACES. As the servier which thears the responsibility for the surersiful implementation of this important new function, we fare not only the task of installing (and in somu ("ases building) the neressary equipmont, but also of the training of thousands of atditional people. This can and shoutd be a
function of the local unit of the Amateur Radio Emergeney Corps under its EC and his assistants, working in close collaboration with the local civil detense organization.

The first step) in organizing RAC 'lis locally is the appointment of a Radio Officer be the local civil defonse diector, possibly on the rerommendation of his communications offieer. A complete and detailed communications plan must be approved successively by local, state and FCDA A regional directors, be the FCD.A National offiec, and he FCC . Once this has bern acromplishod, applications for station authorizations under this plan can be submitted direet to FCC. QS'l will carry further information from time to time, and $\mathrm{A} R \mathrm{R}$! will keep its fied officials fully informed by bulletins as the situation requires. A complete bibliography of (2.l'l articles doaling with the subject of civil defense and IRAClis is available upon request from the ARIRI Communieations I Cepartment.

In the event of war, civil defense will place great reliance on RACLE for radio communications. R.LCES is an Amateur sorviere. Its implementation is logically a function of the Amateur Radio Emergeney (orps - an additional function in poacotime, hut probably an exclusive function in wartime. Therefore, your best opportunity to be of service will be to register with your local EC, and to participate actively in the local AREC/RACLS program.

ARRL Operating Organization

Amateur opratation must have point and constructive purjense to win publie resperet. Bach individual amateur is the ambassador of the contire fratomity in his publir rolations and attitude toward his hobby. ARRRL, field organization addepoint and purpose to amateor operating.

The (ommunimations 1)apartment of the League is concerned with the practial operation of stations in all branches of amateur activity. Appointments or awards are available for rag-chewrer, traffie enthusiast, phone operator, 1)N man and experimenter.

Thore are seventy-three ARRLA sertions in the Learues fied organization, which embaces the Conited stateos, (ambulat and cortain other territhry. Oprating affairs in ewh section are supervised by a seetion (ommunications Manager celected by members in that sertion for a twoyear term of office. Organization appointments are made by the section managers, dected as provided in the Rules and Regulations of the Communimations Department. Which acomupans. the Jotague's By-Laws and Articles of Asomemation. sertion rommunications managers' addresses for all seetions are given in full in earh issue of Qs't. scols weleme monthly artivity roports from all amatour stations in their juriscliction.
Whether your activity embraces phome or telegraphy, in both, there is a place for you in League organization.

LEADERSHIP POSTS

Ton advance wach type of station work and group interest in amateur radio, and to develop practional communiations plans with the greatest suceess, appointments of leaders and organizers in particular singlo-interest fields are made by icols. Lach leadership post is important. lach provides activities and assistance for appointee groups and individual members along the lines of natural interest. some posts further the general ability of amateurs to comsmunicate offerently at all times, by pointing activity toward networks and round tables, others are aimed sperifically at establishment of provisions for organizing the amateur sorviee as a stand-by communications group to serve the publie in disaster, rivil defense need or emergeney of any sort. The SCXI appoints the following in accordance with section neerds and individual qualifications:

PAMI Phone Activities Manager. Organizes activities for OPSs and voice operators in his section. Promotes phone nets and recruits OPSs.
KMI Route Manager, Organizes and coordinates c.w. traffic activities. Supervises and promotes nets and recruits ORSs.
SISC Section Fimergency ('oordinator. Promotes and EC administers section emergency radio organization. EC Fimergency Coordinator. Organizes amateurs of a community or other area for emergency radio servire: maintains liaison with officials and agencies served: also with other loral rommunication facilitios.

STATION APPOINTMENTS

ARIRL's field organization has a place for every active amateur who has a station. The Communications Department organization exists to increase individual enjoyment and station effectiveness in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities and to apply to the SCM for one of the following station appoint ments. ARIRL, Membership and the General Class license or V'E equivalent is prerequisite to appoint ments, except OES is available to Novice/ Technician grades.

OPS Official Phone Station. Sets high voice operating standards and procedures, furthers phone nets and traffic.
Olts Official Relay Station. Traffic service, operates c.w. nets; noted for $15 \mathrm{w} . \mathrm{p}, \mathrm{m}$, and procedure ability.
OBS Official Bulletin Station. Transmits ARlRL and FCC bulletin information to amateurs.
OIES Official Experimental Station. Experimental operating, collects and reports w.h.f.-u.h.f.-s.h.f. propagation data, thay engage in facsimile. TT, TV, etc., experiments working on 50 Mc , and/or above.
00 Official Observer. Sends cooperative notices to amateurs to assist in frequency observanee, insures high-fuality signals, and prevents FCC trouble.

Emblem Colors

Members wear the emblem with black-enamel background. A red background for an emblem will indicate that the wearer is SC.M. SECs, EC's, RMs, PAMs may wear the emblem with green background. Observers and all station appointees are entitled to wear blue emblems.

SECTION NETS

Amateurs can add much experience and pleasure to their own amateur lives, and substance and accomplishment to the credit of all of amateur radio, when organized into effective interconnection of cities and towns.

The successful operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforce each and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the members regarding
general net activit \mathbf{y}, to keep tab on net procedure, make suggestions for improvement, keep track of active members and weed out inactive ones.

A National Traffic System is sponsored lyy ARRI, to facilitate the over-all expeditious relay and delivery of message traffir. The system reeognizes the need for handling traffie beyond the section-level networks that have the popular support of both phone and c.w. groups (olis and (ORS) throughout the Ierague's firld organization. Area and regional provisions for NTS are furthered by Headquarters correspondence. The ARIRL. Net Directory, revised in December each year, includes the frequencies and times of operation of the hundreds of different nets operating on amatour band frequencies.

Radio Club Affiliation

ARIRL is pleased to grant affiliation to any amateur socipty having (1) at least $51 \mathrm{~m}_{c}$ of the voting club membership as full members of the Lague, and (2) at least 510_{0}° of members govern-ment-licensed radio amatcurs. In high school radio clubs bearing the sehool name, the first above roquirement is modificd to require one full member, AlRIRL, in the cluls. Where a society has common aims and wishes to add strength to that of other eluh groups and strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the neeressary forms and information to initiate the application for affiliation. Such clubs receive field-organization bulletins and spereial information at intervals for posting on club bulletin boirds or for relay to their memberships. A travel plan providing communications, technical and secretarial contact from the Headquarters is worked out seasomally to give maximum benefits to as many as possible of the several hundred active afficated radio clubs. Papers on clul) work, suggestions for organizing, for constitutions, for radio courses of study; ete., are available on request.

Club Training Aids

One section of the ARRIL Communications Department handles the Training Aids Program. This program is a service to ARLRI, affiliated clubs. Material is aimed at education, trainingand entertainment of elub members. Interesting quiz material is available.

Training Aids include such items as motionpicture films, film strips, slides, and lecture outlines. Also, code-proficieney training equipment such as recorders, tape transmitters and tapes will be loaned when such items are available.

All Training Aids materials are loancel free (except for shipping charges) to ARIRL affiliated cluhs. Numerous groups use this ARRRL service to good advantage. If your club is affiliated but has not yet taken advantage of this service, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST or write the ARRI, Communications Department for full details.

The Maxim Memorial station，WIAW，is dedisated to fatomity and sorvire．Operated by the League headquarters，Whall is located about fenur miles south of the Headquarters of－ fiese on a severn－arre wite．The station is on the air daily，except holdats，and avabiable time is divided between different bands and modes．
 Telegraph and phone frallsmitters are prowided for all hands from 1.8 to 111 Ne：The normal fre－ quetueies in each band for（c．w．：und voide transmissions are as follows：188\％，30：5）， $3395.7080,5255.14,1000,14,280,21,01(0,21,330)$, $2 \mathrm{~K}, 0600,28,668,50,900$ and 145,600 lie．Operating－ visiting hours and the station sehedule are listed ＂rery other month in Qs＇T．

Gperation is roughly proportional to amateur interest in different bands and modes，with one kw，except on 160 and w．h．f．bands．Wi．dW＇s datily bulletins and rode practice aim to give op－ crational holp to the largest number．

All amaterurs are invitod to visit Whal as well as to work the station from their own sharks．＇The station wats establishod to be a live ing momerial to Iliram Porey Maxim and to carry on the work and traditions of amateur radio．

OPERATING ACTIVITIES

Within the Al？RL，filfl organization there are several spectial activities，The first Saturday and sunday of each month is set aside for all ARRRL offirials，offieres：and directors to get to－ gether over the air from their own stations．This artivity is known to the gang as the 10 （ party． For all appointeres other quarterly tests are scheduled to dovelop operating ability and a spinit of fraternalism．

In addition to these sporial artivitios for ap－ pointeres and members，ARRL，sponsors various other adivities open to all amateurs．The DX－ minded amateur may participate in the Annual ARRL，lntemational DX（ompetition during Fobnuary and March．This popular contest may bring vou the thrill of working new countries． ＇Then there is the ever－popular swoepstakes in November，of domestio scope，the Sc atfords the opportmity to work mew states for that IVAS award．I Nopioe activity is planned ammatly． The interests of v．h．f．enthusiasts are also pro－ vided for in special activities planned by AlRRI。

As in all our operating，the idea of having a geord time is combined in the Annual Field I ay with the more serious thought of preparing our－ selves to render publie serviere in times of emer－ gener．A premium is placed on the use of equip－
ment without eomedetion to commerefial power soures．（＇lubs and individual groups always have arood time in the＂FIS，＂learn much about the requiremonts for operating under knowabrout conditions afied．

ARRI，contest activities are diversified to appoal to ath oprating interpests，and will be found ammonered in detail in issums of（2がT preserding the differout wemts

－AWARDS

The Laguc－sponsormb oproating activitios Prevenfore mentioned have useful objertives and provide much enjovment for members of the fraternity．Achioverment in amaterar datin is recognizod hy varions robtifieates ofioned through the L （amon and detailed belows．

WAS Award

WAS means＂Worked All States．＂This award is avaidable regardless of atfiliation or nonaffiliation with any orgathation．Here are the rules to follow in applaing for W．S：

1）Two－way eommmatation mast he extablished on the amateme hands with each of the states；any and all amateme

bands maty be used．A card from the District of Columbia may le submited in lim of one from Maryland．

2）Contates with all states hasp he made from the same Jocation．Withan a given eommanity one loeation hay be defined as frota places no two of whell are more than 2.5 miles apart．

3）Contacts may be made over any poriod of years，and may have been made any mumber of yoars ago，provided only that all contact－are from the satie location．
f）Qsle eards，or other weritten eommanieations from stations worked conflimine the neressatry two－way con－ taets，must be submited by the applieant to ．ARRL hemd－ quartors．
j）Aufieient motage must be sent with the confirmations to finanee their return，No correspondence will be returned unless sufficient postage is furnished．

6）The W．AS award is available to all amateurs．
7）Vddross all applications and confirmations to the Commanieations Department，MRRI．，3s Lat Satle Road． W＇est llartford，（＇onn．

DX Century Club Award

Here ate the rules under whith the 1）．（＇en－ tury Club Award will be issued to amateurs who have worked and confirmed contant with 100 countries in the postwar permod，If wou worked fewer than 100 erountries before the war and have since worked and confirmed a sufficiont number to make the 100 mark，the $\mathrm{D} \times \mathrm{C}^{(1}$ is still avail－ able to you under the rulas detailed on page 73 of March，19．6．，（ぶT．

1) The (entury (Chb Award (eertificate for confirmed contacts with lon or more countries is availables to all amateurs everywhere in the world.
2) Confirmations must he suhmitted direct to ARRI. feadouarters for all comentios clamed. (laims for a total of f(k) countries must be included with first application. Comfirmation from foreign contest logs may be reguested in the case of the ARRRL, International IJX Comprtition only, subject to the followink conditions:
a) Sufficient confirmations of other types mast be submitted so that these. phas the I)X ("ontest contirmations, will total 100. In every case. ('ontest confirmations mast not be repuested for any conntries from which the applicant has regular confirmations. That is, contest confirmations will be granted only in the ease of conntries from which applicants have no regular confimations.
b) Look up the contest results as published in $Q N T$ to see if your man is listed in the foreizn scores. If he isn't, he did not send in a log and no eonfirmation is possible.
c) Give yrar of eontest, date and time of Qso.
d) In future 13X Contests do not request confirmations until after the final results have been published, usually in one of the early fall issues. Requests before this time must ber ignored.
3) The ARLRL, Countries List, printed periodically in QST, will be used in determining what constitutew a "country." The Miscellanoons Data ehajtor of this Handbook contains the I'ostwar Conintiges List.
4) Confirmations most le accombanied by a list of claimed countries abd stations to aid in checking and for future refermee.
5) Confirmations from additional comontries mas le sul) mitted for credit each time ten additional confirmations are available, Endorsements for affixing to errtificates and showing the new confirmed total (I10, 120, 130, rete.) will he awarded as additional credits are granted. DRRL, INX ('omprotion logs from foreign stations may te atilized for these endorsements, subjert to conditions stated under (2).
(i) All contacts must be made with anateme stations working in the anthorized anateur hands or with other stations lieconsed to work amatelns.
6) In cases of eountribs where thateum are limensed in the normal manner, credit may lie elaimed only for stations using regular government-ansigned rall lettors. No credit may be clatmed for contacts with stations in any countries in which amateras have been tomporarily clomed down by sumerial government rdict where amateur licenses were formerly issum in the normal manuer.
7) All stations eontacted must be "land stations" contapts with whins, anchored or otherwise, and aireraft, canmot be counted.
(1) All stations inlist be contacted frotu the same call area, where moh areas exist, or from the same country in enase whem there are no call areas. One exepetion is allowed to this rulde: where a station is moved from one call area to another, or from one eountry to another, all eontacts must be made from within a radius of 150 miles of the initial location.
8) Contacts may be made over any period of years from Novemter 15. 1945, provided only that all contacts be made muder the provisions of Rule 9, and by the same station liconsee; contacts may have been made under different call letters in the same area (or comntry), if the licensee for all was the same.
9) All eonfirmations must be submitted exactly as rereived from the stations worked. Any altered or forged confirmations submitted for ('('eredit will result in disqualification of the applicant. The elipibility of any DNCC applicant who was ever barred from INXCC to reapply, and the conditions for such applieation, shall be deterinined by the A wards Committee. Any holder of the (century Club Award submitting forged or altered eonfirmations must forfeit his right to be eonsidered for further endorsements.
10) OPlERATY N(: ETHHCS: Fair play and good sportsmanship in operating are reguired of all amateurs working toward the I)X (entury (lut) Award. In the event of speefic objections relative to continued poor operating ethics an individual may be discualified from the DNC'C by action of the ARRL, Awards Committe.
11) Sulficient postage for the return of eonfirmations must be forwarded with the application. In order to insure the sufo return of large batches of eonfirmations, it is sumgested that enoumh postage be sent to make possible their return by first-class mail, repistered.
12) Decisions of the ARRL Awards Committee regard-
ing interpretation of the rules as here printed of later amented slall be finat.

1iv) Adderes ald applimations and confirmations to the (ommunications lhemartmont. ARRL, 38 La salle Road, West Hartford 7. (omm

WAC Award

The International Amateur Radio Union issucs W"A(" Worked All (ontinents) cortificates to members of member-socelotios who submit proof of two-way communication with one station on each of tha six rontinents. Forrign amateurs submit their proof direret to member-sociolies of the IAlR ${ }^{\circ}$. U.S. and ('athadian amateurs must be members of the league, and should mate application to AlRIRL, headquarters society of the Union. Amateurs residing in countries not represented in the Union may apply to ARRI, and enclose .jo, or fllRC's. A c.w. and a phone certificate are available. The c.w. certificate will be issued for all c.w.. or a combination of phone and cew. confirmations. Speeial endorementsare available for 3.5 Ne., and s.s.t.

Code Proficiency Award

Many hans can follow the gencral idea of a contact "by ear" but whon pressed to "write it. down" they "nuri" the copy. The Code Proficiency Award invites every amateur to prove hinusolf as a proficiont oporator, and sots up a systom of awards for stepp-hy-step gains in eopying proficiency. It enables every amateur to chock his eode proficionery to beotere that prosfrieners, and to reerive a erortifieation of his reciving sperel.
rhis program is a whalo of a lot of fun. The leatgus will give a certifionte to any licensed radio amateur who demomstrates that he cint ropy profectly, for at least one minute, plain-language Contimontal corle at $10,15,20,25,30$ or 35

words per minute, as transmit ted during speciad monthly transmissions from W 1 AW and WGOW'P.

As part of the AlRIRL, Code Profieiency program WhAW transmits plain-language practice material each evening at speeds from 5 to 35 w.p.m. All amateurs are invited to use these tramsmissions to increase their code-copying ability. Non-amateurs are invited to utilize the lower speeds, 5,512 and 10 w.p.m., which are transmitted for the thenefit of persons studying the code in preparation for the amateur license
examimation. Refer to any issue of QST for details of the pratetice sehedule.

Rag Chewers Club

The lag Chewers Club is designed to encourage fricodly contacts and disenurage the "hello-good-hy" type of (2sO. Its purpose is to bond ougether operatons interested in honest-togoodness rag-chewing over the air. Membership) certifieates are available.
How To (iet in: (1) Chew the rag with a member of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QRRM or QRN, hut a solid half hour of eonversation or message handing. (2) Report the conversation by card to The lRag Chewers Club, AlR1RL, (ommonications Department, West Hartford, Conn., and ask the member station you talk with to do the same. When huth reports are received you will be sant a membership certificate entitling you to all the privileges of a Rag Chewer.

How To Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words excent " cuagn" or "cul," or "QRL"" or "nil," 'Talk to the fellows you work with and get to know them. (2) Opreate your station in accordance with the radio laws and ARRRL practice. (3) Observe rules of courtesy on the air. (4) Sign "RCC" after each call so that others may know you can talk as well as call!

A-1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To berome a membor, one must be nominated by at least two operators who already belong. Goneral keving or voice terhnique, procedure, copring ability, judgment and courtese all count in rating candidates under the elub rules detailed at kength in Operating an Amateur Ralio N'tation. Aim to make vourself a fine operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-1 Operator (lub, which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a specified minimum in official monthly traffic totals is given an honor place in the QST listing known as the Brass l'ounders League and a certificate
to recognize his performance is furnished by the SCAI. In addition, a BI'L Truffic A ward (medallion) is given to individual annateurs working at their own stations after the third time they "make BI'L" by reports duly reported through the SC'M and reported for OST'.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general public, make message-handling work of prime importance to the fraternity. Fun, enjoyment, and the feeling of having done something really worth while for one's fellows is acontuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20-or-more vears ago. Lapses in activity during the intervening vears are permitted.

If you cem qualify as an "Old Timer," send us a briof chronology of your ham career, being sure to indicate the date of your first amateur license, and vour present call. If the evidence submitted proves you eligible for the OTC, you will be added to the roster and will receive a membership certificate.

INVITATION

Amateur radio is (apable of giving enjoyment, solf-training, social and organization benefits in proportion to what the individual amateur puts into his hobby. All amateurs are invited to become MRIRL members, to work toward awards, and to acrept the chadlonge and invitation offered in field-organization appointments. Drop ae lime to ARRIRL, Headquarters for the booklet Operating an Amateur Ratio Station, which has detailed information on the field-organization appoint ments and awards. Accept today the invitation to take full part in all League atetivities and organization work.

CONELRAD COMPLIANCE

FCC has promulgated additional rules for the Amateur service conerned with observance of certain requirements in the event of enemy attack. These rules are rontained in the ARIRL, License Janual as part of the amateur regulations, hertions 12.190 through 12.196 . Read them. They concern you,

Amateurs are required to shut down when a Conelrad Radio Alert is indicated. FCC requires monitoring, bey some means, of a brondeast station while you operate. By use of proper equipment, each amatere can make his Conelrad compliane routine and almost antomatire. You will find deseriptions of such devieres, most of them quite simple, elsewhere in this Handhook.

Amateur Conelrad rules are offertive and mandatory as of January 2, 1957.

- Operating an Amateur Radio Station covers the details of practical a mateuroperating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.

Abstract

\rightarrow Emergency Communications is the "bible" of the Amateur Radio Emergency Corps. Within its eight pages are contained the fundamentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a complete table of RACES frequencies on the front cover. If you don't already have an up. to-date copy of this manual, we suggest you take steps to obtain one immediately.

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

american radio relay league 38 La Salle Road
West Hartford 7, Connecticut, U. S. A.
Please send me, without charge, the following:
OPERATING AN amATEUR RADIO STATION EMERGENCY COMMUNICATIONS

Name
(Please Print)
Address.

Miscellaneous Data

Q SIGNALS

Given below are a number of () signats whose meanings most often need to be expressed with brevity and clearness in amateur work. (Q ab)breviations take the form of questions only when (arth is sent followed by a question mark.)

QRG Will you tell me my exact frequency (or that of.......)? lour exact frequency (or that of) is.ke.
QRHID Does my frequenery vary? Vour frequency varies.
QRIR llow is the tone of me tranmission? The tone of your transmission is (1. (inod; ?. Variable; 3. Bad).

QRE What is the readability of my signals (or those of......)? Thus readability of your signals (or those of.....) is. (1. 1'nreadable; 2. Readable now and then; 3. Readable but with diffirthty; 4. Readable; 5. Perfectly readable).
QRL Are you lnsy? I am busy (or I am busy with). Please do not interfere.
QRMI Areyon beinginterfered with? I an interfered with.
(2lRA Are you troubled by statir? I ann being tronbled by static.
(QRC) Whall I send faster? sicisd faster (...... worde per 1uin.).
QRA Shall I send more whwly? send more slowly (. . . w.p.m.).

Qlfl shall I stor semding? Stop semding.
QIRC Have you athething for me? I have nothing for you.
QRV Are you ready? I am ready.
Qhll shall 1 tell.....that sou are ealling him on ke.? Please inform. . . . that 1 an ealling himon.....ke.
QRX When will you coult ue again? I will call you again at....... huurs (on.ke.).
QRZ Who is calling me? Jon are being called by..... (on.kc.)
Qsis What is the streugth of my signals (or those of
)? The strength of your signals (or ttiose of.....) is (1. Scarcely perceptible: 2. Weak; 3. Fairly good; 4. (iood; 5. Very good).
QSH Are my signals fading? Your signals are fading.
(2)N Is my keyith defaetive? Your keying is defeetive.

Qrid Shall I send.....messages at a time? Send..... messages at a time
Qs1. Can you achnowledge recoipt? I am acknowleduitu recespt.
Q心M Shall 1 reperat the last mesage which I sent you. or some prevints messagn? Ropeat the last massage which you sent me for messume (s) number(s)J.
QSO (an you comanamate with.... direet or hy relay? I ean commanicate with.... . direet (or by relay through.).
Qsil Will you relay to.....? 1 will relay tu...
Qsiv whall I semd a sories of is on this frectumeny (or (o..kc.)? sienl a series of is on this frequency (or.ke.).
QSW Will you send on this frequeney (or on ke.1? I am, zoing to send on this frequenes (or on kc.).
WEX Will youhsten to 1 am distemug

Qsy Shall i elange to transmission on another frequency? Change to transmission on another frequency (or on.... kc.).
Qw2 Shall I send each word or group more than once? Eend each word or group twice (or . . . times).
QTA shall I eancel message number. . . . as if it had not been sent? Cancel message number. . . . as if it had not been sent.
G'TB Do you agree with thy counting of words? I do not agree with your connting of words; I will repeat the first letter or digit of each word or gronp.
QHC. How many messuges have you to nemi? I havo.... thessages for sou (or for.).
Qill! What is your location? My location is.....
GTlk What is the exact time? The time is.
Speeial abbresiations adopted by ARlR1:
QST (ieneral call preerdin: a message addressed to all amateurs and ARHLI members. This is in effect "('Q ARKI.."
QRRRR Otficial ARRL. "land sOs." A distress call for encrenery use only by a station in an emergency situation.

THE R-S-T SYSTEM

 READABILITY1 - Uureadiable.
2 - Barely readatle, oceasional words distimguishable.
3 - Readable with considerable difficulty.
4- Readable with practically no diffieulty.
s- J'erfeetly readable.

SIGNAL STRENGTH

t-Fint signals, barely perceptible.

- - Vers weak signals.

3-Weak signals.
1 - F'air signals.
5 - Fiairly koorl signals.
6- (iood signals.
7 - Moderately strong signuls.
8 -Stroug signats,
9 - Bixtrenely strong signals.

TONE

1 - Exxtrenels rough hissing note,
2 - Very rough ace note, no trace of musicality.
:3-Rough low-pitched a.c. note, slighty musical.
4-Rather rough a.c. note, moderately musical.
j- Musically-molulated note.
(; - Modulated note, slight trace of whistle.
7 - Nowr de note, stmoth ribule.
8-Goul d.e note, just a trate of riphle.
9 - Purest dee note.
If the signal hat the chararteristue steadiness of -rystal eontrol, atd the letter \mathcal{X} to the IRST report. If there is a chirp, the letter C may be alded to so indicate. Similarly for a click, add K . The above reporting system is used on both r.w. and roice. leaving out the "tone" report on vome.

INTERNATIONAL PREFIXES

AAA－ALZ	United States of America	SSA－SC\％	Eigypt
AMA－AOZ	Spain	SV＇A－SZ\％	Cireece
APA－As\％	Pakistan	TAA－TC\％	Turkey
ATA－AW\％	India	TOA－TI\％	Cinatemala
ANA－AXZ	Commonwealth of Australia	TEA－TE\％	Costa Rica
A1A－17\％	Argentina Republie	TF゙A－TE\％	Iecland
［3AA－B7\％	（ Mhina	TCiA－TC\％	（inatemala
CAA－ C / Z	Chile	THA－TIIZ	France and（＇olonies and Protectorates
	Canada	TIA－TI\％	Costa Rica
C1A－CM\％	Cuba	TJA－T\％\％	France and Colonies and Protectorates
CNA－${ }^{\text {c }}$ \％	Morocco	CAA－1 ${ }^{\text {C／}}$	Union of Sovict Socialist Republics
COA－COZ	Cuba	じRA－L゙T\％	Coratimian soviet socialist Republic
CPA－CP／	IBolivia	じじA－l゙\％\％	Union of Sovipt socialist Republies
（＇QA－（1R\％	Portuguese Culonies	VAA－Vi\％	Canada
（SA－（1）\％	l＇ortugal	VHA－VN／	Commonwealth of Australia
（ VA－C＇X\％	Crumay	VOA－VOZ	Newfoundland
CYA－C\％\％	Canada	VPA－VE\％	13ritish Colonies and Protectorates
DAA－D．${ }^{\text {d／}}$	（iermany	VIA－VW\％	India
DNA－1）${ }^{\text {d }}$	Belgian Congo	VXA－VY\％	Canada
1HRA－HTZ	Bielorussian Soviet Socialist Republic	V\％A－V\％\％	Commonwealth of Australia
1 CA－ITZ	Republic of the I＇hilippines	WAA－WZZ	United States of America
EAA－EH\％	Spain	XAA－XI\％	Mexico
LIA－EJZ	Ireland	XJA－NO\％	Camada
ERA－EK\％	lnion of soviet Socialist Republies	XPA－N1\％	Denmark
ELA－ELZ	Republic of Liberia	XOA－XRZ	Chile
EDA－EOZ	Union of soviet Socialist Republics	ズャA－N゙\％	（ C ina
EPA－EQZ	Iran	Xl＇A－Nl＇Z	Cambodia
ERA－ER／	Union of soviet Sucialist Republies	XVA－XV\％	Viet－Nam
LSA－Es\％	Estunia	XWA－XW\％	Laos
ETA－ET\％	Fithiopiat	ХХA－XX\％	Portuguese Colonies
ELA－EZ\％	L＇nion of Soviet Socialist Republics	X1A－N\％\％	Burma
FAA－F\％Z	Francr and Colonies and Protectorates	YAA－YAZ	Afghanistan
GAA－GZZ	Great Britain	YHA－IH\％	Indonesia
HAA－HAZ	Hungary	YIA－I＇I\％	Irasi
11BA－HB\％	Switzerland	YSA－IJ\％	New Hebrides
HCA－H11\％	Ecuador	Yに，1「K\％	Syria
HEA－HEZ	Switzerland	YLA－IL\％	Latvia
HFA－II\％	Poland	YMA－ID\％	Turkey
HGA－HG\％	Hungary	YNA－IN\％	Nicaragua
111A－11H\％	Republic of Haiti	YOA－1R\％	Roumania
H1A－H1\％	I ominican Republic	YSA－ris\％	Republic of El Salvador
H．JA－Hに\％	Republic of Colombia	YTA－YC\％	Yugosalvia
H11．A－113\％	Rorea	IVA－Y「\％	Venezuela
11N．1－11N\％	Irac	1\％A－1\％Z	Tugoslavia
110A－11P\％	Hepublic of l＇anama	ZAA－ZAZ	Albania
110．－1112\％	Reputhlic of Ilonduras	ZB．A－Z．J\％	British Colonies and Protectorates
HSA－HS\％	Niam	Zに，	New Zealand
HTA－HT\％	Nicaragua	ZNA－ZOZ	British Colonies and Protectorates
H1TA－II＇\％	Republic of Lil Salvador	ZPA－ZP\％	Paraguay
HVA－HV\％	Vatican City State	ZQA－ZQZ，	British（＇olonics and Protectorates
11WA－11\％\％	France and Colonies and Protectorates	ZRA－\％l\％	Union of South Afriea
11ZA－11\％Z	Kingdom of sandi Arabia	ZVA－\％Z\％	Brazil
HA－I\％\％	Italy and colonies	2AA－2Z\％	Great Britain
JAA－JSZ	Japan	3AA－3A\％	Principality of Monaco
JTA－JV\％	Mongolian People＇s Republic	313A－3F\％	Canada
JWA－JX\％	Norway	36A－3GZ	Chile
J\A－J】\％	Hashimite Kingdom of Jordan	311．4－31\％	Clina
JZA－J $/ 2 \%$	Netherlands New Giunea	$3 \mathrm{VA}-3 \mathrm{~V}$	Tunisia
に．A－ドVZ	l＇nitedstates of America	3W：－3WZ	Viet－Nam
LAA－LN\％	Norway	31．A－31\％	Norway
LOA－LIV\％	Argentina Republic	3ZA－3Z\％	Poland
LXA－LX\％	Luxembourg	4AA－4 ${ }^{\prime} \mathrm{Z}$	Mexico
LYA－LY\％	Lithuaria	413A－41\％	Republic of the Philippines
LZA－LZ\％，	Bulgaria	4．JA－4LZ	Union of Soviet Socialist Republics
MAA－MZZ	Gireat Britain	4．MA－4M2	Venezuela
NAA－NZ\％	L＇nited States of America	4．NA－40\％	Tugoslavia
OAA－OCZ	Pera	$4 \mathrm{P} \cdot \mathrm{A}-4 \mathrm{SK}$	C＇eylon
OHA－OLZ	Republic of Lebanon	4TA－4＇$\%$	Pern
OEA－OEZ	Austria	$41^{\circ} \mathrm{A}-41^{\prime} \%$	l＇nited Nations
OFA－O．IZ	Finland	$4 \mathrm{VA}-4 \mathrm{~V}$	Republic of Haiti
ORA－OMZ	C＇zechoslorakia	$4 \mathrm{WA}-4 \mathrm{~W}$	Yemen
ONA－OT\％	Belgium and Colonies	$4 \mathrm{NA}-4 \mathrm{~N}$	Isracl
OLA－O\％\％	I emmark	$4 \mathrm{YA}-4 \%$	International Civil Aviation Organization
PAA－PI\％	Netherlands	¢AA－5，\％	Libya
PJA－PJ\％	（＇uracao	$5 \mathrm{CA}-5 \mathrm{C} \%$	Moroceo
1以A－POZ	Indonesia	5LA－51．7	Liberia
PPA－P「\％	Brazil	6AA－6\％\％	（Not allocated）
1＇ZA－1＇\％\％	Surinam	7AA－7\％\％	（Not allocated）
QAA－QZ\％	（Service abbreviations）	8AA－8Z\％	（Not allocated）
RAA－13Z\％	Inion of Soviet Soeialist Republics	9AA－9AZ	Nan Marino
SAA－S．1\％	Sweden	9NA－9N\％	Nepal
SNA－SRZ	Poland	98A－9S\％	Saar

ABBREVIATIONS FOR C．W．WORK

Abbreviations help to cut down unnecessary transmission．However，make it a rule not to abbreviate unnecessarily when working an operator of unk nown experience．

A．	All after
AB	All before
ABT	About
Aloh	Address
AGN	Arain
ANT	Antenua
BCI	Broadrast interference
BCL	Broadeast listener
BK	l3reak：break me；break in
BN	All between；been
B4	Before
C	Yes
CFAI	Confirm；I confirm
CK	（heek
CL	1 am closing my station；call
（CLI）－CLG	Called；calling
CUI）	［＇ould
CUL	See you later
CLM	Come
CW	Continuous wave
12LD－IDS	Delivered
1）X	Distance
1：CO	Pillectron－coupled asoilator
FB	Fine business；excellent
（i．A	（io ahead（or resume sending）
（i3	（ Bond －by
（iBA	Give better address
Cil	Good evening
（i）；	（ioing
（ial	Gisod morning
（iN	Ciood night
（iN1）	（iround
（：L＇D）	Good
1 II	The telegraphie laugh；high
11 R	Here：liear
11 V	lave
HW	llow
L11）	A poor oplerator
MISS	Milliamperes
MSG	Message；prefix to radiogram
N	No
N1）	Nothing doing
N1L	Nothing；I have nothing for you
NR	Number
NW	Now；I resume transmission

OB	Old boy
OM1	Old man
OP－01＇R	Operator
Osc	Oscillator
OT	Old timer；old top
I＇BL	l＇ramable
PSE－Pds	I＇lease
pwR	lower
$\mathrm{l}^{1} \mathbf{X}$	Press
R	Reroved as transmittela are
RAP＇	Rectifical alternating eurrent
RCl）	Recojved
REF	Refer to；referring to；refarence
R1＇T	Reprat；I repeat
SH：	Said
心1：\％	Rays
SIG；	Nignature：signal
SINE	Operators jersonal initials or nickname
心にどい	sichedule
SIRI	surry
sve	Sorvice；prefix to service message
TFC	T＇raflic
raw	T＇omorrow
TNX－TkS	Thanks
T＂r	That
TU	Thank you
TV1	Television interference
TVL	${ }^{\text {l }}$ Clervision listener
TX ${ }^{\text {d }}$	Text
$1 * H-1 / R S$	Your；you＇re：yours
VFO	Variable－frefueney ossillator
V＇	Very
W．	Word aftor
W13	Word before
W゙D－WIDS	Word；words
いだい－W゙ぐ	Workerl；working
W12	Well；will
W1＊）	Would
WX	Weather
XM＇TR	Transmitter
XTAL	Crystal
${ }^{1} \mathrm{~F}$（XYL）	Wife
11.	Coung lady
73	liest regards
88	Love and kisses

W PREFIXES BY STATES

Alabama	117	Nebraska	\％
Arizona	117	Nevada	7
Arkinnas	W5	New Hampshire	V1
California	W6	New Jerser	2
Colorado	W0	Now Moxico	3
Commeeticut	W1	New York	W2
belaware．	113	North Carolina．	＋
1 ）istrict of Columbia	W：3	North Dakota．	WV
Florida．	W4	Ohio	8
Georgia	N4	（）klahoma	$1{ }^{1} 5$
ldaho．．	W7	Oregon．	7
Illinois	119	Pennsylvania	113
Indiana	W9	Rhode Island．	W1
Iowat．	110	South Carolina．	W4
K゙ansta	110	South Dakota．	IV）
K゙entucky	114	Temmesser	11.
Lonisiana	115	Toxas．	115
Maine．	W1	［ Tabl	117
Marylam．	113	\checkmark Vimont	W1
Massachusetts	111 118	Virginia	W1
Michigan． Minnesotia	W\％	Wishington．	W＇\％
Mississipui．	115	West Virginia	W88
Missouri．．	W6	Wisconsin	W9
Montana．	．15\％	Wyoming．	11

－FILTERS

The filter sections shown on the facing page can be used alone or，if greater attenuation and sharper＂ut－off are required，several sections can be comnceted in series，In the low－and high－pass filters．fo represents the cut－offi fre－ quency，the highest（for the low－pass）or the lowest（for the high－pass）frequency trans－ mitted without attenuation．In the band－pass filter designs，f_{1} is the bow－frequency rut－off and f_{2} the high－frequency rut－off．The units for L, C, R and f are henrys，farads，ohms and cycles，respectively．

All of the types shown are for use in an un－ balanced line（one side grounded），and thus they are suitable for use in coaxial line or any other unbabanced circuit．To transform them for use in bataned lines（e．g．． 300 －ohm trans－ mission line．or push－pull audio cireuits），the sories reartaners should be equally divided between the two legs．Thus the balanced con－ stant－k π－section low－pass filter would use two inductors of a value equal to $L_{k} / 2$ ，while the balanced constant－k r－section high－pass filter would use two rapacitors of a value equal to $2 C_{k}$ ．

If several low－（or high－）pass sertions are to be used，it is advisable to use m－derived end sections on either side of a constant－k center sec－ tion，although an m－derived center seetion can be used．The factor m relates the ratio of the cut－ off frequency f_{c} and f_{x} ，a frequence of high attemation．Where only one m－derived section is used，a value of 0.6 is generally used for m ， although a deviation of 10 or 15 per rent from this value is not too serious in amateur work． For a value of $m=0.6, f_{\infty}$ will be $1.25 f_{\mathrm{e}}$ for the low－pass filter and $0.8 f_{\mathrm{c}}$ for the high－pass filter． Other values ran be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2} \text { for the low－pass filter and }}$ $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high－pass filter．

The filters shown should be terminated in a resistance $=R$ ，and there should tre little or no reactive component in the termination．

Simple atudio filters can be made with pow－ dered－iron－core chokes and paper capacitors． sharper coutoff characteristics will be obtained with more seetions．The values of the rom－ ponents ran vary by $\pm \bar{\sigma}^{\prime \prime}$ ，with little or no reduction in performance．The more sedtions there are to a filter the greater is the need for aceuracy in the values of the components．High－ performance andio filters san be built with only two sections bye winding the inductors on toroidial powdered－iton forms－it gemorally takes three sections to obtain the same results when using ot her inductors．

Side－band filters are oftern designed to oprate in the range 10 to 20 ke ．Their attenuation re－ quirements are such that usually at least a five－
section filter is required．The roils should be as high－（）as possible，and mica is the most suitable capiacitor dielectric．

Low－pass and high－pass filtors for harmonia suppression and receiver－overload prevention in the television frequencies range are usually made with self－supporting coils and mica or reramic capacitors，depending upon the power requirements．

In any filter，there should be no magnetic or raparitive coupling between sections of the filter unless the design spercifically calls for it．This requirement makes it neressary to shiold the coils from each other in some applications，or to mount them at right angles to each other．

Further information on filter design can be found in the following articles：
Bennett，＂Audio Filters for Eliminating（QRM，＂ （SS゙＇，July；1949．
Berry，＂Filter Desigu for the Single－Side－hand Transmitter，＂QST＇，Jume，1949．
IBuchhrim，＂Iow－l＂ass Audio Filters，＂（SSTT， July， 1948.
Grammer，＂Pointers on Harmonic Reduction．＂ QST＂，April．1949；＂High－l＇ass Filters for TVI Reduction．＂（QST，May，1944．
Mann，＂An Inexpensive Side－hand Filter，＂（os＇T＂， March， 1949.
Rand，＂The Little Slugger，＂（SST＂，Fobruary， 1949.

Smith，＂lremodulation Speech Clipping and Filtering．＂（QST，February，1946；＂More on Sprech Clipping，＂QSTT，Mirch， 1947.

GREEK ALPHABET		
Greek Letler	Grreek liame	English Equivalent
A a	Alphat	a
B β	Beta	b
I γ	（ armma	g
$\pm \delta$	1）elta	d
E．ϵ	Lipsilon	e
\％ 5	Veta	z
H η	Dta	e
00	Theta	th
I ،	lota	i
K к	Kappa	k
$1{ }^{1}$	lambia	1
M μ	Mu	in
$\mathrm{N} \nu$	Nin	n
三	Ni	x
$)^{\circ}$	Omicron	б
11 п	1 P	p
1ρ	Rho	，
ジ σ	Sigma	8
＇I＇	T：u	t
Tv	［psilon	1
中 ϕ	Phi	ph
$\mathrm{x} \times$	Chi	ch
$\psi \psi$	I＇si	ps
$\Omega \omega$	Omega	$\overline{0}$

In the alove formulas R is in ohms, C in farads, L in henrys, and f in cycles per sccond.

- RESPONSE OF COUPLED TUNED

 CIRCUITSThe chart shows the response or selectivity curves for various degrees of coupling between

two cirenits tuned to a frequency f_{0}. Fqual $Q s$ is assumed in both circuite, although the curves are representative if the Qs differ ber ratios up to 1.5 or even 2 to 1 . In these cases, a value of $Q=$ $\sqrt{Q_{1} Q_{2}}$ should be used.
The coefficient of coupling, k, is given for several different types of circuits in the figure. Only the first circuit uses any inductive coupling between L_{1} and L_{2}.

- TUNED-CIRCUIT RESPONSE

The graph below gives the response and phase angle of a high-() parallel-tuned eircuit.

Circuit Q is equal to

$$
2 \pi f R C \text { or } \frac{R}{2 \pi f L}
$$

where L and C are the inductance and capacitance at the resonant frequener, f, and R is the parallel resistance arross the circuit. The curves above berome more accurate ats the aircuit () is higher, but the error is not especially great for values as low as $Q=10$.

ELECTRICAL CONDUCTIVITY OF METALS

	Relative Conductivity ${ }^{1}$	Temp. Coef. ${ }^{2}$ of Resistance		Relative Conductivity	Temp. Cuef. ${ }^{2}$ of Resistance
Aluminum (2S; pure).	59	0.0049	Lead.	7	0.0041
Aluminum (alloys):			Manganin.	3.7	0.00002
Soft-annealed. . .	4.5-50		Mercary,	1,60	0.010084
Heat-treated.	30-45		Molybdenun.	33.2	0.0033
Brass.	28	0.002-0.007	Monel.	4	0.0019
Cadmium.	19		Niehrome	1.45	0.00017
Chromium.	55		Nickel	12-16	0.005
('limax.	1.83		Phosphor Bronze	36	0.004
Cobalt.	16.3		Platinum,	15	
Constantin.	3.24	0.00002	Silver	- 106	0,00)
(onper (hard drawn)	89.5	0.004	Steel.	- 3-15	
(oppur (anmealed). .	100		Tin.	13	0.0042
livardur.	6		Thingsten.	28.9	0,0045
(ierman silver (180)	5.3	0.00019	Zine....	28.2	0,0035
(iold.	65		Approximate relations		
Iron (pure).	17.7	0.006			
Iron (cast). . .	2-12		An inerease of 1 in A. W. G. or B. \& S, wire size increases resistance 25%.		
Iron (wrought),	11.4		An increase of 2 increases resistance 60%.		
An increase of 3 increases resistance 100%.					

VACUUM TUBE AMPLIFIER GAIN

The gain through a vacuum tube amplifier stage ean be computed by the formulas shown in

STANDARD METAL GAUGES			
Gauge No.	American or B. © S^{1}	L. s. standard ${ }^{2}$	Birmingham or Stubs ${ }^{3}$
1	. 2893	. 28125	. 300
2	.2576	.265625	. 284
3	. 22.94	,2i)	. 259
	. 2043	. 234375	. 238
5	. 1819	. 21875	.220
6	. 1620	. 203125	. 203
7	. 1443	.187i	. 180
8	.128.5	. 171875	.165
9	. 11.4	. 15625	. 148
10	. 1019	.140625	.134
11	. 09074	. 125	. 120
12	. 08081	. 109375	. 109
13	. 07196	.09375	. 095
14	.06408	.078125	. 083
15	. 05707	. 0703125	. 072
16	.05082	.0625	. 063
17	. 04526	.0.6625	. 058
18	. 04030	.0.3	. 049
19	.03589	. 04375	. 042
20	. 03196	. 037.5	. 035
21	. 02846	.03437.)	. 032
22	.02:335	. 03125	. 028
23	. 022257	. 028125	. 025
24	. 02010	. 025	. 022
2.5	. 01790	. 02 (875	. 020
26	. 01594	. 01875	. 018
27	. 01420	.0171875	. 016
28	. 01264	. 0151525	. 014
29	. 01126	.0140625	. 013
30	. 01003	. 0125	. 012
31	. 008928	. 0109375	. 010
32	. 007950	. 01015625	. 009
33	. 007080	.009375	. 008
34	.006330	.008:9375	. 007
35	. 005615	. 0078125	.005
36	. 005000	.00703125	. 004
37	.004453	.006640626	. .
38	.003965	. 10062.5
39	.003531	
40	. 003145	\ldots
${ }^{1}$ प'sed for aluminum, copper, brass and nonferrous alloy sheets, wire and rods. ${ }^{2}$ Used for iron, steel, nickel and ferrous alloy sheets, wire and rods. ${ }^{3}$ Used for seamless tubes; also by some manufacturers for copper and brass.			

the figure below. The values of $\mathrm{r}^{\circ} \rho$ (phate resistance), μ (amplification factor) and y_{m} (mutual conductance) for the operating point can be obtained from a vacuum tube namual.

PILOT-LAMP DATA					
$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Bead } \\ & \text { Color } \end{aligned}$	Base (.Miniature)	$\begin{aligned} & \text { Bulb } \\ & \text { Type } \end{aligned}$	Rating	
				Volts	Amp.
40	Brown	Screw	T-31/4	6-8	0.15
$40 \mathrm{~A}^{1}$	Brown	Bayonet	T-31/4	6-8	0.15
41	White	Screw	T-31/4	2.5	0.5
42	Green	Screw	T-31/4	3.2	**
43	White	Bayonet	T-31/4	2.5	0.5
44	Blue	13ayonet	T-31/4	6-8	0.25
45	*	Bayonet	T-31/4	3.2	**
46^{2}	Blue	Screw	T-31/4	6-8	0.25
47^{1}	13rown	Bayonet	T-31/4	6-9	0.15
48	l'ink	Screw	T-31/4	2.0	0.06
49^{3}	link	13ayonet	T-31/4	2.0	0.06
-	White	Screw	T-31/4	2.1	0.12
$49 \mathrm{~A}^{3}$	White	Bayonet	T-31/4	2.1	0.12
50	White	Screw	G-31/2	6-8	0.2
512	White	Bayonet	C-31/2	6 6-8	0.2
-	White	Screw	G-41/2	6-8	0.4
55	White	Bayonet	G-41/2	6-8	0.4
2925	White	Screw	T-31/4	2.9	0.17
$292 \mathrm{~A}^{6}$	White	Bayonet	T-31/4	2.9	0.17
1455	Brown	Screw	G-5	18.0	0.25
1455A	3rown	13ayonet	G-ӯ	18.0	0.25

[^6]${ }^{2}$ Have frosted bulb.
${ }^{2} 49$ and 19A are interchangeable.

- Replace with No. 48.

5 Ce in 2. 5 -volt sets where regular bulb burns ont too frequently,

* White in G.E. and Sylvania; green in National C nion, Raytheon and 'rung-Sol.
** 0.35 in G.E. and Sylvania; 0.5 in National Union, Raytheon and Tung-Sol.

[^7]
Vacuum Tubes and Semiconductors

For the ronvenience of the designer, the re-roiving-type tubes listed in this chapter are grouped by filament voltages and construction tyons (glass, metal, miniature, ete.). For example, all miniature tubes are listed in Table 1 , all metal tubes are in Table II, all lock-in base tubes are in Table IV, and so on.

Transmitting tubes are divided into triodes and tetrodes-pentodes, then listed according to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power classification.

For quick reference, all tubes are listed in numerical-alphabetical order in the index beginning on the following page,

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum sate operating voltages and eurrents for the electrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in celectrodes.

In the transmitting-tube tables, maximum ratings for electrode voltage, eurrent and dissipation are given separately from the typical operating conditions for the reeonmended classes of operation. In the receriving-tube tables, because of space limitations, ratings and operating data are combined. Where only one set of operating conditions appoars, the positive dectrode voltages shown (plate, screen, ete.) are, in general, also the maximum rated voltages for those eleetrodes.

For rertain air-rooled transmitting tubes, there are two sets of maximum values, one designated as CCS (Continuous Commereial Sorvice) ratings, the other ICAS (Intermittent Commercial and Amateur Sorvice) ratings. Continuous Commercial service is defined as that typo of service in which long tube life and reliability.
of performance under continuous operating conditions are the prime consideration. Intermitent Commercial and Amatour Serviere is defined to include the many applications where the transmitter design factors of minimum sizo, light weight, and maximum power output are more important than long tube life. ICAS ratings are eonsiderably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sarrified in tube life, the period over which tutues will eontinue to give satisfactory promformane in intermittent servier can be extremely long.

The plate dissipation values given for tramsmitting tubes should not be exereded during nomal operation. In plate modulated amplifier applications, the maximum allowathle carrier-eondition plate dissipation is approximately bif peremt of the value listed and will rise to the maximum value under 100 -pereent sinusoidal modulation.

Typical Operating Conditions

The typical operating romditions given for transmiting tubes represent, in general, maximum ICAS ratings where such ratings have been given by the manufacturer. Ther do not represent the only possible method of operation of a particular tube type. ()ther values of plate voltage, plato current, grid bias, ete., may be used so long as the maximum ratings for a particular voltage or curront are not enceded.

Equivalent Tubes

The equivalent tubes listed in Table VIII are, in general, designed for industrial, military and other special-purpose applications. These tubes are generally not directly interchangeable with their prototypes beranse of merhanical and/or electrical differences involving basing, heator chartuteristics, maximum ratings, interelectrode (ilpacitances, etc.

INDEX TO TUBE TABLES

I - Miniature Rereiving Tubes V15 IX - Control and Regulator Tubes V23
II - 6.3-Volt Metal Reeriving Tubos.... V18 V24
III - 6.3-Volt Gilass Tubes with(0) atal Bases V19
IN - 6.3-Volt lock-In Base Tubes. V20
V- 1.5-Volt Battery Tubes V20
II - High-Voltage Heater Tubes V21
VII - Special Rereiving Tubes V2 $1: 30$
$1: 31$
VIII- Bquivalent Tubes. V22 XV - Germanium Crystal Diodes V32
XI - Triode Transmitting Tubes. V25
XII - Tetrode and Pentode Transmitting Tubes 128
XIII - Elertrostatic Cathode-Ray Tubes

INDEX TO VACUUM-TUBE TYPES

$7{ }^{\text {7 }}$ \％	Pape	Buse	Tupe	Page	Arase	7'upe	Page	Hase	7＇pe	I＇ape	Hase	qupe	I＇aye	Base
813.	－ 29	513A	1608		41	5893	125	Fig． 21	91002	18	7138	$\mathrm{kx} 21$	124	
814	－ 129	Flg． 64	1609	vel	513		V2\％	Fig． 7		125	7 BS	$N V^{2} 2(35$		$\text { Fik. } 23$
815	V28	813	1610		Fic． 62	5910	V23	6A17	9003	118	71313	PFB40.		$5 B K$
$\$ 16$	V24	$4{ }^{4}$	1611		78	5915	V23	7 CH	9004	$\checkmark 21$	4 HJJ	$P 1.6549$	Y：9	Fig． 14
＋22		3 N	1612 1613	$\stackrel{19}{19}$	7 C	5920 593		713 F	9005	$\stackrel{21}{8}$	513 C 6 HH	PL6569 RK10	V＇27	$\text { Fig. } 3$
－222	126	2N゙0	1613 1614	V28	${ }_{7 S} 7 \mathrm{AC}$	$\begin{aligned} & 5933 \\ & 5961 \end{aligned}$	$V 19$	5AZ	9006	18	$613 H$ 513 L	RK10.		413
828	129	5 J	1616		＋P	5962	V23	${ }_{2} \mathrm{AG}$ ，	A $\times 9900$	V＇26	Fly． 3	R R 12		3 3
829		78 P	1619	128	Fig． 74	5963	53	9A	A． 9901	127	Fig． 3	RK15		41）
829，		713 P	1620	$V 19$	7 R	5964	$\stackrel{\square}{23}$	7BF	A $\times 9903$	V＇28	Fly． 7	RK16		5A
8293	$v 28$	713P	1621	$V 19$	78	5965	123	9A	A． 9905		Flig． 20	RK17		5 F
830.		＋1）	1622	$V 19$	7AC	5943		Fig． 35	AX9910	128	FM． 7	RK18		3 i
8：3013	V26	36	1623	$V 25$	3G	5998	V23	81313	13A			RK19		$4 \mathrm{~A}^{\prime} \mathrm{l}^{\prime}$
831		Fig． 40	16.24	58	Fig． 66	6005		713Z	13 H		4 J	RK20		Fig． 61
5：32	128	73P	1625	V28	$5 \mathrm{~A} \%$	6023	－	9（1）	13R		4 H	RK20A		Pig． 61
832 A	V28	713P	1626		6	6026	$V 25$	－	（1220		4 P	RK21		
833A	$\checkmark 27$	Flg． 41	1827		2 N	6028	V18	$7131)$	C＇61005		5 AQ	RK2：		F1g． 52
834		21）	1628	－	Fig． 54	6045	$V 18$	713 F	（＇K1006			RK23		6 BM
8	－	415	1629		6RA	6046	$v 23$	7 AC	CK1007		Fig． 73	RK24		4 D
$\times 36$	124	$4{ }^{3}$	1631	123	7AC	6057	$V 23$	9.	1）R31327			R125	V28	6BM
837	$\checkmark 28$	6BM	1632	$V 23$	73	6058	$V 23$	615 T	1） $123{ }^{\circ}$		Flig． 15	RK25B		6BM
＜38		4 E	1633		8BI ${ }^{\text {3 }}$	6059	$1 \cdot 23$	$9 \mathrm{BC}{ }^{\circ}$	1）R200		2 N	RK2R		
840		5J	1634	$V 23$	8S	6060	V23	9.	12F50		$9{ }^{\circ}$	RK2AA		5 J
$8+1$		41	1635	V20	8 BP	6061	$\stackrel{5}{2}$	9AM	F123A		Fig． 15	RK30		213
$\mathrm{x}+1 \mathrm{~A}$		3 ；	1641		1＇14．52	6062		9 K	F127A		Fig． 15	RK31		3G
$5+1 \mathrm{c}$		3 3	1642		71811	8063	V24	$7{ }^{\circ} \mathrm{F}$	（ix4．	124	413	RK32		$2 \mathrm{D}$
X 43		5 A	1644		Fig． 4	6064	53	71313	（1L2C39A	$\checkmark 6$		RK33	－25	Filg． 69
$\times 44$		${ }^{5 A W}$	1654		${ }^{2 \mathrm{Z}}$	6065	$\checkmark 23$	7133	（il．203913	126		RK34	125	
849		Fig． 39	1802 Pl	130	11 A	6066	523	715	GiL2C44．		Fls． 9	RK35		2 D
$\times 50$		F＇ig． 47	1805Pl－	130	11A	6067	V23	9 A	（iL5 ${ }^{-24}$	$1: 27$	Fin， 15	RK36		2 D
$\times 52$		$21)$	1806P1．	V30	11N	6072		9 A	（iL146	$\stackrel{1}{26}$	Fig． 56	R K37		213
$\times 60$		Fle．5x	1851		7R	6083	123	5130	（il152	V26	Fig． 56	RK3		51）
$\times 61$		Fic． 42	1852	V18	8 C	6074	$V 23$	5130	G $\mathrm{Cl}^{\text {c }} 159$		Fig． 56	RK39		5 AIV
864		41	1853	${ }^{1} 18$	8N	6080	V23	$8111)$	（11169		Fig． 56	RK41		5AW
8		Fis． 57	2001	V30	4AA	$60 \mathrm{N2}$	V21	8130	（ild46A		Fig． 11	[2K+2		${ }_{6}{ }^{\text {c }}$
866		4 P	2002	V30	lig． 1	6084		913 J	（i） 44613		Fig． 11	［2K43		6 Cl
866.6	V24	${ }_{+}^{+P}$	2005	130	Figi 1	6085	－	9 A	（i） 464 A		Flg． 9	RC＋4		
86613	12	4 P	2050	$\checkmark 23$	K13A	6086		913 K	（i） 555		Flg． 10	RK46		
¢66j5	$\checkmark 24$	418	2051	．－	XBA	6087		51.	（1）$-6+42$	V＇25	促．	Rk47		1．hg． 64
$\times 71$.		${ }^{+P}$	$2523 \mathrm{~N} /$	V016	5 S	6101	123	713 F	（116463		$9{ }^{\prime} \mathrm{C}$ 2	RK48		rig．64
$\times 72 \mathrm{~A} /$	V24	4 Al	5514	V＇26	4130	6132	V23	943A	（11， 1012 A	125	Fig． 54	RK48A RK49		$1 \cdot \lg .64$
$872 A$ 874		$4{ }_{4}^{4} \mathrm{~T}$	5516	v28	$7 C 1$ 513	6135		613G	I11203A		3 B	$\begin{aligned} & \text { RK49 } \\ & \text { RK51 } \end{aligned}$		6A
878		4 P	5517	－	513 41	6136 6137	$V 13$ $V 19$	${ }_{8}^{713} \mathrm{~K}$		－	$21)$ 213	RK52		$3{ }^{31}$
879		＋AB	5562		F＇Ig． 30	6140	$\checkmark 19$	917	IFPoo		$21)$	RK56		5AW
4	$\checkmark 23$	$6{ }^{6}$	5590	V18	7115	$61+1$		9132	115120	－	4 F	RK57		3 N
855.		5 A	5591	123	7131）	6146	$v 28$	$7{ }^{\text {＇}} \mathrm{K}$	$11+140$	－－	4 F	RK58		$3 N$
9102 A	V30	8 （1）	560 S	118	71313	61.55	$\stackrel{29}{ }$	513K	119175	－	F＇ig． 46	RK59		Fig． 60
905	130	$531{ }^{\text {a }}$	56084		713	6150	129	5 K	HF200		2 N	RK61	124	
9015 A	V30	518R	5610	V18	$6{ }^{\text {c }}$	6157	－9	Fis． 36	HP201A	$V 27$	F＇ls． 15	RK62		413
906 Pl	$V 30$	7AN	5618		7 TV	6158		9A ${ }^{\text {1 }}$	HP250．	－	过	RK63．		2N
907.	V30	${ }^{513}{ }^{\circ}$	5651	$5 \cdot 2$	5130	6159	128	$7 \cdot 1$	11 HOO	127	或	RK63A		$2 N$
9089	v30	71 F 513	5654 5656	V23	${ }_{9}^{7131)}$	6173	$\stackrel{1}{21}$	Ficis． 34	116	125	${ }^{36}$	RK64		$5 A$ Fig．4s
909 910		513P	5656 5662	V18	FF゙ig． 79	6197	v． 3	9 yb	11554	126	$\stackrel{213}{\text { Fig }} 33$	RK65		${ }_{\text {Fig．}}$ Fig 61
$\begin{aligned} & 910 \\ & 911 \end{aligned}$		7AN	5663	$\stackrel{1}{23}$		6201	$V 23$	9A	Hkat	，29	${ }_{21}$	2K75	－	Fig． 61
912	130	912	5670	123	8（＇J	${ }_{6} 6216$		F19． 37	HK158		21）	RK100		Fig． 67
013	$\checkmark 30$	913	5675.	5	Fig． 21	6215	F18	$9{ }^{\text {9，}}{ }^{\text {a }}$	HK252	－	4136	RK705A	－	Fig． $4 \overline{5}$
914 A		6HF	5679.	123	$7{ }^{\circ} \mathrm{C}$	62.27	V18	913A	1 ${ }^{\text {H253．}}$	－	4．${ }^{1}$	RK866		4 P
93013	$1 \cdot 26$	3 C	5686	V18	$90{ }^{91}$	6252	\cdots	Fig． 7	1 K 254		2	T20	125	3\％
938.		4 E	5687	V18	91	6263	125	F．s． 7	11 K 257	V29	71311	121		6A
950		5 K	5690		Fig． 38	6264	$V 25$		UK25713	V29	713M	140	125	${ }_{3}{ }^{\text {3 }}$
951		4 M	5691	V23	81313	6265	123	$7 \mathrm{C} \times 1$	1 K 3041	－	4 BC	T65		31）
955	－21	5130°	5693	$\checkmark 19$	$8{ }^{8}$	6287	518	9610	H6354		2	1100		213
955	$\underline{25}$	5 HC	5694	520	$8{ }^{8}$＇s	6299	21		［k3541）		2%	＇1125		2 N
956	V21	5313	5696	$V 23$	715	6350	123	9 C	$1 \mathrm{~K} 35+15$	－	2 N	T200	$v 27$	2 N
97		51311	5722	118	5 （13	6.354	V2	Fig． 12	$1 \mathrm{~L} 3.54{ }^{\text {F }}$	－	2 N	T300	127	
908		$5131)$	5725	V23	7 C	6350	128	Fly 13	$1 \mathrm{k}+54 \mathrm{H}$		2 N	1814		3 N
9584	$V 21$	531）	5726	$\stackrel{23}{ }$	615	6.374	， 8	9RW	1K454L	－	2 N	1828		
958.	\checkmark	5131）	5727		713N	6386	yis	－${ }^{\text {cj }}$	11 K 654.		\cdots	T335		FLg 30
959	121	5131	5731	12！	5130	$6+17$	5	9 K	IV12．	－	$3 N$	$1 \mathrm{r}^{1}$	－	\％
96	V＇3	31	5740	V23	713 K	$6+43$	－	913w	$1{ }^{18}$	－	－	T175		2
975		4 AT	5750	\square	${ }_{98}{ }^{\text {a }}$	$6+85$	123	713K	1107	－	$3 N$	TZ20．		3
1003	123	412	5751	123	$9 \mathrm{9J}$	6524	V83	Fls． 76	119650	－	60	T240	125	$3{ }^{\text {i }}$
110		$5 A^{\prime}(2$	5763	128	9K	6660	Y23	$7{ }^{7}{ }^{\circ}$	$1{ }^{1}$		＋1）	（18100		21）
1006		$4{ }^{\circ}$	5764	125	Flg． 21	6661	123	$7 \mathrm{7} \cdot 11$	Iİ25		36	$1 \mathrm{~F}+46$		Fig 32
1201	V21	813 N	5765.	125	Fig． 21	6662		6स）	11.30%		4131）	$\cup 1335$		$3{ }^{31}$
12		4AII	5766.	siee	$2(37$	6669	V23	7R2	14317	V25	Fly． 60	${ }^{1} \mathrm{H} 50$		21
1294		816	5767.	Nee	2（37	6677	－23	9135	11540		3 j	＋751		30
1206		8 CN	5768	$\underline{1}$	Flg． 21	6679	V23	9A	11940%	－	319	$\checkmark 70$		3 N
123	\checkmark	$6{ }^{6}$	5794		${ }_{7}{ }^{\text {F }}$（ $)^{21}$	6680	123	9 A	11551 A	－	318	－7013		3 C
1229		4 K	5814		9 A	66×1	V3	9.4	IY5113	－	3（1）	－70 ${ }^{\circ}$		31 ；
1230		＋1）	5814 A	$\bigcirc 2$	9 A	6×29	123	9 H	115		$3(1)$	17013	$v 26$	31
1231	V20	5V	5823.	$\stackrel{23}{ }$	$4{ }^{\text {（1）}} \mathrm{K}$	6×50	－ 28	Fig． 6	IIf60		5 SW	V1275	124	4AJ
1232		81	5×24	V21	7s	6×4	－	7 \％	\｜Y61		5 AW	VR90	124	4AJ
1265	123	4．J	5825		$4{ }^{3}$	689	V93	7	1193		Hig． 72	UR105	$\underline{4}$	4AJ
1266	V0	＋AJ	5． 34		64．	6897.	23		1185		Fig． 72	VR150	124	4AJ
1267	123	45	5×42	V13	9	7000		7R	11867	－	F＇ig． 65	UT52		413
1273	V20	KV	5×44	－	713F	7700	${ }^{3}$	${ }_{2}$	11969	－	F＇ig． 64	VT127	$v 26$	Fix． 53
1274		${ }_{4}^{6}$	${ }_{5} 54.5$		50	S00）			11475	－	2	V1191．	V25	$1{ }^{1}$
1275	－	$4{ }^{\circ}$	5×47	V18	95	5003	V26	3 N	11975 A	5	$2{ }^{-1}$	W1304＊		213
1280		$\stackrel{+}{4}$	5452		${ }_{98}^{64}$	SOOS	126	3 C	111143	125	－1	－6030		Fig．${ }^{2}$
12×4	－21	85	5×66	$\because 26$	Fis． 3	8008		Fig． 8	118615	1	Fig． 7	－${ }^{13}$		Fla，${ }^{\text {d }}$
1291	120	7 HE	5×67	V27	FLG． 3	3012.	V25	rick 54	11.		41	सX1）	13	8AC＇
1293	\checkmark	HAA	5×71	$\stackrel{5}{2}$	7.4	8013－A		${ }^{4}$	118866 jr		$4{ }^{3}$	XXI	120	5A＇
1294	120	＋A11	5×76	52	Fig． 21	S016．	－	3：	H：1231\％	V20	Fig． 60	XXFM	－	8HZ
1299	V＇20	61313	2879	V18	9A1）	5020		$4{ }^{1}$	151269	12	Fig． 65	\％225	－	4 P
1602		$41)$	5×81	－23	$7 \mathrm{Al}{ }^{\text {．}}$	\＄025	V25	4A？	HYE1Hx	V＇25	F以W． 71	Z1360		21）
1603.	－	$6{ }^{5}$	5×90	V＂2	12 J	9001	vis	731）	KTV6	V23	7ヵ	Z13120		＋E

SEMICONDUCTORS

Tupe	Page	Type	l＇aue	Tupe	rage	Tupe	Pinje	7\％／1／	fore
1×34	V32	$1 \times 5()$	132	1．55！	V32	1 N68．	532	1×12	532
1 N34	132	1×51	$\checkmark 32$	1 N6！	133	1×69	$V 32$	1 N43	53
1×38	Vi3	1N52	V32	1 N60	V：32	1×70	532	1． N	532
1 N38A	V132	1N54	$V 32$	1×61	1＇32	1×72	V32	1×95	V32
1 1839	V132	1N54	132	1×62	V32	1×75	132	1N0	V32
1 N39A	132	1×55	132	1×63	V32	1×81	V32	1×97	132
1×43	132	1N554	V32	1×64	V32	1×56	532	1×98	532
1 NH	1：32	1×5.5	132	1N64A	532	1×87	132	1×99	V32
1×45	Vi3	1×56	V32	1 $\times 65$	132	1N874	132	1×100	139
1ヘ16	133	1 N56A	V32	1×66	132	1N大s．	132	1×105	532
1547	Vi3	$1 \times 5 \overline{4}$	132	$1 \stackrel{1}{1}$	$\checkmark 32$	1×89	132	1×106	53
1N4\％	132	$1 \times 5 \%$	V＇32	1N67A	132	1×90	532	1×107	132
1.149	v：32	1	V32	1 NBS	V＇32	$1 N \mathrm{l}$	132	1NIOS	1332

\qquad

$7 \quad 10 e$
$2 N 63$
$2 N 64$
$2 N 68$
$2 N 76$
$2 N 78$
$2 N 81$
$2 N 94 A$
$2 N 105$
$2 N 166$
$2 N 107$
$2 N 109$
$2 N 112$
$2 N 113$
$2 N 114$
$2 N 118$
$2 N 123$
$2 N 130$
$2 N 132$
2
2

Pape	$7^{\prime} v p e$
$V 31$	$2 N 139$.
$V 31$	$2 N 140$
$V 31$	$2 N 141$
$V 31$	$2 N 143$
$V 31$	$2 N 167$
$V 31$	$2 N 168 A$
$V 31$	$2 N 169 A$
$V 31$	$2 N 170$
$V 31$	$2 N 175$
$V 31$	$2 N 186$
$V 31$	$2 N 186 A$
$V 31$	$2 N 187 A$
$V 31$	$2 N 183$
$V 31$	$2 N 184 A$
$V 31$	$2 N 189$
$V 31$	$2 N 190$
$V 31$	$2 N 191$
$V 31$	$2 N 192$
$V 31$	$2 N 193$
$V 31$	$2 N 194$
$V 31$	$2 N 200$.
$V 31$	$2 N 211$.
$V 31$	$2 N 212$.

rage
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$v 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$
$V 31$

VACUUM-TUBE BASE DIAGRAMS

 Buttom views are stom th throumbout. ' Ierminal designationos are as follows:

A = Anode	I) = Inellerting Itate	IS = Internal thield	RC: = Ray-Control Eilectrode		
$13=1$ eann	$\mathbf{F}=\mathrm{F}_{\text {alameon }}$	$\mathrm{K}=$ Cathore	Ref $=$ Reflector		
13' $\}^{\prime}$ S Sayonet I'in	HE $=$ Focus Edeert.	$\mathrm{X}=$ Do Connertion	$\mathrm{S}=$ Shell		
BS = Hase Slereve	(; $=$ Grid	$I^{\prime}=$ IVate (Anomle)	' ${ }^{\text {a }}$ 'l'arget		
C = Ext. Coating	$\\|$ = \\|eater	I't = Starter Anode	U $=$ l'nit		
$\mathrm{CL}=$ Collector	1C = Internal Cons.	I'BF = Beam Plates	- = 'as-Tyue 'Tube		

 unit tymen. Sisbseript C'I indieates filantent or heater tap.

R.E.T.M.A. TUBE BASE DIAGRAMS

2AG
(4)
20
(2)
2N
NC (4)
$2 T$

27

36

3G

$3 N$

$3 T$

4AA

$4 A B$

4AC

4AD
$\underbrace{(2)}_{(1)}$
4AH
(3) (3)
4A」

4AM

$4 A O$

4AT

48

488

486

48 J

480

48 U

4C

4 CB
(2) (3CG)

4CK

40

$4 E$

$4 F$

4 G

4 H

$4 J$

4K

4 M

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

		45			
				5BZ	

TUBE BASE DIAGRAMS

Bottom views are shown. Termisal designations on sockets are given on page V.

				6AS	

6F

6G

6 H

63

6K
(2)
6 L

6M

8Q

6R

6RA

$6 S$

$6 T$

TUBE BASE DIAGRAMS
Bottom views are shown. Terminal dexignations on sockets are given on page V5;

78

78A

(3)

[^8]
TUBE BASE DIAGRAMS

Bottom views are shown. Therminal designations on sockets are given on page V5.

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

8 FV

8G

8GD

8GS

8 H

(3) (2):
$K_{0}(3)(4)$
87

$9 A$

9AA

$9 A B$

9AC
(4)

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

				98F	

TUBE BASE DIAGRAMS

Bontom viewn are shown. Terminal designations on sockels are given on page V.S.

		$9 F$			
	9FH		9 T	$9 F X$	
				9K	
			$9 R$		$9{ }^{9}$
			IIC		IIF
IIJ	11L	11 M	HN		$11 T$
			12 F		14 A

TUBE BASE DIAGRAMS

lhatom views are shown．＇Irrminal designations on sockets are given on page $V 5$ ．

148

14 C

14 E

14 F

14 K

14 P

140

148

14 S

$14 U$

$14 V$

FIG．I

FIG． 2

TOP RImG（ $)^{K}$
FIG． 10

 F！G． 20

F心で

FiG．26

TUBE BASE DIAGRAMS

Botton views are shown. T'erminal designations on sochets are given on page V5.

FIG. 27		FIG. 29	FIG. 30	FIG. 31	
FIG. 33		FIG. 35	FIG. 36	FIG. 37	
	FIG. 40	FIG. 41			
FIG. 45	FIG. 46	FIG. 47		FIG. 49	FIG. 50
FIG. 51	FIG. 52	FIG. 53	FIG. 54	FIG. 55	FIG, 56
FIG. 57	FIG. 58	FIG. 59	FIG. 60	FIG. 61	FIG. 62
	FIG. 64			FIG. 67	FIG. 68
	FIG. 70	FIG. 71			FIG. 74
					FIG. 80

TABLE I-MINIATURE RECEIVING TUBES

Type	Name	Base	fil．or Heater		Capacitonces $\mu \mu$ f．				등훙		$\begin{aligned} & \text { c. } \\ & \text {. } \\ & \text { in } \end{aligned}$	哀定	$\frac{\stackrel{y}{E}}{\frac{\ddot{b}}{\circ}}$		$\frac{\dot{i}}{E}$		$\begin{aligned} & \text { n } \\ & \text { 苛 } \\ & 30 \\ & 30 \end{aligned}$
			V．	Amp．	ci	Cowl	Cgp										
6CLI	Triode	9 FX	6.3	0.45	2.7	0.4	1.8	125	56°	－	－	15	5K	8000	40	－	－
	Tetrode				5	2	0.028	125	－1	125	4	12	100K	5800	－	－	二
6 CM6	Beam Pwr．Amp．	9 CK	6.3	0.45	8	8.5	0.7	315	-13	225	2．2／6	352	80k	3750	345	8．5k	5.5
6CM7	Medium－μ Triode No． 1	9ES	6.3	0.6	2	0.5	3.8	200	－7	－	－	5	IIK	2000	20	－	－
	Dual Triode Triode No． 2				3.5	0.4	3	250	－8	－	－	10	4.1 K	4400	18	－	－
6CM8；	High－μ Triode	9fZ	6.3	0.45	1.6	0.22	1.9	250	－2	－	－	1.8	50K	2000	100	－	－
	Sharp Cut－off Pent．				6	2.6	0.02	200	180^{*}	150	2.8	9.5	300k	6200	－	－	－
6CN7 \ddagger	Dual Diode－High．μ Triode	9EN	6.3	0.3	1.5	0.5	1.8	100	－1	－	－	0.8	54K	1300	70	－	－
			3.15	0.6				250	－3	－	－	1	58K	1200	70	－	－
6CQ6	Remore Cut－off Pent．	708	6.3	0.2	7	4.5	0.01	250	－2．5	200	2	7.8	－	2500	－	－	－
6CR6	Diode－Remate Cut－olf Pent．	7EA	6.3	0.3	－	－	－	250	－2	100	3	9.5	200k	1950	－	－	－
6 C55	Beam Pwr．Pent．	9CK	6.3	1.2	15	9	0.5	200	180＊	125	2.2	472	28K	8000	－	4 K	3.8
6CS6	Pentagrid Amp．	7 CH	6.3	0.3	5.5	7.5	0.05	100	－1	30	1.1	0.75	1 meg ．	950	$\mathrm{E}_{17}=$	0 V ．	－
$\text { 6C57 } \ddagger$	Medium－4 Triode ivo． 1	9EF	6.3	0.6	1.8	0.5	2.6	250	－8．5	－	－	10.5	7．7K	2200	17	－	－
	Dual Triode Triode Nc． 2				3.0	0.5	2.6	250	－10．5	－	－	19	3．45K	4500	15.5	－	－
6CU5	Beam Pwr．Pent．	7CV	6.3	1.2	13.2	8.6	0.7	120	－8	110	48.5	50^{2}	10K	7500	－	2.5 K	2.3
$6 \mathrm{CX7}$	Modium μ M Dual Triode ${ }^{\text {lC }}$	9 FC	6.3	0.4	2.47	1.37	1.27	150	220＊	－	－	9	－	6400	39	－	－
6086	Sharp Cut－oll Pent．	7CM	6.3	0.3	6	5	0.0035	150	－1	150	6.6	5.8	50K	2050	$\mathrm{E}_{63}=$	－3v．	－
60.6	Semiremore Cut－oll Pent．	7 CM	6.3	0.3	6.5	2	0.02	200	180°	150	3	9	500K	5500	－	－	－
60E6	Sharp Cut－oil Pent．	7CM	6.3	0.3	6.3	1.9	0.02	200	180°	150	2.8	9.5	600K	6200	－	－	－
6076	Sharp Cut－ofl Pent．	7EN	6.3	0.3	5.8	－	0.02	150	$580{ }^{\circ}$	100	2.1	1.1	150K	615	－	－	－
654	Grounded－Grid Triode	780	6.3	0.4	7.5	3.9	0.12	150	100°	－	－	15	4．5K	12K	55	－	－
6.56	Medium－μ Dual Triode $\frac{A_{1} \text { Amp．} 10}{\text { Mixer }}$ PWr	7BF	6.3	0.45	2.2	0.4	1.6	100	50^{*}	－	－	8.5	7.1 K	5300	38	－	－
								150	810°	－	－	4.8	10．2K	1800	Osc．peak voltage $=3 \mathrm{~V}$		
6M5	Pwr．Amp．Pent．	9 N	6.3	0.71	10	6.2	1	250	$170{ }^{*}$	250	5.2	36	40K	10K	－	7K	3.9
6N4	U．h．I．Triode	7CA	6.3	0.2	3	1.6	1.1	180	-3.5	－	－	12	5.4 K	6000	32	－	－
6 Na	Dual Diode－Pent．	97	6.3	0.3	4	4.6	0.002	250	$295{ }^{\circ}$	85	1.75	5	1.6 meg．	2200	35	－	－
604	H．f．Triode	95	6.3	0.48	5.4	0.06	3.4	250	－1．5	－	－	15	－	12K	80	－	－
6 6R4	H．f．Triode	9 R	6.3	0.2	1.7	0.5	1.5	150	－2	－	－	30	－	5500	16	－	－
6 688	Triple Diode－Triode	$9 E$	6.3	0.45	1.5	1.1	2.4	250	－9	－	－	9.5	8.5 K	1900	16	10K	0.3
654	Medium－μ Triode	9AC	6.3	0.6	4.2	0.9	2.6	250	－8	－	－	26	3.6 K	4500	16	－	－
674	U．h．f．Triode	70K	6.3	0.225	2.6	0.25	1.7	80	150°	－	－	18	1.86 K	7000	13	－	－
678	Triple Diode－High μ Trius $=$	$9 E$	6.3	0.45	1.6	1	2.2	100	－1	－	－	0.8	54 K	1300	70	－	－
								250	－3	－	－	1	58K	1200	70	－	－
608	Medium－μ Iriode	9AE	6.3	0.45	2.5	0.4	1.8	－150	56°	－	－	18	5K	8500	40	－	－
	Sharo Cut－aff Pent．				5	2.6	0.01	250	68°	110	3.5	10	400 K	5200	－	－	－
6V8	Triple Diode－Triode							100	－1	－	－	0.8	54K	1300	70	－	－
		9AH	6.3	0.45	－	－	－	250	－3	－	－	1	58K	1200	70	－	－
6×8	Medium $-\mu$ Triode	9AK	6.3	0.45	2.0	0.5	1.4	100	$10{ }^{*}$	－	－	8.5	6.9 K	－	40	－	－
	Sharp Cut－off Pen？．				4.3	0.7	0.09	250	200^{*}	150	1.6	7.7	750K	－	－	－	－
12 A 4	Medium－μ Triode	9AG	12.6	0.3	4.9	0.9	5.6	250	－9	－	－	23	2.5 K	8000	20	－	－
			6.3	0.6				250	－12．5	－	－	4.4	－	－	－	－	－
12AB5	8eam Pwr．Amp．$\frac{A_{1} \text { Amp．}}{\text { A } B_{1} \text { Amp．}{ }^{3}}$	9EU	12.6	0.2	8	8.5	0.7	250	－12．5	250	4．5／7	472	50K	4100	45^{5}	5K	4.5
								250	－15	250	5／13	792	60K1	3750	70^{5}	10K＊	10
12AC6	Remote Cut－oll Pent．	7BK	12.6	0.15	4.3	5	0.005	12.6	0	12.6	0.2	0.55	500K	730	－	－	－
12AD6	Pentagrid Conv．	7CH	12.6	0.15	B	8	0.3	12.6	0	12.6	1.5	0.45	1 Mag．	260	Grid No． 1233 K		
12AD7	Dual High－ $\mathrm{T}^{\text {Triode }}{ }^{10}$	9 9	12.6	0.225	1.6^{7}	0.5	1.87	250	－2	－	－	1.25	62．5K	1600	100	－	－
			6.3	0.45	$1.6{ }^{\circ}$	0.458	$1.8{ }^{\circ}$		－2	－	－	1.25	62.5 K	1600	100	－	－
12AE6	Dunl Diode－Medium．μ Triode	7BT	12.6	0.15	1.8	1.1	2	12.6	0	－	－	0.75	15K	1000	15	－	－
12AF6	R．I．Pent．	7BK	12.6	0.15	5.5	4.8	$0 . \overline{06}$	12.6	0	12.6	0.35	0.75	300K	1150	－	－	－
12AG6	Pentagrid Conv．	7 CH	12.6	0.15	6.5	7.5	0.28	12.6	0	12.6	1	0.35	－	240	Grid No． 1820 K		
12AH8	Triode．Heptode Converter	98 P	$\begin{array}{\|c\|} \hline 12.6 \\ \hline 6.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.15 \\ \hline 0.3 \\ \hline \end{array}$	Osc． $\mathrm{Im}_{\mathrm{g}}=0.2 \mathrm{ma}$ ． Osc．$-47 \mathrm{~K} \Omega$			250	－3	100	4.4	2.6	1.5 meg ．	550	$E_{\text {bb }}$ Triode Osc．$=100 \mathrm{~V}$ ． 1 tric de $=5.3 \mathrm{ma}$ ．		
12AOS	Beam Pwr．Amp．$\frac{A_{1} \text { Anp．}}{\text { AB，} \text { Amp．}^{3}}$	7BZ	12.6	0.225	8.3	8.2	0.35	750	－175	250	4．5／7	472	52K	4100	455	5 K	4.5
								250	－15	250	5／13	792	60K1	37501	70^{5}	10K6	10
12477	High－μ Dual Triode ${ }^{10}$	9A	12.6	0.15	2.27	0.57	1.57	100	270^{*}	－	－	3.7	15K	4000	60	－	－
			6.3	0.3	$2.2{ }^{\text {8 }}$	$0.4{ }^{4}$	1.50	250	200＊	－	－	10	10．9K	5500	60	－	－
12AU7A	Medium－μ Dual Triode ${ }^{10}$	9A	12.6	0.15	1.6^{7}	0.57	1.57	100	0	－	－	11.8	6．25K	3100	19.5	－	－
			6.3	0.3	1.6^{8}	$0.35{ }^{\circ}$	1.51	250	－8．5	－	－	10.5	7.7 K	2200	17	－	－
12AV7	Medium－μ Dual Triode ${ }^{10}$	9 9	12.6	0.225	3.17	0.57	1.97	100	120°	－	－	9	6.1 K	6100	37	－	－
			6.3	0.45	3.15	0.48	1.98	150	56°	－	－	18	4．8K	8500	41	－	－
12AW6	Sharp Cut．ofl Pent．	7CM	12.6	0.15	6.5	1.5	0.025	250	200°	150	2	7	800K	5000	42	－	－
	High μ Al Amp．${ }^{10}$	9A	12.6	0.15	$1.6{ }^{7}$	0.46	1.77	250	－2	－	－	1.2	62．5K	1600	100	－	－
12AX7	Dual Triode Class B		6.3	0.3	1.68	0.348	1.78	300	0	－	－	402	－	－	14^{3}	16K6	7.5
12AY7	Medium．μDual Triodelo 10 $\frac{\text { A } 1 \text { Amp．}}{\text { low－level Amp．}}$	9A	12.6	0.15				250	－4	－	－	3	－	1750	40	－	－
			6.3	0.3	1.3	0.6	1.3	150	2700＊		Plate res	or $=20$	Grid resi	istof $=0$.	meg．V．	G．$=12.5$	
$12 \mathrm{AZ7}$	High μ Dual Triode ${ }^{10}$	9A	12.6	0.225	3.17	0.57	1.97	100	270^{*}	－	－	3.7	15K	4000	60	二	－
			6.3	0.45	3.18	0.41	1.98	250	200^{*}	－	－	10	10.9 K	5500	60	－	－
1284	Low－μ Triode	9AG	12.6 6.3 126	0.3	5	1.5	4.8	150	－17．5	－	－	34	1．03K	6300	6.5	－．	－
128H7	Madium μ Dual Triodelo	9A	12.6	0.3	3.27	0.57	2.67	$25 n$	－10s		－	115	5.3 K	3100	165	\cdots	－
			6.3	0.6	$3.2{ }^{\circ}$	040	268	25	－103			$1{ }^{3}$	$5.3 k$	310	H5	\cdots	
12887	Dual Diode－－Medium－μ Tribde	9CF	12.6	0.225	28	1	17	100	270°	－	二	$\overline{3} 7$	15K	4000	60	－	－
			6.3	0.45	28	1	17	250	200^{*}	－	－	10	109 K	5500	0	－	－
128 V 7	Sharp Cut afl Pant．	$98 F$	12．6	0.3	11	3	0055	240	$68{ }^{\circ}$	150	α	25	7\％	12k	1 m	－	－
$128 \mathrm{Y7}$	Sharp Cut ofl Pent	987	¢ 126	03	11.1	3	0.055	250	68°	150	6	25	90K	12K	1200	－	－
			12.6	0.3	6.57	0.77	$2.5{ }^{7}$										
12827	High－μ Dual Triode ${ }^{10}$	94	6.3	06	6.59	$0.55{ }^{\circ}$	$2.5{ }^{5}$	250	－2	－	－	2.5	31.8 K	3200	100	－	－

Type	Nom＊	Bose	Fil．or Heater		Capecitances ниf．			$\begin{array}{r} > \\ \frac{\lambda}{2} \\ \frac{2}{2} \frac{2}{3} \end{array}$	要思	$\frac{6}{6}$	曷	童宣					$\begin{aligned} & \text { m } \\ & \frac{5}{6} \frac{2}{5} \\ & 30 \end{aligned}$
			V．	Amp．	C．	Cow	C_{8}										
12CR6	Diode－Remote Cut－off Pent．	7EA	12.6	0.15	－	－	－	250	－2	100	2.6	9.6	800k	2200	－	－	－
12F8	Dual Diode－Remore Cut－off Pent．	9FH	12.6	0.15	4.5	3	0.06	12.6	0	12.6	0.38	1	333K	1000	－	－	－
1268	Dissimilar Dual Triode	9CZ	12.6	0.4	－	－	－	12.67	0^{7}	－	－	33.77	8．5K	2600	22	8．5K	0.025
	Direct Coupled Amp．				－	－	－	$12.6{ }^{\circ}$	－	－	－	$7.27 .4{ }^{\text {a }}$					
12H4	General Purpose Triode	70W	12.6	0.15	2.4	0.9	3.4	90	0	－	－	10	－	300	20	－	－
			6.3	0.3				250	－8			9		2800	20	－	－
12K5	Tetrode IPwr，Amp．Driver）	7EK	12.6	0.45	－	－	－	12.6	－2	$12.6^{\circ} 4$	85°	8	800	7000	5.6	800	0.035
12R5；	Beam Pwr．Pent．	7CV	12.6	0.6	13	9	0.55	110	-8.5	110	3.3	40	13K	7000	－	－	－
$12 \mathrm{U7}$	Duol Medium－μ Triode 10	94	12.6	0.15	1．67．9	0.47	1．57，	12.6	0	－	－	1	12．5K	1600	20	－	－
25 F5	Beam Pwr．Pent．	7 CV	25	0.15	12	6	0.57	110	－7．5	110	37	3637	16 K	5800	－	2．5K	1.2
3585	Beam Pwr．Amp．	7BZ	35	0.15	11	6.5	0.4	110	－7．5	110	3／7	41^{2}	－	5800	40^{5}	2．5K	1.5
5085	Beam Pwr．Amp．	782	50	0.15	13	6.5	0.5	110	－7．5	110	4／8．5	50^{2}	14K	7500	493	2．5K	1.9
5590	R．f．Pent．	780	6.3	0.15	3.4	2.9	0.01	90	820°	90	1.4	3.9	300K	2000	－	－	－
5608	Shorp Cur－olf Pent．	7BD	6.3	1.75	4	2.9	0.02	120	－12	120	2.5	7.5	340 K	5000	－	－	－
5610	Triode	6CG	6.3	0.15	－	－	－	90	-1.5	－	－	17	3．5K	4000	14	－	－
5656	Twin Tetrode ${ }^{10}$	$9 F$	6.3	0.4	3.6	1.5	0.06	150	－2	120	2.7	15	60 K	5800	－	－	－
5686	Beom Pwr．Pent．	96	5.3	0.35	6.4	8.5	0.11	250	-12.5	250	$3{ }^{3}$	27^{3}	45K	3100	－	9 K	2.7
5687	Medium－μ Dual Triode ${ }^{10}$	9H	12.6	0.45	47	0.67	47	120	－2	－	－	36	1．7K	11 K	18.5	－	－
			6.3	0.9	41	0.58	$4{ }^{\circ}$	250	-12.5	－	－	12.5	3K	5500	18.5	－	－
5722	Noise Generating Diode	5CB	6.3	1.5	－－	2.2	－	200	－	－	－	35	－	－	－	－	－
5842	High．μ Triode	9 V	6.3	0.3	1.6	0.5	1.5	150	62°	－	－	26	1.8 K	24K	43	－	－
5847	Sharp Cut－otf Pent．	9 X	6.3	0.3	7.1	2.9	0.04	160	-8.5	160	4.5	－	－	12.5 K	－	－	
5879	Sharp Cut－oll Pent．	9AD	6.3	0.15	2.7	2.4	0.15	250	－3	100	0.4	1.8	2 meg．	1000	－	－	
6028	Shorp Cur－oif Pent．	7BD	20	0.05	4	2.8	0.02	120	180＊	120	2.5	7.5	300k	5000	－	－	－
6045	Medium－μ Dual Triode ${ }^{10}$	78F Fig． $\mathbf{3 7}$	6.3	0.35	2	0.45	1.3	100	$50 *$	－	二	9	5．9K	6400	38	－	－
6216	Beam Pwr． Al Amp． Amp． Filter Reactor	$\begin{aligned} & \text { Fig. } \\ & 37 \\ & \hline \end{aligned}$	6.3	1.2	12.3	6.7	0.37	200	－6	100	2／4	512	38 K	$\frac{8800}{12.8 \mathrm{~K}}$	47^{5}	4．5K	3.8
								100	－3	100	3	70	18．5K		$\mathrm{R}_{91}=0.1 \mathrm{meg}$ ．		
6227	Pwr．Pent，	98 A	6.3	0.75	11.5	7	－	200	$130 *$	200	4.1	30	90 K	$\frac{12.8 K}{9000}$	－	－	2.8
6287	Beam Pwr．Amp．	9CT	6.3	0.6	B	9	1.1	250	－12．5	250	5／10．5	48^{2}	55K	4100	46^{3}	6 K	4.5
6386	Medium－μ Dual Triode ${ }^{10}$	8CJ	6.3	C． 35	2	1.1	1.2	100	200＊	－	－	9.6	4．25K	4000	17	－	－
9001	Sharp Cut－ofl Pent．	780	6.3	0.15	3.6	3	0.01	250	－3	100	0.7	2	1 meg．t	1400	－	－	－
9002	U．h．f．Triode	785	6.3	0.15	1.2	1.1	1.4	250	－7	－	－	6.3	11．4K	2200	25	－	－
9003	Remote Cut－off Pent．	780	6.3	0.15	3.4	3	0.1	250	－3	100	2.7	6.7	700 K	1800	－		－
9006	U．h．f．Diode	68H	6.3	0.15	－	－	－	Max，a．c．voltage $=270$ ．Max．d．c． output current $=5 \mathrm{mo}$ ．									
\＄Controlled heater warm－up characteristic． ？Oscillator gridleok or screen－dropping resistor ohms． ＊Cathode resistor ohms． ＊＊Gid No． 1 ｜Spoce－charge gridl．					1 Per．Plate． 2 Maximum－signol current for fuli－power outpur． ${ }^{3}$ Values are for two rubes in push．pull． －Unless otherwise noted．						${ }^{5}$ No signal plate ma． －Effective plate．to－plote． 7 Triode No． 1. －Triode No． 2.			－Oscillator grid current mo． 10 Values for each section． ${ }^{11}$ Micromhos． 12 Through 33K			

table il－metal receiving tubes
Characteristics given in this toble opply fo all tubes having type numbers shown，including melal tubes，glass fubes with＂G＂sutfix，and bantam fubes with＂GT＂suffix．
For＂G＂and＂GT＂tubes not listed（not hoving metal counterparts），see Tables III，V，VI and VItI．

TABLE II－METAL RECEIVINO TUAES－Cominued
V19

Typz	Name			Base	Fil．or Meater		Caperitances $\mu \mu$ ．				꽁흉	$\begin{aligned} & \delta_{0}^{\circ} \\ & \text { 号 } \end{aligned}$	50	$\begin{aligned} & \text { 害员品 } \\ & \hline \end{aligned}$			高			
				V．	Amp．	c．	C^{*}	$C_{\text {\％}}$												
6.62					7AC	6.3	09	10	12	0.4	360	270^{*}	270	5／17	88／100	－	－	40.611	$9 \mathrm{~K}^{7}$	24.5
				360							－22．5	270	5／11	88／140	－	－	4501	3.8 K 7	18	
				360							－22．5	270	5／15	88／132	－	－	45^{11}	6.6 K 7	26.5	
	on pag＊ AB_{2} Amp．${ }^{\text {an }}$ V18 Fixed BiosPer			360							－18	225	3．5／11	78／142	－	－	52^{11}	$6{ }^{7}$	31	
				380							-22.5	270	5／16	88／205	－	－	72^{11}	$3.8 \mathrm{~K}=$	47	
			Al Amp．	71	6.3	0.3	－	－	－	250	－3	100	6.5	5.3	600K	1100	-314	－	－	
6.7	Mixer Amp．		Mixer							250	－6	150	9.2	3.3	1 meg．＋	350	-1514	－	－	
			B Amp．＊	88	6.3	0.8	－	－	－	300	0	－	－	35／70	－	－	82^{11}	$8{ }^{7}$	10	
6 N7	Twin Triode		${ }^{\text {A A Amp．}}{ }^{17}$							250	－5	－	－	6	11．3K	3100	－	－	－	
607	Duol Diode－High．μ Triode			7V2	6.3	0.3	5	3.8	1.4	250	－3	－	－	1	58K	1200	70	－	－	
6R7	Dual Diode－Triod＊			7V2	6.3	0.3	4.8	3.8	2.4	250	－9	－	－	9.5	8．5K	1900	16	10K	0.28	
657	Remote Cut－aff Pent．			$7 \mathrm{R}^{2}$	6.3	0.15	6.5	10.5	0.005	250	－3	100	2	8.5	1 msg ．	1750	－	－	－	
6547	Pentogrid Conv．			$8 \mathrm{SR}^{2}$	6.3	0.3	9.5	12	0.13	250	0	100	8	3.4	800k	Grid No．I resistor 20k．				
6S87Y	Pentogrid Conv．			8R	6.3	0.3	9.6	9.2	0.13	100	－1	100	10.2	3.6	50K	900	－	－	－	
				250						－1	100	10	3.8	1 meg ．	950	－	－	－		
				250						$22 \mathrm{~K}{ }^{8}$	12K8	12／13	6．8／6．5	Osc．Section in $88-108 \mathrm{Mc}$ ．Service．						
$65 C 7$	High $\mu \mu$ Duol Triodes				85	6.3	0.3	2	3	2	250	－2	－	－	2	53K	1325	70	－	－
6SFS	High μ Triod＊				$6 A^{2}$	6.3	0.3	4	3.6	2.4	250	－2	－	－	0.9	66K	1500	100	－	－
65F7	Diode－Vorioble μ Pent．			7AZ	6.3	0.3	5.5	6	0.004	250	－1	100	3.3	12.4	700k	2050	－	－	－	
6597	H．i．Amp．Pent．			SEK	6.3	0.3	8.5	7	0.003	250	－2．5	150	3.4	9.2	$1 \mathrm{meg} .+$	4000	－	－	－	
$6 \mathrm{SH7}$	H．t．Amp．Pent．			8BK	6.3	0.3	8.5	7	0.003	250	－1	150	4.1	10.8	900K	4900	－	－	－	
65.174	Shorp Cut－aff Pent．			${ }^{8} \mathrm{~N}$	6.3	0.3	6	7	0.005	250	－3	100	0.8	3	$1 \mathrm{meg} .+$	1650	－	－	－	
$65 \mathrm{K7}$	Varioblo－μ Pent．			8 N	6.3	0.3	6	7	0.003	250	－3	100	2.6	9.2	800k	2000	－	－	－	
6507	Dual Diode－High－${ }^{\text {s Triode }}$			\％0	6.3	0.3	3.2	3	1.6	250	－2	－	－	0.9	91 K	1100	100	－	－	
65R7	Dual Diode－Triode			80	6.3	0.3	3.6	2.8	2.4	250	－9	－	－	9.5	8．5K	1900	16	－	－	
6557	Vorioble．μ Pent．			8 N	6.3	0.15	5.5	7	0.004	250	－3	100	2	9	1 meg．	1850	－	－	－	
6597	Dual Diode－Triode			80	6.3	0.15	2.8	3	1.5	250	－9	－	－	9.5	8．5K	1900	－	－	－	
65 V 7	Diode－R．f．Pent．			7AZ	6.3	0.3	6.5	6	0.004	250	－1	150	2.8	7.5	1.5 mog ．	3600	－	－	－	
6V6	Beom Pwr．Amp．		At Amp．${ }^{\text {S }}$	7AC	6.3	0.45	10	11	0.3	180	－8．5	180	3／4	29／30	50K	3700	8.510	5．5K	2	
			250							－12．5	250	4．5／7	45／47	50k	4100	12.510	SK	4.5		
			315							－13	225	2．2／6	34／35	80K	3750	1310	8．5K	5.5		
										250	－15	250	5／13	70／79	60K	3750	3011	10k7	10	
			A B_{1} Amp．${ }^{6}$							285	－19	285	4／13．5	70／92	70K	3600	$38{ }^{\prime \prime}$	$8 \mathrm{~K}^{7}$	14	
1612	Pentogrid Amp．			71	6.3	0.3	7.5	11	0.001	250	－3	100	6.5	5.3	800K	1100	-316	－	－	
1620	Shorp Cut－oll Pent．			$7 R$	6.3	0.3	7	12	0.005	250	－3	100	0.5	2	1 meg．+	1225	－	－	－	
	Pwr．Amp．Pent．$\frac{A_{1} \text { Amp．}{ }^{\text {a }} \text {（ }{ }^{\text {A Amp．}}}{}$			75	6.3	0.7	7.5	11.5	0.2	330	500^{*}	－	－	55／59	－	－	5411	5K7	2	
1621				300						－30	300	6．5／13	38／69	－	－	60^{11}	$4{ }^{4} 7$	5		
1622	Beom Pwr．Amp．＊				7AC	6.3	0.9	10	12	0.4	300	－20	250	4／10．5	86／125	－	－	4011	$4{ }^{\prime}{ }^{7}$	10
S693	Shorp Cutoolf Pent．			${ }^{3} \mathrm{~N}$	6.3	0.3	5.3	6.2	0.005	250	－3	100	0.85	3	1 meg.	1650	－	－	－	
5961	Pentogrid Conv．			$\mathrm{E}^{1} \mathrm{R}$	6.3	0.3	－	－	－	250	－2	100	8.5	3.5	1 meg.	450	Osc．	id＇20K．	－	
6137	Remote Cut－off Pent．			8 N	6.3	0.3	5	6.5	0.003	250	－3	100	2.6	9.2	800k	2000	－	－	－	

4 Also Type＂65J7Y．
3 Volues ore for single tube or section．
－Volues ore for two tubes in push－pull．
－Volues ore for two tuk
－Ose．grid look－Sern．res．
－Volues for two units．
10 Peok of．grid volioge．
＂Peok o．I．G．G voltoge．
${ }^{12}$ Micromhos．
${ }^{13} \mathrm{Ohms}$ ．

14 Watis．
is Unlass otherwise noted．
${ }^{14}$ G2 volioge．
17 Units connected in parollel．

TABLE III－6．3－VOLT GLASS TUBES WITH OCTAL BASES
（Fer＂G＂and＂GT＂type tubes not listed here，see equivalent type in Tetbes II and Vitt；charactoristice and connections will be timilar）

Type	Name	Base	Fil．or Heater		Capecitances $\mu \mu$ ．			荲交	高品	$\frac{e^{6}}{5}$	${ }_{4}^{5}$	昱荌			$\frac{i}{E} \frac{\bar{y}}{y}$		$\begin{aligned} & \text { 曹 } \\ & \frac{0}{5} \\ & \text { 30 } \end{aligned}$
			V．	Amp．	c_{m}	$C_{\text {cor }}$	$C^{\text {b }}$										
2022	Disc－Seol Diode	Fig． 22	6.3	0.75	－	2.2	－	Averoge Cothode Mo．$=5$ ；Output Volis $=50$ d．c．								10K	－
$2 \mathrm{C22}$	Triode	4AM	6.3	0.3	2.2	0.7	3.6	300	－105	－	－	11	6．6K	3000	20	－	－
	，Al Amp，${ }^{3}$	$6 T$	6.3	1.25	－	－	－	250	－45	－	－	60^{4}	0．8K	5250	4.2	2．5K	3.75
6ASOT	Triode Pwr．Amp．A Amp ${ }^{4}$							325	－68	－	－	804	－	－	－	3 K	15
6ACSGT	Triode Pwr．Amp．AB Amp．${ }^{4}$	69	6.3	0.4	－	－	－	250	0	－	－	54	36．7K	3400	125	10Ks	8
	Triode－Triode	BAY	6.3	0.85	－	－	－	250	－25	－	－	4	19K	325	6	－	－
6 AD70	Pwr．Amp．Pent．							250	-16.5	250	6．5／10．5	34／36	80K	2500	－	7K	3.2
6AH4GT	Medium μ Triode	8EL	6.3	0.75	7	1.7	4.4	250	-23	－	－	30	1.78 K	4500	8	－	－
6AH76T	Medium μ Duol Triode ${ }^{1}$	8 BE	6.3	0.3	－	－	－	180	－6．5	－	－	7.6	8．4K	1900	16	－	－
6AUTET	Electron－Roy Indicator	8 CH	6.3	0.15	－	－	－	Outer edge of any of the three illuminated oreos disploced $1 / 6 \mathrm{in}$ ．min．outward with +5 volts to its electrode．Similar inward disp．with -5 volts．No pattern with -6 volts grid．									
6A07GT	Dual Diode－High－μ Triode	SCK	6.3	0.3	2.8	3.2	3	250	－2	－	－	2.3	44K	1600	70	－	－
6AR6	Beom Pent．	680	6.3	1.2	11	7	0.55	250	－22．5	250	5	77	21K	5400	－	－	－
6AR7GT	Dual Diode－Remote Pent．	7DE	6.3	0.3	5.5	7.5	0.003	250	－2	100	1.8	7	1.2 meg ．	2500	－	－	－
6 657G	Low－μ Twin Triode－D．C．Amp．${ }^{1}$	880	6.3	2.5	6.5	2.2	7.5	135	250°	－	－	125	0.28 K	7000	2	－	－
6AUSGT	Beom Pwr．Amp．	6CK	6.3	1.25	11.3	7	0.5	115	－20	175	6.8	60	8K	5600	－	－	－
6AVSGT	Beom Pwr．Amp，${ }^{\text {a }}$	6CK	6.3	1.2	14	7	0.7	250	－22．5	150	2.1	55	20K	5500	－	－	－
6BDSGT	Beom Pwr．Amp．t	6CK	6.3	0.9	－	－	－	310	－200\％	310	－	90°	一	－	－	－	－
68660	Beom Pwr．Amp．	SBT	6.3	0.9	12	6.5	0.34	250	－15	250	4	75	25K	6000	－	－	－
6建TGT	Medium．μ Duol Triode＇	88 D	6.3	1.5	5	3.2	4.2	250	－9	－	－	40	2.15 K	6200	15	－	－
6806GT	Beom Pwr．Amp．＇	6AM	6.3	1.2	15	7.5	0.6	250	－22．5	150	2.1	55	20K	5500	－	－	－
$68 \times 76 T$	Dual Triode ${ }^{1}$	E8D	6.3	1.5	5	3.4	4.2	250	$390 *$	－	－	42	1．3K	7600	10	－	－
6CsG	Modium－μ Twin Triode ${ }^{1}$	EO	6.3	0.3	2.6	2	2.6	250	－4．5	－	－	3.2	22．5K	1600	36	－	－
6 CBS	Beam pwr．Amp．＂	500	6.3	2.5	24	10	0.8	175 ${ }^{\prime}$	－30	175	6	90	SK	8800	－	－	－
6 COSO	Beom Pwr．Amp I	SBT	6.3	2.5	24	9.5	0.8	175	－30	175	5.5	75	7．2K	7700	－	－	－
6 CLS	Beom Pwr．Amp．${ }^{\text {a }}$	500	6.3	2.5	20	11.5	0.7	175	－40	175	7	90	6 K	6500	－	－	－
6CUS	Beom Awr．Amp．${ }^{\text {I }}$	6AM	6.3	1.2	15	7	0.55	2.0	-22.5	150	2.1	55	20K	5500	－	－	一
600607	Boam Pwr．Amp．	75	6.3	1.2	－	－	－	20	180^{*}	125	8.5	47	28 K	8000	－	4K	3.8
60\％6	Beom Pwr．，Pint．${ }^{\text {c }}$	507	63	2.3	22	1.5	0.8	12	-18	125	＜ 3	70	4K	9000	－	－	－
6066A	Beam Pwr，Amp，${ }^{\text {a }}$	64 M	6	1.7	18	7	0.85	26	$-\overline{21}$	150	21	75	20k	6600	－	－	－

TABLE IV－6．3－VOLT LOCK－IN－BASE TUBES
For other lock－in－base types see Tables V, VI ，and VII

Type	Name	Base	Fil，or Heater		Capacitances $\mu \mu^{f}$			$\begin{aligned} & > \\ & \frac{2}{2} \\ & \frac{\text { 트르르를 }}{2} \end{aligned}$	몽 픔			童定			完䯧		$\begin{aligned} & \frac{5}{5} \\ & \frac{5}{5} \\ & \frac{2}{5} \\ & 0 \end{aligned}$
			V．	Amp．	$\mathrm{C}_{\text {in }}$	Cow	$\mathrm{Cbp}^{\text {P }}$										
7A5	8 8am Pwr．Amp．	6AA	8.3	0.75	13	7.2	0.44	125	－9	125	3／9．5	44／45	17K	6000	－	2.7 K	2.2
748	Octode Conv．	8 C	6.3	0.15	7.5	9	0.15	250	－3	100	3.2	3	50K	Anod	grid	V0 Voits	ox．＇
7AD7	Pwr．Amp．Pent．	8 V	6.3	0.6	11.5	7.5	0.03	300	$68 *$	150	7	28	300K	9500	－	－	－
7AF7	Medium $-\mu$ Dual Triode ${ }^{2}$	BAC	6.3	0.3	2.2	1.6	2.3	250	－10	－	－	9	7.6 K	2100	16	－	－
7AG7	Shorp Cut－olf Pent．	BV	6.3	0.15	7	6	0.005	250	$250 *$	250	2	6	750K	4200	－	－	－
7AH7	Remote Cul．off Pent．	8V	6.3	0.15	7	6.5	0.005	250	$250 *$	250	1.9	6.8	1 meg ．	3300	－	－	－
7AK7	Shorib Cut－off Pent．	8V	6.3	0.8	12	9.5	0.7	150	0	90	21	41	11．5K	5500	－	－	－
787	Remote Cut－off Pent．	8 V	6.3	0.15	5	6	0.007	250	－3	100	1.7	8.5	750K	1750	－	－	－
$7{ }^{7} 6$	Dual Diode－High．μ Triode	8W	6.3	0.15	2.4	3	1.4	250	－1	－	－	1.3	100K	1000	100	－	－
767	Sharp Cut－off Pent．	8 V	6.3	0.15	5.5	6.5	0.007	250	－3	100	0.5	2	2 meg ．	1300	－	－	－
757	Dual Diode－Pent．	8AE	6.3	0.3	4.6	5.5	0.005	250	$330 *$	100	1.6	7.5	700 K	1300	－	－	－
788	Medium μ Dual Triode ${ }^{2}$	38w	6.3	0.3	2.8	1.4	1.2	250	500^{*}	－	－	6	14．5K	3300	48	－	－
717	Triode－Heprode Conv．	8 BI ．	6.3	0.3	4.6	3.2	0.03	250	－3	100	2.8	1.4	1.5 meg．	Eb	sc．plo	e 250	
7K7	Dual Diode－High．μ Triode	8BF	6.3	0.3	2.4	2	1.7	250	－2	－	－	2.3	44K	1600	70	－	－
75	Sharp Cut－off Pent．	8 V	6.3	0.3	8	6.5	0.01	250	250＊	100	1.5	4.5	1 mag ．	3100	－	－	－
$7 \mathrm{V7}$	Sharp Cut－off Pent．	8 V	6.3	0.45	9.5	6.5	0.004	300	160^{*}	150	3.9	10	300k	5800	－	－	－
7×7	Duol Diode－High．μ Triode	882	6.3	0.3	－	－	－	250	－1	－	－	1.9	67K	1500	100	－	\cdots
1231	Pwr．Amp．Pent．	8 V	6.3	0.45	8.5	6.5	0.015	300	200^{*}	150	2.5	10	700K	5500	－	－	－
1273	iNonmicrophonic Pent	BV	6.3	0.32	6	6.5	0.007	250	－3	100	0.7	2.2	1 meg ．	1575	－	－	－
XXI	Triode Osc．	5AC	6.3	0.3	3.4	2.6	2	250	－8	－	－	8	8．7K	2300	20	－	－

TABLE V－I．S－VOLT FILAMENT BATTERY TUBES
See alsa Table VII for Special I．4－valt Tubes

Type	Name	Bas＊	Fil，or Heater		Capacitonces $\mu \mu \mathrm{f}$ ．				惑晋		${ }_{6}^{\delta}$				这		$\begin{aligned} & \begin{array}{c} 5 \\ y_{0} \frac{2}{5} \\ 30 \end{array} \end{aligned}$
			V．	Amp．	c_{m}	Can	C_{p}										
1A5G7	Pwr．Amp．Pent．	6 X	1.4	0.05	－	－	－	90	－4．5	90	0．8／1．1	4	300 K	850	－	25K	0.115
1A7GT	Pentogrid Conv．	72	1.4	0.05	7	10	0.5	90	0	45	0.7	0.6	600k				
IG6GT	Dual Triode A Amp．＇							9	0	－	－	1	4．5K	675	30	－	－
1G6GT	Dual Triode B Amp．	7AB	1.4	0.1	－	－	－	90	0	－	－	2／14	Peak G．G voltage $=42$			$12 \mathrm{~K}^{2}$	0.675
IHSGT	Diode High－μ Triode	52	1.4	0.05	1.1	4.6	1	90	0	－	－	0.15	240K	275	65	－	－
ILA6	Pentagrid Conv．	7AK	1.4	0.05	7.7	8	0.4	90	0	45	0.6	0.55	750K	$E_{4 b}$ Anode．grid $=90$ Volts．			
ILB4	Pwr．Amp．Pent．	SAD	1.4	0.05	－	－	－	90	－9	90	1	5	250 K	925	－	12K	0.2
TLB6	Heplode Cony．	BAX	1.4	0.05	－	－	－	90	0	67.5	2.2	0.4	Grid No．4－67．5 v．，No．5－0 v．				－
ILC6	Pentagrid Conv．	7AK	1.4	0.05	9	5.5	0.28	90	0	35	0.7	0.75	650 K	Ebt Anode－grid $=45$ Volts．			
ILD5	Diode－Sharp Cut－off Pent．	6AX	1.4	0.05	3.2	6	0.18	90	0	45	0.1	0.6	750 K	575	－	－	－
ILE3	Medium－μ Triode	4AA	1.4	0.05	1.7	3	1.7	90	－3	－	－	1.4	19K	760	－	－	－
ILG5	Remote Cut－off Pent．	720	1.4	0.05	3.2	7	0.007	90	－1．5	90	0.9	3.7	500 K	1150	－	－	－
ILN5	Sharp Cut off Pent．	7AO	1.4	0.05	3	8	0.007	90	0	90	0.35	1.6	11 meg	800	－	－	－
IN5GT	R．f．Pentode	5 Y	1.4	0.05	3	10	0.007	90	0	90	0.3	1.2	1.5 rm	750	－	－	－
1R4／1294	U．h．f．Diode	4AH	1.4	0.15	－	－－	－										
1T5GT	8eom Pwr，Amp．	$6 \times$	1.4	0.05	4.8	8	0.5	90	－6	90	0．8／1．5	6.5	250 K	1150	－	14K	0.17
387／1291	U．h．f．Dual Triode ${ }^{4}$	78E	2.83	0.11	1.4	1.8	2.6	135	0	195	－	18／22	－	19001	20^{\prime}	16K	1.5
306／1299	Beam Pwr．Amo．	6B8	2.83	0.11	7.5	5.5	0.3	150	－4．5	90	1／1．8	9．9／10．2	－	2400	－	14K	0.6
3E6	Shorp Cut－off Pent．	7 CJ	2.83	0.05	5.5	8	0.007	90	0	90	1.2	2.9	325K	1700	－	－	－
1293	U．h．f．Triode	4AA	1.4	0.11	1.7	3	1.7	90	－	\llcorner	－	4.7	10．75K	1300	14	－	－

${ }^{1}$ Each section．
2 Plate－to－plote value

3 Center－tap filoment permits 1.4 volt operation．
Closs A82 Amp．

5 Grid driving volıoge（r．m．s．）．
－Micromhos

See alro Table vill.

table vil-spectal receiving tubes

Typ*	Nam*	Base	Fil. or Heater		Capacitances - $\mu \mu \mathrm{f}$.				홍.	$\begin{aligned} & e_{0} \\ & \frac{1}{0} \\ & x_{0} \end{aligned}$		$\frac{8}{4} \frac{0}{2}$			安安	$\begin{array}{r} \stackrel{E}{E} \\ \stackrel{5}{6} \\ \hline 6 . \end{array}$	$\begin{aligned} & \text { \# } \\ & \frac{1}{E} \\ & \frac{1}{5} \\ & 30 \end{aligned}$
			V.	Amp.	Cm	C_{m}	$C_{\text {op }}$										
			2.82	0.05		-	-	90	0	-	-	4.5	11.2 K	1300	14.5	-	-
$3 \mathrm{C6}$	Medium- μ Dual Triods	78W	$2.8{ }^{2}$	0.05	8	6.5	0.6	90	-4.5	90	1.3	9.5	90K	2200	-	8K	0.27
30507	Beom Pwr. Amp.	7 71P	$\frac{2.83}{43}$	0.06	8	6.5	0.6	90	-1.5	-	-	1.2	28 K	900	25	-	-
4486	Dual Triode ${ }^{\text {a }}$	8.	6.3	0.06	2	0.007	0.7	200	200^{*}	-	-	5	16.7 K	6000	-	-	-
6174	Ceromic U.h.f. Triode	7 R	6.3	0.225	2	0.6	1.9	80	$150{ }^{*}$	-	-	13	2.9K	5800	17	-	-
6 F 4	Acorn Triode	78R	6.3	0.225	1.8	0.6	1.6	80	150*	-	-	9.5	4.4K	6400	28	-	-
614	Acorn Triode	78R	6.3	0.225	3.8	2.8	1.5	180	-3	-	-	5.5	12K	3000	36	-	-
7E5/1201	H.if. Triode	BEN	6.3	0.15	3.6	2.8	1.5	250	-3	100	0.7	2	$1 \mathrm{meg} .+$	1400	-	-	-
954	Detector Amp. - Al Amp. Peniode (Acorn) Delector	58B	6.3	0.15	3.4	3	0.007	250	-6	100	1.0	djusted	00.1 mo.	with no	nol.	250 K	-
	Pentode (Acorn Detector							250	-7	-	-	6.3	11.4 K	2200	25	-	-
955	Medium- μ Triode (Acorn)	58 C	6.3	0.15	1	0.6	1.4	90	-2.5	-	-	2.5	14.7K	1700	25	-	-
								250	-3	100	2.7	6.7	700K	1800	-	-	
956	Remote Cut-offPent IAcornt $\quad$$A_{1}$ Amp. Mixer	5B8	6.3	0.15	3.4	3	0.00	250	-10	100		Oscillat	peok vol	-7 min		-	-
950.A		580	1.25	C. 1	0.6	0.8	2.6	135	-7.5	-	-	3	10K	1200	12	-	\cdots
951-4	Sharp Cut-ofl Pent. (Acom)	58	1.25	0.05	1.8	2.5	0.015	135	-3	67.5	0.4	1.7	800 K	600	-	-	-
959	Shorp Cut-oft Pent. (Acorn)	58		0.25	7	7	1	135	-1.5	67.5	0.65	2.5	400 K	725	-	-	-
1609	Amplifier Pentode	58.	6.1	0.25	1	0.4	1.3	250	-7	-	-	6.3	11.4 K	2200	25	-	-
5731	Pwr. Amp Triode (Acorn)	$\frac{5 B C}{\text { Fig. } 21}$	6.3	0.4	1.2	0.01	1.3	250	-1	-	-	9.3	- -	4500	85	-	-
5768	U.h.f. "Rockel" Triode	Fig. 21	6.3	0.4	1.2	- 10 K	1.1		ok invers	-375	olis. Pe	Pook lp-	Ma. Max	dic. ou	put-5.		-
6173	U,h,l. "Pencil" Diode	Fig. 34	6.3	0.135	3.5	0.01	1.7	175	200 -ohm	vor. cot	ode res	10	Opero	ion at 1	00 Mc .		
6299	Low Noise U.h.f. Triode	48.	6.3	0.35	3.5	te to K	1.3		Mox.	o.e. volt	oge-1	17. Max	d.c. outpu	current	-5 mo.		-
9004	U.h.f. Diode (Acorn)	4B6	6.3	0.15		te to K	0.8		Mox.	o.c. vol	ge-1	7. Max	d.c. outpu	current	-1 mo.		-
9005	U.h.f. Diode (Acorn)	$5 B 6$	3.6	0.165		- 10 K											

- Type	Prototype and Table		Base	E, 1	11^{2}	Type	Prototype	Table	Base	E, 1	4^{2}	
1293	11 E3	V	4AA	1.4	0.05	6SU7GTY	6517 GT	III	BBD	8.3	0.3	
1LH4	IH5GT	V	5AG	1.4	0.05	6TBA!	6 68	1	$9 E$	6.3	0.45	
2AF4AT	6AF4A	1	70K	2.35	0.6	6U8A	6 U8	1	9AE	6.3	0.45	
28N4!	68 N 4	1	7EG	2.1	0.6	6V6GTA!	6V6	11	75	6.3	0.45	
2T4!	$6 T 4$	1	7DK	3.15	0.6	6x8A	6×8	1	9AK	6.3	0.45	
3AF4A!	6AF4A	1	7DK	3.2	0.45	6Y6GA	6Y6G	III	75	6.3	1.25	
3AL5 \ddagger	6Al5	1	687	3.15	0.6	GYGGT	6Y6G	III	75	6.3	1.25	
3AU67	6AU6	1	7BK	3.15	0.6	744	615	11	5AS	6.3	0.3	
3AV64:	6AV8	1	7BT	3.15	0.6	746	$6 \mathrm{HH}_{6}$	11	7AJ	6.3	0.15	
3BA6!	6BAG	1	7 CC	3.15	0.6	7A7	6SK7	11	8 V	6.3	0.3	
3BC5 \ddagger	68C5	1	7BD	3.15	0.6	7AU7 ${ }^{\text { }}$	12AU7A	1	9A	7	0.3	
3BE6!	6BE6	1	7BD	3.15	0.6	7B4	OSFS	"	SAC	6.3	0.3	
3BN4!	6 BN4	1	7EG	2.8	0.45	785	OKOGT	III	6AE	6.3	0.4	
38N6\$	68N6	1	7DF	3.15	0.6	786	6507		\% ${ }^{\text {w }}$	6.3	0.3	
38U8¢	$68 \cup 8$	1	$9 F G$	3.15	0.6	788	6AB	1	$8 \times$	6.3	0.3	
38Y6!	68 Y 6	1	7CH	3.15	0.6	$7 \mathrm{C5}$	6Vo	11	6AA	6.3	0.45	
3826!	68Z6	1	7 CM	3.15	0.6	757	6SL7GT	III	BAC	6.3	0.3	
$3 \mathrm{CB6}$!	${ }^{6} \mathrm{C} 86$	1	7 CM	3.15	0.6	$7 \mathrm{H7}$	65G7	11	${ }^{\text {8V }}$	6.3	0.3	
3CES \ddagger	6CE5	1	7 CM	3.15	0.6	7N7	6SN7GT	Iil	BAC	6.3	0.6	
3CF6 \ddagger	${ }_{6} \mathrm{CF} 6$	1	7 CM	3.15	0.6	707	6SA7	11	BAL	6.3	0.3	
$3 \mathrm{CS} 6 \ddagger$	${ }^{6}$ CS6	1	7 CH	3.15	0.6	8AUS:	6AU8	1	9DX	8.4	0.45	
3DT6 \ddagger	60T6	1	TEN	3.15	0.6	BAWBA!	6AWBA	1	9 DX	8.4	0.45	
3LF4)	3QSGT	VII	6BB	2.8	0.05	bBABA!	68ABA	1	9DX	8.4	0.45	
3 3 43	3Q4	1	6BX	2.8	0.05	38H8!	68 HB	1	9 DX	8.4	0.45	
48C5 \ddagger	68C5	1	78D	4.2	0.45	88Na!	68 N8	1	9ER	8.4	0.45	
4BCA!	68C8	1	9Ad	4.2	0.6	8CG7 \ddagger	6CG7	1	9AJ	8.4	0.45	
4BN6;	6BN6	1	7DF	4.2	0.45	8 CM 71	6 CM 7	1	9E5	8.4	0.45	
4807A \ddagger	68Q7A	1	9AJ	4.2	0.6	$8 \mathrm{CN7} 7{ }^{\text {3 }}$	${ }^{6} \mathrm{CN} 7$	1	9EN	8.4	0.225	
4858 !	6858	1	9AJ	4.5	0.6	8C57 \ddagger	6 CS7	1	9EF	8.4	0.45	
48U8:	$68 \cup 8$	1	976	4.2	0.45	8SN7GTB	6SN7GT8	VIII	88 D	8.4	0.45	
48×8:	68×8	1	9AJ	4.5	0.6	9AU7 ${ }^{\text {a }}$	$7 \mathrm{AU7}$	VIII	9 A	9.4	0.225	
$4827!$	6827	1	9AJ	4.2	0.0	9U8A \dagger	6 68	1	9AE	9.45	0.3	
4828:	6828	1	9AJ	4.2	06	12ABGT	6AB	11	8 A	12.6	015	
4CB6	${ }^{6}$ CB6	1	7 CM	4.2	0.45	12AL5	6AL5	1	6 BT	12.6	0.15	
4CESt	${ }_{6}$ CE5 5	1	7BD	4.2	0.45	12AT6	6ATO	1	781	12.6	0.15	
$4 \mathrm{CX7} \ddagger$	${ }_{6} \mathrm{CX}^{7}$	1	9 FC	4.2	0.6	12AU6	6AU6	1	78K	12.6	0.15	
SDT6!	6DT6	1	TEN	4.2	0.45	12AV5GA	6AVSGT	\%	6CK	12.6	0.6	
5AM \ddagger	6AM8	1	9 Cr	4.7	0.6	12AV6	6AV6	,	781	12.6	0.15	
SANE!	6ANB	1	9DA	4.7	0.6	1284A! ${ }^{\text {¢ }}$	1284	1	9AG	12.6	0.3	
SAOS!	6AQ5	1	782	4.7	0.6	12BA6	68A6	1	78 C	12.6	0.15	
5AS5 \ddagger	6AS5	1	9AJ	4.7	0.6	12BA7	6BA7	,	8CT	12.6	0.15	
SASEt	6 A58	I	905	4.7	0.6	128D6	6806		78 K	12.6	0.15	
5ATS!	6 A18	1	9DW	4.7	0.6	12BE6	68E6	1	7 CH	12.6	0.15	
5AVE!	6AN8	1	9 PZ	4.7	0.6	12BFS	68F6	1	7BT	12.6	0.15	
588!	6ANB	1	9EC	4.7	0.6	128H7A ${ }^{\text {¢ }}$	$128 \mathrm{H7}$,	9 A	12.6	0.3	
58K7A \ddagger	$68 \mathrm{K7A}$ A	1	9AJ	4.7	0.6	128K5 \ddagger	68K5	1	980	12.6	0.6	
5B97A!	6807A	1	9AJ	5.6	0.45	128K6	68K6	1	781	12.6	0.15	
58R3;	6BR8	1	9FA	4.7	0.6	12BN6	88N6	1	7DE	12.6	0.15	
S8T8!	6BT8	1	9FE	4.7	0.6	12806GA!	68Q6GT	III	6AM	12.6	0.6	
5827!	6827	1	9AJ	5.6	0.45	12B06GT!	68Q6GT	III	6AM	12.6	0.6	
SCGE!	-6CG8	1	9GF	4.7	0.6	12806GTB \ddagger	-8Q6GT	III	6AM	12.6	0.6	
$\stackrel{\text { SCLi }}{ } \ddagger$	${ }^{6} \mathrm{C} 18$	1	95 X	4.7	0.6	12876	6816	,	78T	12.6	0.15	
5 Cm ¢	${ }^{6} \mathbf{C M 8}$	1	972	4.7	0.6	12506	88U6	1	78T	12.6	0.15	
516 !	616	1	78F	4.7	0.6	12BW4	68W4	X	9 DJ	12.6	0.45	
5T8!	678	1	$9 E$	4.7	0.6	12BY7A ${ }^{\text {a }}$	128 Y 7	1	98 F	12.6	0.3	
5u8!	QUB	1	9AE	4.7	0.6	12C5 \ddagger	5085		7CV	12.6	0.6	
5V4GA	5V4G	X	51	5.0	3.0	12C8	688	III	6 E	12.6	015	
5V6GT!	6V6	\\|	75	4.7	0.6	12CA5 \ddagger	6CA5	1	7CV	12.6	0.6	
$5 \times 8 \ddagger$	6×8	1	9AK	4.7	0.6	12 CM 6	6CM6	1	9CK	12.6	0.225	
6A6	6N7	1	78	8.3	0.8	12C55 \ddagger	6 CSS	1	9 CK	12.6	0.6	
6A7	${ }_{6} 6$ AB	11	7 C	6.3	0.3	12C56	6CS6	1	7 CH	12.6	0.15	
6AEE	6K8	11	EDU	8.3	0.3	12CTI \ddagger	GAUB	1	9DA	12.6	0.3	
6AMBA!	6AM8	1	9 CY	8.3	0.45	12CU5 \ddagger	${ }^{6} \mathrm{CUS}$	1	7CV	12.6	0.6	
6ANBA!	6ANB	1	9DA	8.3	0.45	$12 \mathrm{CU6}$	${ }^{6} \mathrm{CUS}$	III	6AM	12.6	0.6	
6AC5A:	6AQ5	1	782	8.3	0.45	12006at	6006A	III	6AM	12.6	0.6	
6AS7GA	6ASTG	III	8BD	6.3	2.5	12G4	815	11	68 O	12.6	0.15	
GAU6A!	6AU6	1	78K	6.3	0.3	12H6	$6 \mathrm{H}_{6}$	11	70	12.6	0.15	
6AU7!	124.47	1	9A	3.15	0.6	12J5GT	6.15	11	60	12.6	0.15	
GAV5GA	6AVSGT	III	6CK	6.3	1.2	$12 \mathrm{J7GT}$	6.77	11	7R	12.6	0.15	
6A K $7 \ddagger$	12AX7	1	9A	6.3	0.3	12K7GT	6 K 7	1	7R	12.6	0.15	
6846	$6{ }^{6} 3$	III	55	6.3	1.0	12K8	$6 \mathrm{K8}$	11	8K	12.8	0.15	
68G6GA	88G6G	III	587	6.3	0.9	12076T	607	11	75	12.6	0.15	
68K7B	68K/A	1	9AJ	6.3	0.45	125867	6S8GT	III	8CB	12.6	0.15	
6896GA	68Q6GT	111	6AM	6.3	1.2	125A7	6SAT	II	8 R	12.6	0.15	
6806GTA	6BQ6GT	III	6AM	6.3	1.2	125C7	6SC7	11	85	12.6	0.15	
$6896978 / 6 C U 6$	68Q6GT	III	6AM	6.3	1.2	125F5	6SF5	11	$64 B$	12.6	0.15	
6 C6	617	II	$6 F$	6.3	0.3	12557	6557	11	7AZ	12.6	0.15	
6CB5A	${ }_{6} 6$ CB5	III	8GD	6.3	2.5	12567	65G7	11	SBK	12.6	0.15	
6CB6A \ddagger	${ }^{6}$ CB6	T	7 CM	6.3	03	125H7	6SH7	1	8BK	12.6	0.15	
6CDSGA	${ }^{6} \mathrm{CD6G}$	III	58T	6.3	2.5	12557	6517	11	BN	12.6	0.15	
6CGBA \ddagger	${ }^{6}$ CGB	1	9GF	6.3	0.45	125K7	6SK7	11	8 N	12.6	0.15	
6J6A!	6.6	1	78F	6.3	0.45	125L7GT	6SLTGT	III	880	12.6	0.15	
6L6GA	616	11	75	6.3	0.9	12SN7GT	6SN7GT	11	B8D	12.6	0.3	
616GB	616	1	75	6.3	0.9	12SNTGTA	6SN7GT	11	B8D	126	0.3	
654A \ddagger	654	,	9 AC	6.3	0.6	12507	6SQ7	11	80	126	0.15	
6SNTGTA	6SN/GT	III	3ED	6.3	0.6	12587	6SR7	1	80	12.6	0.15	
6SN7014	6SN7GTA	YIII	380	6.3	0.6	12W697:	OWGGT	III	75	12.6	0.6	

Type	Pratotype and Table		Bose	E. ${ }^{1}$	11^{2}	Type	Pratotype	able	Bose	E, 1	11^{2}
4 A 7	6SK7	11	8 V	12.6	0.15	5691	6SI7GT	lii	88 D	6.3	0.6
4AF7	7AF7	IV	8AC	12.6	0.15	5692	65N7GT	III	8 BD	6.3	0.6
486	6SQ7	11	BW	12.6	0.15	5725	8AS6	1	7CM	6.3	0.175
4 47	6SL7GT	III	BAC	12.6	0.15	5726	6AL5	1	6BT	6.3	0.3
4N7	6SN7GT	III	BAC	12.6	0.6	5749	6BA6	1	7BK	6.3	0.3
407	65A7	11	BAL	12.6	0.15	5750	68\%	1	7CH	6.3	0.3
$4 \mathrm{V7}$	7V7	IV	8 V	12.6	0.225	$5751{ }^{3}$	$12,2 \times 7$	1	9 A	12.6	0.175
4X7	7×7	IV	88 I	12.6	0.15	5814AJ	$125 N 76 T$	VI	9 9	12.6	0.175
7AVSGA!	6AV5GA	VIII	6CK	16.8	0.45	5871	6V8	II	7AC	6.3	0.9
7C5!	50C5	Vili	7CV	16.8	0.45	5881	616	II	7AC	6.3	0.9
7006\$	6DQ6A	III	6AM	16.8	0.45	5910	104	1	6AR	1.4	0.05
7R5!	1285	1	7CV	16.8	0.45	5915	6 BY 6	1	7 CH	6.3	0.3
9866GA	6BG6GA	VIII	5BT	18.9	0.3	59633	$12 \mathrm{AU7}$	1	9 A	12.6	0.15
I5AV5GA	6AV5GT	III	6CK	25	0.3	5964	616	1	78 F	6.3	0.45
I5AV5GT	6AV5GT	III	6CK	25	0.3	59653	12AV7	1	9 A	12.6	0.225
15806GA	6BQ6GT	III	6AM	25	0.3	6046	1216GT	VI	7AC	25	0.3
15806GT	6BQ6GT	IIt	6AM	25	0.3	60573	$12 \mathrm{~A} \times 7$	1	9 A	12.6	0.15
15B06GTBt	6BQ6GT	dII	6AM	25	0.3	6058	6A15	1	6 BT	6.3	0.3
15C5	50C5	VIII	7CV	25	0.3	6059	617	II	9 BC	6.3	0.15
25CA5	$6 \mathrm{CA5}$	1	7CV	25	0.3	6060^{3}	$12 \mathrm{AT7}$	1	9 9	12.6	0.15
25CD6G	6CD6G	111	58T	25	0.6	6061	6 V ¢	II	9AM	6.3	0.45
25CD6GA!	6CD6G	111	5BT	25	0.6	6064	6AM6	1	7DB	6.3	0.3
25CU6	6CU6	III	6AM	25	0.3	6065	6 BH 6	1	7DB	6.3	0.2
25DN6:	6DN\%	III	5BT	25	0.6	6066	6AT6	1	781	6.3	0.3
25DQ6	6DQSA	111	6AM	25	0.3	60673	12AU7	1	9 A	12.6	0.15
25L6GT	1216GT	VI	75	25	0.3	6080	6AS7G	III	88D	6.3	2.5
25 W 6 GT	6W6GT	III	75	25	0.3	6101	616	1	$78 F$	6.3	0.45
$35 \mathrm{C5}$	3585	1	7 CV	35	0.15	6132	6 Cl 16	1	98A	6.3	0.75
3516 GT	3585	1	75	35	0.15	6136	6AU6	1	78K	6.3	0.3
41	6K6GT	III	68	6.3	0.4	62013	12AT7		94	12.6	0.15
42	6F6	II	68	6.3	0.7	6265	6 BH 6	1	7 CM	6.3	0.175
5045	126GT	VI	6AA	50	015	63503	128H7	1	9 CZ	12.6	0.3
508K5	6BK5	1	980	50	0.15	6485	6AHS	1	7BK	6.3	0.45
$50 \mathrm{C5}$	5085	1	7CV	50	0.15	6860	6BA6	1	7CC	6.3	0.3
5046GT	1216GT	VI	7AC	50	0.15	6661	6 BH 6	I	7 CM	6.3	0.15
75	6SQ7	II	6 G	6.3	0.3	6662	6 BI 6	1	7 CM	6.3	0.15
78	6 K 7	1	$6 F$	6.3	0.3	6663	6AL5	1	687	6.3	0.3
117P7GT	11717GT	Vi	BAV	117	0.09	6669	6AQ5	1	782	6.3	0.45
417 A	5842	1	9 V	6.3	0.3	6677	6 Cl 6	1	98 V	6.3	0.65
1221	6.17	II	$6 F$	6.3	0.3	66793	12AT7	1	9 A	12.6	0.15
1223	617	II	7R	6.3	0.3	6680^{3}	12AU7A	1	94	12.6	0.15
1631	616	11	7AC	12.6	0.45	6681^{3}	12AX7	1	9A	12.6	0.15
1632	126GT	VI	75	12.6	0.6	68293	5965	VIII	94	12.6	0.225
1634	65 C 7	11	85	12.6	0.15	6897	2 C 39	XI	-	6.3	1.05
5591	6AKS	1	7BD	6.3	0.15	7000	617	If	7R	6.3	0.3
5654	6AK5	1	7BD	6.3	0.175	7700	617	11	$6 F$	6.3	0.3
5670	2 C 51	1	8CJ	6.3	0.35	KT-664	616	11	7AC	6.3	1.27
5679	6H6	11	7CX	6.3	0.15	\times	7AF7	IV	BAC	12.6	0.15
	heater warm heater volt heater cur	har	isties.			3 Healer of half 4 British	rapped for shown. of 816.				

table ix-control and regulator tubes

Type	Nome	Bose	Cathode	fil. or Heafer		Peak Anode Voltage	Max. Anode Ma.	Minimum Supply Voltage	Oper- oting Volloge	Operoting Mo.	Grid Resistor	Tube Vollage Drop
				Volis	Amp.							
$\begin{aligned} & \text { OA2 } \\ & 6073 \end{aligned}$	Voltage Regulator	580	Cold	-	-	-	-	183	150	5-30	-	- 1
$\begin{aligned} & \hline \text { OA4G } \\ & 1267 \\ & \hline \end{aligned}$	Gas Triode Starter-Anode Type	$\begin{aligned} & 4 V \\ & 4 V \end{aligned}$	Cold	-	-	With 105-120-volp a.c anode supply, peok starter-anode a.c. valtage is 70 peak r.f. voltage 55. Peak d.c. ma $=100$. Average d.c. ma $=25$.						
OA5	Gas Pentade	Fig. 19	Cold	-	-	Plate -750 V ., Screen - 90 V ., Grid +3 V ., Pulse -85 V .						
$\mathrm{OB2}$	Voltage Regulator	580	Cold	-	\longrightarrow	-	-	133	108	5-30	-	-
						650	500	-	650	100	0.1-104	8
2D21	Grid-Controlled Rectifiar Reloy Tube	7BN	Htr .	6.3	0.6	400		-	65	-	1.04	-
6D4	Coniral Tube	5AY	Mrr.	6.3	0.25							
		580	Cold	-	-	-	-	125	90	1-40	-	-
90 Cl	Volrage Regulotor	5.	Cold	6.3	0.6	300	300	-	-	2	25000	-
884	Gos Triode Grid Type	60	Hir.	6.3	0.6	350	300	-	-	75	25000	-
967	Grid-Controiled Rectifier	3 G	Fil,	2.5	5.0	2500	500	-5^{2}	0	-	-	10-24
991	Voitoge Regulator	-	-	--		-	-	87	55-60	2.0	-	-
1265	Voltoge Regulator	4AJ	Cold			-	-	130	90	5-30	-	-
1266	Voltage Regulator	4AJ	Cold	-			-	--	70	5.40	-	
1267	Reloy Tube	4V	Cold	-	--	Chorocieristics same os OA4G						
2050	Grid-Cantrolled Rectifier	BA	Hir.	6.3	0.6	650	500	-	-	100	0.1-104	8
5651	Voltoge Regulator	580	Cold	-		115	-- It io fuse - 150 Amp., 60 cycle , holf-wove					50 V
5662	Thyrotron-Fuse	Fig. 79	Hir.	6.3	1.5	2003	Ik 10 fuse - 150 Amp., 60 cycle, holf-wove					50 V.
5663	Control and Relay	7CE	Her.	6.3	0.15	Mox. peak inv, volis $=500$; Peak Ma, $=100$; Avg. Mo. $=20$.						
5696	Relay Service	78N	Hir.	6.3	0.15	5003	100 ma , peok current; 25-ma. overoge.					
5823	Relay or Trigger	4CK	Cold	-	-	Max, peak inv. volts $=200$; Peok Ma. $=100$; Avg. Ma. $=25$.						
$\frac{5823}{5890}$	Shunt Regulotor	12J	Hir.	6.3	0.6	$E_{01}=-60$ volts; $E_{G 2=200}$ volts; $E_{G 3}=5500$ volts. $\mathrm{E}_{\mathrm{p}}=30000$ volts; $\mathrm{I}_{\mathrm{G} 2}=0 \mathrm{Ma} . ; \mathrm{I}_{\mathrm{p}}$ Max. $=0.5 \mathrm{Ma}$.						
589					-	-	¢	- 730	700	5/555	-	-
5962	Volrage Regulotor	$2 A G$	Cold		2.4	250	125		110	100	$350{ }^{\circ}$	-
5998	Series Regulator	88.	Hir.	6.3	2.4	250	125	115	87	100	\square	-
6308	Voltoge Regulotor	8EX	Cold	--	-		3.5	1	8	-	-	-

TABLE IX—CONTROL AND REGULATOR TUBES—Continued

TABLE X-RECTIFIERS—RECEIVING AND TRANSMITTING
See Also Table IX—Control and Regulator Tubes

Typ*	Name	Base	Cothode	Fil. or Heafer		Mox. A.C. Voltage Por Plafe	D.C. Output Current Ma.	Max. Inverse Peak Voltage	Paak Plate Current Ma.	Type
				Volts	Amp.					
1V2	Hall. Wave Rectifier	94	fil.	0.625	0.3	-	0.5	7500	10	HV
2825	Hall. Wove Rectilier	31	Fil.	1.4	0.11	1000	1.5	\square	9	HV
2X2-A	Moll-Wove Rectifier	4AB	Hir.	2.5	1.75	4500	7.5	\square	-	MV
2 Y 2	Malf. Wave Rectifier	4AB	fil.	2.5	1.75	4400	5.0	-	-	MV
222/G84	Malf-Wove Rectifier	48	Fil.	2.5	1.5	350	50	-	-	HV
3824	Malf-Wove Rectifier	Fig. 49	fil.	$\begin{aligned} & 5.0 \\ & 2.55 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	HiV
5AU4	Full-Wove Rectilier	51	fil.	5.0	4.5	3003	$350{ }^{3}$	1400	1075	HV
						4003	3253			
						5004	3254			
SAW4	Full-Wave Rectifier	51	Fil.	5.0	4.0	4503	2503	1550	750	HV
						5504	2504			
$\begin{aligned} & \text { 5R4GY } \\ & \text { 5R4GYA } \end{aligned}$	Full-Wave Rectifier	51	Fil.	5.0	2.0	9003	1503	2800	650	HV
						9504	1754			
574	Full-Wave Rectifier	51	Fii.	5.0	2.0	450	250	1250	800	MV
5U4G	Full-Wave Rectifier	51	Fil.	5.0	3.0	Same as Type 573				MV
5U4GA	Full-Wave Rectifier	$5 T$	Fil.	5.0	3.0	3003	2753	1550	900	HV
						$450{ }^{3}$	2503			
						5504	2504			
5A5A 5U4GB	Full-Wave Rectifier	$5 T$	Fil.	5.0	3.0	3003	3003	1550	1000	HV
						$450{ }^{3}$	275			
						5504	2754			
5 V 3	Full-Wove Rectifier	51	Htr.	5.0	3.8	$\begin{aligned} & 425^{3} \\ & 500^{4} \end{aligned}$	350	1400	1200	HV
5V4G	Full.Wave Rectifier	51	Htr .	5.0	2.0	350 Same as Type 83V				HV
5W4GT	Full-Wave Rectifier	51	Fil.	5.0	1.5	350	110	1000	-	HV
5X4G	Full. Wave Rectifier	50	Fil.	5.0	3.0	Some as 5Z3				HV
5Y3-G.GT	Full. Wove Rectifier	51	Fil.	5.0	2.0	Same os Type 80				HV
5Y4-G-GT	Full- Wove Rectifier	50	Fil,	5.0	2.0	Same as Type 80				HV
573	Full-Wave Rectifior	4C	Fil.	5.0	3.0	 500 400	250	1400	二	HV
524	Full. Wave Rectifier	51.	Mir.	5.0	2.0			1100	-	HV
6AV4	Full-Wave Rectifier	5B5	Mir.	6.3	0.95		90	1250	250	HV
6AX5GT	Full. Wave Rectitier	65	Mir.	6.3	1.2	450	125	1250	375	HV
68W4	Full-Wove Rectifier	90.1	Her,	6.3	0.9	450	100	1275	350	HV
$6 \mathrm{BX4}$	Full-Wave Reclifier	585	Htr.	6.3	0.6	-	90	1350	270	HV
6BY5G	Full-Wave Rectifier	6CN	Hir.	6.3	1.6	375	175	1400	525	HV
6U4GT	Holl-Wave Rectifier	4CG	Mpr.	6.3	1.2	-	138	1375	660	HV
6V4	Full-Wave Rectifier	9 M	Her.	6.3	0.6	350	90	-	-	HV
$\begin{aligned} & 6 \times 4 / 8063 \\ & 6 \times 5 \mathrm{GT} \end{aligned}$	Full. Wave Recrifier	$\begin{aligned} & 7 C F \\ & 65 \\ & \hline \end{aligned}$	Her.	6.3	0.6	$\begin{aligned} & 325^{3} \\ & 4504 \end{aligned}$	70	1250	210	HV
623	Half. Wave Rectifier	46	Fii.	6.3	0.3	350	50		-	HV
12×4	Full-Wave Rectifier	585	Hrr.	12.6	0.3	$\begin{aligned} & 650^{3} \\ & 9004 \end{aligned}$	70	1250	$\begin{aligned} & 210 \\ & 210 \end{aligned}$	HV
2573	Malf. Wave Rectifier	4 G	Hrr.	25	0.3	250	50	-	\square	HV
2575	Rectifier-Doubler	$6 E$	Hir.	25	0.3	125	100	-	500	HV
2526	Rectifier-Doubler	70	Hers	25	0.3	125	100	-	500	HV
35W4	Holf. Wove Rectilier	$5 B 9$	Hrp.	351	0.15	125	60	330	600	HV
35Z4GT	Molf. Wave Rectifier	5AA	Mr.	35	0.15	250	100	700	600	HV
3525 G	Holl.Wove Rectilier	6AD	Mrr.	351	0.15	125	60	-	-	HV
50Y6GT	Full-Wave Rechifier	70	Mrr.	50	0.15	125	85	-	-	HV
5026G	Voltage Doubler	70	HP\%.	50	0.3	125	150	-	-	HV
0	Full.Wave Rectifier	4 C	Fil.	5.0	2.0	$\begin{aligned} & 350^{3} \\ & 5004 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
83	Full-Wave Rectifier	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83.V	Full-Wove Rectifier	4AD	Hir.	5.0	2.0	400	200	1100	$\underline{-}$	HV
84/624	full Wave Reclifier	50	Mir.	6.3	0.5	350	60	1000	-	HV
$\begin{aligned} & 11717 \mathrm{GT} / \\ & 117 \mathrm{M} / \mathrm{GT} \end{aligned}$	Rectifiar Teltode	AO	Her.	117	0.09	117	75	-	-	MV
$117 N 7 \mathrm{GT}$	Rectifier-Tetrode	BAV	Mir	117	0.09	117				
117P7GT	Rectifier.Tetrode	BAV	M H .	117	0.09	117	$\frac{15}{75}$	350	450	$\begin{aligned} & \mathrm{HV} \\ & \mathrm{HV} \end{aligned}$
11723	Molf.Wave Rectifier	4 CB	Her.	117	0.04	117	9	$\frac{350}{330}$	-	HV + HV
816	Holf-Wove Rectifier	4 P	511	25	20	2200	125	740	500	$\frac{H V}{M V}$
$\frac{36}{166-A-A X}$	Half-Wove Rectitier	4 P	Her.	2.5	5.0	$\underline{-}$	$\underline{\square}$	5000	1000	MV
66-A-AX	Malf. Wove Rectifier	4 P	F.I.	2.5	5.0	3500	250	10000	1000	MV
1668 Jr.	Malk. Wave Rectifier	4P	Fil.	5.0	5.0	-	-	8500	1000	MV
666 Jr.	Holf. Wave Rectifier	48	Fil	2.5	2.5	1250	2502	-	$\underline{-}$	MV
82A/872	Half. Wave Rectifier	4AT	fils	5.8	7.5	$\underline{-}$	1250	10000	5000	MV

Tapped for pilus lamps.
${ }^{3}$ Cundenser input.
I leing only one balf of filuthent
table XI-TRIODE TRANSMITTING TUBES

	Maximum Rating						Cathode		Copacitancer			Base	Typical Operation							
Type			交					$\begin{aligned} & \frac{6}{6} \\ & \frac{0}{E} \end{aligned}$	c. $\mu \mu$.	$\begin{aligned} & \mathbf{C}_{\mathrm{c}} . \\ & \mu \mu \mathrm{i} . \end{aligned}$	Cow $\mu \mu{ }^{*}$.			$\frac{8}{a} \frac{\square}{i}$	$\begin{array}{r} 8 \\ 0 \\ 5 \\ 5 \end{array}$	交				
958-A	06	135	7	10	500	12	125	01	06	26	08	580	C.TO	135	-20	7.	10	0035	-	0.6
6562	15	300	30	16	250	32	63	045	22	16	04	$78 F$	C I	150	-10	30	16	035	-	35
9002	16	250	8	20	250	25	63	015	12	1.	11	$7 B 5$	CIO	180	-35	7	15	-	-	05
955	16	180	8	20	250	25	63	0.15	10	14	06	5BC	CIO	180	-35	7	15	-	-	0.5
						13	1.4	0.155	10	13	10	21	C.TO	180	-30	12	2.0	02	-	1.43
HY1148	1.8	180	12	30	300	13	1.4		10	1.3	1.0		$\mathrm{C}^{-\cdot}$.	180	-35	12	25	03	-	1.43
6F4	20	150	20	80	500	17	©3	0225	2.0	1.9	0.6	78R	C.TO	150	$\begin{array}{r} 13 \\ 500^{\circ} \\ 2000^{4} \end{array}$	20	75	0.2	\cdots	1.8
12AU7:	2756	350	12^{6}	34%	54	18	83	03	15	15	05	9A	C.TO	350	-100	24	7	-	-	80
$6{ }^{6} \mathrm{~N}$	30	180	12	-	500	32	63	02	31	235	0.55	7CA	CT.O	180	-	-	-	-	-	-
6026	30	150	30	10	400	${ }^{24}$	63	02	22	1.3	038	-	C.T.O	135	13004.	20	95	-	-	125
HY615 HY-E1148	35	300	20	40	300	20	6.3	0175	14	16	12	Fig. 71	C.T.O	300 300	-35 -35	20	30	04	-	403 353
HY-E1148	50	350	25	80	54	18	6.3	015	18	18	13	686	C.TO	300	-27	25	70	035	-	55
${ }^{2 C 36}$	5	1500^{5}	-	-	1200	25	63	0.4	1.4	2.4	0.36	Fig. 21	C.T. ${ }^{10}$	1000 ${ }^{5}$	0	9005	-	-	-	2003
2 C 37	5	350	-	-	3300	25	63	04	14	1.85	0.02	Fig. 21	$C^{1 / 1019}$	150	30004	15	38	-	-	0.5
5764	5	1500^{3}	115	-	3300	25	63	04	14	1.85	002	Fig. 21	CTO^{16}	$1000{ }^{\text {S }}$	0	13005	-	-	-	200^{5}
5765	5	350	-	-	2900	25	63	04	13	21	003	Fig. 21	C.1019	180	100009	25	-	-	-	0.225
5675	5	165	30	8	3000	20	63	0135	23	13	009	Fig. 21	G60	120	-8	25	4	-	-	005
6N72	556	350	30^{6}	$50 \cdot$	10	35	63	08	-	-	-	88	CIOH^{1}	350	- 100	60	10	-	-	145
5876		300	25	--	1700	56	63	0135	25	1.4	0035	Fig. 21	GGO	250	-2	23	3	-	-	0.75
2 C 40			25	-	500	36	63	075	21	13	005	Fig. 11	CTO	250	-5	20	03	-	-	0075
	65	0											C.T	330	-33	35	13	24	-	65
5893	80	400	40	13	1000	27	60	0.33	25	175	007	Fig. 21	C^{P}	300	-45	30	12	20	-	65
													C I	350	- 50	35	15	-	-	-
Cl-6442	8.0	350	35	15	2500	47	6.3	0.9	50	23	003	-	C ${ }^{\text {P }}$	275	- 50	35	15	-	-	-
$\begin{aligned} & 2 \mathrm{C} 34 / \\ & \mathrm{RK} 342 \end{aligned}$	10	300	80	20	250	13	6.3	08	34	24	05	Fig. 70	Cio	300	-36	80	20	1.8	-	16
${ }_{2}{ }^{\text {C43 }}$	12	500	40	-	1250	48	63	09	29	17	005	Fig. 11	CTO	470	-	387	-	-	-	97
6263	13	400	55	25	500	27	63	028	29	17	008	-	C. ${ }^{\text {P }}$	350	-58	40	15	3	-	10
0264	13	400	50	25	500	40	63	028	295	175	007	-	C I	330	-45	40	15	3	-	8
	15	4.50	65	15	8	80	75	1.25	41	7.0	30	4D	CIO	450	-100	65	15	32	-	19
1or	15												CP	350	- 100	50	12	22	-	12
												${ }^{21}$	C T	450	-140	90	20	52	-	26
HY75A	15	450	90	25	175	96	63	26	18	26	10	21	CP	400	-140	90	20	52	-	21
													C T	600	-150	65	15	40	-	25
801.A/801	20	600	70	15	60	8.0	7.5	125	45	-0	1.5	4D	CP	500	-190	55	15	45	Iok	18
sol 1 /eor													B^{7}	600	-75	130	320°	30°	10K	45
									49	5.1	07	$3 \mathbf{6}$	C 1	750	-85	85	18	36	-	44
T20	20	750	85	25	60	20	75	1.75	49	5.1	07	36	C ${ }^{\text {P }}$	750	-140	70	15	36	-	38
													C T	750	-40	85	28	37.5	-	44
T220	20	750	85	30	60	62	7.5	1.75	53	5.0	0.6	3 G	CP	750	- 100	70	23	48	-	38
													B^{3}	800	0	40136	160°	188	12 K	70
15E19	20	-	-	-	600	25	55	4.2	14	1.15		Fig. 51		2000	-130	63	18	4.0	-	100
													$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$	1500	-95	67	13	22	-	75
257								30	27		03	36		1000	-70	72	9	13	--	47
3-25A3	25	2000	75	25	60	${ }^{24}$	6.3	3.0	27	15		36	${ }^{\prime}$	2000	-80	1680	270°	078	55 5k	110
					100				21	18	01	Fig. 31		2000	-170	63	17	45	-	100
$\begin{aligned} & 3 \mathrm{C} 28 \\ & 3 \mathrm{C} 3410 \end{aligned}$					60				25	1.7	04	3 G	C.T.O	1500	-110	67	15	3.1	-	75
3-25D3	25	2000	75	25		23	8.3	3.0	20	16	02			1000	-80	72	15	2.6	-	47
					150				1.7	15	03	20	B	2000	-85	1680	$290{ }^{\circ}$	1.15	55 5K	110
	25	2000	75										C.T	2000	-130	63	18	4	-	100
3 C 24	17	1600	60	73	60	24	6.3	3.0	1.7	1.6	02	2D	${ }^{\text {c. }}$ P	1600	-170	53	11	31	-	68
	25	2000	75										$A^{\text {B }}$? ${ }^{\text {? }}$	1230	-42	$24 \quad 130$	270°	34°	21.4 K	112
													C.I	2000	-140	56	18	40	-	90
HK24	25	2000	75	30	60	25	6.3	3.0	25	1.7	0.4	36	C ${ }^{\text {P }}$	1500	-145	50	25	5.5	-	60
	30		65	-									G'M.A	1000	-135	50		35	-	20
8025	20	1000	65	20	500	18	63	1.92	2.7	2.8	0.35	4AQ	$C^{\text {P }}$	800	-105	40	105	14	-	22
	30		80	20									C 1	1000	-90	50	14	16	-	35
							63	3.5	5.0		1.9	Fig. 60	C.T	500	-45	150	25	2.5	-	56
HY12312]	30	500	150	30	60	45	126	17.	3.0	5.5	1.9	Fig. 60	C. P.	400	-100	150	30	35	-	45
$\begin{aligned} & 316 A \\ & V T-191 \end{aligned}$	30	450	80	12	500	65	20	365	1.2	1.6	0.8	-	$\frac{C \cdot 1}{C \cdot P}$	450	-	80	12	-	-	7.5 6
													C.T	1000	-75	100	25	3.8	-	75
009	30	1000	125	-	${ }_{0}$	50	63	2.5	5.7	8.7	0.9	36	CP	750	-60	100	32	4.3	-	55
0													87	1000	-9	40200	1550	278	11 ok	145
													C.T.O	1000	-90	100	20	3.1	-	75
1623	30	1000	100	25	60	20	6.3	2.5	57	6.7	0.9	36	C.P	750	-125	100	20	4.0	-	55
1623													${ }^{8}$	1000	-40	30200	230\%	$42^{\text {b }}$	12 K	145
													C.IO	1000	-90	50	14	16	-	35
	40	1000	80	20	500	-18	63	2.0	27	28	035	Fig. 54	C.p	800	- 105	40	105	514	-	22
GL-8012-A									27	2.5	04		G.M.A	1000	-135	50	40	35	-	20
													C.IO	1500	-140	150	28	9.0	-	158
140	40	1500	150	40	60	25	75	2.5	45	4.8	08	3G	C ${ }^{\text {P }}$	1250	-115	115	20	5.25	-	104
													C10	1500	-90	150	38	10	-	165
T240	40	1500	150	45	60	62	7.5	2.5	48	50	08	3 G	C^{P}	1250	-100	125	30	7.5	-	116
													B	1500	-9	$250{ }^{\circ}$	$285{ }^{\circ}$	6.00	12 K	250

3 See page V27 for Kev to Class-ot-Service abbreviations.

Type	Maximum Ralinga						Cathode		Capacitances			Bore	Typical Operation							
		$\begin{array}{r} 8 \\ \frac{0}{6} \frac{8}{0} \\ \frac{8}{2} \\ \hline \end{array}$					$\begin{aligned} & \frac{!}{0} \\ & > \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{0}{2} \\ & \text { E } \end{aligned}$	c. $\mu \mu$.	$\underset{\mu \mu \mathrm{f}}{\mathbf{C}_{\mathrm{p}} .}$	$\mathbf{C}_{\mu \mu \boldsymbol{u}}$			$\begin{array}{r} 8 \\ \frac{8}{2} \\ \frac{0}{2} \frac{2}{5} \\ \hline \end{array}$	$8 \stackrel{\circ}{5}$		$\begin{aligned} & \text { 응 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \text { 3-50A4 } \\ & \text { 357 } \end{aligned}$	50	2000	150	50	100	39	5.0	4.0	4.1	1.8	0.3	36	C.T	2000	-135	125	45	13	-	200
3-5004									2.5		0.4	2D	C.P	1500	-150	90	40	11	-	105
													${ }^{\text {B }}$	2000	-40	4/167	2559	4.04	27.5k	235
HK54	50	3000	150	30	100	27	5.0	5.0	1.9	1.9	0.2	2D	C.T	3000	-290	100	25	10	-	250
													C.P	2500	-250	100	20	8.0	-	210
													B ${ }^{\text {a }}$	2500	-85	20/150	3600	5.0	40K	275
T55	55	1500	150	40	60	20	7.5	3.0	5.0	3.9	1.2	3 G	C.T	1500	-170	150	18	6.0	-	170
811											1.2	36	C. ${ }^{\text {P }}$	1500	-195	125	15	5.0	-	145
	55	1500	150	50	60	160	6.3	4.0	5.5	5.5	0.6	36	${ }_{\text {C }} \cdot \mathrm{T} \cdot \mathrm{P}$	1500	-113	150	35	8.0	-	170
													${ }^{\text {C }}$ P	1250	-125	125	50	11	-	120
													B	1500	-9	20/200	1509	3.04	17.6K	220
812	55	1500	150	35	60.	29	6.3	4.0	5.3	5.3	0.8	36	C.T	1500	-175	150	25	6.5	-	170
													C.P	1250	-125	125	25	6.0	-	120
													B	1500	-45	50/200	232	4.78	18K	220
826	55	1000	140	40	250	31	7.5	4.0	3.0	2.9	1.1	7BO	C.T. O	1000	-70	130	35	5.8	-	90
													C.P	1000	-160	95	40	11.5	-	70
													G.M.A	1000	-125	65	9.5	8.2	-	25
$\begin{aligned} & 8308 \\ & 9308 \end{aligned}$	60	1000	150	30	15	25	10	2.0	5.0	11	1.8	36	C.T.O	1000	-110	140	30	7.0	-	90
													C.P	800	-150	95	20	5.0	-	50
													B	1000	-35	20/280	2700	6.04	7.6 K	175
811-A19	65	1500	175	50	60	160	6.3	4.0	5.9	5.6	0.7	36	C.T	1500	-70	173	40	7.1	-	200
													C.P	1250	-120	140	45	10.0	-	135
													B	1500	-4.5	32/313	$170{ }^{\circ}$	4.48	12.4 K	340
812-A	65	1500	175	35	60	29	6.3	4.0	5.4	5.5	0.77	36	C.T	1500	-120	173	30	6.5	-	190
													C.P	1250	-115	140	35	7.6	-	130
													${ }^{\text {B }}$	1500	-48	28/310	2700	5.0	13.2k	340
5514	65	1500	175	60	60	145	7.5	3.0	7.8	7.9	1.0	480	C.T	1500	-106	175	60	12	-	200
													C.P	1250	-84	142	60	10	-	135
													B	1500	-4.5	3508	88	6.59	10.5K	400
$\begin{aligned} & 3-75 A 3 \\ & 75 \mathrm{TH} \end{aligned}$	75	3000	225	40	40	20	5.0	6.25	2.7	2.3	0.3	2D	C.T	2000	-200	150	32	10	-	225
													C.P	2000	-300	110	15	6	-	170
													B	2000	-90	50/225	3500	30	19.3K	300
$\begin{aligned} & 3.7542 \\ & 7571 \end{aligned}$	75	3000	225	35	40	12	5.0	6.25	2.6	2.4	0.4	2D	C.T	2000	-300	150	21	8	-	225
													C. ${ }^{\text {P }}$	2000	-500	130	20	14	-	210
													${ }^{\text {A }}$, ${ }^{7}$	2000	-190	50/250	600	5	18K	350
8005	85												C.T	1500	-130	200	32	7.5	-	220
		1500	200	45	60	20	10	3.25	6.4	5.0	1.0	36	C. ${ }^{\text {P }}$	1250	-195	190	28	9.0	-	170
													B	1500	-70	40/310	$310{ }^{\circ}$	4.0	10K	300
													C.T	1750	-100	170	19	3.9	-	225
V-70-D	85	1750	200	45	30	-	7.5	3.25	4.5	4.5	1.7	36		1500	-90	165	19	3.9	-	195
													C.P	1500	-90	165	19	3.7	-	185
													CP	1250	-72	127	16	2.6	-	122
3 -10044													C.T	3000	-200	165	51	18	-	400
100TH	100	3000	225	60	40	40	5.0	6.3	2.9	2.0	0.4	2 D	C.P	3000	-0	16	3359	508	3k	450
													$\frac{\mathrm{B}}{\mathrm{C}} \mathrm{C}$	3000		40/215	$335{ }^{\circ}$	50	31K	650
3.10042	100	3000	225	50	40	14	5.0	6.3	2.3	2.0	0.4	2 D	C.P	3000	-400	165	30	20	-	400
10074	100	300	23		4		5. 0		2.3		0.4		G-M.A	3000	-56C	60	2.0	7.0	-	90
													B	3000	-185	40/215	6409	6.08	30 K	450
VT127A	100	3000	-	-	150	15.5	5.0	10.4	2.7	2.3	0.35	Fig. 53	C.T	2000	-340	210	67	25	-	315
VT27a	10	3000	-	-	150	IS. 5	S.	10.4	2.7	2.3	0.35	Fig. 33	B	1500	-125	242	44	7.3	3 K	200
									6.0	14.5			C.T	1250	-225	150	18	7.0	-	130
311	100	1250	175	50	15	12	10	3.25				4 E	C.P	1000	-260	150	35	14	-	100
									6.0	9.25			${ }^{8}$	1250	-100	20/320	410°	8.04	9 K	260
													C. T	3000	-245	165	40	18	-	400
254	100	4000	225	60	-	25	5	7.5	2.5	2.7	0.4	2N	C.P	2500	-360	168	40	23	-	335
													${ }^{8}$	2500	-80	40/240	460\%	25	25.2 K	420
													C.T.O	1350	-180	245	35	11	-	250
8003	100	1500	250	50	30	12	10	3.25	5.8	11.7	3.4	3 N	C.P	1100	-260	200	40	15	-	167
													B	1350	-100	40/490	4809	10.50	6K	460
$\begin{aligned} & 3 \times 100 \mathrm{~A} 11 \\ & 2 \mathrm{2C39} \\ & \hline \end{aligned}$	100	1000	60	40	500	100	6.3	1.1	6.5	1.95	0.03	-	G.1.	600	-35	60	40	5.0	-	20
GL2C39A	10015	1000	12514	50	500	100	6.3	1.0	6.5	1.9	0.035		C.T.O	900	-40	90	30	-	-	40
Gt2C398	7015	1000	12Si4	50	500	100	6.3	1.0	7.0	1.9	0.035	-	${ }^{-1} \cdot$	600	-150	10014	50	-	-	-
$3 \mathrm{C22}$	125	1000	150	70	500	40	6.3	2.0	4.9	2.4	0.05	Fig. 17	C.T.O	1000	-200	150	70	-	-	65
													C.T.O	1250	-150	180	30	-	-	150
GL146	125	1500	200	60	15	75	10	3.25	7.2	9.2	3.9	Fig. 56	C.P	1000	-200	160	40	-	-	100
													8	1250	0	34/320	-	-	8.4 K	250
													C.T.O	1250	-150	180	30	-	-	150
Gl152	125	1500	200	60	15	25	10	3.25	7.0	8.8	40	Fig. 56	C.P	1000	-200	160	30	-	-	100
													B	1250	-40	16/320	-	-	8.4K	250
													C.T	1500	-105	200	40	8.5	-	215
805	125	1500	210	70	30	$40^{\prime} 60$	10	3.25	8.5	6.5	10.5	3N	C.P	1250	-160	160	60	16	-	140
													B	1500	-16	84/400	2809	7.04	8.2 K	370
													C.T	2500	-200	200	40	16	-	390
$\begin{aligned} & A \times 990 \\ & 586613 \end{aligned}$	135	2500	200	40	150	25	6.3	5.4	5.8	5.5	0.1	Fig. 3	C.P	2000	-225	127	40	16	-	204
													B	2500	-90	80330	3500	144	15.880	560
							5.0	12.5					C.T	3000	-300	250	70	27	-	600
152 TH	150	3000	450	85	40	20			5.7	4.8	0.4	4 BC	C.P	2500	-350	200	30	15	-	400
							10	6.25					${ }^{8}$	2500	-125	40340	$390{ }^{\circ}$	16	17K	600

[^9]| Type | Maximum Rating: | | | | | | Cathode | | Capacitances | | | Base | Typical Operation | | | | | | | |
| :---: |
| | | $\frac{9}{2}$ | | | | | $\frac{4}{8}$ | $\begin{aligned} & 0 \\ & \frac{6}{8} \\ & \text { E } \\ & \text { E } \end{aligned}$ | C. $\mu \mu$. | $\underset{\mu \mu \mathrm{f}}{\mathbf{C}_{\text {ap }}}$ | $C_{\mu \nu t}$ | | $\begin{aligned} & \text { \% \% } \\ & 0 \text { 合 } \end{aligned}$ | $\frac{8}{2} \frac{8}{9}$ | $\begin{aligned} & \frac{8}{5} \\ & \frac{8}{5} \\ & \hline \frac{1}{5} \end{aligned}$ | $\frac{\sum_{2}^{i}}{0_{i}^{e}}$ | | | | |
| $\begin{aligned} & 3.150 A 2 \\ & 1527 \mathrm{~T} \end{aligned}$ | 150 | 3000 | 450 | 75 | 40 | 12 | 5 | 12.5 | 4.5 | 4.4 | 0.7 | 48 C | C.T | 3000 | -400 | 250 | 40 | 20 | - | 600 |
| | | | | | | | 10 | 6.25 | | | | | B7 | 3000 | -260 | 65/335 | 675 | 3.04 | 20.4 K | 700 |
| Hf2014 | 150 | 2500 | 200 | 50 | 30 | 18 | 10-11 | 4.0 | 8.8 | 7.0 | 1.2 | fig. 15 | C.T | 2500 | -300 | 200 | 18 | 8 | - | 380 |
| | | | | | | | | | | | | | C-P | 2000 | -350 | 160 | 20 | 9 | - | 250 |
| | | | | | | | | | | | | | ${ }^{3}$ | 2500 | -130 | 60/360 | 4600 | 8 | 16K | 600 |
| 810 | 175 | 2500 | 300 | 75 | 30 | 36 | 10 | 4.5 | 8.7 | 4.8 | 12 | 2N | C.T | 2500 | -180 | 300 | 60 | 19 | - | 575 |
| | | | | | | | | | | | | | C-P | 2000 | -350 | 250 | 70 | 35 | - | 380 |
| | | | | | | | | | | | | | G-M.A | 2250 | -140 | 100 | 2.0 | 4.0 | - | 75 |
| | | | | | | | | | | | | | B 7 | 2250 | -60 | 70/450 | 3809 | 138 | 11.8K | 725 |
| 8000 | 175 | 2500 | 300 | 45 | 30 | 16.5 | 10 | 4.5 | 5.0 | 6.4 | 3.3 | 2N | C.T.O | 2500 | -240 | 300 | 40 | 18 | - | 575 |
| | | | | | | | | | | | | | C.P | 2000 | -370 | 250 | 37 | 20 | - | 380 |
| | | | | | | | | | | | | | G-M.A | 2250 | -26.5 | 100 | 0 | 2.5 | - | 75 |
| | | | | | | | | | | | | | B7 | 2250 | -130 | 65/450 | 560% | 7.90 | 12K | 725 |
| | | | | | | | | | | | | | A_{1} | 1500 | -155 | 107 | - | - | 8.2K3 | 55 |
| GL-5C24 | 160 | 1750 | 107 | - | - | 8 | 10 | 5.2 | 5.6 | 8.8 | 3.3 | Fig. 15 | $A B_{1}$ | 1750 | -200 | 3200 | $390{ }^{\circ}$ | - | 8 K | 240 |
| | | | | | | | | | | 79 | 16 | 2N | C.T | 2500 | -280 | 350 | 54 | 25 | - | 685 |
| T200 | 200 | 2500 | 350 | 80 | 30 | 16 | 10 | 5.75 | 9.5 | 7.9 | 1.6 | 2 N | C.P | 2000 | -260 | 300 | 54 | 23 | - | 460 |
| $\begin{aligned} & 592 / 15 \\ & 3-200 \mathrm{~A} 3 \end{aligned}$ | 200 | 3500 | 250 | 25^{13} | 150 | 25 | 10 | 5.0 | 3.6 | 3.3 | 0.29 | Fig. 28 | C. 1 | 3500 | -270 | 228 | 30 | 15 | - | 600 |
| | 130 | 2600 | 200 | 25^{13} | | | | | | | | | C.P | 2500 | -300 | 200 | 35 | 19 | - | 375 |
| | 200 | 3500 | 250 | 2513 | | | | | | | | | B | 2000 | -50 | 120/500 | 5200 | 20 | 8.5K | 600 |
| $\begin{aligned} & \text { 4C34 } \\ & \mathrm{HF300} \end{aligned}$ | 200 | 3000 | 275 | 60 | $\frac{60}{20}$ | 23 | 11-12 | 4.0 | 6.0 | 6.5 | 1.4 | 2N | C.T | 3000 | -400 | 250 | 28 | 16 | - | 600 |
| | | | | | | | | | | | | | C.P | 2000 | -300 | 250 | 36 | 17 | - | 385 |
| | | | | | | | | | | | | | B7 | 3000 | -115 | 60/360 | 4509 | 130 | 20 K | 780 |
| T-300 | 200 | 3000 | 300 | - | - | 23 | 11 | 6.0 | 6.0 | 7.0 | 1.4 | - | C.T | 3000 | -400 | 250 | 28 | 20 | - | 600 |
| | | | | | | | | | | | | | C.P | 2000 | -300 | 250 | 36 | 17 | - | 385 |
| | | | | | | | | | | | | | B7 | 2500 | -100 | 60/450 | - | 7.50 | - | 750 |
| 806 | 225 | 3300 | 300 | 50 | 30 | 12.6 | 5.0 | 10 | 6.1 | 4.2 | 1.1 | 2N | C.T | 3300 | -600 | 300 | 40 | 34 | - | 780 |
| | | | | | | | | | | | | | C.P | 3000 | -670 | 195 | 27 | 24 | - | 460 |
| | | | | | | | | | | | | | B | 3300 | -240 | $80 / 475$ | $930{ }^{\circ}$ | 356 | 16k | 1120 |
| $\begin{aligned} & 3.250 \mathrm{~A} 4 \\ & 250 \mathrm{H} \end{aligned}$ | 250 | 4000 | 350 | 40^{13} | 40 | 37 | 5.0 | 10.5 | 4.6 | 2.9 | 0.5 | 2N | C.T.O | 2000 | -100 | 357 | 94 | 29 | - | 464 |
| | | | | | | | | | | | | | C.TO | 3000 | -150 | 333 | 90 | 32 | - | 750 |
| | | | | | | | | | | | | | | 2000 | -160 | 250 | 60 | 22 | - | 335 |
| | | | | | | | | | | | | | C-P | 2500 | -180 | 225 | 45 | 17 | - | 400 |
| | | | | | | | | | | | | | | 3000 | -200 | 200 | 38 | 14 | - | 435 |
| | | | | | | | | | | | | | AB^{7} | 1500 | 0 | 220/700 | 460° | 46° | 4.2 K | 630 |
| $\begin{aligned} & 3-250 \mathrm{~A} 2 \\ & 250 \mathrm{TL} \end{aligned}$ | 250 | 4000 | 350 | 3513 | 40 | 14 | 5.0 | 10.5 | 3.7 | 3.0 | 0.7 | 2N | C.T.O | 2000 | -200 | 350 | 45 | 22 | - | 455 |
| | | | | | | | | | | | | | | 3000 | -350 | 335 | 45 | 29 | - | 750 |
| | | | | | | | | | | | | | | 2000 | -520 | 250 | 29 | 24 | - | 335 |
| | | | | | | | | | | | | | C.P | 2500 | -520 | 225 | 20 | 16 | - | 400 |
| | | | | | | | | | | | | | | 3000 | -520 | 200 | 14 | 11 | - | 435 |
| | | | | | | | | | | | | | $\mathrm{AB}_{2}{ }^{7}$ | 1500 | -40 | 200/700 | $780{ }^{\circ}$ | 388 | 3.8 K | 580 |
| $\begin{aligned} & 5867 \\ & \text { AX-9901 } \end{aligned}$ | 250 | 3000 | 400 | 80 | 100 | 25 | 5.0 | 14.1 | 7.7 | 5.9 | 0.18 | Fig. 3 | C. 1 | 3000 | -250 | 363 | 69 | 27 | 二 | 840 |
| | | | | | | | | | | | | | C-P | 2500 | -300 | 250 | 70 | 28 | - | 482 |
| | | | | | | | | | | | | | B | 3000 | -110 | 5700 | 46.58 | 32 | 14.2K | 1280 |
| PL-656919 | 250 | 4000 | 300 | 120 | 30 | 45 | | | | | | | | 2500 | -70 | 300 | 85 | 7580 | - | 555 |
| | | | | | | | | | | | | | | 3000 | -95 | 300 | 110 | 8570 | - | 710 |
| | | | | | | | 5.0 | 14.5 | 7.6 | 3.7 | 0.1 | fig. 3 | G.G.A | 3500 | - 110 | 285 | 9 | 8520 | - | 805 |
| | | | | | | | | | | | | | | 4000 | -120 | 250 | 50 | 7020 | - | 820 |
| | | | | | | | | | | | | | | 1500 | -125 | 865 | 115 | 25 | - | 700 |
| | | | | | | | 5.0 | 25 | | | | | C.T.O | 2000 | -200 | 600 | 125 | 39 | - | 900 |
| | | | | | | | | | 13.5 | 10.2 | 0.7 | $4 B C$ | | 1500 | -200 | 420 | 55 | 18 | - | 500 |
| 304 TH | 300 | 3000 | 900 | 6013 | 40 | 20 | | | | | 0.7 | 4 C | C.P | 2000 | -300 | 440 | 60 | 26 | - | 680 |
| | | | | | | | 10 | 12.5 | | | | | | 2500 | -350 | 400 | 30 | 2 | - | 800 |
| | | | | | | | | | | | | | AB? | 1500 | -65 | $1065{ }^{\circ}$ | $330{ }^{\circ}$ | 254 | 284 K | 1000 |
| | | | | | | | | | | | | | C.T.O | 1500 | -250 | 665 | 90 | 33 | - | 700 |
| | | | | | | | | | | | | | C.7.O | 2000 | -300 | 600 | 85 | 36 | - | 900 |
| | | | | | | | 5.0 | 25 | | | | | | 2000 | -500 | 250 | 30 | 18 | - | 410 |
| | | | | | | | | | | | | | C.P | 2000 | - 500 | 500 | 75 | 52 | - | 810 |
| 304TL19 | 300 | 3000 | 900 | 5013 | 40 | 12 | | | 12.1 | 8.6 | 0.8 | 4 BC | C.P | 2500 | -525 | 200 | 18 | 11 | - | 425 |
| | | | | | | | | | | | | | | 2500 | -550 | 400 | 50 | 36 | - | 830 |
| | | | | | | | 10 | 12.5 | | | | | | 1500 | -188 | 270/572 | 236% | 0 | 254 K | 256 |
| | | | | | | | | | | | | | $A^{\prime}{ }^{\prime}$ | 2500 | -230 | 180/483 | 460° | 0 | 8.5K | 810 |
| | | | | | | | | | | | | | ABr^{7} | 1500 | -118 | 11400 | 490\% | 394 | 2.75 K | 1100 |
| | | | | | | | | | | | | | C.T.O | 2250 | -125 | 445 | 85 | 23 | - | 780 |
| | 350 | 3300 | | | 30 | | | | | | | | C.T.O | 3000 | -160 | 335 | 70 | 20 | - | 800 |
| 833A | | | 500 | 100 | | 35 | 10 | 10 | 12.3 | 6.3 | 8.5 | Fig. 41 | C.P | 2500 | -300 | 335 | 75 | 30 | - | 635 |
| | 45015 | 400015 | | | 2015 | | | | | | | | C.P | 3000 | -240 | 335 | 70 | 26 | - | 800 |
| | | | | | | | | | | | | | B^{7} | 3000 | -70 | 100/750 | 4009 | 204 | 9.5 K | 1650 |
| - Cathode
 I KEY 10 A_{1}
 $A B 1$
 $A B_{2}$
 ${ }^{\mathrm{B}} \mathrm{C} \cdot \mathrm{M}$
 C.P
 C.T
 $C \cdot T \cdot O=$
 G.G'A =
 G.G.O | | ohms
 SERVICE AF mod I push.p
 2 push-p push-pull plote-mo telegraph amplifier d.grid o | | VIAIIO
 nodulol nodulo dulator. teleph omp. | NS | | | | id-isol id.mod alues. hecti Mc. stor in
 two alue. to grid 000-M | on ci ated acepl ns in
 ohms.
 bes in
 volts. ose. | uit. mp. interele ush.pull
 push.pul | ment capa
 I. | , | 13 11 13 16 18 18 18 | Class. 8
 1000 Mc
 Mox gri
 Mon, ca
 Plate-pul
 1900 Mc
 No Clas
 sidebo
 includes
 power | dota in T
 C.W. os
 d dissipoli
 air cooling
 lsed 3300
 C.W. os
 . 8 doto
 mplifies
 and in Ch
 bios loss, | able II. osc. tion in rent in g requ Mc. o s. availab lube-o grid d | volls. mo. ed. .
 e. eration 2, Table ssipation | doto 12-1.
 , ond lee | for single ed.through |

Type	Maximum Ratings					Cothode		Capacitances			Base	Typical Operation										
		$\frac{8}{\frac{0}{2}}$				$\frac{\ddot{\prime}}{\bar{\circ}}$	$\frac{\vdots}{\frac{0}{E}}$		$C_{\text {sp }}$ $\mu \mu{ }^{\prime}$ ．	$C_{\mu \mu F_{0}}$			言			$\frac{\%}{5}$	京		要			
RK25	10	500	8	250	－	2.5	2	10	0.2	10	6BM	C．T	500	200	45	－90	55	38	4	0.5	－	22
												${ }^{\text {c }} \cdot \mathrm{P}$	400	150	0	－90	43	30	6	0.8	－	13.5
1613	10	350	2.5	225	45	6.3	0.7	8.5	0.5	11.5	75	C． 7	350	200	－	－35	50	10	3.5	0.22	－	9
												C．P	275	200	－	－35	42	10	2.8	0.16	－	6
$2 E 30$	10	250	2.5	250	160	6	0.7	10	0.5	4.5	7C0	C．T	250	200	－	－50	50	10	2.5	0.2	－	7.5
												$\mathrm{AB}_{2}{ }^{\text {a }}$	250	250	－	－30	40／120	4／20	2.3	0.2	3．8K	17
837	12	500	8	300	20	12.6	0.7	16	0.2	10	68 M	C．${ }^{\text {P }}$	500	200	40	－70	80	15	4	0.4	－	28
	13.5	350										$C^{C \cdot p}$	400	140	40	－40	45	20	5	0.3	－	11
$\frac{5763}{6417}$			2	250	50	$\begin{array}{\|r\|} \hline 6.0 \\ \hline 12.6 \\ \hline \end{array}$	$\frac{0.75}{0.375}$	9.5	0.3	4.5	9K	C．1．	350	250	－	－28．5	48.5	6.2	1.6	0.1	－	12
												C．M ${ }^{2}$	300	250	－	－75	40	4	2.	0.6	－	10
												C．M4	300	235	－	－100	35	5	1	0.6	－	1.3
802	13	600	6	250	30	6.3	0.9	12	0.15	8.5	6BM	C．t	600	250	40	－120	55	16	24	0.30	－	23
	13.5											C．P	500	245	40	－40	40	15	1.5	0.10	－	12
$2 \mathrm{E24}$		500	23	200	125	$6.3{ }^{3}$	0.65	8.5	0.11	6.5	7 CL	C．P	400	180	－	－45	50	8	2.5	0.15	－	13.5
		600	2.5	200									400	200	－	－45	54	8 10	2.5	0.16	－	18
												C．T	600	195	二	－50	66	10	3	0.21	－	27
$\frac{262613}{6893}$	13.5	600	2.5	200	125	6.3	0.8	12.5	0.2	7	7CK	C．T	600	185	二	－45	66	10	3	0.17	－	27
		500	2.3	200		12.6	0.4					${ }^{\text {C }} \cdot \mathrm{P}$	500	180	－	－ 50	54	9	2.5	0.15	－	18
												${ }^{\text {A } B_{2}{ }^{\text {a }}}$	500	125	－	－15	22／150	$3{ }^{7}$	，	$0.36{ }^{7}$	8 K	54
63603	14	300	2	200	200	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 0.82 \\ & 0.41 \end{aligned}$	6.2	0.1	2.6	Fig． 13	C．T	300	200	－	－45	100	3	3	0.2	－	18.5
												C．${ }_{\text {CII }}$	200	100	－	15k	86	3.1	3.3	0.2	－	9.8
												CM＇1	300	150	－	－100	65	3.5	3.8	0.45	－	4.8
												$A B_{1}$	300	200	－	－21．5	3072	1／12．6	43.50	－	10K	12
												$A B_{2}$	300	200	－	－21．5	30100	1／11．4	$64{ }^{8}$	0.04	6.5 K	17.5
2E25	15	450	4	250	125	6	0.8	8.5	0.15	6.7	58J	C．T．O	450	250	－	－45	75	15	3	0.4	－	24
												CP	400	200	－	－45	60	12	3	0.4	－	16
												${ }^{\text {A }} \mathrm{B}_{2}{ }^{\text {a }}$	450	250	－	－30	44／150	$10^{\prime} 40$	3	0.97	6 K	40
8323	15	500	5	250	200	$\begin{array}{\|r\|} \hline 6.3 \\ 12.6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.6 \\ 0.8 \\ \hline \end{array}$	7.5	0.05	3.8	7BP	C．${ }^{\text {c }}$	500	200	－	－65	72	14	2.6	0.18	－	26
												C．\cdot－	425	200	－	－60	52	16	2.4	0.15	－	16
$832 A^{3}$	15	750	5	250	200	$\begin{aligned} & 6.3 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	8	0.07	3.8	7BP	$\frac{C \cdot T}{\text { C．P }}$	750	200	－	－65	48	15	2.8	0.19	－	26
												C．\cdot－	600	200	－	－85	36	16	2.6	0.16	－	17
1619	15	400	3.5	300	45	2.5	2	10.5	0.35			C．T	400 325	300	二	－55	75	10.5	5	0.36	－	$\frac{19.5}{13}$
									0.35	12.5	rig． 74	C．P	325	285	－	－ 50	62	7.5	28	0.18	－	13
												C．${ }^{\text {P }}$	600	250	－	－60	75／150	$6.5 / 11.5$ 15	－	0.47	6 K	36
5516	15	600	5	250	80	6	0.7	8.5	0.12	6.5	7 Cl	C．P	475	250	－	－90	63	10	4	0.5	－	22
												$\mathrm{AB}_{2}{ }^{\text {d }}$	600	25	－	－25	$36 / 140$	1／24	47	0.16	10．5K	67
												C．T	600	250	－	－60	140	14	4	2.0	－	67
A $\times 9910$	20	750	4	300	200	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 1.3 \\ & 0.65 \end{aligned}$	6.5	－	2.5	Fig． 7	C．P	500	250	－	－80	100	12	3	4	－	40
												B	500	250	－	－26	25／73	0．7／16	52°	－	20k	23.5
												C．T	450	250	－	－45	100	8	2	0.15	－	31
1614	25	450	3.5	300	80	6.3	0.9	10	0.4	12.5	7AC	C．P	375	250	－	－50	93	7	2	0.15	－	24.5
												$A^{\text {B }}{ }^{\text {d }}{ }^{\text {b }}$	530	340	－	-36	60160	207	－	－	7.2 K	50
												C．T．O	500	200	－	－45	150	17	2.5	0.13	－	56
8153	25	500	4	200	125	12.6	0.8	13.3	0.2	8.5	ABY	C．P	400	175	二	－45	150	15	3	0.16	－	45
												AB_{2}	500	125	－	－15	22150	32^{7}	－	0.30^{7}	8K	54
												C．T	600	300	－	－60	90	10	5	0.43	－	35
1624	25	800	3.5	300	60	2.5	2	11	0.25	7.5	Fig． 66	C．P	500	275	－	－ 50	75	9	3.3	0.25	－	24
												$\mathrm{AB}_{2}{ }^{\text {d }}$	600	300	－	－25	42／180	5．15	106^{8}	1.27	7．5K	72
													500	170	－	－66	135	9	2.5	0.2	－	48
614613						6.3	1.25					C．T	600	180	－	－71	150	10	2.8	0.3	－	66
													750	160	－	－62	120	11	3.1	0.2	－	70
												C．T12	400	190	－	－54	150	10.4	2.2	3	－	35
													400	150	－	－87	112	7.8	3.4	0.4	－	32
6883	25	750	3	250	60	12.6	0.625	13.5	0.22	8.5	7CK	C－P	475	135	－	－77	94	6.4	28	0.3	－	34
													600	150	－	－87	112	7.8	3.4	0.4	－	52
													400	175	－	－41	33／232	1．1／18	1.67	0.2	3.7 K	62
												$\mathrm{AB}_{2}{ }^{6}$	600	190	－	－48	28／270	1．2／20	2	0.03	5K	113
6159						26.5	0.3						750	165	－	－46	22／240	0．3／20	2.67	0.04	7．4K	131
												${ }^{\text {AB，}}{ }^{\text {c }}$	750	195	－	－ 50	23／220	1／26	1008	0	8K	120
$6524{ }^{3}$			－			6.3	1.25					C．T	600	200	－	－44	120	8	3.7	0.2	－	56
6850	25	600	－	300	100	12.6	0.625	7	0.11	3.4	fig． 76	C．P	500	200	－	－61	100	7	2.5	0.2	－	40
												${ }_{\text {A }} \mathrm{C}_{2} \cdot \mathrm{~T}$	500	200	－	－26	20／116	0．1／10	2.6	0.1	11.1 k	40
$3{ }^{32}{ }^{3}$	30	550	6	225	200	6.3	1.6	14	0.22	8.5	8BY	C．T	600	200	－	－55	160	20	7	0.45	－	72
						12.6	0.8					${ }^{\text {C }} \cdot \mathrm{P}$	560	200	－	－ 50	180	20	6.5	0.4	－	67
											saw	C．${ }^{\text {c }}$	750	250	－	－45	100	6	3.5	0.22	－	50
$\begin{aligned} & 507 \mathrm{w} \\ & 5933 \end{aligned}$	30	750	3.5	300	60	6.3	0.9	12	0.2	7	saw	C．P	600	275	－	－90	100	6.5	4	0.4	－	42.5
											SAZ	${ }^{\text {A }} 8^{2}{ }^{\text {b }}$	750	300	－	－32	60／240	5／10	928	0.27	6.95 K	20
						12.6	0.45					Bro	750	－	－	0	15／240	－	555°	5.3	6．65K	20
2 E 22	30	750	10	250	－	6.3	1.5	13	0.2	8	5 J	C．T．O	500	250	22.5	－60	100	16	6	0.55	－	34
												C．T．O	750	250	22.5	－60	100	16	6	0.55	－	53
99033	40	600	7	250	150	6.3	1.8	6.7	0.08	2.1	Fig． 7	C^{+1}	600	250	－	－80	200	16	2	0.2	－	80
5894A			7	250	150	12.6	0.9	6.7	0.08	2.1	Fig． 7	C．P	600	250	－	－100	200	24	8	1.2	－	85
												C．T	500	200	－	－45	240	32	12	0.7	－	83
उE291	40	750	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	240	200	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 2.25 \\ & 1.125 \end{aligned}$	14.5	0.12	7	7BP	C．P	425	200	－	60	212	35	11	0.8	－	63
												B	500	200	－	－18	27230	－	568	0.39	4．8K	76
HY1269	40	750	5	300		6.3	3.5					C．T．O	750	300	－	－70	120	15	4	0.25	－	63
HY1209	40		5	300		12.6	1.75	16	0.25	7.5	Fig． 65	${ }^{\text {C }}{ }^{\text {A } \mathrm{B}_{2}{ }^{\text {b }}}$	600	350	－	－70	100 2007	12.5	5	0.5	－	42 80

1 Grid-resistor.

2 Doubler to 175 Mc .
${ }^{3}$ Dual tube. Vclues for both sections, in push-pull. Interelectrode copacitonces, however, are for each section.
4 Tripler to 175 Mc
s Filament limited to intermittent operation.

- Values ara for two fubes in push-pull.

7 Mox. 5 signal value.

- Peok grid-to-grid o.f. volts.
- Forced-air cooling required.

10 Two tubes triode connected, G_{2} to G_{1} through 20K 12. Input to G_{2}
11 Tripler to 200 Nk

12 Typical Operation of 175 Mc .
13 Linear-amplifier tube-operation data for single-sideband in
Chapter 12, Table 12.1.
14 KEY TO CLASS-OF. SERVICE ABBREVIATIONS
$A B_{1}=$ Class-AB1 push-pull a.f. modulator.
$A B_{2}=A B_{2}$ push-pull a.f. modulator,
$B=$ Class-B push-pull a.f. modulator.
$\mathrm{C} \cdot \mathrm{M}=$ Frequency multiplier.
$\mathrm{C} \cdot \mathrm{P}=$ Closs $\cdot \mathrm{C}$ plote - modulated telephone
$C \cdot T=$ Closs - C telegroph.
$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}=$ Closs. C omplifier-os .
15 No Class B data available.

Type	Healer		Base	Anode No. 2 Voltage	Anode No. I Voltage	Anode No. 3 Voltage	Cui-off Grid Voltag* ${ }^{2}$	Deflection Avg. Volts DC/Ineh	
	Volts	Amp.						$D_{1} D_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$
1DP1-4-7-11	6.3	0.215	9 CU	600	150	-	-100	280	280
IEPI	6.3	0.6	11V	1000	100/300	-	$-14 /-42$	210/310	240/350
2API-11	6.3	0.6	118	1000	250	-	-30/-90	230	196
2APIA			111						
2BP1-11	6.3	0.6	12 E	2000	300/560	-	-135	270	174
$3 \mathrm{ACP1-7-11}$	6.3	0.6	14d	2000	545	4000	-45/-75	180/220	133,163
3AP1-4-906-P1-4-5-11	2.5	2.1	7AN	1500	430	-	$-25 /-75$	114	109
3APIA			7CE						
38P1-4-11	6.3	0.6	14A	2000	575	-	$-30 /-90$	200	148
38P1A			146						
3 CP 1	6.3	0.6	11 C	2000	575	-	$-30 /-90$	124	165
3DP I	6.3	0.6	14 C	2000	575	-	$-30 /-90$	220	148
3DP1A -3DP7			14H						
3EP 1-1806-P1	6.3	0.6	11 N	2000	575	-	$-30 /-90$	221	165
3 3FP7	6.3	0.6	148	2000	575	4000	-30/-90	250	180
3FP7A			14J						
3GP1-4-5-11	6.3	0.6	11A	1500	350	-	$-25 /-75$	120	105
3GP1A-3GP4A	6.3	0.6	11 N	1500	245/437	-	-25/-75	96/144	84/126
3JP1-2-4-7-11-12	6.3	0.6	14J	2000	400/690	4000	$-30 /-90$	170/230	125/270
3JP1A-7A-11A	6.3	0.6	14 J	2000	400/690	4000	$-45 /-75$	180/220	133/163
$\frac{3 \mathrm{SP1}}{3 \mathrm{MP1}} \mathrm{-11}$	6.3	0.6	11 M	2000	320/600	-	$-0 /-90$	100/136	76/104
30P1	6.3	0.6	12F	2000	$400 / 700$ $240 / 480$	二	-126	230/290	220/280
3RP1-3RP1A	6.3	0.6	12 E	12000	340/480	-	$\frac{-31 /-74}{-135}$	214/290	133/181
3SP1-4-7	6.3	0.6	12 E	2000	330/620	-	$\frac{-135}{-28 /-135}$	146/198	104/140
3UP 1	6.3	0.6	12F	2000	320/620	-	-126	240/310	232/296
5ABP1-7-11	6.3	0.6	14J	2000	400/690	4000	$-52 /-87$	26/34	18/24
5ADP1-7-11	6.3	0.6	14.	1500	300/515	3000	$-34 /-56$	40/50	30.5/37.5
SAJP1	6.3	0.6	Fig. 78	500	400/900	6000	$-30 /-60$	230	230
5AMP1	6.3	0.6	14U	2500	0/300	-	-34/-56	40/50	20/25
$\frac{5 A P 1-1205-P 1}{5 A P 4-1805-P 4}$	6.3	0.6	11 A	1500	430	-	$-31 /-57$	93	90
5AP4-1805-P4	6.3	0.6	11A	1500	430	-	$-17.5 /-57$	93	90
SATP1-2-7-11	6.3 6.3	0.6	14 C	2500	0/300	-	-34/-56	40/50	31.5/38.5
5BP1-1802-P1-2-4-5-11	6.3	0.6	114	6000	0/700	-	-34/-56	94/116	34/42
5BPIA	6.3	0.6	$11 N$	2000	450	-	$\frac{-20 /-60}{-20 /-60}$	84	76
58P7A	6.3	0.6	IIN	2000	375/560	-	$-20 /-60$	84	76
5CP1-2-4-5-7-11		0.6	148	2000	575	4000	-30/-90	92	63/89
5 CP1A			14J						78
5CP18-28-78-118	6.3	0.6	14J	2000	400/690	4000	-45/-75	83101	7086
5CP7A-11A-12	6.3	0.6	14J	2000	575	4000	$-30 /-90$	92	74
5GPI	6.3	0.6	114	2000	425	-	-24/-56	36	72
5HP1-4	6.3	0.6	11A	2000	425	-	$-20 /-60$	84.8	77
5HP1A	6.3	0.6	IIN	2000	450	-	$-20 /-60$	84	76
5JP1-2-4-5-11	6.3	0.6	$11 E$	2000	520	4000	-45/-105	96	96
5JP1A-4A	6.3	0.6	115	2000	333/630	4000	-45/-105	77/115	77/115
5LP1-2-4-5-11	6.3	0.6	117	2000	500	-	$-30 /-90$	103	90
5LP1A-4A	63	0.6	117	2000	376/633	4000	$-30 /-90$	83/124	72/108
SMP1-4-5-11	2.5	2.1	TAN	1500	375	-	-15/-45	66	60
SRP1-4	6.3	0.6	11A	2000	450	-	$-20 /-60$	84	76
SRP1-2-4-7-11	6.3	0.6	14F	2000	528	20000	$-30 /-90$	140/210	131/197
SSP1-4	6.3	0.6	$\frac{148}{14 \mathrm{~K}}$	2000	362/695	20000	$-30 /-90$	140/210	131/197
SUP1-7-11	6.3	0.6	12E	2000	$363 / 695$ $340 / 360$	$\stackrel{4000}{\sim}$	$-30 /-90$ -90	74/110	62/94
SVP7	6.3	0.6	11 N	2000	315/562	-	-20/-60	56/77	46/62
5XP1	6.3	0.6	14P	2000	362/695	20000	$-30 /-90$	140/210	$63 / 89$ $46 / 68$
5XP1A-2A-11A	6.3	0.6	14P	2000	362/695	12000	$-45 /-75$	130/159	42/52
SYP1	6.3	0.6	140	2000	541/1040	6000	-45/-135	108/162	36/54
7EP4	6.3	0.6	11 N	3000	546/858	-	$-43 /-100$	106/158	91/137
7GP43	6.3	0.6	146	3000	810/1200	-	$-36 /-84$	93/123	75/102
7.JP1-P4-P7	6.3	0.6	14R	6000	1620/2400	-	-72/-168	186/246	150/204
7VP1	6.3	0.6	14R	3000	800/1200	-	-84	93/123	75/102
24XH	6.3	0.6	Fig. 1	600	120	-	-60	0.145	016^{5}
$902 \cdot \mathrm{~A}$	6.3	0.6	8CD	600	150	-	-30/-90	139	117
905	2.5	2.1	5 BP	2000	450	-	$-17.5 /-52.5$	115	97
905.A			SBR						
907			58P						
900.4	2.5	2.1	7CE	1500	430	-	$-25 /-75$	114	109
912	2.5	2.1	912	15000	3000	2 Grid 250	$-30 /-90$	915	750
13	6.3	0.6	913	500	1000	-	$-20 /-60$	299	221
2001	6.3	0.6	4AA	500	1000	-	$-20 /-60$	299	221
2002	6.3	0.6	Fig. 1	600	120	-	-	0.16^{5}	0.17^{5}
005	2.5	0.6	Fig. 14	2000	1000	200	-35	0.55	$0.56{ }^{5}$

- Bogey value for focus. Volrage should be adiustable about value shown
${ }^{2}$ Bias for visual extinction of undeflected spot. Voltage should be adjustable from 0 io the higher value shown.
${ }^{3}$ Discontinued.
Phosphor characteristics

Designation	Color and persis
P1.	Green medium.
P2	Blue-green medium
P4	White medium.
P5	Blue very shart.
P7	. Blue-white short Kellow lano
P11	Blue short.
P12	Orange long

Color and persistance
Green medium.
Buegreen medium
Blue very shar
Blue-white short
Yellow long
Orange long

Application
Oscilloscope
Special oscilloscopes and radar
Television.
Pholographic recording of high speed traces.
Radar indicorors
Oscilloscope
Oscilloscope.
Rodor indicorors

No.	Type	Maximum Ratings				Characteristics			Typical Operation Common Emiter Circuit					
		Diss. Mw.	Collector Ma.	Volts	Emitter	Noise Figure Db.	Input Res. Ohms 1	Freq. Cutoff Mc.	Use	Collector		Power Gain Db.	Oufput lond R. Ohms	Power Oufput Mw.
										Ma.	Volts			
2N34	PNP	50	-10	-25	10	18	1000	06	Audio	-1.0	-6	40	30 K	-
2N35	NPN	50	10	25	-10	16	1000	0.8	Audio	1.0	6	40	30K	-
2N38A	PNP	125	-20	-25	-	16	1000	-	Audio	-10	-6	32	30K	-
2N43	PNP	150	-50	-45	50	-	-	1.0	Audio	-1.0	-5	44	-	-
2N43A	PNP	-	- 50	-45	50	-	-	1.0	Audio	-	-	-	-	-
2 N 44	PNP	150	- 50	-45	50	-	-	1.0	Audio	-1.0	-5	43	-	-
2N45	PNP	150	-50	-45	50	-	-	1.0	Audio	-10	-5	30	-	-
2N63	PNP	125	-20	-25	-	16	1000	-	Audio	-1.0	-6	38	30k	-
2N64	PNP	125	-20	-25	-	16	1000	-	Audio	-1.0	-6	39	30K	-
2N6E	PNP	2500	-1500	-25	1500	-	-	0.4	Audio	-150	-12	23	100	600
2N76	PNP	50	-10	-20	10	18	600	10	Audio	-1.0	-5	38	30K	-
2N78	NPN	75	20	20	-20	-	-	5.0	I.F.-R.F.	-	-	-	-	-
2N81	PNP	50	-15	-20	-	-	-	-	Audio	-	-	-	-	-
2N94A	NPN	50	50	20	-	15	-	5.0	1.F-RF.	05	6	25	100k	-
2 N 105	PNP	35	-15	-25	15	4.5	2300	. 014	Audio	-0.7	-4	42	20 K	-
2N106	PNP	160	-10	-6	-	6.0	-	0.8	Audio	-	-	-	-	-
2N107	PNP	50	-10	-12	10	22	700	1.0	-	-10	-5	38	30 K	-
2N109	PNP	50	-35	-12	35	-	750	-	Audio ${ }^{2}$	-35	-4.5	30	200	75
$2 \mathrm{NIT2}^{2}$	PNP	-	-5	6	-	25	600	50	I.F. R. R.F.	-1.0	-6	-	25K	-
$2 \mathrm{NHI}^{2}$	PNP	-	-5	-10	5	-	600	10.0	I.F. R.F.	-1.0	-6	33	25 K	二
2 N 114	PNP	-	-5	-10	-	25	600	20.0	R.F.	-10	-6	-	25K	-
$2 \mathrm{~N}^{1} 16$	NPN	50	50	15	-	15	-	3.0	I.F.R.R.F.	-	-	-	-	-
2 N 123	PNP	-	-150	-20	150	-	-	7.5	Switch	-5.0	-15	-	-	-
2 N 130	PNP	130	-10	-22	-	25	-	0.6	Audio	-	-	-	-	-
$2 \mathrm{~N}^{2} 32$	PNP	130	-10	-12	-	20	1000	1.2	Audio	-1.0	-6	42	30K	-
$2 \mathrm{~N}^{2} 33$	PNP	130	-10	-15	-	10	-	0.8	Audio	-	-	-	-	-
2N135	PNP	100	- 50	-20	50	-	-	4.5	I.F.R.F.	-1.0	-5	29	-	-
2N136	PNP	100	- 50	-20	50	-	-	6.5	1.F. R. .F.	-1.0	-5	31	-	-
$2{ }^{2} 137$	PNP	100	- 50	- 10	50	-	-	10.0	I,F, R. R,	-1.0	-5	33	-	-
$2 \mathrm{~N}^{2} 38$	PNP	130	-20	-12	-	-	-	-	Audio	-	-	-	-	-
2 N 139	PNP	35	-15	-16	15	4.5	500	-	1.F.	-1.0	-9	30	30k	-
2N140	PNP	35	-15	-16	15	-	700	-	I.F.F.R.F.	-0.4	-9	27	75k	-
2N141	PNP	1500	-800	-30	-	-	100	0.4	Audio	-75	-24	26	400	600
2 N 143	PNP	1000	-800	-30	-	-	100	0.4	Audio	-75	-24	26	400	600
2 N 167	NPN	65	75	30	-	-	-	8.0	I.F.-R.F.	-	-	-	-	-
2 N 168 A	NPN	65	20	15	-20	-	350	8.0	I.F.- R.F.	1.0	5	30	15K	-
2N169A	NPN	55	20	25	-20	-	500	5.0	I.F.-R.F.	1.0	5	27	15K	-
2N170	NPN	25	20	6	-20	-	-	2.5	1.F.	-	-	12	-	-
2N175	PNP	20	-2	-10	2	6	3570	-	Audio	-0.5	-4	43	-	-
2N136	PNP	75	-200	-25	-	-	1200	0.8	Audio ${ }^{2}$	-	-12	28	-	300
2N186A	PNP	180	-200	-25	-	-	-	0.8	Audio ${ }^{2}$	二	-12	30	-	750
2N187A	PNP	180	-200	-25	-	-	2000	1.0	Audio ${ }^{2}$	-	-12	32	-	750
2N188	PNP	75	-200	-25	-	-	2600	1.2	Audio ${ }^{2}$	-	-12	32	-	300
2N188A	PNP	180	. -200	-25	-	-	2600	1.2	Audio ${ }^{2}$	-	-12	34	-	750
2N189	PNP	75	- 50	-25	-	15	1000	0.8	Audio	-	-12	37	-	-
2N190	PNP	75	- 50	-25	-	15	1400	1.0	Audio	-	-12	39	-	-
2 N 191	PNP	75	- 50	-25	-	15	1800	1.2	Audio	-	-12	41	-	-
2 N 192	PNP	75	-50	-25	-	15	2200	1.5	Audio	-	-12	43	-	-
2 N 193	NPN	50	50	15	-	-	-	3.0	I.F.-R.F.	-	-	-	-	-
2N194	NPN	50	50	15	-	15	-	4.0	1.F.-R.F.	-	-	-	-	-
2N200	PNP	100	- 100	-30	-	12	-	1.0	Audio	-	-	10	-	-
2N211	NPN	50	50	10	-	-	-	-	I,F.R.F.	-	-	-	-	-
2N212	NPN	50	50	10	-	15	-	5.0	1.F.e.R.F.	-	-	-	-	-
2N222	PNP	70	-10	-12	10	24	700	-	-	-1.0	-5	36	30K	-
2 N 223	PNTP	100	-60	-18	-	-	-	-	Audio	-20	-4.5	-	-	-
2N224	PNP	100	-150	-25	-	-	-	-	Audio	-100	-0.6	-	-	-
2N226	PNP	100	-150	-25	-	-	-	-	Audio	-100	-0.6	-	-	-
2N255	PNP	1500	-3000	-15	-	-	20	0.2	Audio ${ }^{2}$	500	-6	27	-	5^{3}
2N256	PNP	1500	-3000	-30	-	-	20	0.2	Audio ${ }^{2}$	500	-12	27	-	10^{3}
CK722	PNP	-	- 10	-22	10	25	800	-	-	-1	-6	39	20K	-
CK760	PNP	-	-5	-6	-	25	800	5.0	I.F. .R.F.	-1.0	-6	-	25 K	-
CK761	PNP	-	-5	-10	5	-	600	10.0	I, F. - R.F.	-1.0	-6	33	25K	-
CK76?	PNP	-	-5	-10	-	25	600	20.0	R.F.	-10	-6	-	25K	-
Cal	PNP	150	-10	-40	10	33	-	0.5	-	-10	-6	30	-	-
GT14H	PNP	130	-10	-22	-	25	-	0.6	Audio	-	-	-	-	-
GT2OH	PNP	90	-	-12	-	12	-	-	Audio	-	-	-	-	-
G734	PNP	125	-20	-25	-	16	1000	-	Audio	-1.0	-6	32	30K	-
GT81	PNP	125	-	-25	-	16	-	-	Audio	-	-	42	-	-
$\overline{\text { GT3 }}$	PNP	125	-	-25	-	16	-	0.7	Audio	-	-	42	-	-
GTa7	PNP	125	-	-25	-	16	-	0.5	Audio	-	-	36	-	-
MF-1	PNP	75	-8	-20	8	22	-	5.0	1.F.-R.F.	-1	-6	28	-	-
H5	PNP	20000	-3000	-80	-	-	-	-	Audio	-2000	-30	-	-	-
IF-1	PNP	-	-8	-25	8	11	-	3.0	I.F.	-1	-6	40	-	-
JP-1	PNP	350	- 50	-45	50	15	-	-	Audio	-15	-22	20	-	150
S8100	SB	10	-5	-4.5	-	-	-	30	R.F.	-0.5	-3	-	25K	-
ZJ-13	NPN	30	20	15	-	5	-	16	R.F.	-	-	-	-	-
	- Comm Two 3 Power						$\begin{aligned} & E \\ & -B \\ & -C \end{aligned}$						C 8 E	

table xv-germanium crystal diodes

Jhe

Catalog Section

 म सेIn the following pages is a catalog
file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

34th EDITION 1957

INDEX OF ADVERTISERS

CATALOG SECTION
 The Radia Amateuri \#andlook

Allied Radio Corp. 65
American Electronics Co. 105
American Radio Relay League, Inc., . 85-88, 133
American Television \& Radio Co. 101
Amperex Electronic Corp, 76,77
Amphenol Electronics Corp. 92
Antenno Engineering Co. 130
Arrow Electronics, Inc. 111
Ashe Radio Co., Walter 106
Barker \& Williamson, Inc. 66,67
Belden Manufacturing Co. 104
Bliley Electric Co. 80
Burstein-Applebee Co. 94
Cameradio Co. Inc. 100
Candler System Co 99
Cannon Electric Co. 60
Centralab 32
Collins Radio Co. 33-36
Communications Co., Inc. 119
Editors \& Engineers, L†d 115
Eitel-McCullough, Inc. 68, 69
Eldico Electronics 72,73
Electro-Voice, Inc. 129
Electronic Technical Institute 110
Elmar Electronics. 121
Erie Resistor Corp 116
E-Z Way Towers, Inc. 70.71
Ft. Orange Radio Distributing Co., Inc. 108
Freed Transformer Co., Inc 113
Fretco, Inc 07
General Electric Co 37, 89, 91
Gonset 78,79
Hallicrofters Co., The 3-12
Hammarlund Mfg. Co., Inc. 64
Harrison Radio Corp 83
Harvey Radio Co., Inc 74,75
Heath Co, 53-55
Henry Radio Stores 81
Hudson Radio \& Television Corp 123
Page Page
Instructograph Co. 112
Insuline Corp. of Americo 120
International Crystal Mfg. Co., Inc. 49-52
International Rectifier Corp 109
International Resistance Co 56-59
Johnson Co., E. F. 26-31
Lampkin Laboratories, Inc. 97
Lockheed Air craft Corp. 136
Mallory \& Co., Inc., P. R, 13
Master Mobile Mounts, Inc. 95
Measurements Corp 127
Millen Mfg. Co., Inc., James 4-23
Mosley Electronics, Inc. 114
Multi-Products Co. 126
National Co., Inc 38-41
National Schools 117
Newark Electric Co 98
Ohmite Manufacturing Co. 82
Par-Metal Products Corp. 90
Radic Corporation of America 24, 25
Radio Shack Corp 103
RCA International Div. 84, 131
Shurite Meters 102
Technical Materiel Corp. 43-48
Triplett Electrical Instr Co. 132
United Transformer Co. 42
Universal Distributers, Inc 124
Valley Electronic Supply Co, 96
Vesto Co., Inc. 125
Vibroplex Co., Inc. 93
Word Products Corp 118
Waterman Products Co 34, 135
Wile, Eugene G. 128
World Radio Laborotories, Inc. 61-63
Wyco Metal Products 122

The New Ideas in communications

are born at

 hallicraffers- In the limitless world of communications, new ideas are the real measure of leadership.

Over the past quarter-century, Hallicrafters engineers have brought to amateurs, novices and listeners more than 100 major communications designs-over five times as many as any other manufacturer.
That is why Hallicrafters is the unchallenged leader in the design and manufacture of communications equipment . . . ack now ledged by more than $1,000,000$ satisfied users.

we hallirifters samens

4401 West Fifth Avenue, Chicago, Illinois

New heavyweight champion!

MODEL SX-101 is all amateur and as rugged as they come! It is the first complete answer to ham reception ... incorporating every essential feature needed for today and wanted for the future.
FREQUENCY COVERAGE: Band 1-1.82.4 Mc. Band 2-3.2-4.1 Mc. Band 3-7.0-7.3 Mc. Band $4-14.0-14.4 \mathrm{Mc}$. Band 5 -$21.0-21.5 \mathrm{Mc}$. Band 6-26.95-27.35 Mc. and 28.-29.7 Mc. Band $7-10 \mathrm{Mc}$. WWV.

FEATURES: Complete coverage of seven ham bands- $160,80,40,20,15,11-10$ meters. Large slide rule dial. Band-in-use scales individually illuminated. Illuminated S-meter. Dual scale S-meter. S-meter zero point independent of sensitivity control. S-meter functions with AVC off. Special 10 Mc position for WWV. Coverage of most important M.A.R.S. frequencies. Local oscillator output available for use in heterodyne V.F.O. Dual conversion. Exclusive Hallicrafters upper-lower side band selection. Second conversion oscillators quartz crystal controlled. Tee-notch filter. Full gear drive from tuning knob to gang condensersabsolute reliability. $40: 1$ tuning knob ratio. Built-in precision 100 kc evacuated marker crystal. Vernier pointer adjustment. Five steps of selectivity from 500 cycles to 5000 cycles. Precision temperature compensation plus Hallicrafters exclusive production heat cycling for lowest drift. Direct coupled series
noise limiter for improved noise reduction. Sensitivity-one microvolt or less on all bands. 52 ohm antenna input. Antenna trimmer. Relay rack panel. Heaviest chassis in the industry-. 089 cold rolled steel. Double space gang condenser. 13 tubes plus voltage regulator and rectifier. Powerline fuse. FRONT PANEL CONTROLS: Main tuning knob with $0-100$ logging dial and 2000° counter. Pointer reset, antenna trimmer, teenotch frequency, tee-notch depth, sensitivity, band selector, volume selectivity, pitch (BFO), response-(upper-lower-side band and tone). AVC on/off, BFO on/off, ANL on/off, Marker on/off, Rec./standby.
TUBES AND FUNCTIONS: 6CB6, R.F. am-plifier-6BY6, 1 st converter-12AU7A, high frequency oscillator and coupling tube6BA6. 1650 kc i.f. amplifier-12AT7, dual crystal controlled 2nd conversion oscillator -6BA6, 2nd converter-6C4, Ist 50.5 kc . i.f. amplifier-6BA6, 2nd 50.5 kc . i.f. am-plifier-6BJ7, detector, A.N.L., A.V.C.6SC7, Ist audio amplifier \& B.F.O.-6K6, audio power output-6BA6, S-meter am-plifier-6AU6, 100 kc . crystal oscillatorOA2, voltage regulator- 5 Y 3 , rectifier. PHYSICAL DATA: $20^{\prime \prime}$ wide, $1012^{\prime \prime}$ high and $16^{\prime \prime}$ deep-Panel size $8^{3 / 4^{\prime \prime}} \times 19^{\prime \prime}-$ weight approximately 74 lbs. (Conforms to F.C.D.A. specifications.)

Cleanest signal on the air!

MODEL HT-32 is a new complete table top, high efficiency amateur band transmitter providing S.S.B. AM or CW output on 80, $40,20,15,11$ and 10 meter bands. This unit incorporates two new exclusive features in S.S.B. generation techniques. First, a piezo electric filter which cuts unwanted sideband 50 db . or more. Second, a newly developed bridged-tee modulator which makes the HT-32 extremely stable.
FEATURES: New piezo electric sideband filter-rejection 50 db . or more. Bridged-tee sideband modulator. C.T.O. direct reading in kilocycles to less than 300 cycles from reference point. 144 watts plate inpul (P.E.P. two-tone). Six band output ($80,40,20,15$, $11-10$ meters). All modes of transmissionCW, AM, S.S.B. Unwanted sideband down 50 db . or more. Distortion products down 30 db . or more. Carrier suppression down 50 db . or more. Both sidebands transmitted on AM. Precision gear driven C.T.O. Exclusive Hallicrafters patented sideband selection. Logarithmic meter for accuracy luning and carrier level adjustment. Ideal CW keying and break-in operation. Full voice control system built in.

FRONT PANEL CONTROLS, FUNCTIONS AND CONNECTIONS: Operation-power off, standby, Mox., Cal., Vox. Audio level $0-10$. R.F. level $0-10$. Final tuning 80,40 , 20, 15, 11-10 meters. Function-Upper side band, lower side band, DSB, CW. Meter compression. Calibration level 0-10. Driver tuning 0-5. Band selector-80, 40, 20, 15, 11-10 meters. High stability, gear driven V.F.O. with dial drag. Microphone connector. Key jack. Headphone monitor jack.
TUBES AND FUNCTIONS: 2-6146 Power output amplifier. 6CB6 Variable frequency oscillator. 12BY7 R. F. driver. 6AH6 2nd Mixer, 6AH6 3rd Mixer. 6AB4 Crystal oscillator. 12AX7 Voice control. 12AT7 Voice control. 6AL5 Voice control. 12AX7 Audio Amplifier. 12AU7 Audio amp and carrier Oscillator. 12AU7 Diode Modulator. 12AT7 Sideband selecting oscillator. 6AH6 1st Mixer. 6AH6 4.95 Mc. Amplifier. 6AU6 9.00 Mc . Amplifier. 5 R 4 GY HV Rectifier. 5V4G LV Rectifier. OA2 Voltage Regulator.
REAR CHASSIS: Co-ax antenna connector. Line fuse. Control connector. AC power line cord.

The New Ideas in communications are born at

Longer life, greater dependability!

MODEL HT-33 Linear Kilowatt Amplifier is the first to use the new, ceramic power tubes. Ceramic tubes mean: Consistently higher performance and reliability over a longer life as well as 100 watts greater plate dissipation. Greater overload safety. Unbelievably rugged (they'Il withstand repeated 11 milli-second shocks of 50 g).
SPECIFICATIONS: Power input-1000 watts S.S.B. and 700 watts A. M. Power Output S.S.B.-625 watts. Power Output C.W.- 575 watts. Power Output A. M.285 carrier with D.S.B. Driver Power S.S.B. - 8 watts P.E.P. Drive Power C.W.6.5 watts. Drive Power A.M.- 6.0 watts. FEATURES: Ceramic tubes-longer life, greater overload capacity, higher efficiency. Six Ham Bands-80, 40, 20, 15, 11-10 meters. Pi-network output system for high harmonic suppression. All control leads filtered. Full metering of all important circuits. Relay rack panel. Quiet, high efficiency, low speed blower. Built-in power supply. One knob band switching. 52 Ohm coaxial output. 52 Ohm coaxial input with VSWR less than 1.5:1. CIRCUIT DETAILS: This power amplifier
employs two ceramic 4CX300A power tetrodes. These new rugged, low inductance tubes assure high efficiency and excellent stability. The grid circuit is designed for 52 Ohms input and is condenser tuned. Band switching is by one knob which simultaneously selects the proper grid coil and plate tank inductance. The output circuit is a pi-network for fixed 52 Ohm output impedance. The high voltage for plates and screens is obtained from 2-866A rectifiers. Screen voltage is regulated by $2-\mathrm{OB} 2$ and 1-OA2. Plates and screen currents can be measured by the meter.
TUBES: 2-4CX300A Ceramic tetrodes. 2866A Rectifiers. 2-OB2, 1-OA2 Screen regulators.
FRONT PANEL CONTROLS: Band selector. Grid tuning. Plate tuning. Power on/off. Tune/operate. High voltage on/off. Meter switch screen/plate.
REAR CHASSIS: Co-ax input. Co-ax output. Grid bias control, A.C. line fuse. Cut off bias relay terminals. $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ relay rack panel. Cabinet $123 / 8^{\prime \prime} \times 20^{\prime \prime} \times 16^{\prime \prime}$ deep. Approximate weight 115 lbs.

Just plug it in and start working!

MODEL SR-1000 brings you three brilliant new chassis with professional efficiency in the only complete kilowatt amateur radio station available. Just plug it in . . . and you're in business! Organized, compact and efficient. Convenient external connections for your microphone and antenna rugged construction . . . keylock . . . casters safety features-even space for additional equipment.
The inside story of the SR-1000:

1. MODEL SX-101 RECEIVER. New heavyweight champion of the industry! All-amateur receiver: 7 bands on slide-rule dial. Famous Hallicrafters Tee-notch filter special 10 mc position for W.W.V.
2000 disc logging counter all other features of famous SX-100. (Complete description on page 4).
2. MODEL HT-32 TRANSMITTER EXCITER. Introduces two major SSB developments: (1) exclusive piezo electric crystal filter cuts spurious sideband down 50 db . or more; (2) new bridged-tee modulator provides carrier suppression of 50 db . or more. Result: cleanest signal on the air. (Complete description on page 5).

3. HT-33 LINEAR KILOWATT AMPLIFIER.

New, and exclusively Hallicrafters-ceramic power tubes provide plate dissipation 100 watts greater than ever before possible consistently higher performance over a longer life. Advanced design-extremely compact (only $12^{3,8}$ inches high!) Full frequency coverage (complete description on opposite page).
Also available in custom, desk-style cabinet.

MODEL SR-1000

Everything for the

 DX enthusiast!
MODEL SX-99

FREQUENCY COVERAGE: Broadcast Band 540-1680 he plus thiee short-wave bands covers $1680 \mathrm{kc}-34 \mathrm{mc}$.
FEATURES: Over 1000^{n} of callbrated electrical bandspread over the $10,11,15,20$, 40 and 80 meter amateur bands. Separate bandspread tuning condenser, crystal filter, antenna trimmer, " S " Meter, one r-f, two i-f stages.
INTERMEDIATE FREQUENCY: 455 kc .
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Ganged, 3 section tuning capacitor assembly with electrical bandspread. Circular main tuning dial is calibrated in megacycles and has 0-100 logging scalc.
AUDIO OUTPUT IMPEDANCE: 3.2 and 500 ohms.
TUBE COMPLEMENT: Seven tubes plus one rectifier: 65G7, r-f amplifier-65A7, Con-verter-6SG7, isi i-f anmplifier-6SK'7, 2nd i-f amplifier-6SC7. BFO and audio ampli-fier-6K6GT, Audio output-6H6, ANL-AVC-detector-6Y3GT, rectifier.
AUDIO POWER OUTPUT: 2 walts.
POWER SUPPLY: $105 / 125 \mathrm{~V} .50 / 60$ cycle AC.
PHYSICAL DATA: Gray black steel cabinet with brushed chrome trim and piano hinge top. Size $18^{11_{2}^{\prime \prime}}$ wide $\times\left. 8 \frac{1}{2}\right|^{\prime \prime}$ high $\times 11^{\prime \prime}$ deep. Shipping weight approximately $32 \frac{1}{2}$ lbs.

Incomparable value!

MODEL SX-100

FREQUENCY COVERAGE: $540 \mathrm{kc}-34$ Mc. Band 1: $538 \mathrm{kc}-1580 \mathrm{kc}-$ Band 2: 1720 kc-4.9 Mc-Band 3: 4.6 Mc-13 Mc-Band 4 : $12 \mathrm{Mc}-34 \mathrm{Mc}$. Bandspread dial is calibrated for the $80,40,20,15$ and 11-10 meter amateur bands.

TYPE OF SIGNALS: AM-CW-SSB.

FEATURES: Selectable side band operation.
"Tee-Notch" Filter-provides a stable nonregenerative system for the rejection of unwanted heterodyne. Also produces an effective steepening of the already excellent 500 Cycles i-f pass band and further increases the effectiveness of the advanced exalted carrier type reception. Notch depth control for maximum nuil adjustment. Antenna trimmer. Plug-in laboratory type evacuated 100 kc quartz crystal calibrator-included in price. Logging dials for both tuning controls. Full precision gear drive dial system. Second conversion oscillator crystal con-trolled-provides greater stability and additional temperature compensation of high
frequency oscillator circuits. Phono jack. Socket for D.C. and remote control.
INTERMEDIATE FREQUENCY: 1650 kc and 50 kc .
AUDIO OUTPUT IMPEDANCE: 3.2/500 ohms: AUDIO POWER OUTPUT: 1.5 watts with 10% or less distortion. POWER SUPPLY: 105/125 V., 50/60 cycle AC.
TUBE COMPLEMENT: 6CB6 R.F. amplifier; 6AU6, 1st converter; 6C4, H. F. oscillator; 6BA6, 2nd converter; 12AT7, Dual crystal second converters; (2) 6BA6, 50 kc and 1650 kc i-f amplifiers; 6 BJ 7 , AVCnoise limiter; 6SC7, 1st audio and BFO; 6 K 6 , Power output; 5 Y 3 ; Rectifier; OA 2 , Voltage regulator: 6C4, i-f amplifier-(50 $\mathrm{kc})$; 6 AU6, 100 kc XTAL marker
PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red pointers. Piano hinge top. Size $18^{3 / 8^{\prime \prime}}$ wide $\times 812^{\prime \prime}$ high x $103 /{ }^{\prime \prime}$ " deep. Shipping weight approximately 42 lbs .

Standard of comparison for SSB!

For the complete listener!

MODEL SX-62A

FREQUENCY COVERAGE: Standard Broadcast from 550 kc through 1620 kc , three short wave bands, $1.62 \mathrm{mc}-32 \mathrm{mc}$ and FM or AM from 27 mc to 109 mc .
FEATURES: Single tuning control covers wide-vision dial with one band lighting at a time. A 500 kc crystal calibration oscillator built-in to check dial pointer accuracy. Temperature compensated, voltage regulated. Audio flat $50-15,000$ cycles, 10 watt push-pull audio output. Automatic Noise Limiter; Series diode.
TYPE OF SIGNALS: Bands 1, 2, 3, and 4; AM/CW. Bands 5 and 6; AM/FM/CW.
CONTROLS: Band selector $550 \mathrm{kc}-1620 \mathrm{kc}$, $1.62 \mathrm{mc}-4.9 \mathrm{mc}, 4.9 \mathrm{mc}-15 \mathrm{mc}, 15 \mathrm{mc}-32 \mathrm{mc}$, $27 \mathrm{mc}-56 \mathrm{mc}, 54 \mathrm{mc}-109 \mathrm{mc}$. Receive/ standby, calibration osc. on/off, noise limiter, tuning, AF gain, Phono/FM/AM/ CW, six-position selectivity, four-position tone, r-f gain, calibration reset.
INTERMEDIATE FREQUENCIES: Bands 1, 2,3 , and $4 ; 455 \mathrm{kc}$. Bands 5 and 6; 10.7 mc .
ANTENNA INPUT IMPEDANCE: 52 to 600 ohms.
AUDIO OUTPUT IMPEDANCE: 3.2/8/500
TUBE COMPLEMENT: Fourteen tubes plus voltage regulator and rectifier. (2) 6AG5, r-f amp. $7 \mathrm{F8}$, conv.-6SK7, i-f amp.-6SG7, i-f amp.-6SG7, FM limiter and AM det.-6H6, FM det. -6J5, BFO-6H6, ANL-6SL7, phase inverter-(2) 6V6. push-pull audio output6 C 4 , calibration osc.-VR-150, regulator$5 U 4 G$, rectifier.
POWER SUPPLY: $105 / 125$ V., $50 / 60$ cycle AC.
PHYSICAL DATA: Satin black steel cabinet with light gray front panel and chrome trim. Piano hinge top. Size $20^{\prime \prime}$ wide x $10 \frac{1}{2} 2^{\prime \prime}$ high $\times 16^{\prime \prime}$ deep. Shipping weight approximately 64 lbs.

MODEL HT-30

FREQUENCY COVERAGE: $80,40,20$, 10 meter bands.

TYPE OF SIGNALS: AM-CW-SSB.

FEATURES: Built in V.F.O. reads directly in kilocycles. Selective filter system is used for reliable sideband selection. Hum, noise and unwanted side band are down 40 db or more, while undesired beat frequency is down at least 60 db .50 db range meter for constant monitoring of r-foutput and carrier suppression. Voice control system with adjustable delay and anti-trip features.
CONTROLS: Band selector $80,40,20,10$ meters, driver tuning, finial tuning, speech level, carrier injection- 0 to 100%, meter compression, calibration level, power switch -power off, warm-up, stand-by, transmit. Operation control-MOX, calibrate, VOX. Function selector-CW, DSB, upper side band, lower side band. Tuning-VFO. 4X mult. Tuning, VFO-XTAL switch.

TUBE COMPLEMENT: 12AT7, $1 / 2-50 \mathrm{kc}$ Oscillator, $1 / 2$ Phase splitter; (2) 6BY6 Balanced modulators; 6 BH 650 kc . amplifier; 6 BH 6 Mixer ($1675 / 1775 \mathrm{kc}$ with 50 kc .), 6BH6 1725 kc . Amplifier; 12AT7 (1/2-1675 kc oscillator, $1 / 2-1775 \mathrm{kc}$ oscillator); 6A H6 V.F.O. Mixer; 6CB6 V.F.O. Oscillator; 6U8 ($1 / 2$-Crystal oscillator (fixed frequency operation) $1 / 2-4 \mathrm{X}$ multiplier); 6CB6 r-f amplifier ; 12BY7 driver, (2) 6146 final amplifier; 12AX7 1st audio amplifier and VOX amplifier; 12AT7-relay tube and anti-trip amplifier: 12AU7-2nd audio amplifier and phase splitter. SR4GY-high voltage rectifier; 5 V 4 G -low voltage rectifier; OA2 voltage regulator.
POWER SUPPLY: $105 / 125$ V. 50/60 cycle AC.
POWER OUTPUT: SSB-P.E.P.- 35 watts, CW- 35 watts, AM- 9 watt carrier.
PHYSICAL DATA: Cabinet black steel, brush chrome trim, $18^{\prime \prime} \times 934^{\prime \prime} \times 12^{\prime \prime}$. Shipping weight approximately 61 lbs .

The radio man's idea of a radio!

MODEL S-38D

FREQUENCY COVER AGE. Standard Broadcast from $540-1650 \mathrm{kc}$ plus international reception on 3 short wave bands covering $1650 \mathrm{kc}-32 \mathrm{mc}$.
FEATURES: Large easy-to-read overseas dial. Oscillator for reception of code. Built in 5" PM speaker. Phone tip jacks. Two section tuning gang with electrical bandspread. Vernier driven slide rule dial.
INTERMEDIATE FREQUENCY: 455 kc .
TUBE COMPLEMENT: Four tubes plus one rectifier; 12SA7, converter-12SG7, i-f amplifier and BFO-12SQ7 or 125Q7-GT/G detector and audio amplifier-50L6GT, audio ouput-35Z5GT, rectifier.
AUDIO POWER OUTPUT: One watt.
POWER SUPPLY: $105 / 125 \mathrm{~V}, 50 / 60$ cycle AC/DC. Line cord (87DI566) for 220 V . AC/DC operation available.
PHYSICAL DATA: Gray stecl cabinet with silver dial frame and knob trim. Size 127/8" wide $\times 7^{\prime \prime}$ high x $714^{\prime \prime}$ deep. Shipping weight approximately 14 lbs .

The New Ideas in communications are

The thrill of emergency radio!

MODEL S-94 AND S-95
FREQUENCY COVERAGE: S-94: 30-50 mc-S-95: 152-173 mc.
FEATURES: Super sensitive, greatly increased audio power output plus adjustable built-in relay squelch system. Low noise grounded grid r-f amplifier, separate high gain d.c. amplifier for squelch system, wide impedance range antenna input system for excellent performance with any antenna. Low oscillator radiation, greater frequency stability, sensitivity under $1 / 1 / 2$ micro-volts, 2 i-f stages and built-in $5^{\prime \prime}$ PM speaker. Phone tip jacks and terminals for single or twin lead antenna, switch for speaker/ headphones on rear. External antenna provided.
CONTROLS: Tuning with special logging scale assuring accuracy in logging or relo-
cating stations. On-off/volume, squelch/off. INTERMEDIATE FREQUENCY: 10.7 mc .
TUBE COMPLEMENT: Eight tubes plus one rectifier; 6AB4, Grounded grid low noise r-f amplifier-12AT7, High frequency oscil-lator/mixer-(2) 12BA6, Ist and 2 nd i-f am-plifier-12AL5, Ratio detector-6BH6, Audio amplifier-50L6GT, Audio output-12AU7, Squelch-Sclenium rectifier.
AUDIO POWER OUTPUT: 1.5 watts maximum.
POWER SUPPLY: $105 / 125$ V., $50 / 60$ cycle AC/DC. Mobile operation possible with external power converter.
PHYSICAL DATA: Gray steel cabinet with silver trim panel and red pointer. Size $1278^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 71^{\prime \prime}$ deep. Shipping weight approximately 13 lbs .

converter-6SK7, 1st i-f amplifier-6SK7, 2nd i-f amplifier-6SC7, BFO and audio amplifier- 6 K 6 GT , audio output- 6 H 6 , ANL, AVC. and detector-5Y3GT, Rectifier. S-86 substitutes 25 L 6 for 6 K 6 and $25 Z 6$ for 5 Y 3 and add ballast.
EXTERNAL CONNECTIONS: Terminals for single or doublet antenna on rear. External antenna provided. Headphone jack on front.
AUDIO POWER OUTPUT: 2 watts.
POWER SUPPLY: Model S-85: 105/125 V., $50 / 60$ cycle AC. Model S-86: $105-125$ V., AC/DC.
PHYSICAL DATA: Gray-black steel cabinet with brushed chrome trim and red pointers. Piano hinge top. Size $18^{1} 2^{\prime \prime}$ wide $\times 8^{7} 8^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep. Shipping weight approx-
imately 32 lbs .

MODEL S-53A. Standard Broadcast from $540-1630 \mathrm{kc}$ plus 4 short wave bands over 2.5-31 and 48-54.5 mc. Intermediate frequency: 455 kc . Separate electrical bandspread with $0-100$ logging scale plus mc. calibration for $48-54.5 \mathrm{mc}$ band. Sensitivity control, noise limiter, two-position tone switch. Separate 2 -section tuning capacitor assemblies for main tuning and bandspread tuning. Slide rule dial. Phonograph jack, headphone tip jacks. Five inch PM speaker. Seven tubes plus one rectifier: 6C4, Osc.-6BA6, Mixer - (2) 6BA6, i-f amplifier-6 6 , Det., AVC and ANL-6SC7, BFO and AF amp.-6K6GT, Output-5Y3GT, rectifier. Audio power output, one watt. Power Supply, $105 / 125$ V., $50 / 60$ cycle AC. Sturdy satin black steel cabinet with brushed chrome trim. Piano hinge top. Size $127 / 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 73^{\prime \prime}$ deep. Shipping weight approximately $18 \frac{1}{2} \mathrm{lbs}$.

MODELS S-102, S-106. Here are two new Hallicrafters models that are the only inexpensive complete receivers for 2 and 6 meter bands on the market today. MODEL S-I 02 has 2 meter band coverage in its tuning range from 143 to 149 Mc. While MODEL S-106 covers the 6 meter band in its tuning range from 49 to 55 Mc . Features: Both have 7 tubes plus rectifier, built-in 5" PM speaker, low frequency drift, good sensitivity, compact bandspread design, and high circuit efficiency. CONTROLS: both models are identical and include: Noise limited, on/off; Receive/Stand-by; Tuning, Volume-AC on/off. EXTERNAL CONNECTIONS: Antenna Input Terminals (coax-twin lead); Stand-by Terminals: Phone Tip Jacks; Speaker- $5^{\prime \prime}$.

ONE INCH
INSTRUMENTATION OSCILLOSCOPE
Miniaturized, packoged panel mounting cothode roy oscilloscope designed for use in instrumentation in place of the conventional "pointer type" moving cail meters uses the 1 " fube. Funel bezel matches in size and type the standard $2^{\prime \prime}$ square meters. Magnitude, phase displacemenl, wave shape, etc. are constantly visible on scope screen. No. 90901 ICP1, less fube.
No. 90911 , IEP1, less qube

POWER SUPPLY

 FOR OSCILLOSCOPE750 volts d.c. at 3 ma . and 6.3 volts a.c. at 600 mo. 117 volts $50-60$ cycle input. Designed especially for use with No. 90901 and No. 90911 ane inch instrumentation oscilloscopes. 5 in. high $\times 2^{13}$,2 x 2 in . Octal plug for input and output. Entire assembly including rectifier is encopsulated. No. 90202 Power Supply (complete)

GRID DIP METER

The No. 90651 MILLEN GRID DIP METER is compact and completely self contained. The AC power sup ply is of the "fronsformer" type. The drum diol hos seven calibroted uniform length scoles from 1.7 MC to 300 MC with generous over lops plus on orbitrory scole for use with speciol opplication inductors, Infernol ferminol strip permits bottery operation for ontenna measurement.
No. 90651 , with fube.
Additional Inductors for Lower Frequencies No. 46702-925 to 2000 KC
No. 46703-500 to 1050 KC No. 46704-325 to 600 KC No. 46705-220 to 350 KC

LABORATORY SYNCHROSCOPES

The $5^{\prime \prime}$ laboratory synchroscopes ore ovoilable with and withour detector-video strios.
Model P-4-2, with tubes
Model P.4E-2, with tubes

MINIATURE SYNCHROSCOPE

The compact design of the No. 90952 , meosuring only $712^{\prime \prime} \times 55 / 4^{\prime \prime} \times 13^{\prime \prime}$, and weiohing only 17 lbs., makes avoilable for the first time o pruly DESIGNED FOR APPLICATION "field service" Synchroscope

No. 90952 with tubes.

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 ond No. 90905 Rack Ponel Oscilloscopes, for two, three and five inch pubes, respectively, are inexpensive bosic units comprising power supply, brillioncy ond centering controls, safely features, magnetic shielding switches, elc. As o tronsmitter monitor, no oddifional equipment or occessories ore required. The well-known trapezoidal monitoring patterns are secured by feeding modulated corrier vologe from o pickup loop directly to vertical plotes of the sathode ray lube and audio moduloting voltage to horizontal plates. By the addition of such units as sweeps, pulse generotors, omplifiers, servo wweeps, elc., oll of which san be convenienlly and neatly constructed on componion rock ponels, the original bosic scope unit may be exponded to serve any conceivoble industrial or laboratory applicotion.
No. 90902 , less fubes
No, 90903 , less tubes.
No. 90905 , less tubes
'SCOPE AMPLIFIER - SWEEP UNIT
Verfical and horizoniol ampllfiers along with hatd tube, saw tooth sweep generator. Complete with power supply mounted on o stondord 51/4" rack ponel.
No. 90921 , with fubes

FLAT FACE OSCILLOSCOPE

90905-B 5-inch Rack Mounting Bosic Oscilloscope feotures include: balanced deflection, front ponel input terminals, rear panel input terminals, ostigmofism control, blonking input terminols, flat foce precision tolerance Dumont SADP 1 tube, 1800 or 2500 volts occelerating, good sensifivity, shorp focus, horizontal selector swith, 60 cycle sine wave sweep horizontal selector switch, ovacle sle a ave sweep ovailable, power supply avolable iontrol operote exruged construction, light filter. $7 \times 19 \mathrm{in}$. panel. No. $90905 \cdot \mathrm{~B}$ Prcitlorpgefol instobes.

90952

90905 -

MALDEN. MASSACHUSETTS

STANDING WAVE RATIO BRIDGE

The Millen S.W.R. bridge provides easy and in expensive measurement of standing wave ratio an antennas using co-ax cable. As assembled the bridge is set up far 52 ohm line. A calibrated 75 ohm resistor is mounted inside the case for sub stitution in the circuit when 75 ohm line is used. No. 90671

BALUNS

The No. 4Aßフ? (1 for ach amateur hand wound Balun is an oscurote 2 to 1 turns rotio high Q auto transformer with the residual reactances tuned out and with very tight coupling belween the two holves of the total winding. The points af series and putulled esanonce are selected so that eoch Bulun provides an accurata 4 io 1 impedance ratio over the entire band of fiequencies for which it was designed. Suitable for use with the No. 90672 Antenna 8ridge or medium power transmitters.
No. 46672-80/40/20/15/10

ANTENNA BRIDGE

The Millen 90672 Antenna 8 ridge is an occurote and sensitive bridge for measuring impedances in the range of 5 to 500 ohms for 20 to 2000 ohms with balun) at radio frequencies up to 200 mc . The variable element is on especially designed differential voriable capocitor copable of high accuracy and permonency of colibra tion. Readily driven by No. 90651 Grid Dipper No. 90672

50 WATT EXCITER-TRANSMITTER

Modern design includes fealures and shielding fo TVi reducllur, bondswithing far $47-14-2128$ megocycle bands, circuit metering. Conservotively ried for use either as a transmitier or exciter for high power PA stoges. 5763 oscillator-buffer-multiplier and 6146 power amplifier. Rack mounted. No. 90801 less tubes

VARIABLE FREQUENCY OSCILLATOR The No. 90711 is a complete tronsmitter contro unit with $6 S K 7$ iemperature compensoted, electron coupled oscillator of exceptionol stability and low drift, a 6SK7 brood-band buffer or frequency doubler, a SAG7 tuned amplifier which tracks with the oscilialor tuning, and a reguiatea power supply. Output sufficient to drive 06146 is available on 160,80 and 40 meters and reduced output is ovoilable on 20 meters since the output is isolated from the meters. Since the oulpun is isolated from the oscillator by two slages, zero frequency shil occurs when the oulput load is voried from open circuit to short cireuit. The entire unit is unusually solidly built so that no frequency shift oceurs due to vibration. The keying is clean and free from onnoying chirp, quick drift, jump, and similar difficulties offen encountered in keying varighle frequency oscillators. No. 90711 , with tubes.

HIGH VOLTAGE POWER SUPPLY

The No. 90281 high voltage power supply hos d.c. output of 700 valts, with maximum current of 235 ma. In addition, a.c. filament power of 6.3 volis af 4 amperes is also avoiloble so that this power supply is an ideol unit for use with trans. mitters, such as the Millen No. 90801 , as well as general luborutory purposes. The power supply uses iwo No. 816 rectifiers. The panel is stondard $83 / 4^{\prime \prime} \times 19^{\prime}$ rack mounting.

No. 90281 , less fubes

HIGH FREQUENCY RF AMPLIFIER

 A physicolly small unit capable of a power output of 70 to 85 wolls on Prone or 8710110 walls on C.W on 20, 15, 11, 10, 6 or 2 meter amateur bands. Provision is made for quick band shift by means of the No. 48000 series VHF plug-in coils The No. 90811 unit uses either an 829-8 or 3E29.No. 90811 with 10 meter bund coils ess tube

RF POWER AMPLIFIER

 This 500 watt amplifier may be used as the basis of a high power omoteur transmitter. The No 90881 Rf power omplifier is wired for use with the popular " $812 \mathrm{~A}^{\prime}$ iype tubes. Other populor tubes may be used. The omplifier is of unusually sturdy mechanical canstructian, on a $101 / 2^{\prime \prime}$ relay rock panel. Plug-in inductors ore furnished for operation on 10,20,40 or 80 meter amaleur bunds. The stundord Millen No. 90801 axciter unit is on ideal chiver for the 1 to. 90881 RF powar amplifier.No. 90881 , with one sel of coils, but less lubes.

JAMES OMMLLEN MALDEEN•MASSSACHUSETTS

REGULATED POWER SUPPLY

A compoct, uncosed, reguloted power supply, either A compoct, uncosed, reguloted power supply, either
for toble use in the loborolory or for incorporotion os on integrol port of lorger equipment. 250 v.d.e. unreguloted of 115 mo . 105 v.d.c. regulated ot 35 ina. Minus 105 v.d.c. regulated bios of 4 mo. 6.3 v. o.c. of 4.2 amps.

No. 90201 , with fubes

INSTRUMENT DIAL

The No. 10030 is on extremely sturdy instrument type indicotor. Control shaft hos 1 to 1 rotio. Veeder type counter is direct reoding in 99 revolutions and vernier scale permits readings to 1 port in 100 of a single revolution. Has built-in dial lock and $1 / 4$ " drive shoft coupling. May be used with multi-revalution tronsmitter controls, etc., or through gear reduction mechonism for contral of fractional revolution copocitors, etc., in receivers or loborotory instruments
No. 10030

PHASE-SHIFT NETWORK

A complete and loboratory oligeed pair of phase shifr networks in a single compoct $2^{\prime \prime} \times 1 / /_{4}^{\prime \prime} \times 4^{\prime \prime}$ cose with churocteristics so ds to provide o phose shift belween the I wo networks of $90^{\circ}=1.3^{\circ}$ over o frequency ronge of 225 cycles to 2750 cycles. Well odopted for use in either single sidebond fronsmitter or receivet. Possible to obtoin o 40 db suppression of the unwonted sidebond. The No. 75012 precision odjusted phose-shift network eliminotes the necessity of complicoted loborotory equipment for network adjustment No. 75012

DELAY LINES

No, 34751 -Seoled flexible distributed constonts line. Excellent rise time. $\$ 350$ ohms, 22 inches per microsecond or 550 ohms, 50 inches per mu.-sec. Deloy cut to specificotions
No. 34700 -Hermeticolly seoled encosed line Good rise time. $0-0-45 \mathrm{mu},-\mathrm{sec}, 1350$ ohm line or 0.22 mu ,-sec. 500 ohm line in $1^{\prime \prime} \times 1^{\prime \prime} \times 5 \frac{1}{2 \prime \prime}$ in cose. Also lorger standord coses and coses mode to order. Special impedonces 400 to 2200 ohms. No. 34600 -lumped deloy line buitt to specifico tions. Deloys 0,05 mu,-sec, to 250 mu.-ser. Impedonce 50 ohms to 2000 ohms.

PHOTO MULTIPLIER SHIELDS
 MU-METAL

The photo multiplier tube operotes most effectively when perfectly shielded. Coreful study hos proven that mu-metal provides superior shielding. Millen Mu-Metol shields ore ovoiloble from stock for the mast Fopular tubas
No. 80801 B for the 1 P 21
No. 808028 for the $5819,6217,6292$
6343
No. 80802 C for the $6199,6291,6497$
No. 80002 EE for the 6066
No. 808031 for the 8363
No, 80805 M for the 6364

BEZELS FOR

CATHODE RAY TUBES

Stondord types ore of sotin finish block plostic. 5 size hos neoprene support cushion ond green lucite filter. $3^{\prime \prime}$ ond $2^{\prime \prime}$ sizes hove integrol cushioning. No. $80075-5^{\prime \prime}$ No. 80073 - $3^{\prime \prime}$
No. 80072-2'
No. $80071=1$

CATHODE RAY
 TUBE SHIELDS

For mony yeors we hove speciolized in the design and manufocture of magnetic metol shields of nicoloi and mumetol for cathode ray fubes in our own complete equipment, os well as for opplico tions of oll other principol complete equipment monufocturers. Stock types os well as speciol de signs to customers' specificotions promptly ovailable. No. 80045 -Nicoloi for 58P1
No. 80055 -Nicoloi for SCP 1.
No. 80043-Nicoloi for $3^{\prime \prime}$ fube
No. 80042-Nicoloi for 2"'

SHIELD CASES
 ALUMINUM

Effective RF shie!ding for coils and tronsformers con be provided by Millen Aluminum cons. Avoiloble in everal sizes from stock.
No. 80003-1 $11^{\prime \prime} \times 1 \%^{\prime \prime} \times 4^{\prime \prime}$
No. $80004-1 \%{ }^{\prime \prime} \times 17 / 6^{\prime \prime} \times 41 / 2$
No. $80005-2^{\prime \prime} \times 2^{\prime \prime} \times 4^{\prime \prime}$
No. $80006-21 / 1^{\prime \prime}$ round $\times 4^{\prime \prime}$ No. $80007-2 / 4^{\prime \prime}$ round $\times 2 \%$ "open ends

JAME S M M LUEN MALDEN, MASSSACHUSETTS

PANEL DIALS

The No. 10035 illuminated panel dial has 12 ta 1 ratio; size, $81 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$. Small Na. 10039 has 8 to 1 ratio; size, $4^{\prime \prime} \times 314^{\prime \prime}$. Both are of campact mechanical design, easy to maunt and have tatally methanical design, easy to maunt and hating back of self-contained mechonism, thus liminaling back and panel interference Pravisian for maunting and marking auxiliary controls, such as swithes, pa-
tentiometers, etc. provided on the No. 10035 tentiometers, etc., provided on the No. Na. 10039 No. 10035

WORM DRIVE UNIT

Cast oluminum frame may be panel or base mounted Spring loaded split gears to minimit ock lash
Standard ratia $16^{\prime} 1$. Alsa in 481 an request. No. 10000 -(state ratia)

DIALS AND KNOBS

Just of few of the many stock types af small dials and knobs are illustrated herewith. 10007 is $13 / s^{3}$ diameter, 10009 is $2 \frac{1}{4}$ and 10008 is $31 / 2$
No. 10002
Na. 10007
Na. 10008
Na. 10009
No. 10015
Na. 10018
Na. 10021
Na. 10065

RIGHT ANGLE DRIVE

Extremely compact, with pravisions for many methads of maunting. Iteal for aperating patentiametert, switches, etc., that must be lacated, far shart leads, in remate parts af chassis. Na. 10012

high voltage insulated

SHAFT EXTENSION

No. 10061 shaft lacks and the No. 39023 insulated high voltage patentiameter extensian mauntings are ovailable as a single integrated unit-the Na, 39024, The proper shaft length is independent of the panel thickness. The standard shaft has pravision for screw driver adjustment. Special shaft arrangements are available for industrial applications. Extension shaft and insulated coupling are molded as a single unit to provide accuracy af alignment and ease af installation.
No. 39023, nan locking type
No. 39024, locking type

SHAFT LOCKS

In addition to the original $\mathrm{Na}, 10060$ ond Na 10061 "DESIGNED FOR APPIICATION" shaft locks we can alsa furnish such variations as the Na, 10062 and No. 10063 for easy thumb aperation as illustrated above. The Na. 10061 instontly converts any plain $1 / 4$ shall volume contra, conderser, Atc. from "plain" to "shaft lacked" type. Easy to maunt in place of regular mounting nut.
No. 10060
Na. 10061
No. 10062
No. 10083

TRANSMISSION LINE PLUG

Aninexpensive, compact, and efficient polystyrene unit for use with the 300 ahm ribbon type polyeth flene transmission lines. Fits inta stondard Millen Na. 33102 (crystal) socket. Pin spacing 1/2. diometer 095
No. 37412

DIAL LOCK

Campact, easy to maunt, pasitive in action, does not alter dial setting in aperatianl Ratation of knab " A " depresses finger " B " and " C " withaut imparting ony ratary motion 10 Dial. Single hole mounted. No. 10050 .

MALDEN, MASSACHUSETTS

TUBE SOCKETS
 DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBESI lang Flashover path to chassis permits use with trans mitting tubes, 866 rectifiers, etc. Lang leakage path between contacls. Contacts are type proven by hundreds of millions already in government, commercial and broodcast service, to be extremely dependable. Sockets may be mounted either with or without metal flange. Mounts in stondord size chassis hole. All types have barrier between conlacts and chassis. All but actal and crystal sockets also have bortiers between ind vidual con:acts in addition.

The No. 33888 shield is for use with the 33008 octal socket. $8 y$ its use, the electrostatic isolation of the grid and plote sircuits of single-ended metal tubes con be increosed to secure greoter stobility ond gain.

The 33087 tube clomp is easy to use, easy to install, effective in function. Available in special sizes for all types of tubes. Single hole mounting. Spring steel, codmium ploted.
Covity Socket Contact Dises, 33446 are for use with the "Lighthouse" ultra high frequency fube. This set consists of threa different size unhordened beryllium copper multifinger contoct discs. Heat treating instructions forworded with each kit for hardening after spinning of forming to frequency requirements.

Valtage regulator dual contact hayonet rorket, 33991 block phenolic insulation and 33902 with low loss high leakage mica filled phenolic insulation.

No. 33004-4 Pin Tube Socket
No. 33005-5 Pin Tube Socket
No. 33006-6 Pin Tube Sockel
No. 33008-8 Pin Tube Socket
No. 33888 -Shield for 33008

No. 33087 -Tube Clomp. .
No. 33002 -Crystol Sockel $3 / 4^{\prime \prime} \times .125^{\prime \prime}$.
No. 33102 -Crystol Socket $.487^{\prime \prime} \times .095^{\prime}$
No. 33202—Crystol Socket $1 / 2^{\prime \prime} \times .125^{\prime \prime}$.
No. 33302-Crystal Socket $487^{\prime \prime} \times .050^{\prime \prime}$
No. 33446 -Contact Dises.
No. 33991 -Socket for 991
No. 33992 -Socket for 991
No. 33207-829 Sockel.
No. 33305 -Acorn Socket .
No. 33307 -Minioture Socket and Shield, ceramic.
No. 33309-Noval Socket ond Shield, ce romic
No. 33405-5 Pin Socket Eimac.
No. 33407 -Miniafure Socket only, ceramic
No. 33409-Noval Socket only, ceramic

STAND-OFF INSULATORS

Steatite insulators are available in a variety of sizes-listed below are some of the most popular.

No. 31001-Stand-off $1 / 2^{\prime \prime} \times 1^{\prime \prime}$
No. 31002-Stond-off $1 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$
No. 31003-Stand-off $3 /^{\prime \prime} \times 2^{\prime \prime}$
No. 31004—Stond-off $3 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$
No. 31006 -Spond off $9 / 2_{2}^{\prime \prime} \times 7 / \mathbf{n}^{\prime \prime}$
No. 31007 -Siond-off $1 / /^{\prime \prime} \times 1^{\prime \prime}$.
No. 31011-Cone $3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ (box of 5). .
No. 31012-Cone $1^{\prime \prime} \times 1^{\prime \prime}$
No. 31013-Cone $11^{\prime \prime \prime} \times 1^{\prime \prime}$
No. 31014-Cane $2^{\prime \prime} \times 1^{\prime \prime}$ 。

JAMES OMMLEN MALDEN: MASSSACHUSETTS

15011

04000 and 11000 SERIES

TRANSMITTING CONDENSERS

Another member of the "Designed for Applico ion" series of tronsmitting vorioble oir copocilors is the 04000 series with peok voltoge rotings of 3000,6000 , ond 9000 volts. Pight ongle drive 1-1 rotio. Adjustoble drive shoft ongle for either verticol or sloping ponels. Sturdy construction thick, round-edged, polished oluminum plotes with $13 / 4^{\prime \prime}$ rodius. Constant impedonce, heovy current, multiple finger rotor contoctor of new design. Avoiloble in oll normol copocifies.
The 11000 series hos $16 / 1$ ratio center drive and fixed ongle drive shoff

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heovy chonneled oluminum end plotes. 1solontite insulotion, polished or ploin edges. One piece rotor contact spring ond connection lug. Compost, eosy to mount with connector lugs in convenient locotions. Some plote sizes os 11000 series obove.
The 16000 serief has same nlote sizes os 04000 series. Also hos constont impedonce, heovy current, multiple finger rotor contoctor of new design. Both 12000 and 16000 series ovoiloble in single and double sections ond mony copocities ond plote spocina

THE 28000-29000 SERIES

 VARIABLE AIR CAPACITORS"Designed for Applicotion," double beorings steotite end plotes, codmium or silver ploted hrass plates. Single or double section .022 or $066^{\prime \prime}$ oir gop. End plate size: $19 / 10^{\prime \prime} \times 1116^{\prime}$ Rotor plote rodius: $3 / 4^{\prime \prime}$. Shoft lock, reor shoft extensjon, speciol mounting brockets, etc., to meet your requirements. The $2800 \hat{0}$ seties has semi-circulor rotor piote shope. The 29000 series hos opproximotely stroight frequency line rotor plote shope. Prices quoled on request Mony stock sizes.

NEUTRALIZING CAPACITOR

Designed originolly for use in our own No. 90881 Power Amplifier, the No. 15011 dise neutrolizing copocitor hos such unique feotures os rigid chonnel frome, horizontol or verticol mounting, fine threod over-size leod screw with stop to prevent shorting and rotor lock. Heovy rounded-edged polished aluminum plotes ore 2^{*} diameter. Glazed Steatite insulation.

No. 15011.

PERMEABILITY TUNED CERAMIC FORMS

In oddition to the populor shielded plug-in permeobility funed forms, 74000 series, the 69040 series of ceromic permeobility, tuned unshielded forms ore ovoiloble os stondard stock items. Winding diometers ovoiloble from $3 / 16{ }^{\prime \prime}$ to $1 / 2^{\prime \prime}$ ond winding spoce from $11 / 2^{\prime \prime}$ to $11 / 2^{\prime \prime}$

No. 69041 -(Copper Slug)
No. 69042 - (iron Core).
No. 69043 -(Copper Slug).
No. 69044 -(Iron Core). .
No. 69045 -(Copper Slug).
No. 69046 - (Iron Core)
No. 69047 - (Copper Slug)
No. 69048 -(Iron Core).
No. 69051 -(Copper Slug)
No. 89052 - (Iron Core).
No. 69054 - (iron Core)
No. 69055-(Copper Slug)
No. 69056 - (hici, Cere).
No. 69057 -Copper Slugl.
No. 69058 - (Iron Core).
No. 69061 -(Copper Siug) No. 69062 - (Iron Core)
 WorldRadio History

MALDEN L MASSASHUSETTS

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Application" flexible coupling units include, in addition to improved versions of the canventional types, also such exelusive original designs as the No. 39001 insuloted universal ioint and the No. 39006 "slideoction" coupling (in both steatite and bakelite insulotion)
The No. 39006 "stide-action" couplng permits ongitudinol shaft mation, eccentric shaft motion and out-of-line operation, os well as angular drive without bocklosh.
The No. 39005 ond 39005-8 (high torque) ore similar to the No. 39001 , but ore not insuloted The steatite insulated No. 39001 hos a speciol ontibacklash pirol and seaket grip feoture. All of the obove illustroted units are for $1 / 4$ shoff ond are stondard production type units. The No. 39016 in sorporates feotures which have long been desired in a flexible coupling. No Bock Losh-Higher flexi bility Higher Breahdown Voltoge-Smaller Diam biliy -Higher eter-Shorter Length-Higher Alignment Ackescel Insulating Borrier Diophragm-Molded as o Single Unit,

CERAMIC PLATE OR GRID CAPS

Soldering Jug ond contact one-piece. Lug ear annealed and solder dipped to focilitate each combination "mechanicol plus soldered" connection of coble.
No. 36001 - 9 /n"
No. 36002- $3 \%^{\prime \prime}$
No. 36004 - $1 / 4$

SNAP LOCK PLATE CAP

For Mobile, Industriol and other opplications where tighter thon normol grip with multiple finger 360° ow resistance contact is required. Contoct self locking when cap is pressed into position. Insuloted snap button ot top releoses contost grip for eosy removal without damoge to tube.
No. 36011 - $1 / 16$
No. 36012 - $3 /{ }^{\prime \prime}$

SAFETY TERMINAL

Combinotion high voltogeterminol and thru-bushing Topered contoct pin fits firmly into conicol socke providing lorge oreo, low resistonce connection. P in is swivel mounted in cap to prevent twisting of leod wire,
No. 37001 , Block or Red.
No. 37501 , Low loss

THRU-BUSHING

Efficient, compoct, eosy to use and neot appeoring. Fits $1 / 4$ " hole in chassis. Held in place with a drop of solder or o "nick" from o erimping tool. No. 32150

POSTS, PLATES, AND PLUGS

The No. 37200 series, including both insulated ond non-insulated binding posts with ossociated plotes ond plugs, provide various combinations to meet most requirements. The posts hove captive heods and keyed mounting.
The No. 37291 and No. 37223 ore stondord in block or red with other colors on speciol order. No. 37201, No. 37202 , ond No. 37204 and No. 37222 are availoble in block, red, or low loss. The No. 37202 is ulso available in steatite.

No. 37201 -Single plotes, pr.
No. 37291 -Single plotes (tapered), pr.
No. 37202 -Duol plotes, pr
No. 37204 -Double duol plotes, pr
No. 37212-Dualplug.
No. 37222 - Non-insuloled binding post, eo No. 37223 -Inouloted binding postis, ea..

STEATITE TERMINAL STRIPS

Terminal ond lug ore one piece. Lugs are Novy furrel type ond ore free flooting so as not to stroin steotite during wide temperoture voriotions. Eosy to mount with series of round holes for integrol chossis bushings.

MINIATUILITED

DESIGNED for APPLICATION miniaturized compo. nents developed for use in our own equipment such as the 9 9001 Osrilloscope, are now available for separate sale. Many of these parts are similar in most details except size with their equivalents in our standard componeme parts group and in cerlain devices where complete miniaturization is not paramomt, a combination of standard and miniature components may possilly the used to advantage. For convenience, we have also listed on this page the ex. tremely small sizel roil forms from our standard catalogne. Additional miniature and submintature emponents are in process of design and will loe anmounced shortly.

CODE

A006

A007

DESCRIPTION

AO12 Right angle drive, $1 / /^{\prime \prime \prime}$ diometer shafts. Single hole
Matehes standard knabs in style. Black plastic with brass insert. Far $1 / 8^{\prime \prime}$ shaft. Overall height $1 / 2^{\prime \prime}$. Diometer $3 / 4^{\prime \prime}$.
Some as AO18 except for $3 / 3^{\prime \prime}$ diameter plastic diat with 5 index lines. mounting bushing $1 / 4^{\prime \prime}-32$ diameter.
$1 / /^{\prime \prime}$ diameter black plastic knob with brass insert for $1 / 4^{\prime \prime}$ shaft. Skirt diameter $3 / /^{\prime \prime}$. Overall height $5 / 8^{\prime \prime}$. Unique design has screwdriver slot in top.

CDMPDNENTS

69044

A061 Shaft lack for $1 / /^{\prime \prime}$ diameter shaft. $1 / 4^{\prime \prime}-32$ bushing. Nickel plated brass.
A066 Shaft bearing for $1 / \mathbf{2}^{\prime \prime}$ diameter shafts. Nickel plated brass. Fits $1 / 64$ diameter hole.
EOO1 Steatite standoff or tie-point integral mounting eyelet .205 overall diameter. Box of tive.
J300-500 Iron core RF choke 50C uh.
J300-1000 Iron core RF choke 1000 uh.
J300-2500 Iran core RF choke $21 / 2 \mathrm{mh}$.
M003 Salid coupling for $1 / 1^{\prime \prime}$ diometer shaft. Nickel plated brass.
M006 Universal joint style flexible coupling. Spring finger Steatite insulation. Niskel plated brass for $1 / \mathbf{s}^{\prime \prime}$ diameter shafts.
Insulated coupling, with nickel plated brass inserts for 1/9" diameter shatts.
Insulated shath extension for mounting sub miniature potentiometer with $1 / 1^{\prime \prime}$ diameter shafts and $1 / 4^{\prime \prime}-32$ bushing.
Steotite coil Porm. Adjustable core. Top tuned. Tapped 4-40 hole in base for maunting. Winding spoce $1 / 4^{\prime \prime}$ diameter $\times 1 / z^{\prime \prime}$ " length.

DESCRIPTION

Steatite coil form. Adjustable brass core. Bottom funed. Mounting by Na. $10-32$ brass base. Winding spoce .187 diameter by $3 / \mathrm{s}^{\prime \prime}$ length.

MAIN OFFICE 2 年 AND FACTORY

MALDEN, MASSACHUSETTS, U.S. A.

Midget Absorption Frequency Meters

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield compartments, coil cans, corners of chassis, etc., to check harmonics; parasitics; oscillator-doubler, etc., tank tuning; and o host of other such applications. Quickly enables the design engineer to find out what is really "going on" in a circuit.

Types 90604 thru 90610 are extremely small and designed primarily for engineering laboratory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No. 90600 and covering the total range of from 3.0 to 140 megacycles. When purchosed in sets of four under code No. 90600 a convenient carrying and storoge case is included. Series 90601 are slightly larger and very much more rugged. They are further protected by a contour fitting transparent polystyrene case to protect against damage and dirt. This latter series is designed primarily for field use and ore not quite as convenient for laboratory use as the 90605 thru 90608 types. All types have dials directly calibrated in frequency.

Code	Description	Net Price
90604	Ronge 160 to 210 mc .	
90605	Ronge 3.0 to 10 mc .	
90606	Ronge 9.0 to 23 mc .	
90607	Ronge 23 to 60 mc .	
90608	Range 50 to 140 mc .	
90609	Ronge 130 to 170 mc .	
90610	Ronge 105 to 150 mc .	
90611	Range 1.5103 .5 mc .	
90612	Range 3.5108 mc .	
90613	Range 8 to 18.5 mc .	
90614	Ronge 18 to 41 mc .	
90619	Range 0.35 to 1.0 mc . - Neon Indicatar	
90620	Range 0.15100 .35 mc . Nean indicatar	
90625	Range 2106 mc . - Nean Indicator	
90626	Range 5.5 to 15 mc . - Neon Indicator	
90600	Complete set of 90605 thru 90608, in case.	
90601	Complete set Field type Frequency Meters in metal carrying case 1.5 ta 40 mc .	

DISTRICT SALES OFFICES

SAN FRANCISCO Moulthrop * Hunter 165-11th Street

CHICAGO
 G. G. Ryan

549 W. Washingion Blva.

BOSTON

Gerber Soles
48 Peort Street
Brockline

DALLAS
Jock Yount
1431 Pleosont Drive
LOS ANGELES
W. Bert Knight

10373 W. Pico Blyd.
KANSAS CITY
J. O. Schmitz

34th Broodwoy Aves.

CANADA
H. R. Gray

46 Donforth Rd. Toronlo
EXPORT
Tectinicol Equipment Co. 155 E. Milton Ave.
Rohwoy, N. J.

DESIGNED FOR " 100% OSO" ...they IIS RGA TUBES

Known by the signals they deliver-and the brand of tubes they use-these remarkable "leading designs" are making amateur-communication history. And their designers know that top-quality equipment requires top-quality tubes in the sockets.
" 100% QSO" calls for tubes that can hold up under a wide variety of operating conditions with healthy power in rescrue, tubes with electrical uniformity for easy replacement with minimum circuit realignment.

These facts-plus the fact that RCA TUBES are available just about everywhere-are a few of the important reasons why many of the leading designers and manufacturers of amateur radio equipment use RCA TUBES.

Your best buy!
 Johnson Amateur Equipment ...For Finll Communication

Top performance isn't simply a matter of watts. Only carefully integrated equipment design can be relied on to develop effective power that punches your signal home every time. That's what we call "communication power" . . . and your Viking transmitter will deliver it in full measure!

Yours on request... the newest Johnson amalour catalog. Write for your copy today!

VIKING "ADVENTURER" 50 WATT TRANSMITTER - Used to earn first Novice WAC (Worked All Continents.) Self-contoined, effectively TVI suppressed, instant bandswitching 80, 40,20,15,11, and 10 meters. Operates by crystal ar external VFO. An octal power receptacle located on the rear apron provides full 450 VOC at 150 ma . and 6.3 VAC of 2 amp. output af supply ta power auxiliary equipment such as a VFO, signal monitor, ar modulator far phone operation. This receptacle also permits using the full output af the supply ta power other equipment when the transmitter is nat operating. Wide range pi-netwark output handles virtually any antenna without separate antenna tuner, Break-in keying is clean and crisp. Designed far easy assembly. With tubes, less dryspals and key, Dimensions: $73 / 8^{\circ} \times 103 / 8^{*} \times 81 / 8^{\circ}$.
Cat. No, 240-181-1. .Kit.
Amateur Nat $\$ \mathbf{5 4 . 9 5}$

VIKING "RANGER" TRANSMITTER -This outstanding amateur transmitter will also serve as an RF and audio exciter far high power equipment, As an exciter, it will drive any of the popular kilow aft level tubes. No internal changes necessary ta switch from trans mitter to exciter operation. Self-contained, 75 watts CW ar 65 watts phone input...instant bandswitching $160,80,40,20,15,11$, and 10 meters. Extremely stable, builtin VFO or crystal control-effectively TVI suppressed -high gain audia-timed sequence (breakint keying-adjurtable wave shaping. Pi-network antenna load matching from 50 to 500 ohms. Easily assembled - - with Pubes, less crystals, key and microphone.
Cat. No. 240-161-1 . . Kit. \qquad
Cat. Na. 240-161-2. . Wired and tested.
Amateur Net $\$ 214.50$
Amateur Net $\$ 293.00$

VIKING "VALIANT" TRANSMITTER-Designed for outstanding flexibility and performance. 275 watts input on CW and SS8 (with auxiliary SSB exciter), 200 watts AM. Instant bondswitching 160 through 10 meters-aperates by builtin VFO or crystal control. Pi-network tank circuit will match antenna loads from 50 ta 600 ahms-final rank coil is silver-plated. Other features: TVI suppressed-timed sequence (break-in) keying-high gain push-to-tolk audio system-law level audio clipping -builtin law pass oudia filter-self-contained power supplies. With tubes, less crystals, key, and microphone. Dimensions: $11 \frac{1}{4}{ }^{\prime \prime} \times 211 / s^{\prime \prime} \times 173 /{ }^{\prime}$.
Cat. No. 240-104-1 . . Kit . Amateur Net $\$ 349.50$
Cat. No. 240-104-2 . . Wired and tested.
Amateur Not $\$ 439.50$

VIKING "PACEMAKER" TRANSMIITER-This exciting transmitter offers you the ultimate in single sideband. . . 90 watts $\$ \$ 8^{\circ}$ and CW input ... 35 watts AM. Self-contained-effectively TVI suppressed. Instant bandswitching on $80,40,20,15$, and 10 meters. Excellent stability and suppression. Temperature compensated builtin VFO... separate crystal control provided far each band. VOX and antiotrip circuits pravide virtually "foal-praof" voice controlled operation. Pi-netwark output matches antenna loads from 50 to 600 ohms. Mare than enough power to drive the Viking Kilowatt or graunded-grid kilowatt amplifiers. (Requires use of Cat. No. 250-34 Power Divider when used with Viking Kilowatt.) With lubes and crystals, less key pond microphone. Vimenused with Viking Kilowatt.) With
stans $1156^{*} \times 211 / 3^{\prime} \times 17 \mathrm{~A}^{\prime}$.
Cot. No. 240-301-2. . Wired and tested.
Amateur Net $\$ \mathbf{4 9 5 . 0 0}$

VIKING "FIVE HUNDRED" TRANSMITTER—Rated a full 600 watts CW . . . 500 watts phone and SSB.' (With auxiliary SSB exeiter.) All exciter stages ganged to VFO funing, Twa compact units: RF unit small enaugh to place on yaur aperating desk beside receiver - pawer supply/madulatar unit may be placed in any canvenient locatian. Crystal ar built-in VFO contral-instant bandswitching 80 thraugh 10 meters-TVI suppressedhigh gain push-to-talk audia system-low level oudia clipping. Pi-netwark output circuit with silver-pioted Anal tank coll will laad virtually any antenna system. With tubes, less crystols, key, ond microphone. Olmenslons! RF Unit- $115 /^{\prime \prime} \times 211^{\circ} \times 173^{\circ}$. Power Supply-10 $/ /^{\prime \prime} \times 201 / 8^{\circ} \times 153 / 4^{\prime 2}$.
Cot, No, 240-500-1 . . Kit \qquad Amoteur Net \$649.50*
Cot. No. 240-500-2 . Wired and tested.
. Amateur Net \$799.50*

*Price subject to revision at time of delivery.

VIKING "6N2" TRANSMITTER-Instant bandswitching on 6 and 2 meters, this campaet VHF transmitter is rated at 150 watts CW and 100 watts AM phone. Campletely shielded and TVI suppressed, the "6N2" may be used with the Viking "Ranger," Viking I, Viking II, or similar power supoly/modulator cambinatians capoble af at least 6.3 VAC at 3.5 amp, 300 VOC at $70 \mathrm{ma} ., 300$ ta 750 VOC at 200 ma . and 30 ar mare watts audia. May be aperated by built-in crystal contral or external VFO with $8-9 \mathrm{me}$. autput. With tubes, less erystals, key, and micraphane. Dimensions: $131 / 8^{\circ} \times 8 \frac{1}{4} \times 81 / 2^{\circ}$ "

Cat. No. 240-201-1 . . Kit. Amateur Net $\$ 119.50^{*}$ Cat. No. 240-201-2. . Wired and tested . Amoteur Net \$159.50*

*Price subject ta revision at time of delivery.

VIKING "MOBILE" TRANSMITTER-This pawer-packed mobile is rated at 60 watts maximum PA input. Instant bandswitching 75 thraugh 10 meters. Caupling system engineered for moximum power transfer to antenna-all stages ganged to a single tuning knob. Powerful PP807 modulator is designed for extra audia punch! Under-dash mounting-all contrals readily accessible. Specify 6 or 12 valt operation. Less tubes, crystals, micraphone, and pawer supply. Dimensions: $67 \%^{\circ} \times 71 / 0^{\circ} \times 105 / 4^{\prime \prime}$,
Cat. No. 240-141-1.. Kit. Amoteur Net $\$ 99.50$ Cot. No. 240-141-2. Wired and tested on special order only.

VIKING AUDIO AMPLIFIER-A self-contained 10 -watt speech omplifier complete with pawer supply. Speech clipping and filtering designed to raise average modulated carrier level... improves the perfarmance ond effecliveness of your AM transmitter. Inputs provided for micraphone, phone patch, or line. Complete with tubes. Dimensions: $8^{\circ} \times 5 \%{ }^{\prime \prime} \times 13 \%$,
Cat. No, 250-33-1. . Kit , . Amateur Net $\$ 73.50$
Cat. No. 250-33-2 . Wired and rested. Amateur Net $\$ 99.50$

VIKING "KILOWATT" AMPLIFIER - Baldly styled, effectivaly TVI suppressed-contains every conceivable feature far safety, operating convenience, and peak performance. Full 1000 watts or low pawer AM, CW, or SSB with the fip of a switch. Continuous funing 3.5 to 30 me - na coil change necessary. Campact pedestal contains camplete kilawattralls aut far odjustment ar maintenance. Excitation requirements: 30 wotts RF and 10 watts audia for AM; 2-3 watts peak far SSB, Completely wired and tested with tubes. Dimensions: $291 / 2^{\circ}$ high $\times 193 / 4^{\circ}$ wide $\times 327 / 0^{\circ}$ deep. With accessary desk top, back, and three drower pedestal: $291 / 2$ high $\times 631 / 2^{\circ}$ wide $\times 327 / 1^{\circ}$ deep.
Cat, No. 240-1000. . Wired and
tested. Amateur Net $\$ 1595.00$
Matching accessory desk, top, bock and three drawer pedestol.. Cat. No. 251-101-1........ FOB Cory, Pa. $\$ 123.50$

POWER DIVIDER—Pravides up ta 35 wotts continuous dissipation. Designed to provide the proper output loading of the "Pacemoker" SSB Transmitter when used to drive the Viking Kilowatt Amplifer.
Cat. No. 250-34.
Amateur Net $\$ 24.95$
POWER REDUCER-Provides up to 20 watts continuous dissipation when used with 100-150 watt transmitters such as the Johnson Viking, Collins 32V, or others, permitting them to serve as exciters for the Viking "Xilowats." Campletely shielded-equipped with SO. 239 cooxial connectors. Dimensions: $31 / 2^{\prime \prime}$ long $\times 21 / 4$ " diometer,
Col. No. 250-29. . Amateur Nel $\$ 13.95$
The E. F. Johnson Campany reserves the right to change prices and specifications without notice and without incurring obligation,

Your best buy!

Johnson Stcifion Accessories ... For Outsitarnaling

 PERPFORMMAMCEEMany useful operating accessories are shown on these two pages. Not just "gadgets," they are of proven value, performance-wise and dollar-wise. These supplementary units are designed to work with any amateur gear . . . but when used with your Johnson equipment they provide an integrated transmitting system.

Yours on request. . . the newest Johnson ama. tour catalog. Write for your copy today!

TWO METER VFO-Designed to replace 8 mc. crystals in most two meter equipment, including types using overtone oscillators. Temperature compensated exceptionally stable. Output range: 7.995 me . to 8.235 me . edge -lighted, lucite dial is calibrated 144 to 148 mc . Power requirements: 6.3 volts at .3 amp . and 250.325 volts at 10 ma . may be easily obtained from transmitter. Power cable and octal power plug furnished. With tubes and pre-calibrated dial. Dimensions: 4 " $\times 41 / 2$ " $\times 5$ "
Cat. No. 240-132-1. . Kit
Cat. No. 240-132-1 . . Kit. Amateur Net $\$ 29.50$
Cat. No. 240-132-2. . Wired and tested. Amateur Net $\$ 46.50$
MOBILE VFO-Diminutive variable frequency oscillator designed specifically for mobile use. Rugged construction minimizes frequency shift due to road shock and vibration small size permits steering post mounting. Temperature compensated and voltage regulated. Calibrated 75 through 10 meters. .. 3.75 to 4 me. output for 75 meters and 7.05 to 7.45 for 40 to 10 meters. 10.5 mc . output also available for doubling to 15 7.05 to 7.45 for 40 to 10 meters. 10.5 me. out meters. With tubes. Dimensions: $4^{\prime \prime} \times 41 / 4^{*} \times 5^{\prime \prime}$.
Cat. No. 240-152-1. . Kit.
Cat. No. 240-152-2. Wired and tested.
Amateur Net $\$ 33.95$
. . Amateur Net \$49.95
OYNAMOTOR POWER SUPPLIES -Supplies plate voltages for Viking "Mobile" and VFO. Rated: 500 volts, 200 ma . intermittent. Base kits accommodate PE-103, Carter, and others.
Cat. No. Dy 9-102 Dynamotor Power Supply, 6 volt Wired and tested
Amateur Net \$98.50
239-104 Dynamotor Power Supply, 12 volt Wired and tested. 998.50
239-101 6 volt base kit only. 16.50
239-103 12 volt base kit only. 17.40
"WHIPLOAD-6"-Provides high efficiency bose loading for mobile whips with instant bandswitch selection of $75,40,20,15,11$, and 10 meters. On 75 meters o special capacitor with dial scale permits tuning entire bond. Covers other bonds without tuning. Air-wound coil provides extremely high "Q." Fibreglass housing protects assembly. Mounts on standard mobile whip.
Cat. No. 250-26 Wired and tested
Amateur Net $\$ 19.50$

VIKING KILOWATT "MATCHBOX"-Bondswitching 80, 40, 20, 15 , and 10.11 meters -self-contained. Use with transmitters up to 1000 watts input-hondles unbalanced line impedonces from 50 to 1200 ohms and balanced line impedance from 50 to 2000 oh rs. No coils to change, no "topping down" on the inductor. Tronsmit/receive relay grounds receiver antenna terminals in "transmit" position. Adjustment for matching antenna to receiver input. Fully shielded. Provision for RF probe. Dimensions: $171 / 4 \times x$ $121 /{ }^{\prime \prime} \times 107 / 8$
Cat. No. 250-30 Wired and tested.
. Amateur Net \$124.50
VIKING 275 WATT "MATCHBOX"-Performs all ontenno loading and switching functions required in medium power amateur stations. Bandswitching $80,40,20,15$, and 10.11 meters. Matches balanced antennas from 25 10 1250 ohms and unbalanced or single wire antennas from 25 to 3000 ohms. Input impedance, 52 ohms, rated 275 wats. Built-in tronsmit/receive relay grounds receiver antenna terminals in "transmit" position. Independent adjustment for matching ontenno to receiver input. Fully shielded. Provision for RF probe. Dimensions: $97 /{ }^{\prime \prime} \times 101 / 2^{\prime} \times 7$ " Cat. No. 250-23. . Wired and tested.

SWR BRIDGE-Meosures standing wove ratios for effective use of o low pass filter and antenna coupler. 52 ohms impedance con be changed to 70 ohms or other value. SO-239 connectors and polarized meter jocks. Dimensions; $41 / 32^{\prime \prime}$ long x $23 / 16^{\prime \prime}$ dion meter Cat. No. 250-24. . Wired and tested. Amateur Net
-SIGNAL SENTRY" - Monitors CW or phone signals on all frequencies to 50 mc . without funing. Energized by tronsmitter RF. Mutes receiver audio for break-in. Moy be used os code proctice oscillator with simple circuit modification. Requires 250 VDC at 5 ma .; ond 6.3 VAC of .6 amp . from receiver or other source. With tubes: Dimensions: $37 / \mathrm{K}^{\prime \prime} \mathrm{x}$ $35 \%^{\prime \prime} \times 33 /{ }^{\prime \prime}$.
Caf. No. 250-25. . Wired and tested.
. Amateur Net \$18.95
CRYSTAL CALIBRATOR-Provides accurote 100 kc . check points to 55 ms . Requires 6.3 volts ot .15 amps. ond $150-300$ volts of 2 mo . With tube, militory-type erystal, power coble ond extension leads. Dimensions: $1 \frac{5}{6} \times 21 / 2^{\circ} \times 1 \frac{1}{2}$ ". (Over-all height to top of tube is $33{ }^{\circ}$.)
Cat. No. 250-28. Wired and tested.............................. Amateur Net \$17.25
LCW PASS FILTER-Handles more than 1000 wotts RF-provides 75 db or more atienuotion obove 54 me . Insertion loss less thon. 25 db . Reploceable Tefion insulated fixed capacitors. SO-239 coaxial connectors. Wired and pre-tuned. Dimensions: 9 " long
$\times 2 / \%_{6}$ diamefer.
Caf. No. 250-20. Wired and pre-tuned 52 ohms. Amateur Nef $\$ 13.50 ~$ Caf. No. 250-35. . Wired and pre-tuned 72 ohms. Amateur Net $\$ 13.50$

INDUCTORS - Johnson manufoctures a complete line of high power variable, rotary, edgewise wound "HI.Q" ond swinging link inductors for commercial and amateur use. For complete information write today.

KEYS AND PRACTICE SETS-Johnson olsa monufactures o complete line af semiautomatic, high speed, stondard, heovy duty ond practice keys; code proctice sets ond buzzers. See your distribut or for complete information.

PRE-TUNED BEAMS - Rugged, semi-wide spoced pre-funed beams with bolun motching sections. For 20,15 and 10 meters. Approximotely 9.0 db goin over tuned dipolegreater thon 27 db front-to-back ratio with low SWR. Pottern is uni-directional, beam width is 55°. No adjustments required. Boom ossemblies ore of $2^{\prime \prime}$ golvonized steel tubing, elements ore oluminum alloy tubing. No looding devices needed for flutter dompening or corono dischorge.
Cat. Ne. (With 3 elements, boom and balun)
Amateur Nep
138-420-3 20 Meter Beam-20' Boom . $\$ 139.50$
138-415-3 15 Meter Beam-13 $7^{n 7}$ Boom. 110.00
138-410-3 10 Meter Beam-10' Beom.... 79.30
ROTOMATIC ROTATOR-Supports beom ontenno weighing up to 175 pounds even under heovy icing conditions or high wind loading. Rotates $11 / 4$ RPM-over-oll gear reduction, 1200 to 1. Rotator housing is cost oluminum, with $5 / s^{"}$ steel rotating toble. Unit hinged to tilt 90°. Includes desk top control box with selsyn indic of or
Cat. No.
Amateur Nei
139-112.1 With slip rings for continuous 360° rotation $\$ 3.34 .00$
138-112-51 With timif switches for 370 rolation. 354.00

VIKING "MATCHSTICK"-A mojor odvonce in omateur rodio! Pre-tuned multi-bond vertical ontenno system -remotely mator-driven from transmitter locotion -bandswitching 80 through 10 meters. Pre-tuned of foctory-no adjustment required. Low SWR (less than 2 ic 1) on all bands. Low vertical radiatlon angle for DX. Inoenspicueus appeorance-simple installation. Mounts on rooftop or in limited space locotion. Vertical mast is $2^{\prime \prime}$ diometer, hord-temper oluminum tubing most sections separoted by steatite insulotors. Antenna funing network enclosed in weotherproof oluminum cobinet of bose of ontenno. Six nylon guy ropes furnished-will not offect field pottern. Impedonce: 52 ohms, oll bonds. Less tronsmission line, 6 conductor control coble and ground rodial wire. Complete instructions for instollation ond operation ore included.
Caf. Ne. 137-102 Amateur Net \$129.50

SEE YOUR DISTRIBUTOR - It's
eosy to own even the finest omoteur equipment, since most outhorized Johnson distributors offer liberal terms. Often os little as 10% down puts you on the air... ond you used equipment (especially if it's Johnson) is olways worth top dollor in trode. See your distributor for o plon toilored to your personol budget requir ements.

The E. F Johnson Compony reserves the right to chonge prices and specifica. fions without notice ond without insurring obligotion.

KNOBS AND DIALS - A distinctive line of matching knobs and dials, derived from a new basicknob design and suitable for the finest electronic equipment. Available with phenolic skirts, etched and anodized aluminum skirts with markings, or flat dial scales engraved and filled. All plastic is tough phenolic meeting MIL-P-14 specifications, with heavy brass inserts for $1 / 4^{\prime \prime}$ shafts.

INSULATORS—High quality steatite and porcelain insulators. Heavily glazed surfaces and heavy nickel-plated brass hardware suitable for exposed application. May be supplied with screws and nuts or with jacks to accommodate standard banana plugs. Through-panel and stand-off types. Also antenna insulators, bushings, and feeder insulators.

PILOT LIGHTS—A complete selection of standardized pilot lights. Faceted jewel or wide-angle lucite lens types; enclosed or open body styles; standard bayonet, candelabra, or miniature screw types, and a wide variety of mounting brackets and assemblies. Jewels available in clear, red, green, amber, blue, and opal. All Johnson pilot lights are described in detail in Pilot Light Catalog 750-send for your copy!

CONNECTORS-A complete line of new nylon connectors is available in addition to standard banana jacks and plugs. Nyior components include insulated solderless tip and banana plugs, tip and banana jacks, tip jack and sleeve assemblies, and a new 6 way binding post. In thirteen bright colors-nylon components are designed to operate through an extremely wide temperature range and high relative humidity conditions. (Voltage breakdown up to 11,000 volts.) Solderless nylon plugs are easy to assemble -both plugs and jacks require a minimum amount of mounting space.

TYPE ' M '"- These diminutive capacitors provide the perfect answer to problems encountered in the design of compact rodio frequency equipment. Bridge-type stator terminal provides extremely low inductance path to both stator supports. Soldered bearing and heavily anchored stator supports insure extreme rigidity.
TYPE " S " - Midway between types " M " and " K " in size, design is compact and construction rugged. Equipped with DC- 200 treated steatite end frame and nickel-ploted brass plates-an excellent choice where higher capacity values than provided in " M " types is required in small space.
TYPES "C" AND "D"-Functional favorites built to exacting standards for medium power RF equipment. Dual types have centered rotor connection for balance. End frames tapped for panel mounting. Brackets furnished for chassis mounting.
TYPES "E'" AND "F"—Rugged units provide a large amount of capacity per cubic inch and extremely low capacity to the chassis. Panel or chassis mounting.
TYPE "G"-Neutralizing capacitors for medium and low-powered stages constructed on the rotor-stator principle. Panel or chassis mounting.

TYPE "J" — Heavy-duty miniature type has wider spacing than most small air variables, yet occupies little more space. Useful for small space plate tank circuits and low power stages where standard miniatures have insufficient plate spocing.
TYPE "K"—Widely used for military and many commercial applications, the Johnson type "K" features DC-200 impregnated steatite end frames, slatted stator contacts, and extra-rigid soldered plate construction.
TYPE "L"—A superior quality general purpose copocitor embodying important advances in design and construction. The rotor bearing and stator support rods are actually soldered directly to the ceramic (steatite) end frames, making the capacitor virtually vibration-proof.
TYPE "N"—Extremely high voltage rating in proportion to size requiring a small mounting area. Constant voltage rating throughout full capacity range. These are of the aluminum cup and cylinder type of construction and are supported by a steatite frame with cast aluminum mounting bracket.
TYPE "R" - The rugged Johnson version of a popular standardized capa. citor. Featuring extra heavy steatite stator support insulators and soldered $.023^{\prime \prime}$ thick brass plates; all metal parts heavily nickel-plated for corrosion. resistance.

TUBE SOCKETS

Johnson steatite and porcelain tube sockets are available in three grades: Standard, Industrial, and Military. All are manufactured to rigidly controlled specifications, and all are made of only the highest quality materials.

Bayonef types-include Medium, Jumbo, and Super Jumbo 4 pin models.

Steatite Wafer Types-available in 4, 5, 6, 7, and 8 pin standard sockets as well as Super Jumbo 4 pin, Giant 5 and 7 pin models and VHF transmitting Septar base types.

Miniature Types-are steatite insulated and available in Minioture 7 and 9 pin models. Matching minio ture shields also available.

Special Purpose Types-include sockets for tubes such as the 204A and 849, the 833A, 304 TL , 5D21, 705A, and other special types.

New! Two new tube sockets have been recently added to the Johnson line. A new shielded base septar sacket (Cat. No. 122-105) for tubes such as the 5894, 6524, and 6252, and a new Kel-F insulated octal socket (Cat. No. 124-108) for 4X150A and similar tubes. For complete information on this new socket or any other Johnson sockets-write for your copy of Tube Socket Standardization Booklet No. 536.

The steady move to single sideband operation is definite, and naturally leading the trend is Collins, the sideband pioneer.

Collins forward-thinking design work has produced the top-performing team on the air. In the advantages of SSB-greater talk power, less distortion and decreased bandwidth-the KWS-1/75A-4 combination
is unmatched in performance.
Considering this performance, you can operate Collins for less than anything else you can buy or build! Actual cost-per-day figures-the difference between purchase price and trade-in value-prove this. Taking advantage of a convenient time payment plan, you can have Collins in your shack now. Ask your distributor for the figures.

12WVS-1

 Transmitter
mont Fermstile m. 110 ovatt

ereer prodtiood

Unprecedented compactness is achieved without undue crowding. Exciter and RF nower amplifier are in a single receiver-size housing which can he placed on the operating desk or mounted on top of the power supply cabinet. Proved circuit applications and components-extremely accurate 70E VFO. Pi-L output network and Collins Mechanical Filter-give you unmatched performance, accuracy and stability in SSB, AM and CW operation.

KWS-I SPECIFICATIONS

POWER AMPLIFER INPUT-1 kW neak envelone power SSB. 1 kw CW operation. Equivalent to 1 kw on AM when using narrow banduidth receiver.
R.F OUTPUT IAPEDANCE -52 ohmIs.
maximum rermissiole standing wave ratio- 2.5 to frequenct range-80, 40, 20, 15, 11,10 meters.
EMISSION-SSR, A 11 carrier plus one sideband, CW.
frequency control-70F. 23 Master Oscillator.
harmonic and spurious radiation - lother than 3rd order distortien products.) Intra-channct radialion Is at least 50 db down. All spurious radiation at least 40 db down at outnut of exciter. Second harmonic at least 40 db down: all other hatmonies at least 60 db down.
DISTORTION-SSB, 3id order products approximately 35 db down at I kw PEP.
frequency stability-Warmup: After 15 minutes warmuf, within 300 cns of starting frequency. Dial Accuracy: 350 cms after callinration.
AUDIO CHARACTERISTICS—ResNOnse: $\pm 3 \mathrm{dh}, 2 \mathrm{ch}$ to 3.0 OH cFs . Noise and hum: 40 do or more below reference output level. Input: .01 volts for rated nower output
MICROPHONE INPUT-Will match high impedante dynamic of crystal.
PHONE PAICH IMPEDANCE-600 ohms. untralanced to ground. CIRCUIT PROTECTION-Overload relay and fuses.
WEIGHT- 210 pounds.
\$12E-401/2" high, $1714^{\prime \prime}$ wide, $151 /^{n}$ deep.
RACK MOUNTING-Angle brackers hits a vailable for RF Unit and power supply.
TUNING CONTROLS-Bandswitching, frequency selector, PA tuning, PA loading.
OTHER CONTROLS-Filament power, plate poiver, filament adjust, PA blas voltage, tune-onerate, multimeter switch, VOX speaker gain, vOX speech grin, band change, audio gain, sideband select, emission selector, dial lock, zero sct, ALC adjust.
ACCESSORIES REQUIRED-High impedance microphone, telegraph key, 52 ulm antenna.
POWER SOURCE- 230 v 3 whe, $50 / 60$ cy'cle, single phase, grounded neurral: ar 115 v , 2 wire, $50,60 \mathrm{cyele}$, single phase. 1500 W 1 kw input CW.
Net price, completc with tubes- $\$ 2,095,00$

75 손 Receiver

applios timo-proven features to sse teohniques

Designed for best SSB reception without sacrificing top efficiency in other modes, the 75A-4 has the top features proved in earlier models-excellent image rejection through double conversion, precise dial calibration and high stability of Collins VFO and crystal-controlled first injection oscillator, and the ideal selectivity of Collins Mechanical Filter in the IF strip.

75A-4 SPECIFICATIONS

Frequency rance-160, 80, 40, 20, 15, 11, 10 meters
SIZE—101/2" high, $171 / 4^{\prime \prime}$ wide, $151 / 2^{\prime \prime}$ deep.
WEIGHT- 35 pounds.
RACK MOUNTING-Angle mounting kit available. NUMBER OF TUBES-22, including rectifiers.
SENSITIVITY- 1.0 microvolt for 6 db signal-to-noise ratio with 3 kc bandwidth.
ave characteristics-Audio rise less than 3 db for inputs of 5 to $200,000 \mathrm{uv}$.
avC time CONSTANTS-Rise Time- .01 second. Release Time-. 1 second (fast), 1 second (slow).
IMAGE AND IF REJECTION-Image ratio at center of each band 50 db or better. IF rejection at center of each band 70 db or better.
AUDIO CHARACTERISTICS-Output-. 75 watts with a 3.0 uv signal, 30% modulated. Output impedance - 500 ohms, 4 ohms. Response of audio circuits$\pm 3 \mathrm{db} 100 \mathrm{cps}$ to $5,000 \mathrm{cps}$. Distortion-less than 10%.
MUTING-Provisions for muting the Receiver during key-down operation are provided. A muting voltage of +20 volts must be supplied by transmitter.
frequency stability (at 14 mc)-TemperatureLess than 1200 cycles drift from 0 to $\pm 60^{\circ} \mathrm{C}$. Warmup drift-Less than 300 cycles after 15
minute operation. Line voltage coefficientLess than 100 cycles for $\pm 10 \%$ change. Dial Accuracy- 350 cycles after calibration.
Net price, complete with gear Reduction Tuning Knob, 3.1 kc Mechanical Filter, tubes and instruction book- $\$ 645.00$

MECHANICAL FILTERS

Collins F455J-Series Mechanical Filters are available as accessories for the 75A-4 Receiver. The F455J-05 Filter, bandwith of 500 cycles, is recommended for CW reception; the F455J-15 (1.5 kc) for RTTY; the F455J-60 $(6.0 \mathrm{kc}$) for AM where interference is not a problem; and the F455J-21 (2.1 kc) and F455J-31 (3.1 kc) for AM and SSB. The F455J-31 is supplied as standard equipment in the Receiver.
Net price, F455J-05- $\$ 50.00$
Net price, F455J-15, J-21, J-31, J-60-\$45.00
GEAR REDUCTION TUNING KNOB
Provides new ease and accuracy in tuning SSB signals. Operating on a 4 to 1 ratio, it eliminates Dial Drag and has no detectable backlash. Simple installation on KWS-1 and all 75A models.
Net price- $\$ 15.00$

```
SO-101
```

SO-101
Station Control
Station Control
provicles smooth ooordination
provicles smooth ooordination of oomplete SSE station

```


\section*{SPEAKER/CONTROL \\ SPEAKERICONTROL}

The 312A-1 Speaker/Control Unit includes loudspeaker and has space for the extra control functions necessary in a complete installation.
Unit is furnished with removable perforated steel functions necessary in a complete installation.
Unit is furnished with removable perforated steel front panel insert with no cutouts; operator can remove panel and install any control functions such as beam direction indicators, clocks, such as beam direction indicators, clocks,
switches, etc. A \(10^{\prime \prime}\) speaker is submounted behind the front panel and a lumiline lamp
above. Rear of the unit is open and across behind the front panel and a lumiline lamp
above. Rear of the unit is open and across the bottom is a terminal strip.
Net price- \(\$ 39.50\)

\section*{SPEAKER}

The 270G-3 cabinet and 10" PM speaker assembly is attractively finished to match the 75A-4 Receiver.
Net price- \(\$ 22.00\)

The SC-101 provides the necessary cquipment to connect the Transmitter and Receiver, beam direction indicator, beam control, phone patch circuit, standing wave ratio meter and remote selection of any one of six antennas.

The System is composed of three units:

\section*{312 A. 2 SPEAKER/CONTROL UNIT}

This desk-top unit includes a \(10^{\prime \prime}\) speaker, beam direction indicator, SWR meter, 24 -hour numeral clock, lumiline operating lamp, phone patch unit, auxiliary power supply for control circuits, and terminal boards for interconnecting all units. A synchro control unit for tower mounting is also supplied, as is a directional coupler for use with the SWR unit.

\section*{68Y-1 ANTENNA SELECTOR}

Mounted on wall near desk, the 68 Y includes the antenna transfer relay, two coax relays for antenna selection, mounting bracket for directional coupler and necessary interconnecting coax cables.

\section*{534A. 1 WIRING DUCT \& HARNESS}

This metal duct mounts along back of desk or table and houses all interconnecting cables. Along the top of the duct are ac utility outlets. Also included is a cable harness with wires necessary to connect the Transmitter, Receiver and extra control functions.
Net price- \(\$ 695.00\)



\title{
G-E TUBE PUBLICATIONS ARE UP-TO-THE-MINUTE DESIGN GUIDES
}

- 'Power Tubes for Industry and Broadcast.' ETX-10.J. Essential characteristics, warranties for all G-E transmitting and other power tubes.
- 'G-E 5-Stor Tubes.'ETD-1276-A. High-reliobility tube features, advantages, applications. Essential characteristics of all G-E types.

Radio amateur or design engimerer, you will find General Elemic lube publicatons valuable reference material to have.

These fact-filled booklets put the latest tuhe data at your lingertips. And sou can be sure it is the very latest. Farh bumbet is up-tated perionticall: to indude last-minute design improsememis. new tube types. ete.

Order your copies now! Jot the numbers of the publications rou want on the handy order coupwin at right. Then rlip wot and mail! Electromir Componoms Ditision. (Benrral Electric Company. Shenectudy 5. Sew Sorlo.

Progress /s Our Most Important Product GENERAL

ELECTRIC

\section*{... ALSO AVAILABLE FROM YOUR LOCAL GENERAL ELECTRIC TUBE DISTRIBUTOR:}
- 'Essential Characteristics.' ETR-15.F.Ratings, bul' outlines, typical circuits for more than 2000 receiving and picture tubes, and semiconductors.
- 'Ham News'
- 'Tele-Clues'
- 'Techni-Talk,' on \(A M, F M\), TV Servicing
- 'Picture Tube Replacement Guide'

\section*{you}
should

\section*{know}

\section*{iD MACDONALD \\ ...he can \\ save you money}


\section*{tineed to tomorrow Nationale. HRO-60}

Latest and greatest of a great series featuring the widest frequency coverage of any receiver currently available ( 50 kc to 54 mc ). Voice CW, NFM (with adaptor). Dual conversion on all frequencies above 7 mc .


Twelve permeability-tuned circuits in the three 455 kc IF stages for sharpselectivity.
- Current-regulated heaters in the high frequency oscillator and first mixer.
- High frequency oscillator and S-meter amplifier are voltage regulated.

FEATURES:

FCDA approved
- Extra coil sets available to provide additional frequency coverage on special ranges.
- Crystal filter provides several degrees of selectivity with phasing notch to reject heterodyne interference.
- Has double-ended automatic noise limiter
which is equally effective on both voice code reception.
- Has two RF stages for better sensitivi and selectivity (image ratio).
- Single knob controls reception of C AM, or NBFM signals or connects aud amplifier to Phono input.
- Adjustable CW oscillator control for C reception.
- Panel-controlled antenna input trimmı
- Panel switch for choice of 100 kc or 10 ke calibration marker signals.

\section*{COVER AGE}
\begin{tabular}{|c|c|}
\hline COIL SET & general coverage \\
\hline A & \(14.0-30.0 \mathrm{mc}\). \\
\hline B & \(7.0-14.4 \mathrm{mc}\). \\
\hline C & \(3.5-7.3 \mathrm{mc}\). \\
\hline D & \(1.7-4.0 \mathrm{mc}\). \\
\hline * E & \(900-2050 \mathrm{kc}\). \\
\hline *F & \(480-060 \mathrm{kc}\). \\
\hline *G & \(180-430 \mathrm{kc}\). \\
\hline * H & \(100-200 \mathrm{kc}\). \\
\hline * J & \(50-100 \mathrm{kc}\). \\
\hline *AA & \\
\hline *AB & 25-35 mc. \\
\hline *AC & \\
\hline *AD & \\
\hline *Opliona & cessories. \\
\hline
\end{tabular}

\section*{TUNING SYSTEM}

PW knob has worm gear drive hox. Large dial with changing numbers gives a logging scale from 0 - 500 , equivalent to a scale length of 12 feet. In addition, a slide-rule direct-reading scale is ganged with the PW dial to show frequency setting directly. The scale drum can be rotated to change scales. Plug-in coils for separate ranges.

\section*{AUDIO SYSTEM}

A push-pull audio output stage delivers 8 watta at less than \(10 \%\) distortion. Output impedance is 8 and 500 ohms. A high impedance phono-jack is located on the chassis, and a phone jack is provided on the receiver panel.

\section*{SENSITIVITY}
1.5 microvolts from 2 to 30 mc (with \(300-\mathrm{ohm}\) dummy antenna and 10 db signal/noise ratio.)

\section*{SELECTIVITY}

NORMAL (Crystal off)
\(6 \mathrm{db}-3.5 \mathrm{kc}\)
\(60 \mathrm{db}-10.5 \mathrm{kc}\)
\(6 \mathrm{db}-100\) cycles
\(60 \mathrm{db}-7\) kc
CRYSTAL IN POSITION

\section*{CONTROLS}

Band Suitch; Oscillator; Tone; Antenna Trimmer; Dimmer; AV Limiter; Calibration; CWO; Phasing; Selectivity; AF Gain/A ON-OFF; RF Gain; AM-NFM-Phono.; B + ON/OFF.

\section*{TUBE COMPLEMENT}
\begin{tabular}{|c|c|}
\hline 1st RF Amp. & 6BA6 \\
\hline 2nd RF Amp. & 6BA6 \\
\hline 1st Frequency Conv. & 6BE6 \\
\hline High-Frequency Osc. & 6 C 4 \\
\hline 2nd Frequency Conv. & 6 BE 6 \\
\hline 1 st IF Amp. & 6SG7 \\
\hline 2nd IF Amp. & 6SG7 \\
\hline 3rd IF. Amp. & 6SG7 \\
\hline Det.-AVC & 6H6 \\
\hline Noise Limiter & 6 H 6 \\
\hline S-Meter Amp.-Phase Inverter & 6SN7GT \\
\hline 1st AF Amp. & 6SJ7 \\
\hline Audio Output (2) & 6V6GT \\
\hline BFO Oscillator & 6SJ7 \\
\hline Voltage Reg. & \(0 \mathrm{OB2}\) \\
\hline Current Reg. & 4H-4C \\
\hline Rectifier & 5V4G \\
\hline
\end{tabular}

\section*{OTHER SPECIFICATIONS}

Antenna Input: \(50-300\) ohms, balanced or unbalanced.
Al|er Table 19\%/" wide \(\times 101 / /^{\prime \prime}\) high \(\times 16^{\prime \prime}\) deep.
\[
\begin{aligned}
& \text { nck } 10 \text { wide } x 101 / /^{\prime \prime} \text { high } \times 171 / \text { "from rear of front par } \\
& \text { Incl. } 11 / 8^{\prime \prime} \text { handle. }
\end{aligned}
\]

Pnish: Smooth gray enamel.
Shipping Weight: 88 lbs .
Optional Accessories:
HRO-60R - Rack model receiver with A, B, C, D coil sets. HRO-60T - Table model receiver with A, B, C, D coil sets. HRO-60RS-Rack Model Speaker.
HRO-60TS-Table Model Speaker.
HRO-60-Deluxe Receiving Installation. (Consiats of HRO60 R with \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) coil sets, HRO-60-SC2 speaker and coil container MRR-2 Table Rack.)

HRO-60-SC2 - Speaker al container for 10 coil sets.
HRO-60-XCU-2 - 100/1000 : crystal calibrator.
HRO-650S-6 V. vibrator ty! supply.
MRR-2-Table Rack.
NFM-83-50-Narrow Band F: Adaptor.
Coils--E, F, G, H, J, AA, A) AC, AD.

- Two stages of RF provides extremely high image ratio.
- Dual conversion on all bands above 4.4 mc .
- Bandspread on all amateur bands through six meters.
- Threes stage sharp IF (12 permeabilitytund circuits) no sarerifice in noise selectivity, high degres of skirt selfectivity.
- Push-pull audio output.
- Indirectly lighted lucite dial scales.

\section*{COVERAGE}
\begin{tabular}{|c|c|c|c|}
\hline BAND & \multicolumn{2}{|l|}{GENERAL COVERAGE} & BANDSPREAD \\
\hline A & & & 47-3i me. (6 nitaprs) \\
\hline 3 & 12-31 & nıc. & 26.5-30 nic. (11, 10 mevters) \\
\hline & & & \(20.0-21.5\) nue, (15) meters) \\
\hline & & & \(14.0-14.4\) mue ( 20 meters) \\
\hline C & \(4.4-12\) & me. & \(6.9-7.3\) me. (40 nieters) \\
\hline D & \(1.55-4.4\) & nic. & 3.5-4 ne. (80 neters) \\
\hline E & 0.54-1.55 & nic. & \\
\hline
\end{tabular}

\section*{TUNING SYSTEM}

The main 1 uning and bandspead tuning capacitors are connected in parallet on all bands. This arrangement permits handspread tuning at any frequency within the range of the receiver. Two RF stages art employed on all hands, and the trimmer for the first RF stage is contrulled from the front parnel.

\section*{AUDIO SYSTEM}

A push-pull audio output delivers 8 watts at less than \(10 \%\) distortion. A high impedance phono-jack is located on the chassis, and a phone jack is provided on the recejper pantl.

\section*{IMAGE REJECTION (at high end of band)}
BAND
A
B
C
D
E

\section*{image ratio}

40 db
40 db
65 db
30 db
no db
80 db

\section*{SENSITIVITY}

Better than 3.5 nicrovolts (with 300 -ohm dummy antenna and 10 db signal/noise ratio).

\section*{SELECTIVITY}

NORMAL (Crystal off)
CRYSTAL IN POSITION 5
\(6 \mathrm{db}-3.5 \mathrm{kc}\)
\(60 \mathrm{db}-12.5 \mathrm{kc}\)
\(6 \mathrm{db}-100\) cycles
\(60 \mathrm{db}-7 \mathrm{kc}\)

\section*{thmed to tomorrav Nationclos NC-183D}

Incorporates every feature you want In a truly modern receiver! Dual conversion on the three highest ranges (including 6, \(10,11,15,20\), and 40 meter ham bands). Complete cuverage from 540 kc up to 30 mc , plus \(50-54 \mathrm{mc} 6\)-meter ham band. Voice, CW, NFM (with adaptor).
- Rack and table models available.
- HF oscillator voltage regulated.
- Crystal filter provides several degrees of selectivity with phasing noteh is reject heterodyne interference.
- New bi-metallic temperature - compensatad tuning condenser for drift-free operation.
- New miniature tubes.
- FCDA Approved.

\section*{CONTROLS}

CW Switch; CWO control: Tone Control: Limiter Control: Main Tuning; Bandspread Tuning: Band Suitch; RF Gain; AC ON OFF; AF Guin; Send Receive Switch; AVC MVC Switch; Radio/ Phono Switch; Phone Jack; Phasing Control; Selectivity Switch; Antenna Trimmer.

\section*{TUBE COMPLEMENT}


OTHER SPECIFICATIONS

Antenna Input:
\(50-300\) ohms, balanced or unbalanced.
\(101 / 4^{\prime \prime}\) high \(\times 193 / 4^{\prime \prime}\) wide \(\times 163 / /^{\prime \prime}\) deep

Smooth gray enamel.

NC-183DTS Table Speaker
NC-183DRS Rack Speaker.

NATIONAL COMPANY, INC., 61 SHERMAN STREET, MALDEN 48, MASS.
trued to tomorrow Nationalo NC-300

National's famous "Dream Receiver." An extremely sensitive, highly stable receiver with exceptional calibration accuracy. Has eight electrical bands, 160 through 10 meters, plus a special \(30-35 \mathrm{mc}\) range used as a tunable IF for 6,2 , and \(1 \frac{1}{4}\) meters.


\section*{FEATURES:}
- Ten dial scales for coverage of 160 to 11/4 meters with National's exchusive new converter provision with the receiver scales calibrated for 6, 2, 11/4 meters using a special \(30-35 \mathrm{mc}\) tunable IF band.
- Longest slide-rule dial puer! More than a foot long! Easily readable to 2 kc without interpolation up to 21.5 mc .
- Three-position IF selector-.5 ke, 3.5 \(\mathrm{kc}, \mathrm{x}\) k-provides super selectivity, gives optimum land width for CW, phone, phone net or VIIF operation.
- Separate linear detector for single sideband . \(\therefore\) decreases distortion by allowing AVC "on" with single sideband... will not block with KF gain full open.
- Hi-sperd, smooth inertia tuning dial with 40 to 1 ratio! Provides easier, more with 40 to 1 ratio! Provides easier, more ever used.
- Exclusive optional RF gain provision for best CW results allows independent control of IF gain!
- Giant, easy to read " S " memer!
- Provision for external control of IRF gain automatically during transmitting periods.
- Muting provisions for CW break-in operation.
- Calibration reset adjustable from front panel to provide exact frequency setting!

\section*{- Dual conversion on all bands!}
- Crystal filter with phasing control and three-position handwidth control!
- Wide range tone control, for control of both low frequency and high frequency end of response curve!
- Socket for crystal calibrator plus accessory socket for powering converters and future accessories!
- First IF frequency- 2215 kc .
- Second IF frequency-80 ke.
- Selectivity at 6 db down 500 cycles, 3.5 ke and \(X\) ke. Selectable from the front panel without additional accessories! Nothing extra to buy!

Crystal filter at 2215 kc provides notching plus three bandwidth positions in addition to the threp IF selectivity positions. No other receiver has this versatility.

\section*{COVERAGE}

BAND DESIGNATION AND LENGTH


TUNING SYSTEM
Combination gear/pinch for smooth inertia tuning.

\section*{AUDIO SYSTEM}

The audio amplifier uses a single 6AQ5 output tube delivering 1.0 watts at loss than \(10 \%\) distortion. Has front panel phone jack Output impedance is 8 ohms.

\section*{SENSITIVITY}

Inder 1.5 microvoles (with 300 -ohm dummy antenna and 10 db signal/'nuise ration.

\section*{SELECTIVITY}
\begin{tabular}{rrr} 
SHARP & MEDIUM & BROAD \\
6 db 0.5 ke & 3.5 ke & 8.0 ke \\
\(60 \mathrm{dH} \quad 3 \mathrm{ke}\) & 12 ke & 30 kc
\end{tabular}

\section*{IMAGE REJECTION}
\begin{tabular}{lc} 
BAND & IMAGE RATIO \\
160 & 80 db \\
80 & 80 db \\
40 & 60 db \\
20 & 75 db \\
15 & 55 db \\
10 & 511 db \\
11 & 70 db
\end{tabular}

\section*{CONTROLS}

RF Gain and AC ON/OFF; AF Gain and RF Tube Gain Switeh: Tone Control: AM-CW-SSB-ACC Switeh; CW Piteh; Main Tuning; Calitration Correct: Antenna Trimmer; Crystal Calibrator ON/OFF; Limiter: IF Selectivity; Crysial Selectivity; Crystal Phasing; Band Switch; Phono-Jack.

\section*{TUBE COMPLEMENT}


\section*{OTHER SPECIFICATIONS}

Antenno Input: 50 . 300 olims, hatanerd or unbalanced.
Size: \(191 /{ }^{\prime \prime}\) wide \(\times 11^{\prime \prime} 4^{\prime \prime}\) high \(\times 15^{\prime \prime}\) dorp ( \(19^{\prime \prime}\) rack out of cabinet)
Finish: Twotono gray enamel.
Shipping Weight: (Legal) 64 llhs .
Optionol Accessories:
Converters
NC-300C6 for 6 -meter hand.
NC-300C6 for 6-moter hand. NC-300TS Sporaker.
NC-300C2 for 2 -meter hand.
NC300C1 for \(11 / 4\) moter band.

NC-300-CC Converter Cobinet

Calibrator.


variable inductors Standard and Hermetic
PULSE
tAANSFORMEAS
TRANSFORMERS Smallest Size-Highest Power

Power, Plate, Filament Transformers and Reactors

Audio Miniatures

hipermalloy and ULTRA compact
HIgh Fidelity Favorites
.FROM STOCK
A puerter century of epecialited superieace and original nesearch has guter
 ounce unith to sthert weighing hundrede of peonds. UTC wock items are wait asle tor virtally every mpolication in the electronies field beth of these itamy carries a jes valus - . . UTC EBuABLITY, highed in the melt.
hagnetic amplifiers....hermetic

linear stanoard series
Tops in Fidelity


Write for your Copy of Catalog '56


\section*{nermetic audio components} for Every application

dUNCER and PLUG -IN UNITS


COMMERCIAL gRADE RUDIO and POWER COMPONENTS for Industrial Use


\section*{THE HOME OF THE GPR-90}

finest communication equipment . . .


THE TECHNICAL MATERIEL CORP.


\section*{COMMUNICATION RECEIVER}

The Model GPR-90 Receiver is a professional, general purpose communicotions receiver of the double conversion superheterodyne type covering the frequency range of .54 to 31 mes. The receiver features low naise, excellent selectivity, a highly stable HFO and BFO, accuracy in calibration, the finest components, and is designed far ease of servicing.
New and novel feafures such as low noise grounded grid broodbanded ferromic input stoge, low intermodulation, delayed AVC, audio selectivity and excellent audia response make this the finest receiver in its class.
FREQUENCY RANGE: .54 to 31 mes in six bands. TYPE OF RECEPTION: AM, CW, MCW, FS and SSB. TUNING SYSTEM: Accurately calibrated main tuning dial plus full electrical band spreod, SENSITIVITY: Better then 1 microvalt for 10 db signal to noise rotio. IMAGE RATIO: Averoge 85 db . CRYSTAL CALIBRATOR: Provides 100 kes markers through tuning ronge. STABILITY: Belfer thon \(.002 \%\) first the bands ond \(.003 \%\) remainder of range.
(FCDA APPROVED)

\section*{RADIO TRANSMITTER}

The Model GPT-750 Radio Transmitter is a general purpose transmitter providing radio-telephone, telegraph, frequency shift, facsimile and Single Sideband operation on all frequencies within the range 2 to 32 Mes.
The Iransmitter is completely bandswitched. It contoins at high stability direct reading mecter oscillator. The transmitter is constructed on a building black basis, using slide-in drawers thereby permitting economic combinations to suit a par ficulor service.
FREQUENCY RANGE: 2 to 32 Megacycles bondswitched. POWER RATINGS: 1000 watts output CW and FS, 750 walts output Rodio Telephone, 750 watts PEP Single Sideband. FREQUENCY CONTROL: Direct Reoding Master Oscillotor plus three crystal positions. MASTER OSCILLATOR STABILITY: Better than 20 parts per million. FREQUENCY CALIBRATION: By means of a built-in aven contralled 100 kes crystal oscillatar with visual Zera Beat indication. COOLING: Farced Filtered Air in o steel pressurized cobinet. RUGGEDNESS: Designed for mobile opplication, with the addition of shock mounts.

\section*{SINGLE SIDEBAND ADAPTER}

The Madel GSB-1 Sinale Sideband Adapter is o filter lype slicer permitting accurate and simple funing of single sideband, \(A M, C W\) and MCW signals. The unit incorporates features which will improve any receiving system. The filter pravides additional selectivity and pass-band tuning. Additional AVC (FAST/SLOW) prevents powerful local stations from over-looding the receiving system. The noise limiter reduces impulse peaks. Elecirical bandspread eliminates the critical frequency adjustments characteristic of single sideband tuning. Upper and lower sidebonds are selected by a llip of a switch:

FREQUENCY RANGE: 452 to 458 kes. RECEPTION: AM, SSB (upper or lower). CW, and exalied corrier. INPUT: 0.1 to 10 volfs. OUTPUT: One Waft into \(6,8,16\) or 600 ohms. TUNING: Bondspread contral calibrated in cycles.


\section*{REMOTE CONTROL AMPLIFIER}

The Model RTC Remote Contral Amplifier is \(\mathbf{c}\) multipurpose unit providing amplification for a low level microphone, selectable peak clipping and variablo tone output for MCW. The unit also makes possible remote keying, break-in and other semi-remote ransmitter contral functions.
The peak clipping feature may be switched into aperafion by means of a front panel switch. The clipping characteristic is continuously adjustable 0 to 20 db , and high and low pass filters ore provided.

INPUT LEVEL: Minus 50 db for full output OUTPUT LEVEL 0 volts to plus 6 dbm, continuausly variable. FREQUENCY RESPONSE: Plus/Minus 2 db from 100 to 7500 cps . DISTORIION: Less than \(2 \%\) lapal hermonic. CLIPPING: 0 to 20 db continuously adiustable.
(FCDA APPROVED)


BULLETIN 183

\section*{ANTENNA TUNING UNIT}


\section*{COMMUNICATIONS RECEIVER}

\section*{(AN/FRR-49(V)}

The Model \(F F R\) is a highly versatile receivar. covering the frequency range 50 Kcs to 32 Mcs and is used far dependoble, unattended continuous reception of AM, CW, MCW, FS and SSB signols.
BULLETIN 124


The Model TAC Antenna Tuning Unit matches the 70 ohm unbalanced output of a radio transmitter to balanced or unbolanced laads ranging from 50 to 1200 ohms over the frequency spectrum 2 to 30 Mcs.
The Tuning Unit incorparates a unique, continuously varioble, contact type inductonce with switched tops to control the loading of the tronsmitter over the frequency ronge. Capacitor spacing and teflon insulation prevents flosh-over.

FREQUENCY RANGE: 2 to 30 Mcs. INPUT IMPEDANCE: Nominal 75 ohms unbalanced. OUTPUT IMPEDANCE: 50 to 1200 bolanced or unbalanced. RF POWER RATING: 1000 walts input Provision is \(m\) ade for Crystal Internal and ExProvisian operatian af the HFO ond BFO. Rapid frequency chonge is mode possible by means of accurately calibrated pretuned plug-in 'front ends'. Remate control and diversity features are incorparated as standard features. The Receiver is also available with squelch (CODAN), and for Beacon Monitoring purpases.

FREQUENCY RANGE: 50 to 400 kes, 500 kes, 2 to 32 mes. BAND CHANCE: By meone of pretuned, preheated, receiver ront ends. TYPE OF RECEPTION: AM, CW, MCW, FS and SSB CONTROL: Monual or remote FREQUENCY CONTROL: Crystal or VFO. SENSITIVIIY: Belter than 1.0 microvalt tor 10 db Signol to Noise Ratio. OVERALL SELECTIVITY: 2 to 32 mesLess than 5 kc at 6 db down. Variable Selectivity-50 ke 400 ke. \(5,1.3,0.5,0.3\) ke at 6 db down.

\section*{PORTABLE MASTER OSCILLATOR}
(0-459/URT)
The Model PMO Portable Master Oscillator ond Heterodyne Frequency Meter is a highly stoble, precision, direct reoding device used as a tronsmitter exciter, frequency meter or receiver colibrator. It provides output over the range 2 to 8 mis and is directly calibroted by means of a counterdial system over the range of 2 to 4 mcs . An oven conntralled 100 kc ascillator provides visual calibration of the unit.

FREQUENCY RANGE: 2 to 8 mcs . OUTPUT: 3 Wotts adiustabie inio 70 olima. StABILITY: Ratter than 20 ports per million for a 30 degree \(C\) change in ambient. CALIBRAIION: Direct reading in cycles 2.4 mcs, READABILITY: Resetability, 30 parts per million to a previously calibroted frequency. CALIBRATION: Against a colibrator controlled 100 ke crystal oscillator with visual indication.

\section*{VARIABLE FREQUENCIY OSCILLATOR}

\section*{(0-330/FR)}

The Model VOX Varioble Frequency Oscillator is a direct reading, precision variable frequency device designed to reploce the erystal oscillator of a diversity receiver or of a transmitter. This oscillator is also used as a secondary standard.
The VOX provides a continuously variable output over the range 2 to 64 mes, with direct reading calibration over the bosic oscillator range with better than \(.002 \%\) long ferm stability. Frequency calibration is provided by means of an oven contralled 100 ke crystal oscillator with visual Zero Beat indication.
FREQUENCY RANGE: 2 to 64 mes, OUTPUT: \(3-75\) ohm coaxial autputs. STABILITY: Better than 20 parts per million for Zero to 50 degrees \(C\) change in ambient. RESETABILITY: Better than 20 parts per million to a colibrated frequency. ABDITIONAL FEATURES: 1. Crystal BFO for receiver control provided, 2, Crystal IFO for receiver control provided. 3. Three HFO erystal pasitions provided.

\section*{FREQUENCY SHIFT CONVERTER}

The Model CFA Frequency Shift Converter is on andio iype, dual channel converter for use with diversity or single receiver systems, used to convert the mark and space tones of a frequency shiffed signal info DC pulses capable of operating o teletypewriter.
The CFA is a compact equipment incorporating
visual monitoring, wide signal drift occeptance, mark hald and bias correction. The unit is available for optimized narrow shift opplications.


INPUT LEVEL: Minus 30 to plus 30 dbm. IIMITING: 50 to 60 db per channel. INPUT FREQUENCY DRIFT LIMITS: Up to 1500 cycles. KEYING SPEEDS: Up to 600 wom. TUNING INDICATOR: Two inch cathode ray tube. OUTPUT CIRCUIT: Neutral, ither side grounded or flooting.

\section*{FREQUENCY SHIFT EXCITER}

The Model XFK Frequency Shift Exciter is o high tobility rodio frequency oscillotor which replaces the crystal oscillator in the transmitter and provides the mark and space puises necessary for the transmission of teleprinter, telegroph, norrow band FM telephone, focsimile or telephoto intelligence. The XFK feotures two precision temperature controlled ovens providing the high stability required for unattended operotion.

FREQUENCY RANGE: 1 to 6.9 mcs. FREQUENCY SHIFT: Linear to 1000 cycles. OUTPUT: 3 Watts adiustable into 70 ohms CONTROLS: Directly calibrated in frequency. FREQUENCY CONTROL: 3 crystal positions ond one exterrial oscillator position. KEYING SPEED: 1000 wpm. STABILITY: 10 cycles for an ambient chonge of 50 degrees C. TRANSMITTER MULTIPIICATION: Automotic by means of a unique potching system.

BULLETIN 120



BULLETIN 118


The Model RAC Rhombic Antenna Coupler is a broodbanded transformer covering the frequency range 2 to 60 megacysles and is used to match an unbalanced transmission line to o balanced ontenna. The coupler is housed in a cost oluminum wathertight cose.
Lighining protection and DC continuity is provided.

FREQUENCY RANGE: 2 to 60 megacycles. INPUT IMPEDANCE: 700 and 200 ohms balanced. OUTPUT IMPEDANCE: 70 ohms unbalanced. FREQUENCY RESPONSE: Within 3 db over frequency range. LIGHTNING PROTECTION: By means of adjust. oble or gas filled gaps.

\section*{TRANSMITTING ANTENNA DISSIPATORS TERMHNATING RESISTORS AND DUMMY LOADS \\ S}

The TER Series are special non-inductive resistive elements pockoged for indoor or outdoor use as transmitting terminators, dissipators and dummy laods. The resistors are of a new design providing a minimum of reactance. The entire assembly is shock mounted in o plastic case ond may be quickiy removed for service. The resistors may be instantly brought up to full rated output power at minus 40 degree \(C\) without harm.

FREQUENCY RANGE: DC to 30 megocycles. POWER RATINGS: 500, 1750 and 5000 wotts. IMPEDANCES: 70 or 600 ohms balaneed or unbalanced. COOLING: Notural Air Cooling. OPERATING TEMPERATURE: Minus 40 to plus 100 degrees C.

BULLETIN 112


\section*{THE TECHNICAL MATERIEL CORPORATION}

\title{
DIVERSITY RECEIVING PACKAGE
}

bulletin 170
DRP-1

BULLETIN 190
DDR-3


BULLETIN 155


The Model DRP-1 Diversity Receiving Package combines the Model FFR (AN/FRR-49 (V) Receiver, the Model CFA, FS Converter, and the Model PSP, Power Supply, into a compact, easy to operate system capable of receiving AM, FS, CW and MCW signals in diversity within the frequency range of 50 to 400 Kes and 2 to 32 Mcs.
Either SPACE or FREQUENCY Diversity may be used. Prefuned, plug-in, receiver 'front ends' provide quick frequency change. The package may be remotely controlied by use of the Model RCR (AN/FRA-501) Remote Control System.

FREQUENCY RANGE: 50 to 400 Kcs and 2 to 32 Mcs . RECEPIION: AM, FS, CW ond MCW. FREQUENCY CONTROL: Crystal, Internol or External VFO and BFO. REMOTE CONTROL: By means of Model RCR Remote Control System. DIVERSITY COMBINING: AM-MCW.CW-Common diode lood. FS-CWAudio type converier Model CFA. OUTPUT: Audio output 8 or 600 ohms, teletypewriter output DC into 2000 ohms.

\section*{DUAL DIVERSITY RECEIVER}

The Model DDR-3 Dual Diversily Receiver is an all-purpose receiving system, covering the frequency range of . 54 to 31 mcs, for the reception of \(A M\), FS, CW, MCW and SSB signals in diversity. The system incorporates the new Model GPR-90 Receiver in conjunction with the VOX Variable Frequency Oscillator, a unique diversity combining unit and a visual funing indicator.

FREQUENCY RANGE: .54 to 31 mcs. RECEPTION: AM, FS, CW, MCW ond SSB. FREQUENCY CONTROL: Crystol or high tobility VFO. DIVERSITY COMBINING: AM, CW and SSBy meons of Model DCU Combining Unif, FS-Audio type converter, Model CFA.

\section*{ANTENNA MULTICOUPLER}

\begin{abstract}
(CU-5013/SRR)
The Model AMC-6 is a broadbanded branching amplifier which permits the connection of six high frequency receivers to one antenna. The unit provides excellent isolation between receivers and effectively prevents re-radiation into the antenno system. By use of the AMC, the overall noise system. By use of the AMC, the overal noise
figure of a receiver system is improved throughout the operating band and the receiver sensitivities are usually increased. Cascade operation will provide up to 36 receiver outputs.
\end{abstract}

FREQUENCY RANGE: 2 to 30 Mcs optimum, 100 Kcs to 30 Mcs with reduced efficiency. GAIN: 10 db plus or minus 2 db .2 to 30 Mcs . NOISE FACTOR: Less thon 4.5 INTERMODULATION: Down of leost 55 db for two 10,000 ur signols. IMPEDANCES: 50,70 bolonced or unbolonced, ond 300 ohm bolonced inputs to 50 or 70 ohm unbolonced outputs.

\section*{SERIES TRC}



Remember - Just any crystal and just any oscillator will not combine to produce spot frequencies.

Several facts should be considered other than frequency. The final oscillating frequency of the crystal is affected by the associated oscillator circuit through the reactive load and drive levels. For close tolerance operation and oven use, the ambient temperature also must be considered. Table I below indicates the magnitude of change in the frequency of a given crystal when varying the load capacitance into which it is operating.
\begin{tabular}{|lcccc|}
\hline TABLEI & \multicolumn{4}{c}{ OSCILIATOR IOAD CAPACITANCE } \\
& \(\underline{50 \mathrm{mmf}}\) & \(\underline{32 \mathrm{mmf}}\) & \(\underline{20 \mathrm{mmf}}\) & \(\underline{10 \mathrm{mmf}}\) \\
MEASURED & \(\underline{1999.950}\) & 2000 & 2000.060 & 2000.200 \\
CRYSTAL & 2999.800 & 3000 & 3000.200 & 3000.600 \\
FREQUENCY & 3999.700 & 4000 & 4000.400 & 4001.000 \\
IN & 6999.200 & 7000 & 7001.200 & 7003.300 \\
KC & 13998.0 & 14000 & 14003.1 & 14008.1 \\
\hline
\end{tabular}

In the manufacture of crystals, certain limits must be adhered to when finishing the unit. Such limits are often held to better than \(.001 \%\) for commercial applications. Tolerances of this magnitude mean nothing unless the oscillator in which
the crystal is to operate is an exact reproduction of the oscillator in which the crystal was calibrated. This same thing applies to wider tolerances. Persons doing work where close tolerances are required, (Broadcast, Commercial Two-Way, Civil Defense, CAP, etc.) should keep this in mind.

For overtone operation, crystal units especially processed for mode operation produce better results than fundamental types. Overtone crystals are calibrated on their overtone frequency and, therefore, are accurate frequency control units. Overtone crystals are valuable for receiver-converter applications and are normally not used in transmitters, since only a small amount of power is available under stable operating conditions. Overtone crystals are calibrated either for series resonance or parallel resonance operation.

Temperature-All crystals processed by International use "Zero Coefficient" cuts. Blank angles are held to closer tolerance in the F-6 units and, therefore, will change less over a given temperature range than the FA units. Tolerances are listed in the table below.
\begin{tabular}{|c|c|c|c|}
\hline TYPE & LOAD CAPACITANCE or OSCILLATOR & CALIBRATING TOLERANCE IN SPECIFIED LOAD & \begin{tabular}{l}
TEMP. TOLERANCE \\
\(-30^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline \begin{tabular}{l}
F. 6 \\
(fundamental)
\end{tabular} & Specified by customer (Use in commercial equipment) & \(\pm .0025 \%\) & \(\pm .002 \%\) \\
\hline \begin{tabular}{l}
F. 6 \\
(overtone)
\end{tabular} & Specified by customer (Use in commercial equipment) & \(\pm .0025 \%\) & \(\pm .002 \%\) \\
\hline FA (fundamental) & 32 mmf (only) & \(\pm .01 \%\) & \(\pm .01 \%\) \\
\hline FA (overione) & \begin{tabular}{l}
Anti-resonate operation without aditional load. \\
(See circuit with crystal)
\end{tabular} & \(\pm .01 \%\) & \(\pm .01 \%\) \\
\hline EX-1 & FO-1A or FO-IB Oscillator & Available from \(.001 \%\) to . \(01 \%\) as required & \(\pm .002 \%\) \\
\hline
\end{tabular}

Send for FREE Catalog covering International's complete line. Crystals available from 100 KC to 100 MC .

\section*{ FA.9 for AMATEURUSE}

\section*{Spot Frequencies 1500 KC to 90 MC}
\(.01 \%\) TOLERANCE - Wire mounted, plated crystals for use by amateurs and experimenters, where tolerances of \(.01 \%\) are permissable and wide range temperatures are not encountered.

\section*{DP 9 FA-9* (Pin Diameter .093 \()^{-}\) \\ FA-5 (Pin Diameter .050)}

Pin Spacing . 486 ("FA-9 fits same socket as FY-243)
```

.01% TOLERANCE

```
\begin{tabular}{|c|c|}
\hline FREQUENCY RANGE & PRICE \\
\hline Fundamental Crystals & \\
\hline 1,500-1,799 KC & \$4.50 \\
\hline 1,800-1,999 KC & \$4.00 \\
\hline 2,000- 9,999 KC & \$3.00 \\
\hline 10,000-15,000 KC & \$4.00 \\
\hline Overtone Crystals (For 3rd Overtone Operolion) & \\
\hline \(15 \mathrm{MC}-29.99 \mathrm{MC}\) & \$3.00 \\
\hline \(30 \mathrm{MC}-54 \mathrm{MC}\) & \$4.00 \\
\hline \(55 \mathrm{MC}-75 \mathrm{MC}\) & \$4.50 \\
\hline \(76 \mathrm{MC}-90 \mathrm{MC}\) & \$6.50 \\
\hline
\end{tabular}

Holders: Metal, hermetically sealed, available in . 093 diameter pins (FA-9) or .050 diameter pins (FA-5).

Frequency Range: 1500 KC to 90 MC
Calibration Tolerance: \(\pm .01 \%\) of nominal at \(30^{\circ} \mathrm{C}\).
Temperature Range: \(-40^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
Tolerance over temperature range from frequency at \(30^{\circ} \mathrm{C}\) : \(\pm .01 \%\).

Circuit: Destgned to operate into a load capacitonce of 32 mmf on the fundamental between 1500 KC and 15 MC . Designed to operate at anti-resonance on 3 rd overtone modes into a grid circuit without additional capacitance load. 5th overtone crystals are designed to operate at series resonance. (Write for recommended circuits).
andals are guaranteed only when operated under the conditions specified or in circuits recommended by International Crystal.


\section*{Delivery:}

ONE DAY PROCESSING

All orders of less than five units of any one frequency in the range 1000 KC to 60 MC will be mailed within 24 hours from the time received.

\section*{Precision Crystals 1000 KC to \(\mathbf{6 0}\) MC}

Wire mounted, plated crystals, for use in commercial equipment where close tolerances must be observed. All units are calibrated for the specific load presented by equipment.

Hoiders: Meiai, heremeicaliy seaied. Fin spacing . \(48 \overline{6}\)
Calibration Tolerance: \(\pm .0025 \%\) af naminal at \(30^{\circ} \mathrm{C}\).
Tolerance over Temp. \(\pm .005 \%\) fram \(-55^{\circ}\) to \(+90^{\circ} \mathrm{C}\).
Range: \(\quad \pm .002 \%\) fram \(-30^{\circ} \mathrm{C}\) ta \(+60^{\circ} \mathrm{C}\).
Circuit: As specified by sustamer. Crystals are available for all major two-way equipments. In mast cases the neces. sary correlation data is on file.
Drive level: Maximum-10 milliwatts for fundomental, 5 milliwatts for overtone.

Send for FREE Catalog covering International's complete line. Crystals available from 100 KC to 100 MC .



Pin dia. .125
Pin Ingth. . 620
Pin spacing on each of above is .ats

\section*{OSCILLATOR ASSEMBLIES}

\section*{Jumemeanc Crissil}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{OSCILLATOR SPECIFICATIONS} \\
\hline & \begin{tabular}{l}
FO. 1 \\
(fundamental)
\end{tabular} & \begin{tabular}{l}
FO. 1 B \\
(overtane)
\end{tabular} \\
\hline Feca, Ronge & \[
\begin{aligned}
& 200 \mathrm{KC} \\
& 15,000 \mathrm{KC}
\end{aligned}
\] & is MC. 60 MC (in 5 ranges) \\
\hline RF Output & 3 to 10 volts into 1200 shms & 2 to 7 valis into 18000 ohms \\
\hline Plate Power & \begin{tabular}{l}
210 voles \\
(1) 5 ma
\end{tabular} & \begin{tabular}{l}
150 valts \\
(1) 8 mo
\end{tabular} \\
\hline Heater Power & \begin{tabular}{l}
6.3 vals \\
@ 150 mo
\end{tabular} & \begin{tabular}{l}
6.3 valts \\
(a) 175 mo
\end{tabular} \\
\hline Tube & OBHS & 6AKS \\
\hline \multicolumn{2}{|l|}{Maximum Drift \(40^{\circ}\) f \(10120^{\circ}\) P-} & crystal* \\
\hline Maximum Deif whith (*) Plate Voltage Chong & \[
\begin{aligned}
& \text {. } 520 \% 1 \\
& .0002 \%
\end{aligned}
\] & \[
\begin{aligned}
& (. \pm 10 \%) \\
& .0015 \%
\end{aligned}
\] \\
\hline Colibration Tolerance & \[
\begin{aligned}
& .001 \% ~ 10 \\
& .01 \% \\
& \text { depending on } \text {, }
\end{aligned}
\] & \[
\begin{aligned}
& .001 \% \text { to } \\
& .01 \% \\
& \times-1 \text { srystal used }
\end{aligned}
\] \\
\hline Sixe & \[
4^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}
\]
overall & \begin{tabular}{l}
\[
4^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}
\] \\
overall
\end{tabular} \\
\hline Mounting & 4 holes (with brock & ckets provided) \\
\hline
\end{tabular}

\section*{3,0 (2) \\ for Generating Spot Frequencies with GUARANTEED Tolerance from 200 KC to 60 MC}

OSCILLATOR SPECIFICATIONS

Since the operating tolerance of o crystal is greatly offected by the ossocioted operoting circuit, the use of the FO-I Oscillator in coniunction with the fX. 1 Crystol will guorontee close toleronce operotion. Tolerances


F0-1 os close os .001 percent con be obtoined.

FO-1 for Fundamental Operation 200 KC to 15,000 KC
fo.1-Oscillotor kit (less rube and crystol) .................................. \(\$ 3.95\)
10.1A-Oscillator, foctory wired \& tested with tube (less crystal) ... \(\$ 6.95\)

FO-1B for Overtone Operation 15 MC to 60 MC ro.18-Oscillotor kit liess tube ond crystal)
10.18A-Oscillator, foctory wired \& tested with tube (less crystol) \$0.95* -Includes soil in one of lour ronger 13.20 mC , 21.30 MC , 31.40 MC , or \(\mathbf{4 1 . 6 0} \mathrm{MC}\), apesity when ordeting. Ex ro "oils asc each.

\section*{USES}

AMATEUR
- Ner Operation
- Frequency stondords
- Clote bandiedge

COMMERCIAL low bandiedge - Olignment purposes Clote bondiedge alignment purposes
operation

FO-THEK 100

Printed circuit oscillator for band-edge calibrator and frequency standard use.

Kit, complete with
tube \& crysial.... \(\$ 12^{95}\)
Wired \& tested.... \(15^{95}\)


FO-11


\section*{FMV-1 10 KC Multivibrator}
(for use with FO-1L 100 KC Oscillator)
Used in coniunction with the FO.1L 100 KC Oscillotor to form o complete secondory frequency stondord. When the FO. 1 LL 100 KC Oscillotor is occurately tuned to zero beat with WWV transmissions, precise frequency meosurements to 30 MC con be mode.
kit, less tube \(\quad \$ 5^{95}\)
Wired s lested, \(8^{95}\) with fube.
Additionol Requiremenls; Tube-12AT7
Power-6.3 Volts AC © 300 mo 150 Volis \(D C\) © 15 mo

\section*{FX=1 CRYSTAL}

FR us whis
10.1 osctutors

The FX-1 Crystal is designed for use only with the FO. 1 Oscillotor. For toleronces of \(.01 \%\) and \(.005 \%\), any \(\mathrm{FX}-1\) Crystal con be used with ony fO-I Oscillotor.

For toleronces closer than . \(005 \%\) the Oscillator and Crystol must be purchosed together. The Oscillotor is loctory wired ond the ceystol custom collibrated for the specific ossillotor.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TOLERANCE & \[
\begin{gathered}
200.499 \\
\mathrm{ke}
\end{gathered}
\] & \[
\begin{gathered}
500.999 \\
K C
\end{gathered}
\] & \[
\begin{gathered}
1000.1499 \\
K C
\end{gathered}
\] & \[
1500.1099
\] & \[
\begin{gathered}
2000.9999 \\
\mathrm{KC}
\end{gathered}
\] & \[
\begin{gathered}
10,000.15,000 \\
\mathrm{KC}
\end{gathered}
\] & \(15 \mathrm{MC}\). & \(30 \mathrm{MC}\). -60 MC \\
\hline . \(01 \%\) & 58.75 & \$12.50 & \$ 5.25 & \(\$ 3.75\) & \$ 2.50 & \$ 3.25 & \(\$ 3.00\) & \$ 4.00 \\
\hline . \(005 \%\) & \$12.50 & \(\$ 15.00\) & \$ 6.00 & \$ 4.50 & \$ 3.00 & \$ 4.00 & \(\$ 5.00\) & \$ 6.50 \\
\hline \multicolumn{9}{|l|}{(.0025\% and . \(001 \%\) tolerances are available only by purchasing the (0.1 Oscillator ond Crystal iogether)} \\
\hline . \(0025 \%\) & \$17.50* & \$17.50* & \$ 6.75* & \$ 5.25* & \$ 3.75* & \$ 4.75* & \$ 6.50* & \$ 8.50* \\
\hline . \(001 \%\) & \$25.00* & \$25.00* & \$ 8.00* & \$ 6.50 * & 5 5.00* & \$ 6.00* & \$10.00* & \$15.00* \\
\hline
\end{tabular}
*Prices are for erystal only. To insure tolerances closer than \(.005 \%\) crystal must be purchased with oscillator factory wired and tested. For total price add \(\$ 6.95\) to price of crystal desired.

\(\frac{\text { TVC-I (RYSTAL CONTROLLED CONVERTER }}{\text { for } 6 \text { METERS and } 2 \text { METERS }}\)

\section*{F0-6 OSCLIEATOR ASSEMBLY}

\section*{for 6 METER and 2 METER}
achieve STABLE CRYSTAL CONTROL with High Frequency Crystals

6 U8 Tube
Crystal Oscillator Range
48 MC to 54 MC
Outpul 50-54 MC or 144-148 MC
(Specify when ordering)
Crystal Required - 3rd Overtone FA. 5 Plate Valtage - 250 volts 20 mo Filament Voltage -6.3 volts (a) 450 mo Size \(-2^{\prime \prime} \times 2 \frac{3}{4}\)

Midget 6 Meter Transmitter - Provisions ore mode for separate \(\mathrm{B}+\) connections to the buffer stage for modulotion
Driver Unit for o higher power 6 meter tronsmitter. Will work ines 5763 rube which will provide omple drive for a 6146 finol. For 2 meter operation the unit con operote straight through on 48 MC and deive o 5763 rube os a trupler.
Receiver Local Oscillator for 2 Meters. 8y using the pentode section of the FO-6 os a tripler, this unit will provide injection voltoge for


Kit (less tube \(L\) crystal)...... \({ }^{3}\) "s Wired : Tested with tube (less crystal) 80:


For Connecting Standard Signals in Alignment of IF and RF Circuits. 12 MOST USED FREQUENCIES INSTANTLY AVAILABLE!

The Model C. 12 Test Oscillator has 11 internal crystal pasitians and I external, enabling a number of different crystals to be included in one unit for quick selection. Accammadates FX. 1 crystals from 200 KC to 15.000 KC . Built-in Attenuator has bath coarse and fine cantrals. A campact, self. contained unit complete with pawer supply.

200 KC to \(15,000 \mathrm{KC}\) Range For Crystals see FX-1 External Crystal Socket accommo dates crystals having .093 pin diometer and .486 pin spacing. International Types F-609 or FA-5),

Kit Form, includes tube \& Crystal, less batteries
s9's
Wired \& Tested
less batteries
s13 \({ }^{\circ s}\)

\section*{FO. 100 TRANSMITTER UNIT}

Similar to RC-100 except.far autput in 50-54 range.
\[
\begin{aligned}
& \text { Kit Farm, with tube, } \\
& \text { less crystal \& batteries... } \$ 795 \\
& \text { Wired \& Tested, less } \\
& \text { crystal \& batteries......... } \$ 10^{95}
\end{aligned}
\]

Uses FA. 5 crystal in 25 MC ronge.

\section*{For Model Radio Control Use}

Measuring \(31 / \mathrm{r}^{\prime \prime} \times 4\) " , the Madel RC. 100 Trans. mitter Unit is designed far coupling maximum power into the antenna ta abtain LONGER RANGE of madel control. With Snap-On cannections, uses 3 A5 tube in oscillator-multiplier circuit.

\section*{THE MOST ECONOMICAL QUALITY TRANS MITTER ON THE MARKET!}

Crystal controlled an 27.255 MC . Low price kit, easily assembled, complete instructions.


ORDER BY MAIL: Pastage will be prepaid when cash accampanies the order. Otherwise shipments are C.O.D.

\section*{UnternationalGRINATMO. G0, Inc 18 N . Lee Phone FO 5.1165 OKLAHOMA CITY, OKLA.}

\section*{HEATHKITS}


\section*{The world's fine}

\section*{ham equipment}
in kit form. . .

\section*{designed especially to}

\section*{meet your requirements!}

Heath amateur radio gear is designed hy hams-for hams, to insure maximum "on the air" enjoyment. Good devign and top-quality components guarante reliability. Heathhits are easy to build and are easy on your hudget! Y'ou save by dealing direct. and you may use the Heath Time Payment Plan on orders totaling \(\$ 90.00\) or more. Write for complete details.

\section*{HEATHKIT}

\section*{DX-100}

TRANSMITTER KIT

Phone or CIV-160 through 10 meters.
- 100 watts RIO on phone-I20 watts CW -parallel olto firnal.
- Built-in FFO -pi network output circuit.

Easy to huild-TVI suppressed

\(\$ 18950\)
\$18.95 dwn., \$15.92 mo. Shpg. Wr. 107 Lbs .

The Heathhit DX-100 phone-CW transmitter offers features far beyond those normally received at this price level. It has a built-in VFO. buitt-in modulator. and buitt-in power supplies. It is TVI suppressed, and uses pi network interstage coupling and output coupling. Matches antenna impedances from approximately 50 to 600 ohms. Provides a clean strong signal on either phone or CW, with RF output in excess of 100 watts on phone. and 120 watts on CW. Completely handswithing from 160 through 10 meters. A pair of 1625 tuhes are used in push-pull for the modulator, and the tinal consists of a pair of 6 Lho tubes in parallel. VFO dial and meter face are illuminated. High-quality components throughout! The DX-100 is sery casy to build, even for a beginner, and is a proven, trouble-free rig that will insure many hours of enjoyment in your ham shack.

\author{
HEATHCOMPANYBENTONHARBOR G, MICHIGAN \\ A Subsidiary of Daystrom, Inc.
}

\section*{HEATHKIT DD \(\mathbf{Z - 3 5}\)}

\section*{TRANSMITTER KIT}

\author{
PHONE AND CW
}

This transmitter features a 6146 final amplifier to provide 65 watt plate power input on CW, with controlled-carrier modulation peaks up to 50 watts on phone. Modulater and power supplies are built in, and the rig covers \(80,40,20,15,11\) and 10 meters with a single band-change switch. Pi network output coupling provides for matching various antenna impedances. Employs 12BY7 oscillator, 12BY7 buffer and 6146 final. Speech amplifier is a 12AX7. and a 12AU7 is employed as modulater. Panel control provides switch selection of three different crystals, reached through access door at rear. Panel meter indicates final grid current or final plate current. A perfect low-power transmitter both for the novice or the more experienced amateur. A remarkable power package for the price. The price includes tubes, and all other parts necessary for construction. Comprehensive instruction manual insures successful assembly.

\[
\$ 5 \underbrace{95} \quad \begin{gathered}
\text { shpg. Wt. } \\
24 \text { lbs. }
\end{gathered}
\]
\(\$ 5.70 \mathrm{dwn} ., \$ 4.78 \mathrm{mo}\).
Phone or CW-80 through 10 meters.
65 watts \(C W-50\) watts peak on phone-6146 final amplifier.
- Pi network output to match various antenna impedances.
\(\rangle\) Tremendous dollar value-easy to build.


MODEL DX-20

\(\$ 3.60 \mathrm{dwn} ., \$ 3.02 \mathrm{mo}\). Shpg. Wi. 18 Lbs.

\section*{неатнкit D区-20} CW TRANSMITTER KIT

D Designed exclusively for CW work.
- 50 watts plate power input-80 through 10 meters.
- Pinetwork output circuit to match various antenna) impedances.
- Attractive and functional styling-easy to build.

Here is a straight-CW transmitter that is one of the most efficient rigs available today. It is ideal for the novice, and even for the advanced-class CW operator. This 50 watt transmitter employs a \(6 \mathrm{DQ6A}\) final amplifier, a 6 CL 6 oscillator, a 5 U 4 GB rectifier and features one-knob bandswitching to cover 80, 40, 20, 15, 11 and 10 meters. It is designed for crystal excitation, but may be excited by an external VFO. A pi network output circuit is employed to match antenna impedances between 50 and 1000 ohms. Employs top-quality parts throughout, including "potted" transformers. etc. If you appreciate a good signal on the CW bands, this is the transmitter for you!


\section*{HEATHKIT}

COMMUNICATIONS-TYPE, ALL BAND

\section*{RECEIVER KIT}


This receiver covers 550 kc to 30 mc in four bands, and is ideal for the short wave listener or beginning amateur. It provides good sensitivity and selectivity, combined with fine image rejection. Amateur bands are clearly marked on the illuminated dial scale. Features transformer-type power supply-electrical band spread-antenna trimmer-separate RF and AF gain controls-noise limiter-headphone jackand AGC. Has built-in BFO for CW reception.
model ar-3 Shpg. Wi. 12 Lbs.
\({ }^{\mathbf{2}} \mathbf{2 9}^{95}\)
incl. excise tax
lless cabinetl
(A) HEATHKIT VFO KIT MODEL VF-1
Covers 160. 80, 40, 20, 15, 11 and 10 meters with three basic oscillator frequencies. Better than 10 volt average RF output on fundamentals. Requires 250 VDC at 15 to 20 ma , and 6.3 VAC at 0.45 A . Incorporates regulator tube for stability and illuminated frequency diat. Shpg. wt. 7 lbs . \(\$ 1.95\) dun., \(\$ 1.64\) mo. \(\$ 19.50\)
(B) HEATHKIT GRID DIP METER KIT MODEL GD-1B
Continuous coverage from 2 mc to 250 mc with prewound coils. 500 ua panel meter for indication. Use to locate parasitics, for ncutralizing, determining resonant frequencies, ete. Will double as absorption-type wavemeter. Shrg. ut. 4 libs. \(\$ 2.00\) dwn., \(\$ 1.68\) mo.
\(\$ 19.95\)
(C) HEATHKIT ANTENNA IMPEDANCE METER KIT MODEL AM-1
The AM-I covers 0 to 600 ohms for RF tests. Functions up to 150 mc . Used in conjunction with a signal source, will determine antenna resistance and resonance, match transmission lines for minimum SWR, determine input impedance, etc. Shpg. wt. 2 lbs. \(\$ 1.45\) dwn., \(\$ 1.22 \mathrm{mo}\).
\(\$ 14.50\)

\section*{HEATHKIT " \(Q\) " MULTIPLIER KIT} MODEL QF-1
Functions with any receiver having IF frequency between 450 and 460 kc that is not AC DC ispe. Operates from receiver nower supply, requiring only 6.3 volts AC at 300 ma (or 12.6 vac at 150 ma ), and 150 to 250 vdc at 2 ma. Simple to connect with cable and plugs supplied. Provides extra selectivity for Separating signals. or will reject one signal to eliminate heterodyne. Effective Q of approximately 4000. Shpg. wt. 3 lbs. \(\$ 1.00\) dwn., \(\$ 8+\) mo. \(\$ 9.95\)


\section*{HOW TO ORDER...}

It's simple-just identify the kit you desire by its model number and send your order to the address listed below. Or, if you would rather budget your purchase, send for details of the Heath Time Payment Plan for orders totaling \(\$ 90.00\) or more.


\section*{Components to make air waves behave}

\section*{RESISTORS}

In building, modifying or repairing ham equipment, it pays to select resistors and related components from the IRC line. As the largest manufacturer of resistance units, IRC offers more types... more sizes... and a wide choice of terminals. You're bound to find the unit that meets your circuit, space, and terminal requirements at a reasonable price. With IRC components, you also receive exceptional uniformity and stability of performance . . . extras made possible by the most advanced component engineering in the industry.


\section*{Fixed Composition Resistors}

Type BT resistors are preferred by electronic designers as the basic resistor for most circuits. They are compact and low in cost, yet they provide good stability and frequency characteristics. Low operating temperature and excellent power dissipation are other features. Element is fully insulated and protected by molded housing. \(1 / 3,1 / 2,1\) and 2 watt ratings ( \(40^{\circ} \mathrm{C}\). ambient). Resistance values from 10 ohms to 22 megohms. \(\pm 5 \%\) or \(10 \%\) tolerance. SEND FOR CATALOG B-1.

\section*{Low Power Wire Wound Resistors}

Type BW resistors provide exceptional stability over the lower resistance ranges. The wire element is automatically wound on an insulated core, and completely enclosed by a compact molded housing. Operating temperature is unusually low for a wire wound unit. Overioads have little permanent effect upon the resistance value. \(1 / 2,1\) and 2 watt ratings. Values from 0.24 to 8200 ohms. \(\pm 5 \%\) or \(10 \%\) tolerance. FULL DETAILS IN CATALOG B-5.

\section*{Medium Power Wire Wound Resistors}

Conservatively rated, Type PW wire wound resistors can be operated continuously at full rated power. In addition, they are completely insulated and protected, have axial leads for easier installation, and are clearly and permanently identified. The PW-4 is a four-watt type with molded housing. The PW- 7 and PW-10, rated at 7 and 10 watts respectively, are high temperature resistors with a rectangular ceramic case. Resistance values from 1 to 25,000 ohms. \(\pm 10 \%\) tolerance. ASK FOR CATALOGS P-1 \& P-2.


\section*{High Power Wire Wound Resistors}

IRC's fubular power resistors are accepted everywhere as the standard in high power circuit applications. The resistance element is uniformly wound on a strong ceramic core, and insulated by an exclusive IRC coating. This coating gives maximum heat dissipation and utmost protection from environmental conditions. To meet varied requirements, the resistors are available in fixed and adjustable types... with mounting lug, soldering lug, or wire lead terminals... iai \(10,25,50,80,100\) and 200 watt ratings. Resistance values from 1 to as high as 100,000 ohms. WRITE FOR CATALOG C-1

\section*{Deposited Carbon Resistors}

The combination of \(1 \%\) accuracy, stability, and economy make Type DC resistors a logical choice for precision circuit applications. These compact units offer excellent load and long-time stability. At the same time, extremely low inductive and capacitive effects make them ideally suited for high frequency applications. Packed in protective plastic tubes. \(1 / 2,1\) and 2 watt ratings. Resistance values from 10 ohms to 100 megohms. REQUEST CATALOG B-4.

\section*{Molded Boron Carbon Resistors}

The Type MBC resistor offers many features in addition to \(1 \%\) accuracy, high stability on load, and excellent HF characteristics. For example, it provides unusual stability of resistance under varying temperature conditions. Furthermore, it has a molded housing which improves load life characteristics by permitting increased heat dissipation. This same housing also minimizes moisture effects and protects the resistor from mechanical damage. Rated at \(1 / 2\) watt, the Type MBC is available in values from 10 to 510,000 ohms. DESCRIBED IN CATALOG B-8.

\section*{Precision Wire Wound Resistors}

The exceptional stability and relatively low inductance of Type WWJ resistors is a direct product of IRC's advanced winding techniques. The element is automatically wound under uniform tension to eliminate "shorted turns" and strains. In addition, the element is impregnated by a special insulating compound which minimizes the effects of temperature changes. Type WWJ resistors include lug and lead terminal types. Resistance values from 0.1 ohm to 2.5 megohms. \(\pm 1 \%\) tolerance standard. SEND FOR CATALOG D-1.

\section*{CONTROLS}


\section*{Type Q Volume Controls}

IRC Type \(Q\) carbon control is extremely popular because of its "cushioned" turn, its compact size, and quality construction. To meet mounting requirements, it is available with a Universal Knob Master Shaft or any one of 16 other fixed shafts. To meet electrical requirements, it can be supplied plain or tapped, in 103 resistance values, and with 7 standard tapers. The versatile Type \(Q\) can also be supplied with IRC power switches or made into dual, triple, or tab mount controls. SEND FOR CATALOG DLR-56.

\section*{Universal} Wire Wound Controls

With IRC's new universal controls, it now takes only one compact unit to handle all requirements from 2 to 4 watts. This improved design also offers a greater range of resistance values- 56 in all, from 10 to 25,000 ohms. The Type WPK, a plain control, has a \(3^{\prime \prime}\) long Knob Master Shaft to fit all knobs. The Type WPS, available either plain or tapped, has a \(3 / 4^{\prime \prime}\) long slatted and knurled shaft. Both offer a choice of 3 standard tapers, and can be supplied with IRC switches. Multisections can be added to make dual or triple controls. WRITE FOR CATALOG DLR-56.

\section*{Type LC-1 Loudness Control}

This continuously compensated control boosts lows and highs as volume is decreased-maintains depth and brilliance even at whisper level. The Type LC-I eliminates makeshift compensating units with all their limitations. It automatically maintains proper balance of all frequencies in the audio spectrum at any listening level. Simplicity itself-as easy to wire into an audio circuit as any standard three-terminal volume control. IRC switches can be added. SEE CATALOG DLR-56.


\section*{Other Products}

\section*{MICROSTAK Selenium Diodes}

Type GA diodes are the best way to obtain very high back resistance and low forward resistance in low current circuits. Because of special IRC production techniques, their miniature cells are extremely uniform. These cells make possible a diode of small size, yet provide the unit area characteristics of larger high grade plates. In addition, the diodes are hermetically sealed. All these factors make Type GA diodes ideal for many applications, including high frequency circuits up to 1 megacycle. REQUEST CATALOG SR-I.

\section*{Insulated Chokes}

Type CL chokes are available in four sizes and dozens of characteristic combinations to meet a wide variety of space and electrical requirements. The winding is completely enclosed and fully insulated by a compact molded housing. This housing protects them from humidity, abrasion, and physical damage. It also prevents any possibility of "shorting" to chassis. All Type CL chokes are color coded for easy identification. They cover a range of inductance from .22 to 39 microhenrys. FULL DETAILS IN CATALOG H-I.


\section*{Tension-Grip Nut Drivers}

The popular IRC nut driver ends slipping and dropping without the obvious disadvantage of magnetic action. A special steel band holds hex nuts or screws in a vise-like grip. This permits holding and driving in one operation... or automatic removal without dropping. Nut driver shaft is drilled to a depth of \(11 / 4^{\prime \prime}\). Handle is made of a special shockproof plastic. Six socket sizes available: \(1 / 4^{\prime \prime}\), 5/16" \({ }^{\prime \prime}\), " \(1 / 2^{\prime \prime}\), \(3 / 3^{\prime \prime}\), \(7 / 16^{\prime \prime}\) and \(1 / 2^{\prime \prime}\). SEE CATALOC DLR-56.

\section*{FOR COMPLETE INFORMATION}

You can buy any af the products described here or get full details from your local IRC distributor. Or write to IRC for informative bulletins.

\section*{IRC Also Manufactures...}
molded deposited carbon resistors - unmolded boron carbon resistors - high voltage resistors - high frequency resistors - voltmeter multipliers - encapsulated precision wire wound resistors - resistance strips \& discs - hermetic sealing terminals

Dept. 44, 401 N. Broad St., Philadelphia 8, Pa. In Conada: International Resistance Co., Ltd., Toronto, Licensee

\section*{FOR}

\section*{MIL-SPEC}

AN is the prefix for Military Specification electrie connco tor ancmblies. Reasonably priced becauce of extentive tooling and world-wide detuand. Light weight shells. In. terchangeahite inserts.


260 different invert layouts. 15 dianneters, 6 xiell siy let. 22 to 245 smip. contarts. Thermocouple and conxial contacts ivailahle. Cable clamps, condait fittings, telercoping bu-lsings junction -hrilo, dut capa tlumme receptarles, potimg Lite Majority of asemblies availahle from -hrlf stock.

HIGH-TEMPERATURE, .. FOR AIRCRAFT AKD INDUSTRAL USE Firewoll connectors in standard steel shell varieties and insert combinations. Maintain circuitry for 5 minutes of 2000 ' F .
YIBRATIONPROOF-MOISIUREPRUDF AP.
PLICATIONS. With resilient inserts, interfacial sealing.
henmeticatir sealed applications. Steel thells, glots-fured inserts. Standard, miniature, and sub. miniature sizes. For control, relay, power, instrument applications.

PRESSURIZED APPLICATIONS. AN-C pressurized for 30 psi. Connon \(\mathrm{K}^{\prime}\) s. pressurized. Wide variety for different conditions.

Also, heavy-duty watertight units, external power plugs and receptacles; high-voltoge types: special breakaway designs.

Printed circuit connectors in 5 sizes. 10
to 44 gold-ploied contacts, Zyiel shell.
PLEASE REFER TO DEPT. 138


Cannon miniatures and sub miniatures are designed for amplifiers, miniature indicators, computer circuits, telemetering equipment, small pre-amps, and general instrumentation where space is limited and current requirements are generally not over \(\overline{5}\) ainperes, Variety of shell styles, junction shell, and insert arrangements. 3 to 50 contacts,
plus coaxials.

\section*{UNIT PLUG-IN'S}
 CANNON PLUGS


Cannon atulio connector- pive
 bour evers nerilicty to met four every nerd. Stamlard on
 ing, panel, locknue wall-mountaflapter rerepptacles mountingtwoskang receptace, single and lock. 5-to-30-amaples; latel. wacial.

\section*{for RACK/PANEL/CHASSIS}

Permit quich disconncer, ill. terchanta, rephacment, test. ing and inspection of alowm. Whics and whearemmblies. For transmitters, Tl cambras, con trol equipmont, ralar, "ta, Kach-andopanel, intewral rlamp, thell-less lyper, hailanderar dicombefls, efolerstrew extration. 10to l:06 onttacts inclueding high woltare.

过
Cannon Electric Co., 3208 Humboldt St., Ios Angeles 31 Calif. Facteries in Los Angeles; Easl riaven, Torohto, Can.; London, Eng.; Melbourne, Australia. Licensees in Paris, France; Tokyo, Japan,

\section*{PRESENTING THE GREAT \\ World Radio LINE!}

\(\star\) Pi-Network matches most antennas from 52-500 ohms \(\star\) Electronic Cris-Black weying for maximum clarity of signal (time sequence operation)
* New audio comaression circuit holds modulation at high level without usual clipping distortion
* AF Section enclosed with complete shielding for TVISuppression
* Special Exterior air ventilating system
* Separate power supply for Modulator, allowint better overall valtage regulation
* Many other top teatures, including 500 ohm input. push-to-taik, built-in antenna changeover relay, etc.

THE GLOBE KING AUDIO SPEAKS FOR ITSELF!
*with external exciter

\section*{THE WRL}

\section*{GLOBE CHAMPION 300}

Completely Bandswitching, \(160-10 \mathrm{M}\).
* Quilf-in vFO, nush-to-talk, aid antenna changeuver relay * Improved Time-Sequence (grid-brock) Keying
\(\star\) Pi-Network Output circuit, \(\mathbf{4 8} \mathbf{7 0 0}\) ahms
* Extensively TVI-shielded, filtered and bypassea
\(\star\) High level Class "B"Modulation with splatter suppression; new audio compression circuit halds modulation at bigh level without usual clipping distortion
- Ready to go on SSB, with any external Exciter
\(\star 350\) watts \(\mathrm{CW}, 275\) watts tone, and 300 watts on .SSB (P.E.P.)"
* Provisions for power reduction tô 15 watts for Nuvice use
- Iwo new Amperex ggos Final tubes (1000 valts on plates) allow \(331 / 9 \%\) satety factor
-with external excriter

\section*{THE WRL}

\section*{GLOBE KING 500B}

\author{
You Pay Only \(\$ 69.90\) Down
} Cash Price: \(\$ 699.00\)


\title{
ere they are; - the new wri Wonder
}


2M, 10 ELEMENT Only \$995


6M, 5 ELEMENT Only \$1495
own above ape just four of the new Globe Spanner Beams. Also ailable: \(-2 \mathrm{M}, 5\) Element ( \(\mathbf{5 7 . 9 5}\) ); \(15 \mathrm{M}, 3\) Element ( 527.95 ); M Spannette ( \(\$ 54.95\) ), and 5 Band Variable Doublet ( \(\$ 24.50\) ), or dividual Doublet Coils at \(\$ 12.50\) per pair. All Globe Spanners ? guaranteed for top construction, top performance, and lowest st. Send for detailed brochure today!


\section*{LOOK AT THESE FEATURES!}

The 10,15 ant 20 M Spanners, and all Triple Globe spanners have this specially designed "carpet beater" end of aluminum wire to reduce fatigue caused by vibration and increase the broad band characteristics.

Ruggedly desizned Boom/Mast clamp with 4 -way U-bolt 12 GA galvanized steel channel for positive grip. Also used as Element/Boom clamps in the 15 and 20M Spanners, the Spannette and the Triple Spanner Series.

10, 15 \& 20 M beams inclide this carefulify desikned dipole, combination \(\mathbf{T}\) or gamma match for any line balanced or coax 52-450 ohms. Insulation is molded polyethylene and cycolac: matching unit is factory preassembled.


10M, 3 ELEMENT Only \(\$ 19^{95}\)

\section*{THE TRIPLE SPANNERS}

2-ELEMENT TRI-BAND: for the ham with limited space, wishing top transmission on 10,15 and 20 meters without stacking beams. Maximum gain in minimum space. Single transmission line. Spacing, 1 refiector on 20 M . Pay only \(\$ 6.00\) per mo.

3-Element tri-band: the pefformance standard of all tri-band antennas in the ham field. Spacing, . 15 director, 1 reflector on 20M. single transmission line. All Tripte Spanners factory pre-tuned, prematched and pre-adjusted. \(\$ 8.00\) per mo.
5-ELEMENT TRI-BAND: Champion of beams, the best plus a little extra. All heavy duty construction. \(2 \times 3^{\prime \prime}\) rectangular aluminum boom. Spacing, .1 all reflectors and directors. outperforms any beam in its class, bar none. Only \(\$ 19,50\) per mo.
\[
\text { Only } \$ 2995
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Amateur Band & Madel Number & Description & Gain in DB Dver Dipole & \[
\begin{gathered}
\text { I/B Ratio } \\
\text { in } 0 \mathrm{OB}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Horizontal } \\
& \text { Beam Widin }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Boom } \\
& \text { length }
\end{aligned}
\] & \[
\begin{gathered}
\text { Boom } \\
\text { Diameter }
\end{gathered}
\] & Element Diameter & \[
\begin{gathered}
\text { Element } \\
\text { Wall }
\end{gathered}
\] & \[
\begin{gathered}
\text { Himent } \\
\text { Alloy }
\end{gathered}
\] & Max Mast Diameter & \begin{tabular}{l}
langest \\
Element
\end{tabular} & Approx. Net \(w\). \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
10, 15, 20 \\
METER \\
BANDS \\
|Triple \\
Clobe \\
Spanners)
\end{tabular}} & 1527-2 & \[
\underset{\text { Elem. }}{2}
\] & f. & \[
\ddot{4}
\] & \(68^{\circ}\) & \(96{ }^{\prime \prime}\) & \(: 2: 1\) &  & \[
\begin{aligned}
& .058 \\
& 049 \\
& 049 \\
& \hline
\end{aligned}
\] & \[
6061516
\]
\[
\text { Ant } 41
\] & \(12^{\prime \prime}\) & 29' & 36\% \\
\hline & 152T-3 & \[
\begin{gathered}
3 \\
\text { flem } \\
\hline
\end{gathered}
\] & 8. & 20
6. & 595 & \(216^{\prime \prime}\) & \(12^{\prime \prime}\) & . & ' & " & \(\mathrm{H}^{\prime \prime}\) & 30.7 & 58* \\
\hline & 1521.5 & \[
\stackrel{5}{5}
\] & \[
\begin{aligned}
& 12 \\
& \text { A. }
\end{aligned}
\] & \[
\begin{aligned}
& 22 \\
& A_{1} .
\end{aligned}
\] & 54. & 36 ft . & \[
\begin{aligned}
& 2.3 \\
& \text { Rect. }
\end{aligned}
\] &  & " & " & \(2^{\prime \prime}\) & 30.7 & 96\# \\
\hline
\end{tabular}

\section*{WRL'S NEW}

OR THE \(]\) ST TIME
. \(N\) EFFICIENT BRAKE
atan

\section*{Unbelievably} LOW COST!


\section*{Roto Brake}

A spring-actuated, solenoid released braking unit, mounting between the rotator and antenna (in most cases, without taking antenna down). Performs two basic functions; - provides positive braking action and thrust and radial bearing surfaces to convert any iv or other type rotator to the finest ham antenna rotating assembly available.

Photo shows Rototrake mounted internally in tower at least 10 " in diameter. Adapter kits are availatile for mounting Brake on masts up to \(2^{\prime \prime}\) in diameter, towers less than \(10^{\prime \prime}\) in diameter, and telephonetype poles. The Rotobrake is extremely easy to adiapt to all of the above mountings, and may be put into opera. tion within a very short time. Write immediately for complete Tyer at watr sew tatetrate, shepint |Nef extaity oed crtery jet parretwes.
ONLY \(5 E 93\) PIR MO.

Just \$7.45 Down Cash Price: \$74.50


\section*{HQ-100}

Q-multiplier for continuously variable selectivity. Electrical bandspread tuning. 10 -tube superheterodyne with noise limiter. Auto-response circuit for finest fidelity under all conditions. Optional Telechron Timer. Completely voltage regulated and temperature compensated. Continuously tunable from 540 KCS to 30 MCS .


\section*{HQ-150}

A really different receiver. Combines Q-multiplier with crystal filter to provide the widest range of tuning techniques. Extra fine superheterodyne circuit with full noise limiter. Full 2 -watt output. New, improved S meter with illuminated scale. Built-in crystal calibrator.


Established 1910

See these Outstanding Buys af your Hammarlund Dealer, or write for literature on all three . . . Bulletin HB57 Hammarlund Manufacturing Company, Inc., 460 West 34th Street, New York 1, N. Y.
International Division; 13 East 40th Street, New York 16, N. Y.

\section*{HAMMMARLUND SETS THE PAGE}

64

highest trades: get the absolute top trade on your old equipment at allied. Tell us what you've got and what you wantwe'll come up with the best deal anywhere.
Reconditioned Gear-large selection, new set guarantee. Ask for latest list-lowest prices on top reconditioned equipment.
LARGEST STOCKS: get evervthing from our largest stocks of Amateur Gear and industrial electronic supplies-all the nationally. known dependable lines.
EASY-PAY TERMS: only \(10 \%\) down, or your trade-in as down payment (pay in 60 days and get full carrying charge refund). Use our money-saving easy-pay plan. Extra: 15-day trial on all receivers.
HAM-TO-HAM HELP: our staff of 35 Amateurs goes all-out to give you the straight dope you want. You'll like the kind of personal attention Amateurs have enjoyed at Allied for so many years.

\section*{ALLIED RADIO}

\section*{100 N. WESTERN AVE., CHICAOO BO, ILLINOIS}

Sewing the Amateur for 36 Years


\section*{PRODUCTS of the YEAR}


L-1000A


5100-B


51SB-B/51SB
All prices subject to change without notice

\section*{1 KW Grounded Grid LInear Amplifier-Model L-1000A}
- Outstanding performance on all bands 80 through 10 meters - Peak envelope power 1 KW SSB, 875 watts CW - Heavy duty pi-network output circuit allows precise adjustment and loading on all bands - Broadbanded input requires no tuning - Contains own power supply - All power switching operations controlled by a single front panel switch. Ideal for use with \(5100-\mathrm{B}\) or \(51 \mathrm{SB}-\mathrm{B} / 5100-\mathrm{B}\) combinations and other commercial or home built transmitters - Full output with r-f excitation of only 80 watts. Power Source 117 VAC 60 cycles.
NET PRICE
\(\$ 460.00\)

\section*{Medium Powered Transmitter 5100-B}
- Completely self-contained including power supply and VFO - Bandswitching on the 80-40-20-15-11/10 meter bands. Peak envelope power 180 watts CWSSB; 145 watts AM. Excellent SSB when used with the 51SB-B described below. Stable VFO accurately calibrated for all amateur bands including 10 meters. Bias system provides complete cutoff under key-up conditions - Excellent TV1 suppression - Pi-network output - Output receptacle on the back for powering other units including the 51SB-B. - Plenty of audio for \(100 \%\) AM modulation at all times.
NET PRICE
\(\$ 475.00\)

\section*{Single Sideband Generator 51SB-B/51SB}

Excellent SSB with your present transmitter - Provides push-to-talk, speaker deactivating circuit, TV1 suppression - Complete bandswitching on 80-40-20-15-11/10 meters - Utilizes frequency control method of your present rig - R-F portion has \(90^{\circ}\) phase shift network, double balanced modulator, and two class "A" \(1-f\) voltage amplifiers. - All operating controls on the front panel - Input impedance 50 ohms resistive; input voltage 1.5-2.0 RMS on all bands.

MODEL 51SB-B-For use with B \& W 5100-B from which it derives all operating power.
NET PRICE
. \(\$ 265.00\)
MODEL 51SB-Similar to 51SB-B, but contains own power supply. For use with other commercial or home built rigs.
NET PRICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\$279.00

BARKER \& WILLIAMSON, INC.
Bristol, Pennsylvania


\section*{new quality products from BaM}

\section*{MODEL 851 Medium Powered Bandswitched Pi-Network Inductor Assembly}

An ultra-compact, highly efficient, integrally bandswitched pi-network inductor assembly for single or parallel tube operation 80 through 10 meters. Rated for 2000 VDC at 250 ma input SSB-CW .. . 1250 VDC at 200 ma input for AM. Minimum measured " \(Q\) " of 300 .

\section*{NET PRICE}
\(\qquad\)Choke-Transmitting Type

Ideal for parallel or series fed circuits. High quality grooved steatite form. Operates 80 through 10 meters. Rated for 2500 VDC at 500 ma. net price
. 83.75

\section*{Microphone Adapter Unit}

Provides all necessary circuitry for switching a single microphone and push-to-talk features on transmitter-SSB generator combinations.
Use Model 51 MCA with B\&W 5100-5/51SB-B Use Model 51 MCA-B with R\&W \(5100 / 51\) SB Use Model51MCA-C withCollins32V/B\&W51SB net price \(\$ 15.00\)

\section*{Tuning Knobs}

Satin-etched, machined aluminum knobs dress up any piece of equipment... give it a professional appearance. Four sizes available, one plain, three skirted. Models 900-903.

NET PRICE 900

\section*{1-KW Pi-Network Assembly}

A high-power, integral bandswitched tank coil for 80 to 10 meter operation. Ideal for class \(C\) or linear operation using triodes or tetrodes in conventional or grounded grid circuits. Minimum "Q" of 300. Model 850.
NET PRICE

\section*{T-R Switch}

Fully automatic electronic antenna switching from transmitter to receiver and vice-versa. For power applications up to the legal limit. Ideal for fast break-in operation on SSB, AM, or CW. Receiver gain 6 db at 3.5 mc . Broadbanded . . . no tuning required. Model 380B. NET PRICE ................................................. \(\$ 23.70\)

\section*{Grid Dip Meter}

A highly accurate, sensitive instrument. May be used as a grid-dip oscillator, signal generator, or absorption wavemeter. Five colorcoded plug-in coils cover 1.75 to 260 mc . Colorcoded dial easily read. Operates from 110 VAC. Easy to use in hard-to-get-at places. Model 600. NET PRICE
. \(\$ 39.75\)

\section*{Multi-Position Coax Switches}

For 75 or 52 ohm line. Instantly switches coax lines . . . no screwing or unscrewing coax connectors. Handles up to 1 KW modulated power. Max. cross-talk - 45 db at 30 mc . Model 550A 5 -position switch. Model 551A 2-pole, 2-position switch.
NET PRICE 550A.
\(\$ 8.25\)


Prices subject to change without notice.



4E27A Radial-Beam Power Pentode
The 4E27A gives outstanding performance in all types of operation. When suppressorgrid modulated, it will deliver 75 watts at carrier conditions.
\begin{tabular}{lccc} 
& CW & AM & SSB \\
Plate Voltage & 2500 v & 2500 v & 3000 v \\
Driving Power & 2.3 w & 2.0 w & 0 \\
Power Input & 460 w & 380 w & 345 w
\end{tabular}

Information on Eimac tubes and their applications is available free upon request from our Amateur Service Bureau. Write today for copies of our Quick Reference Catalogue, Application Bulletin No. 8 "Power Tetrodes," Application Bulletin No. 9 "Single Sideband," and other valuable literature.

4X250B Radial-Beam Power Tetrode
A compact, rugged tube unilaterally inter. changeable in nearly all cases with the famous \(4 \times 150 \mathrm{~A}\), with the advantages of higher power and easier cooling.
\begin{tabular}{lccc} 
& CW & AM & SSB \\
Plate Voltage & 2000 v & 1500 v & 2000 v \\
Driving Power & 2.8 w & 2.1 w & 0 \\
Power Input & 500 w & 300 w & 500 w
\end{tabular}

4-125A Radial-Beam Power Tetrode
The versatile tube that made screen grid transmitting tubes popular. This favorite for commercial, military and amateur use is radiation cooled.
\begin{tabular}{lccc} 
& CW & AM & SSB \\
Plate Voltage & 2500 v & 2500 v & 3000 v \\
Driving Power & 3.8 w & 3.3 w & 0 \\
Power Input & 500 w & 380 w & 315 w
\end{tabular}

4-250A Radial-Beam Power Tetrode
A high power output tube with low driving requirements. A pair of Eimac 4-250A's easily handle a kilowatt input in AM, CW or SSB service.
\begin{tabular}{lccc} 
& CW & AM & SSB \\
Plate Voltage & 3000 v & 3000 v & 3000 v \\
Driving Power & 2.6 w & 3.2 w & 0 \\
Power Input & 1035 w & 675 w & 630 w
\end{tabular}

4C×300A Ceramic Power Tetrode
A new all ceramic-metal high power tetrode designed for rugged service. Will withstand heavy shock and vibration and operate with envelope temperatures to 2500 centigrade
\begin{tabular}{lrrr} 
& \(C W\) & AM & SSB \\
Plate Voltage & 2000 v & 1500 w & 2000 v \\
Driving Power & 2.8 w & 2.1 w & 0 w \\
Power Input & 500 w & 300 w & 500 w
\end{tabular}


4-1231


World Radio History


\title{
Manufacturer of Transmitting Tubes
}

\section*{triodes}
\begin{tabular}{ll} 
2C39A & 100TH \\
2C39B & 100 TL \\
3C24 & 152 TH \\
3W5000A3 & 152 TL \\
3W5000F3 & 250 TH \\
3W10,000A3 & 250 TL \\
\(3 \times 2500 \mathrm{~A} 3\) & 304 TH \\
\(3 \times 2500 \mathrm{~F} 3\) & 304 TL \\
3X3000A1 & 450 TH \\
3X3000F1 & 450TL \\
6C21 & \(592 / 3-200\) \\
25T & 750 TL \\
35T & 1000 T \\
35IG & 1500 T \\
75TH & 2000 T
\end{tabular}

75 TL

\section*{TETROOES}
\begin{tabular}{ll} 
4.65A & \(4 \times 1500\) \\
\(4.125 A\) & \(4 \times 150 \mathrm{G}\) \\
4.250 A & \(4 \times 250 \mathrm{~B}\) \\
4.400 A & \(4 \times 250 \mathrm{~F}\) \\
4.1000A & \(4 \times 250 \mathrm{M}\) \\
\(4 \mathrm{C} \times 300 \mathrm{~A}\) & \(4 \times 500 \mathrm{~A}\) \\
4 PR60A & \(4 \times 500 \mathrm{~F}\) \\
4 W300B & \(4 \times 5000 \mathrm{~A}\) \\
4W20.000A & \\
\(4 \times 150 \mathrm{~A}\) &
\end{tabular}

4E27A/5-125B

DIODES RECTIFIERS HIGH VACUUM
2.01C 2.25A 2.50A 2.150D 2-240A 2.2000 A 2×3000F 250R 253 8020 (100R) 2CL40A MERCURY VAPOR KY21A R×21A

\section*{KLYSTRON}

1 K015CA 1 K015CG 1K015XA 1K015XG 3K2500SG 3 KM3000LA 3K3000LQ \(3 \mathrm{~K} 20,000 \mathrm{LA}\) 3K20,000LF \(3 \mathrm{~K} 20,000 \mathrm{LK}\) 3K50,000LA 3K50,000LF 3K50,000LK 3K50,000LQ 4K50,000LQ

\section*{CERAMIC RECEIVING TUBES \\ 5C2A \\ \(33 C 3 A 2\)}

HEAT DISSIPATING CONNECTORS

AIR SYSTEM SOCKETS SK-100 SK-110 SK-200 SK-300 SK-400 (4-400A/4000) SK-500 (4-1000A/4000) SK. 600 ( \(4 \times 150 \mathrm{~A} / 4000\) ) SK-610 (4X150A/4010)
SK-620
SK-630
SK-640
AIR SYSTEM SOCKET CHIMNEYS
SK. 406 (4.400A, 4006) SK. 506 (4.1000A/4006) SK-606 (4X150A /4006)
vacuum CAPACITORS
VC6-20 VC50-20 VC6-32 VC50-32 VC12-20 VVC60-20 VC12-32 VVC2-60-20 VC25-20 VVC4.60-20 VC25-32

IONIZATION GAUGE

\section*{VACUUM}

SWITCH ANO COILS
VS-2
VS. 5
VS-6
12 Volt Coil
24 Volt Coil

PREFORMED CONTACT FINGER STOCK
Available in 8 widths, single or double sided.

TUBE EXTRACTOR
SK-601 (for \(4 \times 150\) and \(4 \times 250\) tubes)

\section*{EITEL-MCCULLOUGH, INC. sumpanaid}


\title{
HERE'S YOUR GHRISTMAS TREE! The Heavy Duty E-Z WAY "Z" Series
}

\author{
3 Heights . . . 40 Ft. . . . \\ \(\qquad\) \\ 60 Ft. Plus 17 Ft. of Mast
}

Especially designed to withstand heavy-wind-loads, these are full crank-up and tilt-over towers for stacking the multiple band arrays. Three models, each of which will adequately support a "Christmas Tree" installation at full height in 60 MPH wind without guy wires.
The rotating mast, designed to support these heavy arrays, is 2" OD - \(1 / 4^{\prime \prime}\) wall cold drawn' seamless tube (1025 tensile) 20-ft. long. When installed in the top section, the antenna mast will nest down into the tower so that, with the beams stacked \(8=\mathrm{ft}\). apart, the top beam will be just 17-ft. above the tower. Two adjustable self-aligning bearings spaced \(3 \mathbf{f t}\). apart at the top of the tower make it easy to plumb the rotating mast.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Tower \\
Height
\end{tabular} & \(A\) & \(B\) & \(C\) & \(X\) & \(Z\) \\
\hline 40 & \(38^{\prime}\) & \(21^{\prime}\) & \(10^{\prime}\) & \begin{tabular}{l}
\(10^{\prime \prime}\) wide \\
1.05 legs
\end{tabular} & \begin{tabular}{l}
\(14^{\prime \prime}\) wide \\
\(\mathrm{p}^{\prime} 315\) legs
\end{tabular} \\
\hline 50 & \(50^{\prime}\) & \(28^{\prime}\) & \(13^{\prime}\) & \begin{tabular}{l}
\(14^{\prime \prime}\) wide \\
1.315 legs
\end{tabular} & \begin{tabular}{c}
\(20^{\prime \prime}\) wide \\
1.66 legs
\end{tabular} \\
\hline 60 & \(60^{\prime}\) & \(33^{\prime}\) & \(15^{\prime}\) & same & same \\
\hline
\end{tabular}

\section*{SAFETY REST}
permits tower to stop at any desired elevation without strain on the lifting cable.

\section*{WINCHES}
both are 1500 lb . capacity with spur wheels. The tilt over winch also has a brake in it.

\section*{ROTOR MOUNTING PLATE}
drilled for either a Telrex R 200 Rotator or the heavy-duty type Prop. Pitch Motor. Towers are available Hot Dip Galvanized or Dip Coat (rubber base) Aluminum Enamel.

CRANKS UP \& DOWN
for easy erection and maintenance.

\section*{TILTS OVER}
to the horizontal making both the installation and adjustment of the array a simple matter.

\section*{NO GUY WIRES}

Takes less than 4 square feet of space in yard.

\section*{NO CONCRETE}
when set in hard clay or comparable soil.

The E-Z WAY GROUND POST is the secret of our quick, guy-less installation. Heavy-welded on plates as cross-fins below the ground level resist movement sideways when dirt is firmly tamped around them. Top of post has big. welded-on steel plate with full \(3 / 4\)-inch diameter steel pin. Just below the hinge on the ground post is a big husky retainer plate, matching a cross plate on the tower itself. When erected, two \(5 / 8\) inch diameter bolts slip through these two plates, to reinforce the hinge. Fullwidth \(5 / 8\)-inch rod locks bottom to ground-post, too, relieving tilt cable and winch of strain until put into actual use.

\title{
E-Z WAY TOWERS FOR EXTRA STRENGTH - EXTRA SAFETY
}

E-Z WAY TOWERS are easy to erect yet strong enough to withstand a wind load of 40-60 lbs. per sq. \(f\). The new \(E-Z\) Way portable gin pole makes it easy to erect a 120 ft . tower in one piece without leaving the ground. Thousands of \(\mathbf{E - Z}\) Way Towers are giving outstanding service in all parts of the country and abroad.

\section*{SPECIFICATIONS}
1. Aero Dynamic Design-Triangular towers built of Cylindrical steel rod


Based on an assumed wind load of 40 lbs . per sq. ft.
 and tubing, combine to give greatest strength with least wind resistance 2. Continuous Diagonal Bracing gives greatest resistance against twisting. 3. Built-in Ladder on one side. No obstructions to interfere with easy climbing.
4. High Tensile Steel \((110,000)\) for greater strength 5. Wide Spread Legs, 10 to 36 inches for greater rigidity.
6. Electric Are Welded-Long fillets 35 H . at every weld point.
7. Saves Time -Four to six sections can be raised in one piece. Additional sections may be added to top.
8. Dual Lightning Rod extends 3 feet above beacon. 9. Hot Dipped Galvanized after fabrication - also available dip coated in Goodyear Plialite S. 5 (Rubber Base) aluminum enamel at lower prices. 10. All towers, except \(C-10\), use flange-type connectors as pictured. C-10 supplied with outside bolted couplings.


TOWERS ARE OUR BUSINESS all types
MICRO WAVE - H type, twins, and single guyed towers.
BROADCASTING \(A M, F M\) and \(T V\) guyed towers.
2 WAY COMMUNICATION, HAM RADIO and HOME TV -crank-up, tilt-over, self-supporting and guyed types.

\section*{one name stands}


\section*{SSB-100F}

\section*{Exciter/Transmitter}

Frequency Range:
\begin{tabular}{|c|c|c|}
\hline 80 meter & 3,500 to & 4,000 Mc \\
\hline 40 meter band & 7,000 to & 7,500 Mc \\
\hline 20 meter band & 14,000 to & 14,500 Mc \\
\hline 15 meter band & 21,000 to & 21,500 Mc \\
\hline 11 meter band & 26,900 10 & 27,400 Mc \\
\hline 10 meter band & 28,000 & 30,000 \\
\hline
\end{tabular}

Tube Lineup: 22 tubes, including two rectifiers, one voltage regulator, one oscilloscope and one 5894 power amplifier.
Type of Emission: CW - AM - LSB - HSB
Power Ratings: DC average input SSB-100 watts; AM input (two tone test) -60 watts. Peak envelope power input SSB-144 watts. Peak envelope power output SSB-100 watts.

Audio Characteristics: Response: \(\pm 3 \mathrm{db}\) from 400 to 3300 cycles. Noise and hum: 50 db or more below PEP level.

Audio Input: .05 volts for rated power output (any high impedance crystal or dynamic microphone).

Harmonics and Spurious Responses: Spurious mixer products-40 db or more down. Third order distortion products -35 db or more down. Carrier suppression-50 db or more down. TV interference suppression -40 db or more second harmonic, 60 db or more higher harmonics.

Frequency Stability: Control oscillator-(800 to 1300 kc\() - \pm 100\) cycles after two minute warm up period. Output frequency-within 300 cycles after five minute warm up period. Dial accuracy- \(\pm 2 \mathrm{kc}\) after calibration.

Cabinet: Receiver type table model with hinged cover.
Finish: Flat gray.
Size: \(171 / 4^{\prime \prime}\) long by \(103 / 4^{\prime \prime}\) high by \(15^{\prime \prime}\) deep.
Weight: 58 lbs.
Shipping Weight: 65 lbs .

\section*{out... ELDICO}


\section*{SSB-1000 Linear Amplifier}

Frequency Range: \(80,40,20,15\), and 10 meters.
Tube Lineup: 9 tubes; two 866, two OA-2, one OB-2, one 6AU6, one 1CP1, two \(4 \times 250 B\).
Power Rating: 1000 watts PEP input and 750 watts AM input.
Finish: Flat gray enamel.
Cabinet: Receiver type table model with interlocked hinge cover.
Weight: 88 lbs.
Shipping Weight: 95 lbs.

A division of Dynamics Corporation of America
72 East Second Street, Mineola, L. I., N. Y., PIoneer 6-5212


74

\section*{4} NOVICES, AMATEURS, ENGINEERS, and

\section*{EXPERIMENTERS}

\section*{Across the Nation}

\section*{RELY UPON}

\section*{harvey}

\section*{for all their}

\section*{ELECTRONIC and} COMMUNICATION REQUIREMENTS!

Telephone (hre Judson 2.1500
Whatever your individual or company requirement, whether it be as a ham, experimenter, technician, or commercial and industrial engineer, Harvey Radio has the manpower and facilities to take care of your parts and equipment needs. Complete stocks and a pin-pointed inventory control system place your order on its way hours after it is received. And you can depend upon Harvey that what you receive is exactly as ordered, and that it will function and perform to your complete satisfaction.
Remember, you are always welcome at Harvey's. So, when in New York, make it a point to come in and say "Hello."
Harvey is Always at Your Service

AUTHORIZED DISTRIBUTORS OF


RECEIVING AND NON-RECEIVING TUBES BATTERIES - TEST EQUIPMENT TELEVISION COMPONENTS SERVICE PARTS


\section*{SEMICONDUCTORS - INDUSTRIAL • ELEGTRO-MEDIGAL}


GOMMUNIGATION




\author{
2 and 6 METER STANDARD COMMUNICATORS
}

The very well known Communicator is now available in several dif. ferent models to meet fully the varied requirements of amateur, CAP C.D, Commercial and Airport services. Each model is a complete station-superhet receiver with "Coscode" RF, crystal controlled trans. mitter. (VFO is also ovailable separately.) Self contained power supply far 115 V AC und \(6 \mathrm{~V} D C\). (Also 115 V AC and \(12 \mathrm{~V} D C\).) Madulator may also be used os a FA system, mobile or fixed. All models highly comport, \(73^{\prime \prime} \times 10^{3} \mathrm{a}^{\prime \prime} \times 99^{\prime \prime} 2^{\prime \prime}\). All ore light in weiaht \({ }^{\prime}\) partable.
2 METER DE LUXE COMMUNICATOR
Tunable reseiver, crystal controlled transmitter. (AM) covers 144-148.3 mss. 2E26 final delivers 6.7 watts output. Has adiustable squeich (silent standy) fomous Gonset noise clipper, phone jack and speaker muting, dial light switch.


2 METER STANDARD COMMUNICATOR
Some as above except less squelch, phone jack, etc.
\(115 V A C / 6 V D C\) (less squeish, etc.) \(\# 3026\)... Net 209.50

\section*{6 METER DE LUXE COMMUNICATOR}

Operates on amateur 6 meter band. Has "Cascode" front end, double conversion for increased selectivity usable on 6 meters. Transmitter delivers 6 to 8 watts output, De luxe models only

\section*{\(115 V\) AC/6V DC}
\& 3049 .
\(115 V A C / 12 V D C\)
\$3058
Net 229.50
Net 229.50


\section*{RF LINEAR AMPLIFIERS . .}

RF linear amplifiers for 2 and 6 meter Commu. nicators ta increase corrier output to 50.80 watts. No alterations required on Communiwatts. No alrerations required on Communicator. Tune.up is ecasy, foolproot, with no
donger to tubes. Switching the Communicator to transmit automatically activates the amplifier including the internal antenno reloy. Amplifier uses 2 -826 VHF triodes with forced-air cooling. Heavy-duty power supply employs 2 5U4G rectifiers.
\begin{tabular}{|c|c|c|}
\hline 2 & METERS & 149.50 \\
\hline 6 & MEYERS & 149.50 \\
\hline
\end{tabular}

\section*{G-66B FIXED-MOBILE RECEIVER}

The Gonset G.66B is a high performance communications receiver whose small physical size and universol power supply odapts it equally to fixed station or mobite operation. Six bands-including standard broadeast-each amateur band individually calibrated, each spread across the easy-to-read slide rule dial scale.
Desirable features include:
Outstanding operation on all reception modes: AM, CW, SSB with a new high order of stability for mobile CW and SSB made possible by stabilized HF and BF oscillators and by crystal contralled second conversion oscillator.
Double conversion with 2050 kc ist I.F
262 kc 2nd I-F with B high "Q" puned circuits gives 3.5 kc band width at 6 db down, together with steep skirt selectivity.
6 bands-Standard BC, 80.40-20.15-10 meters.
Universal "'3 way" pawer supply attaches and plugs into rear of receiver us cabltet extension. May also be mounted separately and connected with patch cable. G. 668 receiver, Less power supply.
189.50
"3 way" ( \(6 \mathrm{~V}, 12 \mathrm{~V}\) DC and 115 V AC) power supply/ speaker unit. Specify 6 or 12 volt operation.....44.50

\section*{"Communicator"... The \\ complete VHF station "Package"}

\section*{C-D . . 2 and 6 METER COMMUNICATORS}

Now available .. special Communicator models which exactly meet opplicable FCDA specifications.

These units are similar to their commercial-type 2 and 6 meter counerparts, are the same size but are finished in an attractive yellow calor. 8ecouse of their extreme compastness and the foct that they will operate from car battery or \(A C\) mains, these units hove great vility as mobile or fixed stations in Civil Defense applications.

Receiver is a sensitive superhetrodyne with "Cascode" RF and three stages of J.f. Six meter models incorparate double conversion for added selectivity desirable in this lower frequency ronge. Receivers of both models ore tunoble, the 2 meter model covering 144.148.3 ncs. the oner model 49.54 mcs. Noise clipper, adjustable squelch milot light on off switch, earphone jack with speaker muting, are all pilot light on off switsh, earphone jack with speaker muting, are all
desirable features. Transmitter uses 2E26 output tube delivering about desirable features. Transmitter uses \(2 E 26\) output tube delivering about
6 watts of carrier output with AM modulation. Four crystal controlled frequencies are provided by means of a selector switch on the panel

2 METER (FCDA ITEM No. U-16) \(6 \mathrm{~V} D C \quad 115 \mathrm{VAC}\)
12V DC/115V AC
6 METER (FCDA ITEM No. U-14)
6 V DC 115 V AC
\(12 \mathrm{VDC} / 115 \mathrm{VAC}\)
12VDC/IISV AC
Prices include tubes, microphone, one crystal, canvas carrying case and portable antenna.
\begin{tabular}{rlr}
\(z 3087 \ldots\) & 299.50 \\
\(z 3077 \ldots\) & 299.50 \\
& & \\
\(=3088 \ldots . .\). & 299.50 \\
\(z 3079 \ldots\) & 299.50
\end{tabular}
299.50
299.50
299.50

\section*{C-D RF LINEAR AMPLIFIERS . . .}

A new linear Rf amplifier to match the Gonset C-D Communicators. These new amplifiers have the same tront ponel size and pre finished in the same bright yellow color with blue and red C.D emblems.
They are similar to the Gonset commercies version linear, will increase C.D Communicator output carrier power to 50 watts. They are easy to odiust, foolpraof, nan critical. Push pull 826 VHF triodes with forced air cooling are used.


All prices subject to change.

\begin{tabular}{|c|c|r|}
\hline BAND & MULTIPLIER & ChYSTAL FREC \\
\hline 80 Meters & 1 & 3700.0 to 375 \\
\hline 40 Meters & 2 & 3587.5 to 3600 \\
\hline 40 Meters & 1 & 7175.0 to 720 \\
\hline 15 Meters & 1 & 21.100 to 21.250 \\
\hline 15 Meters & 3 & 7033.33 to 708 \\
\hline 15 Meters & 6 & 3516.66 to 354 \\
\hline 2 Meters & 6 & 24.166 .66 to 24.50 \\
& \\
\hline
\end{tabular}


\section*{BLILEY CRYSTALS FOR SPOT FREQUENCIES IN NET OPERATIONS}

MC9
\begin{tabular}{|l|c|c|c|}
\hline TYPE & APPLICATION & TOLERANCE & PRICE \\
\hline MC9 & \(3 \mathrm{mc}-12 \mathrm{mc}\) experimental frequencies & \(\pm .03 \%\) & \(\$ 6.50\) \\
\hline SR10 & \(12 \mathrm{mc}-27.5 \mathrm{mc}\) experimental frequencies & \(\pm 03 \%\) & 8.50 \\
\hline
\end{tabular}

\section*{BLILEY CRYSTALS FOR AMATEUR•EXPERIMENTAL CITHZEN'S BAND. SINGLE SICNAL FILTERS}


Note A: We will suppiy to iniegral spoi irequencies (no fractions) as ordered; calibration
士 500 cycles in factory fest oscillator.

\section*{NEW HIGH STABILITY PACKAGE WITH 100 kc AND 1000 kc CRYSTALS}

This compact temperature controlled package provides a high stability reference source at both 100 kc and 1000 kc. Precision reference for general amateur use.
\begin{tabular}{|c|c|c|c|}
\hline TYPE & DESCRIPTION & STABILITY & PRICE \\
\hline TCO-2L & 6.3 V Oven & \(75^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\) & \(\$ 9.00\) \\
\hline BH6A Crystal & 1000 kc & \(\pm .0002 \%\) & 12.50 \\
\hline BH9A Crystal & 100 kc & \(\pm .0005 \%\) & 11.00 \\
\hline
\end{tabular}


Crystal units describ beat (at \(75^{\circ} \mathrm{C}\) ) in this circuit.
BLILEY ELECTRIC C O. union station bulloing ERIE, PA.
Maior producers of crystal units, crystal ovens, oscillator assemblies and solid ultrasonic delay lines for commercial and military equipment.

\section*{81}

\section*{If If's Shown In This Handbook}

\section*{Henry}

\section*{Has It!}


Henry has everything in the amateur equipment field, new or used . . transmitters or receivers, and Henry has the NEW equipment FIRST.
Complete Stocks

Henry wants to trade and he trades big. YOU get truly liberal allowances on your equipment. Tell us what you want to trade. We also pay cash for used equipment.
Low Terms You get the best terms anywhere because Henry finances all the terms with his easy time payment plan. \(10 \%\) down (or your trade-in accepted as down payment), 20 months to pay.
100\% Satisfaction
Henry gives you a guarantee of " \(100 \%\) satisfaction" or your money back at the end of a 10 day trial.
10 Day Trial
Fast Delivery
Try any receiver or transmitter for 10 days. If you are not perfectly satisfied, return it and all you pay are shipping costs.
Shipments 4 hours after receipt of order. Send only \(\$ 5.00\) with order, and shipment will be made COD immediately ... Order from either store TODAY!
Low Prices Henry's large purchasing power means low prices to you. You just can't beat our wholesale prices.

"World's Largest Distributors of Short Wave Receivers."

\title{
Where Dependability counts Use OHMロ『!
}


\section*{Rutoskars}
 ABnepecte virese empali, 3n, se 72
 -eves shes

\section*{AMTE RM RHMYS}

 trees. AA 10 YAC er 32 VLC, netinlurtiet hres, hiedel to? en soty heve e reefent

 pephees.
"ITHI DTVL" RESSTORS
 velis resherees on peftere- Y , \& eed
 he 11 nepyetine.

\section*{FIXED RESISTORS}
 velure: \(23,30,100,100,300\) velte velies

 Pren 0. 4 to 100,000 eltme

ADJISTABLS ABSINTORS
Yevers onempled getelly effextalie the the vele eaederl. Alfolente lyes tee be

 abien.

\section*{R. F. CHOKES}


TAP SWITCHIS


 eat 100 anperae.

\section*{PRECISION MESISTORS}





\section*{DUMMY ANTENNA}

 enedeet hepepery neegh if toe seat lac.


> Write for Stock Catalog

\section*{OHMITE MANUFACTURING COMPANY}

3608 W. Howard St., Skokie, III., (Suburb of Chicago)


\section*{FOR LABORATORY...SERVICE...PRODUCTION} PREFERRED AROUND THE WORLD


\section*{RCA-WV98A... SENIOR}

VOLTOHMYST. . . incorporates all the important time-proved performance features of earlier VoltOhmysts including direct peak-to-peak readings of complex waveforms. Has improved circuit providing great accuracy, and a BIG full. visian meter face with the easiest-to-read scales ever designed into a VTVM! Supplied complete with WG. 299A DC/AC-Ohms probe and cable, and most detailed instructions.


RCA-WV-77-C... JUNIOR
VOLTOHMYST . . . biggest value in vacuum-tube voltohmeters. Em. bodies new design features in addi. tion to operational characteristics which have made VoltOhmysts the choice of thousands in radio and TV servicing, industry, electronics, communications, broadcasting, and the armed forces. Supplied camplete with WG.299A DC/AC.Ohms probe and cable, and complete instruction book.


RCA-WV-87-B . . . MASTER VOLTOHMYST... Truly a Master VoltOhmyst, it features a \(7^{\prime \prime}\) wide. face meter and \(\pm 3 \%\) accuracy on all ranges. Easy-to-read peak-topeak scales are particularly useful for TV, radar, and other types of pulse work. Has accuracy and stability necessary for most applica. tions. Supplied complete with new, slim WG-299C probe and flexible cable, current leads, ground lead, complete instructions.

Modern engineering, testing, and production techniques demand test instruments with high precision, practical operating features. RCA VoltOhmysts are especially suited for operation over extended periods under rigorous production-line and field conditions: electronically protected meters; accuracy unaffected by normal line voltage fluctuations; easy-to-read expanded scales; one zero-setting holds for all voltage and resistance ranges; accessory probes extend all DC voltages, and extend frequency response to 250 Mc . All RCA VoltOhmysts are tested and calibrated to the highest laboratory standards. Remember, only RCA makes the VoltOhmyst.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CHOOSE THE VOITOHMYST THAT SUITS YOUR NEEDS} \\
\hline Features & Master VoltOhmyst WV.87B & Senior Voltohmyst WV-98A & Junior Voltohmyst WV.77C \\
\hline Measurements: & & & \\
\hline DC Voltage & 0.02-1500v & \(0.02 \cdot 1500 \mathrm{v}\) & 0.05-1200v \\
\hline AC (rms) & & & \\
\hline Voltage & 0.1 .1500 v & 0.1 .1500 v & 0.1.1200v \\
\hline \[
\begin{aligned}
& \text { AC (peak ito. } \\
& \text { peak) }
\end{aligned}
\] & & & \\
\hline Voltage & 0.2 .4200 v & 0.2.4200v & \\
\hline Resistance & \(0.2 \cdot 1000 \mathrm{meg}\). & 0.2-1000 meg. & 0.2-1000 meg \\
\hline Current & 10 uamp. 15 amp. & - & \\
\hline Accuracy:* & & & \\
\hline DC current & \(\pm 3 \%\) & & \\
\hline DC Voltage & \(\pm 3 \%\) & \(\pm 3 \%\) & \(\pm 3 \%\) \\
\hline AC Voltage & \(\pm 3 \%\) & \(\pm 3 \%\) & \(\pm 5 \%\) \\
\hline & *At full-sc & le points & \\
\hline
\end{tabular}

SEND THIS COUPON FOR COMPLETE INFORMATION

\footnotetext{
RCA INTERNATIONAL DIVISION - DEPT. TE-33-A
RADIO CORPORATION OF AMERICA
30 Rockefeller Plaza
New York 20, N. Y., U.S.A.
Please send details and descriptions on Voltohmysts
\(\qquad\)
}

I MY NAME
\(\qquad\) 1
RADIO CORPORATION OF AMERICA
30 Rockefeller Plaza, New York 20, N. Y. U. S. A.|
Trademarks璃Registered
address

he American Radio Relay League, through its publications in the field of amateur radio, is acknowledged as the leading contributor to this fascinating art. The whole picture of amateur radio, from basic fundamentals through the most complex phases of this appealing hobby, is covered in the League library. The newcomer who succumbs to the first nibbles of the radio bug can find his "gateway" to amateur radio in such introductory booklets as Hou' to Become a Radio Amateur, Learning the Radiotelegraph Code, and the License Manual. Other League publications, especially that all-time radio best seller. The Radio Amateur's Mandbook, are storchouses of information for everybody interested in electronics and radio communication. Supplies such as \(\log\) books, world map, calculators, message blanks and binders are specially designed for the needs of active operating amateurs.

Whether novice or old-time amatcur, student or engineer, League publications will help you to keep abreast of the times in the ever-expanding field of electronics. Most of the publications described in the following pages are handled by your radio dealer. If you cannot obtain them locally, they may be ordered direct from I eague Headquarters.


\section*{QST}

QST has been the radio amateur's own journal since 1915. Although primarily a ham magazine, it is found on the desks and library shelves of engineers, technicians and others in the electronics field who wish to keep in touch with the development of the art. There is something for everyone in QST, from the Novice to the Old Timer.

QST and ARRL membership \(\$ 4.00\) in U.S.A.,
\$4.25 in Canada, \$5.00 elsewhere
THE RADIO AMATEUR'S HANDBOOK Internationally reccgnized, universally consulted. The all-purpose volume of radio. Packed with information useful to the amateur and professional alike. Written in a clear, concise manner, contains hundreds of photos, diagrams, charts and tables.
\$3.50 U.S. A., \$4.00 U.S. Poss. and Canada, \(\$ 4.50\) elsewhere; Buckram Edition, \$6.00 Everywhere.
HOW TO BECOME A RADIO AMATEUR
Tells what amateur radio is and how to get started in this fascinating hobby. Special emphasis is given to the needs of the Novice licensee, with three complete simple amateur stations featured. 50 C
THE RADIO AMATEUR'S LICENSE MANUAL
Study guide and reference book, points the way toward the coveted amateur license. Complete with typical questions and answers to all of the FCC amateur exams-Novice, Technician, General and Extra Class. Continually kept up to date. 50¢

\section*{LEARNING THE RADIOTELEGRAPH CODE}

For those who find it difficult to master the code, this publication supplies the key to the problem. Designed to help the beginner overcome the main stumbling block to a ham license. Contains practice material for home study and classroom use. 50 c

\section*{SINGLE SIDEBAND FOR THE RADIO AMATEUR}

A digest of the best SSB articles from QST. The newcomer to Single Sideband as well as the experienced SSB user will find it indispensable. Includes discussions of theory and practical 'how-to-build-it" descriptions of equipment. Covers both reception and transmission.
\(\$ 1.50\) U.S.A. proper, \(\$ 1.75\) elsewhere

\section*{THE ARRL ANTENNA BOOK}

Containing 16 chapters and profusely illustraled, the Antenna Book includes all necessary information on theory and operation of antennas for all amateur bands; simple doublets, multielement arrays, rolaries, long wires, rhombics, mobile whips, etc.
\(\$ 2.00\) U.S.A. proper, \(\$ 2.25\) elsewhere



\section*{A COURSE IN RADIO FUNDAMENTALS}

A complete course of sludy for use with the Radio Amateur's Handbook, enables the student to learn the principles of radio by following the principle of "learning by doing." Applicable to individual home study or class use.
\(\$ 1\) U.S.A. proper, \(\$ 1.25\) e/sewhere

\section*{HINTS AND KINKS}

If you build equipment and operate an amateur radio station, you'll find this a mighty valuable book in your shack and workshop. More than 300 practical ideas.
\(\$ 1\) U.S.A. proper, \(\$ 1.25\) elsewhere

\section*{THE MOBILE MANUAL FOR RADIO AMATEURS}

This manual is a useful and informative guide to mobile radio. It is a collection of articles on tried and tested equipment that have appeared in QST. Contents include a section on receivers, transmitters, antennas and power supplies. A "must" for the bookshelf of anyone interested in

the installation, maintenance and operation of mobile stations.
\(\$ 2.50\) U.S. A. proper, \(\$ 3.00\) elsewhere

\section*{ARRL WORLD MAP}

Printed in eight colors on heavy map paper with 267 countries clearly oullined. Continental boundaries, time zones, amateur prefixes, plainly marked. Size: \(30 \times 40\) inches. \(\$ 2.00\)

\section*{QST BINDERS}

No need to let your copies of QST rest in a disordered pile. A QST binder will keep them neat and orderly. Each holds a one-year file.
\(\$ 3.00\) (available in U.S. and Possessions only).

\section*{LIGHTNING CALCULATORS}

Quick and accurate answers with ARRL Lightning Calculators! Type A for problems involving frequency, inductance, capacity. Type B for resistance, voltage, current and power. \(\$ 1.25\) each

\section*{SUPPLIES}

Active amateurs need these supplies: ARRL Logbook, 50 e U.S.A., 60 C elsewhere. Minilog, 30 c U.S.A., 35c elsewhere. Radiogram blanks, \(35 ¢\) per pad postpaid. Message delivery cards, 4 each stamped, 2 ecch unstamped. Members' slationery, 100 sheets \(\$ 1.00 ; 250\) sheets \(\$ 2.00\);

\section*{American Radio Relay League}

Administrative Headquarters; West Hartlord, Connecticup, U. S. A.

\author{
American Radio Relay League, West Hartford, Conn., U. S. A.
}

Being genuinely interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enclose \(\$ 4.00^{*}\) in payment of one year's dues, \(\$ 2.00\) of which is for a subscription to S.ST for the same period. [Subscription to SST alone cannot be entered for one year for \(\$ 2.00\), since membership and subscription are inseparable. \(]\) Please begin my subscription with the issuc.

The call of my station is
The class of my operator's license is \(\qquad\)
I belong to the following radio societies \(\qquad\)

Send my Certificate of Membership \(\square\) or Membership Card \(\square\) (Indicate which) to the address below:

Name \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{MORE AND MORE HAMS ARE PUTTING THEIR SKILL TO WORK SERVICING MOBILE RADIO SYSTEMS}


SAM SEMEL, W2SHE, servicing the mobile two-way radio of an ambulance, just one of the 200 mobile units he maintains regularly as a General Electric Communication Equipment Authorized Service Station. A ham for 12 years, Sam has been a General Electric Service Station for four years.


SERVICING A MOBILE UNIT in his Elmira, N. Y. shop, Sam utilizes his years of radio knowledge and basic test equipment. He is kept up-to-date on all latest techniques by General Electric l'roduct Service Section, which provides constant flow of information based on experiences in all parts of the country, as well as from General Electric engineering laboratories.

HUNDREDS OF HAMS are now helping to keep public safety agencies, transportation companies and industrial companies "on the air." Hams are finding an increasing call for skilled service men to maintain the many thousands of mobile radio units now used in police cars, fire engines, light delivery cars and trucks, heavy tractor trailers, and an expanding variety of industrial vehicles.

Thousands of new mobile radio systems are installed every year, and manufacturers as well as users have turned to the amateur ranks as a source of well-trained communications service specialists. And it's not always a full time job, either. Some hams maintain a few systems in their spare time. Others have taken on additional systems until today, they operate highly successful service stations specializing in mobile radio maintenance. Nearly all of the many hundreds of stations servicing G-E communication systems, are operated by licensed amateurs.

G-E 2-way radio equipment is designed with the serviceman in mind. Take G.E.'s new Progress Line of 2 -way radio, for example. The transmitter, receiver, power supply and optional chassis are individually rackmounted in a new triple-rigid case. Rapid inter-changeability is provided by this rack construction and true plug-in chassis connections. You change either a transmitter or receiver plug-in chassis right in the vehicle in five minutes-using only a screwdriver!

To hams interested in G-E 2-way mobile units, we will gladly send typical bulletins, and a booklet, normally given to new users, "How to Operate Your Two-Way Radio."
General Electric Company, Communication Equipment, Section C577, Electronics Park Syracuse, New York.


\section*{The most complete line of}

sresented an an NEW CATALOG

yowr coper macu!
PAR-METAL Recks and Rack Assembly emboty an important advanet in functional detign and adaprability of this type of unit.

Fentured in ous latest Catalog No. 35 are Par-Meral universal type Cabinet Recles They are available in a wide range of practical sizes; with open or cloved ilers with or withour front doners. They may be used singly or groaped, as illustrated.

PAR-METAL universal type Cabinet Racks offer a highly styled, engineered product of custom-buile quality at a coneiderably lower cost. They are made for \(19^{\circ}\) and \(24^{\prime \prime}\) wide panels, ase \(18^{\circ}\) or \(24^{\prime \prime}\) deep, and are listed in various heights and models. These Racly have provisions for attaching chassis support brackers, fixed or sliding shelves, without drilling or fitting.

\section*{为}


For your copy of our 20-page centalog writo today fo:

\section*{PAR-METAL PRODUCTS CORPORATION}

32-52 49th STREET, LONG ISLAND CITY 3, N. Y. - Telephone: AStoria 8.8905

\section*{GENERAL ELECTRIC OFFERS WIDEST SELECTION OF SEMICONDUCTORS AVALLABLE ANYWHERE}


Now, a greatly expanded line of General Electric transistors and rectifiers provides greater power performance at extended frequency range and temperature limits.

Recent G-E developments in germanium and silicon for semiconductors have opened roads to new appli-
cations, industrial and military.
See your General Electric Semiconductor Specialist for detailed specifications of the Semiconductors shown here, or write today to: General Electric Company, Semiconductor Products, Section S577, Electronics Park, Syracuse, New York.

\title{
Progress is Our Most Important Product GENERAL (\%) ELECTRIC
}

\section*{You can depend on}

The amphenol Amateur Antenna has been designed to meet your need for a simple, effective folded dipole antenna system. The efficiency of the amphenol Antenna for both transmitting and receiving has been demonstrated by years of satisfied amateur use. The Amateur Antenna is available in an economical, easy-to-assemble kit form. All the kits are pre-cut to band length and are ready for final assembly and installation. Complete assembly instructions are included.

Amphenol twin-lead, flat or tubular, is made of the finest materials available, manufactured with constant and rigid inspection. The brown pigmented virgin polyethylene assures a minimum of signal loss and constant impedance.

Amphenol flat twin-lead is available in a variety of types and sizes. AIR-CORE Tubular twin-lead (U.S. Pat. No. \(2,543,696\) ) is a must for UHF television lead-in purposes.


\section*{FLAT and TUBULAR \\ TWIN-LEAD}

-


Amphenol cables are produced in strict conformity to the rigid military specifications. Constant checks and inspections are made to assure the best in mechanical and electrical construction.
Most of the RF cables in the amphenol line have top grade polyethylene dielectric for low-loss, flexibility and mechanical stability. For high temperature applications, cables are also available with other types of dielectric, including Teflon.

Amphenol R F connectors are unsurpassed for mechanical design and electrical efficiency. They provide low-loss continuity in critical R F circuits with little or no impedance change or increase in voltage standing wave ratio.
Amphenol R F connectors are available in every popular Series. New Solderless R F plugs 83-850 and 83-851 are ideal for amateur use, being completely re-usable; both eliminate braid soldering-the 83-850 eliminates contact soldering also.


Four separate series of microphone connectors are manufactured by amphenol. Newest of the new are the sensational QWIKs. These 3 and 4 contact bullet-shaped connectors add modern efficiency and modern design to every mike application. The 75 series connectors function as either male or female fitting, include jacks. plugs, receptacles, adapters and switches. The 80 series 1 and 2 contact connectors are designed for use with shielded cable. Obtainable in any combination of male or female cable connectors or chassis units. The 91 series include 3 and 4 contact connectors, polarized to prevent incorrect insertion.

MICROPHONE CONNECTORS


\section*{Wozeld' Easiest ano Best Wayto Seno}


\section*{Does all the hard, armtiring work for you}

That's because its semi-auto-
- matic action performs for you with an ease beyond comparison
Vibroplex also gives fast relief from nervous and muscular tension caused by continued use of old-fashioned keys
Requires no special skill
Adjustable to your own speed
Precision built for long life and rough usage
Ends sending fatigue forever
Provides lifetime keying ease and

PRESENTATION - Made to fine instrument standards with exclusive features destined to make keying not only easier but better. including a superspeed control mainspring for greater speed range and to permit slowest sending withont additional weights. Has polished chromium parts, \(24-\mathrm{K}\) gold-plated base top, red trim and jewel movement. The most attractive and easiest working key ever built. You'll be proud to own this key. With circuit closer, cord and wedge. \(\$ 29.95\).


ORIGINAL - Famous the world over for signal quality, ease of operation and all around kcying excellence, by thousands of the world's finest niperators and amateurs. Built for lung life and rough usage. 'I his key can take it, II Itil circuit closer, cord and wedge. Stambard, \$19.95; DeI.uxe. \(\$ 23.95\).


CARRYING CASE - Black, simulated morocco. Cloth-lined. Reinforced corners. Flexible leather handle. Protects key from dust, dirt and moisture, and insures safekeeping when not in use. W'ith lock and key, \(\$ 6.75\).

Avoid imitations!
The "Bl \({ }^{\circ} \mathrm{G}^{\prime \prime}\) Trade Mark identifies the Genuine Vibroplex Accept no substitute

All Vibroplex key are avallable for
eft-hand operation, \(\$ 2.50\) additiona

\author{
Also includes: \\ Kadio Code Signals \\ International Morse American Morse Kussian, Greek, Arabic Turkish and Japancse Morse Coles \\ World Time Chart
}

LIGIITNING BUG; - Ilandsome. rugged, reliable. With many exclusive features contributing to easier oneration and better signals, including a flat pendulum bar, slotted weights can't work loose; bridged damper frame to protect key from dainage, and many others. A strong favorite with thousands. With circuit closer, cord and wedge. Standard, \(\mathbf{\$ 1 8 . 9 5}\); DeLuxe, \(\$ 22.95\).


BLUE RACER - Small, compact, handy to carry. Built extra sturdy like the Original. but only half the size. Wt. 2 lis. 8 oz. Has all the features of the famous Original kpy, If your preference is for a smaller tey that TOPS in keving perkey thats This is it Will rircuit formance - this is it Will rircuit closer, cord and werge. Standard, \(\$ 19.95\); DeLuxe. \(\$ 23.95\).


DeLuxe. \(\$ 23.95\).

Stundiurd Mondels huve
Hack crystel buse, chrome cop parte
Del.use Models heve
Pollshed chromium boge and top perts
red trim, jewel movement


\section*{NEW SPECIAL ENLARGED Edition of PHILLIPS CODE, \(\$ 2.75\) Postpaid}

United States Time Chart Commercial " \(Z\) " Code Aeronautical "Q" Code Miscellaneous Abbreviations. Used on international wire sibbmarine cable and radio telegraph circuits.


All Vibroplex key's are precision machined, designed to meet the most exacting operating conditions, and to provide you with a lifetime of trouble-proof sending ease and enjoyment. Write for FREE folder.

Prices subject to change without notice



Partner, if you're aimin' to "load up" and get 'em when you call 'em, come on down to either of our two stores and get the "final word" on new or used ham equipment,
trade-ins and credit. Whether it's transmitters,
receivers, antennas or accessories for fixed or mabile
operation, you'll find Valley Electronic Supply is unquestionably the "final word." In addition to having the
largest selection of electronic equipment for
amateurs in the west, we've got over 40 hired
hands (lacluding 16 hams) whose skill in
every phase of electronics is at
your service.
So next time you're
by, why not tie up
to our hitching
post and come in and look around?

\section*{"FINAL}

WORD \({ }^{2}\)
IN THE
WEST!

FREE Novice Classes
at Both stores W6QII and W6LTY Instructors.

\title{
Comemercial \\ MOBILE-RADIO MAINTENANCE
} is a Paying Propasition!

\section*{Get into this rapidly growing field with 2nd Class Ticket and LAMPKIN METERS!}

LAMPKIN 105-B MICROMETER FREQUENCY METER FREQUENCY RANGE - uses only one crystal to measure all transmitters 0.1 to 175 me., erystal-controlled transmitters to 500 mc . MEETS FCC SPECS - Accuracy guaranteed better than \(0.0025^{\circ} \%\). CALI-BRATION-Calibration Table for each meter. Charts show percentage transmitter off frequency from FCC assignment. DIAL-4" circular dial with 8000 dial divisions spread over 42 feet. TEMPERATURE COMPEN. SATION-crystal thermometer on panel, automatically indicates dial checkpoint for any remperature. SIGNAL GENERATOR-a pinpoint temperature. SIGNAL GENERA final alignment.
CW source for mobile-receiver

FREE! NEW BOOKLET "HOW TO MAKE MONEY IN MOBILE-RADIO MAINTENANCE!" For your copy-plus complete MAIL COUPON TODAY!
technical data and prises on Lampkin meters-

Just these two meters-with no additional crystals or factory adjustments-are all you need to make FCC required checks on any number of commercial mobile transmitters on hundreds of different frequencies. Lampkin meters are used by many municipalities-by agencies of 41 states-by the service organizations of most two-way radio manufacturers-and by hundreds of independent mobile-service engineers. They are guaranteed to please you, too, or your money will be refunded.


I Measurements Section
I Lampkin Laboratories, Inc.
| Bradenton, Florida
| At no obligation to me, please send
\(\square\) "How To Make Money in Mobile-Radio Maintenance!"
I \(\square\) Technical data and prices on Lampkin Meters

\section*{LAMPKIN LABORATORIES, INC.}

BRADENTON, FLORIDA

\footnotetext{
Name
Address
City \(\qquad\)
}


\section*{RME 4300 Communications Receiver}

Featuring New Stability, Sensitivity and tuning ease. Covers 6 amateur bands, 1.76 to 29.9 mc . on an evenly graduated dial averaging \(81 / 2^{\prime \prime}\) in length. Stability assured by the use of temperature compensated components and heavy duty chassis and cabinet. Drift is confined to . \(01 \%\) for first 20 min., practically zero drift thereafter, " S " meter calibrated in 6 db steps from S1 to S9 and up to 10 db above. Selectivity: bandwidth is 2.8 kc with steep skirts. Sensitivity: 2 microvolts for 10 db signal-to-noise ratio. Other quality features: 1 to 1 or 75 to 1 ratio planetary drive tor easy tuning; Xtal tilter with phasing control, separate BFO with variable control for BFO injection voltage. Automatic Noise Limiter, peaked type, set for \(85 \%\) modulation. Triple spaced tuning condenser reduces microphonics and increases mechanical stability. Provision for Sinqle Side Band adapter with jacks on rear chassis, front panel calibration control, Ant. trimmer, RF qain calibrated 6 db each \(5^{\circ}\) rotation. \(161 / 2^{\prime \prime} \mathrm{W}, 10^{\circ} \mathrm{H}, 10^{\circ}{ }^{\circ} \mathrm{D}\). Shpq. wt., 36 lbs .
97F076. NET
194.00

\section*{4301 Side Band Detector-Selector}

An efficient and effective unit for improving the reception of AM, CW, and Single Side Band signals adding up to 15 db sensitivity. Operates with any communication receiver having an IF of 455 kc . Feed some of the IF voltage from the associated receiver to the input circuit of the unit and then its output to the audio circuit of the receiver Pluas directly into jacks on rear of the Model 4300, Contains its own power supply, stable BFO, balanced detector circuit and accurate phase shift network Adder and subtractor circuits for single side band reception of either upper or lower sideband. AM phone interterence can be reduced \(50 \%\) by selecting the proper sideband. Vernier for tine adjustment of unverted carrier trequency Provides approx. 40 db attenuation of unwanted sideband. With all cables. Size: \(81 / 2 \times 101 / 4 \times 101 / 4^{\prime \prime}\). Shpg wt., 16 lbs .
97F077. NET.
75.00

\section*{Model 4302 Matching Speaker}

Illustrated above 4 -ohm input. \(10 \times 81 / 2 \times 51 / 2^{\prime \prime}\) 97F075. NET.

\section*{TOP DOLLAR TRADE-INS}

Newart offers higher dollar value for your outdated-outgrown amateur gear. Your old equipment can help substantially in paying for the newest, most advanced rig in cmateur radio. Write today . . tell us what you have and what you want to buy.

\section*{Sead for free Newark Catalog} 308 pages full of the newest developments in Amateur. Radio, TV, High Fidelity and Electronics Equipment. See the latest in communications receivers, transmitters and amateur gear. Write today for your copy.

RME 100 Speech Clipper Prevents over modulation. Operates directly into push-totalk mike inpui. Clipping: \(3-20 \mathrm{db}\) adjustable in 6 steps. Response: \(200-3000\) cycles. With
tubes.
\(97 F 078.5 \times 75 / 8 \times 6^{\circ \prime}\). Wt., 9 lbs. NET........ \(\mathbf{3 9 . 5 0}\) D823 Preselector increases gain and sig-nal-to-noise ratio. Minimum gain: 25 db , 3.5 30 mc. Three tube broad-band circuit has bandswitching and antenna peaking controls. Input: \(75-300\) ohms impedance, coax or twin lead. Output: \(150-300\) ohms internal power
supply. \(5 \times 5 / 8 \times 6^{\circ} .61 / 2 \mathrm{lbs}\). NET \(\quad 49.50\)
9707979.
MC. 55 Mobile Converter Prolessional unit can be hooked to auto radio. Covers all Amateur bands 1 rom 3.5 to 30 mc .1 .25 microvolt overall sensitivity. Output treq.. 1550 kc Separate inpul connector and switch for BC antenna. Panel switch cuts out noise limiter for BC reception. 6 or 12 volt operation. Requires 150.180 volts at 25 ma . 97 FO85. \(47 / 8 \times 53 / 4 \times 51 / 4^{\prime} .6 \mathrm{lbs}\). NET
69.50



\section*{SPECIAL COURSES FOR BEGINNERS \& OPERATORS}

The SCIENTIFIC CODE COURSE, especiolly designed for the beginner. Teaches the bosic principles of sending and receiving code scientificolly. Prepores for the following F.C.C. Code License Exominotions:

Amoteur: Novice (5 w.p.m.) Technicion (5 w.p.m.)
Generol (13 w.p.m.) Amoteur Extro (20 w.p.m.)
Commercial: Second and Third Class (16 w.p.m.)
The HIGH SPEED TELEGRAPHING COURSE for high speed and proficiency.
The HIGH SPEED TYPEWRITING COURSE for mastering touch lyping, speed ond occurocy.
CANDLER SYSTEM • P.O. Box 928

\author{
DEPT. 57, DENVER 1, COLO., U.S.A.
}

\section*{FRESODKLE . code, typewriting, or improving these To those seriously interested in learning code, ind To those seriousty priciency.
skills to highest prof \\ [-ander SYSTEM Dept. 57 \\ P. O. Box 928, Denver 1, Colorado \\ Or 52 b , Abingdon Rd, , London W.8, England}

Gl am on operotor.
a beginner.
Gentlemen: Yes . . I am interested in the CANDLER Code Iraining. Please Gentlemen: Yes . . .
rush my FREE COPY of CANDR Radio Telegraphy.
\(\qquad\)


\section*{INDUSTRY}

\section*{RESEARCH}

\section*{EDUCATION}

Cameradio, with over 250 Nationally Advertised lines, is recognized as one of the Nation's leading suppliers of electronic equipment and parts.

Over 38 years of experience has earned us a reputation for prompt and efficient service. The next time you need anything electronic . . . call on Cameradio.

Featuring:
Nationally Recognized Products
100
Write at once for our FREE 1957 catalogue showing the complete Cameradio line.



1121 Penn Avenue, Pitsburgh 22, Pa. Express 1-4000



\section*{Shurite panel meters are POPULAR WITH HAMS BECAUSE THEY'RE...}

RUGGED Exceptionally high ratio, torque to weight, for fast pointer response. Sturdy construction throughout. Molded inner units with internal and external locking nuts for maximum rigidity.
GOOD LOOKING Dials are metal so they stay attractive in spite of age and moisfure. All metal cases have rich telephone black finish. Concealed coils and good, readable scales.
WELL DESIGNED AC meters are double-vane repulsion type using hair-spring and jeweled bearing. Most DC meters are polarized-vane solenoid type. High internal resistance voltmeters available in popular ranges. Accuracy well within \(5 \%\).
PRICED RIGHT For instance, the meters pictured are priced at
Model 950, 0-100 DC Ma. . . . \(\$ 1.60\)
Model 650, 0-150 DC Volts . . . 2.10
Model 550, 0-150 AC Volts . . . 3.40
Other meters are correspondingly reasonable in price, starting at \(\$ 1.55\). You get the benefit
of low costs made possible by large quantity production.
GUARANTEED For one year from date of purchase against defective workmanship and material, and will be repaired or replaced if sent to the factory postpaid with \(40 ¢\) handling charge.

A COMPLETE LINE All of these features are available in over 220 ranges and types; AC, DC, Voltmeters, Ammeters, Milliammeters, Resistance Meters. For instance, DC Milliammeters are made in 65 types and ranges. The newest meters are a \(0-3 \mathrm{DC}\) Milliammeter with 500 ohms internal resistance and built-in zero adjuster with ten times the sensitivity of previous \(0-3\) DC Milliammeters, also a 0-1 DC Milliammeter with 1000 ohms internal resistance and zero adjuster
AVAILABLE Stocked by leading electronic parts distributors in a wide variety of types and ranges. For prompt shipment, contact the authorized Shurite distributor nearest you.

THEY'RE TODAY'S BEST VALUE
Ask for Bulletin No. 57

SHURITE METERS • 85 Hamilton Street, New Haven 8, Conn.



\section*{AMECO - AMECO - AMECO}
for a CAREER in communications . . . to pass FCC amateur exams

NEW AMECO TRANSMITTER

- Pi-network Output circuit
- Includes Heavy-duty AC power supply

6V6 Oscillator and 6X5 Rectifier
- 15 watts input
- For 40 and 80 meters
- Crystol controlled
in kit form \(\$ \$ 695\)
- Attractive grey hommertone finish with white lettering ond red knobs
- Simple and Educationa building instructions



 to opelate. l'nits are complete with punchesl chassis, hardware
* Model AC-1 with coil kit for ony 1 band, less fubes ond crystol.
\(\$ 16.95\)
Extro coil kit CK-1.
Sel of fubes for above ( 6 V \& \(\& \times 5\) ).
2.13

BEAT TVI STAY ON

The AMECO low cost way!

\section*{AMECO LOW PASS FILTER}

The AMECO low pass fiteer suppresses the radiation of all spurious signals The filter uses a Constant \(k\) Circuit. and is designet for Coaxial cable ( 52 to 72 ohms). Other features inclusle
- Negligible lusertion looss - 35 l\() \mathrm{l}\), and more anter harmonic \& spurious freguencies altove 50 Mc. . Witl haulle up to 200 watts of \(12 F\) power - Vach unit \(\$ 1.95\) Amateur complete with bracker, atid instructions \(\$ \mathbf{1 . 9 5}\) net Model LN with 2 RCA phono lacks................ \(\$ 1.95\)
Deluxe Model LN2 with 2 s0-239 Coax. Connectors..... \(\$ 3.45\)

\section*{HIGH PASS FILTER}

The AMECO high pass filter is placed in series with the TV receiversitter's a
 Model HP-45 obove 45 Mc mol frequencies poss fill MC are passed through without loss. The AMECO high poss filter is designed for use with the common 300 ohm twin line.

\section*{other features include:}
- 40 db and more ottenuation af 14 Mc . and

At the omozint below; 20 db ottenuotion of 10 meters.
- Negligible insertion loss
- Filter uses bolonced constont K circuit

\section*{DELUXE CODE PRACTICE OSCILLATOR}

In Kit Form or Wired


The AmeCo Code Practice Oscillator, for 110 volts AC or DC, with a buile-in 4 inch speaker, produces a pure, steady tone with no clicks or chirps. It can take a large number of headphones or keys. After the code has been learned. the AMECO code practice oscillator is easily converted to an excellent c. w. monitor.
Other features include:
- Variable tone control
- Volume control
- Sturdy grey hammertone cabine 1
- Lowest prices

In Kit Form, with Instruction, less tubes (Hodel (PS.KL) \$1175 Completely Wired \& Tested, less Jubes (Model (PS.WL) ...... \(\$ 12^{95}\) Set of two tubes (35w4 and 50C5)

\section*{AMERICAN ELECTRONICS CO.} 1203½ Bryant Ave., New York 59, N.Y. For Export Inquire Dept. H

\section*{SAvE with ours STrenise ERADELH Allowances!}

The frend is up-UpuP on fradeins of Walter Ashe. Our "Surprise" frade-in allowances were never hipher than now. Thot means far lower prices for you on the new equipment of your choice.

\title{
FRETLINE \\ \\ the ready made open wire \\ \\ the ready made open wire \\ \\ H.F. TRANSMISSION LINE \\ \\ H.F. TRANSMISSION LINE \\ \\ now avallable in heavy duty slzes
} \\ \\ now avallable in heavy duty slzes
}

Fretline type F6-12-2 a 600 ohm impedance transmission line for high power transmitting duty at high or low frequencies. It is constructed with quality in mind. Recommended where exact impedance is wantedand maximum strength.

Prices on request.
Fretline type 66 -12-4 a 600 ohm impedance transmission line for high power transmitting duty at high or low frequencies. Heavy duty construction.

\section*{Prices on request.}

Fretline type F12-6-1 a 600 ohm impedance transmission line for medium power transmitting duty at high or law frequencies. Qualityconstructed, exact impedance, maximum strength. Dealer Net Price
\[
\$ .38 \text { a ft. }
\]

Fretline type F12-6-3 a 600 ohm impedance transmission line for medium powertransmitting duty. Economically constructed with maximum strength. Dealer Net Price \$. 14 aft .

Fretline type F16-3.75-2 a 600 ohm impedonce transmission line for light transmitting duty. Rugged construction.
\[
\text { Dealer Net Price } \$ .10 \mathrm{aft} .
\]


Type E and type BC Fretline still available and remains
THE LEADING LINE AROUND THE WORLD.



\section*{\(50)\)
904 BROADWAY. ALBANY A.N. Y. U. S.A AMATEUR HEADQUARTERS}


\section*{NC 300 HAM RECEIVER}

National's famous "Dream Receiver." An extremely sensitive, highly stable receiver with exceptional calibration accuracy. Has eight electrical bands, 160 through 10 meters, plus a special 30.35 mc range used as a tunable IF for 6,2 , and \(11 / 4\) meters.
Amateur Net
\(\$ 399.95\)

\section*{THE NC 300 FEATURES}

Razor-sharp selectivity, reliable frequency stability, and sensitivity of better than 1.5 microvolts are yours in the fabulous NC- 300 "dream receiver". Complete the dream by assembling a rig especially designed for the NC-300. Or if you're considering a new receiver, consider the exceptional flexibility you'll get when you buy the NC-300 with the full set of accessories.

Ask UNCLEDAVE abour

\section*{Write Uncledave W2APF}
with your needs and problems.

NC.300tS SPEAKER. Perfectly matched to the receiver in a two-tone grey enamel cose with black and silver grille cloth. \(8^{\prime \prime}\) dia. cone
Amateur Net \(\$ 17.00\)

NC-300CS CONVERTER CABINFT, Attroetive motching cabinet for housing the three ac. cessory converters for the 6, 2 , and \(11 / 4\) meter bands Eliminates unplugging of con verters. Switches all power and IF output leads. Amateur Net \(\$ 17.95\)


XCU-300 PLUG-IN CRYSTAL CAlIBRATOR Plugs into NC- 300 receiver where its operat. ing power is derived. Provides calibrating signal every 100 kc up to 29.7 mc . Is factory pre-set at exactly 100 kc . Amateur Net \(\$ 19.95\)


CRYSTAL CONVERTERS. When fitted into converter cabinet (above), these converters need not be unplugged or shut off to change bands. Can be used with 3 separate antennas, thus eliminating the need for changing antennas when switching bands. Tube complement: 6BZ7, 6AK5, 6AK5, 6U8. Output frequency: \(30-35 \mathrm{mc}\). Input impedance: 5070 ohms. Output impedance: 50 ohms. Power required: 6.3 volts of 1.2 amps, 150 volts at 25 ma derived from NC-300 receiver.
Amoteur Net \(\$ 39.95\)

\section*{24 HR. SERVICE on stock items}

\section*{International Rectifiers SELENIUM - GERMANIUM SILICON}


Developed for use in limited space at ambient temperatures ranging from \(-50^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Encapsulated to resist adverse environmental conditions. Output voltages from 20 to 160 volts; output currents of 100 microamperes to 11 MA . Bulletin \(50-18\)

This series of general purpose, high quality For temperature applications to \(150^{\circ} \mathrm{C}\), point contact diodes provide excellent these fused junction diodes withstand rectification efficiency for very high fre- exposure from \(-55^{\circ} \mathrm{C}\) to \(+170^{\circ} \mathrm{C}\). Peak quency applications. Special "RED DOT" inverse voltage rating from 50 volts to series available for ambient temperatures 600 volts. Welded, hermetically sealed from \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Bulletin GD-2 construction. Four types. Sulletin SR-132


Designed for long life and reliability in HalfWave, Voltage Doubler, Bridge, Center-Tap Circuits, and 3-Phase Circuit Types. Phenolic Cartridge and Hermetically Sealed types available. Operating temperature range: \(-65^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Specify Bulletin \(\mathrm{H}-2\)


The widest range in the industry! Designed for Radio, Television, TV booster, UHF con. verter and experimental applications. Input ratings from 25 to 195 volts AC and up. DC
output current 10 to \(1,200 \mathrm{MA}\). Write for application information. Bulletin ER-178-A


Self-generating photocells available in standard or custom sizes, mounted or unmounted. Optimum load resistance range: 10 to 10,000 ohms. Output from 2 MA to 60 MA in ave. sunlight. Ambient temperature range \(-65^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Bulletin PC 649

For all DC power needs from microwatts to kilowatts. Features: long life; compact, light weight and low initial cost. Ratings: to \(250 \mathrm{KW}, 50 \mathrm{ma}\) to 2,300 amperes and up. 6 volts to 30,000 volts and up. Efficiency to \(87 \%\). Power factor to \(95 \%\). Bulletin C-349



3 Styles featuring efficiency to \(97 \%\), low High power- 5 amp to 100 amp -silicon fused forward drop, high reverse to forward cur- junction type. Input ratings to 200 PIV. rent ratio, unlimited life. Ratings: 26 to Temp. range: up to \(150^{\circ} \mathrm{C}\) case temperature. 66AC input v. per junction, 150 to 100,000 Available in individual diodes or all usual amps DC output. Operating temperature power rectifier circuits. Data available on range: \(-55^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\). Bulletin GPR -1 models for forced air and liquid cooling.

Bulletin SPR-1


For bulletins on products described waite on your letterhead
to our product information depaktment

\section*{LEARN}

\section*{Jhe Jast Scientific Way!}

\section*{CODE}

\section*{ELECTRONICS \\ COMMUNICATION ENGINEERING}

Tn Exclusive, Recorded System Developed by ETI and used by the Armed Forces.
- Learn By Sound Only.
- Correct Speeds From the Start.
- Static and Interference Records.
- 36 Extra Long Playing Time Records.
- 3 Albums:
\#1 Alphabet, Number, Punctuation \#2 Four through ten words per minute.
\#3 Eleven through twenty words per minute.
\(\$ 12.00\) Per Album
Complete Set \(\$ \mathbf{3 3 . 0 0}\)
Free Grading Service Included

\section*{HOVIC:}

Get Your Novice License!
Complete Novice Course - Only \(\$ 29.95\)
Code - 5 WPM
earn Electronics By Photo-Sound. The Complete Audio.Visual Course Available through:
- Resident School.
- Home Study.
\(T_{\text {his is a Scientifically planned Course. }}\) Basic Electronics Through Radar, Loran, and FCC Preparation.

ETI Provides Laboratory Training to both the Home Study and Resident Student.

Complete Math-Training and Refresher.

ETI also furnishes this Photo-Sound Method to the Armed Forces.

Approved For Veterans

\section*{SEE YOUR LOCAL JOBBER OR WRITE US FOR FREE INFORMATION}

Electronic Technical Institute
970 West Manchester Avenue Dept. AR-1 Ingleword, California
Gentlemen: 1 am interested in vour training Course in Code \(\square\) NoviceElectronics Send Information:

Name.
Address \(\qquad\)
City \(\qquad\) Zone. . . .State

\section*{ELECTRONIC TECHNICAL INSTIITUE}

970 W. Manchester Ave.
Inglewood, California

\section*{Seruing the Atmateur and Industry for Ouer a Zuarter Century!}

\section*{ARROW..... First With Everything}

\section*{in HAM EQUIPMENT}

OUR HAM Dept.

W2IEK W2JBA W2HCZ W2SME W2UUE

\section*{FREE!}

With any purchase from Arrow. Amateur band frequency allocation chart in color
- Complete Stocks Of All Standard Brands.

Quick Personalized Service.
- Lowest Prices.

0
Same Day Mail Order Service.


World Wide Service For Everything In Industrial Electronics, Amateur Equipment, High-Fidelity And Television \& Radio Parts.

Just a letter or cable will bring you a fast quotation for all your electronic needs. All export orders get fast personalized service regardless of how large or small. Quotations made by ARROW will be itemized as to your cost of merchandise, shipping, export packing, insurance and complete documentation.
Western Union FAX Mineola, N. Y. Teletype G CY N. Y. 460 Cable Address "AROLECTRO-N.Y."

\section*{ARROWLAEceronics, nc.}

65 Cortlandt St., New York 7, N. Y. - Digby 9.3790 525 Jericho Turnpike, Mine ola, N: Y. • Ploneer 6-8686

\title{
Learn Code the EASY Way
}

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

\section*{MAY BE PURCHASED OR RENTED}

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting you should decide to buy the equipment the first three months rental may be applied in full on the purchase price.

\section*{ACQUIRING THE CODE}

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

\section*{BOOK OF INSTRUCTIONS}

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

\section*{MACHINES FOR RENT OR SALE}


\section*{ACCOMPLISHES THESE PURPOSES:}

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.
With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

\section*{Postal Card will bring Full partic. ULARS IMMEDIATELY}

\title{
\(=\mathrm{FBHap}\)
}

\section*{affers for Immediate Delivery}

\section*{MAGNETIC AMPLIFIERS AND SATURABLE TRANSFORMERS}

FAST RESPONSE MAGNETIC AMPLIFIERS
2 ～respanse
Phase reversible
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Cat． \\
Cat． \\
No．
\end{tabular} & \begin{tabular}{c} 
Supply \\
Freq． \\
C．P．S．
\end{tabular} & \begin{tabular}{c} 
Power \\
Out． \\
Watts
\end{tabular} & \begin{tabular}{c} 
Yolt． \\
Out． \\
V．AC
\end{tabular} & \begin{tabular}{c} 
AO or OC signal \\
voltage req＇g for \\
full output．
\end{tabular} \\
\hline MAF．1 & 60 & 13 & 110 & 1.0 & - \\
\hline MAF．6 & 400 & 5 & 57.5 & 1.2 & 0.4 \\
\hline & 400 & 10 & 57.5 & 1.6 & 0.6 \\
\hline MAF．7 & 400 & 15 & 57.5 & 2.5 & 1.0 \\
\hline
\end{tabular}

SINGLE ENDED
MAGNETIC AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Cat. & Supply Freq． C．P．S． & Power out． Watts & Sig．req＇d for full outp．MA－DC & Total res． Contr．wdg． & Load fes． ohms \\
\hline MAO． 1 & \(\Delta 0\) & 4.5 & 3.4 & 1.2 & 3800 \\
\hline MAO－2 & 60 & 20 & 1.8 & 1.3 & 700 \\
\hline MAO－4 & 80 & 400 & 9.0 & 10.0 & 25 \\
\hline MAO． 5 & 60 & 575 & 6.0 & 10.0 & 25 \\
\hline
\end{tabular}

PUSH．PULL
MAGNETIC AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Cat.
No. & Supply Freq． C．P．S． & Power Out． Watts & \[
\begin{aligned}
& \text { yolt. } \\
& \text { Dot. } \\
& \text { V.AC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { sig. req'd } \\
& \text { for fuld } \\
& \text { outp. MA-DC }
\end{aligned}
\] & Total res． contr．wdg k ！ \\
\hline MAP． 1 & 60 & 5 & － & 1.2 & 1.2 \\
\hline MAP． 2 & 60 & 15 & 115 & 1.6 & 2.4 \\
\hline MAP． 3 & 60 & 50 & 115 & 2.0 & 0.5 \\
\hline MAP．3．A & 60 & 50 & 115 & 7.0 & 2.9 \\
\hline MAP－4 & s0 & 175 & 115 & 8.0 & 6.0 \\
\hline MAP－7 & 400 & 15 & 115 & 0.6 & 2.8 \\
\hline MAP－8 & 400 & 50 & 110 & 1.75 & 0.8 \\
\hline
\end{tabular}

SATURABLE TRANSFORMERS
Phase reversible
\begin{tabular}{|c|c|c|c|c|c|}
\hline cat.
No. & Supply Freq． C．P．S． & Power Out． Watts & volt． Out． V．AC & Sig．req＇d for full outp，MA－DC & Total res．
contr．wdg K ！ \\
\hline MAS．1 & 60 & 15 & 115 & 6.0 & 27 \\
\hline MAS． 2 & 400 & 6 & 115 & 4.0 & 10 \\
\hline MAS． 5 & 400 & 2.7 & 26 & 4.0 & 3.2 \\
\hline MAS－6 & 400 & 30 & 115 & 4.0 & 8.0 \\
\hline MAS． 7 & 400 & 40 & 115 & 5.5 & 8.0 \\
\hline
\end{tabular}

All mnits designed for 115 V ．AC operation
variable test voltage MEGOHMMETER NO． 1620


The Freed Type 1620 Megohmmeter is a versatile insulation resistance meas． variable DC test potential continuously 1000 volts． Components．
Components such as transformers， condensers，motors，printed circuits， cables and insulation material can be tested at their rated voltage and above，for safety factor．
Resistance－ 0.1 megohms to \(4,000,000\) megohms．
Voltage－variable， 50.1000 volts．
Accurate－plus or minus \(5 \%\) on all ranges．
Simple－for use by unskilled operators． Sofe－high voltage relay controlled Self contained－AC operated．
ALSO AVAILABLE:

Type 1620 C MEGOHMMETER－a type 1620 with additional circuitry for testing eapacitors．
Type 1020 B MEGOHMMETER－a 500 volt fixed test potential．Range 1 megohm to 2 million megohms．
Type 2030 PORTABLE MEGOHMMETER －battery operated， 500 volt test potential．Range I megohm to 10 million megohms．

\section*{FOR PRECISION LABORATORY} OR PRODUCTION TESTING


1110－AB INCREMENTAL INDUCTANCE BRIDGE AND ACCESSORIES
Accurate inductance measurement with or without superimposed D．C．．for all types of iron core components．
Inductance： 1 Millihenry to 1000 Henry Frequency： 20 to 10,000 Cvcles Accuracy：1\％to 1000 Cycle， \(2 \%\) to 10KC
Conductance：I Mieromho to 1 MHO ＂ 0 ＂： 0.5 to 100
Superimposed D．C．：Up to I Ampere Direct Reading：for use by unskilled operators．
ACCESSORIES AVAILABLE： 1140．A Null Detector
1210．A Null Detector－V．T．V．M． 1170 D．C．Supply and 1180 A．C．Supply

\section*{MIL－T－27A POWER． FILAMENT．PULSE 2 AUDIO TRANSFORMERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{POWER TRANSFORMERS－STANDARD All primaries \(105 / 115 / 125\) r．， 60 c．p．s．} \\
\hline & & & & & \[
\underset{\substack{\text { filame } \\ \# 1}}{ }
\] & & filam & ment & \\
\hline \begin{tabular}{l}
Cat． \\
No．
\end{tabular} & \[
\begin{gathered}
H i \\
\text { Volt }
\end{gathered}
\]
Sec. & ct & O20 & 을 & \[
\stackrel{\%}{\circ}
\] & 晨 & \(\stackrel{\text { \％}}{5}\) & \[
\dot{\hat{E}}
\] & Case
Size \\
\hline MGP1 & 400／200 & \(V\) & 185 & ． 070 & 6．3／5 & 2 & 6.3 & 3 & \({ }^{-}\) \\
\hline MGP2 & 650 & \(V\) & 260 & ． 070 & 6．3／5 & & 6.3 & 4 & \({ }^{18}\) \\
\hline MGP3 & 650 & \(\checkmark\) & 245 & ． 150 & 6.3 & 5 & 5.0 & 3 & KB \\
\hline MGP4 & 800 & \(V\) & 318 & ． 175 & 5.0 & 3 & 6.3 & 8 & 18 \\
\hline MGP5 & 900 & \(\checkmark\) & 345 & ． 250 & 5.0 & 3 & 6.3 & 8 & M8 \\
\hline MGP6 & 700 & \(\checkmark\) & 255 & ． 250 & & & & & KB \\
\hline M6P7 & 1100 & \(V\) & 419 & ． 250 & & & & & 18 \\
\hline MGP8 & 1600 & \(\checkmark\) & 640 & ． 250 & & & & & NB \\
\hline
\end{tabular}

\section*{FILAMENT TRANSFORMERS－STANDARD}

All primaries \(105 / 115 / 125 \mathrm{v}\) ．， \(60 \mathrm{c} . \mathrm{p} . \mathrm{s}\) ．
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Cat． No．} & \multicolumn{2}{|r|}{Secondary} & \multirow[t]{2}{*}{Test VRMS} & \multirow[t]{2}{*}{MIL} \\
\hline & Volt & Amp & & \\
\hline MGF1 & 2.5 & 3.0 & 2，500 & EB \\
\hline MGF2 & 2.5 & 10.0 & 2，500 & 68 \\
\hline MGF3 & 5.0 & 3.0 & 2，500 & F8 \\
\hline MGF4 & 5.0 & 10.0 & 2，500 & H8 \\
\hline MGF5 & 6.3 & 2.0 & 2，500 & FB \\
\hline MGF6 & 6.3 & 5.0 & 2，500 & 6B \\
\hline MGF7 & 6.3 & 10.0 & 2，500 & JB \\
\hline MGF8 & 6.3 & 20.0 & 2，500 & K8 \\
\hline MGF9 & 2.5 & 10.0 & 10，000 & 18 \\
\hline MGF10 & 5.0 & 10.0 & 10，000 & K8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  & Pulse Voltage Wlleveits &  &  &  &  &  \\
\hline MPTI & \(\checkmark\) & \(\checkmark\) & & 0．25／0．25／0．25 & 0．201．0 & ． 004 & 3 & 0.7 & 250 \\
\hline MPT2 & \(V\) & \(V\) & & 0．25／0．25 & 0．2．1．0 & ． 004 & 2 & 0.7 & 230 \\
\hline MP13 & \(\checkmark\) & \(\checkmark\) & & 0．5／0．5／0．5 & 0．2．1．5 & ． 002 & 3 & 1.0 & 250 \\
\hline MPIA & \(v\) & \(\checkmark\) & & 0．5／0．5 & \(0.2+1.5\) & ． 002 & ， & 1.0 & 230 \\
\hline MPI5 & \(\checkmark\) & \(V\) & & 0．5／0．5／0．5 & 0．5－2．0 & ． 002 & 3 & 1.0 & 500 \\
\hline MPT6 & \(\checkmark\) & V & & 0．5／0．5 & 0．5－2．0 & ． 002 & 2 & 1.0 & 300 \\
\hline MPI7 & \(\checkmark\) & V & \(V\) & 0．7／0．7／0．7 & 0．5．1．5 & ．00？ & － & 1.5 & 200 \\
\hline M \(\overline{\text { PTP }}\) & \(V\) & V & \(\stackrel{\rightharpoonup}{v}\) & 0．7／0．7 & 0．3－1．5 & ． 682 & 2 & 1.5 & 200 \\
\hline MP79 & \(V\) & \(\checkmark\) & \(\checkmark\) & T．0／1．0／1．0 & 0．7．3．5 & ． 002 & & 2.0 & 200 \\
\hline MP710 & \(V\) & V & V & 1．0／1．0 & 0.73 .5 & ． 002 & \％ & 2.0 & 200 \\
\hline MPTIT & V & \(v\) & \(\checkmark\) & 1．0／1．0／1．0 & 1．0．5．0 & ． 002 & 3 & 2.0 & 500 \\
\hline MPT12 & \(\checkmark\) & \(\checkmark\) & \(V\) & 0，15／0．15／0．3／0．3 & 0．2－1．0 & ． 004 & 4 & 0.7 & 700 \\
\hline
\end{tabular}

Frequ．resp． 300 to 10000 cps \(=208\) ．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{anc case sies as} \\
\hline \multicolumn{3}{|r|}{Impeance} & \multicolumn{3}{|c|}{cifem：} \\
\hline  & \(\pm\) & ※゙管 & \(=\) &  &  \\
\hline 10k & V & \[
\begin{aligned}
& \text { Pok } \\
& \text { Split }
\end{aligned}
\] & \(\checkmark\) & 1010 & 15 \\
\hline \[
\begin{aligned}
& \text { bog } \\
& \text { Split }
\end{aligned}
\] & & 4，8，16 & & 00 & 33 \\
\hline \[
\begin{array}{|c|c}
600 \\
\text { Splif }
\end{array}
\] & & 135 K & \(\checkmark\) & 00 & 15 \\
\hline \[
\begin{aligned}
& 400 \\
& \text { Split } \\
& \text { St }
\end{aligned}
\] & & \[
\begin{aligned}
& 600 \\
& \hline \text { Split } \\
& \hline \text { Spolit }
\end{aligned}
\] & & & 15 \\
\hline \[
\begin{aligned}
& 7.6 \mathrm{~K} \\
& \hline 4.81
\end{aligned}
\] & & \[
\begin{aligned}
& 600 \\
& \text { Split }
\end{aligned}
\] & & 4040 & \({ }^{33}\) \\
\hline \[
\begin{aligned}
& 7.0 \mathrm{~K} \\
& 7.81
\end{aligned}
\] & & 4，8， 14 & & 4040 & \({ }^{33}\) \\
\hline 15k & \(\checkmark\) & \[
\begin{aligned}
& 600 \\
& 5 p l i t
\end{aligned}
\] & & 1010 & \({ }^{33}\) \\
\hline 24 K & \(\checkmark\) & \[
\begin{aligned}
& 600 \\
& \text { Split }
\end{aligned}
\] & & 101 & 30 \\
\hline sok & \(\checkmark\) & \[
\begin{gathered}
600 \\
\text { Split } \\
\text { Spl }
\end{gathered}
\] & & 10 & 17 \\
\hline
\end{tabular}

Write for detailed listing，or special requirements，and copies of complete Transformer and Laboratory Test Instrument Catalogs

\title{
FREED TRANSFORMER CO．，INC．
}

1718－36 WEIRFIELD ST．，BROOKLYN（Ridgewood）27，N．Y．

\title{
All From One Source
}

\begin{abstract}
These four quality lines of Electronic Components may be obtained quickly and conveniently from Distributors who stock ERIE RESISTOR CORPORATION products.
\end{abstract}


\title{
EARN MORE MONEY...GET INTO THEVISION ELECTRONIGS-RADIO
}

\section*{Learn All 8 PHASES in OWE MODERN HOWL-STUDY COURSE \\ Ac Home - In Spare Time}

\section*{YOU GET ALL THIS NEWEST PRACTICAL EQUIPMENT}
- Parts to burld a modern IV set, including all tubes plus a large screen Picture Tube
- Parts to build a powerful Superhet Receiver, standard broadcast and short wave
- Parts to conduct many experiments and build Continuity Checker, RF Ocillatnr, IV Circuits, Audio Oscillator, TRF Receiver, Signal Generator
- A Valuable Professional Multitester


YOU ARE NEEDED IN THE TELEVISION-ELECTRONICS-RADIO INDUSTRY You can build a secure future for jourself if you get into Electronics NOW: 'Today's shortage of trained technicians creates tremendous opportunities. National Schools Shop-Method trained technicians are in constant and growing demand for high-pay jobs in Broadcasting and Communications, Electronic Research, Servicing and Reprair, and many other branches.

Let Narional Schools, a Resident course. You can handle sales, servicTechnical Scherd for ower 50 yeary 1ng. manufacturing, we make pone
 portunitio in electronics! Our Shop FUR FAC I'S IUDA'゙!
Method traing jou to be a \(M A S T F R\) TRCIINICIAN. Cumpletcly up io date, devolopect by experienced instructors and engineers, your Telerana Course will teach, you all phases of the induvery quickly, clearly and coriectls. I'ou can maner the mont modern projecss, such as Color TV, FCC license withour taking a pecial diagrams, procical joh projects - all


EARN AS you learn. Many of our sudents curn dhcir entiry luition and nibre in Spart Tine johs we show them how to do while learning.
you get everything you need Clear, profuscly illustrated levions diagrams, procical joh proiects - all the valuable equipment shown alove FCC.icense wirhout taking a special the MEMBER


为

Fuily illustrated "Career" Book in
IV-Radio-Electronics. PLUS actual sample - lesson-yours at no cost, no obligation. CLIP COUPON NOW .. . wall IT T00AY!
- many other naterials and services - convultation privilege with our qualified vaff, and Graduate Em. plosment Service. EVERYTHING YOU NEID for outstanding success


\section*{bational schools \\ technicat imaof thaining since toos}

LOS AMGEIES 37, CALIPORNIA
GETFAST SERVICE-MALL NOW TO OFHEE MEAREST YOU: -000 S NATIONAL SCHOOLS, DIPT. RIS- 17 4000 S. FIGUEROAST. OR 187 N. La Salle St. os angeles 37 calif or chicago ill Rush free Tl'-Radio "Opportunity" Book and sample lesson. No salesman will call.


Antenna Masts-Highest grade stainless steel- 17 7 Ph . Exceptional high strength and corrosion resistance. \(841 / 2^{\prime \prime}\) mast can be bent to bring tip and base \(30^{\prime \prime}\) apart at base level without distortion! Taper ground. \(57^{\prime \prime}\) to \(96^{\prime \prime}\) lengths. Model WCA-3B. Specify length.


Heavy-Duly Antenna BaseAny vertical position can be obtained from adjustable swivel ball design. Positive positioning of the antenna assured under most severe vibration and shock conditions. High "Q" bakelite insulator. Wrenches, ground, and solder lugs included. Model WCA-3.
Heavy-Duty Spring-Barrel type for long life and extra strength. Bends \(100^{\circ}\) without damage. Heavy cadmium plating protects against rust and corrosion. Noncorroding center conductor. Tightening wrenches supplied. Model WCA-3A.


WARD COMMUNICATION ANTENNAS

\section*{quality antennas for your mobile application}

Ward high-quality, heavy-duty, mobile antennas are completely reliable with an unsurpassed field record of service. Prices, new, reduced as much as \(20 \%\).

\section*{Write today for new catalog}

Ward also manufactures disguise antennas and ground plane antennas. Other new products to be announced soon. Ask your supplier for new catalog containing complete specifications and information on our product line, or write us.

Ask your supplier about Ward's New Complete Line of amateur mobile antennas and mounts.


PRODUCTS CORPORATION DIVISION OF THE GABRIEL CO.

- COMPACT . . Case size \(14^{\prime \prime}\) \(\times 11 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}\)

- LIGHT . . . 22 lbs. (without antenna and speaker)
- POWERFUL . . . 25 walts oufput
- UNIVERSAL . . . instantly changed from 12 volt to 24 volt operation
- EFFICIENT . . . low battery drain: on 12 volf-total stand. by. 4.5 amps, transmitting 10 amps. on 24 volt-total standby 2.5 amps, transmitting 5 amps.

- IOUD . . . I watt minimum with less than \(8 \%\) distortion.
- PERFORMANCE . . . identical with ground systems.
- QUALITY . . . exceptional value/price ratio.

GABINETS


ALUMINUM OR STEEL PORTABLE CABINETS Series No. 29860


DE LUXE SLOPING PANEL CABINETS
Series No. 3990


COMPOSITE SPEAKER CABINET Series No. 3986


ALUMINUM OR STEEL CABINETS Series No. 29840


UTILITY CABINETS WITH BUILT-IN-CHASSIS Series Ho. 3816


Panel Chassis
Series No. 29060

CASES


DE LUXE METER CASES Series No. 3995


STREAMLINED METER
CASES

MIDGET SPEAKER CASES Series No. 3986


CHANNEL-LOCK ALUMINUM BOXES
Series No. 29200

\section*{insuline} Corporation of America

186 Granite St., Manchester N.H. (Van Norman Industries)
Insuline distributors everywhere stock the line of metal housings, antennas and electronic components.

BOXES


SLIP COVER ALUMINUM BOXES

"FLEXI-MOUNT" ALUMINUM
CASES
Series No. 29435

CODE SETS


SIGNA-TONE CLASSROOM MODEL
No. 4301


OELUXE SIGNA-TONE No. 4300

"TRIPLEX" RADIO AND telegraph practice set No. 70


UNBREAKABLE MORSE COOE RECORD SET Series No. 1800

\section*{COMMYNICATION ANTENNAS inemco oiv.}


\section*{Serving the entire Western Region... Alaska... and the Pacific Area...}


You can order with fullest confidence from ELMAR \(\qquad\)
pace setting West Coast suppliers of radio and electronic parts, sets, antennas and equipment.

\section*{\(+7\)}

PLOT YOUR
ANTENNA PATTERN
Request brings you convenient \(81 / 2^{\prime \prime} \times 11^{\prime \prime}\) polar-type paper. Name and address please. Free. . . . no charge.

\section*{ELMAR electronics}


ELMAR. . . a reliable firm. . . . .
where long-continuing customer confidence and satisfaction are responsible, in good part, for today's very large sales volume....
where, for example, the most expensive communications receivers move by hundreds... not by dozens.......
where trade-ins, (and generous allowances) are routine, many-times-daily matters... not special events......
where easy-payment, extended-period terms are the rule.... not the exception.
where stock - every national brand-is completely maintained so that you may have ubut you want, \(w\) hen you want it.
You can order with fullest confidence from ELMAR


WE'RE SELLING SPACE WITH A FENCE AROUND IT!

The largest, most complete line of racks, cabinets, panels and chassis manufactured in the West for the electronics industry Contact your jobber for price, availability and catalog.
wyco
6918 Beck Ave., North Hollywood, Calif

122

\title{
TOP FAVORITE WITH RADIO AMATEURS
}


\section*{TRADE IN} YOUR OLD HAM GEAR
For the best "deal" of all, come to HUDSON! Get your new equipment now, and get highest trade-in allowance on your old equipment. If you can't come, write us today, about your old gear, and the new gear you want. We will answer fast - and you'il be pleased!

\section*{COMPLETE STOCKS} ALL STANDARD BRANDS including:
\begin{tabular}{lll} 
NATIONAL & ELMAC & RME \\
HAMMARLUND & GONSET & LYSCO \\
HALLICRAFTERS & MORROW & SONAR \\
BARKER-WILLIAMSON & E. F. JOHNSON & ELDICO
\end{tabular}





\section*{VESTO STEEL TOWERS}

\section*{For Both Amateur and Commercial Users}


Attractive-No Guy Wires!-Self-supporting Vesto Tower takes up only a few feet of ground space. No unsightly supporting wires to trip over or pull loose.

4-Leg Construction!-Better balanced-stur-dier-more anchorage, more support. This extra strong design has been proved for years -in thousands of towers!

Permanent!-Vesto Towers are made from heavy steel protected against rust by a thick layer of galvanizing.

Safe!-A strong steel ladder is securely bolted in place. Reaches from ground to platform at top.

Easy to Erect!-One man can do it! Tower arrives in compact bundles. Parts fit perfectly. Complete, easy-to-follow directions.

Withstands Heavy Winds!-No Vesto Tower has ever blown down! They have stood through hurricanes and gales with winds in excess of 100 miles per hour.

100 ft . TOWER...\$895 77 ft. TOWER... \(\$ 662\)
61 ft . TOWER. . . \(\$ 339\)

Vesto Tower with sofety platform used by CAA at airports throughout the country.

> VESTO 4-Leg Towers are Priced as Low as \(\$ 104!\)


SMALL DOWN PAYMENT - EASY TERMS!
Vesto Towers can be purchased for only a small down payment and nominal monthly payments.

\section*{SHIPPED DIRECT - ANY PLACE \\ IN THE WORLD!}

The complete Vesto Tower, knocked down and securely packaged, is shipped FOB Kansas City, Mo., by 4th class freight rate. Prices subject to change, so order now. Send check or money order, or write for full information.

Quality pays! When you buy a VESTO tower, you buy the best. VESTO towers are sold to you direct, saving you many costs of distribution. Write us now.

\section*{VESTO COMPANY, INC.}

20th \& Clay, North Kansas City, Mo. Cable Address "VESTO"
VESTO Towers are used in all 48 states and many foreign countries!
125




STANDARD SIGNAL GENERATOR


MODEL 95
STANDARD SIGNAL GENERATOR

fM STANDARD SIGNAL GENERATOR


MODEL 71
square wave generator


MODEL 67
PEAK-TO-PEAK VOLTMETER
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ STANDARD SIGNAL GENERATORS } \\
\hline MODEL & FREQUENCY RANGE \\
\hline \(65-\mathrm{B}\) & 75 Kc to 30 Mc \\
\hline 80 & 2 Mc to 400 Mc \\
\hline \(80-\mathrm{R}\) & 5 Mc to 475 Mc \\
\hline 82 & \begin{tabular}{c}
20 Cycles to 200 Kc \\
80 Kc to 50 Mc
\end{tabular} \\
\hline \(84-\mathrm{R}\) & 300 Mc to 1000 Mc \\
\hline \(84-\mathrm{TVR}\) & 400 Mc to 1000 Mc \\
\hline 95 & 50 Mc to 400 Mc \\
\hline \(210-\mathrm{A}\) & 86 Mc to 108 Mc \\
\hline
\end{tabular}

SQUARE WAVE GENERATOR
\begin{tabular}{|l|c|}
\hline MODEL & frequency range \\
\hline 71 & \begin{tabular}{c}
6 to 100,000 Cycles \\
Continuously variable
\end{tabular} \\
\hline
\end{tabular}

PULSE GENERATOR
\begin{tabular}{|c|c|}
\hline MODEL & frequency range \\
\hline 79.8 & 60 to 100,000 pulses per second \\
\hline
\end{tabular}

VHF FIELD STRENGTH METER
\begin{tabular}{|c|c|}
\hline mOdel & frequency range \\
\hline \(58-\mathrm{AS}\) & 15 Mc to 150 Mc \\
\hline
\end{tabular}

HIGH FREQUENCY BARRETTER
\begin{tabular}{|c|c|}
\hline MODEL & frequency range \\
\hline \(202-\mathrm{C}\) & 2 MC to 1000 Mc \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ VACUUM TUBE VOLTMETERS } \\
\hline MODEL & FREQUENCY RANGE \\
\hline 62 & 30 cps to over 150 Mc \\
\hline 67 & 5 to 100,000 sine-wave cps. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ MEGACYCLE "GRID-DIP" METERS } \\
\hline MODEL & frequency range \\
\hline 59 LF & 0.1 Mc to 4.5 Mc \\
\hline 59 & 2.2 Mc to 420 Mc \\
\hline 59 UHF & 420 Mc to 940 Mc \\
\hline \multicolumn{2}{|c|}{ CRYSTAL CALIBRATORS } \\
\hline MODEL & FREQuency RANGE \\
\hline 111 & 250 Kc to 1000 Mc \\
\hline 111 B & 100 Kc to 1000 Mc \\
\hline
\end{tabular}


MODEL 59
MEGACYCLE "GRID-DIP"' METER


MODEL 111 CRYSTAL CALIBRATOR

STANDARD TEST SET for TRANSISTORS


Tests PNP and NPN small-signal, medium-power and switching transistors.
Checks for short-circuited emittercollector junctions.
Measures collector-to-emitter leakage current.
Measures collector current and d-c gain.
Case Dimensions: \(10^{\prime \prime}\) high \(\times 14^{\prime \prime}\) wide \(\times 71 /{ }^{\prime \prime}\) deep.
Power Supply: Two F4Bp 6-volt dry batteries.
Weight: Approximately 9 pounds without batteries.

\section*{Complete Outfitters}

FOR THE

\title{
- Ham \\ - Communications
}
- Electronic Engineers

\title{
Eugene \(G\). Wile
} 218-220 South 11th St. Philadelphia 7, Pa. WAlnut 3-1343

Distributors of
Nationally Advertised Lines of RADIO, TELEVISION and ELECTRONIC Parts


\section*{The 664 will equal a useful power increase of four times over commonly-used peaked microphones, and could well be the best investment, dollar-wise, in your shack}


A peak in the response curve limits modulation to the peak value. A peak-free response brings the full power level to \(100 \%\) modulation gaining an intelligibility increase equal to the peak in the average mike. The 664 is peak-free and gives the highest usable power of any microphone for AM, NFM and SSB.

\section*{See your E-V Distributor,}

Here is a totally new concept in microphones for amateur phone communication.
The cardioid (high directivity at all frequencies) pickup pattern enables you to have a real "arm chair QSO." The forward gain of \(5 \mathrm{db}^{* *}\) allows you to speak at nearly twice the distance you have been working to a conventional microphone. Unwanted sounds in the shack are rejected nearly twice as effectively as by ordinarily-used non-directional microphones.
The response curve is tailored to put the highest degree of intelligibility on your carrier. Your \(100 \%\) modulation is all speech . . . in full character . . . with bite and punch. This curve, compared to ordinary microphones, will give you up to 12 db more usable audio-without splatter or hash.
We invite you to prove to yourself that the 664 will outperform your present mike by a direct comparison. If it doesn't out-hurdle QRM, your distributor will refund the purchase price without qualification.

New Variable D* Dynamic Microphone operates on the principle of multiple sound paths to the diaphragm. Spaced apertures to the rear of the diaphragm are phased to provide cancellation of rear sounds and give full response to sound from the front.
This new principle enables the curve to be free from peaks or dips. Insures freedom of blasting and boominess from close talking. Eliminates effect from mechanical shock. High level -55 db . Acoustalloy diaphragm. Switch easily changed to relay control, if desired. Absolutely unaffected by moisture, humidity, or temperature.
Model 664. Without Stand . . . . . . . . . . . . . . . . Net Price \(\$ 49.50\) Model 419. Desk Stand.................................... 6.00 Model 419 . Desk Stand. (Switch on Base) . . . . . . . Net . 9.00
**Forward gain is that compared to a pressure mike; actual front-to-back
*Paient Pending


\title{
ANTENNA ENGINEERING COMPANY 5021 WFST EXPOSITION BLVD.,LOS ANGELES 16, CALIF. TELEPHONE: REpublic 4-7807
}

\section*{World-Famous for Proven Reliability and Performance} RCA
SHRT-
WAVE
MAD
MDVUM.
WAVE

BTA.50G, the new RCA 50 KW AM "Ampliphose" tronsmitter, represents the most significont step since RCA introduced high-level modulation. It accupies half the floor spoce required by other 50 KW transmitters, cuts instollation and operating casts, eliminates need for underfloor trenches, costly water cooling systems or external blowers. All camponents ore eosily accessible and con be quickly replaced.

\section*{TRANSMITTERS}

Since its formation in 1919, Radio Corporation of America has been in the forefront of major advances in radio communications of every type. In virtually every corner of the globe RCA shortwave and medium-wave broadcast transmitters are providing day-in, day-out dependability under all extremes of climatic and operational conditions.
As the producer of the finest in transmitters, its experience in the radio industry is unparalleled.
At its research and engineering laboratories, RCA engineers conceive and develop the most advanced and improved circuits and mechanical components.
New RCA electron tubes and semi-conductors are being developed and produced to meet the changing needs of the entire industry, as well as specific RCA equipment.
For over a quarter of a century, RCA scientists have provided a constant flow of technical knowledge to the expanding radio and electronic industry \(\ldots\) and products, facilities, and services to the world.
The RCA monogram is universally recognized as
a symbol of the radio age, that has brought new pleasures in entertainment, new techniques of communication, and new opportunities to millions of people throughout the world. It is a mark of quality and superior craftsmanship.
RCA broadcast transmitters have proven their economy and dependability in many years of long service for many types of broadcasters, such as the National Broadcasting Company network, the Finnish Broadcasting Company, Radio Pakistan, Radio Istanbul, and hundreds of private broadcasters.
RCA short-wave communications transmitters are preferred by many governmental and private communications organizations. Transmitters up to 1.2 megawatts of output have been built by RCA, and are used around the world to provide every type of radio communications.
For the best investment in short and medium-wave transmitters see your RCA Distributor or write to Dept. BE-33-A, RCA International Division, Radio Corporation of America, 30 Rockefeller Plaza, New York 20, N. Y., U.S.A.

\section*{VOLT-OHM-MILLIAMMETERS for your every need MODEL 310 MIGHTY MITE the only complete miniature V-O-M (AC-DC)}

The same valuable toal prafessionals use for:
- current measurements . . . voltage measurements . resistance measurements
- checking for defective components (shorted condensers, open resistars, etc.) both before and after installation
- checking for sharts or opens in wiring

Tells all abaut everything electrical and electronic-all essential ranges.
- 20,000 ohms per valt. D.C.
- 5,000 ohms per volf. A.C.

\section*{TRIPLETT}

\section*{MODEL 630}
- Large \(51 / 2\) Inch Meter in special molded case un. der panel
- Resistance Scale Markings from. 2 Ohms to 100 Meg . ohms: Zero Ohms control flush with panel
- Only one switch. Has ex. tra large knob \(2 \frac{1}{2 \prime \prime}{ }^{\prime \prime}\) long, easy to purn flush with panel surface.
- New molded selector switch, contacts are fully en. closed
- All resistors are precision film or wire wound types, all sealed in molded compartments.
- Unit construction-Resistors, Shunts, Rectifier, Batteries all are housed in a molded base buily righi over the switch. Provides direct connections without cabling. No chance for shorts.
- Batteries easily replaced-New Double Supended Contacts.
- Ranges: DC Volts 0 to 6,000, 20,000 Ohm/Volt; AC Volts 0 to \(6,000,5,000 \mathrm{Ohm} / \mathrm{Volt} ; \mathrm{DB}:-30\) to +70 ; Direct Current from 0.60 Microamp. to 0.12 Amps; Resistance: 0-1,000-10,000 Ohms, 0.1-100 Megs.

\section*{A COMPLETE LINE OF METERS}


Triplett panel and portable me. ters are available in mare than 26 case styles-round, square and fan-2" to 7"' sizes Included are voltmeters, ammeters, milliamme ters, millivoltmeters, microamme ters, thermo-ammeters, DB meters, VU meters and electrodynamome. ter type instruments

Address oll inquires to Dept ©. 57

\section*{MODEL 666-R}

For your \(A C\) and \(D C\) Volf. age, Direct Current and Resistance analyses to 3 Meg . ohms. Enclosed selector switch and molded construction keeps dirt out. Retains contact alignment permanently Unit CanstructionAll Resistors, shunts, rectifier and batteries housed in a molded base integral with the switch. Eliminates chance for shorts. Direct connections. No cabling. All precision film ar wire-wound resistors, mounted in their own


POCKET SIZE compartment-assures greater accuracy. Easy to read scales. Precalibrated rectifier unit. Self-contained batteries.
RANGES: AC-DC Volts: 1-10-50-250-1000-5000, 1000 Ohms/Volt; Direct Current: 10-10.100 Ma., 0.1 Amp; Resistance: 0-3000-300,000 Ohms, 3 Meg. Black molded case, completely insulated, \(3.1 / 16^{\prime \prime} \times 57 / 6^{\prime \prime}\) \(\times 2.9 / 16^{\prime \prime}\). White panel markings,

\section*{MODEL 3256 ABSORPTION \\ FREQUENCY METER}

A band-switching, iuned absorption iype frequency meter thot covers fre omateur bands. Has Germoni um erystal and O DC Milliammeter indicator far cails to change. Switching permits instantoneous bond chonge. Audia jock provides for monitaring o phone signals -another new feoture Colitrotion is in Megacycles in following bands: \(3.5-\mathrm{MC}, 7-7\) MC, \(14-14.4 \mathrm{MC}, 20-21.5 \mathrm{MC}\); \(2 \mathrm{~B}-30 \mathrm{MC}\) Coil is removable and ather cails may be substifured far special bands Useful for checking. Fundamental fre. quency of oscillating circuits; Presence, order and relative amplitude of hormanics: Porositic ascilla toons, etc Size: \(71 / 2^{\prime} \times 2 \frac{1}{2}, 21 / 4^{2}\) Metal cose with grov enamel finish black trim


\section*{To Manufacturers und Distributors of Products Used in Nhort-Wave Ifadio Commonicution}

The Rimo Amatecr's Handbook is the standard reference on the technique of high-frequency radio commmication. Now in its thirty-fourth ammal edition, it is used universally by radio engineers and technicians as well as by thousands of amateurs and experimenters. Year after year it has sold more widely, and now the llandbook has an annual distribution greater than any other teclmical handhook in any field of hmman activity. To mamfacturers whose integrity is established and whose products meet the approval of the American Radio Relay Leagne technical etaff. and to distributors who sell these products, we offer use of space in the Ilandbooh's Catalog Advertising Section. This section is the standard guide for amateur, commercial and government buyers of short-wave radio equipment. Particularly valuable as a medium through which complete data on products can be made easily available to the whole radio engineering and experimenting field, it offers an inexpensive method of producing and distributing a catalog impossible to attain by any other means. We solicit inquiries from qualified manufacturers and distributors.

WIDE

... light...compact...acurate... porta

The s-14-A H1-(A) N 1OCKET SCOPE provides the optimum in oscilloscope flexibility for analysis of low-level electrical impulses. Extremely light weight \(\left(12^{3}+1\right.\) bs. \()\), compact in size \((12 \times 5: 3 \times 7\) in.), dependable and accurate in perfornuance. Vertical and horizontal channels: 10 mm ims/inch with response within 2ID from DC to 200 KC and pulse rise of \(1.8 \mathrm{\mu s}\)
non-frequency discriminating attenuators and gain controls with internal calibration of trace amplitude. : repetitive or trigger time base with linearization from '2 cycle to 50 KC with \(\pm\) sync or trigger.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{TUBE} & \multicolumn{2}{|l|}{PHYSICAL DATA} & \multicolumn{2}{|l|}{STATIC VOLTAGE} & \multicolumn{2}{|l|}{deflection*} & \multirow[t]{2}{*}{LIGHT output..} \\
\hline & FACE & LENGTH & A 3 & A2 & VERt & HOR & \\
\hline 3JP1 & \(3^{\prime \prime}\) & \(10^{\prime \prime}\) & 3000 & 1500 & 111 & 150 & 352 \\
\hline \(3 \mathrm{MP1}\) & \(3{ }^{\prime \prime}\) & \(8^{\prime \prime}\) & & 750 & 99 & 104 & 33 \\
\hline 3 RPI & \(3^{\prime \prime}\) & \(9.12^{\prime \prime}\) & & 1000 & 61 & 86 & 44 \\
\hline 3 SPI & \(1.5 \times 3^{\prime \prime}\) & \(9.12^{\prime \prime}\) & & 1000 & 61 & 86 & 44 \\
\hline \(3 \times P 1\) & \(1.5 \times 3^{\prime \prime}\) & 8.875" & & 2000 & 33 & 80 & 218 \\
\hline
\end{tabular}

\section*{WIDE}

The S-14-B WIDE BAND POCKE'TSCOPE is ideal for investigations of transient signals, DC signals, aperiodic pulses or recurrent waveforms. Vertical channel: 50 mv rms/in. within -2DB from DC to \(700 \mathrm{KC} \ldots\) pulse rise time of \(0.35 \mu \mathrm{~s}\). Horizontal channel: \(0.15 \mathrm{v} \mathrm{rms} / \mathrm{in}\), within-2DB from DC to 200 \(\mathrm{KC} . . \operatorname{pulse}\) rise of \(1.8 \mu \mathrm{~s}\). Attenuators and gain controls are non-frequency discriminating . . . trace amplitude calibration. . . repetitive or triggered time base from 'z cycle to \(50 \mathrm{KC} \ldots \pm\) sync or trigger ....trace expansion. filter graph screen and many other features . . \(14 \mathrm{lbs} . .12 \times 6 \times 7\) inches.

\section*{TWIN} The S-15-A mvims/in. with response within-2DB IOCK ETSCOPF is a portable. twin tube high sensitivity oscilloscope with two independent vertical as well as horizontal channels. It is ind ispensable for investigation of electronic circuits in industry, school and laboratory. Vertical channels 10 from DC to 200 KC and pulse rise time of \(1.8 \mu \mathrm{~s}\) horizontal channels Iv rms/in. within -2DH from DC to 150 KC ... non-frequency discriminating controls. . . internal signal amplitude calibration \(\qquad\) linear time base from

\section*{S-11-A} 'The \(\mathrm{S}-11\)-A INDUSTIRIAL I'OCKl:'SCOPL is a small compact \(\left\{5 \times 7 \times 11\right.\) inches, and lightweright ( \(8^{3}\) a lbs,) instrument for obsewing electrical circuit phenomena, The flexibility of the POCKFTSCOPE permits its use for AC measurements as well as for DC. The vertical and horizontal amplifiers are capable of reproducing within - 2 D (3 from DC to 200 KC with a sensitivity of \(0.1 \mathrm{v} \mathrm{ms} / \mathrm{in}\). . . repetitive time base from 3 cycles to .50 KC continuously variable throughout its range . . variations of input impedance. line voltage or controls do not "bounce" the signal-the scope stabilizes immediately

\section*{RAYONIC CATHODE RAY TUBES BY WATERMAN}
* Defletion of volts per inch. *- Light output of an dement of a raster line (one mm long and no! excee.ling . 65 min in widh) in microlumens.

Write for your complimentary copy of "POCKETSCOOP". Official Waterman publication. \\ The Oscilloscope that Portrays the Pulse \\ \section*{\title{
Tulsecipe
} \\ \section*{\title{
Tulsecipe
} \\  \\ Classic Examples of Precision Engineering. \\ The PULSESCOPES ore cothode roy fube oscilloscopes thol portray the attributes of} the pulse: shope, omplitude, durotion ond time displacement. All PULSESCOPES have internolly generated markers with the basic difference thot in the SAR PULSESCOPE the markers initiote the sweep while in the others the sweep starts the markers.

\section*{BROAD} The S.6.A BROAD BAND
Scope is a PULSESCOPE in performance, POCKETSCOPE in size. The instrument measures DC as well as AC signals. Unique DC calibration methods permit rapid measurements of either positive or negative, AC or DC signals. Vertical amplifier sensitivity of \(0.2 \mathrm{v} \mathrm{rms} / \mathrm{inch}\), and response to 5 me within 3DH. . . pulse rise time of \(0.1 \mu \mathrm{~s}\). . . internal markers from 1 to \(1000 \mu \mathrm{~s}\). . . repetitive or trigger sweep from 5 cycles to 500 KC with 5 X sweep expansion ... sweep, marker and DC calibrating voltage available externally. Size \(81 / 2 \times 63 / 4\) \(x 13 \frac{3}{4}\) in. Weight 22 lbs . Operates from 50 to 400 cycles at 115 volts AC.

 The S-5-A LAB PULSESCOPE is a JANized (Gov't Model No. OS-26) portable, AC, wide band-pass, laboratory oscilloscope ideal for pulse as well as general purpose measurements. Internal delay of 0.55 , \(\mu \mathrm{s}\) permits observation of pulse leading edge. Includes precision amplitude calibration, 10X sweep expansion, internal trace intensity time markers, internal trigger generators and many other features. Video amplifier 0.1 v p to \(\mathrm{p} /\) inch . . . pulse rise time of \(.035 \mu \mathrm{~s}\) or response to 11 mc . 1.25 to \(125,000 \mu \mathrm{~s}\) triggered or repetitive sweep . . . internally generated markers from 0.2 to \(500 \mu \mathrm{~s}\)... trigger generator from 50 to \(5000^{\circ}\) pps. for internal and external trig. gering. Operates from 50 to 400 cycles at 115 volts AC.

\section*{SAR}

The S.4-C SAR PULSESCOPE is a JANized (Gov't Model No. OS-4) portable instrument ( 31.5 lbs .) for precision pulse measurements for radar, TV and all electronic measurements. Portrays all attributes of the pulse... internal crystal controlled markers of 10 and \(50 \mu \mathrm{~s}\) available for self-calibration... in R operation a small segment of the A sweep is expandable for detailed observation with a direct-reading calibrated dial accurate to \(0.1 \%\). Video amplifier band-pass up to \(11 \mathrm{mc} .\). optional video delay 0.55 \(\mu \mathrm{s}\). . . pulse rise and fall time better than \(0.07 \mu \mathrm{~s} .\). R pedestal (sweep) 2.4 to \(24 \mu \mathrm{~S}\). . . video sensitivity of 0.5 v . p to p/inch. Easily convertible from \(\mu \mathrm{s}\) to yards. Operates from 50 to 400 cycles at 115 volts AC.

\section*{RAKSCOPE}

Because the panel is only \(7^{\prime \prime}\) high and firs any standard rack, the S-12-B RAKSCOPE admirably fills the need for a small oscilloscope of wide versatility. With all the features of the S.11.A POCKETSCOPE, the RAKSCOPE is JANized (Gov't Model No. OS.11), and has many additional advantages; the sweep, from 5 cycles to 50 KC , is either repetitive or trig. gered...vertical and horizontal amplifiers are \(50 \mathrm{mv} \mathrm{mm} /\) inch with band. pass from 0 to 200 KC . . . special phasing circuitry for frequency comparison.

\section*{MISSILE SYSTEMS}

\section*{Rescarch and Development}

The continuing expansion program of Lockheed Missile Systems Division will create many new positions each month during 1957 for engineers and scientists. Assignments will be on missile systems projects of a most advanced nature.
\begin{tabular}{|c|}
\hline CONIDETEIRE \\
\hline SYETIUNS HNCINHISIRING \\
\hline IR, H. 12 \\
\hline TIEISNIETHIRING \\
\hline HI. ECTIRONIHECIINICAI, INFAIG: \\
\hline COMIMCNICATIONE \\
\hline TNEST HOXUIHNIHNT HISGICN \\
\hline INETYRUNIENTATISN \\
\hline  \\
\hline NCCISIIR 1PIIY心IC'm \\
\hline MIECIINNICAI, HNGINEIERINC: \\
\hline ANTHNNA ISESIG \\
\hline ANHRONAT'TICAI, HNCIINHESRING \\
\hline OIPIEIRATIONE IRISENSAIRCII \\
\hline STRIEAK HNCINHEIRING \\
\hline
\end{tabular}

Those who wish to advance their professional stature while contributing to a group effort of utmost importance are invited to write.


136

\section*{Index}
\begin{tabular}{|c|c|}
\hline ts a & \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{A} \\
\hline Antenna & \\
\hline \multicolumn{2}{|l|}{na} \\
\hline Antenna Ga & \\
\hline \multicolumn{2}{|l|}{Intenna Length Factor . . . . . . . . 345, 35̄̄,} \\
\hline Attenuation of 'Transmi & \\
\hline \multicolumn{2}{|l|}{Band-Pass Filters} \\
\hline Band Width, Typical I. & \\
\hline \multicolumn{2}{|l|}{Beam Element Leng} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Call Areas} \\
\hline apacitance & \\
\hline apacitance, Top-Loadink & \\
\hline apacitive leartance & \\
\hline \multicolumn{2}{|l|}{Capacitor Color Code} \\
\hline Capacitor-Input Powe & \\
\hline \multicolumn{2}{|l|}{apacitor, Plate Spaeings} \\
\hline \multicolumn{2}{|l|}{R.F. and I.F. Amplifiers} \\
\hline athode-Modulation Performance Curves & \\
\hline \multicolumn{2}{|l|}{(haracteristic lmpedance ...........324,325} \\
\hline Choke-Input Power Rupplic & \\
\hline \multicolumn{2}{|l|}{Circuit and Operating Values for Converter Tubes.} \\
\hline (-L Computation & \\
\hline \multicolumn{2}{|l|}{Coaxial Line Datar.} \\
\hline (ils, Dimensions of & \\
\hline \multicolumn{2}{|l|}{Coils, Wire Sizes for Transm} \\
\hline Color Code for Radio Parts & \\
\hline \multicolumn{2}{|l|}{Conductivity of Metals} \\
\hline Construetion Tools & \\
\hline \multicolumn{2}{|l|}{Continental Code.} \\
\hline onversion of Fracti & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{opper-Wire Table . . .}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Coupled Tuned Circuit Response}} \\
\hline & \\
\hline Coupling-Coefficient Curves & \\
\hline \multicolumn{2}{|l|}{Coupling to Flat Lines................ \(3: 31\)} \\
\hline \multicolumn{2}{|l|}{Critical Inductance, Blecder Resistance and \(\quad \mathbf{2} 21\)
Current for ......................................} \\
\hline Crystal Diodes. . . . . . . . . . . . . . . . . . . . . & \\
\hline \multicolumn{2}{|l|}{Secay} \\
\hline \multicolumn{2}{|l|}{Decibel} \\
\hline \multicolumn{2}{|l|}{Decimal Equivalents} \\
\hline Dielectrie Constants & \\
\hline \multicolumn{2}{|l|}{Drill Sizes.... . . . . . . . . . . . . . . . . . . . . - 48} \\
\hline \multicolumn{2}{|l|}{DX Operating} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Effect of Ground on Morizontal Antemas. Electrical Conductivity of Metals Electrical Quantities, Symbols for Emergeney Points}} \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Pilters \\
Folded Dipole Nomogram \\
Frequeney-Speetrum Nomenelature
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Gain of Directive Antennas. . . . . . . . . . . . . 360, \(36: 3\) Gauges, Standard Metal \\
Gernanium Crystal Diodes. . ................... . V-32
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{If-Wave Antenna Lengths.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
mpedance Step-Up in Folded Dipoles. . . . . . 329 Index, Modulation. . . . . . . . . . . . . . . . \\
nductanee and Capacitance for Ripple Reduetion.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Inductance, (apacitance and Frequency Pation
("harts
("harts of small Coils ..................36, 4


Interatational Amateur Prefixes. . . . . . . . . . . .
International Morse Code ................. \(1: 3\)
International Prefixes . . . . . . . . . . . . . . . 500
L-C' Computation . ................ 511
L/R Time Constant . ........................ 31
Linear Amplifier Tube-()peration Data. . . . . 30.4
Loading-Coil Iata. . . . . . ................. 472
Log, Station . .............. 55 .
Long-Wire Antenua Lengths . . . . . . . . . . . . 349
Low-Pass Filter Data. ........................ 545
Metals, Relative Resistivity of . . . . . . . . . . . 18
Mobile-Antennat Data. ...................... 472
IIodulation Index. . . . . . . . . . . . . . . . . . . . . 295
Modulator Characteristic (hart . . . . . 278, 281, 281i
Nombenclature of Frequencies . . . . . . . . ..... 18
(Open Stubs, Position and Lenkth . . . . . . . . . . \(3: 8\)
Operating Values, Converter Tubes ......... 95
Peak-Rectifier-Current D.('-Load-Current ョ.20
Ratio. Rercontage Ripple Across lnput Cupacitor .. . 2.20
Percentage Ripple Across Input Crpacitor. . \(\frac{2}{5} 20\)
Phonetic List ..................................................... 575
Pilot-Lamp Data \({ }^{\text {Power Supplies, lypical . . . . . . . . . . . . . . . . . . . . . . } 295 \text {, 24 }}\)
Prefixes
Puncture Voltages, Dieledric. . . . . . . . . . . . . 2 .
Q Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RC' Tince Constant . . . . . . . . . . . . . . . . . . . . . 31, 32
IRsT system. .................................. 5 . 5 .
ladiation Angles . . . . . . . . . . . . . . . . . . . . . 347
Radiation Patterns . . . . . . . . . . . . . . . . . 347, 3000
ladiation Resistance. ......344, 349, 35-4, 363, 364
leattanee Change with Antemna Length 350
Reactance Charts . . . . . . . . . . . . . . . . . . 34,48
Relationship of Amateur-13and Harmonies \(536,55 \pm\)
Resistance-Coupled Voltage-Amplifier Data.. éa,
Resistivity of Metals, Relative........... . . . in in
Resistor Color Code . . . . . . . . . . . . . . . . . 490, 401
lResponse, Tuned-Circuit . . . . . . . . . . . . . . . . 374
Rhombic Antenna Design . . . . . . . . . . . . . . . \(3 \overline{0}\) !
Schematic Symbols . . . . . . . . . . . . . . . . . . . 571
Screct-Dropping and Cathode Resistors for
Selenium Rectifiers . . . . . . . . . . . . 236
Shorted Stubs, Position :and Length . . . . . . . 32x
Signal-Strength, leadability and Tone Scales 56 x
Standard Component Valies . . . . . . . . . . . . . 480
Standard Metal Gauges . . . . . . . . . . . . . . . . . 575
Standing-Wave Ratio . . . . . . . . . . . . . . . . . . . \(3 \underline{3}\)
Station Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(55 x\)
Stub Position and Length . . . . . . . . . . . . . . . . 32x
S.W.R. Calibration . . . . . . . . . . . . . . . . . . . . 515

Symbols for Lleetrical Quantities............. 576
Tank-Circuit ('apacitance . . . . . . . . . . . . . . 149, 157
Tap Sizes . . . . ............................. 485
Time, Capacitor Charge and Discharge. . . . 31, 32
Time Constant, ( \(R\). ............................. \(31,3 \geq\)
Time Constant, \(L / R \ldots . . . . . . . . . . . . . . . . .\).
Tools for Construction . . . . . . . . . . . . . . . . . . 484
Top-Loading Capacitance . . . . . . . . . . . . . . . . 473
Transformer Color Code . . . . . . . . . . . . . . . . . . 491
Transformer latios................................... 268









\begin{tabular}{|c|c|}
\hline page & Patere Page \\
\hline Nuise-Limiter Circuits . . . . . . . . . . . . 101-102, 449 & Patterus, Radiation . . . . . . . . . . . . . . . 346, 347, 350 \\
\hline Noise, Receiver . . . . . . . . . . . . . . . . . . 86, 101-102 & Patterns, TVI ................... ... . . . . . . . 537 \\
\hline Noise Elimination, Mobile. . . . . . . . . . . . 447-449 & Peak-Current Value . . . . . . . . . . . . . . . . . . . . 17 \\
\hline Noise Reduction . . . . . . . . . . . . 101-102, 481,483 & Peak-Voltage Rating . . . . . . . . . . . . . . . . . . 217 \\
\hline Nomenclature, Frequency-Spectrum ......17-18 & Pencil Tubes . . . . . . . . . . . . . . . . . . . . . . . 385 5, 405 \\
\hline Nonconductors . . . . . . . . . . . . . . . . . . . . 16 & Pentagrid Converters . . . . . . . . . . . . . . . . . . 95 \\
\hline Nonlinearity . . . . . . . . . . . . . . . . .64, 86, 278, 279 & Pentode Amplifiers. \({ }^{\text {a }}\). . . . . . . . . . . . . . . \(70-71\) \\
\hline Nonradiating Loads . . . . . . . . . . . . . . . . \(332 \cdot 2.33 .3\) & Pentode C'rystal Oscillators . . . . . . . . . . . . 144-145 \\
\hline Nonresonant Lines . . . . . . . . . . . . . . \(322,3233-325\) & Pentodes ................... 70 \\
\hline Nonsynchronous Vibrators . . . . . . . . . . \(4 \times 11-481\) &  \\
\hline Nucleus...... ....................... 16 & Per Cent Ripple . . . . . . . . . . . . . . . . .218, 220, 222 \\
\hline & Permeability . . . . . . . . . . . . . . . . . . . . . . . 28 -29 \\
\hline Off-Center Fed Antenna . . . . . . . . . . . .352-353 & Phase . . . . . . . . . . . . . . . . . . \(32-33\) \\
\hline Official Bulletin Station . ................ 563 & Phase Inversion . . . . . . . . . . . 251 \\
\hline Official Experimental St:ution . . . . . . . . . . . 563 & Phase Modulatio \\
\hline Offieial Observer . . . . . . . . . . . . . . . . . . . 56.3 & Phase Modulation") .... \({ }^{3}\) (4-245, 296, 297 \\
\hline Official Phone Station . . . . . . . . . . . . . . . . . 563 & Phase-Modulation Reception . . . . . . . . 109 \\
\hline Official Relay Station . . . . . . . . . . . . . . 56.3 & Phase Relations, Amplifiers . . . . . . . . . . . . 6 . \({ }_{64}\) \\
\hline Ohm........................... 18 & Phase Shift . . . . . . . . . . . . . . . . . . . . . . . 294 \\
\hline Ohm's Law . . . . . . . . . . . . . . . . . . . . . . 19-20 & Phase-Splitter Circuit . . . . . . . . . . . . . . . . . 251 \\
\hline Ohm's Law for A.C. . . . . . . . . . . . . . . . . . \(35-36\), 38 & Phased Antennas . . . . . . . . . . . . . . . . . . . 359 -362 \\
\hline Ohmmeters . . . . . . . . . . . . . . . . . . . . 495-497 & Phasing-Type S.S.B. Exciters . . . . . . . . . .306-30¢ \\
\hline Old Timers Club . . . . . . . . . . . . . . . . . . . . 560 & Phone Activities Manager . . . . . . . . . . . . . \(56 \mathbf{5}^{2}\) \\
\hline Open-Circuited Line . . . . . . . . . . . . . . . . . . 320 & Phone Reception. . . . . . . . . . . . . . . . . . . . 10x-109 \\
\hline Open Stub. . . . . . . . . . . . . . . . . . . . . . . . . . . 328 & Phonetic Alphabet . . . . . . . . . . . . . . . . . . . 555 \\
\hline Open-Wire Line . . . . . . . . . . . . . . 323 -324 & Pilot Lamp Data (Table) . . . . . . 585 \\
\hline Operating an Amateur Radio station \(559,500,567\) & Pi-Section Coupling .......... 158, 159, 16:3-164 \\
\hline ( )perating Angle, Amplifier ... ..... 68 & Pi-Section Filters. . . . . . . . . . . . . . . . . . . . 573 \\
\hline Operating a Station . .....553-560 & Pi-Section Tank Circuit . . . . . . . . . .51-52, 151-152 \\
\hline Operating Bias. \({ }^{\text {a }}\). 154 & Pierce Oscillator . . . . . . . . . . . . . . . . . . . . 144-145 \\
\hline Operating Conditions, R.F. Amplifier-Tube. 153-172 & Piezo-Electric (rystals . . . . . . . . . . . . . . . . . \(5 \mathbf{5 2}\) \\
\hline Operating Point .... ....... 64 & Piezo-Electric Microphone . . . . . . . . . . . . 248 \\
\hline Operator License, Amateur 13 & Piezoelectricity. . . . . . . . . . . . . . . . . . . . \(5 \mathbf{5}\) \\
\hline Oscillation .............69, 74 -76, 84, 89-91, 111 & Plane-Reflector Antennas . . . . . . . . . . . . . 444-445 \\
\hline Oscillations, Parasitir . . . . ........ 161, 16.3 & Plate-(athode Capacitance . . . . . . . . . . . . . \({ }^{\text {a }}\) \\
\hline Oscillator Keying .................240,241 & Plate-('urrent Shift . . . . . . . . . . . . . . \(\mathbf{2 9 1 - 2 9 2}\) \\
\hline Oscillators .................... 74 -76 & Plate-Grid Capacitance . . . . . . . . . . . . . . \(67 \mathbf{7}-\mathbf{6 8}, 159\) \\
\hline Audio . . . . . . . . . . . . . . . . . . . . . . . . . \(\mathbf{5 0 7} \mathbf{5 0 5 0 8}\) & Plate . . . . . . . . . . . . . . . . . . . . . . . . . . 60 \\
\hline Beat-Frequency . . . . . . . . . . 90 -100 & Blocking Capacitor . . . . . . . . . . . . . . . . . 169 \\
\hline Crystal . . . . . . . . . . . . . 143.144 -145, 405-406 & Current. . . . . . . . . . . . . . . . . . . . . . . . . . 61 \\
\hline (rrid-Dip . . . . . . . . . . . . . . . . . . . . . . . . \(50505-507\) & Detectors. \\
\hline IIeterodyne . . . . . . . . . . . . . . . . 93, 90-97, 99-100) & Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 \\
\hline Overtone . . . . . . . . . . . . . . . . . . . . . . . . \(405-406\) & Efficiency . . . . . . . . . . . . . . . . . . . . . . 66 \\
\hline Test . . . . . . . . . . . . . . . . . . . . . . . . . . 5050 -508 & Modulation . . . . . . . . . . . . . . . . . . . . . . .279-281 \\
\hline Transistor ..................... \({ }^{\text {a }}\). 84 & Neutralization . . . . . . . . . . . . . . . . . . . . . 159-160 \\
\hline V゙.F.O. . . . . . . . . . . . . . . . . . . . . . . 143, 145-148 & Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 63 \\
\hline Oseillosempe Patterns. . . . . . . . . . . . 274, 276, 277, & Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 \\
\hline & Supply, Audio . . . . . . . . . . . . . . . . . . 268 -269, 278 \\
\hline Oscilloscopes ... . . . 273-274, 287-291, 521-524 & Plate Transformer . . . . . . . . . . . . . . . . . 22.3 -234 \\
\hline Output Capacitor, Filter ..... 222 & Plate Tuning, Power-Amplifier . . . . . . . . 16i-167 \\
\hline Output Limiting ....... . . . . . . . \(2544-255\) & Plates, Deflection . . . . . . . . . . . . . . . . . . 5 522 \\
\hline Output Power . . . . . . . . . . . . . . . . . . . . . \(\mathbf{6 6 , 1 6 7}\) & "Plumber's Delight" Antenna . . . . . . . . 371-372 \\
\hline Output Voltage . . . . . .. . . . . . . . . . . . 249 & Point-Contact Transistor . . . . . . . . . . . . . . 80, 82 \\
\hline Output Voltage, Power Supply - . . . . .222, 223 & Polarization . . . . . . . . . . . . 343, 345, 376, 435-436 \\
\hline Overexcitation, Class B Amplifier ......... 269 & Positive Fcedback. . . . . . . . . . . . . . . . . . . . . 69 \\
\hline Overloading, TV Receiver............. \({ }^{249}\) & Potential Difference. . . . . . . . . . . . . . . . . . . . 15, 16 \\
\hline Overmodulation. . . . . . . . . . . . . . . . . . . .277, 293 & Potential, Ground. . . . . . . . . . . . . . . . . . . . . . 54 \\
\hline Overmodulation Indicators . . . . . . . . . . . . . . 293 & Powder, Antistatic . . . . . . . . . . . . . . . . . . . . . . 449 \\
\hline Overtone Oscillators. . . . . . . . . . . . . . . . . . 405-406 & Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2-23 \\
\hline Oxide-Coated Cathode . . . . . . . . . . . . . . . . . . 61 & Power Amplification. . . . . . . . . . . . . . . . . . . . 66 -68 \\
\hline & Power-Amplification Ratio . . . . . . . . . . . . . . 66 \\
\hline \(P^{\prime}\) (Power) - . . . . . . . . . . . . . . . . . . 22 & Power Conmections and Control. . . . . . . . . . 527 -529 \\
\hline P-Type Material . ..................... 80 & Power Gain, Antenna . . . . . . . . . . . . . . . . . 343 , 350 \\
\hline P,M. (see "Phase Modulation') & Power, Incident . . . . . . . . . . . . . . . . . . . . . . 319 \\
\hline Padding Capacitor . . . . . . . . . . . . . . . . . 92 & Power Input . . . . . . . . . . . . . . . . . . . . . . . 61 \\
\hline Parabolic Reflectors. ... ...... . . . . 445 & Power-Line Connections . . . . . . . . . . . . . . . . \(2322-233\) \\
\hline Parallel Amplifiers. . . . . . 60 -67, 162 & Power Measurement . . . . . . . . . . . . . 22-23, 495, 510 \\
\hline Parallel Antenna Tuning . . .335-337, 351-352 & Power Output . . . . . . . . . . . . . . . . . . . . . . . 66 , 167 \\
\hline Parallel Capacitances ........ ....... 25 & Power Ratio, Decibel . . . . . . . . . . . . . . . . . . . . 4 . \({ }^{\text {a }}\) \\
\hline Parallel Circuits . . . 25 -26, 29-30, 33 & Power, Reactive . . . . . . . . . . . . . . . . . . . . . . 37 \\
\hline Parallel-Conductor Line ......323-324 & Power, Reflected . . . . . . . . . . . . . . . . . . . . . 319-320 \\
\hline Parallel-Conductor Line Me:surements . . . .519-521 & Power Rensitivity . . . . . . . . . . . . . . . . . . . . . 66 \\
\hline Parallel Feed . . . . . . . . . . . . . . . . . . . . . . 5. 5 & Power-supply Construction Data 224-226, 234-236 \\
\hline Parallel Impedance . . . . . . . . . . .38-39, 45-46 & Power Supplies: \\
\hline Paraliel Inductances . . . . . . . . . . . . . . 21 -30 & Bias Supplies . . . . . . . . . . . . . . . . . . . .229-231 \\
\hline Paraliel Resistances . . . . . . . . . . . . . . . 20 (1-22 & Combination A.C.-Storage Battery Supplies \\
\hline Parallel Resonance . . . . . . . . . . . . . . . . 4 4-45 & - \(481-483\) \\
\hline Parallel Tuning . . . . . . . . . . . . . . . . \(3: 35-3: 37\) & (onstruction . . . . . . . . . . . . . . . . . . . . 234-236 \\
\hline Parasitic Elements, Intenma Irrays with . 3fe-36t, & Constructional (see Chapters Five and Six) \\
\hline \(438-443\) & D.C.-A.C. Converters. . . . . . . . . . . . . . . . . 480 \\
\hline Parasitic Excitation . . . . . . . . . . . . . . . . \(362 \mathrm{~L}-363\) & Dry Batteries . . . . . . . . . . . . . . . . . . . . . . . 48 83 \\
\hline Parasitic Oscillations..............161, 163 & Dynamotors . . . . . . . . . . . . . . . . . . . . . . . . 480 \\
\hline ['atterns, Oscilloseope . . 2-4. 2 -6, 2-27, 285-289, 30s & Emergeney Power Supply . . . . . . . . . . . . . 480 -483 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline Page & 1.age \\
\hline Reflector, Antenna. . . . . . . . . . . . . . . . . . . 3636 & Solf-Oscillation............................ \({ }^{\text {P0 }}\) \\
\hline Refraction of Radio Waves. . . . . . . . . .377, 3x--3x.3 & Self-(2uenching. . . . . . . . . . . . . . . . . . . . . . . Sni \(^{\text {a }}\) \\
\hline Regeneration.............. (s-49, 10:3-104, 107 & semiconductors.... . . . . . . . . . . . . . . . . . nt-st \\
\hline Regenerative Detectors . . . . . . . . . . . . . . . . . de-91 \(^{\text {a }}\) & Sending. . . . . . . . . . . . . . . . . . . . . . . . . .554-550 \\
\hline Regenerative I.F.......................... 112 & Sensitivity, Receiver . . . . . . . . . . . . 8 :-8is, 106-100 \\
\hline Regenerative R.F. stage, Receiver . . . . . . . . 10 F & Neries Antenna Tuning . . . . . . . . . . . . \(3335-3.360 .351\) \\
\hline Regulation, Driver... . . . . . . . . . . . . . . . . . 303 &  \\
\hline Regulation, Voltage. . . . . . . . . . . . \(21 \times\), 219, 20:-2: & Sories ( ircuits . . . . . . . . . . . . . 20 (-22, 25-26, 29.30 \\
\hline Regulations, Amateur. . . . . . . . . . . . . . 1:3-14, 5tic & Sicrics Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . \\
\hline Regulations, Conelrad................... 141, 万6i6 & Series Inductances. . . . . . . . . . . . . . . . . . . . . \({ }^{\text {a }}\) (-30 \\
\hline Requlator Tubes. . . . . . . . . . . . . . . . . . . . . 2.20 -2.2. & Series-Parallel hesi \\
\hline Regulator, Voltage . . . . . . . . . . . . . . . . . . . 2 2\%-2: 2 ! & Sories lasistame \\
\hline  & Series Resoname \\
\hline Resistance. . . . . . . . . . . . . . . . . . . . . . . . . 1-mex & Sories Voltage-1 ropping Rewistor \\
\hline  & Servicing superhet Recoivers. . . . . . . . . . . . 110-112 \\
\hline  & Sharp Cut-()ff Tubes. . . . . . . . . . . . . . . 1 \\
\hline Resistanee-Bridge standing-Wave Indicator \(31: 3-516\) &  \\
\hline Rexistance-Caparitance Time (onstant . . . . 30 --31 & Shielding. . . . . . . . . . . . . . . . . . . . .in, 70, 540-ity \\
\hline Resistance-('oupled .implifier 1)ata ( \({ }^{\text {chart) }} 2\). & Shields. \\
\hline Resistance in Series and Parallel. . . . . . . . . 20, 2-2 & Short Skip............................... 3x. \\
\hline  &  \\
\hline Resistor........ . . . . . . . . . . . . . . . . . . . . 19 & Short-(ircuiting. . . . . . . . . . . . . . . . . . . . . . \(\quad 3\) \\
\hline Rexistor Color Corlc. . . . . . . . . . . . . . . . . . . 4 (10-4! & Shot Noise \\
\hline Rexistor Wattage. . . . . . . . . . . . . . . . . . . & Shunt Matehing, (iround-Plane Antenna . . . 3505 \\
\hline Resonance. . . . . . . . . . . . . . . . . . . . 44-47, 49-51) & Shunts, Meter... . . . . . . . . . . . . . . . . . . . 493-464 \\
\hline  &  \\
\hline Resonance, Filter . . . . . . . . . . . . . . . . . . . . . 2 22: & Side-13and Interference . . . . . . . . . . . . . . . 275.20 \\
\hline Resonance, Sharpuess of . . . . . . . . . . . . . \(44-45 \mathrm{~F}\), 36, &  \\
\hline Resonant-Line Circuits . . . . . . . . . . . . . . .no-nis &  \\
\hline Resonant Transmission Lines............... \(33 \boldsymbol{3}\) &  \\
\hline  &  \\
\hline Response, Flat. . . . . . . . . . . . . . . . . . . . . .j0, in! & Signal (iencrators . . . . . . . . . . . . . . . . . . .n05-0.08 \\
\hline Response, Frequency . . . . . . . . . . 0 0, 69, 247, 249 & Signal-Handing Capability. . . . . . . . . . . . . \%s \\
\hline Response, Tuned-('ireuit. . . . . . . . . . . . . . \(\overline{\text { \% }}\) &  \\
\hline Restricterd-space Antennas. . . . . . . . . . . . .351-35:3 & Signal Monitor . . . . . . . . . . . . . . . . . . . . 2444 -240 \\
\hline Restriction of Prequency Response . . \(20.3-205,305\) &  \\
\hline  & Signt-strengt h Indicators. . . . . . 102-103, 46-176 \\
\hline Rhombic Antemat . . . . . . . . . . . . . . . . . . \(35 \mathrm{sk-350!}\) & Signal-Strength sale . . . . . . . . . . . . . . . . . . . \\
\hline "Riblon" Mirrophone . . . . . . . . . . . . . . . \({ }^{\text {a }}\) - 4 &  \\
\hline  & Silenrers, Noise... . . . . . . . . . . . . . . . . . 101-102 \\
\hline RMS Voltage. . . . . . . . . . . . . . . . . . . . . . 17 & Silicon 1 iodes. . . . . . . . . . . . . . . . . . . . . . .nt-st \\
\hline Rorhelle Salts Crystals. . . . . . . . . . . . . . . . 52 , 24x & Sine Wave. . . . . . . . . . . . . . . . . . . . 17. 33 \\
\hline Rotary Antennas. . . . . . . . . . . . . . . 364 &  \\
\hline Rotary Antennas, fredlines for. . . . . . . . . \(4450-46\) & Single side Band (sed ator ' Radiotedephony \\
\hline Rotary-Beam Construction . . . . . . . . . . . 3 (1-375 &  \\
\hline Route Manager........................... . .niz & . Inuphifation. . . . . . . . . . . . . 303:-315, 310, 315 \\
\hline & Exciters . . . . . . . . . . . . . . . . . . . . 3006 -309 \\
\hline  & ( ienerators. . . . . . . . . . . . . . . . . . . . . 301 -3012 \\
\hline  & Mixers........................... \({ }^{\text {a }}\), 317 \\
\hline s.s.13. Lixciters, . . . . . . . . . . . . . . . . . . 3010 -309 & Signal Rereplion . . . . . . . . . . . . . . . . . 103, 110 \\
\hline Safety . . . . . . . . . . . . . . . . . .23.0-2336, \(\mathbf{3}\) 290-5:31 & Transmission . . . . . . . . . . . . . . . . . . . . 30010 -317 \\
\hline Sufety Code, Xational Blectric. . . . . . . . .i30-5i31 & Single-Signal hereption. . . . . . . . . . . . . . . 10:3-104 \\
\hline saturation . . . . . . . . . . . . . . . . . . . . . . . . 2 29, 22:3 & skin liffect. . . . . . . . . . . . . . . . . . . . . 19 \\
\hline Saturation Point.... . . . . . . . . . . . . . . . . . . 61 & Skip Distance. . . . . . . . . . . . . . . . . . . . . 3 砍, 3n- \\
\hline  & skip \%one... ........................ 3, \\
\hline scatter, ........... . . . . . . . . . . . 379 , 3x.3 & Skirt selertivity ......................... . N6 \\
\hline Schematic Symbols. . . . . . . . . . . . . . . . . . . . & sky Wave. \({ }_{\text {a }}\) \\
\hline sereen 13.-Pass Condenser. . . . . . . . . . . . . . it it & Slug-Tuned Lndurtance . . . . . . . . . . . . . . . . . \\
\hline srreen (ircuits, Tuned . . . . . . . . . . . . . . . . . 407, 4 & Smoothing (hoke....................... . \\
\hline Sreren 1 Dissipation. . . . . . . . . . . . . . . . . . . . . 10.3 & Sohar ('yele . . . . . . . . . . . . . . . . . . . . . . 379.38 .38 \\
\hline Sereen Dropping Resistor. . . . . . . . . . . . . & soldering. . . . . . . . . . . . . . . . . . . . . . thr \\
\hline sereen-Grid Amplifiers. . . . . . . . . . . . 155-1501, 2x0 & Spare (harke.............................. 60 , 611 \\
\hline Sercen-Cirid Keving. ..................... 2 . 39 &  \\
\hline Sereen-(irid Modulation. . . . . . . . . . . . . 2x 3 -2x &  \\
\hline Nercen-Cirid Neutralization. . . . . . . . 152, 159-160 & Surcifir Inductive (apacity. . . . . . . . . . . . . . - \(^{23}\) \\
\hline  & Spertum, Frequency . . . . . . . . . . . . . . . . 17,1 is \\
\hline sereen-Grid Tubes.... . . . . . . . . . . . . . . . . . 0 )-71 &  \\
\hline Sereen-Votage Suphly . . . . . . . . . . . . . . inion it &  \\
\hline Second Detector. . . . . . . . . . . . . . . . . .13, 99-100 & Sperh Amplitier Design, . . . . . . . . . . \({ }^{5}\) \\
\hline Serondary Coil. . . . . . . . . . . . . . . . . . . . . \({ }_{40}\) & Speeth (lipping and Filtering. . . . . . . . . . . .npi-2ino \\
\hline Secondary Emission. . . . . . . . . . . . . . . 70 &  \\
\hline Secondary lirequeney standard. . . . . . . . \(\mathrm{j} 02 \mathrm{z-505}\) & Spreeh Fiquipment . . . . . . . . . . . . . . . . . . . . 24 -25is \\
\hline Seetion Communications Manater . . . . . . 561.562 & Sblatior ............................. \({ }^{2}\) \\
\hline Sertion Emergeney (oordinator. . . . . . . . 561,563 &  \\
\hline Section Nets... . . . . . . . . . . . . . . . . . . . . . , \(\mathbf{4 7 3}\) & sporadio- \(E\) Layer lomization. . . . . . . . \(389-380\), 3s2 \\
\hline Selertive Pading. . . . . . . . . . . . . . . . . . . . . 3 . 379 & Sporadir-E' Nkip . W. . . . . . . . . . . . . . . . 38. \\
\hline Selectivity... . . . . . . . . . . . . . . . .00, s, 104-10\% & Spreading of Radio Waves. . . . . . . . \\
\hline Selertivity Control........................ 104 &  \\
\hline Selertivity, Receiver. . . . . . . . . . . . . . 86, 104-10.) & Spurious Side Bands. . . . . . . . . . . . . . . . . . .292-293 \\
\hline Seleniun Rectifiers. . . . . . . . . . .217, 2:31-232. \(2: 36\) & squegging. .............................. \\
\hline Self-13ias. . . . . . . . . . . . . . . . . . . . . . . . . 1.54 & Sutcleh ('ircuits.......................... \({ }^{\text {a }}\) : 100 \\
\hline self-( \(\mathrm{Controlled} \mathrm{()scillators}, \mathrm{................}\). & Stahility, Amplifier . . . . . . . . . . . . . . . . . . . \(159-161\) \\
\hline & Stability, (sirillator. . . . . . . . . . . . . . . . . . . 75 \\
\hline
\end{tabular}

```


[^0]: * Approximately 2 ma. Depends on set ting of exitation control.

[^1]: Voltage across next－stage grid resistor at grid－current point
 2 At 5 volts r．m．s．output．
 ${ }^{3}$ Cathode－resistor values are for phase－inverter service．

[^2]: Fig. 17.1 i high-pmwer r.f. section for
 cluden a hambl-pasesexciter for hoth hands. a $50-11 r$ r. r.f. amplifier huilt on the same patiel, a Iripler-driser-amplifiner for $1 / 1$ Me.. atm! a dual antemat complar for both frequencides. I nits ran be operated with a kingle set of power auppliss, and with comtmen wrech equipment ami meters.

[^3]: ${ }^{1}$ A mil is $1 / 1000$ (one-thousumbth) of an inch. ${ }^{2}$ 'The figures given are approximate only. since the thickness of the insulation varies with different nanufacturers. ${ }^{3} 700$ circular

[^4]: D.c.c. wire is recommended for all coils.

[^5]: * Vo. 12 or No. 14 wire, $1 / 2$ inch inside diameter, 8 turne per ineh.

 1 A 9-thrn coil with closer turn spaeing to give the same inductance is shown in Fig. 23-24.

[^6]: 140 A and 47 are interchangeable.

[^7]: Standard cireuit symbols (ASA Y32.2-1954). In cases where identification is nccessary or desirable, the curved line in the capacitor symbol represents the ontside electrode (marked "outside foil" or "ground") in paper-dielectric capacitors, and the neqative electrode in electrolytic capacitors. In variable capacitorw the curved line nually represents the movable plate or plates.

 In a number of circuits in this Handbook, prepared before adoption of the standard, some symbols are not quite itentical with those above. llowever, in practically all cases the intent of the symbol will be easily recomnized. In the older cireuits the pround symbol is generally used to indicate a connection to chasxis.

[^8]:

[^9]: ${ }^{1}$ See page V27 for Key to Class-of-Service abbreviations.

