36 th EDITION , 1959

The radio

 amateur's handbookTHE STANDARD MANUAL OF AMATEUR

UBLISHED BY THE AMERICAN RADIO RELAY LEAGUE

星

[^0]
THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF
of the
AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

1959

COPYRIGHT 1959 BY

THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos
 Library of Congress Catalog Card Number: 41-3345

Thirty-sixth Edition
$\$ 3.50$ in U. S. A proper
$\$ 4.00$ in U. S. Possensions and Canada
$\$ 4.50$ else where
Buckram Edition \$6.00 Everywhere

THE RUMFORD PRESS
Concord, New Hampshire, U. S. A.

Foreword

In over thirty years of continuous publication The Radio Amateur's IIandbook has become as much of an institution as amateur radio itself. Produced by the amateur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, it has earned universal acceptance not only by amateurs but by all segments of the technical radio world. This wide dependence on the IIandbook is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion.

Virtually continuous modification is a feature of the IIandbook - always with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its annual revision, a major task of the headquarters group of the League, is participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.

The IIandbook is printed in the format of the League's monthly magazine, QST. This, together with extensive and useful catalog advertising by manufacturers producing equipment for the radio amateur and industry, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

The IIandbook has long been considered an indispensable part of the amateur's equipment. We earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.
A. L. Budlong

General Manager, A.R.R.L.
West Martford, Comn.

CONTRNTS

Circuit Symbols frontispiece
The Amateur's Code 8
Section 1 - Amateur Radio 9
2 - Electrical Laws and Circuits 15
3-Vacuum-Tube Principles 60
4-Semiconductor Devices 80
5-High-Frequency Receivers 87
6-High-Frequency Transmitters 147
7-Power Supplies 219
8-Keying and Break-In 244
9 -Speech Amplifiers and Modulators 256
10-Amplitude Modulation 284
11 -Suppressed-Carrier and Single-Sideband Techniques. 304
12 -Specialized Communication Systems 323
13-Transmission Lines 335
14-Antennas 355
15-Wave Propagation 389
16-V.H.F. Receivers 397
17- V.H.F. Transmitters 418
18-V.H.F. Antennas 448
19-Mobile and Portable-Emergency Equipment 460
20-Construction Practices 497
21 - Measurements 507
22 - Assembling a Station 539
$23-\mathrm{BCI}$ and TVI 546
24-Operating a Station 566
25-Vacuum Tubes and Semiconductors V1
Catalog Section
Index

THE
 AMATEUR'S CODE

- ONE •

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

- TWO •

The Amateur is Loyal . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE •

The Amateur is Progressive... He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

- FOUR •

The Amateur is Friendly ... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and cooperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE •

The Amateur is Balanced... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

- SIX •

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

Amateur Radio

Amateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronics and an opportunity to communicate with fellow citizens by private shortwave radio. Scattered over the globe are over 250,000 amateur redio operators who perform a service defined in international law as one of "self-training, intercommunication and technical investigations carried on by . . . duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."

From a humble begimning at the turn of the contury, amateur radio has grown to become an established institution. Today the American followers of amateur radio number over 185,000, trained communicators from whose ranks will come the professional communications specialists and executives of tomorrow just as many of today's radio leaders were first attracted to radio by their carly interest in amateur radio communication. A powerful and prosperous organization now provides a bond between amateurs and protects their interests; an internationally-respected magatzine is published solely for their benefit. The military serviecs seek the cooprration of the amateur in developing communications reserves. Amateur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production fechnigues - in itself a national asset. Amateurs have won the gratitude of the nation for their heroic performaners in times of matural disaster"; traditional amateme skills in omergeney emmmuniation aro also the stand-by system for the mationis rivil defense. Amateur radio is, indeed, a magnificently useful institution.

Although as oht as the art of ratio itself, amateur radio did not always enjoy such prestige. Its first enthusiasts were private citizens of an experimental turn of mind whose imaginations went wild when Mareoni first proved that messages actually could be sent by wireless. They set about leaming enough about the new sementifie marved to build hommmathe spark transmitlers. 135 Iold there were numerous Government and commercial stations, and hundreds of amateurs; regulation was needed, so laws, liconses and wavelength specifications appeared. There was then no amateur organization nor spokesman. The offerial viewpoint toward amateurs was something like this:
"Amateurs? . . . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and DN (distance) jumped from local to $500-\mathrm{mile}$ and even oreasional 1000 -mite twoway contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 moters.

Most important of all, this period witnessed the birth of the American Radio Relay league, the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late Iliram Percy Maxim, ARRL was formatly launched in carly 1914 . It had just begun to exert its full force in amateur activities when the Ifited states declared war in 1917, aid by that act sounded the knell for amateur radio for the next two and a half years. There were then over $\mathbf{6 0 0 0}$ amateurs. Over 4000 of them served in the armed forces during that war.

Today, few amateurs realize that World War l not only marked the close of the first phase of amateur development but came very

HIRAM PERCY MAXIM
President ARRL, 1914-1936

1-AMATEUR RADIO

near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Government, having had a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRL's I'resident Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Repeated representations to Washington met only with silence. The Lague's oflices had been closed for a vear and a half, its records stored away. Miost of the former amateurs had gone into service; many of them would never come back. Would those returning be interested in such things as amateur radio.' Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was discouraging: amateur radio still banned by law, former members scattered. no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth 13, Warner as the League's first paid secretary, floated a bond issue among old League members to obtain money for immediate running expenses, bought the magazine QST' to be the League's official organ, started activities, and dunned ofliciaddom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. Gangway for King Spark! Manufacturers were hard put to supply radio apparatus fast enough. Each night saw additional dozens of stations crashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new gear to 200 -meter work. langes promptly inereased and it became possible to bridge the continent with but one intermediate relay.

transatlantics

As DX became 1000, then 1500 and then 2000 miles, amateurs began to dream of transathantic: work. Conld they get across?. In Derember, 1921, AlRBI, seit abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were rum, and thirty American stations were heard in Europe. In 1922 anothor transathantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across
the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelength? What about those undisturbed wavelengthis below 200 meters? The engincering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, A RRL-sponsored tests on wavelengths down to 90 meters were successful. Reports indicated that as the wavelength dropped the results were better. Bxcitement began to sprearl through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amateur transatlantic communication was accomplished, when Schnell, 1MO, and IReinartz, IXAM (now W4CF and Kibls, respectively) worked for several hours with Deloy, 8 AB , in France, with all three stations on 110 me ters! Additional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantie. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

By 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League officials at the first of these frequency-determining conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40,20 , and even 5 meters.

Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters". This new band revealed entirely unexpected possibilities when 1NAM worked 6TS on the West Coast, direct, at high noon. The dream of amateur radio - daylight DN! was finally true.

PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation be the military and civil defense authorities of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best deseribed as "public service."

About 4000 amateurs had contributed their skill and ability in '17-'18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. 'These relations strengthened in the next few years and, in gradual steps, grew into cooperative activities which resulted, in 1925, in
the establishment of the Naval Communications Reserve and the Army-Amateur Radio System (now the Military Affiliate Radio System). In World War II thousands of amateurs in the Naval Reserve were called to active duty, where they served with distinction, while many other thousands served in the Army, Air Forces, Coast Guard and Marine Corps. Altogether, more than 25,000 radio amateurs served in the armed forces of the United States. Other thonsands were engaged in vital civilian electronic researeh, development and manufacturing. They also organized and manned the War Emergency Radio Service, the communications section of 0 CD .

The "public-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions hegan in 1923 when a League member, Don Mix, 1TS, of Bristol, Conn. (now assistant technical editor of QST), accompanied MacMillan to the Aretic on the schooner Bowdoin with an amateur station. Amateurs in Canada and the U.S. provided the home contacts. The success of this venture was so outstanding that other explorers followed suit. During subsequent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, the several explorations of the Antarctic being perhaps the best known.

Since 1913 amateur radio has been the principal, and in many cases the only, means of outside communication in several hundred storm, flood and earthquake emergencies in this country. The 1936 and 1937 eastern states floods, the Southern California flood and Long Island-New lingland hurricane disaster in 1938, the Florida-Gulf Coast hurricanes of 1947, and the 1955 flood disasters called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major rôle in the reliof work and earned wide commendation for their resourcefulness in effecting commanication where all other means had failed. During 1938 ARRLL inaugurated a new emer-gency-preparedness program, registering personnel and equipment in its Emergency Corps and putting into effect a comprehensive program of cooperation with the Red Cross, and in 1947 a National Emergency Coordinator was appointed to full-time duty at League headquarters.

The amateur's outstanding record of organized preparation for emergency communications and performance under fire has been largely responsible for the decision of the lederal Government to set up special regratations and set aside special frequencies for use by amateurs in providing auxiliary communications for civil defense purposes in the event of war. Under the banner, "Radio Amateur (ivil Emergency Survice," amateurs are setting up and manning community and area networks integrated with civil defense functions of the municipal governments. Should a war cause the shut-down of routine amateur activi-
ties, the RACES will be immediately available in the national defense, manned by amateurs highly skilled in emergency communication.

TECHNICAL DEVELOPMENTS

Throughout these many years the amateur was careful not to slight experimental development in the enthasiasm incident to international D.N. The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and learning how to cram several stations where previously there was room for only one! In particular, the amateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the must of what is at hand. In 1924, first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for DX. Nonetheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant experimenter, Ross Hull (later QST"s editor), developed the theory of $v . h . f$. wave-bending in the lower atmosphere and led amateurs to the attainment of better distances; while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely erratic performance. 13y Pearl IIarbor thousands of amateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles. Transcontinental 6meter DN is not uncommon; during solar peaks, even the oceans have been bridged! lt is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur research.

The amateur is constantly in the forefront of technical progress. His incessant curiusity, his eagerness to try anything new, are two reasons. Another is that ever-growing amateur radio continually overcrowds its frequency assignments, spurring amateurs to the development and adoption of new techniques to permit the

A corner of the ARRL laboratory.
accommodation of more stations. For examples, amateurs turned from spark to c.w., designed more selective receivers, adopted erystal control and pure d.c. power supplies. From the ARIRL's own laboratory in 1932 came James Lamb's "single-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver and, in 1936, the "noise-silencer" circuit, Amateurs are now turning to speech "elip)pers" to reduce bandwidths of phone transmissions and "single-sideband suppressed-carrier" systems as well as even more selectivity in receiving equipment for greater efficiency in spectrum use.

During World War II, thousands of skilled amateurs contributed their knowledge to the development of secret radio devices, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass cooperation of the amateur body in Government projects such as propagation studies; each participating station is in reality a separate field laboratory from which reports are made for correlation and amalysis. An outstanding example is varied amateur participation in several activities of the Internationa! Geophysical Year program. ARRL, with Air Force sponsorship, is conducting an intensive study of $v . h . f$. propagation phenomena-1)X transmissions via little-understood methods such as meteor and auroral reflections, and transequatorial scatter. ARRI-affiliated clubs and groups have operated precision receiving antemas and apparatus to help track the earth satellite via radio. For volunteer astronomers searching visually for the satellite, other amateurs are manning networks to provide instant radio reports of sightings to a central agency so that an orbit. may be computed.

Emergency relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence

THE AMERICAN RADIO RELAY LEAGUE

The ARRL is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and has no stockholders. The members of the League are the owners of the ARRLL and QST.

The operating room of WIAW.
The Ieague is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by anateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduet. It represents the amateur in legislative matters.

One of the League's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of responsibilities - the maintenance of high standards, a cooperative loyalty to the traditions of amateur radio, a dedication to its ideals and principles, so that the institution of amateur radio may continue to operate "in the public interest, convenience and necessity."

The operating territory of ARRLL is divided into one Canadian and fifteen ['. A. divisions. The affairs of the League are managed by a Board of Directors. One director is elected every two ycars by the membership of each U. S. division, and one by the C'anadian membership. These directors then choose the president and vice-president, who are also members of the Board. The secretary and treasurer are also appointed by the Board. The directors, as representatives of the amateurs in their divisions, meet annually to examine current amateur problems and formulate ARRLL, policies thereon, The directors appoint a general manager to supervise the operations of the League and its headquarters, and to carry out the policies and instructions of the lioard.

ARRL owns and publishes the monthly magazine, QS'T', Acting as a bulletin of the League's organized activities, $Q s T^{\prime}$ also serves as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership dues include a subscription to QST,

ARRL maintains a model headquarters amateur station, known as the Iliram Percy Maxim Memorial Station, in Newington, Conn, Its call is W1AW, the call held by Mr. Maxim until his death and later transierred
to the League station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world. More important, WIIW transmits on regular schedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the League in West Hartford, Comn., is a well-equipped laboratory to assist staff members in preparation of technical material for QST and the Rudio Amateur's Handhook. Among its other activities, the League maintains a Commmnications Department concerned with the operating activities of League members. A large field organization is headed by a section Communications Manager in cach of the League's sevent y-three sections. There are appointments for qualified members in various fields, as outlined in Section 24. Sperial activitios and contests promote operating skill. A special section is reserved each month in QST for amateur news from every section of the country.

AMATEUR LICENSING IN THE UNITED STATES

Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly authorized person interested in radio technicue solely with a personal aim and without pecuniary interest. Amateur operator licenses are given to U. S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code. There are four availathle classes of amateur license - Novice, Technician, General (called "Conditional" if exam taken by mail), and Amateur Wxtra Class. Each has different requirements, the first two being the simplest and consequently conveying limited privileges as to frequencies available. Lxams for Novice, Technician and Conditional elasses are taken by mail under the supervision of a volunterer examiner. Station licenses are granted only to licensed operators and permit communication between sueh stations for amateur purposes, i.e., for personal noncommereial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadeasting. Narrow bands of frequencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy; some are available for radiotelephone, others for special forms of transmission such as teletype, facsimile, amateur television or radio control. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Me. must be ade-quately-filtered direct current. Emissions must be free from spurious radiations. The licensee must
provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy code at the required speed, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination by an FCC engineer (or by a volunteer, depending on the license class), through FCC at Washington. A complete up-to-the-minute discussion of license requirements, and study guides for those preparing for the examinations, are to be found in an ARRL publication, The Radio Amateur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for $50 ¢$, postpaid.

LEARNING THE CODE
In starting to learn the code, you should consider it simply another means of conveying

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	\checkmark didididah
J didalidahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahidah	7 dahdahdididit
3 didididalıdah	8 dahdahdahdidit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahdahdah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdit.

Fig. 1-1-- The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Learning the code is as casy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it as a language of sound, never as combinations of dots and dashes. It is easy to "sperak" code equivalents by using "dit" and "dah," so that A would be "didah" (the " t " is dropped in such combinations). The sound "di" should be staccato; a code character such as " 5 " should sound like a machinegun burst: dididididit! Stress each "dah" equally; they are underlined or italicized in this text because they should be slightly accented and drawn out.

Take a few characters at a time. Iearn them thoroughty in didah language before going on to new ones. If someone who is familiar with code can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, enlist his coöperation. Learn the code by listening to it. Don't think about speed to start; the first requirement is to learn the characters to the point where you can rocognize each of them without hesitation. Concentrate on any difficult letters. Learning the cole is not at all hard; a simple booklet treating the subject in detail is another of the beginner publications available from the League, and is entitled, Learning the Raliotelegraph Code, $50 \&$ postpaid.

- THE AMATEUR BANDS

Amateurs are assigned hands of frequencies at approximate harmonic intervats throughout the speetrum. Like assignments to all services, they are subject to modification to fit the changing picture of world communications needs. Mortifications of rules to provide for domestic needs are also oceasionally issued by FCC, and in that respeet each amateur should kerep himself informed by WIAW bulletins, QST roports, or by communication with AIRIRL, Hq. concerning a sperific point.

In the adjoining table is a summary of the U. S. amateur bands on which operation is permitted as of our press date. Figures are megacyeles. A0 means an unmodulated carrier, Al means e.w. telegraphy, A2 is tone-modulated c.w. telegraphy, A3 is amplitude-modulated phone, A4 is farsimite, A5 is television, n.f.m. designates narrow-band frequency- or phase-modulated radiotelephony, f.m. means frequency modulation, phone (including n.f.m.) or telegraphy; and Fi is frequency-shift keying.

${ }^{1}$ Input power must not exceed 50 watts.
2 No pulse germitted in this band.
Note: The bands 220 through 10,500 Mc. are shared with the Government Radio Positioning Service, which has priority.

In addition, AI and A3 on portions of $1.800-2.000$, as follows:
 night.

Novice licensees may use the following frequencies, transmitters to be erystal-controlled and have a maximum power input of $\overline{5}$ watts.

$3.700-3.750$	A1	$21.100-21.250$	A1
$7.150-7.200$	A1	$145-147$	A1, A2,
			A3, f.m.

Technician licensees are permitted all amateur privileges in 50 Mc . and in the bands 220 Mc . and above.

Electrical Laws and Circuits

ELECTRIC AND MAGNETIC FIELDS

When something occurs at one point in space because something else happened at another point, with no visible means by which the "cause" can be related to the "effect," we say the two events are connected by a field. In radio work, the fields with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic field.

A field has two important properties, intensity (magnitude) and direction. The field exerts a force on an object inmersed in it; this force represents potential (ready-to-he-used) energy, so the potential of the field is a measure of the field intensity. The direction of the field is the direction in which the objert on which the force is exerted will tend to move.

An electrically-charged object in an electric field will be acted on by a force that will tend to move it in a direction determined by the direction of the field. Similarly, a magnet in a magnetic field will be subject to a force. Everyone has seen demonstrations of magnetir ficlds with porket magnets, so intensity and direction are not hard to grasp.

A "static" field is one that neither moves nor changes in intensity. Such a field can be set up by a stationary elertric charge (electrostatic field) or by a stationary magnet (magnetostatic field). I3ut if either an electric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing electric field sets up a magnotic field, and a changing magnotio ficid gencrates an electric field. This interrelationship between magnetic and electric fields makes possible such things as the eledromagnet and the electric motor. It also makes possible the electromagnetic waves by which radio communication is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetic fields.

Lines of Force

Although now one knows what it is that composes the field itself, it is useful to invent a picture of it that will help in visualizing the forces and the way in which they act.

A field can be pictured as boing made up of lines of force, or flux lines. These are purely imaginary threads that show, by the direction in which they lie, the direction the objert on
which the force is exerted will move. The number of lines in a chosen cross section of the field is a measure of the intensity of the force. The number of lines per unit of area (square inch or square centimeter) is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Everything physical is built up of atoms, particles so small that they cannot be seen even through the most powerful microscope. But the atom in turn consists of several different kinds of still smaller particles. One is the electron, essentially a small particle of electricity. The quantity or charge of electricity represented by the electron is, in fact, the smallest quantity of electricity that can exist. The kind of electricity associated with the electron is called negative.

An ordinary atom consists of a central core called the nucleus, around which one or more electrons circulate somewhat as the earth and other planets circulate around the sun. The mucleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exactly equal to the sum of the negative charges on all the electrons associated with that nucleus.

The important fact about these two "opposite" kinds of electricity is that they are strongly attracted to each other. Also, there is a strong force of repulsion between two charges of the same kind. The positive nucleus and the negative clectrons are attracted to earh other, but two electrons will be repelled from each other and so will two nuclei.

In a nomal atom the positive charge on the murdens is exactly balanced by the redgative charges on the alectrons. However, it is possible for an atom to lose one of its electrons. When that happens the atom has a little less negative charge than it should - that is, it has a net positive charge. Such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra clectron, as it sometimes does, it has a net negative charge and is called a negative ion. I positive ion will attract any stray electron in the vieinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or electrons constitutes the electric current.
'The amplitude of the current (its intensity or magnitude) is determined by the rate at which electric charge - an accumblation of electrons

2-ELECTRICAL LAWS AND CIRCUITS

or ions of the same kind - moves past a point in a circuit. Since the charge on a single electron or ion is extremely snall, the number that must move as a group) to form even a tiny current is almost inconceivably large.

Conductors and Insulators

Atoms of some materials, notably metals and arids, will give up an electron readily, but atoms of other materials will not part with any of their electrons even when the electric force is extremely strong. Materials in which electrons or ions can be moved with relative ease are called conductors, while those that refuse to permit such movement are called nonconductors or insulators. The following list shows how some common materials divide between the conductor and insulator classifications:
Conductors
Metals
Carbon
Acids

Insulators
Dry Air
Wood Porcelain Textiles Cilass Rubber Resins

Electromotive Force

The electric force or potential (called electromotive force, and abbreviated e.m.f.) that causes current flow may be developed in several ways. The action of certain chemical solutions on dissimilar metals sets up an e.m.f.; such a combination is called a cell, and a group of cells forms an electric battery. The amount of current that such cells can carry is limited, and in the course of current flow one of the metals is eaten away. The amount of electrical energy that can be taken from a battery consequently is rather small. Where a large amount of energy is needed it is usually furnished by an electric generator, which develops its e.m.f. by a combination of magnetic and mechanical means.

In picturing current flow it is natural to think of a single, constant force causing the electrons to move. When this is so, the electrons always move in the same direction through a path or circuit made u_{p}) of conductors connected together in a continuous chain. Such a current is called a direct current, abbreviated d.c. It is the type of current furnished by batteries and by certain types of generators. However, it is also possible to have an e.m.f. that periodically reverses. With this kind of e,m.f. the current flows first in one direction through the circuit and then in the other. Such an e.m.f. is called an alternating e.m.f., and the current is called an alternating current (abbreviated a.c.). The reversals (alternations) may occur at any rate from a few per second u_{p}, to several billion per second. Two reversals make a cycle; in one cycle the force acts first in one direction, then in the other, and then returns to the first direction to begin the next cycle. The number of cycles in one second is called the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, increasing toward the right away from the vertical axis. The vertical axis represents the amplitude or strength of the current, increasing in either the up or down direction away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the circuit (indicated by the + sign) and if it is below the horizontal axis the current is flowing in the reverse direction through the circuit (indicated by the - sign). Fig. 2-1A shows that, if we close the circuit - that is, make the path for the curent complete - at the time indicated by \boldsymbol{X}, the current instantly takes the amplitude indicated by the height A. After that, the current continues at the same implitude as time goes on. This is an ordinary dircet current.

In Fig. 2-113, the current starts flowing with the amplitude A at time X, continues at that amplitude until time Y and then instantly ceases. After an interval $Y Z$ the current again begins to flow and the same sort of start-and-stop performance is repeated. This is an intermittent direct current. We coukd get it by alternately closing and opening a switch in the circuit. It is a direct current because the dirction of current flow does not change; the graph is always on the + side of the horizontal axis.

In Fig. 2-IC the current starts at zero, increases in amplitude as time goes on until it reaches the amplitude A_{1} while flowing in the + direction, then decreases until it drops to zero amplitude once more. At that time (X) the

(B)

(C)

Fig. 2-1 - Three types of current flow. A-direct current; B-intermittent direct current; C -alternating current.

Frequency and Wavelength

direction of the current flow reverses; this is indicated by the fact that the next part of the graph is below the axis. As time goes on the amplitude increases, with the current now flowing in the direction, until it reaches amplitude A_{2}. Then the amplitude decreases until finally it drops to zero (Y) and the direction reverses once more. This is an alternating current.

Waveforms

The type of alternating current shown in Fig. $2-1$ is known as a sine wave. The variations in many a.c. waves are not so smooth, nor is one half-cycle necessarily just like the preceding one in shape. Ilowever, these complex waves can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-number) multiples of some lower frequency. The lowest frequency is called the fundamental frequency, and the higher frequencies (2 times, 3 times the fundamental frequency, and so on) are called harmonics.

Fig. 2-2 shows how a fundamental and a second harmonic (twice the fundamental) might add to form a complex wave. Simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zero amplitude, an infinite number of waveshapes can be constructed from just a fundamental and second harnonic. Waves that are still more complex can be constructed if more harmonics are used.

Electrical Units

The unst of electromotive force is called the volt. An ordinary flashlight cell generates an e.m.f. of about 1.5 volts. The e.m.f. commonly supplied for domestic lighting and power is 115 volts, usually a.c. having a frequency of 60 cyches per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.c.) for filament heating to as high as a few thousand d.c. volts for the operation of power tubes.

The flow of electric current is measured in amperes. One ampere is equivalent to the movement of many billions of clectrons past a point iln the rircuit in one second. Gurrents in the noighborhood of an ampere are required for heating the filaments of small power tubes. The slirest currents used in amateur radio equipment usually are not so large, and it is customary to measure such currents in milliamperes. One milliampere is equal to one one-thousandth of an ampere, or 1000 milliamperes equal one ampere.

A "d.c. ampere" is a measure of a stend! current, but the "a.c. :mperc" must measure a current that is continually varying in amplitude and periodically reversing direction. To put the two on the sane basis, an a.e. ampere is defined as the amount of current that will cause the same heating effect (see later section) as one ampere of steady direct current. For sine-wave a.c., this effective (or r.m.s.) value is equal to the maximum amplitude (A_{1} or A_{2} in Fig. 2-1C) multiplied by 0.707 . The instantaneous value is the value

Fig. 2-2-A complex woveform. A fundomentol (top) and second hormonic (center) added together, point by point of each instant, result in the woveform shown at the bottom. When the two components have the same polarity at o selected instant, the resultant is the simple sum of the two. When they have opposite polarities, the resultant is the difference; if the negative-polority component is larger, the resultont is negative of thot instant.
that the current (or voltage) has at any selected instant in the cycle.

If all the instantaneous values in a sine wave are averaged over a half-cycle, the resulting figure is the average value. It is equal to 0.6 .36 times the :naximum amplitude. The average value is useful in connertion with rectifier systens, as described in a later chapter.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 rycles per second are called audio frequencies, because the vibrations of air particles that our cars reoognize as sounds oreur at a similar rate. Audio frequencies (abbreviated a.f.) are used to actuate loudspeakers and thus create sound waves.

Frequencies above about 15,000 rycles are called radio frequencies (r.f.) because they are useful in radio transmission. Frequencies all the way up to and beyond $10,000,000,100$ cyoles have been used for radio purposes it radic, frequencies the numbers berome solange that it becomes eonvenient to use a larger u'it than the cerle. Two such units are the kilocycle, which is aqual to 1000 cyeles and is abbreviated ke., and the megacycle, which is equal to $1,(\mu), 000$ ryches or 1000 kilocycles and is abbreciated Mc.

The various radio frequencies are divided ofit into classifications for ready identification. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

2-ELECTRICAL LĀWS AND CIRCUITS

Frequency 10 to 30 kc . $30)$ to 300 kc . 300 to 3000 kc . 3 to 30 Mc .
30 to 300 Mc. 300 to 3000 Mc. 3000 to $30,000 \mathrm{Mc}$.

Classification
Very-low frequencies Low frequencies Medium freguencies High frequencies Very-high frequencies Cltrahigh frequencies
Superhigh frequencies

Abbreviation
v.l.f.
1.f.
m,f.
h.f.
v, h, f
u.h.f.
s.h.f.

Wavelength

Radio waves travel at the same speed as light - 300,000,000 meters or about 186,000 miles a second in space. They can be set up by a radiofrequency current flowing in a circuit, because the rapidly-changing current sets up a magnetic field that changes in the same way, and the $v^{\text {r }} \mathrm{y}$ ing magnetic field in turn sets up a varying electric field. And whenever this happens, the two fields move outward at the speed of light.
suppose an r.f. current has a frequency of $3,000,000$ cycles per second. The fields will go through complete reversals (one cycle) in $1 / 3,000,000$ second. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. By the time the wave has moved that distance
the next cycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance occupied by each wave and hence the longer the wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
or

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in megacycles
Example: The wavelength corresponding to a frequency of 3650 kilocycles is

$$
\lambda=\frac{300,000}{3650}=82.2 \text { meters }
$$

Resistance

Given two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given e.m.f. is applied will be found to vary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

IResistance is measured in ohms. A circuit has a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each edge. One of the best conductors is copper, and it is frequently convenient, in making resistance calculations, to compare the resistance of the material under consideration with that of a copper eonductor of the same size and shape. Table 2 -I gives the ratio of the resistivity of various conductors to that of copper.

The longer the path through which the current flows the higher the resistance of that conductor. For direct current and low-frequency alternating

TABLE 2-I	
Material	Resistivity Compared to Copper
Aluminum (pure) .	1.30
Brass....	3.57
Cadmium .	5.26
Chromium.	1.82
(Copper (hard-drawn)	1.12
(opper (annealed)..	1.00
1ron (pure)......	5.65
Lead.	14.3
Nickel........	.6.25 to 8.33
Phosphur lronze.	$\stackrel{.78}{\square}$
Silver.	0.94
Tin.	7.0
Zine...	3.54

currents (up to a few thousand cyeles per second) the resistance is inversely proportional to the eross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cross-sectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opposite, finding a suitable size and length of wire to supply a desired amount of resistance can be easily solved with the help of the copperwire table given in a later chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

Example: suphose a resistance of 3.5 ohme is needed and sotne No. 28 wire is on haml. The wire tahle in Chapter 20 shows that No. 28 has a resistance of 66.17 ohms per thousand feet. Since the desired resistance is 3.5 ohms, the length of wire required will the

$$
\frac{3.5}{66.17} \times 1000=52.80 \text { feet }
$$

Or, suppose that the resistance of the wire in the circuit must not exceed 0,05 ohm and that the length of wire required for making the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \mathrm{ohm}
$$

where R is the maximum allowable resistance in ohms per thousand feet. Rearranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft}
$$

Reference to the wire tahle shows that No. I5 is the smallest size having a resistance less then this value.
When the wire is not copper, the resistance values given in the wire table should be multi-

Resistance

Types of resistors used in radio equipment. Those in the foreground with wire leads are carbon types, ranging in size from $1 / 2$ watt at the left to 2 watts at the right. The larger resistors use resistance wire wound on ceramic tubes; sizes shown range from 5 watts to 100 watts. Three are of the adjustable type, having a sliding contact on an exposed section of the resistance winding.

plied by the ratios given in Table 2-I to obtain the resistance.

Example: If the wire in the first example were iron instead of copper the length required for 3.5 ohus would be

$$
\frac{3.5}{66.17 \times 5.65} \times 1000=9.35 \text { feet. }
$$

Temperature Effects

The resistance of a conductor changes with its temperature. Nthough it is seldom necessary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. Carbon, however, acts in the opposite way; its resistance decreases when its temperature rises. The temperature effect is important when it is necessary to maintain a constant resistance under all conditions. Special materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "package" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. The flow of current through resistance causes the conductor to become heated; the higher the resistance and the larger the current, the greater the amount of heat developed. Resistors intended for carrying large currents must be physically large so the heat can be radiated quickly to the surrounding air. If the resistor does not get rid of the heat quickly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the current is alternating there are internal effects that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistance increases.

For low audio frequencies the increase in resistance is unimportant, but at radio frequencies this skin effect is so great that practically all the current flow is confined within a few thousandths of an inch of the conductor surface. The r.f. resistance is consequently many times the d.c. resistance, and increases with increasing frequency. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually represented by the symbol G. A circuit having large conductance has low resistance, and vice versa. In radio work the term is used chiefly in connection with vacuum-tube characteristics. The unit of conductance is the mho. A resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of 0.001 mho , and so on. A unit frequently used in connection with vacuum tubes is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance connected to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current

Fig. 2-3-A simple circuit consisting of a battery and resistor.

can flow out of the battery, through the apparatus connected to it, and back into the battery. The circuit is broken, or open, if a connection is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

2-ELECTRICAL LAWS AND CIRCUITS

TABLE 2-II Conversion Factors for Fractional and Multiple Units			
To change from	To	Divide by	Multiply by
I'nits	Micro-units Dilli-units Kilo-units Mega-units	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Micro-units	$\begin{aligned} & \text { Milli-units } \\ & \text { Units } \end{aligned}$	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	
Milli-tunts	Micro-anits Units	1000	1000
Kilo-units	Units Mega-units	1000	1000
Mega-units	Units: Kilo-units		$\begin{gathered} \mathrm{F}, 000,0000 \\ 10000 \end{gathered}$

The values of current, voltage and resistance in a circuit are by no means independent of each other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Expressed as an equation, it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are known. It may be transposed so that each of the three quantities may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

All thre forms of the equation are used almost constantly in radio work. It must be remembered that the quantities are in volts, ohms and amperes; other units camot be used in the equations without first being converted. For example, if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-II shows how to convert between the various units in common use. The prefixes attached to the basic-unit name indicate the nat ure of the unit. These prefixes are:

$$
\begin{aligned}
& \text { micro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } k \text {) } \\
& \text { mega - one million (abbreviated } M \text {) }
\end{aligned}
$$

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000 \mathrm{ohms}$. There are therefore $1,000,000$ microvolts in one volt, and 0.000001 megohm in one ohm.

The following examples illustrate the use of Ohm's Law:
The current flowing in a resistance of 20,000 ohms is 150 milliamperes. What is the voltare? Since the voltage is to be found, the equation to use is $E=I R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is necessary to divide by 1000 . Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltage of 150 is applied to a circuit the current is measured at 2.5 amperes. What is the resistance of the cireuit? In this case R is the unknown, so

$$
R=\frac{E}{l}=\frac{150}{2.5}=60 \text { ohms }
$$

No conversion was necessary because the voltage and current were given in volts and annperes. How mueh eurrent will flow if 250 volts is applicd to a 5000 -ohm resistor? Since I is unknown.

$$
I=\frac{E}{R}=\frac{250}{5000}=0.05 \text { ampere }
$$

Milliampere units would be more convenicnt for the current, and $0.05 \mathrm{amp} . \times 1000=50 \mathrm{mil}$ liamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found connected in a

Fig. 2-4-Resistors connected in series and in parallel.

variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current flows from the source of e.m.f. (in the direction shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then bark to the source. These resistors are connected in series. The current everywhere in the circuit has the same value.

In the lower drawing the current flows to the common connection point at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through R_{2}. At the lower connection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this case the two resistors are connected in parallel.

Series and Parallel Resistance

Resistors in Series

When a circuit has a number of resistances connected in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etc., then
$R($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+. . .$. where the dots indicate that as many resistors as necessary may be added.

Example: Suppose that three resistors are connected to a source of e,m.f. as shown in lig. $2-5$. The e.mif. is 250 volts, R_{1} is 5000 ohms, R_{2} is 20,000 ohms, and R_{3} is 8000 ohms. The total resistance is then

$$
\begin{gathered}
R=R_{1}+R_{2}+R_{3}=5000+20,000+8000 \\
=33,000 \text { ohms }
\end{gathered}
$$

The current flowing in the circuit is then

$$
I=\frac{E}{R}=\frac{250}{33,000}=0.00757 \mathrm{amp} .=7.57 \mathrm{~ms}
$$

(We need not carry calculations beyond three significant figures, and often two will suffice because the accuracy of measurements is seldom better than a few per cent.)

Voltage Drop

Ohm's Law applies to any part of a circuit as well as to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides among them. The voltage appearing arross each resistor (the voltage drop) can be found from Ohm's Law.

Example: If the voltage across R_{1} ($\mathrm{Fig} .2-5$) is called E_{1}, that across R_{2} is called E_{2}, and that across R_{3} is called E_{3}, then
$E_{1}=I R_{1}=0.007 .57 \times 5000=37.9 \mathrm{volts}$
$E_{2}=I R_{2}=0.00757 \times 20,000=1.51 .4$ volts
$E_{3}=I R_{3}=0.00757 \times 8000=60.6$ volts
The applied voltage must equal the sum of the individual voltage drops:

$$
\begin{aligned}
E=E_{1}+E_{2} & +E_{3}=37.9+151.4+60.6 \\
& =249.9 \text { volts }
\end{aligned}
$$

The answer would have been more nearly exact if the current had been calculated to more deeimal waces, but as explained above a very high order of aecuracy is not necessary.

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

Fig. 2-5-An example of resistors in series. The solution of the circuit is worked out in the text.
resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is becruse the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula becomes

$$
R=\frac{R_{1} R_{2}}{R_{1}+h_{2}}
$$

Example: If a 500 -ohm resistor is paralleled with one of 1200 ohms, the total resistance is

$$
\begin{aligned}
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} & =\frac{500 \times 1200}{500+1200}=\frac{600,000}{1700} \\
& =353 \mathrm{ohms}
\end{aligned}
$$

It is prohably easier to solve practical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three re-

Fig. 2-6-An example of resistors in parallel. The solutio is worked out in the text.
sistors of the previous example are connected in parallel as shown in Fig. 2-6. The same e.m.f., 250 volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenience, the resistance will be expresed
in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{2.50}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{250}{20}=12.5 \mathrm{na} \\
& I_{3}=\frac{E}{R_{3}}=\frac{250}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=50+12.5+31.25 \\
=93.75 \mathrm{ma}
\end{gathered}
$$

The total resistance of the eireuit is therefore $R=\frac{E}{I}=\frac{250}{93.75}=2.66 \mathrm{kilohms}(=2660 \mathrm{ohns}$)

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving a circuit such as Fig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple series circuit, as shown at the right in Fig. 2-7.

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2.7-An example of resistors in series-parallel. The equivalent circuit is at the right. The solution is worked out in the text.

Example: The first step is to find the equivalent resistance of R_{2} and R_{3}. From the formula for two resistances in parallel,

$$
\begin{aligned}
R_{\text {eq. }}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =\bar{b} .71 \text { kilohms }
\end{aligned}
$$

The total resistance in the circuit is then

$$
\begin{aligned}
R=R_{1} & +R_{\text {e4. }}=5+5.71 \text { kilohms } \\
& =10.71 \text { kilohn } 1 \mathrm{~s}
\end{aligned}
$$

The eurrent is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.3 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {eq }}$ are
$E_{1}=I R_{1}=23.3 \times 5=117$ volts
$E_{2}=I R_{\mathrm{eq}} .=23.3 \times 5.71=133$ volts
with sufficient aecuracy. These total 250 volts, thus checking the calculations so far, because the sum of the voltage drojs must equal the applied voltage. Since E_{2} appears across both R_{2} and R_{3},

$$
\begin{aligned}
I_{2} & =\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.65 \mathrm{na} \\
I_{3} & =\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{naa} \\
\text { where } I_{2} & =\text { Current through } R_{2} \\
I_{3} & =\text { Current through } R_{3}
\end{aligned}
$$

The total is 23.25 ma., which checks closely enough with 23.3 ma., the current through the whole circuit.

POWER AND ENERGY

Power - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
P=E I
$$

where $P=$ Power in watts
$E=$ I.m. m . in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousaudth of a watt, and the kilowatt, or one thousand watts.

Example: The plate voltage on a transmitting vacuum tube is 2000 volts and the plate current is 350 milliamperes. (The current must be changed to amperes before substitution in the formula, and so is 0.35 amp.) Then

$$
P=E I=2000 \times 0.35=700 \text { watts }
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power calculations
when the resistance and either the current or voltage (but not both) are known.

Example: llow much power will be used up in a 4000 -ohm resistor if the voltage applied to it is 200 volts? From the equation

$$
P=\frac{E^{2}}{R}=\frac{(2(0))^{2}}{4(000)}=\frac{40,000)}{4000}=10 \text { watts }
$$

Or, suppose a current of 20 milliamperes flows through a 300 -ohm resistor, Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \text { watt }
\end{gathered}
$$

Note that the current was changed from millianperes to amperes before substitution in the formula.
Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Electrical power is not always turned into heat. The power used in rumning a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. Power applied to a loudspeaker is changed into sound waves. But in every case of this kind the power is completely "used up" - it cannot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristies of resistance, so it can be said that any device that dissipates power has a definite value of "resistance." This concept of resistance as something that ahsorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple resistance for the load or power-consuming part of the device receiving power, often with considerable simplification of calculations. Of course, every electrical device has some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to be a loss, because it is not the useful power. The efficiency of a device is the useful power output (in its converted form) divided by the power input to the device. In a vacuum-tube transmitter, for example, the object is to convert power from a d.c. source into a.c. power at some radio frequency. The ratio of the r.f. power output to the d.c. input is the efficiency of the tube. That is,

$$
E . J .=\frac{P_{0}}{P_{i}}
$$

Capacitance

$$
\text { where } \begin{aligned}
E f f_{*} & =\text { Efficiency (as a decimal) } \\
P_{0} & =\text { Power output (watts) } \\
P_{\mathrm{i}} & =\text { I'ower input (watts) }
\end{aligned}
$$

Example: If the d.c, input to the tube is 100 watts and the r.f. power output is 60 watts, the efficiency is

$$
E . f .=\frac{P_{0}}{P_{\mathrm{i}}}=\frac{60}{100}=0.6
$$

Efficiency is usually expressed as a percentage; that is, it tells what per cent of the input power will be available as useful output. The efficiency in the above example is 60 per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=P T
$$

where $\boldsymbol{W}=$ Energy in watt-hours
$I=$ Power in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Energy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance

Suppose two flat metal plates are placed close to each other (but not touching) and are connected to a battery through a switch, as shown in Fig. 2-8. It the instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery; and the same number will be repelled into the lower plate from

the nagative battery terminal. Whough electrons move into one plate and out of the other to make the e.m.f. betwern them the same as the e.m.f. of the battery.

If the switeh is opened after the plates have ben charged in this way, the top plate is left with a deficiency of electrons and the bottom plate with an exeess. The plates remain charged despite the fare thate the batery no longere is comereded. However, if a wire is touched breween the two plates (short-circuiting them) ther (xeress elere trons on the hottom plate will flow through the wire to the upper plate, thus restoring clecetreal neutrabity. The plates hatve then been discharged.

The two plates constitute an electrical capacitor or condenser, and from the discussion above it should be clear that a capacitor possesses the property of storing electricity. ('The energy atually is stored in the olectric: field between the plates.) It should also be clear that during the time the electrons are moving - that is, while the capacitor is heing charged or dischamged - a current is fowing in the rirenit ewen though the rireut is "broken" by the gap bet ween the catparitor plates. However, the current flows only during the time of charge and discharge, and this time is usually very short. There ran be no contimous flow of direct current "through" a capacitor.

The charge or quantity of electricity that
can be placed on a capacitor is proportional to the applied voltage and to the capacitance or capacity of the capacitor. The larger the plate area and the smaller the spacing between the plates the greater the capacitance. The capacitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance many times. The ratio of the capacitance with some material other than air betwcen the plates, to the capacitance of the same capacitor with air insulation, is called the specific inductive capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials commonly used as dielectrics in capacitors are given in Table 2-III. If a sheet of photographic glass is substituted for air between the plates of a capacitor, for example, the capacitance will be increased 7.5 times.

TABLE 2-III

2-ELECTRICAL LAWS AND CIRCUITS

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work. Caparitance is usually neasured in microfarads (ablreviated μ f.) or micromicrofarads ($\mu \mu \mathrm{f}$.). The microfaral is one-millionth

Fig. 2-9-A multiple-plate capacitar. Alternate plates are cannected lagether.
of a farad, and the micromicrofarad is one-millionth of a microfarad. Capacitors nearly always have more than two plates, the alternate plates being ronnected together to form two sets as shown in Fig. 2-9. This nakes it possible to attain a fairly large capacitance in a small space, since several plates of smaller individual area can be stacked to form the equivalent of a single large plate of the same total arca. Also, all pates, except the two on the ends, are exposed to plates of the other group on both sides, and so are twice as effective in increasing the capacitane.

The formula for caloulating capacitance is:

$$
\left(\prime=0.2 \because+\frac{\kappa A}{d}(n-1)\right.
$$

where $C=$ (apacitance in $\mu \mu \mathrm{f}$.
$K=1$)ielectric constant of material between plates
$A=$ Mreat of one side of one plate in square inches
$d=$ Geparation of plate surfaces in inches
$u=$ Number of plates
If the plates in one group do not have the same area as the plates in the other, use the area of the smuller plates.

The usofulness of at caparitor in electrical circuits lies in the fact that it can be changed with cleetrical energy at one time and then discharged at a later time. In other words, it is an "clectrical reservoir."

Capacitors in Radio

The types of capacitors used in radio work differ considerably in physical size, construction, and capacitance. some representative types are shown in the photograph. In variable capacitors (almost always constructed with air for the dielectric) one set of plates is made movable with respect to the other set so that the capaeitance can be varied. Fixed capacitors - that is, assemblies having a single, non-idjustable value of caparitanere - also ato be made with metal plates and with air as the dielectric, but usually are constructed from plates of metal foil with a thin solid or liquid dielertric sandwiched in between, so that a relatively large capacitance can be secured in a small unit, The solid dielectrics commonly used are nica, paper and special ceranics. An example of a liquid dielectric is mineral oil. The electrolytic capacitor uses alumi-num-foil plates with a semiliquid conducting chemical compound between them; the actual dielectric is a very thin film of insulating material that forms on one set of plates through electrochemical action when a d.e. voltage is applied to the caparitor. The capacitance obtained with a given plate area in an electrolytic caparitor is vory large, compared with capacitors having other dielectries, berause the film is so extremely thin - much less than any thickness that is prateticable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a caparitor, a considerable fore is exerted on the clectrons and nuclei of the dielectric. Because the dielectric is an insulator the electrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in Table e-lII. It is not directly proportional to the thicknoss; that is, doubling the thickness does not quite double the breakdown voltage. If the diclectric is air or any other gas, breakdown is

Fixed and variable capacitars. The large unit at the left is a transmittingtype variable capacitor for r.f. tank circuits. To its right are other airdielectric variables of different sizes ranging fram the midget "air padder" to the medium-power tank capacitor at the top center. The cased capacitors in the tap row ore for power-supply filters, the cylindrical-con unit being an electrolytic and the rectangular one a poper-dielectric capocitor. Various types of mica, ceramic, and paperdielectric capacitors are in the foreground.

Capacitors

evidenced by a spark or are between the plates, but if the voltage is removed the are ceases and the capacitor is ready for use again. Breakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the capacitance for a given plate area, a high-voltage capacitor must have more plate area than a low-voltage one of the same eapacitance. High-voltage high-capacitance condensers are physically large.

CAPACITORS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to capacitors have the same circuit meaning as with resistances. When a number of capacitors are connected in parallel, as in Fig. $2-10$, the total capacitance of the group is equal to the sum of the individual capacitances, so

$$
C(\text { total })=C_{1}+C_{2}+C_{3}+C_{4}+\cdots \cdots \cdots
$$

However, if two or more capacitors are connected in series, as in the second drawing, the total capacitance is less than that of the smallest capacitor in the group. The rule for finding the capacitance of a number of seriesconnected capacitors is the same as that for finding the resistance of a number of parallelconnected resistors. That is,

$$
C(\text { total })=\frac{1}{\frac{1}{C_{1}^{\prime}}+\frac{1}{C_{2}}+\frac{1}{C_{3}^{\prime}}+\frac{1}{C_{4}}}+\cdots \cdots \cdots \cdots
$$

and, for only two capacitors in series,

$$
C(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

The same units must be used throughout; that is, all capacitances must be expressed in either μ f. or $\mu \mu f$.; both kinds of units cannot be used in the same equation.

Capacitors are connected in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of eapaeitors in parallel is the voltage that ean be applied safely to the one having the lowest voltage rating.

When eapacitors are connected in series, the applied voltage is divided up among them; the situation is much the same as when resistors are in series and there is a voltage drop aeross each. However, the voltage that appears across each eapacitor of a group eonneeted in series is in inverse proportion to its capacitance, as

Fig. 2-10-Capac-
itors in series and
parallel.
compared with the capacitance of the whole
group.

Example: Three capacitors having capacitances of 1,2 and $4 \mu f$, respectively, are connected in series as shown in Fig. 2-11. The total capacitance is

$$
\begin{gathered}
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \\
=0.571 \mu \mathrm{f}
\end{gathered}
$$

The voltage across each capacitor is nroportional to the total capacitance divided by the capacitance of the condenser in question, so the voltage across C_{1} is

$$
E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts }
$$

Similarly, the voltages across C_{2} and C_{3} are

$$
\begin{aligned}
& E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts } \\
& E_{3}=\frac{0.571}{4} \times 2000=286 \text { volts }
\end{aligned}
$$

totaling approximately 2000 volts, the applicd
voltage.
Capacitors are frequently conneeted in series to enable the group to withstand a larger voltage (at the experse of decreased total eapacitance) than any individual capacitor is rated to stand. However, as shown by the previous example, the applied voltage does not divide equally among the capacitors (exeept when all the capacitances are the same) so eare must be taken to see that the voltage rating of no capacitor in the group is exceeded.

Fig. 2.11-An example of capacifors connected in series. The solution to this arrangement is worked out in the fext.

2-ELECTRICAL LAWS AND CIRCUITS
 Inductance

It is possible to show that the flow of current through a conductor is accompanied by magnetic efferts; a compass needle brought near the eonductor, for exampla, will be doflerted from its normal northasouth position. The rurrent, in other words, sets up a magnetie field.
The transfer of energy to the magnetic fiedel represents work done by the source of e.m.f. Power is required for doing work, and since power is equal to current multiplied by voltage, there must be a voltage drop in the cireuit during the time in which energy is being stored in the field. This voltage "drop" (which has nothing to do with the voltage drop in any resistance in the circuit) is the result of an opposing voltage "indued" in the cirenit while the field is building up) to its final value. When the firld beromes constant the induced e.m.f. or back e.m.f. disap)pears, sinee no further energy is being stored.
Since the induced e.m.f. opposes the e.m.f. of the souree, it tends to prevent the current from rising rapidly when the eirenit is closed. The amplitude of the indured e.m.f. is proportional to the rate at which the current is changing and to a eonstant associated with the rireuit itself, called the inductance of the cireuit.
lnductance depends on the physical chatacteristics of the conductor. If the eonductor is formed into a coil, for example, its induetanee is increased. A coil of many turns will have more inductance than one of few turns, if both coils are otherwise physically similar. Also, if a coil is placed on an iron core its inductance will be greater than it was without the magnetic core.

The polarity of an induced c.m.f. is ahways such as to oppose any change in the courrent in the circuit. This mouns that when the current in the circuit is increasing, work is being done against the indued e.m.f. by storing energy in the magnetic field. If the current in the circuit tends to decrease, the stored energy of the field returns to the cirenit, and thus adds to the energy being
supplied by the souree of e.m.f. This tends to keep the current flowing aven though the applied e.m.f. may be decreasing or be removed entirely.

The values of inductance used in radio equipment vary over a wide range. Indurtance of sceval henrys is required in powresupply circuits (see chapter on Power Supplies) and to ohtain such values of inductance it is necessary to use coils of many turns wound on iron cores. In radio-frequency circuits, the inductance values used will le measured in millihenrys (at millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. . Although eoils for radio frequencies may be wound on special iron cores (ordinary iron is mot suitable) most r.f. coils made and used by amateurs are of the "air-core" type; that is, wound on an insulating support consisting of nommagnetic material.

Every conductor has induetance, even though the conductor is not formed into a coil. The inductance of a short length of staight wire is small, but it may not be negligible because if the current through it changes its intensity rapidly enough the induced voltage may be appreaiable. This will be the case in even a few inches of wire when an alternating current having a frequency of the order of 100 Mc . or higher is fowing. However, at much lower frequencies the inductance of the same wire could be loft out of any calculations because the induced voltage would be negligibly small.

Calculating Inductance

The inductance of air-core coils may be calculated from the formula

$$
L(\mu \mathrm{~h} .)=\frac{0.2 u^{2} u^{2}}{3 a+9 b+10 c}
$$

where $L=$ Inductance in microhenrys
$a=$ Average diameter of coil in inches
$b=$ Length of winding in inches

Inductors for power and radio frequencies. The two iron-core coils of the left are "chokes" for power-supply filters. The mounted air-core coils at the top center are adjustable inductors for transmitting tank cir cuits. The "piewound' coils af the left and in the foreground are radio-frequency choke coils. The remaining coils are typical of inductors used in r.f. funed circuits, the larger sizes being used principally for transmitters.
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig 2-12. The

Fig. 2-12-Coil dimensions used in the inductance formula.

quantity $10 c$ may be neglected if the eoil only has one layer of wire.

Exanple: Assume a coil having 35 turns of No. 30 d.s.e. wire on a form $1 . \overline{5}$ inches in diameter. Consulting the wire table. 35 turns of No, 30 d.s.c, will occupy 0.5 inch. Therefore, $a=1.5, b=0.5, n=35$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(35)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+0,}{0.2 u^{2}} \times L}
$$

Example: Suppose an inductance of 10 mierohenrys is required. The form on which the coil is to be wound has a diameter of one inch and is long enough to accommodate a coil length of $11 / 4$ inches. Then $a=1, b=1.25$, and $L=10$. Substituting,

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(9 \times 1.25)}{0.2 \times 1^{2}} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =26.6 \mathrm{turns} .
\end{aligned}
$$

A 27 -turn coil would be close enough to the required value of inductance, in practical work, Since the coil will be 1.25 inches long, the number of turns per inch will be $27 / 1,25=21.6$. Consulting the wire table, we find that No. 18 enameled wire (or any smaller size) can be used. The proper inductance is obtained by winding the reguired number of turns on the form and then adjusting the spacing between the turns to make a uniformly-spaced coil 1.25 inches long,

Inductance Charts

Most inductance formulas lose accuricy when applied to small eoils (such as are used in v.h.f. work and in low-pass filters built for reducing harmonic interference to television) because the eonductor thiekness is no longer negligille in eomparison with the size of the coil. Fig, 2-13 shows the measured inductance of v.h.f. coils, and may be used as a basis for cireuit design. Two curves are given: curve 1 is for eoils wound to an inside diameter of $1 / 2$ inch; curve B is for coils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding pitch 8 turns to the inch ($1 / 8$ inch center-to-center turn sparing). The inductance values given include leads $1 / 2$ inch long.

The charts of Figs. 2-14 and 2-15 are useful for rapid determination of the inductance of coils of the type commonly used in radio-frequency cireuits in the range $3-30 \mathrm{Mc}$. They are based on the formula above, and are of sufficient accuracy for most practical work. Given the coil
length in inches, the curves show the multiplying factor to be applied to the induetance value given in the table below the curve for a coil of the same diameter and number of turns per inch.

Example: A coil 1 inch in diameter is $11 / 4$ inches long and has 20 turns. Therefore it has 16 turns per inch, and from the table under Fig. 2-15 it is found that the reference inductance for a coil of this diameter and number of turns per inch is $16.8 \mu \mathrm{~h}$. From curve B in the figure the multiplying factor is 0.35 , so the inductance is
$16.8 \times 0.35=5.9 \mu \mathrm{~h}$.
The charts also can be used for finding suitable dimensions for a coil having a required value of inductance.

Example: A coil having an inductance of 12 $\mu \mathrm{h}$. is reguired. It is to be wound on a form having a diameter of 1 inch, the length available for the winding being not more than $11 / 4$ inches. From Fig. 2-15, the multiplying factor for a 1 -ineh diameter coil (curve B) having the maximuin possible length of $11 / 4$ inches is 0.35 , Hence the number of turns pet inch must be closen for a reference inductance of at least $12 / 0.3 \mathrm{i}$, or $34 \mu \mathrm{~h}$. From the Table under Fig. 2-15 it is seen that 16 turns per inch (reference inductance $16.8 \mu \mathrm{~h}$.) is too suall. ['sing 32 turns per ineh, the multiplying factor is $12 / 68$, or 0.177 , and from curve B this corresponds to a coil length of $8 / 4 \mathrm{inch}$. There will be 24 turns in this length, since the winding "pitch" is 32 turns per inch.

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. $2-16$ is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of foree in the eore. Since the area is 2 square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the eoil, and that the flux density without the iron eore is found to be so lines per square inch. The ratio of the flux density with the given core

Fig. 2.13-Measured inductance of coils wound with No. 12 bare wire, 8 turns to the inch. The values include half-inch leads.

2-ELECTRICAL LAWS AND CIRCUITS

material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core since, other things being equal, the inductance will be proportional to the magnetic flux through the coil.

The permeability of a magnetic material varios with the flux density. It low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, but at very high flux densities, increasing the current may cause no appreciable change in the flox. When this is so, the iron is said to be saturated. Saturation causes a rapid decrease in permeability, because it decreases the ratio of

Fig. 2.14-Factar to be applied to the inductance of coils listed in the table below, for coil lengths up to 5 inches.

$\begin{gathered} \text { Coil diameter, } \\ \text { Inches } \end{gathered}$	No. of turns per inch	Indurtance in μh.
11/4	4	2.75
	6	6.3
	8	11.2
	10	17.3
	10	42.5
11/2	4	3.9
	6	8.8
	8	15.6
	10	24.5
	10	63
$13 / 4$	4	5.2
	6	11.8
	8	21
	10	33
	16	85
2	4	6.6
	6	15
	8	26.5
	10	42
	16	108
21/2		
	6	23
	8	41
	10	(i4
3	4	14.
	6	31.5
	8	56
	10	89

flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core inductor is highly dependent upon the current flowing in the coil. In an air-core coil, the inductance is independent of current because air does not saturate.

Iron core coils such as the one sketched in

Fig. 2-15-Factor to be applied to the inductance of cails listed in the table below, as a function of cail length. Use curve A for coils marked A, curve B for coils marked B.

Coil diameter, Iuch's	Vo. of lurns per inch	Inductance in μ h.
(A)	4	0.18
	6	0.40
	8	0.72
	10	1.12
	16	2.9
	32	12
$\begin{aligned} & 5 / 8 \\ & (A) \end{aligned}$	4	0.28
	6	0.62
	8	1.1
	10	1.7
	16	4.4
	32	18
$\begin{gathered} 3 / 4 \\ (13) \end{gathered}$	4	0.6
	6	1.35
	8	2.4
	10	3.8
	16	0.9
	32	40
$\begin{gathered} 1 \\ (\mathrm{~B}) \end{gathered}$	4	1.0
	6	2.3
	8	4.2
	10	6.6
	16	16.8
	32	68

Fig. 2-16 are used chielly in power-supply equipment. They usually have direet eurrent flowing through the winding, and the variation in inductance with current is usually undesirable. It may be overcome by keeping the flux density below

Fig. 2-16-Typical construetion of an iron-core inductor. The small air gap prevents magnetic saturation of the iron and thus maintains the inductance at high currents.

Inductance

the saturation point of the iron. This is done by opening the core so that there is a small "air gap," as indicated by the dashed lines. The marnetic "resistance" introduced by such a gap is so large - even though the gap is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, controls the flux density. This reduces the inductance, but makes it practically constant regardless of the value of the current.

Eddy Currents and Hysteresis

When alternating current flows through a coil wound on an iron core an e.m.f. will be induced, as previously explained, and since iron is a conductor a current will flow in the core. Such currents (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating. Eddycurrent losses can be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellac.

There is also another type of energy loss: the iron tends to resist any change in its magnetic state. so a rapidly-changing current such as a.e. is forced contimually to supply energy to the iron to overcome this "inertia," Losses of this sort are called hysteresis losses.

Eddy-current and hysteresis losses in iron increase rapidly as the frequency of the alternating current is increased. For this reason, ordinary iron cores can be used only at power and audio frequencies - up to, say, 15,000 cycles. Even so, a very good grade or iron or steel is neeessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

For radio-frequeney work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores can be made that will function satisfactorily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Mc . Because a large part of the magnetic path is through a nonmagnetic material, the permeability of the iron iss low compared with the valucs obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construction, the major portion of the magnetic path for the flux is in cirr, the slug is quite effective in increasing the coil inductance. By pushing the slug in and out of the coil the inductance can be varied over a considerable range.

INDUCTANCES IN SERIES AND PARALLEL

When two or more inductors are comected in series (Fig. 2-17, left) the total inductance is

equal to the sum of the individual inductances, proided the coils are sufficiently separated so that no coil is in the magnetic field of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots \ldots
$$

If inductors are connected in parallel (Fig. 2-17, right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}+\ldots .}
$$

and for two inductances in parallel,

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallel are the same as for resistances, if the coils are far enough apart so that each is unaffected by another's magnetic field. When this is not so the formulas given above cannot be used.

MUTUAL INDUCTANCE

If two coils are arranged with their axes on the same line, as shown in Fig. 2-18, a current sent through Coil 1 will cause a magnetic field which "cuts" Coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the c.m.f. of self-induction, but since it appears in the second coil because of current flowing in the first, it is a "mutual" effect and results from the mutual inductance between the two coils.

If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a sntall part of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could theoretically be oltained with two given coils is called the coefficient of coupling between the coils. It is frequently expressed as a percentage. Coils that have nearly the maximum possible (coefficient $=$ 1 or 100%) mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of coupling

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2.18-Mutual inductance. When the switch, S, is closed current flows through coil No. 1 , setting up a magnetic field that induces an e.m.f. in the turns of coil No. 2.
depends upon the physical spacing between the coils and how they are placed with respect to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of coupling is closely approached only when the two coils are wound on a closed iron core. The coefficient with air-core coils may run as high us 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

Comnecting a source of e.m.f. to a capacitor causes the capacitor to become charged to the full e.m.f. practically instantaneously, if there is no resistance in the circuit. However, if the circuit contains resistance, as in Fig. 2-19A, the resistance limits the current flow and an appreciable length of time is required for the e.m.f. between the capacitor plates to build up to the same value as the e.m.f. of the source. During this "buildingup" period the current gradually decreases from its initial value, because the increasing e.m.f. stored on the capacitor offers increasing opposition to the steady e.m.f. of the source.

Fig. 2-19-Illustrating the time constant of an $R C$ circuit.
'Theoretically, the charging process is never really finished, but eventually the charging current drops to a value that is smaller than anything that can be measured. The time constant of such a circuit is the length of time, in seconds, required for the voltage across the capacitor to rearh 6.3 per cent of the applied e.m.f. (this figure is chosen for mathematical reasons). The voltage across the capacitor rises with time as shown by Fig. 2-20.

The formula for time constant is

$$
T^{\prime}=C R
$$

where $T^{\prime}=$ Time constant in seconds
$C^{\prime}=$ Capacitance in farads
$R=$ Resistance in ohms
If C is in microfarads and K in megohms, the time constant also is in seconds. These units usually are more convenient.

[^1]If the applied e.m.f. is 1000 volts, the voltage between the capacitor plates will be 630 volts at the end of $1 / 2$ second.
If a charged capacitor is discherged through a resistor, as indicated in Fig. 2-19B, the same time constant applies. If there were no resistance, the capacitor would discharge instantly when S was closed. However, since R limits the current flow the capacitor voltage cannot instantly go to zero, but it will decrease just as rapidly as the capacitor can rid itself of its charge through R. W'hen the capacitor is discharging through a resistance, the time constant (calculated in the same way as above) is the time, in seconds, that it takes for the capacitor to lose 63 per cent of its voltage; that is, for the voltage to drop to 37 per cent of its initial value.

Fig. 2-20-How the voltage across a capacitor rises, with time, when charged through a resistor. The lower curve shows the way in which the voltage decreases across the capacitor terminals on discharging through the same resistor.

Fig. 2-21 - Time constant of an LR circuit.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In Fig. 2-21, first consider L to have no resistance and also assume that R is zero. Then closing S would tend to send a current through the circuit. However, the instantaneous transition from no current to a finite value, however small, represents a very rapid change in current, and a back e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial current is very small.

The back e.m.f. depends upon the change in current and would cease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely-large current, by Ohm's Law) the current would increase forever, ahwas growing just fast enough to keep the e.m.f. of self-induction equal to the applied e.m.f.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaches the final Ohm's Law value. Theoretically, the baek e.m.f. never quite disappears and so the current never quite rearhes the Ohm's Law value, but practically the difference becomes unmeasurable after a time. The time constant of an inductive circuit is the time

Fig. 2-22_Voltage across capacitor terminals in a discharging $C R$ circuit, in terms of the initial charged voltage. To obtain time in seconds, multiply the factor $t / C R$ by the time constant of the circuit.
in seconds required for the current to reach 63 per cent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L=$ Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as though it were in series with the inductance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohms has a time constant of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the circuit. If a d.c. e.m.f. of 10 volts is applited to such a coil, the final current, by Ohm's Law, is

$$
I=\frac{E}{R}=\frac{10}{100}=0.1 \mathrm{amp} . \text { or } 100 \mathrm{ma}
$$

The current would rise from zero to 63 milliamperes in 0.2 second after closing the switch.

An incluctor cannot be "discharged" in the" same way as a caparitor, because the magnetic field disappears as soon as current flow eeases. Opening s does not leave the inductor "eharged." The energy stored in the magnetic field instantly returns to the rircuit when S is opened. The rapid disappea:ance of the field causes a very large voltage to be induced in the coil - ordjnarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field changes. The common result of opening the switch in a circuit such as the one shown is that a spark or arc forms at the switch contacts at the instant of opening, If the inductance is large and the current in the circuit is high, a great deal of energy is released in a very shor't period of time. It is not at all unusual for the switch contacts to burn or melt under such circumstances.

Time constants play an important part in numerous devices, such as electronic keys, timing and control circuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters. In nearly all such applications a capacitance-resistance ($C R$) time constant is involved, and it is usually necessary to know the voltage across the capacitor at some time interval larger or smaller than the actual time constant of the circuit as given by the formula ahove. Fig. 2-22 can be used for the solution of such problems, since the curve gives the voltage across the capacitor, in terms of percentage of the initial charge, for percentages between 5 and 100, at any time after discharge begins.

[^2]
2-ELECTRICAL LAWS AND CIRCUITS
 Alternating Currents

PHASE

The term phase essentially means "time," or the fime interval between the instant when one thing occurs and the instant when a second related thing takes place. The later event is said to lag the earlier, while the one that occurs first is sainl to lead. In a.c. circuits the current amplitude changes eontinuously, so the concept of phase or time becomes important. Phase can be measured in the ordinary time units, such as the second, but there is a more convenient method: Since each a.c. cycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. Using the cycle as the time unit makes the specification or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in fect and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the cyele into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cecle. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length of time-from the instant the cycle began. There is no actual "angle" associated with an alternating current. Fig. 2-23 should help make this method of measurement clear.

Fig. 2-23-An o.c. cycle is divided off into 360 degrees that are used as a measure of time or phase.

Measuring Phase

The phase difference between two eurrents of the same frequebley is the time or angle difference between corresponding parts of cycles of the two currents. This is shown in Fig. 2-24. The current labeled A leats the one marked B by $4 \overline{3}$ degrees, since d's rycles begin 45 dogrees earlier in time. It is equally correct to say that B lags A by 45 degrees.

Fig. 2-24 - When two waves of the same frequency start their cycles af slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth cycle) later than wave A, and so lags 45 degrees behind A.

Two important special cases are shown in Fig. 2-25. In the upper drawing B lags 90 degrees behind A; that is, its cyele begins just onequarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is considered to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completely out of phase.

The waves snown in Figs. 2-24 and 2-25 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage and B current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, because arding any number of sine waves of the same frequency alwitys gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next section. Practically, it is often difficult to obtain a parely

Fig. 2-25-Two important special cases of phase difference. In the upper drawing, the phase difference between A and B is 90 degrees; in the lower drawing the phase difference is 180 degrees.

Alternating Currents

resistive circuit at radio frequencies, because the reactive effects becone more pronounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.c. of any frequency as it is for d.c.

- REACTANCE

Alternating Current in Capacitance

In Fig. 2-26 a sine-wave a.c. voltage having a maximum value of 100 volts is applied to a capacitor. In the period $O A$, the applied voltage increases from zero to 38 volts; at the end of this period the capacitor is charged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, $3: 3$ volts additional. In this interval a smaller quantity of charge has been added than in O.A, beeause the voltage rise during interval $A B$ is smaller. Consequently the average current during $A B$ is smaller than during $O A$. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase during $A B$, so the quantity of electricity added is less; in other words, the average current during interval $B C$ is still smaller. In the fourth interval, (D), the voltage inereases only 8 volts; the charge added is smatler than in any preceding interval and therefore the current also is smaller.

By dividing the first quarter cycle into a very large number of intervals it could be shown that the current charging the capacitor has the shape of a sine wave, just as the applied voltage does. The current is largest at the beginning of the cycle and becomes zero at the maximum value of the voltage, so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle the current is flowing in the

Fig. 2.26-Voltage and current phase relationships when on alternating voltage is applied to a capacitor.
normal direction through the cirenit, since the capacitor is being charged. Hence the current is positive, as indicated by the dashed line in Fig. 2-26.

In the second quarter cycle - that is, in the time from D to $I I$, the voltage applied to the capacitor decreases. During this time the eapacitor loses its charge. Applying the same reasoning, it is plain that the current is small in interval $D E^{\prime}$ and continues to increase during each suceceding interval. However, the current is flowing against the applied voltage because the capacitor is discharging into the cirenit. Hence the current is
negative during this quarter cycle.
The third and fourth quarter cycles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alternating current flows in the circuit because of the alternate charging and discharging of the capacitance. As shown by Fig. 2-26, the current starts its cevele (0) degreas before the voltage, so the current in a capacitor leads the applied voltage by 90 degrees.

Capacitive Reactance

The quantity of electric charge that can be placed on a capacitor is proportional to the applied e.m.f. and the caparitance. This amount of charge moves back and forth in the eirenit once cach cevcle, and so the rote of movement of charge - that is, the current - is proportional to voltage, capacitance and frequency. If the effects of capacitance and frequency are lumped together, they form a quantity that plays a part similar to that of resistance in Ohm's Law. This quantity is called reactance, and the unit for it is the ohm, just as in the case of resistance. The formula for it is

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f C}
$$

where $X_{\mathrm{C}}=$ Capacitive reactance in ohms
$f=$ Frequency in cycles per second
$C=$ Capacitance in farads
$\pi=3.14$
Although the unit of reactance is the ohm, there is no power dissipation in roactance. The energy stored in the capacitor in one quarter of the eyole is simply returned to the circuit in the next.

The fundamental units (cycles per second, farads) are too large for practical use in radio circuits. Ilowever, if the capacitance is in microfarads and the frequency is in megacycles, the reactance will come out in ohms in the formula.

$$
\begin{aligned}
& \text { Example: The reactance of a capacitor of } 470 \\
& \mu \mu f,(0,00047 \mu \mathrm{f} \text {) at a frequency of } 7150 \mathrm{kc} \text {. } \\
& (7.15 \mathrm{Mc} \text {.) is } \\
& X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms}
\end{aligned}
$$

Inductive Reactance

When an alternating voltage is applied to an inductance it can be shown, by a method similar to that of Fig. 2-26, that the current is again 90 degrees out of phase with the applied voltage. However, in this case the current leys ! (1) degrees behind the voltage - just the opposite of the current-voltage relationship in a capacitor.

The primary cause for this is the back e.m.f. generated in the inductance, and since the amplitude of the back e.m.f. is proportional to the rate at which the current changes, and this in turn is proportional to the frequeney, the amplitude of the current is inversel? proportional to the applied frequency. Also, since the back e.m.f. is proportional to inductance for a given rate of cur-

2-ELECTRICAL LAWS AND CIRCUITS

rent change, the current flow is inversely proportionall to inductance for a given applied voltage and frequenery. (Another way of saying this is that just enough current fows to generate an indueded (r.m.f. that equals and apposes the applied voltige

The eombined affect of inductance and frequency is called inductive reactance, also expressed in ohms, and the formula for it is

$$
X_{L}=2 \pi f L
$$

where $X_{L}=$ Inductive reactance in ohms
$f=$ Frequency in rycles per second
$L=$ Inductance in henrys
$\pi=3.14$
Example: The reactance of a coil having an induetance of 8 henrys, at a frequency of 120 cycles, is

$$
X_{\mathrm{L}}=2 \pi f L=6.28 \times 120 \times 8=6029 \text { ohms }
$$

Fig. 2-27 - Phase relationships between voltage and current when an olternating valtage is applied to an inductance.

In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without first converting to fundamental units. Similarly, no conversion is necessary if the inductance is in microhenrys and the frequency is in megacycles.

$$
\begin{aligned}
& \text { Example: The reactance of a } 15 \text {-microhenry } \\
& \text { coil at a frequency of } 14 \mathrm{Mc} \text { is } \\
& X_{L}=2 \pi f L=6.28 \times 14 \times 15=1319 \text { ohms }
\end{aligned}
$$

The resistance of the wire of which the coil is wound has no effect on the reactance, but simply acts as though it were a separate resistor connected in series with the coil.

Ohm's Law for Reactance

Ohm's Law for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$X=$ Reactance in ohms
The reactance may be either inductive or caparitive.

$$
\begin{aligned}
& \text { Examule: If a current of } 2 \text { amperes is flowing } \\
& \text { through the capacitor of the previous example } \\
& \text { (reactunce }=17.4 \text { whus) at } 71.00 \mathrm{ke} \text {, the volt- } \\
& \text { ape drop aross the caparitur is } \\
& \qquad E=I \mathrm{~N}=2 \times 47.4=9.8 \text { volts } \\
& \text { If } 400 \text { volts at } 100 \mathrm{cycles} \text { is applied to the } 8 \text { - } \\
& \text { henry inductor of the previous example, the } \\
& \text { current through the coil will be }
\end{aligned}
$$

$$
I=\frac{E}{X}=\frac{400}{6029}=0.0663 \mathrm{amp},(66.3 \mathrm{ma} .)
$$

Reactance Chart

The accompanting chart, Fig. 2-28, shows the reactance of capacitances from $1 \mu \mu \mathrm{f}$. to $100 \mu \mathrm{f}$., and the reactance of inductances from $0.1 \mu \mathrm{~h}$. to 10 henrys, for frequencies between 100 cyckes and 100 megacyeles per second. The approximate value of reactance can be read from the chart or, where more exact values are needed, the chart will serve ats a chock on the ordor of matgnitude of reatances calculated from the formulas given above, and thus avoid "decimal-point errors".

Reactances in Series and Parallel

When reatances of the same kind are connected in series or parallel the resultant reactance is that of the resultant inductance or capacitance. This leads to the same rules that are used when determining the resultant resistance when resiytors are combined. That is, for series reactances of the same kind the resultant reactance is

$$
X=X_{1}+X_{2}+X_{3}+X_{4}
$$

and for reactances of the same kind in parallel the resultant is

$$
X=\frac{1}{\frac{1}{X_{1}}+\frac{1}{X_{2}}+\frac{1}{X_{3}}+\frac{1}{X_{4}}}
$$

or for two in parallel,

$$
X=\frac{X_{1} X_{2}}{X_{1}+X_{2}}
$$

The situation is different when reactances of opposite kinds are combined. Since the current in a capacitance leads the applied voltage by 90 degrees and the current in an inductance lags the applied voltage by 90 degrees, the voltages at the terminals of opposite types of reactance are 180 degrees out of phase in a series cireuit (in which the current has to be the same through all elements), and the currents in reartances of opposite types are 180 degrees out of phase in a parallel circuit (in which the same voltage is applied to all clements). The 180 -degree phase relationship means that the currents or voltages are of opposite polarity, so in the series circuit of Fig. 2-29A the voltage E_{L}, arross the inductive reactance X_{L} is of opposite polarity to the voltage $E_{\mathrm{C}}^{\mathrm{C}}$ across the capacitive reactance X_{c}. Thus if we call X_{L} "positive" and Xc "negative" (a common convention) the applied voltage E_{Ac} is $E_{\mathrm{L}}-E_{\mathrm{C}}$. In

Reactance

Fig. 2-28-Inductive and capacitive reactance vs. frequency. Heavy lines represent multiples of 10 , intermediate light lines multiples of 5; e.g., the light line between $10 \mu \mathrm{~h}$. and $100 \mu \mathrm{~h}$. represents $50 \mu \mathrm{~h}$., the light line between $0.1 \mu \mathrm{f}$. and $1 \mu \mathrm{f}$. represents $0.5 \mu \mathrm{f}$., etc. Intermediate values can be estimated with the help of the interpolation scale shown.
Reactances outside the range of the chart may be found by applying appropiate factors to values within the chart range. For example, the reactance of 10 henrys at 60 cycles can be found by taking the reactance of 10 henrys at 500 cycles and dividing by 10 for the 10 -times decrease in frequency.
the parallel circuit at B the total current, I, is equal to $I_{L}-I_{C}$, since the currents are 180 degrees out of phase.

In the series case, therefore, the resultant reactance of X_{L} and X_{C} is

$$
X=X_{\mathrm{L}}-X_{\mathrm{C}}
$$

and in the parallel case

$$
X=\frac{-X_{\mathrm{L}}, X_{\mathrm{C}}}{X_{\mathrm{L}}-X_{\mathrm{C}}}
$$

Note that in the series circuit the total reactance is negative if X_{C} is larger than $X_{\text {; th }}$ indicates that the total reartance is capacitive in such a case. The resultant reactance in a series circuit is always smaller than the smaller of the two individual reactances.

In the parallel circuit, the resultant reactance is negative (i.e., capacitive) if X_{L} is larger than X_{C}, and positive (inductive) if X_{L} is smaller than X_{C}, but in every case is always larger than
the larger of the two individual reactances.
In the special case where $X_{\mathrm{L}}=X_{\mathrm{C}}$ the total reactance is zero in the series circuit and infinitely large in the parallel circuit.

Reactive Power

In Fig. 2-29A the voltage drop across the inductor is larger than the voltage applied to the circuit. This might seem to be an impossible condition, but it is not; the explanation is that while energy is being stored in the inductor's

Fig. 2-29-Series and parallel circuits containing opposite kinds of reactance.

2-ELECTRICAL LAWS AND CIRCUITS

magnetic field, energy is being returned to the circuit from the capacitor's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across reactances in series can be larger than the voltage applied to them.

In a resistance the flow of current causes heating and a power loss equal to $I^{2} R$. The power in a reactance is equal to $l^{2} X$, but is not a "loss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere instead of the watt. Reactive power is sometimes called "wattless" power.

IMPEDANCE

When a circuit contains both resistance and reactance the combined effect of the two is called impedance, symbolized by the letter Z. (Impedance is thus a more general term than either resistance or reactance, and is frequently used even for circuits that have only resistance or reactance, although usually with a qualification - such as "resistive impedance" to indicate that the circuit has only resistance, for example.)

The reactance and resistance comprising an impedance may be connected either in series or in parallel, as shown in Fig. 2-30. In these circolits the reactance is shown as a box to indicate that it may be either inductive or caparitive. In the series circuit the current is the same in both elements, with (generally) different voltages appearing across the resistance and reactance. In the parallel cirenit the same voltage is applied to both elements, but different currents flow in the two branches.

Fig. 2-30-Series and parallel circuits cantaining resistance and reactance.

Since in a resistance the current is in phase with the applied voltage while in a reactance it is 90 degrees out of phase with the voltage, the phase relationship, between current and voltage in the circuit as a whole may be anything between zero and 90 degrees, depending on the relative amounts of resistance and reactance.

Series Circuits

When resistance and reactance are in series, the impedance of the circuit is

$$
Z=\sqrt{R^{2}+X^{2}}
$$

where $Z=$ imperlance in ohms
$R=$ resistance in ohms
$X=$ reactance in ohms.

The reactance may be either capacitive or inductive. If there are two or more reactances in the circuit they may be combined into a resultant by the rules previously given, before substitution into the formula above; similarly for resistances.

The "square root of the sum of the squares" rule for finding impedance in a series circuit arises from the fact that the voltage drops across the resistance and reactance are 90 degrees out of phase, and so combine by the same rule that applies in finding the hypothenuse of a rightangled triangle when the base and altitude are known.

Parallel Circuits

With resistance and reartance in parallel, as in Fig. 2-30B, the impedance is

$$
Z=\frac{R X}{\sqrt{R^{2}+X^{2}}}
$$

where the symbols have the same meaning as for series circuits.

Just as in the case of series circuits, a number of reactances in parallel should be combined to find the resultant reactance before substitution into the formula above: similarly for a number of resistances in parallel.

Equivalent Series and Parallel Circuits

The two circuits shown in Fig. 2-30 are equivalent if the same current flows when a given voltage of the same frequeney is applied, and if the phase angle between voltage and current is the same in both cases. It is in fact possible to "transform" any given series circuit into an equivalent parallel circuit, and vice versa.

Transformations of this type often lead to simplification in the solution of complicated circuits. However, from the standpoint of practical work the usefulness of such transformations lies in the fart that the impedance of a circuit may be modified hy the addition of either series or parallel elements, depending on whirh happens to be most convenient in the particular case. Typical applications are considered later in connection with tuned circuits and transmission lines.

Ohm's Law for Impedance

Ohm's Law can be applied to circuits containing impedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ F.m.f. in volts
$I=$ Current in amperes
$Z=I m p e d a n c e ~ i n ~ o h m s ~$
Fig. 2-31 shows a simple rircuit consisting of a. resistance of 75 ohms and a reactance of 100 ohms in series. From the formula previously given, the impedance is
$Z=\sqrt{R^{2}+X_{L}{ }^{2}}=\sqrt{(7.5)^{2}+(100)^{2}}=125$ ohms.
If the applied voltage is 250 volts, then

$$
I=\frac{E}{Z}=\frac{2 i 0}{125}=2 \text { amperes. }
$$

This current flows throngh both the resistance and reartance, so the voltage drops are $E R=I R=2 \times 7.5=150$ volts $E X_{L}=I X_{L}=2 \times 100=200 \mathrm{polts}$
The simple arithmetical sum of these two drops, 3.5 volts, is greater than the applied voltage because the two voltages are !0 degrees ont of phase. Their actual resultant, when phase is taken into account, is $\sqrt{(1.50)^{2}+(200)^{2}}=250$ volts.

Power Factor

In the circuit of Fig. 2-31 an appliod e.m.f. of 250 volts results in a current of 2 amperes, giving an apparent power of $250 \times 2=5(0)$ watts. However, only the resistance actually consumes power. 'The power in the resistance is

$$
P=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in this example the power factor would be $300 / 500=0.6$. Power factor is frequently expressed as a percentage; in this case, it would be 60 per cent.

Fig. 2-31_Circuit used as an example for impedance calculations.
"IRal" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely
resistive circuit is 100 per cent or 1 , while the power fartor of a pure reactance is zero. In this illustration, the reactive power is

$$
\begin{aligned}
& V A(\text { volt-amperes })=I^{2} X=(2)^{2} \times 100 \\
&=400 \text { volt-amperes. } \\
& \text { Complex Waves }
\end{aligned}
$$

It was pointed out early in this chapter that a complex Wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same wave shape as the applied voltage. This is because the reactance of an inductor and capacitor depend upon the applied frequeney. For the second-harmonic component of a complex wave, the reactance of the inductor is twice and the reatance of the eapacitor onehalf their respective values at the fundamental frequency; for the third harmonic the inductor reactance is three times and the capacitor reactance one-third, and so on. Thus the circuit impedance is different for each harmonic component.

Just what happens to the current wave shape depends upon the values of resistance and reactance involved and how the eircuit is arranged. In a simple circuit with resistance and inductive reartance in series, the amplitudes of the harmonie currents will be reduced berause the inductive reactance increases in proportion to frequency. When capacitance and resistance are in series, the harmonic current is likely to be aceontuated because the capacitive reactance beeomes lower as the frequency is mised. When both inductive and capacitive reactance are prosent the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "constants," or the relative values of L, C, and R, selected.

This property of nonuniform hehavior with respect to fundamental and harmonics is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

Two coils having mutual inductance constitute a transformer. The coil connected to the source of unergy is called the primary coil, and the other is called the secondary coil.

The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a devire to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. A transformer can be used only with a.c., since no voltage will be in-
duced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in Fig. 2-32, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the inductance of the coils so that a relatively small number of turns may be used to induce a given value of voltage with a small current. A closed core (one

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-32-The tronsformer. Power is tronsferred from the primory coil to the secondory by meons of the mognetic field. The upper symbal of right indicotes on iron-core fronsformer, the lower one on oir-core tronsformer.
having a continuous magnetic path) such as that shown in Fig. 2-32 also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this section is confined to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns in the roil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns in each coil. In the primary the induced voltage is practically equal to, and opposes, the applied voltage, as described earlior. Hence,

$$
E_{\mathrm{B}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}}
$$

where $E_{\mathrm{s}}=$ Secondary voltage
$\boldsymbol{E}_{\mathrm{p}}=$ I'rimary applied voltage
$n_{s}=$ Number of turns on secondary
$n_{\mathrm{p}}=$ Number of turns on primary
The ratio n_{s} / n_{p} is called the secondary-to-primary turns ratio of the transformer.

Example: A transformer has a primary of 400 turns and a secondary of 2800 turns, and an e.m.f. of 115 volts is applied to the primary. The secondary voltage will be

$$
\begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{b}}}{n_{\mathrm{p}}} E_{\mathrm{p}} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \text { volts }
\end{aligned}
$$

Also, if an e.m.f. of $80{ }^{\circ}$ volts is applied to the 2800 -turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 115 volts.
Fither winding of a transformer can be used as the primary, providing the winding has enough turns (enough inductance) to induce a voltage equal to the applied voltage without requiring an excessive current flow.

Effect of Secondary Current

The eurrent that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary inductance will be so large that the magnetizing
current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amount necessary to supply the losses in the iron core and in the resistance of the wire with which the primary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetic field that opposes the field set up by the primary current. But if the incluced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary must draw enough additional current to set up a field exactly equal and opposite to the field set up by the secondary current.

In practical calculations on transformers it may be assumed that the entire primary current is caused by the secondary "load." This is justifiable because the magnetizing current should he very small in comparison with the primary "load" current at rated power output.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns must equal the secondary current multiplied by the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{a}}
$$

where $I_{\mathrm{p}}=$ Primary current
$I_{s}=$ Secondary current
$n_{p}=$ Number of turns on primary
$n_{\mathrm{s}}=$ Number of turns on secondary
Example: Suppose that the secondary of the transformer in the previous example is delivering a current of 0.2 ampere to a load. Then the primary current will be
$I_{p}=\frac{n_{\mathrm{B}}}{n_{\mathrm{n}}} I_{\mathrm{s}}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$.
Although the serondary voltage is higher than the primary voltage, the secondary current is lower than the primary current, and by the same ratio.

Power Relationships; Efficiency

A transformer camot create power; it can only transfer it and change the e.m.f. Ilence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the eoils and in the iron core, so in all practical cases the power taken from the source will exceed that taken from the secondary. Thus,

$$
P_{o}=n I_{\mathrm{i}}^{\prime}
$$

where $P_{o}=$ Power output from secondary
$l_{\mathrm{i}}=$ Power input to primary
$n=$ lifficiency factor
The efficiency, n, always is less than 1 . It is usually expressed as a percentage; if u is 0.65 , for instance, the effiejency is bio per cent.

Example: A transformer has an efficieney of 85% at its full-load output of 150 watts. The power input to the primary at full secondary Joad will be

$$
P_{\mathrm{i}}=\frac{P_{\mathrm{o}}}{n}=\frac{150}{0.85}=176.5 \text { watts }
$$

Transformers

A transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency dccreases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined by its own losses, because these heat the wire and core. There is a limit to the temperature rise that can be tolerated, because too-high temperature either will melt the wire or cause the insulation to break down. A transformer always can be operated at reduced output, even though the efficiency is low, because the actual loss also will be low under such conditions.
The full-load efficiency of small power transformers such as are used in radio receivers and transmilters usually lies between about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small percentage of the total flux. This leakage flux causes an e.m.f. of self-induction; consequently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit.

Fig. 2-33-The equivalent circuit of a transformer includes the effects of leakage inductance and resistance of both primary and secondary windings. The resistance R_{C} is an equivalent resistance representing the core losses, which are essentially constant for any given applied voltage and frequency. Since these are comparatively small, their effect
may be neglected in many approximate calculations.
It has, therefore, a certain reactance, depending upon the amount of leakage inductance and the frequency. This reactance is called leakage reactance.

Current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing current, hence it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the transformer windings also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cycles) the voltage at the secondary, with a reasomably well-designed transformer, should not drop more than about 10
per cent from open-circuit conditions to full load. The drop in voltage may be considerally more than this in a transformer operating at audio frequencies because the leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{\mathrm{p}}=Z_{\mathrm{s}} N^{2}
$$

where $Z_{p}=$ Impedance looking into primary terminals from source of power

$$
\begin{aligned}
& Z_{\mathrm{a}}=\text { Impedance of load connected to } \\
& \text { secondary } \\
& N=\text { Turns ratio, primary to secondary }
\end{aligned}
$$

That is, a load of any given impedance connected to the secondary of the transformer will be transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

$$
\begin{aligned}
& \text { Example: A transformer has a primary-to- } \\
& \text { secondary turns ratio of } 0.6 \text { (primary has } 6 / 10 \\
& \text { as many turns as the secondary) and a load of } \\
& 3000 \text { ohms is connected to the secondary. The } \\
& \text { impedancelooking into the primary then will be } \\
& \begin{array}{r}
Z_{p}=Z_{8} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \text { ohms }
\end{array} \\
& \qquad=1
\end{aligned}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.

The above relationship may be used in practical work even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low internal losses and low leakage reactance, the only requirement is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedance of a transformer as it appears to the source of power - is determined wholly by the load connected to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance prescnted to the power source, the transformer is either poorly designed or is not suited to the voltane and frequency at which it is being used. Most transformers will operate quite well at voltages from slightly above to well below the design figure.

Impedance Matching

Many devices require a specific value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transformer is used to change the actual load into an impedance of the desired value. This is called impedance matching. From

2-ELECTRICAL LAWS AND CIRCUITS

the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{B}}}}
$$

where $N=$ Required turns ratio, primary to secondary
$Z_{\mathrm{p}}=$ Primary impedance required
$Z_{s}=$ Impedance of load connected to secondary
Example: A vacum-tube a.f, amplifier requires a load of 5000 ohms for optimmm performance, and is to be connected to a loudspeaker having an impedance of 10 ohms. The turns ratio, primary to secondary. requirm in the coupling transformer is

$$
N=\sqrt{\frac{\overline{Z_{\mathrm{p}}}}{Z_{\mathrm{s}}}}=\sqrt{\frac{5000}{10}}=\sqrt{500}=22.4
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. However, there is also another meaning. It is possible to show that any source of power will deliver its maximum possible output when the impedance of the loid is equal to the internal impedance of the source. The impedance of the source is said to be "matehed" under this condition. The efficieney is only 50 per cent in such a case; just as much power is used up in the source as is delivered to the load. Because of the poor efficiency, this type of impedance matehing is limited to cases where only a small amount of power is available and heating from power loss in the source is not important.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long.

Fig. 2-34-Two common types of transformer construction. Core pieces are interleaved to provide a continuous magnetic poth.

A short path also helps to reduce flux leakage and thercfore minimizes leakage reartance.

Two core shapes are in common use, as shown in Fig. 2-34. In the shell type both windings are
placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacitive effects between the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of laminations, insulated from each other (by a thin coating of shellac, for example) to prevent the flow of eddy currents. The laminations are interleaved at the ends to make the magnetic path as continuous as possible and thus reduce flux leakage.

The number of turns required in the primary for a given applied e.m.f. is determined by the size, shape and type of core material used, and the frequency. The number of turns required is inversely proportional to the cross-sectional area of the core. As a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of $1-s q u a r e-$ inch cross section and have a magnetic path 10 or 12 inches in length. Λ longer path or smaller cross section requires more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin sheet of treated-paper insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-35; the principles just discussed apply

Fig. 2-35- The autotransformer is based on the transformer principle, but uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, so that the resultant current is the difference between them. The voltage across A is proportional to the furns ratio.
equally well. A one-winding transformer is called an autotransformer. The current in the common section (A) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Ilence if the line and lond currents are nearly equal the common section of the winding may be wound with comparatively small wire. This will be the case only when the primary (line) and secondary (had) voltages are not very different. The aututransformer is used chiefly for boosting or reduring the power-line voltage by relatively small amounts.

The Decibel

The Decibel

In most radio communication the received signal is converted into sound. This being the case, it is useful to appraise signal strengths in terms of relative loudness as registered by the ear. A peculiarity of the car is that an increase or decrease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is increased from 10 watts to 40 wattr, he will also estimate that a 400 -watt signal is twice as loud as a l00-watt signal. In other words, the human ear has a logarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel (abbreviated db.) A change of one decibel in the power level is just detcetable as a change in loudness under ideal conditions. 'The number of decibels corresponding to a given power ratio is given by the following formula:

$$
D b .=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithms (base 10) are used.

Voltage and Current Ratios

Note that the decibel is based on power ratios. Voltage or curvent ratios can be used, but only when the impedance is the same for both values of voltage, or rurrent. The gain of an amplifier cannot be expressed correctly in db. if it is based on the ration of the out put voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or current ratios;

$$
\begin{gathered}
\text { Db. }=20 \log \frac{V_{2}}{V_{1}} \\
\text { or } 20 \log \frac{I_{2}}{l_{1}}
\end{gathered}
$$

Decibel Chart

The two formulas are shown graphically in Fig. 2-36 for ratios from 1 to 10 . Gains (increases) expressed in decibels may be added arithmetically; losses (decreases) may be suhtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , while -6 db . means that the power has been divided by 4 .

Fig. 2-36-Decibel chart for power, voltage and current ratios for power ratios of $1: 1$ to $10: 1$. In determining decibels for current or voltage ratios the currents (or voltages) being compared must be referred to the same value of impedance.

The chart may be used for other ratios by adding (or subtracting, if a loss) 10 d). each time the ratio scale is multiplied hy 10, for power ratios; or by adding (or sulstracting) 20 (lh. each time the scale is multiplied by 10 for voltage or current ratios. For example, a power ratio of 2.5 is 4 db . (from the chart). A power ratio of 10 times 2.5 , or 25 , is 14 db . $(10+4)$, and a power ratio of 100 times 2.5 , or 250 , is 24 db . $(20+4)$. A voltage or current ratio of 4 is 12 db ., a voltage or current ratio of 40 is 32 db . $(20+12)$, and a voltuge or eurrent ratio of 400 is $52 \mathrm{db} .(40+12)$.

Radio-Frequency Circuits

- RESONANCE

Fig. 2-37 shows a resistor, capacitor and inductor connected in series with a source of alternating current, the frequency of which can be varied over a wide range. At some low frequency the caparitive reactance will be much larger than the resistance of l^{i}, and the imductive reactance: will be small compared with either the reactance of (' or the resistance of R. (R is assumed to be the same at all frequencies.) (on the other hand, at some very high frequency the reactance of C ' will be very small and the reactance of L, will be very large. In either of these cases the current will be
small, because the reactance is large at either low or high frequencies.

Fig. 2-37-A series circuit containing L, C and R is "resonant" at the applied frequency when the reactance of C is equal to the reactance of l.

2 -ELECTRICAL LAWS AND CIRCUITS

At some intermediate frequency, the reactances of C and L will be equal and the voltage drops aeross the coil and capacitor will be equal and 180 degrees out of phase. Therefore they cancel each other completely and the current flow is determined wholly by the resistance, R. At that frequency the current has its largest possible value, assuming the source voltage to be constant regardless of frequency. A series circuit in which the inductive and capacitive reactances are equal is said to be resonant.

Although resonance is possible at any frequency, it finds its most extensive application in radio-frequency circuits. The reactive effects associated with even small inductances and capacitances would place drastic limitations on r.f. circuit operation if it were not possible to "cancel them out" by supplying the right amount of reactance of the opposite kind - in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X_{\mathbf{L}}=X_{\mathbf{C}}$. Substituting the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in cycles per second
$L=$ Inductance in henrys
$C=$ Capacitance in farads
$\pi=3.14$
These units are inconveniently large for radiofrequency circuits. A formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (ke.)
$L=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
$C=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{f}$.
$\pi=3.14$
Example: The resonant frequency of a series circuit containing a $5-\mu \mathrm{h}$. inductor and a $35-$ $\mu \mu \mathrm{f}$. capacitor is

$$
\begin{aligned}
& =\frac{10^{6}}{2 \pi \sqrt{L C}}=\frac{10^{6}}{6.28 \times \sqrt{5 \times 35}} \\
& \quad=\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{8}}{83}=12,050 \mathrm{kc}
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. $2-37$ as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-38. The shape of the resonance curve at frequencies near resonance is determined by the ratio of reactance to resistance.

If the reartance of either the coil or capacitor is of the same order of magnitude as the resistance.

Fig. 2-38-Current in a series-resonant circuit with various values of series resistance. The values are arbitrary and would not apply to all circuits, bul represent a typical case. It is assumed that the reactances (at the resonant frequency) are 1000 ohms (minimum $Q=10$). Note that of frequencies more than plus or minus ten per cent awoy from the resonant frequency the current is substantially unaffected by the resistance in the circuit.
the current decreases rather slowly as the frequency is moved in either direction away from resonanee. Such a curve is said to be broad. On the other hand, if the reactance is considerably larger than the resistance the current decreases rapidly as the frequency moves away from resonance and the circuit is stid to be sharp. A sharp eircuit will respond a great deal more readily to the resonant frequency than to frequencies quite close to resonance; a broad circuit will respond almost equally well to a group or band of frequencies centering around the resonant frequenty.

Both types of resonance curves are useful. A sharp circuit gives good selectivity - the ability to respond strongly (in terms of current amplitude) at one desired frequency and discriminate against others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Fig. 2-39-Current in series-resonant circuits having different Q_{s}. In this graph the current at resonance is assumed to be the same in all cases. The lower the Q, the more slowly the current decreases as the applied frequency is moved away from resonance.

Radio-Frequency Circuits

Q

Most diagrams of resonant circuits show only inductance and capacitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 Mc . this resistance is mostly in the wire of the coil. Above this frequency energy loss in the capacitor (principally in the solid dielectric which must be used to form an insulating support for the capacitor plates) becomes appreciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design is to reduce the inherent resistance to the lowest possible value.

The value of the reactance of either the inductor or capacitor at the resonant frequency of a series-resonant circuit, divided by the resistance in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reactance of either coil or condenser, in ohms
$R=$ Resistance in ohms

> Example: The inductor and capacitor in a series circuit each have a reactance of 350 ohms at the resonant frequency. The resistance is 5 ohms. Then the Q is

$$
Q=\frac{X}{R}=\frac{350}{5}=70
$$

The effect of Q on the sharpness of resonance of a circuit is shown by the curves of Fig. 2-39. In these curves the frequency change is shown in percentage above and below the resonant frequency. (s of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resonant frequency is inserted in series in a resonant circuit, the voltage that appears across either the inductor or capacitor is considerably higher than the applied voltage. The current in the circuit is limited only by the resistance and may have a relatively high value; however, the same current flows through the high reactances of the inductor and capacitor and causes large voltage drops. The ratio of the reactive voltage to the applied voltage is equal to the ratio of reactance to resistance. This ratio is also the Q of the circuit. Therefore, the voltage across either the inductor or capacitor is equal to Q times the voltage inserted in series with the circuit.

Example: Theinductive reactance of a circuit is 200 ohms, the eapacitive reactance is 200 ohms, the resistance 5 ohms, and the applied voltage is 50 . The two reactances cancel and there will be but 5 ohms of pure resistance to limit the current flow. Thus the current will be $50 / 5$, or 10 amperes. The voltage developed across either the inductor or the capacitor will be equal to its reactance times the current, or $200 \times 10=2000$ volts. An aiternate method: The Q of the eircuit is $X / R=200 / 5=40$. The reactive voltage is equal to Q times the applied voltage, or $40 \times 50=2000$ volts.

Parallel Resonance

When a variable-frequency source of constant voltage is applied to a parallel circuit of the type shown in Fig. 2-40 there is a resonance effect similar to that in a series circuit. However, in this case the "line" current (measured at the point indicated) is smallest at the frequency for which the inductive and capacitive reactances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through C, so that only the current taken by R flows in the line. At frequencies below resonance the current through L is larger than that through C, because the reactance of L is smaller and that of C higher at low frequencies; there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies above resonance the situation is reversed and more current flows through C than through L, so the line current again increases. The current at resonance, being determined wholly by R. will be small if R is large and large if R is small.

Fig. 2-40-Circuit illustrating parallel resonance.
The resistance R shown in Fig. 2-40 is not necessarily an actual resistor. In most cases it will be an "equivalent" resistance that represents the energy loss in the circuit. This loss can be inherent in the coil or capacitor, or may represent energy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transferring power from a vacuum-tube amplifier to an antenna system.)

Parallel and series resonant circuits are quite alike in some respects. For instance, the circuits given at A and B in Fig. 2-41 will behave identically, when an external voltage is applied, if (1) L and C are the same in both cases; and (2) R_{p} multiplied by R_{s} equals the square of the reactance (at resonance) of either L or C. When these conditions are met the two circuits will have the

(B)

Pig. 2-41-Series and parallel equivalents when the two circuits are resonant. The series resistor, R_{5}, in A can be replaced by an equivalent parallel resistor, $R_{p_{p}}$ in B, and vice versa.

2-ELECTRICAL LAWS AND CIRCUITS

same Qs. (These statements are approximate, but are quite accurate if the Q is 10 or more.) The circuit at A is a series circuit if it is viewed from the "inside"-that is, going around the loop, formed by L, C and R - so its Q can be found from the ratio of X to R_{3}.

Thus a cireuit like that of Fig. 2-41A has an equivalent parallel impedance (at resonance) equal to R_{p}, the relationship between R_{s} and R_{p}, being as explained above. Although R_{1} is not an actual resistor, to the source of voltage the parallel-resonant circuit "looks like" a pure resistance of that value. It is "pure" resistance hecause the inductive and capacitive currents are 180 degrees out of phase and are equall; thus there is no reactive current in the lime. At the resonant frequency the parallel impedance of a resonant circuit is

$$
Z_{\mathrm{r}}=Q \mathrm{X}
$$

where $Z_{\mathrm{r}}=$ Resistive impedance at resonance $Q=$ Quality factor
$\dot{X}=$ Reactance (in olms) of either the inductor or capacitor

$$
\begin{aligned}
& \text { Example: The parallel impedance of a cireuit } \\
& \text { laving a } Q \text { of } 50 \text { and having inductive and ca- } \\
& \text { pacitive reactances of } 300 \text { ohms will he } \\
& \qquad Z_{r}=Q X=50 \times 300=15,000 \text { ohms. }
\end{aligned}
$$

At frequencies off resonance the impedance is no longer purely resistive beratuse the indurtive and capacitive currents are not equal. The offresonant impedance therefore is complex, and is lower than the resonant impedance for the reasons previously outlined.

The higher the Q of the circuit, the higher the parallel impedance. Curves showing the variation of impedance (with frequency) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-42 is a set of such curves.

Fig. 2-42-Relative impedance of parallel-resonant circuits with different Qs. These curves are similar to those in Fig. 2-42 for current in a series-resonant circuit. The effect of Q on impedance is most marked near the resonant frequency.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for $Q s$ of 10 or more. When the Q is below 10, resonance in a parallel circuit having resistance in
series with the coil, as in Fig. 2-41A, is not so easily defined. There is a set of values for L and C that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Inother set of values for L and C' will make the parallel impedance a maximum, but this maximum value is not a pure resistance. Either condition could be called "resonance," so with low- Q circuits it is necessary to distinguish between maximum impedance and resistive impedance parallel resonance. The difference between these L and ('values and the equal reactances of a sories-resonant circuit is appreciable when the Q is in the vicinity of 5 , and becomes more marked with still lower (Q values.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the circuit itself. It frequencies below 30 Mc . most of this resistance is in the coil. Within limits, increasing the number of turns in the coil increases the reactance faster than it raises the resistance, so coils for circuits in which the Q must be high maty have reartances of 1000 ohms or more at the frequeney under consideration.

Fig. 2-43-The equivalent circuit of a resonant circuit delivering power to a load. The resistor R represents the load resistance. At B the load is tapped across part of L, which by transformer action is equivalent to using a higher load resistance across the whole circuit.

IIowever, when the circuit delivers energy to a load (as in the case of the resonant circuits used in transmitters) the energy consumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-43.A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is at least ten times as great as the power lost in the inductor and eapacitor, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. Under these conditions the Q of a parallelresonant circuit loaded by a resistive impedance is

$$
Q=\frac{R}{N}
$$

Where $Q=$ Quality factor
$R=$ Parallel load resistance (ohms)
$\boldsymbol{X}=$ Reartance (ohms) of either the inductor or capacitor
Example: A resistive load of 3000 ohms is connected across a resonant circuit in which the in-

Radio-Frequency Circuits

ductive and capmeitive reactances are each 250 ohns. The circuit Q is then

$$
Q=\frac{R}{X}=\frac{3000}{250}=12
$$

The "effective" Q of a circuit loaded by a parallel resistance becomes higher when the reactances are decreased. . circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance elements (large aparitance and small inductance) to have reasonably high Q.

Impedance Transformation

An important application of the parallelresonant circuit is as an impedance-mat ching device in the output circuit of a vacuum-tube r.f. power amplifier. As leseribed in the section on vacuum tubes, there is an optimum value of load resistance for each type of tube and set of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is considerably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may be tapped across part of the coil, as shown in Fig. '2-4313. This is equivalent to connecting a higher value of load resistance across the whole circuit, and is similar in principle to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetir flux lines do not cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.

When the load resistance has a very low value (say below 100 ohms) it may be connected in series in the resonant circuit (as in Fig. 2-31.A, for example), in which case it is transformed to an equivalent parallel impedance as previously described. If the () is at least 10 , the equivalent paratlel impedance is

$$
Z_{\mathrm{r}}=\frac{X^{2}}{R}
$$

where $Z_{\mathrm{r}}=$ Resistive parallel impedance at resonance
$X=$ Reartance (in ohms) of either the coil or eondenser
$R=$ Load resistance inserted in series
If the Q is lower than 10 the reactance will have to he adjusted somewhat, for the reasons given in the discussion of low-Q circuits, to obtain a resistive impedance of the desired value.

Reactance Values

The charts of Figs. 2-44 and 2-45 show reactance values of inductances and capacitances in the range commonly used in r.f. tuned circuits for the amateur bands. With the exception of the $3.5-4$ Mc. band, limiting values for which are shown on the charts, the change in reactance over a band, for either inductors or capacitors, is small enough so that a single curve gives the reactance with sufficient accuracy for most practical purposes.

Fig. 2-44-Reactance chart for inductance values commonly used in amateur bands from 1.75 to 220 Mc .

L/C Ratio

The formuta for resonant frequency of a circuit shows that the same frequency ahways will be obtained so long as the product of L and C is constant. Within this limitation, it is evident that L can be large and ('small, L small and C' large, ete. The relation betwern the two for a fixed frequency is called the L / C ratio. A high- C circuit

Fig. 2.45-Reactance chart for capacitance values commonly used in amateur bands from 1.75 to 220 Mc .

2 -ELECTRICAL LAWS AND CIRCUITS

is one that has more caparitance than "normal" for the frequency; a low-C circuit one that has less than normal cupacitance. These terms depend to a considerable extent upon the particular application considered, and have no exact numerical meaning.

LC Constants

It is frequently convenient to use the numerical value of the $L C$ constant when a number of calculations have to be made involving different L / C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C=\frac{25,3: 30}{f^{2}}
$$

where $L=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
$C=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{f}$.
$f=$ Frequency in megacycles
Example: Find the inductance required to resonate at 3650 kc . (3.65 Mc .) with capacitances of $25,50,100$, and $500 \mu \mu \mathrm{f}$. The $L C$ constant is

$$
\begin{aligned}
& L C=\frac{25,330}{(3.65)^{2}}=\frac{25,330}{13.35}=1900 \\
& 25 \mu \mu \mathrm{f} . L=1900 / C=1900 / 25 \\
& =76 \mu \mathrm{~h} . \\
& 50 \mu \mu \mathrm{f} . L=1900 / C=1900 / 50 \\
& =38 \mu \mathrm{~h} \text {. } \\
& 100 \mu \mu \mathrm{f} . L=1900 / C=1900 / 100 \\
& =19 \mu \mathrm{~h} \text {. } \\
& 500 \mu \mu \mathrm{f} . L=1900 / C=1900 / 500 \\
& =3.8 \mu \mathrm{~h} \text {. }
\end{aligned}
$$

With

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferred from one to the other. The circuit delivering power is called the primary circuit; the one receiving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the ease in receiver circuits) or the sccondary may simply act as a medium through which the power is transferred to a load. In the later case, the coupled circuits may act as a radio-frequency impedance-matching device. The matching can be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling between two resonant eircuits is through a circuit element common to both. The three variations of this type of compling, shown at A, 13 and C of lig. 2-46, utilize a common inductance, caparitance and resistance, respectively. Current circulating in one $L\left(C^{\prime}\right.$ branch flows through the common element (L_{c}, (${ }_{c}$ or R_{c}) and the voltage developed across this element causes current to flow in the other $L C$ branch.

If both circuits are resomant to the same frequeney, as is usually the case. the value of coupling reactance or resistance required for maxi-

Fig. 2-46-Four methods of circuit coupling.
mum energy transfer is generally quite small compared with the other reactances in the circuits. The common-circuit-element method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at I) the coupling increases as the capacitance of (c, the "coupling capacitor," is made greater (reactance of (c is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transficr is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is $100,000 \mathrm{ohms}$, a reactance of 10,000 ohms or so in the caparitor will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

Figs. 2-47 and 2-48 show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the iron-core transformer, but because only a part of

Fig. 2-47-Single-tuned inductively-coupled circuits.

Coupled Circuits

the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Two types of inductively-coupled circuits are shown in Fig. 2-47. Only one circuit is resonant. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit B is used prin-. cipally in transmitters, for coupling a radiofrequency amplifier to a resistive load.

In these circuits the coupling between the primary and secondary coils usually is "tight" that is, the coefficient of coupling between the coils is large. With very tight coupling either circuit operates nearly as though the device to which the untuned coil is connected were simply tapped across a corresponding number of turns on the tuned-circuit coil, thus either circuit is approximately equivalent to Fig. '--4;313.

By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected. In any case, the maximum energy transfer possible for a given coefficient of coupling is obtaned when the reactance of the untuned coil is equal to the resistance of its load.

The Q and parallel impedance of the tuned circuit are reduced by coupling through an untuned coil in much the same way as by the tapping arrangement shown in Fig. 2-4:313.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in Fig. 2-48, the resonance effects

(B)
fig. 2-48-Inductively-coupled resonant circuits. Circuit A is used for high-resistance loads (load resistance much higher thon the reactance of either L_{2} or C_{2} at the resonant frequency). Circuit B is suitable for low resistance loads (load resistance much lower than the reactance of either L_{2} or C_{2} at the resonant frequency).
in both circuits make the operation somewhat more complicated than in the simpler circuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of each will he purely resistive. If the primary circuit is connected to a source of r.f. energy of the resonant
frequency and the secondary is then loosely coupled to the primary, a current will flow in the secondary circuit. In flowing through the resistance of the secondary circuit and any load that may be connected to it, the current causes a power loss. This power must come from the energy source through the primary circuit, and manifests itself in the primary as an increase in the equivalent resistance in series with the primary coil. Hence the Q and parallel impedance of the primary circuit are decreased by the coupled secondary. As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance becomes larger and the parallel impedance of the primary continues to decrease. Also, as the coupling is made tighter the amount of power transferred from the primary to the secondary will increase to a maximum at one value of coupling, called critical coupling, but then decreases if the coupling is tightened still more (still without changing the tuning).

Critical coupling is a function of the Q s of the two circuits. A higher coefficient of coupling is required to reach critical coupling when the (s are low ; if the (s are high, as in receiving applications, a coupling coefficient of a few per cent may give aritical coupling.

With loaded circuits such as are used in transmitters the Q may be too low to give the desired power transfer even when the coils are coupled as tightly as the physical construction permits. In such case, increasing the Q of cither circuit will be helpful, although it is generally better to increase the Q of the lower- Q circuit rather than the reverse. The Q of the parallel-tuned primary (input) circuit can be increased by decreasing the L / C ratio because, as shown in connection with Fig. 2-43, this circuit is in effect loaded by a parallel resistance (effect of coupled-in resistance). In the parallel-tuned secondary circuit, lig. 2-48A, the Q can be increased, for a fixed value of load resistance, either by decreasing the L/C ratio or by tapping the load down (see lig. $2-43$). In the series-tuned secondary circuit, Fig. $2-1813$, the ($)$ may be increased by increasing the $L_{/}$C ratio. There will generally be no difficulty in securing sufficient coupling, with practicable eoils, if the product of the Qs: of the two tuned circuits is 10 or more. A smaller product will suffice if the coil construction permits tight coupling.

Selectivity

In Fig. 2-47 only one circuit is tuned and the selectivity curve will he essentially that of a single resonant circuit. As stated, the effective Q depends upon the resistance connected to the untuned coil.

In Fig. 2-48, the selectivity is the same as that of a single tuned circuit having a Q equal to the producl of the Qs of the individual circuits - if the coupling is well helow critical (this is not the condition for optimum power transfer discussed immediately above) and both circuits are tuned to resonance. The Qs of the individual circuits

Fig. 2-49-Showing the effect on the output voltage from the secondary circuit af changing the coefficient of coupling between two resonant circuits independently funed to the same frequency. The voltage applied to the primary is held constant in amplitude while the frequency is varied, and the output voltage is measured across the secondary.
are affected by the degree of coupling, because each couples resistance into the other; the tighter the coupling, the lower the individual (s) and therefore the lower the over-all selectivits.

If both circuits are independently tuned to resonance, the over-all selectivity will vary about as shown in Fig. 2-4! as the coupling is varied. With loose coupling, A, the output voltage (across the secondary circuit) is small and the selertivity is high. As the compling is incroased the serondary voltage also increases until eritieal eoupling, A, is reached. It this point the output soltage at the resonant freguency is maximum lout the selectivity is lower than with looser eoupling. At still tighter coupling, ${ }^{\prime}$ ', the output voltage at the resonatht frequency decreases, but as the frequency is varied wither side of resoname it is found that there are two "humps" to the curve, one on either side of resomance. With very tight (oupling, I), there is a further decrease in the output voltare at resonance and the "humps" we farther away from the resonant frequency. Curves such as those at (' and 1) are called flattopped because the output voltage dos not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at eritioal eoupling. These humps are caused by the fart that at frequencies off resename the secondary cireuit is reative and eouples reatance as woll as resistance into the pimary. The eoupled resistance docretases off resthatmere and eath hamp represents an mendition of aritical conpling at a freguency to which the primary is tunced by the additional coupled-in reactance from the secondary.

Band-Pass Coupling

Over-coupled resonant circuits are useful where subsiantially uniform output is desired over a eontinuous band of freguencies, without readjustment of tuning. The width of the flat top of the resonance curve depends on the (Qs of the two circuits as well as the tightness of coupling; the frequeney separation between the hmmps will increase, and the curve become more flat-topped, as the (as are lowered.

Band-pass operation also is secured by tuning
the two cireuits to slightly different frequencies, which gives a double-humped resonance curve even with loose coupling. This is called stagger tuning. However, to secure adequate power transfer over the frequeney band it is usually necessary to use tight coupling and experimentally adjust the circuits for the desired performance.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in Fig. 2-50. This gives the effect of inductive coupling between two coils that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two coils coupled by a link cannot be made as great as if the eoils themselves were coupled. This is because the coefficient of coupling between aircore coils is considerably less than 1 , and since there are two coupling points the over-all coupling

Fig. 2-50-Link coupling. The mutual inductances of both ends of the link are equivalent to mutual inductance between the tuned circuits, and serve the same purpose.
coefficient is less than for any mair of coils. In practier this need not be disadvantagerous beoanse the power transfer can be made great enough by making the tumed circuits sufficiently highte. link eoupling is convenient when ordinary inductive coupling would be impracticable for const ructional reasons.

The link coils usually have a small number of turns compared with the resonint-circuit coils. The number of turns is not greatly important, because the cocflicient of coupling is relatively independent of the number of turns on either coil; it is more important that Ixoth link coils should have about the same inductance. The length of the link between the coils is not critical if it is very small compared with the wave length, but if the length is more than about one-twentieth of a wave length the link opreates more as a transmission line than as a means for providing mutual inductance, In sueh case it should be treated by the mothods described in the chapter on Transmission Lines.

IMPEDANCE-MATCHING CIRCUITS

The coupling circuits discussed in the preceding section have heen based either on inductive coupling or on coupling through a common circuit element between two resonant eircuits. These are bot the only viratits that maty be used for thatheferring power from one device to another. There is, in fact, a wide variete of such cireuits available, all of them being classified generally as impedance-matching networks. Two such networks frequently used in amateur equipment are the L network and the pi network, shown in the form commonly used in Figs. 2-51 and $2-52$.

Impedance-Matching Circuits

Fig. 2-51 - The L network for transforming a given resistive load, R, into a desired value of resistance, $R_{1 N}$. (A) is for transforming to a higher value of resistance, (B) for fransforming to a lower value.

The L Network

The L network is the simplest possible im-pedance-matching circuit. It closely resembles an ordinary resonant cireuit with the load resistance, R, Fig. 2-5I, either in series or parallel. The arrangement shown in Fig. 2-51A is used when the desired impedane, R_{LN}, is latger than the actual load resistance, R, while lig. 2-sil3 is used in the opposite case. The design equations for each rase are given in the figure, in terms of the circuit reatanmes. The reatanges may be converted to inductame and capacitance by means of the formulas previonsly given or taken direstly from the charts of ligs. 2-44 and $2-45$.

When the impedance transformation ratio is lange - that is, one of the two impedaneses is of the order of 100 times (or more) larger thath the other - the operation of the rireuit is exactly the same as previously discussed in eonnection with impedance transformation with a simple LC resonant circuit.

The Q of an $L_{\text {L }}$ network is found in the same way as for simple resonant circuits. That is, it is equal to X_{L} / R or $R_{\mathrm{IN}} / X_{\mathrm{C}}$ in Fig. $2-51 \Lambda$, and to $X_{\mathrm{L}} / R_{\text {IN }}$ or R / X_{C} in Fig. $2-51 \mathrm{~B}$. The value of Q is determined by the ratio of the impedances to be matched, and cannot be selected independently. In the equations of Fig. $2-51$ it is assumed that both R and $R_{\text {in }}$ are pure resistances.

The Pi Network

The pi network, shown in Fig. $3-52$, offers more flexibility than the L, since the opreating $($ may be chosen practically at will. The only limitation on the circuit values that maty be used is that the reactune of the series arm, the indurtor L, in the figure, must not he greater that the square root of the product of the two values of resistive impedance to be matehed. As the circuit is applied in amateur equipment, this limiting value of reactance would represent a network with an undesirably low operating (), and the cireuit values ordinarily used are well on the sate side of the limiting values.

In its principal application as a "tauk" eireuit matching a transmission line to a power amplifier tube, the load R_{2} will generally have a fairly low value of resistance (up to a few hundred ohms) while R_{1}, the required load for the tube, will be of the order of a few thousand ohms.

In such a case the Q of the circuit is defined as $R_{1} / X_{C 1}$, so the choice of a value for the operating Q immediately sets the value of $X_{\mathrm{C}_{1}}$ and hence of C_{1}. The values of $X_{C 2}$ and X_{L} are then found from the equations given in the figure.

Graphical solutions of these equations for the most important practical cases are given in the chapter on transmitter design in the discussion of plate tank circuits. The L and C values may be calculated from the reactances or read from the charts of Figs. $2-44$ and $2-45$.

Fig. 2-52-The pi network, for matching any two values of purely resistive impedances, R_{1} and R_{2}. In the definition of the Q of the network it is assumed that R_{1} is the higher of the two resistances, and should be so chosen in using the equations.

filters

A filter is an electrical circuit contiguration (network) designed to have specific chatrateristies with respect to the transmission or attenuation of various frequencies that may be applied to it. There are three general types of filters: lowpass, high-pass, and band-pass.

A low-pass filter is one that will permit all frequencies below a specified one called the cut-off frequency to be transmitted with little or no loss, but that will attenuate all frequencies above the cut-off frequency.

A high-pass filter similarly has a cut-off frequeney, above which there is little or no loss in transmission, but below which there is considerable attenuation. Its behavior is the opposite of that of the low-pass filter.

A band-pass filter is one that will transmit a seleced band of frequencies with sulstantially no loss, but that will attenuate all frequencies either higher or lower than the desired band.

The pass band of a filter is the frequency spectrum that is transmitted with little or no loss. The transmission characteristic is not necessarily perfertly uniform in the pass band, but the variations usually are small.
'Ihe stop band is the frequencer region in whieh at tenuation is desired. The attrinuation may vary in the stop band, and in a simple filter usually is least near the cut-off frequency, rising to high values at frequencies considerably removed from the cut-off frequency.

Filters are designed for a specific value of purely resistive impedance (the terminating im-

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-53-Basic filter sections and design formulas. In the above formulas R is in ohms, C in farads, L in henrys, and f in cycles per second.

Impedance-Matching Circuits

pedance of the filter). When such an impedance is connected to the output terminals of the filter, the impedance looking into the input terminals has essentially the same value, throughout most of the pass band. Simple filters do not give perfectly uniform performance in this respect, but the input impedance of a properly-terminated filter can be made fairly constant, as well as closer to the design value, over the pass band by using m-derived filter sections.

A discussion of filter design principles is beyond the scope of this Handbook, but it is not difficult to build satisfantory filters from the circuits and formulas given in Fig. 2-53. Filter cireuits are built up from elementary sections as shown in the figure. These sections can be used alone or, if greater attenuation and sharper cut-off (that is, a more rapid rate of rise of attenuation with frequeney beyond the cut-off frequency) are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} represents the cut-off frequeney, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted without attenuation. In the band-pass filter designs, f_{1} is the low-frequency cut-off and f_{2} the high-frequency cut-off. The units for L, \mathscr{C}, R and f are henrys, farads, ohms and cycles per second, respectively.

All of the types shown are "unbalanced" (one side grounded). For use in balanced circuits (e.g., 300 -ohm transmission line, or push-pull audio circuits), the series reactances should be equally divided between the two legs. Thus the balanced constant-k π-section low-pass filter would use two inductors of a value equal to $L_{\mathrm{k}} / 2$, while the babanced constant- k-section high-pass filter would use two capacitors each equal to $2 C_{k}$.

If several low- (or high-) pass sections are to be used, it is advisable to use m-derived end sections on either side of a constant- k center section, although an m-derived center section can be used. The factor m determines the ratio of the cut-off frequency, f_{c}, to a frequency of high attenuation, f_{∞}. Where only one m-derived section is used, a value of 0.6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f_{\infty}$ will be $1.25 f_{c}$ for the low-pass filter and $0.8 f_{\mathrm{c}}$ for the high-pass filter. Other values can be found from
$m=\sqrt{1-\left(\frac{f_{\mathrm{c}}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high-pass filter.

The output sides of the filters shown should be terminated in a resistance equal to R, and there should be little or no reactive component in the termination.

Simple audio filters can be made with pow-dered-iron-core inductors and paper capacitors. Sharper cut-off characteristifs will be obtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no
reduction in performance. The more sections there are to a filter the greater is the need for accuracy in the values of the components. Highperformance audio filters can be built with only two sections by winding the inductors on toroidial powdered-iron forms; three sedtions are generally necded for obtaining equivalent results when using other types of inductors.

Band-pass filters for single sideband work (see later chapter) are often designed to operate in the range 10 to 20 kc . Their attenuation requirements are such that usually at least a fivesection filter is required. The coils should be as high-() as possible, and mira is the most suitable capacitor dielectric.

Low-pass and high-pass filters for harmonic suppression and receiver-overload prevention in the television frequencies range are usually made with self-supporting coils and mica or ceramic capacitors, depending upon the power requirements.

In any filter, there should be no magnetic or caparitive coupling between sections of the filter unless the design specifically calls for it. This requirement makes it necessary to shield the coils from each other in some applications, or to mount them at right angles to each other.

PIEZOELECTRIC CRYSTALS

A number of crystalline substances found in nature have the ability to transform mechanical strain into an electrical charge, and vice versa. This property is known as the piezoelectric effect. A small plate or bar cut in the proper way from a quartz crystal and placed between two conducting electrodes will be mechanically strained when the clectrodes are connected to a source of voltage. Conversely, if the erystal is squeezed between two electrodes a voltage will be developed between the electrodes.

Piezoelectric crystals can be used to transform mechanical energy into electrical energy, and vice versa. They are used in microphones and phonograph pick-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystals of Rochelle salts are used for these purposes.

Crystal Resonators

Crystalline plates also are mechanical resonators that have natural frequencies of vibration ranging from a few thousand cyeles to tens of megacycles per second. The vibration frequency depends on the kind of crystal, the way the plate is cut from the natural crystal, and on the dimensions of the plate. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from 5 to 10 times the $Q s$ obtainable with good $L C$ resonant circuits.

Analogies can be drawn between various mechanical properties of the crystal and the electrical characteristics of a tuned circuit. This leads to an "equivalent circuit" for the crystal.

2-ELECTRICAL LAWS AND CIRCUITS

The electrical coupling to the crystal is through the elcetrodes between which it is sandwiched; these electrodes form, with the crystal as the dielectric, a small eapacitor like any other catpacitor constructed of two plates with a diekectric between. The erystal itself is equivalent to a series-resonant circuit, and together with the capacitance of the electrodes forms the equivalent circuit shown in lig. 2-54. At frequencies of the order of 450 kc , where crystals are widely used as resonators, the equivalent L maty be several

Fig. 2-54-Equivalent circuit of a crystal resonator. L, C and R are the electrical equivalents of mechanical properties of the crystal; C_{11} is the capacitance of the electrodes with the crystal plate between them.

henrys and the equivalent C only a few hundredths of a mieromicrofarad. Although the equivalent R is of the order of a few thousand ohms, the reactance at resonance is so high that the Q of the erystal likewise is high.

A circuit of the type shown in Fig. 2-54 has a series-resonant frequency, when viewed from the circuit terminals indicated by the arrowheads, determined by L and C only. At this frequeney the circuit impedance is simply equal to k, providing the reactance of C_{l} is large compared with R (this is gencrally the case). The cireuit also has a parallel-resonant frequency determined by L and the equivalent capacitance of C and C, in series. Since this equivalent capacitance is smaller than C alone, the parallel-resonant frequeney is higher than the series-resonant frequency. The separation between the two resonant

Fig. 2.55-Reactance and resistance vs. frequency of c circuit of the type shown in Fig. 2-54. Actual values of reactance, resistance and the separation between the series- and parallel-resonant frequencies, f_{1}, and f_{2}, respectively, depend on the circuit constants.
frequencies depends on the ratio of C_{h} to C, and when this ratio is harge (as in the case of a erystal resonator, where (h will be a few $\mu \mu$ f. in the average case) the two frequencies will be quite close together. A separation of a kilocyole or less at $4 \overline{5} \overline{5} \mathrm{ke}$, is typical of a quartz crystal.

Fig. 2-55 shows how the resistance and reactance of such a cirouit vary as the applied frequeney is varied. The reatance passes through zero at both resonant frequencies, but the resistance rises to a large value at parallel resoname, just as in any tuned cireuit.

Quart\% crystals may be used either as simple resonators for their selective properties or as the frequenev-controlling elements in oscillators as described in later chapters. The series-resonant frequency is the one primeipally used in the former case, while the more common forms of oscillator cireuit use the parallel-resonant frequency.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio circuits are built around vacuum tubes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents meet somewhere in the circuit.
In this meeting, the a.c. and d.c. are actually combined into a single current that "pulsates" (at the a.c. frequency) about an average value equal to the direct current. This is shown in Fig. 2-56. It is convenient to consider that the alternating current is superimposed on the direct current, so we may look upon the actual current as having two components, one d.c. and the other a.c.
In an alternating current the positive and negative alternations have the same average ampli-
tude, so when the wave is superimposed on a direct current the latter is altemately increased and dereased by the same amount. There is thus no average change in the direct current. If a d.c. instrument is being used to read the current, the reading will be exactly the same whether or not the a.e. is superimposed.

Ifowever, there is atually more power in such a combination current than there is in the direct current alone. This is because power varies as the square of the instantaneons value of the current, and when all the instantancous squared values are averaged over a cyele the total power is greater than the d.c. power alone. If the a.c. is a

Fig. 2-56-Pulsating d.c., composed of an alternating current or voltage superimposed on a steady direct current or voltage.

Practical Circuit Details

Porallel Feed
Fig. 2-57-Illustrating series and parallel feed.
sine wro having a peak value just equal to the d.c., the power in the circuit is 1.5 times the d.e. power. An instrument whose readings are proportional to power will show such an increase.

Series and Parallel Feed

Fig. 2-57 shows in simplified form how d.c. and a.c. may be combined in a vacuum-tule circuit. In this case, it is assumed that the a.c. is at radio frequency, as suggested by the roil-andcaparitor tuned circuit. It is also assumed that r.f. current can easily flow through the d.c. supply; that is, the impedance of the supply at radio frequencies is som small as to he negligible.

In the circuit at the left, the tube, tuned cirenit, and d.c. supply all are comnceted in series. The direct current flows through the r.f. eoil to get to the tube; the r.f. current generated by the tube flows through the d.e. supply to get to the tuned circuit. This is series feed. It works because the impedance of the d.e. supply at radio frequencies is so low that it does not affeet the flow of $r \cdot f$. current, and because the d.c. resistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead goes to the tube through a second coil, RF' (radio-frequency choke). Direct current cannot flow through L because a blocking capacitance, C, is placed in the circuit to prevent it. (Without C, the d.c. supply would be shortcircuited by the dow resistance of $L_{\text {. }}$) ()n the other hand, the r.f. current generated by the tube can casily flow through (' to the tuned circuit because the capacitance of C is intentionally chosen to have low reactance (compared with the impedance of the tuned circuit) at the radio frequency. The r.f. current cannot flow through the d.c. supply because the inductance of $R F C^{C}$ is intentionally made so large that it has a very high reactance at the radio frequency. The resistance of $R F C$, however, is too low to have an appreciable effect on the flow of direct current. The two currents are thus in parailel, hence the name parallel feed.

Fither type of feed may he used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particu-
larly transmitting tubes - are dangerous. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is often preferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

Bypassing

In the series-feed circuit just discussed, it was assumed that the d.c. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply, partly because the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. It radio frequencies, even a few feet of wire can have fairly large reactance - - two large to be considered a really "low-impedance" connertion.

In actual circuit would be provided with a bypass capacitor, as shown in Fig. 2-58. Capacitor C is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short comnecting wires. Ifence the r.f. current will tend to flow through it rather than through the d.c. supply.

To be effective, the reactance of the bypass capaeitor should not be more than one-tenth of the impedance of the bypassed part of the circuit. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the bypass that circumstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. circuit such as a power supply, an r.f. choke may be connected in the lead to the latter, as shown in Fig. 2-58.

The same type of bypassing is used when audio frequencies are present in addition to r.f. Because the ractance of a capacitor changes with frequency, it is readily possible to choose a capacitance that will represent a very low reactance at

Fig. 2-58-Typical use of a bypass capacitar in a series-feed circuit.

radio frequencies but that will have such high reactance at audio frequencies that it is practically an open circuit. A capacitance of $0.001 \mu \mathrm{f}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of capacitance that is usable will be modified by the impedances concerned.) Bypass capacitors also are used in audio circuits to carry the audio frequencies around a d.c. supply.

2-ELECTRICAL LAWS AND CIRCUITS

Distributed Capacitance and Inductance

In the discussions carlier in this chapter it was assumed that a capacitor has only capacitance and that an inductor has only inductance. I'nfortunately, this is not strictly true, 'There is always a certain amount of inductance in a conductor of any length, and a capacitor is bound to have a little inductance in addition to its intended capacitance. Also, there is always capacitance between two conductors or between parts of the same conductor, and thus there is appreciable capacitance between the turns of an inductance coil.

This distributed inductance in a caparitor and the distributed capacitance in an inductor have important practical effects. Actually, every eapacitor is a tuned circuit, resonant at the frequency where its capacitance and distributed inductance have the same reactance. The same thing is true of a coil and its distributed capacitance. At frequencies well below these natural resonances, the capacitor will act like a normal capacitance and the coil will act like a normal inductance. Near the natural resonant points, the coil and capacitor act like self-tuned circuits. Above resonance, the capacitor acts like an inductor and the inductor acts like a caparitor. Thus there is a limit to the amount of capacitance that can be used at a given frequency. There is a similar limit to the inductance that can be used. At audio frequencies, capacitances measured in microfarads and inductances measured in henrys are practicable. At low and medium radio frequencies, inductances of a few millihenrys and capacitances of a few thousand micromicrofarads are the largest practicable. At high radio frequencies, usable inductance values drop) to a few microhenrys and capacitances to a few hundred micromicrofarads.

Distributed capacitance and inductance are important not only in r.f. tuned circuits, but in bypassing and choking as well. It will be appreciated that a bypass capacitor that actually acts like an inductance, or an r.f. choke that acts like a low-reactance capacitor, camot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a connection is said to be "grounded" it does not nepessarily mean that it actually goes to earth. What it means is that an actual earth connection to that point in the circuit should not disturb the operation of the circuit in any way. The term also is used to indicate a"common" point in the circuit where power supplies and metallie supports (such as a metal chassis) are electrically tied together. It is general practice, for example, to "ground" the negative terminal of a d.c. power supply, and to "ground" the filament or heater power supplies for vacuum tubes. Since the cathode of a vacuum tube is a junction point for grid and plate voltage supplies, and since the various circuits connected to the tube elements have at least one point connected to cathode,
these points also are "returned to ground." Ground is therefore a common reference point in the radio circuit. "Ground potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may be either sirgle-ended (unbalanced) or balanced. In a single-ended circuit, one side of the circuit is comnected to ground. In a balanced circuit, the electrical midpoint is connected to ground, so that the circuit has two ends each at the same voltage "above" ground.

Typical single-ended and balanced circuits are shown in Fig. 2-59. R.f. circuits are shown in the upper row, while iron-core transformers (such

Fig. 2-59-Single-ended and balanced circuits.
as are used in power-supply and audio circuits) are shown in the lower row. The r.f. circuits may be balanced either by connecting the center of the coil to ground or by using a "balanced" or "split-stator" capacitor and connecting its rotor to ground. In the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground connection.

Shielding

Two circuits that are physically near each other usually will be coupled to each other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Also, the magnetic field about the coil or wiring of one circuit can couple that circuit to a second through the latter's coil and wiring. In many cases these unwanted couplings must be prevented if the circuits are to work properly.

Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electric field from the circuit components does not penetrate the shield. A metallic plate, called a baffle shield, inserted between two components also may suffice to prevent electrostatic coupling between them. It should be large enough to make the components invisible to each other.

U.H.F. Circuits

Similar metallic shielding is used at radio frequencies to prevent magnetic coupling. The shielding effect for magnetic fields increases with frequency and with the conductivity and thickness of the shielding material.

A closed shield is required for good magnetic shielding; in some cases separate shields, one about each coil, may be required. The baffle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shielded from each other.

Shielding a coil reduces its inductance, because part of its field is canceled by the shield. Also, there is always a small amount of resistance in the shield, and there is therefore an energy loss.

This loss raises the effective resistance of the coil. The decrease in inductance and increase in resistance lower the Q of the coil, but the reduction in inductance and Q will be smatl if the spacing between the sides of the coil and the shield is at least half the coil diameter, and if the spacing at the ends of the coil is at least equal to the coil diameter. The higher the conductivity of the shield material, the less the effect on the inductance and Q. Copper is the best material, but aluminum is quite satisfactory.

For good magnetic shielding at audio frequencies it is necessary to enclose the coil in a container of high-permeability iron or steel. In this case the shield can be quite close to the coil without harming its performance.

U.H.F. Circuits

RESONANT LINES

In resonant cireuits as employcd at the lower frequencies it is possible to consider cach of the reactance components as a separate entity. The fact that an inductor has a certain amount of self-capacitance, as well as some resistance, while a capacitor also possesses a small selfinductance, can usually lee disregarded.

At the very-high and ultrahigh frequencies it is not readily possible to separate these components. Also, the connecting leads, which at lower frequencies would serve merely to join the capacitor and coil, now may have more inductance than the coil itself. The reguired inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wave length at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit.

For these reasons it is common practice to utilize resonant sections of transmission linc as tuned circuits at frequencies above 100 Mc . or so. A quarter-wavelength line, or any orld multiple thereof, shorted at one end and open at the other exhibits large standing waves, as deseribed in the section on transmission lines. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit The equivalent relationships are shown in Fig. 2-(i0. At frequencies off resonance the line displays qualities comparable with the inductive and capacitive reactances of a conventional tuned circuit, so sections of transmission line can be used in much the same manner as inductors and capacitors.

To minimize radiation loss the two conductors of a parallel-conductor line should not be more than about one-tenth wavelength apart. the spacing being measured between the conductor axes. On the other hand, the spacing should not be less than about twice the conductor diameter

Fig. 2-60-Equivalent coupling circuils for parallel-line, coaxial-line and conventional resonant circuits.
because of "proximity effect," which causes eddy currents and an increase in loss. thove 300 Me. it is difficult to satisfy both these requirements simultaneously, and the radiation from an open line tends to become excessive, reducing the Q. In such ease the coaxial type of line is to be preferred, since it is inherently shielded.

Representative methods for adjusting coaxial lines to resonance are shown in Fig. 2-61. At the left, a sliding shorting disk is used to reduce the effective lengt hof the line by altering the position of the short-circuit. In the center, the same effert is arcomplished by using a teleseoping tube in the end of the innor conductor to vary its length and thereby the effective length of the line. At the right, two possible methods of using parallelplate capacitors are illustrated. The arrangement with the loading eapacitor at the open

Fig. 2-61 - Methods of tuning coaxial resonant lines.

2 -ELECTRICAL LAWS AND CIRCUITS

end of the line has the greatest tuning effect per unit of capacitance; the alternative method, which is equivalent to tapping the condenser down on the line, has less effect on the Q of the circuit. Lines with capacitive "loading" of the sort illustrated will be shorter, physically, than unlouded lines resonant at the sime frequency.
'Two methods of tuming a parallel-conductor lines are shown in Fig. 2-62. The sliding short-

Fig. 2-62-Methods of funing parallel-type resonant lines.
circuiting strap can be tightened by means of screws and nuts to make good electrical contare. The parallel-plate capacitor in the second drawing may be placed anywhere along the line, the tuning effect becoming less as the capascitor is located nearer the shorted end of the line. Although a low-cabsuritance variablo eapacitor of ordinary construction can be used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the further advantage that no insulating material is required.

Waveguides

A waveguide is a conducting tule through which energy is transmitted in the form of electromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a two-conductor line do, but rather as a boundary which confines the waves to the enclosed space. Skin effect prevents any elecotromagnetic effeets from being evident outside the guide. The energy is injected at one cond, either through capacitive or inductive coupling or by radiation, and is received at the other end. The waveguide then merely ronfines the energy of the fields, which are propagated through it to the receiving end by means of reflections against its inner walls.

Analysis of waveguide operation is based on the assumption that the guide material is a perfect conductor of electricity: Typical distributions of electric and magnetic fields in a rectangular guide are shown in Fig. 2-63. It will be olserved that the intensity of the electric ticld is greatest (as indicated by closer spacing of the lines of force) at the center along the r r dimension, Fig. 2-63B, diminishing to zero at the end walls. The latter is a necessary condition, since the existence of any electric field parallel to the walls at the surface would cause an intinite current to flow in a perfect conductor. This represents an impossible situation.

Modes of Propagation

Fig. $2-63$ represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general groups. One group, designated $T M$ (transverse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of electric fied in that direction. The other type, designated ' $T^{\prime} E$ ' (transverse electric) has the electric field entirely transverse, but has a component of magnetic field in the direction of propagation. TM waves are sometimes called E waves, and $T ' E$ waves are sometimes called $I I$ waves, but the $T . M$ and $T E$ designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript numerals; for example, Then, T. $M_{1,1}$, etc. The number of possible modes increases with frequency for a given size of gutide. There is only one possible mode (called the dominant mode) for the lowest frequency that can be transmitted. The dominant mode is the one generally used in practical work.

Waveguide Dimensions

In the rectangular guide the critical dimension is x in Fig. 2-6:3; this dimension must be more than one-half wavelength at the lowest frequency to be transmitted. In practice, the y dimension usually is made about equal to $1 / 2 x$

Fig. 2-63-Field distribution in a rectangular waveguide. The $T E_{1,0}$ mode of propagation is depicted

Waveguides

to avoid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe, Much the same considerations apply as in the rectangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular gnide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectanoular	Circul
Cut-off wa	$2 x$	3.4
Longest wavelength transnitted with little attennation.	. $1.6 x$	$3.2 r$
Shortest wavelongtla before next mode becomes possible.	- $1.1 x$. 8

Cavity Resonators

Another kind of circuit particularly applicable at wave lengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a waveguide with the dimensions chosen so that waves of a given length can be maintained inside.

Typical shapes used for resonators are the eylinder, the rectangular box and the sphere, as shown in Fig. "-(64. The resonant frequency depends upon the dimensions of the gavity and the mode of oscillation of the waves (compar-

SQUARE PRISM

CYLINDER

SPHERE
Fig. 2.64 -Forms of cavity resonators.
able to the transmission modes in a waveguide). For the lowest modes the resonant wavelengths are as follows:

Cylinder	$2.61 r$
Square box	$1.41 l$
Sphere	$2.28 r$

The resonant watvelength of the cylinder and square box are independent of the height when the height is less than a half wavelength. In other modes of oscillation the height must be a multiple of a half wavelength as measured inside the cavity. A cylindrical cavity can be tuned by a sliding shorting disk when operating in such a mode. Other tuning methods include placing adjustable tuning paddles or "slugs"
inside the cavity so that the standing-wave pattern of the electric and magnetic fields can be varied.

A form of cavity resonator in practical use is the re-entrant cylindrical type slown in lig. c-65. In construction it resembles a concentric line closed at both ends with capacitive loading at the top, but the actual mode of oscillation may differ considerably from that occurring in

CROSS-SECTIONAL VIEW
Fig. 2.65-Re-entrant cylindrical cavity resonator.
coaxial lines. The resonant frequency of such a cavity depends upon the diameters of the two cylinders and the distance d between the ends of the inner and outer cylinders.

Compared with ordinary resonant circuits, cavity resonators have extremely high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can be secured with good design and construction.

Coupling to Waveguides and Cavity Resonators

Energy may be introduced into or abstracted from a waveguide or resonator by means of either the electric or magnetic fielid. The energy transfer frequently is through a coaxial line, two methods for coupling to which are shown in Fig. 2-66. The probe shown at A is simply a short extension of the inner conductor of the coaxial line, so oriented that it is parallel to the electric lines of force. The loop shown at B is arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling will be secured depends upon the particular mode of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Fig. 2-66-Coupling to waveguides and resonators.

Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its least possible value.

2-ELECTRICAL LAWS AND CIRCUITS

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequencies is the transmission of speech and musir, it would be very convenient if the audio specetrum to be transmitted could simply be shifted up to some radio frequeney, transmitted as radio waves, and shifted back down to the audio spectrum at the receiving point. Suppose the audio signal to be transmitted by radio is a pure $1000-$ (evele tone, and we wish to transmit it at 1 Me. ($1,000,000$ eycles). One possible way might be to add $1,000,000$ eycles and 1,000 eycles together, therely obtaining a radio frequency of $1,001,000$ eveles. No simple method for doing such a thing directly has ever been devised, although the effect is obtained and used in advanced communieations techniques.
Actually, when two different frequencies are present simultaneously in an ordinary circuit (specifically, one in which Ohm's Law holds) each behaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will be the sum of the instantaneous values of the two at every instant. This is bectuse there can be only one value of current or voltage at any single point in a circuit at any instant. Figs. 2 - 67 A and 13 show two such froquencies, and C shows the resultant. The amplitude of the $1,000,000$-cycle current is not affected by the presence of the 1000 -cycle current, but merely has its axis shifted back and forth at the 1000 -cycle rate. An attempt to transmit such a combination as a radio wave would result simply in the transmission of the $1,000,000$-cycle frequency, since the 1000 -cycle frequency retains its identity as an audio frequency and hence will not be radiated.
There are devices, however, which make it possible for one frequency to control the amplitude of the other. If, for example, a 1000 -cycle tone is used to control a 1-MIc. signal, the maximum r.f. output will be obtained when the $1000-$ eycle signal is at the peak of one alternation and the minimum will occur at the peak of the next alternation. The process is called amplitude modulation, and the effect is shown in Fig. 2-67D. The resultant signal is now entirely at radio frequency, but with its amplitude varying at the modulation rate (1000 cyeles). Receiving equipment adjusted to receive the $1,000,000$-cycle r.f. signal can reproduce these changes in amplitude, and thus tell what the audio signal is, through a process called detection or demodulation.

It might be assumed that the only radio frequency present in such a signal is the original $1,000,000$ cycles, but such is not the case. It will be found that two new frequencies have appeared. These are the sum $(1,000,000+1000)$ and difference ($1,000,000-1(0) 0)$ of the two, and hence the radio frequencies appearing in the circuit after modulation are $999,000,1,000,000$ and $1,001,000$ cycles.
When an audio freguency is used to control the amplitude of a radio frequency, the process

Fig. 2-67-Amplitude-vs.-time and amplitude-vs.frequency plots of various signals. (A) $11 / 2$ cycles of an audio signal, assumed to be 1000 c.p.s. in this example. (B) A radio-frequency signal, assumed to be 1 Mc. $(1,000,000$ c.p.s.); 1500 cycles are completed during the same time as the $11 / 2$ cycles in A, so they cannot be shown accurately. (C) The signals of A and B in the same circuit; each maintains its own identity. (D) The signals of A and B in a circuit where the amplitude of A can control the amplitude of B. The 1 -Mc. signal is modulated by the 1000 -cycle signal. E, F, G, and H show amplitude-vs.-frequency plots of the signals in A, B, C and D, respectively. Note the new frequencies in H , resulting from the modulation process.
is generally ealled "amplitude modulation," as mentioned, but when a radio frequency modulates another radio frequency it is called heterodyning. However, the processes are identical. A general term for the sum and difference frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and a more specific one is upper side frequency, for the sum frequency, and lower side frequency for the difference frequency.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a band of frequencies making up speech or music. In this case, the side frequencies are grouped into what are called the upper sideband and the lower sideband. In any case, the frequency that is modulated is called the carrier frequency.

Modulation, Heterodyning and Beats

In A, B, C and D of Fig. 2-67, the sketches are obtained by plotting amplitude against time. However, it is equally helpful to be able to visualize the spectrum, or what a plot of amplitude v. frequency looks like, at any given instant of time. E, F, G and H of Fig. 2-67 show the signals of Fig. 2-67A, B, C and D on an amplitude-vs.frequency basis. Any one frequency is, ot course, represented by a vertical line. Fig. 2-67II shows the side frequencies appearing as a result of the modulation process.

Amplitude modulation (a.m.) is not the only possible type nor is it the only one in use. Any signal property can be modulated. These properties include frequency and phase as well as amplitude, and methods are available for modulating all three. However, in every case the modulation process leads to the generation of a new set of radio frequencies symmetrically disposed about the original radio frequeney (carrier frequency). The various types of modulation are treated in detail in later sections.

Vacuum-Tube Principles

CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrical devices is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only possible when "free" electrons - that is, electrons that are not attached to atoms - are somehow introluced into the vacuum. Free electrons in an evacuated slace will be attracted to a positivelycharged object within the same space, or will be repelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the varuum.

The most practical way to introduce a suffi-ciently-large number of electrons into the evacuated space is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to incindescence in a varuum, electrons near the surface are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. A more general name for the filament is cathode.

If the cathode is the only thing in the vacuum, most of the emitted electrons stay in its immediate vicinity, forming a "cloud" about the cathode. The reason for this is that the electrons in the space, being negative eleetricity, form a negative charge (space charge) in the region of the cathode. The space charge repels

Representative tube types. Transmitting tubes hoving up to 500 -watt copobility are shown in the back row. The tube with the top cop in the middle row is o low-power tronsmitting type. Others are receiving tubes, with the exception of the one in the center foreground which is a v.h.f. transmitting type.
those electrons nearest the eathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacumm, but not connerted to anything else inside the tube. If this second conductor is given a positive charge by connerting a source of e.m.f. between it and the

Fig. 3-1-Conduction by thermionic emission in o vocuum tube. One bottery is used to heot the filoment to o temperoture thot will couse it to emit electrons. The other battery makes the plate positive with respect to the filament, thereby causing the emitted electrons to be attracted to the plote. Electrons coptured by the plote flow back through the bottery to the filoment.
cathode, as indicated in Fig. 3-1, electrons emitted by the cathode are attracted to the positivelycharged conductor. An electric current then flows through the circuit formed ly the cathode, the charged conductor, and the source of e.m.f. In Fig. :3-1 this e.m.f. is supplied by a loattery (" B " battery); a second battery ("A" battery) is also indicated for heating the cathode or filament to the proper operating temperature.

The positively-charged conductor is usually a metal plate or cylinder (surrounding the cathode) and is called an anode or plate. like the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. $3-1$ is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or plate.

Since electrons are negative electricity, they will be attracted to the plate only when the plate is positive with respert to the athode. lf the plate is given a negative charge, the electrons will be repelled back to the cathode and no current will flow. The varuum tube therefore can conduct only in onc direction.

Cathodes

Before electron emission can oecur, the cathode must be heated to a high temperature. IIowever, it is not essential that the heating cur-

Rectification

Fig. 3-2-Types of cathode construction. Directly-heated cathodes or filaments are shown at A, B, and C. The inverted V filament is used in small receiving tubes, the M in both receiving and transmitting tubes. The spiral filament is a transmitting-tube type. The indirectly-heated cathodes at D and E show two types of heater construction, one a twisted loop and the other bunched heater wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
rent flow through the actual material that does the emitting; the filament or heater can be electrically scparate from the emitting rathore. Such a cathode is ealled indirectly heated, while an emitting filament is called directly heated. Fig. 3-2 shows both types in the forms in which they are commonly used.

Much greater electron emission can be obtained, at relatively low temperatures, by using sperial cathode materials rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efliciency is achieved in the oxide-coated cathode, a cathode in which rare-earth oxides form a coating over a metal base.

Although the oxide-coated cathode has much the highest efficiency, it can be used successfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small because the spare charge (which is negative) prevents those electrons nearest the cathode from being attracted to the plate. As the plate voltage is increased, the effect of the space charge is increasingly overcome and the number of electrons attracted to the plate becomes larger. That is, the plate current increases with increasing plate voltage.

Fig. 3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A eurve of this type can be obtained with the circuit shown, if the plate voltage is increased in small steps and a current reading taken (by means of the current-indicating instrument - a milliammeter) at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has substantially overcome the space charge and

Fig. 3-3-The diode, or two-element tube, and a typical curve showing how the plate current depends upon the voltage applied to the plate.

3 - VACUUM-TUBE PRINCIPLES

With the diode connected as shown in Fig. 3-4, the polarity of the voltage drop across the load is such that the end of the load nearest the cathode is positive. If the connections to the diode elements are reversed, the direction of rectified current flow also will be reversed through the load.

Fig. 3-4-Rectification in a diode. Current flows only when the plate is positive with respect to the cathode, so that only half-cycles of current flow through the load resistor, R.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the cathode and plate as in Fig. $3-\bar{i}$, it can be used to control the effect of the space charge. If the grid is given a positive voltage with respect to the cathode, the positive charge will tend to neutralize the negative space charge. The

Fig. 3-5-Construction of an elementary friode vacuum tube, showing the filament, grid (with an end view of the grid wires) and plate. The relative density of the space charge is indicated roughly by the dot density.
result is that, at any selected plate voltage, more electrons will flow to the plate than if the grid were not present. On the other hand, if the grid is made negative with respect to the cathode the negative charge on the grid will add to the space charge. This will reduce the number of clectrons that can reach the plate at any selected plate voltage.
The grid is inserted in the tube to control the space charge and not to attract electrons to itself, so it is made in the form of a wire mesh or spiral. Electrons then can go through the open spaces in the grid to reach the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current can be shown by a set of characteristic curves. Λ typical set of curves is shown in Fig. 3-6, together with the circuit that is used for getting them. For each value of plate voltage, there is a value of negative grid voltage that will reduce the plate current to zero; that is, there is
a value of negative grid voltage that will cut off the plate current.

The curves could be extended by making the grid voltage positive as well as negative. When the grid is negative, it repels electrons and therefore none of them reaches it; in other words, no current flows in the grid circuit. However, when the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid current there is an accompanying power loss in the grid circuit, but so long as the grid is negative no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. Actually, the grid has a much greater effect on plate current flow than does the plate voltage. A small change in grid voltage is just as effective in bringing about a given change in plate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the triode tube. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified output is not obtained from the tube itself, but from the source of e.m.f. connected between its plate and cathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a load must be connected in the plate or "output" circuit, just as in the diode case. The load may be

Fig. 3-6-Grid-voltage-vs.-plate-current curves at various fixed values of plate voltage $\left(E_{1}\right)$ for a typical small triode. Characteristic curves of this type can be taken by varying the battery voltages in the circuit of the right.

Vacuum-Tube Amplifiers

either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the plate current as a very large change in plate voltage, the tube is said to have a high amplification factor. Amplification factor is commonly designated by the Greck letter μ. An amplification factor of 20 , for example, means that if the grid voltage is changed by 1 volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to 100 or so. A high- μ tube is one with an amplification factor of perhaps 30 or more; medium- μ tubes have amplification factors in the approximate range 8 to 30 , and low- μ tubes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifier, but to obtain a high μ it is necessary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for electrons to go through to reach the plate, so it is difficult for the plate to attract large numbers of electrons. Quite a large change in the plate voltage must be made to effect a given change in plate current. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Since this resistance acts in series with the load, the amount of current that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low.

The best all-around indication of the effectiveness of the tube as an amplifier is its grid-plate transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a figure of merit for the tube. Transconductance is the change in plate current divided by the change in grid voltage that causes the platecurrent change (the plate voltage being fixed at a desired value). Nince current divided by voltage is conductance, transconductance is measured in the unit of conductance, the mho. Practical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand. The higher the transconductance the greater the possible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph called the dynamic characteristic. Such a graph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig. 3-6 is that in lig. 3-7 a load resistance is connerted in series with the plate of the tube. Fig. :3-7 thus shows how the plate current will vary, with different grid voltages, when the plate current is made to flow through a load and thus do useful work.

Fig. 3.7-Dynamic characteristics of a small triode with various load resistances from 5000 to 100,000 ohms.
The several curves in Fig. 3-7 are for various values of load resistance. When the resistance is small (as in the case of the $5000-\mathrm{ohm}$ load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small; also, the curve tends to be straighter.

Fig. :3-8 is the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -5 volts, and from the curve it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no a.c. signal in the grid circuit, the voltage drop in the load resistor is $30,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

When a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantancous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 ma . At intermediate values of grid voltage, intermediate plate-current values will occur.

The instantaneous voltage between the plate

3-VACUUM-TUBE PRINCIPLES

Fig. 3-8-Amplifier operation. When the plate current varies in response to the signal applied to the grid, a varying voltage drop appears across the load, $R_{p,}$ as shown by the dashed curve, $E_{\mathrm{p}} . I_{p}$ is the plate current.
and cathode of the tube also is shown on the graph. When the plate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.00265^{5}=132.5$ volts; when the pate (current is minimum the instantaneous voltage drop in R_{p} is $\left.50,000 \times 0.00135=67.\right)^{5}$ volts. The actual voltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum plate current and 232.5 volts at minimum plate current.

This varying plate voltage is an a.c. voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.c. output voltage is the difference between aither the maximum or minimum plate-cathode voltage and the no-signal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-$ 167.5 ; that is, 32.5 volts in either case. Since the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is obtained from the plate circuit as is applied to the grid circuit.

As shown by the drawings in Fig. 3-8, the alternating component of the plate voltage swings in the negative direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias
The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selected. The curve nust be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth over a part of the curve that is not straight, as in Fig. 3-9, the shape of the a.c. wave in the plate circuit will not be the same as the shape of the grid-signal wave. In such a case the output wave shape will be distorted.

A second reason for using negative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot cause grid current to flow. With no current flow there is no power consumption, so the tube will amplify without taking any power from the signal source. (However, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Distortion of the output wave shape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in an carlier chapter, a complex wave can be resolved into a fundamental and a series of harmonics. In other words, distortion from nonlinearity causes the generation of harmonie frequencies - frequencies that are not present in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, although

Fig. 3-9-Harmonic distortion resulting from choice of an operating point on the curved part of the tube characteristic. The lower half-cycle of plate current does not have the same shape as the upper half-cycle.

Amplifier Output Circuits

there are occasions when harmonics are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.e. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would couse difficulties if it were applied, along with the a.e. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.e. is not.

Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. $3-10$. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.

In the resistance-coupled circuit, the a.c. voltage developed across the plate resistor R_{p} (that is, the a.c. voltage betwern the plate and cathode of the tube) is applied to a second resistor, R_{k}, through a coupling capacitor, C_{c}. The capacitor "blocks off" the d.c. voltage on the plate of the first tube and prevents it from lowing applied to the grid of tube B. The latter tube has negative grid bias supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.c. voltage drop in R_{k}; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor, k_{k}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling capacitor, ("e, must be low enough compared with the resistance of R_{g} so that the a.c. voltage drop in (${ }_{\mathrm{c}} \mathrm{c}$ is negligible at the lowest frequency to be amplified. If R_{g} is at least 0.5 megohm, a $0.1-\mu$. cupacitor will be amply large for the usual range of audio frequencies.

So far as the altemating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and $\boldsymbol{R}_{\mathrm{g}}$ are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the artual load resistance for the tube. That is why R_{g} is mide as high in resistance an possible; then it will have the least effect on the load represented by R_{1}.

The impedance-coupled rircuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thus permits obtaining a high value of load impedance for a.c. without an excessive d.c. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate

Fig. 3-10-Three basic forms of caupling between vacuum-tube amplifiers.
circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct comnection between the two windings, so the plate voltage on tube A is isolated from the grid of tube 13 . The trans-former-roupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of d.c. voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. Impedance coupling will give sonewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the

3-VACUUM-TUBE PRINCIPLES

other hand, transformer coupling in voltage amplifiers (see below) is best suited to triodes having amplification factors of about 20 or less, for the reason that the primary inductance of a practicable transformer cannot be made large enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group called Class A amplifiers. A Class A amplifier is one operated so that the wave shape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Voltage amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following Class A_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some work. For example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of a.f. power supplied to the speaker, the louder the sound it will produce.

Fig. 3-11-An elementary power-amplifier circuit in which the power-consuming load is coupled to the plate circuit through an impedance-matching transformer.

Fig. 3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the load connected to the secondary. Although the load is shown as a resistor, it actually would be some device, such as a loudspeaker, that employs the power usefully. Iivery power tube requires a specific value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the a.e. signal in the grid circuit. There is no power lost in the grid circuit of a Class A_{1} amplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a ('lass A amplifier in such a way that current flows in its grid circuit during at least part of the cycle. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class A_{2} amplifier. It is necessary to use a power amplifier to drive a Class A_{2} amplifier, because a voltage amplifier cannot deliver power without serious distortion of the wave shape.

Another term used in connection with power amplifiers is power sensitivity. In the case of a Class A_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power input.

The a.c. power that is delivered to a load by an amplifier tube has to be paid for in power taken from the source of plate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. The ratio of useful power output to d.c. plate input is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a given plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connected in parallel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

An increase in power output also can be secured by connecting two tubes in push-pull. In this case the grids and plates of the two tubes are connerted to opposite ends of a balanced circuit as shown in Fig. 3-12. At any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode commection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in any push-pull-connected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

Class B Amplifiers

Fig. 3-12-Parallel and push-pull a.f. amplifier circuits.

In push-pull operation the even-harmonic (seconcl, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. bach amplifier is called a stage, and stages used successively are said to be in cascade.

Class B Amplifiers

Fig. 3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the plate current is just cut off, then a signal con cause plate current to flow in either tube only when the signal voltage applied to that particular tube is positive with respect to the cathode. Since in the balanced grid circuit the signal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tule at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the phate current of tube A. Thus each half of the output-transformer primary works alternately to induce a half-rocle of voltare in the secondary. In the secondary of T_{2}, the original waveform is restored. This type of operation is called Class B amplification.

The Class B amplifier has considerably higher plate efficiency than the Class A amplifier. Fur-
thermore, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum d.c. plate input that can be applied to a Class A amplifier is equal to the rated plate dissipation of the tube or tubes. Two tubes in a Class Is amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class A amplifier.

A Class B amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of plate current, and to obtain them the signal voltage must completely overcome the grid bias during at least part of the eycle, so grid current flows and the grid circuit consumes power. While the power reguirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the evele means that the load on the preceding amplifier or driver stage varies in magnitude during the cycle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifically for Class I3 service and can be operated without fixed or other form of grid bias (zero-bias tubes). The amplification factor is so high that the plate current is small without signal. Because there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuous throughout the cycle. This makes the load on the driver much more constant than is the case with tubes of lower μ biased to platecurrent cut-off.

Class 13 amplifiers used at radio frequencies are known as linear amplifiers because they are

Fig. 3.13-Class B amplifier operation.
adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. Pushpull is not required in this tupe of operation; a single tule can be used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias than would he normal for pure Class A operation, but less than the cut-off bias required for Class I3. At low signal levels the tubes operate practically as Class A amplifiers, and the phate current is the same with or without signal. At higher signal levels, the plate current of one tube is cut off during part of the negative eycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed Class AB amplifier the distortion is as low as with a Class I stage, but the efficiency and power output are considerably higher than with pure Class I operation. A Class AI3 amplifier can be operated either with or without driving the grids into the positive region. A Class $A B_{1}$ amplifier is one in which the grids are never positive with respect to the cathode: therefore, no driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-current flow during part of the rycle if the applied signal is large; it takes a small amount of driving power. The Class Al_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class $.1 B_{1}$ amplifier avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

Inspection of Fig. 3-1:3 shows that either of the two tubes actually is working for only half the a.c. eycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig. $3-1 ; 3$ earh tube has "180-degree" excitation, a half-cycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360-degree excitation, because plate current flows during the whole cycle. In a Class AB amplifier the operating angle is hetween 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce even a half-cycle of the signal on its grid. (tsing two tubes in push-pull, as in Fig. 3-13, would merely put together two distorted half-cycles. An operating angle of less than 180 degrees
therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. wave form is relatively unimportant. For reasons deseribed later in this chapter, an r.f. amplifier must be operated with tuned rircuits, and the selectivity of such circuits "filters out" the r.f. harmonics resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, because the loss in the plate is proportional, among other things, to the amount of time during which the phate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class (C amplifier ranges from about 1500 to 5000 ohms. It is usuatly secured by using tuned-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required ly the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate efficiency, and power output usually results when the minimum plate voltage (at the park of the driving eycle, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. Inder these conditions the operating angle is usually between 150 and 180 degrees and the pate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Chass C amplifier eal be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as descrived in the chapter on amplitude modulation.

FEEDBACK

It is possible to take a part of the amplified energy in the phate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feedback.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feedbark is called negative, or degenerative. On the other hand, if the voltage is fed back in phase with the grid signal, the feedback is called positive, or regenerative.

Feedback

Negative Feedback

With negative feedback the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feedback (when properly applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This tends to make the frequency-response chararteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Mso, any distortion generated in the plate circuit of the tube tends to "buck itself out." Amplifiers with negative feedback are therefore comparatively free from harmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

Fig. 3-14-Simple circuits for producing feedback.
In the circuit shown at 1 in Fig. 3-14 resistor R_{c} is in series with the regular plate resistor, $\boldsymbol{R}_{\mathrm{p}}$, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{r}. Ilowever, R_{c} also is connected in series with the grid circuit, and so the output voltage that appears across R_{c} is in series with the sigual voltage. The output voltage across R_{c} opposes the signal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The rircuit shown at 3 in Fig, $3-14$ can be used to give either negative or positive feedtack. The secondary of a transformer is eomected bark into the grid circuit to insert a desired amount of foedbatek voltage. Reversing the terminals of either transformer winding (but not both simultaneously) will reverse the phase.

Positive Feedback

Positive feedback increases the amplification because the feedback voltage adds to the original
sighal voltage and the resulting larger voltage on the grid causcs a larger output voltage. The amplification tends to be greatest at one frequency (which depends upon the particular circuit arrangement) and harmonic distortion is increased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid can be supplied from the plate circuit; no external signal is needed because any small irregularity in the plate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Positive feedback finds a major application in such "oscillators," and in addition is used for selective amplification at both atudio and radio frequencies, the fecdback being kept helow the value that causes self-oscillation.

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube forms a small capacitor, with each element acting as a capacitor "pilate." There are three such capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathole. The capacitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.c. plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tube as a reference point. llowever, these two voltages are in phase going around the circuit from plate to grid as shown in Fig. 3-1;. This means that their sum is acting between the grid and plate; that is, aeross the grid-plate capacitance of the tube.

Is a result, a capacitive current flows around the circuit, its amplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate caparitance. The source of grid signal must furnish this amount of current, in addition to the calparcitive current that flows in the grid-cathode capacitance. Ilence the signal soure "sees" an effective capacitance that is larger than the grid-cathode capacitance. This is known as the Miller Effect.

Fig. 3-15-The a.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the oulput voltage, as shown by this simplified circuit. Instantaneous polarities are indicated.

3 -VACUUM-TUBE PRINCIPLES

The greater the voltage amplification the greater the offertive input capacitanee. The input capacitance of a resistance-coupled amplifier is given by the formula

$$
C_{\mathrm{imput}}=C_{\mathrm{kk}}+C_{\mathrm{gp}}(A+1)
$$

where C_{gk} is the grid-to-cathode capacitance, $C_{k p}$ is the grid-to-plate capacitance, and A is the voltage anplification. The input caparitane may be as much as several hundred micromierofarads when the voltage amplification is large, even though the interelectrode eapacitances are quite small.

Output Capacitance

The principal eomponent of the output eapacitance of an amplifer is the atual plate-tocathode eapacitance of the tube. The outpot raparitanee usually need not be considered in audio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at R.F.

At radio frequencies the reactances of even very small intereletrode capacitances drop to very low values. A resistance-coupled amptifior gives very little amplification at r.f., for example, berause the reactances of the interelectrode "catpacitors" are so low that they practically shortcircuit the input and output circuits and thus the tube is unable to amplify. This is overcome at radio frequencies by using thened circuits for the grid and plate, making the tube capacitances part of the tuning capacitances. In this way the circuits can have the high resistive impedances necessary for satisfartory amplification.

The grid-plate capacitance is important at radio frequencies becanse its reactance, relatively low at r.f., offers a path over which energy can be fed bark from the plate to the grid. In practically every case the feedback is in the right phase and of sufficient amplitude to cause self-oscillation, so the circuit herones useless as an amplifier.

Special "neutralizing" circuits can be used to prevent feedback but they are, in general, not too satisfactory when used in radio receivers. They are, however, used in transmitters.

SCREEN-GRID TUBES

The grid-plate caparitance can be reduced to a negligible vatue by inserting a second grid between the control grid and the plate, as indicated in Fig. 3-16. The serond grid, called the screen grid, arts : as an electrostatic shield to prevent capacitive coupling between the eontrol grid and plate. It is made in the form of a grid or coarse screen so that electrons can pass through it.

Beratuse of the shielding action of the sereen grid, the positisely-rharged plate camot attract clectrons from the cathode as it does in a triode. In order to get electroms to the plate, it is necessary to apply a positive voltage (with respeet to the cathode) to the sereen. The sereen then attracts electrons much as does the phate in a triode tube. In traveling toward the sereen the electrens acequire such velocity that most of them

Fig. 3-16-Representative arrangement of elements in o screen-grid tetrode, with part of plate and screen cut oway. This is "single-ended" construction with a button base, typical of miniature receiving tubes. To reduce capacitance between control grid and plate the leads from these elements are brought out at opposite sides; actual tubes probably would have additional shielding between these leads.
shoot between the sereen wires and then are attracted to the plate. A certain proportion do strike the sereen, however, with the result that some current also flows in the screen-grid cireuit.

To be a good shield, the screen grid must be eomected to the cathode through a cireuit that has low impedance at the frequency being amphified. A bypass capacitor from screen grid to cathode, having a reactance of not more than a few hundred ohms, is generally used.

A tube having a cathode, control grid, sereen grid and plate (four elements) is called a tetrode.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the plate and they cause no disturbance. In the screen-grid tube, however, the positively-charged sereen attracts the secondary electrons, causing a beverse current to How betwen sereen and plate.
To overeome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the sereen and plate. This grid acts as a shield the ween the sereen grid and plate so the secondary electrons camnot be attracted by the sereen grid. They are hence attracted back to the plate without apprecially obstructing the regular plate-current flow. A five-element tube of this type is called a pentode.

Athough the sereen grid in either the tetrode or pentode greatly redures the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it does in a triode. Consequently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of cor-

Screen-Grid Tubes

responding structure. On the other hand, since a change in plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification fatcor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Jecause of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

In practical sereen-grid tubes the grid-phate saparitance is only a small fraction of a microarerofarad. This caparitance is too small to cause in appreciable increase in input capacitance as lescribed in the preceding section, so the input anpacitance of a screen-grid tube is simply the sum of its grid-cathode capacitance and control-yrid-to-sereen caparitance. The output capacitance of a screen-grid tube is equal to the capacitance between the plate and screen.

In addition to their applications as radiofrequency amplifiers, pentodes or tetrodes also are used for audio-frequency power amplification. In tubes designed for this purpose the chief function of the sereen is to serve as an accelerator of the eleetrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tules have quite high power sensitivity compared with triodes of the same power output, although harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Additional design features overcome the effects of secondary emission so that a suppressor grid is not needed. The "beam" construction makes it possible to draw large plate currents at relatively low plate voltages, and increases the power sensitivity.

For power amplifieation at both audio and radio frequencies beam tetrodes have largely supplanted the non-beam types because large power outputs can be secured with very small amounts of grid driving power.

Variable μ Tubes

The mutual conductance of a vacuum tube decreases when its grid hias is made more negative, assuming that the other eleetrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers.

The ordinary type of tube has what is known as a sharp-cutoff characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased. The amount of signal voltage that such a tube can handle without causing distortion is not sufficient to take care of
very strong signals. To overcome this, some tubes are made with a variable $-\mu$ characteristic - that is, the amplification factor decreases with increasing grid bias. The variable- μ tube can handle a much larger signal than the sharp-eutoff type before the signal swings pither beyond the zero grid-hias point or the plate-current cutoff moint.

INPUT AND OUTPUT IMPEDANCES

The input impedance of a vacuum-tube amplifier is the impedance "scen" by the signal source when connected to the input terminals of the amplifier. In the types of amplifiers previously discussed, the input imperdance is the impedance measured between the grid and cathode of the tube with operating voltages applied. At audio frequencies the input impedance of a Class A_{1} amplifier is for all practical purposes the input capacitance of the stage. If the tule is driven into the grid-current region there is in addition a resistance component in the input impedance, the resistance having an average value equal to E^{2} / P, where E is the r.m.s. driving voltage and P is the power in watts consumed in the grid. The resistance usually will vary during the a.c. eycle because grid current may flow only during part of the eycle; also, the grid-voltage/grid-eurrent characteristic is seldom linear.

The output impedance of amplifiers of this type consists of the plate resistance of the tube shunted by the output capacitance.

At radio frequencies, when tuned cireuits are employed, the input and output impedances are usually pure resistances; any reactive components are "tuned out" in the process of adjusting the circuits to resonance at the operating frequency.

- OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the meeting point for the input and output circuits. Ilowever, it is possible to use any one of the three principal elements as the common point. This leads to two additional kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in sinplified form in Fig. 3-17. In both circuits the resistor R represents the load into which the amplifier works; the actual load may be resistance-capacitancecoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The

grid is thus the common element. The a.c. component of the plate current has to flow through the signal source to reach the cathode. The source of signal is in series with the load through the plate-towathode resistance of the tubre, so some of the power in the load is supplied by the signal source. In transmitting applications this fed-through power is of the order of 10 per eent of the total power output, using tubes suitable for grounded-grid service.

The input impedance of the grounded-grid amplifier consists of a capacitance in parallel with an equivalent resistance representing the power furnished by the driving souree to the grid and to the load. This resistance is of the order of a few hundred ohms. The output impedance, neglecting the interelectrode capacitances, is equal to the plate resistance of the tube. This is the same as in the case of the grounded-eathode amplifier.

The grounded-grid amplifier is widely used at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of operation, an r.f. amplifier can be built that is free from the type of feedhack that causes oscillation. This requires that the grid anet as a shield between the cathode and plate, reduring the platerathode capacitance to a very low value.

Cathode Follower

The eathode follower uses the phate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligible impedance in the batteries) and the output is taken between cathode and plate. This eireuit is degenerative; in fact, all of the output voltage is fed back into the input circuit out of phase with the grid signal. The imput signal therefore has to be larger than the output voltage; that is, the cathode follower gives a loss in voltage, although it gives the same power gain as other circuits under equivalent operating conditions.

An important feature of the cathode follower is its low output impedance, which is given by the formula (neglecting interelectrode capabeitances)

$$
Z_{\text {out }}=\frac{r_{p}}{1+\mu}
$$

where r_{p} is the tube plate resistance and μ is the amplitication factor. Low output impedance is a vatuable characteristic in an amplifier designed to cover a wide band of frequencies. In addition, the input capacitance is only a fraction of the grid-to-cathode capacitance of the tube, a feature of further benefit in a wide-band amplifier. The cathode follower is useful as a step-down impedance transformer, since the input impedance is high and the ontput impedance is bow.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is powered by the a.c. line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give pure d.c. - that is, direct current that is constant and without a superimposed a.c. component - the relatively large currents required by filaments and heaters usually make a rectifier-type d.e. supply impracticable.

Filament Hum

Alternating current is just as good as direct current from the heating standpoint, but some of the a.c. voltage is likely to get on the grid and cause a low-pitched "a.c. hum" to be superimposed on the output.
llum troubles are worst with directly-heated cathodes or filaments, because with such cathodes there has to be a direct connection between the source of heating power and the rest of the circuit. The hum can be minimized by either of the connertions shown in Fig. 3-18. In both cases the grid- and plate-return circuits are connected to the electrical midpoint (center tap) of the filament supply. 'Thus, so fiu' as the grid and plate are concerned, the voltage and current on one side of the filament are balanced by an equal and opposite voltage and current on the other side. The balance is never quite perfect, however, so filament-type tubes are never completely hum-

Fig. 3-18-Filament center-fapping methods for use with directlyheated tubes.

Cathode Circuits and Grid Bias

free. For this reason directly-heated filaments are omployed for the most part in power tubes, where the amount of hum introduced is extremely small in comparison with the poweroutput level.

With indirectly-heated cathodes the chief problem is the magnetic field set up by the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small a.c. voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are obtained if the heater supply is center-tapped and the center-tap grounded, as in Fig. 3-18.

Cathode Bias

In the simplified amplifier eircuits discussed in this chapter, grid bias has been supplied by a battery. However, in equipment that operates from the power line cathode bias is very frequently used.

The cathorle-bias method uses a resistor (cathode resistor) connected in series with the cat hode, as shown at R in lig. 3-19. The direction of platecurrent flow is such that the end of the resistor nearest the eathole is positive. The voltage drop

Fig. 3-19-Cathade biasing. R is the cathade resistar and C is the cothade bypass capacitor.
across R therefore places a negotive voltage on the grid. This negative bias is obtained from the steady d.c. plate current.

If the alternating component of plate current flows through R when the tule is amplifying, the voltage drop caused by the are. will be degenerative (note the similarity between this rirenit and that of lig. 3-14.1). To prevent this the resistor is bypassed by a capacitor, (', that has very low reartance eompared with the resistane of K. Depending on the type of tube and the particular kind of operation, R may be between about 100 and 3000 ohms. For good bypassing at the low audio frequencies, C should be 10 to 50 mierofarads (electrolytic eapanitors are used for this purpose). At radio frequenciss, capacitances of athout $100 \mu \mu \mathrm{f}$. to $0.1 \mu \mathrm{f}$, are used; the smatl values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacyeles a capacitance of $0.01 \mu \mathrm{f}$. is satisfiutory.

The value of cathode resistor for an amplifity having negligible d.e. resistance in its plate circuit (transformer or impedance coupled) can easily be calculated from the linown operating conditions of the tube. The proper grid bias and plate current always are sperified by the manufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

Example: It is found from tube tables that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate current will be 12 milliamperes (0.012 amp.). The required cathode resistance is then

$$
R=\frac{E}{I}=\frac{8}{0.012}=667 \mathrm{ohms}
$$

The nearest standard value, 680 ohms, would be close enough. The power used in the resistor is

$$
P=E I=8 \times 0.012=0.096 \text { watt. }
$$

A $1 / 4-\cdots$ att or $1 / 2-w a t t$ resistor would have ample rating.

The current that flows through R is the total cathode current. In an ordinary triode amplifier this is the same as the plate current, but in a sereen-grid tube the cathode current is the sum of the plate and screen currents. Hence these two currents must be added when calculating the value of cathode resistor required for a screengrid tube.

Example: A receiving pentode requires 3 volts negative bias. At this bias and the recommended hate and screen voltages, its plate current is 9 ma. and its screen current is 2 ma. The cathode current is therefore 11 ma . (0.011 amp.$)$. The required resistance is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohms. }
$$

A 270 -ohm resistor would be satisfactory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.033 \text { watt. }
$$

The eathode-resistor method of biasing is selfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the bias will increase if the plate current is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the cathode resistor for a re-sistance-coupled amplificr is ordinarily not practicable by the method described above, because the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistance-roupled amplifiers are given in the chapter on audio amplifiers, including cathode-resintor values.

"Contact Potential" Bias

In the allsence of any negative bias voltage on the grid of a tube, some of the electrons in the space charge will have enough velocity to reach the grid. 'This causes a small current (of the order of mieroamperes) to flow in the external circuit between the grid and cathode. If the current is made to flow through a high resistance - a megohm or so - the resulting voltage drop in the resistor will give the grid a hegative bias of the order of unte volt. The bias so ubtained is called contact-potential bias.

Contact-potential bias can be used to advantage in circuits operating at low signal levels (less than one volt peak) since it eliminates the cath-ode-hias resistor and bypass capacitor. It is prinripally used in low-level resistance-eoupled audio

3-VACUUM-TUBE PRINCIPLES

amplifiers. The bias resistor is connected directly between grid and eathode, and must be isolated from the signal source by a blocking capacitor.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the sereen frequently is taken from the plate supply through a resistor. A typical circuit for an r.f. amplifier is shown in Fig. 3-20. Resistor R is the screen dropping resistor, and (${ }^{*}$ is the screen bypass capacitor. In flowing through R, the screen current causes a voltage drop in K that reduces the phate-supply voltage to the proper value for the screen. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's Law.

> Example: An r.f. reeeiving pentode has a rated sereen current of 2 milliamperes (0,002 amp,) at normal ofserating conditions. ' 1 he rated sereen voltage is 100 volts, and the phate supply gives 250 volts. To put 100 volts on the sereen, the drop across R must be equal to the difference between the phate-supply voltage and the sereen voltage; that is, $250-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{150}{0.002}=75,000 \text { ohmis }
$$

The power to be dissipated in the resistor is

Fig. 3-20-Screen-voltage supply for a pentode tube through a dropping resistor, R. The screen bypass capacitor, C, must have low enough reactance to bring the screen to ground potentiol for the frequency or frequencies being amplified.

$$
P=E I=150 \times 0.002=0.3 \mathrm{watt} .
$$

A 1/a- or 1 -watt resistor would be satisfactory.
The reactance of the sereen bypass capaeitor, C, should be low compared with the screen-tocathode impedance. For radio-frequency applications a capacitance in the vicinity of $0.01 \mu \mathrm{f}$. is amply large.

In some varuum-tule circuits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of volhage dividers is discussed at length in Section 7 on Power Supplies.

Oscillators

It was mentioned earlior that if there is enough positive feedback in an amplifier cirenit, selfsustaining oscellations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oseillations normally take phace at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. For example, in lig. 3-21A the circuit L^{\prime} (is tuned to the desired frequency of oscillation. The cathode of the tube is conneeted to a tap on coil L and the grid and plate are conneeted to opposite ends of the tuned circuit. When an r.f. eurrent flows in the tumed circuit there is a voltage drop across L that increases progressively along the turns. Thus the point at which the tap is commerted will be at an intermediate potential with resperet to the two ends of the coil. The amplified current in the plate circuit, which flows through the bottom seetion of L, is in phase with the eurent already flowing in the circuit and thus in the proper relationship for pusitive feedtack.

The amount of feedbark depends on the position of the tap. If the tap is too near the grid end the voltage drop between grid and eathode is too small to give enough feedback to sustain oscillation, and if it is too near the plate end the impedance beween the cathode and plate is too small to permit good amplification. Maximum feedback usually is obtained when the tap is somewhere near the center of the coil.

The circuit of Fig. 3-2ld is parallel-fed, ('b being the blocking capacitor. The value of (\% is not eritical so long as its reactance is low (not more than a few hundred ohms) at the operating frequency.

Capacitor C_{k} is the grid capacitor. It and R_{k} (the grid leak) are used for the purpose of ob-

Fig. 3-21-Basic oscillator circuits. Feedback voltage is obtained by fapping the grid and cothode across a portion of the tuned circuit. In the Hortley circuit the tap is on the coil, but in the Colpitts circuit the voltage is obtained from the drop across a capacitor.
taining grid bias for the tube. In most oscillator eireuits the tube generates its own bias. During the part of the cycle when the grid is positive with respect to the cathode, it attracts electrons. These electrons cannot flow through L back to the cathode because C_{g} "blocks" direct current. They therefore have to flow or "leak" through R_{k} to cathode, and in doing so cause a voltage drop in R_{k} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of R_{k} (Ohm's Law). The value of grid-leak resistance required depends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The rapacitance of C_{k} should be large enough to have low reactance (a few hundred ohms) at the operating frequency.

The circuit shown at B in Fig. 3-21 uses the voltage drops across two capacitors in series in the tuned circuit to supply the feedback. Other than this, the operation is the same as just described. The feedback can be varied by varying the ratio of the reactances of C_{1} and C_{2} (that is, by varying the ratio of their capacitances).

Another type of oscillator, called the tunedplate tuned-grid circuit, is shown in lig. 3-22.

Fig. 3-22-The tuned-plate tuned-grid oscillator.
Resonant circuits tuned approximately to the same frequency are connected between grid and cathode and between plate and cathode. The two coils, L_{1} and L_{2}, are not magnetically coupled. The feedback is through the grid-plate capacitance of the tube, and will be in the right phase to be positive when the plate circuit, $C_{2} L_{2}$, is tuned to a slightly higher frequency than the grid circuit, $L_{1} C_{1}$. The amount of feedback can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined by the tuned circuit that has the higher Q. The grid leak and grid capacitor have the same functions as in the other circuits. In this case it is convenient to use series feed for the plate circuit, so C_{b} is a bypass capacitor to guide the r.f. current around the plate supply.

There are many oscillator circuits (examples of others will be found in later chapters) but the hasic feature of all of them is that there is positive feedlbark in the proper amplitude and phase to sustain oscillation.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feedback will depend on how heavily the oscillator is loaded - that is, how much power is being taken from
the circuit. If the feedback is not large enough grid excitation too small - a small increase in load may tend to throw the circuit out of oscillation. On the other hand, too murh feedback will make the grid current excessively high, with the result that the power loss in the grid eireuit becomes larger than neressury. Since the oscillator itself supplies this grid power, exressive feedback lowers the over-all efliciency because whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oseillator design is frequency stability. The principal factors that cause a change in frequency are
(1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or the tuning capacitor will alter the inductance or capacitance slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small amount, an effect called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective Q. The energy taken from the circuit to supply grid losses, as well as energy supplied to a load, represent an increase in the effective resistance of the tuned circuit and thus lower its Q. For highest stability, therefore, the coupling between the tuned circuit and the tube and load must be kept as loose as possible. Preferably, the oscillator should not be required to deliver power to an external circuit, and a high value of grid leak resistance should be used since this helps to raise the tube grid and plate resistances as seen by the tuned circuit. Loose coupling cain he effected in a variety of ways - one, for example, is by "tapping down" on the tank for the connections to the grid and plate. This is done in the "serics-tuned" Colpitts eircuit widely used in variable-frequency oscillators for amateur transmitters and descriled in a later chapter. Alternatively, the L / C ratio may be made is small as possible while sustaining stable oscillation (high C) with the grid and plate connected to the ends of the circuit as shown in Figs. 3-21 and 3-22. Using relatively high plate voltage and low plate current also is desirable.

In general, dynamic stability will be at maximum when the feedback is adjusted to the least value that permits reliable oscillation. The use of a tube having a high value of transconductance is desirable, since the higher the transconductance the looser the permissible coupling to the tuned circuit and the smaller the feedback required.

Load variations act in much the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Mechanical variations, usually caused by

3 -VACUUM-TUBE PRINCIPLES

vibration, cause changes in inductance and/ or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-21 and $3-22$ the cathode is connected to ground. It is not actually essential that the radiofrequency circuit should be grounded at the cathode; in fact, there are many times when an r.f. ground on some other point in the eircuit is desirable. The r.f. ground can be placed at any point so long as proper provisions are made for feeding the supply voltages to the tube elements.

Fig. 3-23 shows the Ilartley circuit with the plate end of the circuit grounded. No r.f. choke is needed in the plate circuit because the plate already is at ground potential and there is no r.f. to choke off All that is necessary is a by-pass capacitor, C_{b} across the plate supply. Direct

Fig. 3-23-Showing how the plate may be grounded for r.f. in a typical oscillator circuit (Hartley).
current flows to the cathode through the lower part of the tuned-circuit coil, L. In advantage of such a circuit is that the frame of the tuning capacitor can be grounded.

Tubes having indirectly-heated cathodes are more easily adaptable to circuits grounded at other points than the cathode than are tubes having directly-heated filaments. With the latter tubes sperial precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

Clipping Circuits

Vacuum tubes are readily adaptable to other types of operation than ordinary (without sub)stantial distortion) amplification and the genera-

Fig. 3-24-Series and shunt diode clippers. Typical operofion is shown af the right.

SHUNT
tion of single-frequency oscillations. (ff particular interest is the rlipper or limiter circuit, berause of its several applications in receiving and other equipment.

Diode Clipper Circuits

Basic diode elipper cireuits are shown in Fig. $3-24$. In the series type a positive d.c. bias voltage is applied to the plate of the diode so it is normally condurting. When a signal is applied the current through the diode will change proportionately during the time the signal voltage is positive at the diode plate and for that part of the negative half of the signal during which the instantaneous voltage does not excered the bias. When the negative signal voltage exceeds the positive bias the resultant voltage at the diode
plate is negative and there is no conduction. Thus part of the negative half eycle is clipped as shown in the drawing at the right. The level at which clipping occurs depends on the bias valtage, and the proportion of signal clipping depends on the signal strength in relation to the bias voltage. If the peak sigmal voltage is below the bias level there is no clipping and the output wave shape is the same as the input wave shaper, as shown in the lower sketch. The output voltage results from the current flow through the load resistor R.

In the shunt-type diode clipper negative linas is applied to the phate so the diode is normally noneonducting. In this rase the signal voltage is fed through the series resistor l to the output circuit (which must have high impedance compared with the resistance of h). When the negative half of the signal voltage excods the hias voltage the diode conducts, and berause of the voltage drop in R when current flows the output voltage is reduced. By proper choice of R in relat tionship to the load on the output circuit the rlipping can be made equivalent to that given by the series circuit. There is no elipping when the prak signal voltage is bolow the bias level.

Two diode eircuits ean be combined so that both the negative and positive peaks of the signal are clipped.

Triode Clippers

The circuit shown at A in Fig. 3-25 is capable of clipping both negative and positive signal peaks. (On positive peaks its operation is similar to the shunt diode clipper, the elipping taking place when the positive prak of the signal voltage

Clipping Circuits

Fig. 3-25-Triode clippers. A-Single triode, using shunt-type diode clipping in the grid circuit for the positive peak and plate-current cut-off clipping for the negative peak. B-Cathode-coupled clipper, using plate-current cut-off clipping for both positive and negative peaks.

is large cnough to drive the grid positive. The positive-clipped signal is amplified by the tube is a resistance-coupled amplifier. Negative peak clipping occurs when the nogative peak of the signal voltage exceeds the fixed grid bias and thus cuts off the plate current in the output circuit.

In the cathode-coupled clipper shown at B in Fig. 3-25 V_{1} is a cathode follower with its output cireuit directly connected to the cathode of I '2, which is a grounded-grid amplifier. The tubes are biased by the voltage drop across R_{1}, which carries the d.c. plate currents of both tubes. When the negative peak of the signal voltage ex-
ceeds the d.c. voltage across R_{1} clipping occurs in V_{1}, and when the positive peak exceeds the same value of voltage V_{2} 's plate current is cut off. (The bias developed in R_{1} tends to be constant because the plate current of one tube increases when the plate current of the other decreases.) Thus the circuit clips both positive and negative peaks. The clipping is symmetrical, providing the d.c. voltage drop in R_{2} is small enough so that the operating conditions of the two tubes are substantially the same. For signal voltages below the clipping level the circuit operates as normal amplifier with low distortion.

U.H.F. and Microwave Tubes

At ultrahigh frequencies, interelectrode capacitances and the inductance of internal leads determine the highest possible frequency to which a vacuum tube can be tuned. The tube usuably will not oscillate up to this limit, however, berause of dielectric losses, transit time and other effects. In low-frequency operation, the actual time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the cycle. At 1000 kc ., for example, transit time of 0.001 microsecond, which is typical of conventional tubes, is only $1 / 1000$ cycle. But at 100 Me ., this same transit time represents $1 / 10$ of a cycle, and a full cycle at 1000 Mc . These limiting factors establish about 3000 Mc. as the upper frequency limit for negative-grid tubes.

With most tubes of conventional design, the upper limit of useful operation is around 150 Mc . For higher frequencies tubes of special construction are required. About the only means available for reducing interelectrode capacitances is to reduce the physical size of the elements, which is practical only in tubes which do not have to handle appreciable power. However, it is possible to reduce the internal lead inductance very materially by minimizing the lead length and by using two or more leads in parallel from an electrode.

In some types the electrodes are provided with up to five separate leads which may be connected in parallel externally. In double-lead types the plate and grid elements are supported by heavy single wires which run entirely through the envelope, providing terminals at either end of the
bulb. With linear tank circuits the leads become a part of the line and have distributed rather than lumped constants.

In "lighthouse" tubes or disk-seal tubes, the plate, grid and cathode are assembled in parallel

Fig. 3-26-Sectional view of the "lighthouse" tube's construction. Close electrode spacing reduces transit time while the disk electrode connections reduce lead inductance.
planes, as shown in Fig. 3-26, instead of coaxially. The disk-seal terminals practically eliminate lead inductance.

Velocity Modulation

In conventional tube operation the potential on the grid tends to reduce the electron veloeity during the more negative half of the cycle, while on the other half cycle the positive potential on the grid serves to accelerate the electrons. Thus the electrons tend to separate into groups, those leaving the cathode during the negative halicycle being collectively slowed down, while those

3 -VACUUM-TUBE PRINCIPLES

leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron stream follows the original form of the oscillation eycle, the remainder traveling to the plate at differing veloritios, Since these contribute nothing to the power output at the operating frequency, the efliciency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect is turned to advantage in velocitymodulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current chertron beam, rather than to vary the intensity of a constantvelocity current flow as is the method in ordinary tubes.

The velocity modulation principle may be used in a number of ways, leading to several tube designs. The major tube of this type is the "klystron."

The Klystron

In the klystron tube the electrons emitted by the cathode pass through an electric ficld established by two grids in a cavity resonator called the buncher. The high-frequency electrie field between the grids is parablel to the electron stream. This field abcelerates the clectrons at one moment and retards them at another, in aceordance with the variations of the r.f. voltage applied. The resulting velocity-modulated beam travels through a field-free "drift space," where the slower-moving electrons are gradually overtaken by the faster ones. The eleetrons emerging from the pair of grids therefore are separated into groups or "bunchad" along the direction of motion. The velocity-modulated electron stream then goes to a catcher cavity where it again passes through two parallel grids, and the r.f. current created by the bunching of the elec-

Fig. 3-27-Circuit diagram of the klystron oscillator, showing the feed-back loop coupling the frequency-controlling cavities.
tron beam induces an r.f. voltage between the grids. The catcher cavity is made resonant at the frequency of the velocity-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture

If a feed-back loop is provided betwern the two cavities, as shown in lrig. i3-27, oscillations will occur. The resonant frequency depends on the clectrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dinnensions of the eavitics. Although the bunched beam current is rich in harmonies the output wave form is remarkahly pure because the high () of the cateher cavity suppresses the unwzuted harmonics.

Magnetrons

A magnetron is fundamentally a diode with cylindrical elcetrodes placed in a uniform magnetic ficld, with the lines of magnetic force parallel to the axes of the elements. The simple cylindrical magnetron consists of a cathode surrounded by a concentric cylindrical anode. In the more effi-

Fig. 3-28-Conventional magnetrons, with equivalent schematic symbols at the right. A, simple cylindrical magnetron. B, split-anode negative-resistance magnetron.
cient split-anode magnetron the eylinder is divided lengthwise.

Magnetron oscillators are operated in two different ways. Vlectrieally the circuits are similar, the difference being in the relation between eletron transit time and the frequency of oscillation.

In the negative-resistance or dynatron type of magnetron oscillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation frequency. bilectrons emitted from the cathode are driven toward both halves of the anode. If the potentials of the two halves are unequal, the effect of the magnetic field is such that the majority of the electrons travel to the half of the anode that is at the lower potential. That is, a decrease in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnetron consequently exhibits negative-resistance characteristics. N("gative-resistance magnetron oscillators are useful between 100 and 1000 Mc. Cinder the best operating conditions efficiencies of 20 to 25 per cent may be obtained.

U.H.F. and Microwave Tubes

In the transit-time magnetron the frequency is determined primarily by the tube dimensions and by the electric and magnetic field intensitics rathor than by the tuning of the tank circuits. The intensity of the mangetic fied is adjusted so that, under static conditions, electrons leaving the eathode move in eurved paths which just fail to reach the anode. All electrons are therefore deHected back to the cathode, and the anode current is zero. An alternating voltage applied between the two halves of the anode will cause the

potentials of these halves to vary about their average positive values. If the period (time required for one cycle) of the alternating voltage is made equal to the time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each electron rotation. Some electrons will lose energy to the electric field, with the result that they are unable to reach the cathode and continue to rotate about it. Meanwhile other electrons gain energy from the field and are
assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the anode structure into 4 to 16 or more segments, the resonant cavitios for each anode being coupled to the common eathode region by slots of critical dimensions.

The efficiency of multisegment magnetrons reaches 65 or 70 per cent. Slotted-anode magnetrons with four segments function up to 30,000 Me. (1 cm .), delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Traveling-Wave Tubes

Gains as high as 2:3 db. over a bandwidth of 800 Mc . at a center frequency of 3600 Mc . have been obtained through the use of a travelingwave amplifier tube shown schematically in Fig. 3-30. An electromagnetic wave travels down the helix, and an electron beam is shot through the helix parallel to its axis, and in the dircetion of propagation of the wave. When the electron velocity is about the same as the wave velocity in the absence of the electrons, turning on the electron beam causes a power gain for wave propagation in the direction of the electron motion.

The portions of Fig. 3-30 marked "input" and

Fig. 3-30-Schematic drowing of a traveling-wave amplifier tube.

returned to the cathode. Since those clectrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effect is a transfer of energy from the electrons to the electric field. This energy can be used to sustain oseillations in a resonant transmission line connected between the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 3-29. The
"output" are warguide sections to which the ends of the helix are coupled. In practice two electromagnetic focusing coils are used, one forming a lens at the electron gun end, and the other a solenoid running the length of the helix.

The outstanding features of the traveling-wave amplifier tube are its great bandwidth and large power gain. However, the efficiency is rather low. Typical power output is of the order of 200 milliwatts.

Semiconductor Devices

Certain materials whose resistivity is not high enough to classify them as good insulators, but is still high compared with the resistivity of common metals, are known as semiconductors. These materials, of which germanium and silicon are examples, have an atomic structure that normally is associated with insulators. However, when small amounts of impurities are introduced during the manufacture of germanium or silicon erystals, it is possible for free electrons to exist and to move through the crystals under the influence of an electric field. It is also possible for some of the atoms to be deficient in an electron, and these electron deficiencies or holes can move from atom to atom when urged to do so by an applied electric force. (The movement of a hole is actually the movement of an electron, the electron becoming detached from one atom, making a hole in that atom, in order to move into an existing hole in another atom.) The holes can be considered to be equivalent to particles carrying a positive electric charge, while the electrons of course have negative charges. Holes and electrons are called charge carriers in semiconductors.

Electron and Hole Conduction

Material which conducts by virtue of a deficiency in electrons - that is, by hole conduction - is called P-type material. In N-type material, which has an excess of electrons, the conduction is termed "electronic." If a piece of l-type material is joined to a piece of N-type material as at A in Fig. 4-1 and a voltage is applied to the pair as at B , current will flow across the boundary or junction between the two (and also in the external circuit) when the battery has the polarity indicated. Electrons, indicated by the minus symbol, are attracted across the junction from the N material through the I' material to the positive terminal of the battery, and holes, indicated by the plus symbol, are attracted in the opposite direction across the junction by the negative potential of the battery. Thus current flows through the circuit by means of
electrons moving one way and holes the other.
If the battery polarity is reversed, as at C, the excess alectrons in the N material are artracted away from the junction and the holes in the I' material are attracted by the negative potential of the battery away from the junction. This leaves the junction region without any current carriers, consequently there is no condurtion.

In other words, a junction of P - and N-type materials constitutes a rectifior. It differs from the tube diode rectifier in that there is a measurable, although comparatively very small, reverse current. The reverse current results from the presence of some carriers of the type opposite to those which prinejpally chaturterize the material. The principal ones are colled majority carriers, while the lesser ones are minority carriers.

The process by which the carricres aross the junction is essentially diffusion, and takes plate eomparatively slowly. This, toget her with the fatt that the junction forms a cibpacitor with the two plates separated hy practically zero spacing and hence has relatively high capacitance, places a limit on the upper frequency at which semiconductor devires of this construction will operate, as compared with vacuum tules. Also, the number of excess electrons and holes in the material depends upon temperature, and since the conductivity in turn depends on the number of excess holes and electrons, the device is more temperature sensitive than is a vacuum tube.

Capacitance may be reduced by making the contact areat very small. This is done by means of a point contact, a tiny I'type region being formed under the contact point during mannfacture when N-type material is used for the main body of the device.

SEMICONDUCTOR DIODES

Diodes of the point-contact tupe are used for many of the same purposes for which tube diodes are used. The construction of such a diode is

Semiconductor Diodes

SYM BOL

Fig. 4-2-Construction of a germanium-point-contact diode. In the circuit symbol for a contact rectifier the orrow points in the direction of minimum resistance measured by the conventional method-that is, going from the positive terminal of the voltage source through the rectifier to the negative terminal of the source. The arrow thus corresponds to the plate and the bar to the cathode of a tube diode.
shown in Fig. 4-2. Germanium and silicon are the most widely used materials, the latter principally in the u.h.f. region.

As compared with the tube diode for r.f. applications, the crystal diode has the advantages of very small size, very low interelectrode capacitance (of the order of $1 \mu \mu \mathrm{f}$. or less) and requires no heater or filament power.

Characteristic Curves

The germanium crystal diode is characterized loy relatively large current flow with small applied voltages in the "forward" direction, and small, although finite, current flow in the reverse or "back" direction for much larger applied voltages. A typical characteristic curve is shown in Fig. 4-3. The dynamic resistance in either the forward or back direction is determined by the change in current that occurs, at any given point on the curve, when the applied voltage is changed by a small amount. The forward resistance shows some variation in the region of very small applied voltages, but the curve is for the most part quite straight, indicating fairly constant dynamic resistance. For small applied voltages; the forward resistance is of the order of 200 ohms in most such diodes. The back resistande shows considerable variation, depending on the particular voltage chosen for the measurement. It may run from a few hundred thousand ohms to over a megohm. In applications such as meter rectifiers for r.f. indicating instruments (r.f. voltmeters,
wavemeter indicators, and so on) where the load resistance may be small and the applied voltage of the order of several volts, the resistances vary with the value of the applied voltage and are considerably lower.

Junction Diodes

Junction-type diodes made of germanium are employed principally as power rectifiers, being useful for applications similar to those in which selenium rectifiers are used. Depending on the design of the particular diode, they are capable of rectifying currents up to several hundred milliamperes. The safe inverse peak voltage of a junction is relatively low, so an appropriate number of rectifiers must be connected in series to operate safely on a given a.c. input voltage.

Ratings

Crystal diodes are rated primarily in terms of maximum safe inverse voltage and maximum average rectified current. Inverse voltage is is voltage applied in the direction opposite to that which causes maximum current flow. The average current is that which would he read by a d.c. meter connected in the current path.
It is also customary to specify standards of performance with respect to forward and back current. A minimum value of forward current is usually specified for one volt applied. The voltage at which the maximum tolerable bark current is specified varies with the type of cliode.

Fig. 4-3-Typical point contact germanlum diode characteristic curve. Be cause the back current is much smaller than the forward current, a different scale is used for back voltage and current.

Transistors

Fig. 4-4 shows a "sandwich" made from two layers of P-type semiconductor material with a thin layer of N-type between. There are in effect two P-N junction diodes back to back. If a positive bias is applied to the P-type material at the left as shown, current will flow through the left-hand junction, the holes moving to the right and the electrons from the N-type material moving to the left. Some of the holes moving into the N-type material will combine with the electrons there and be neutralized, but some of then also will travel to the region of the right-
hand jumetion.
If the P-N combination at the right is biased negatively, as shown, there would normally be no current flow in this circuit (see Fig. 4-1C). However, there are now additional holes available at the junction to travel to point B and electrons can travel toward point A, so a current can flow even though this section of the sandwich considered alone is biased to prevent conduction. Most of the current is bretween A and B and does not flow out through the common connection to the N-type material in the sandwich.

Fig. 4-4-The basic arrangement of a transistor. This represents a junction-type P-N-P unit.

A semiconductor combination of this type is called a transistor, and the three sections are known as the emitter, base and collector, respectively. The amplitude of the collector current depends principally upon the amplitude of the emitter current; that is, the collector current is controlled by the emitter current.

Power Amplification

Because the collector is biased in the back direction the collector-to-base resistance is high. On the other hand, the emitter and collector currents are substantially equal, so the power in the collector circuit is larger than the power in the emitter circuit ($P=I^{2} R$, so the powers are proportional to the respective resistances, if the current is the same). In practical transistors emitter resistance is of the order of a few hundred ohms while the collector resistance is hundreds or thousands of times higher, so power gains of 20 to 40 db . or even more are possible.

Types

The transistor may be either of the pointcontact or junction type, as shown in Fig. 4-5. Also, the assembly of I^{\prime} - and N-type materials may be reversed; that is, N-type material may be used instead of 1 -type for the ennitter and collector, and 1'-type instead of N-type for the base. The type shown in Fig. $4-4$ is a P-N-P transistor, while the opposite is the N-P-N.

Point-Contact Transistors

The point-contact transistor, shown at the
left in Fig. 4-5, has two "cat whiskers" placed very close together on the surface of a germanium wafer, usually N-type material. Small P-type areas are formed under each point during manufacture. This type of construction results in quite low interelectrode capacitances, with the result that some point-contact transistors have been used at frequencies up to the v.h.f. region.
The point-contact transistor is principally of historical interest, since it is now superseded by the junction type. It is difficult to manufacture, since the two contact points must be extremely close together if good characteristics are to be secured, particularly for high-frequency work.

Junction Transistors

The junction transistor, the essential construction of which is shown at the right in Fig. 4-5, has higher capacitances and higher powerhandling capacity than the point-contact type. The "electrode" areas and thickness of the intermediate layer have an important effect on the upper frequency limit. Ordinary junction transistors may have cut-off frequencies (see next section) up to 20 Me . or so. The types used for audio and low radio frequencies usually have cut-off frequencies ranging from 50) to 1000 kc .

The upper frequency limit is extended eonsiderably in the drift transistor. This type has a particular form of distribution of impurities in the base material resulting in the creation of an internal electric field that accelerates the carriers across the junction. Typical drift transistors have cut-off frequencies of the order of 30 Me .
Another type of transistor useful in high-frequency work is the surface barrier transistor, using plated emitter and collector electrodes on a wafer of N-type material. Surface barrier transistors will operate at frequencies up to 45 or 50 Mc . as amplifiers and oscillators.

TRANSISTOR CHARACTERISTICS

An important characteristic of a transistor is its current amplification factor, usually designated by the symbol α. This is the ratio of the

Fig. 4-5-Point-contact and junction-type transistors with their circuit symbols. The plus and minus signs associated with the symbols indicate polarities of voltages, with respect to the bose, to be applied to the elements.

Transistor Characteristics

change in eollector current to a small change in emitter current, measured in the common-base rircuit described later, and is comparable with the voltage amplifiration factor (μ) of a vacuum tube. The current amplification factor is almost, but not quite, I in a junction transistor. It is largor than 1 in the point-contact type, values in the neightor'hood of 2 boing typical.

The α cut-off frequency is the frequency at which the current amplification drops 3 db . below its low-frequency value. Cut-off frequencies range from 500 ke. to frequencies in the v.h.f. region. The cout-off frequency indicates in a genmeal way the frequency spread over which the transistor is useful.

Bach of the three elements in the transistor has a resistance associated with it. The emitter and collector resistances were discussed eartier. There is also a certain amount of resistance associated with the base, a value of a few hundred to 1000 ohms being typiral of the base resistance.

The values of all three resistances vary with the type of transistor and the operating voltages. The collector resistance, in particular, is sensitive to operating conditions.

Characteristic Curves

The operating characteristics of transistors can be shown by a series of characteristic curves. One such set of curves is shown in Fig. 4-6. It

Fig. 4-6-A typical callectar-current vs. callector-valtage characteristic af a junctian-type transistar, for variaus emitter-current values. The circuit shows the setup for taking such measurements. Since the emitter resistance is low, a current-limiting resistor, R, is cannected in series with the source of current. The emitter current can be set at a desired value by adjustment of this resistance.
shows the collector current vs. collector voltage for a number of fixed values of emitter current. Practically, the collector current depends almost entirely on the emitter current and is independent of the collector voltage. The separation between curves representing equal steps of emitter current is quite uniform, indicating that almost distortionless output can be olitained over the useful operating range of the transistor.

Another type of curve is shown in Fig. 4-7, together with the circuit used for obtaining it. This also shows collector eurrent r 's. collector voltage, but for a number of different values of base current. In this case the emitter element is used as the common point in the circuit. The collector current is not independent of collector voltage with this type of connection, indicating that the output resistance of the deviee is fairly low. The base current also is quite low, which

Fig. 4-7-Callectar current vs. callectar valtage far variaus values of base current, for a junction-type transistar. The values are determined by means af the circuit shown.
means that the resistance of the base-emitter circuit is moderately high with this method of connection. This may be contrasted with the high values of emitter current shown in Fig. 4-6.

Ratings

The principal ratings applied to transistors are maximum collector dissipation, maximum collector voltage, maximum collector current, and maximum emitter current. The voltage and current ratings are self-explanatory.

The collector dissipation is the power, usually expressed in milliwatts, that can safely be dissipated by the transistor as heat. With some types of transistors provision is made for transferring heat rapidly through the container, and such units usually require installation on a heat "sink," or mounting that can absorb heat.

The amount of undistorted output power that can be obtained depends on the collector voltage, the collector current being practically independent of the voltage in a given transistor. Increasing the collector voltage extends the range of linear operation, but must not be carried beyond the point where either the voltage or dissipation ratings are exceeded.

TRANSISTOR AMPLIFIERS

Amplifier circuits used with transistors fall into one of three types, known as the groundedbase, grounded-emitter, and grounded-collector circuits. These are shown in Fig, 4-8 in elementary form. The three circuits correspond approximately to the grounded-grid, grounded-cathode and cathode-follower circuits, respectively, used with vacuum tubes.

The important transistor parameters in these circuits are the short-circuit current transfer ratio, the cut-off frequency, and the input and output impedances. The short-rircuit current transfer ratio is the ratio of a small change in output current to the change in input current that causes it, the output circuit being shortcircuited. The cut-off frequency is the frequency at which the amplification decreases by 3 db . from its value at some frequency well below that at which frequency effects begin to assume importance. The input and output impedances are, respectively, the impedance which a signal souree working into the transistor would see, and the internal output impedance of the transistor

4-SEMICONDUCTOR DEVICES

(corresponding to the plate resistance of a vacuum tube, for example).

Grounded-Base Circuit

The input eircuit of a grounded-base amplifier must be designed for low impedance. since the emitter-to-base resistance is of the order of $25 / I_{\mathrm{e}}$ ohms, where I_{e} is the emitter current in milliamperes. The optimum output load impedance, R_{L}, may range from a few thousand ohms to 100,000 , depending upon the requirements.

The current transfer ratio is α and the cut-off freduency is as defined previously.

In this circuit the phase of the output (collector) current is the same as that of the input (emitter) current. The parts of these currents that flow through the base resistance are likewise in phase, so the circuit tends to be regenerative and will oscillate if the current amplification factor is greater than 1. A junction transistor is stable in this circuit since α is less than 1 , but a point-contact transistor will oscillate.

Grounded-Emitter Circuit

The grounded-emitter circuit shown in Fig. 4-8 corresponds to the ordinary grounded-cathode vacuum-tube amplifier. As indicated by the curves of Fig. 4- $\overline{-}$, the base current is small and the input impedance is therefore fairly high several thousand ohms in the average case. The collector resistance is some tens of thousands of ohms, depending on the signal source impedance. The current transfer ratio in the common-emitter circuit is equal to

$$
\frac{\alpha}{1-\alpha}
$$

Since α is close to 1 (0.98 or higher being representative), the short-circuit current gain in the grounded-emitter circuit may be 50 or more. The cut-off frequency is equal to the α cut-off frequency multiplied by ($1-\alpha$), and therefore is relatively low. (For example, a transistor with an α cut-off of 1000 kc . and $\alpha=0.98$ would have a cut-off frequency of $1000 \times 0.02=20$ ke. in the grounded-emitter circuit.)

Within its frequency limitations, the groundedemitter circuit gives the highest power gain of the three.

In this circuit the phase of the output (collector) current is opposite to that of the input (base) current so such feedback as occurs through the small emitter resistance is negative and the amplifier is stable with either junction or pointcontact transistors.

Grounded-Collector Circuit

Like the vacuum-tube cathode follower, the grounded-collector transistor amplifier has high input impedance and low output impedance. 'The latter is approximately equal to the impedance of the signal input source multiplied by $(1-\alpha)$. The input resistance depends on the load resistance, being approximately equal to the load resistance divided by $(1-\alpha)$. The fact that input resistance is directly related to the load

COMMON COLLECTOR
Fig. 4-8-Basic transistor amplifier circuits. R_{L}, the load resistance, may be an actual resistor or the primary of a transformer. The input signal may be supplied from a transformer secondary or by resistance-capacitance coupling. In any cose it is to be understood that a d.c. path must exist batween the base and emitter.

PNP transistors are shown in these circuits. If NPN types are used the battery polarities must be reversed.
resistance is a disadvantage of this type of amplifier if the load is one whose resistance or impedance varies with frequency.

The current transfer ratio with this circuit is

$$
\frac{1}{1-\alpha}
$$

and the cut-off frequency is the same as in the grounded-emitter circuit. The output and input. currents are in phase.

Practical Circuit Details

The transistor is essentially a low-voltage device, so the use of a battery power supply rather than a rectified-a.c. supply is quite common. Usually, it is more convenient to employ a single battery as a power source in preference to the two-battery arrangements shown in Fig. 4-8, so most circuits are designed for singlebattery operation. Provision must be included, therefore, for obtaining proper biasing voltage for the emitter-base circuit from the hattery that supplies the power in the collector circuit.

Coupling arrangements for introducing the input signal into the circuit and for taking out the amplified signal are similar to those used with vacuum tubes. However, the actual component values will in general be quite different from those used with tubes. This is because the impedances associated with the input and output circuits of transistors may differ widely from the comparable impedances in tube circuits. Also, d.c. voltage drops in resistances may require more careful attention with transistors because of the

Transistor Circuits

much lower voltage available from the ordinary battery power source. Battery economy becomes an important factor in circuit design, both with respect to voltage required and to overall current drain. A bias voltage divider, for example, easily may use more power than the transistor with which it is associated.
Typieal single-battery grounded-emitter circuits are shown in Fig. $4-9 . R_{1}$, in series with

Fig. 4-9-Practical grounded-emitter circuits using transformer and resistance coupling. A combination of either also can be used-e.g., resistance-coupled input and transformer-coupled output. Tuned transformers may be used for r.f. and i.f. circuits.

With small transistors used for low-level amplification the input impedance will be of the order of 1000 ohms and the input circuit should be designed for an impedance step-down, if necessary. This can be done by appropriate choice of turns ratio for T_{1} or, in the case of funed circuits, by tapping the base down on the tuned secondary circuit. In the resistance-coupled circuit R_{2} should be large compared with the input impedance, values of the order of 10,000 ohms being used.
In low-level circuits R_{1} will be of the order of 1000 ohms. R_{3} should be chosen to bias the transistor to the desired no-signal collector current; its value depends on R_{1} and R_{2} (see text).
the emitter, is for the purpose of "swamping out " the resistance of the emitter-base diode; this swamping helps to stabilize the emitter current. The resistance of R_{t} should be large compared with that of the emitter-base diode, which, as stated earlier, is approximately equal to 25 divided by the emitter current in ma.
Since the current in R_{1} flows in such a direction as to hias the emitter negatively with respert to the base (a PNI' transistor is assumed), a baseemitter bias slightly greater than the drop in h_{1} must be supplied. The proper operating point is achieved through adjustment of voltage divider
$R_{2} R_{3}$, the constants of which are chosen to give the desired value of collector current at the nosignal operating point.

In the transformer-coupled circuit, input signal currents flow through R_{1} and R_{2}, and there would be a loss of signal power at the base-emitter diode if these resistors were not bypassed by C_{1} and ('2. The capacitors should have low reactance compared with the resistances across which they are comnected. In the resistance-coupled circuit R_{2} has the dual function of acting as part of the bias voltage divider and as part of the load resistance for the signal-input source. Also, as seen by the signal source, R_{3} is in parallel with R_{2} and thus hecomes part of the input load resistance. (3) must therefore have low reactance compared with the net resistance of the parallel combination of R_{2}, R_{3} and the base-to-emitter resistance of the transistor. The reactance of C_{4} will depend on the impedance of the load into which the circuit delivers output.

The output load resistance in the transformercoupled case will be the actual load as reflected at the primary of the transformer, and its proper value will be determined by the transistor characteristics and the type of operation (Class A, B, etc.). The value of R_{L} in the resistance-coupled case is usually such as to permit the maximum a.c. voltage swing in the collector circuit without undue distortion, since Class A operation is usual with this type of amplifier.

Bias Stabilization

Transistor currents are rather sensitive to temperature variations, and so the operating point tends to shift as the transistor heats. The shift in operating point unfortunately is in such a direction as to increase the heating, leading to "thermal runaway" and possible destruction of the transistor. The heat developed depends on the amount of power dissipated in the transistor, so it is obviously advantageous in this respect to operate with as little internal dissipation as possible: i.e., the d.e. input should be kept to the lowest value that will permit the type of operation desired, and in any cuent should never exceed the rated value for the particular transistor used.

A contributing factor to the shift in operating point is the collector-to-base leakage current (usually designated I_{co}) - that is, the current that fows from collector to base with the emitter connection open. This current, which is highly temperature sensitive, has the effect of increasing the emitter current by an amount much larger than $I_{\text {co }}$ itself, thus shifting the operating point in such a way as to increase the collector current. This effect is reduced to the extent that $I_{\text {co }}$ can be made to flow out of the base terminal rather than through the base-emitter diode. In the circuits of Fig. $4-9$, bias stabilization is improved by making the resistance of R_{1} as harge as possible and both R_{2} and R_{3} as small as possible, consistent with other considerations such as gain and battery economy.

4-SEMICONDUCTOR DEVICES

TRANSISTOR OSCILLATORS

Since more power is available from the output circuit than is necessary for its generation in the input circuit, it is possible to use some of the output power to supply the input circuit and thus sustatn self-oscillation. Representative oscillator eireuits are shown in lig, $\mathbf{t - 1 0}$. Their resemblance to the similarly-named vacuan-tube cirenits is evident.

The upper frequency limit for oscillation is principally a function of the cut-off frequency of the transistor used, and oscillation will cease at the frequency at which there is insufficient amphification to supply the energy required to overcome circuit losses. Transistor oscillators usually will operate up to, and sometimes well beyond, the α cut-off frequency of the particular transistor used.

The approximate oscillation frequeney is that

Fig. 4-10-Typical transistor oscillator circuits. Component values are discussed in the text.

Fig. 4-11-Transistor mixer circuit with emitter injection. C_{1} and C_{2} are r.f. blocking and bypass capacitors and may be $0.01 \mu \mathrm{f}$. for operation at high frequencies. L_{1} will be a coil of a few furns coupled to the local oscillator tank coil in the ordinary case; injection voltage may be adjusted by varying the coupling between L_{1} and the tank coil, and if necessary by varying the number of furns in L_{1}.
of the tuned circuit, $L_{1} C_{1}, R_{1}, R_{2}$ and R_{3} have the same functions as in the amplifier circuits given in Fig. 4-9. Capacitors C_{2} and (3 are bypass or blocking capacitors and should have low reactance compared with the resistances with which they are associated.

Feedback in these circuits is adjusted in the same way as with tube oscillators. In the Ilartley circuit it is dependent on the position of the tap on the tank eoil; in the tickler circuit, on the number of turns in L_{2} and degree of coupling between L_{1} and L_{2} : and in the Colpitts circuit, on the ratio of the tank caparitance between base and emitter to the tank capacitance between collector and emitter.

TRANSISTOR MIXERS

Transistors can be used as mixers or frequency converters in superheterodyne-type receivers, hy suitable choice of operating ronditions. The voltage from a loral oscillator can be injected in either the base, emitter, or collector circuit to be mixed there with the incoming r.f. signal to produce a difference frequency (i.f.). A representative circuit using emitter injection is shown in Fig. 4-11.

The conversion gain of a transistor mixer depends fairly critically on the operating hias (emitter current) and the value of injection voltage. A no-signal value of emitter current of 250 mieroamperes is typical. The injection voltage from the local oscillator should be adjusted to give maximum gain for the particular tramsistor and operating frequency used. The optimum voltage depends on the frequensy, and a compromise may be necessary in a receiver working over a wide band of frequencies on a single tuning range.
R_{1}, R_{2} and R_{3} have the same purpose as the eorresponding resistors in Fig. 4-9. With R_{1} and R_{2} chosen, select R_{3} to give the no-signal emitter eurrent that results in satisfactory gain under full operating conditions. The conversion gain should be of the order of 20 db ., under optimum eonditions, in the frequency range for which the partieular transistor is suitable.

High-Frequency Receivers

A good receiver in the amateur station makes the difference between mediocre contacts and solid (LSOs, and its importance camot be overemphasized. In the uncrowded v.h.f. hands, sensitivity (the ability to bring in weak signals) is the most important factor in a receiver. In the more crowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated by only a small frequency difference). To receive weak signals, the receiver must furnish enough amplification to amplify the minute signal power delivered by the antenna up to a useful amount of power that will operate a loudspeaker or set of headphones. Before the amplified signal can operate the speaker or phones, it must be converted to audio-frequency power by the process of detection. The sequence of amplification is not too important - some of the amplification can take place (and usually does) before detertion, and some can be used after detection.

There are major differences between receivers for phone reception and for code reception, An abom, phone signal has side bands that make the signal take up about 6 or 8 ke . in the band, and the audio quality of the received signal is impaired if the bandwidth is less than half of this. A code signal oceupies only a few hundred cyeles at the most, and consequently the bandwidth of a code receiver can be small. A single-side-band phone signal takes up 3 to 4 ke , and the audio quality can be impaired if the bandwidth is much less than 3 kc . although the intelligibility will hold up down to around 2 kc . In any case, if the bandwidth of the receiver is more than nec-
essary, signals adjacent to the desired one can be heard, and the selectivity of the receiver is less than maximum. The detection process delivers directly the audio frequencies present as modulation on an a.m. phone signal. There is no modulation on a code signal, and it is necessary to introduce a second radio frequency, differing from the signal frequency by a suitable audio frequency, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat note, is generally made on the order of 500 to 1000 cycles, since these tones are within the range of optimum response of both the ear and the headset. There is no carrier frequency present in an s.s.b. signal, and this frequency must be furnished at the receiver before the audio can be rocovered. The same souree that is used in code reception can be utilized for the purpose. If the source of the locally-generated radio frequency is a separate oscillator, the system is known as heterodyne reception; if the detector is made to oscillate and produce the frequency, it is known as an autodyne detector. Modern sujerheterodyne receivers generally use a separate oscillator (beat oscillator) to supply the locally-generated frequency. Summing up the differences, phone receivers can't use as much selectivity as code receivers, and eode and s.s.b. receivers require some kind of locally-generated frequency to give a readable signal. Broadcast receivers can receive only a.m. phone signals because no beat oscillator is included. Communications receivers include beat oscillators and often some means for varying the selectivity. With high selectivity they often hatve a slow tuning rate.

Receiver Characteristics

Sensitivity

In commercial eireles "sensitivity" is defined as the strength of the signal (in microvolts) at the input of the receiver that is required to produre a specified audio power output at the speaker or headphones. This is a satisfactory definition for broadcast and commmiontions receivers operating below ahout 20 Mr., where atmospheric: and man-made electrical noises normally mask any noise generated by the receiver itself.

Another commercial measure of sensitivity defines it as the signal at the input of the receiver roquired to give a signal-plus-noise output some stated ratio (generally 10 db .) above the noise output of the receiver. This is a more useful sensitivity measure for the amateur, since it indieates how well a weak sighal will be heard and
is not merely a measure of the over-all amplification of the receiver. However, it is not an absolute mothod, because the bandwidth of the recoiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltages. Thermal-agitation noise is independent of Trequeney and is proportional to the (absolute) temperature, the resistance component of the impedance across which the thermal agitation is produced, and the bandwidth. Noise is generated in vacuum tubes by random irregularities in the current flow within them; it is convenient to express this shot-effect noise as an equivalent resistance in the grid cireuit of a noise-free tube. This equivalent noise resistance is the resistance

5-HIGH-FREQUENCY RECEIVERS

(at room temperature) that placed in the grid circuit of a noise-free tube will produce platecircuit noisa equal to that of the actual tube. The equivalent noise resistance of a vacuum tube increases with frequency.

An ideal receiver would generate no noise in its tubes and circuits, and the minimum detectable signal would be limited only by the thermal noise in the antema. In a practical receiver, the limit is determined by how well the amplified antenna noise overrides the other noise in the plate circuit of the input stage. (It is assumed that the first stange in any good receiver will be the determining farctor; the noise contributions of subsequent stages should be insignificant by (comparison.) At frecuencies below 20 or 30 Mc . the site noise (atmospheric and man-made noise) is generally the limiting factor.

The degree to which a praetical receiver approaches the quiet ideal recoiver is given by the noise figure of the receiver. Noise figure is defined as the ratio of the signal-to-noise power ratio of the ideal receiver to the adtual signal-to-noise power ratio of the output. Since the noise figure is a ratio, it is usuably given in deribels; it rums around 5 to 10 db . for a good communications receiver below 30 Ne. Although noise figures of 2 to 4 db . can be obtained, they are of little or no use below 30 Me , exept in extremely guiet locat tions or when a very small antenna is used. The noise figure of a receiver is not modified by rhanges in bandwidth.

Selectivity

Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type is shown in Fig, ij-1. The bandwidth is the width of the resomance curve (in curles or kiloryeles) of a receiver at a specified ratio; in Fig. 5-1, the bandwidths are indicated for ratios of response of 2 and 10 (" 6 db. down" and " 20 db . down").

Fig. 5-1-Typical selectivity curve of a modern superheterodyne receiver. Relative response is plotted against deviations above and below the resonance frequency. The scale of the left is in terms of voltage ratios, the corresponding decibel steps are shown at the right.

The bandwidthat 6 db, down must be sufficient to pass the signal and its sidebands if faithful reproduction of the signal is desired. However, in the crowded amateur hands, it is generally advisable to sacrifice fidelity for intelligibility. The ability to roject adjacent-chamel signals depends upon the skirt selectivity of the receiver, which is determined by the bandwidth at high attenuation. In a receiver with good skirt selectivity, the ratio of the $6-\mathrm{db}$. bandwidth to the $60-\mathrm{db}$. bandwidth will be about 0.25 for code and 0.5 for phone. The minimum usable bandwidth at 6 db . down is about 150 cycles for code reception and about 2000 cyeles for phone.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varying conditions of gain-control setting, tomperature, supplyvoltage changes and mechanical shock and distortion. The term "unstable" is also applied to a receiver that breaks into oscillation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition.

Detection and Detectors

Detection is the process of recovering the modulation from a signal (sce "Modulation, Heterodyning and Beats"). Dhy device that is "nonlinear" (i.e., whose output is not exactly proportional to its input) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to
reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is connected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overtoading or distortion.

Detection and Detectors

Diode Detectors

The simplest detector for a.m. is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. 5-2. The simplified half-wave circuit at 5 -2A includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, D, with its load resistance, R_{1}, and bypass capacitor, C_{2}. The flow of rectified r.f. current causes a d.c. voltage to develop across the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation causes corresponding variations in the value of the d.c. voltage across R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or

Fig. 5-2-Simplified and practical diode detector circuits. A, the elementary half-wave diode detector; B, a practical circuit, with r.f. filtering and audio output coupling; C, fullwave diode detector, with output coupling indicated. The circuit, $L_{2} C_{1}$, is tuned to the signal frequency; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu f$. and 250,000 ohms, respectively; in B, C_{2} and C_{3} are $100 \mu \mu \mathrm{f}$. each; $R_{1}, 50,000$ ohms; and $R_{2}, 250,000$ ohms. C_{4} is 0.1μ f. and R_{3} may be 0.5 to 1 megohm.
higher, so that a fairly large voltage will develop from a small rectified-current flow.

The progress of the signal through the detector or rectifier is shown in Fig. 5-3. A typical modulated signal as it exists in the tuned

Fig. 5-3-Diagrams showing the detection process.
circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle when the plate is positive with respect to the cathode, so that the output of the rectifier consists of half-cycles of r.f. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that C_{2} charges to the prak value of the rectified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. C_{2} thus acts as a filter for the radio-frequency component of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a coupling capacitor (C_{4} in Fig. $5-213$), only the variations in voltage are transferred, so that the final output signal is a.c., as shown in !).

In the circuit at $5-2 \mathrm{~B}, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeeding amplifier tube. The audiofrequency variations can be transferred to another circuit through a coupling capacitor, C_{4}, to a load resistor, R_{3}, which usually is a "potentiometer" so that the audio volume can be adjusted to a desired level.

Coupling to the potentioncter (volume control) through a capacitor also avoids any flow of d.c. through the control. The flow of d.c. through a high-resistance volume control often tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at $5-2 \mathrm{C}$ differs

5 - HIGH-FREQUENCY RECEIVERS

in operation from the half-wave circuit only in that both halves of the r.f. cycle are utilized. The full-wave circuit has the advantage that r.f. filtering is easier than in the half-wave circuit. As a result, less attenuation of the higher audio frequencios will be obtaned for any given degree of r.f. filtering.

The reatance of C_{2} must be small compared to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large compared to R_{1}. If the capacity of C_{2} is too large, response at the higher audio freguencies will be lowered.

Compared with other detectors, the sensitivity of the diode is low, normally running around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good, and the signal-handling eapability is high.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube. sufficient negative bias is ap-

Fig. 5-4-Circuits for plate detection. A, triode; B, pentode. The input circuit, $\mathrm{L}_{2} \mathrm{C}_{1}$, is tuned to the signal frequency. Typical values for the other components are:
Com.

| ponent | Circuit A |
| :--- | :--- |l

Plate voltoges from 100 to 250 volts may be used. Effective screen voltage in B should be about 30 volts.
plied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid rircuit canses an increase in average plate current. The average plate current follows the changes in signal in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in lig. $\overline{0}-\mathrm{t}$. ('3 is the plate bepass capacitor and, with $K F^{\prime} C$, prevents r.f. from appearing in the output. The cathode resistor, R_{1}, provides the operating grid bias, and (${ }_{2}$ is a bupass for both radio and audio frequencies. R_{2} is the plate load resistance and (${ }_{4}$ is the output coupling capawitor. In the pentode cirenit at $13, R_{3}$ and R_{4} form a voltage divider to supply the proper screen potential (about 30 volts), and C_{5} is a bypass raparitor. ('2 aud ('s must have low reactance for both radio and audio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, berause the plate impedance of any tube is very high when the bias is near the platecurrent cut-off point. Injpedance coupling may be used in place of the resistance coupling shown in Fig. $\overline{0}-4$. Usually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tubre. It will hande large signals, but is not so tolerant in this respert as the diode. I linearity, with the self-hiased circuits shown, is good. ITp to the overload point the detertor takes no power from the tuned circuit, and so does not affect its Q and selectivity.

Infinite-Impedance Detector

The circuit of Fig. 5-5 combines the high signal-handling capabilities of the diode detector with low distortion and, like the plate detector, does not load the tuned circuit it connerts to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is comenerted between cathode and ground and thas is common to both grid and plate rircuits, giving negative feedback for the tudio frequencies. The cathode resistor is bypassed for r.f. but not for audio, while the plate eircuit is bypassed to

Fig. 5-5 - The infinite-impedance detector. The input circuit, $L_{2} \mathrm{C}_{1}$, is funed to the signal frequency. Typical values for the other components are:

$\mathrm{C}_{2}-250 \mu \mu \mathrm{f}$.	$\mathrm{R}_{1}-0.15$ me gohm.
$\mathrm{C}_{3}-0.5 \mu \mathrm{f}$.	$\mathrm{R}_{2}-25,000$ ohms.
$\mathrm{C}_{4}-0.1 \mu \mathrm{f}$.	$\mathrm{R}_{3}-0.25$-me gohm volume control.

A tube having a medium amplification factor (about 20) should be used. Plate voltage should be 250 volts.

Detectors

ground for both audio and radio frequencies. l_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the "13" supply. An r.f. filter, consisting of a seriese r.f. choke and a shunt caparitor, ran be connected between the cathode and C_{4} to eliminate any r.f. that might otherwise appear in the output.

The plate current is very low at no sigmal, increasing with signall as in the case of the plate detector. The voltage drop across R_{1} consequently increases with signal. Berause of this and the large initial drop across R_{1}, the grid usually cannot be driven positive by the signal, and no grid eurrent can be drawn.

Product Detector

The product detector eireuits of Fig. 5-6 are useful in s.s.b. and code reception because they minimize intermodulation at the detector. In Fig. 5-6A, two triodes are used as cathode followers, for the sigual and for the b.f.o., working into a common cathole resistor (1000 ohms). The third triode also shares this cathode resistor and conserpuently the same signals, but it has an andio load in its plate cirenit and it operates at a higher grid bias (by virtue of the 2700 -ohm resistor in its cathode cirenit). The signals and the l.f.o. mix in this third triode. If the b.f.o. is turned off, a modulated signal running through the signal cathode follower should yield little or no) :andio output from the detector, up to the overloud point of the sigual cathode follower. Turning on the b.f.o. brings in modulation, because now the detector output is the product of the two signals. The plates of the cathode followers are grounded and filtered for the i.f. and the tio($)$-- μ f. caparitor from plate to ground in the output triode furnishes a bypass at the i.i. The bifio. voltage should be about 2 r.m.s., and the signal input should not exered about 0.3 volts r.m.s.

The circuit in Fig. $\overline{5}$-6i3 is a simplification requiring one less triode. Its principle of operation
is substantially the same except that the additional bias for the output tule is derived from rectified b.f.o. voltage across the $100,000-\mathrm{ohm}$ resistor. More elaborate r.f. filtering is shown in the plate of the output tule (2 -mh. choke and the $220-\mu \mu \mathrm{f}$. capacitors), and the degree of plate filtering in either circuit will depend upon the frequencies involved. At low intermediate frequencies, more elaborate filtering is required.

REGENERATIVE DETECTORS

By providing controllable r.f. feediark (regeneration) in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effective Q of the circuit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig. $\overline{2}-\mathbf{i}$, the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The d.e. voltage from rectified-current flow through the grid leak, R_{1}, hiases the grid negatively, and the audiofrequency variations in voltage across R_{1} are amplified through the tube as in a normal a.f. amplifier. In the plate circuit, T_{1} and L_{4} are the plate load resistances and $R F^{\prime} C^{\prime}$ an r.f. choke to eliminate r.f. in the output circuit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further increased by using a screen-grid tule instead of a triode, as at i-7 B and C . The operation is equivalent to that of the triode circuit. The sereen bypass capacitor, C_{5}, should have low reactance for both radio and audio frequencies. R_{2} and R_{3} constitute a voltage divider on the plate supply to furnish the proper sereen voltage. In both circuits, C_{2} must have low r.f. reactance and high a.f. reactance compared to the resistance of R_{1}.

5-HIGH-FREQUENCY RECEIVERS

Although the regenerative grid-leak detector is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handling capability is limited. The signal-handling capability can be improved by reducing R_{1} to 0,1 megohm, but the sensitivity will be decreased. The degree of antenna coupling is often critical.

The circuits in Fig. 5-7 are regenerative, the feodback being obtained by feeding some signal to the grid back from the plate circuit. The amount of regeneration must be controllable, because maximum regenerative amplification is secured at the critical point where the eircuit is just about to oscillate. The critical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned. In the oseillating condition, a regenerative detector can be detuned slightly from an incoming c.w. signal to give autodyne reception.
The circuit of Fig. 5-7A uses a variable bypass caparitor, C_{3}, in the plate cireuit to control regencration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until there is sufficient feedback to canse oseillation. If L_{2} and L_{23} are wound end-to-end in the same direction, the plate connection is to the outside of the plate or "tickler" coil, L_{3}, when the grid connection is to the outside of L_{2}.

The circuit of $5-7 \mathrm{~B}$ is for a pentode tube, regeneration being controlled by adjustment of the sereen-grid voltage. The tickler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contact and ground is hypassed by a large eapacitor, C's (0.5 $\mu \mathrm{f}$. or more), to filter out scratching noise when the arm is rotated. The feodback is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a screen potential of approximately 30 volts.

Circuit (C is identical with B in principle of operation. Since the screen and plate are in parallel for r.f. in this circuit, only a small amount of "tickler" - that is, relatively few turns between the cathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of ascillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regencration regardless of frequency and the loading on the cireuit. In practice, the effects of loading, particularly the loading that occurs when the detector cireuit is coupled to an antenna, are difficult to overome. Likewise, the regencration is usually affected by the frequency to which the grid circuit is tuned.

In all circuits it is best to wind the tickler at the ground or eathode end of the grid coil, and to use as few turns on the tickler as will allow the detector to oscillate easily over the whole
tuning range at the plate (and screen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oseillation suddenly as the regeneration control is advanced, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong value of grid leak plus too-high plate and screen voltage are also frequent causes of lack of smoothness in going into oscillation.

Fig. 5-7-Triode and pentode regenerative detector circuits. The input circuit, $L_{2} \mathrm{C}_{1}$, is tuned to the signal frequency. The grid capacitor, C_{2}, should have a value of about $100 \mu \mu \mathrm{f}$. in all circuits; the grid leak, R_{1}, may range in value from 1 to 5 megohms. The tickler coil, L_{3}, ordinarily will have from 10 to 25 per cent of the number of turns on L_{2} in C, the cathode tap is about 10 per cent of the number of turns on L_{2} above ground. Regeneration-control capacitor C_{3} in A should have a maximum capacity of 100 $\mu \mu \mathrm{f}$. or more; bypass capacitors C_{3} in B and C are likewise $100 \mu \mu \mathrm{f}$. C_{5} is ordinarily $1 \mu \mathrm{f}$. or more; R_{2}, a 50,000 . ohm potentiometer; $R_{3}, 50,000$ to 100,000 ohms. L_{4} in B and C is a 500 -henry inductance, C_{4} is $0.1 \mu \mathrm{f}$. in both circuits. T_{1} in A is a conventional audio transformer for coupling from the plate of a tube to a following grid. RFC is 2.5 mh . In A , the plate voltage should be about 50 volts for best sensitivity. Pentode circuits require about 30 volts on the screen; plate potential may be 100 to 250 volts.

Regenerative Detectors

Antenna Coupling

If the detector is coupled to an antenna, slight ehanges in the antenna (as when the wire swings in a breeze) affect the frequency of the oscillations generated, and thereby the beat frequency when code signals are being received. The tighter the antenna coupling is made, the greater will be the feedback required or the ligher will be the voltage necessary to make the detector oscillate. The antenna coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correct voltages on the tube. If capacity coupling to the grid end of the coil is used, generally only a very small amount of capacity will be needed to couple to the antenna. Increasing the capacity increases the coupling.

At frequencies where the antenna system is resonant the absorption of energy from the oseillating deteetor circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may not be possible to make the detcetor oscillate with normal voltages. The remedy for these "dead spots" is to loosen the antenna coupling to a point that permits normal oseillation and smooth regeneration control.

Body Capacity

A regenerative detector occasionally shows a tendency to change frequency slightly as the hand is moved near the dial. This condition (body capacity) can be eorrected by better shielding, and sometimes by r.f. filtering of the phone leads. A good, short ground connection and loosening the coupling to the antenna will help.

Hum

Ilum at the power-supply frequency, even when using battery plate supply, may result from the use of a.c. on the tube heater. Effects of this type normally are troublesome only when the circuit of Fig. $5-7 \mathrm{C}$ is used, and then only at It Mc. and higher. Connecting one side of the heater supply to ground, or grounding the centertap of the heater-transformer winding, will reduce the hum. The heater wiring should le kept as far as possible from the r.f. circuits.

Ilouse wiring, if of the "open" type, may cause hum if the detector tube, grid lead, and grid condenser and leak are not shielded. This type of hum is easily recognizable because of its rather high pitch.

Tuning

For c.w. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indieates that the detector is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regeneration control for best reception of code signals is where the detector just starts to oscillate. Then
code signals can be tuned in and will give a tone with earh signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally disappearing at a very high pitch. This behavior is shown in Fig. 5-9. A low-pitched beat-note cannot be obtained from a strong signal because

Fig. 5-8-As the tuning dial of a receiver is turned past a code signal, the beat-note vories from a high tone down through "zero beot" (no audible frequency difference) ond back up to o high tone, as shown of A, B ond C. The curve is o graphical representotion of the oction. The beot exists post 8000 or 10,000 cycles but usuolly is not heord becouse of the limitotions of the audio system.
the detector "pulls in" or "blocks"; that is, the signal forces the detector to oscillate at the signal frequency, even though the circuit may not be tuned exactly to the signal. This phenonienon, is also called "locking in"; the more stathle of the two frequencies assumes control over the other. It usually can be corrected by advancing the regeneration control until the beat-note is heard again, or by reducing the input signal.

The point just after the detector starts oscillating is the most sensitive condition for code reception. Further advancing the regeneration control makes the receiver less susceptible to blocking by strong signals, but also tess sensitive to weak signals.

If the detector is in the oscillating condition and a phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to phone if the receiver can be tumed to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Single-sideband.phone signals can be received with a regenerative detector by advancing the regeneration control to the point used for code reception and tuning carefully across the s.s.b. signal. The tuning will be very critical, however, and the operator must be prepared to just "creep"" across the signal. A strong signal will pull the detector and make reception impossihle, so either the regeneration must be advanced far enough to prevent this condition, or the signal must be reduced by using loose antenna coupling.

5-HIGH-FREQUENCY RECEIVERS
 Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a special problem in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spaced intervals. The same coil and tuning capacitor cannot be used for, say, it Me. to 3.5 Mc., because of the impracticable maxi-mum-to-minimum capacity ratio required, and also because the tuning would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of convenience the same tuning caparitor usually is retained, but new coils are inserted in the circuit for each band.

One method of changing inductances is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnerts the others. The unused coits are sometimes short-circuited by the switch, to avoid the possibility of undesirable self resonances in the unused coils. This is not necessary if the coils are separated from each other by several coil diameters, or are mounted at right angles to each other.
. Inother method is to use coils wound on forms with contacts (usually pins) that can be plugged in and removed from a socket. These plug-in coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when considerable experimental work is involved, because they are easier to work on than coils clustered around a switch.

Bandspreading

The tuning range of a given coil and variable capacitor will depend upon the inductance of the coil and the change in tuning capacity. For case of tuning, it is desirable to adjust the tuming range so that practically the whole dial srale is occupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give the correct maximumminimum caparity ratio on each band. Several of these methods are shown in Fig. 5-9.
(A)

(B)

Fig. 5.9-Essentials of the three basic bandspread tuning systems.
(c)

In A, a small bandspread capacitor, C_{2} (15to $25-\mu \mu$. maximum capacity), is used in par-
allel with a capacitor, (\mathbf{C}_{2}, which is usatlly large enough (100 to $140 \mu \mu \mathrm{f}$.) to cover a 2 -to-1 frequency range. The setting of $\left(r_{2}\right.$ will determine the minimum capacity of the circuit, and the maximum capacity for bandspread tuning will be the maximum capacity of C_{1} plus the setting of C_{2}. The inductance of the coil can be adjusted so that the maximumminimum ratio will give adequate bandspread. It is almost impossible, hecause of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of capacitors. C_{2} is variously called the band-setting or main-tuning capacitor. It must be reset each time the band is changed.

The method shown at 13 makes use of capacitors in series. The tuning capacitor, C C_{1}, may have a maximum capacity of $100 \mu \mu$ f. or more. The minimum capacity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of C_{2}, which is of the order of 25 to $50 \mu \mu$. This method is capable of close adjustment to practically any desired degree of bandspread. Wither C_{2} and C_{3} must be adjusted for each band or separate preadjusted capacitors must be switehed in.

The circuit at C also gives complete spread on each band. C_{1}, the bandspread capacitor, may have any convenient value; $50 \mu \mu$ f. is satisfactory: C_{2} may be used for continuous frequeney coverage ("general coverage") and as a bandsetting capacitor. The effective maximum-minimum capacitance ratio depends upon (${ }_{2}$ and the point at which C_{1} is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if C_{2} is set at higher capacitance. C_{2} may be conneeted permanently across the individual inductor and preset, if desired. This requires a separate capacitor for each band, but eliminates the necessity for resetting C_{2} each time.

Ganged Tuning

The tuning capacitors of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and mechanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

True tracking can be obtained only when the indurtance, tuning (aupacitors, and circuit inductances and minimum and maxinum capacities are identical in all "ganged" stakes. A small trimmer or padding capatcitor may be connected across the coil, so that variations in minimum capacity can be compensated. The fundamental circuit is shown in Fig. o-10, where C_{1} is the trimmer and C_{2} the tuning capacitor. The use of the trimmer necessarily increases the

Superheterodynes

minimum circuit capacity, but it is a necessity for satisfactory tracking. Midget capacitors having maximum capacities of 15 to $30 \mu \mu$. are commonly used.

Fig. 5-10-Showing the use of a trimmer capacitor to set the minimum circuit capacity in order to obtain true trocking for gong-tuning.

The same methods are applied to bandspread circuits that must be tracked. The rircuits are identical with those of Fig. 5-9. If both general-coverage and handspread tuning are to be available, an additional trimmer capacitor must be connected across the coil in each circuit shown. If only amateur-band tuning is desired, however, then ('3 in Fig. 5-913, and C_{2} in Fig, $5-9 \mathrm{C}$, serve as trimmers.

The coil inductance can be adjusted by starting with a larger number of turns than
necessary and remroving a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil.

Another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass core acts like a single shorted turn, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effect, and increases the inductance as it is moved into the coil. The $($) of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will raise the ($)$ of a coil, provided the iron is suitable for the frequency in use. Good pow-dered-iron cores can be obtained for use up to about 50 Mc .

The Superheterodyne

For many years (until about 1932) practically the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i.f."), then amplified, and finally detected. The frequency is changed by modulating the output of a tumable oseillator (the high-frequency, or local, oscillator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective circuits. The audiofrequency signal is obtained at the second detector. Code signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of 45 kc . is chosen and that the incoming signal is at 7000 kc . Then the high-frequency oscillator frequency may be set to 7455 kc , in order that one side frequency (7450 minus 7000) will be 45 kc . The high-frequency oscillator could also be set to 654 k , and give the same difference frequency. To produce an audible code signal at the second detector of, say, 1000 cycles, the autodyning or heterodyning oscillator would be set to either 454 or 456 kc .

The frequency-conversion process permits
r.f. amplification at a relatively low frequency, the i.f. Iligh selectivity and gain can be obtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for good stability and, since they are working at frequencies considerably removed from the signal frequencies (percentage-wise), they are not normally "pulled" by the incoming signal.

Images

Each h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 74.55 kc , to tune to a $7000-\mathrm{ke}$. signat, for example, the receiver can respond also to a signal on 7910 ke ., which likewise gives a 455-kc. beat. The undesired signal is called the image. It can cause unnecessary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those used before the signal is heterodyned to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage nutput from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.
'The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input circuits. Most receiver designs represent a compromise between economy (few r.f. stages) and image rejection (large number of r.f. stages).

5-HIGH-FREQUENCY RECEIVERS

Other Spurious Responses

In addition to images, other signals to whieh the receiver is not ostensibly tuned may be heard. llarmonies of the high-frequency oscillator maty beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses ean be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antenna. When a strong signal is received, the harmonies generated by rectification in the second detector mas, by stray eoupling, be introduced into the r.f. or mixer circuit and eonverted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shielding.

Hammonies of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shielding the beat oscillator and operating it at a low power level.

The Double Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate innage ratio when the intermediate frequency is of the order of 45.5 ke . To reduce inage response the signal frequently is converted first to a rather high (1500 , 0000 , or even $10,000 \mathrm{ke}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity sin be obtained. such a receiver is called a double superheterodyne.

PREQUENCY CONVERTERS

A circuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, to offer a high impedance loud for the i.f. voltage that is developed. The signal- and oscillator-frequency voltages appearing in the plate circuit are rejected by the selectivity of this rircuit. The i.f. tuned rircuit should have low impedance for these frequencies, a condition easily met if they do not approach the intermediate frequeney.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate (irruit to r.f. signal voltage applied to the grid. lligh ronversion eflicieney is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tube in the receiver.

A change in oscilkator frequency caused by tuming of the mixer grid circuit is called pulling. Pulling should be minimized, because the stability of the whole receiver depends eritically upon the stability of the h.f. oseillator. I'ulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high in-
termediate frequencies. Another type of pulling is caused by regulation in the power supply. Strong signals cause the voltage to change, which in turn shifts the oscillator frequency.

Circuits

If the first detector and high-frequency oseillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or efficiency), the first detector is called a "converter." In either case the function is the same.

Typical mixer circuits are shown in Fig. 5-11. The variations are ehiefly in the way in which the oscillator voltage is introduced. In $5-1111$, a pentode funetions as a plate detector; the oscillator voltage is capacity-coupled to the grid of the tube through C_{2}. Inductive eoupling may be used instead. The conversion gain and

Fig. 5-11-Typical circuits for separately-excited mixers. Grid injection of a pentode mixer is shown at A, cathode injection at B, and separate excitation of a pentagrid converter is given in C. Typical values for C will be found in Table 5-1-the values below are for the pentode mixer of A and B.

$$
\begin{array}{ll}
\mathrm{C}_{1}-10 \text { to } 50 \mu \mu \mathrm{f.} & \mathrm{R}_{2}-1.0 \text { megohm. } \\
\mathrm{C}_{2}-5 \text { to } 10 \mu \mu \mathrm{f} . & R_{3}-0.47 \text { megohm. } \\
\mathrm{C}_{3}, C_{4}, C_{5}-0.001 \mu \mathrm{f} . & R_{4}-1500 \text { ohms. }
\end{array}
$$

R_{1} - 6800 ohmis.

Positive supply voltage can be 250 volts with a $6 A C 7$ or 6AH6, 150 with a GAK5.

Frequency Converters

input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequency is only 5 or 10 times the i.f., it may be difficult to develop enough oscillator voltage at the grid (because of the selectivity of the tuned input circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high-transconductance tubes like the 6AC7, 6AK5 or 6U8 (pentode section). Triode tubes can be used as mixers in grid-injection circuits, but they are commonly used only at 50 Me . and higher, where mixer noise may become a significant factor. The triode mixer bas the lowest inherent noise, the pentode is next, and the multigrid converter tubes are the noisiest.
The cireuit in Fig. 5-11B shows eathode injection at the mixer. Operation is similar to the grid-injection case, and the same considerations apply.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid mixer tube provides much better isolation. A typical circuit is shown in Fig. 5-11C, and tubes like the 6SA7, 6BA7 or 6I3E6 are commonly used. The oscillator voltage is introduced through an "injection" grid. Measurement of the rectified current flowing in R_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit can have hittle effect on the oscillator frequency because the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is much noisier than a triode or pentode mixer, but its isolating characteristics make it a very useful device.

Many receivers use pentagrid converters, and two typical circuits are shown in Fig. 2-12. The circuit shown in Fig. 5-12A, which is suitable for the 6K8, is for a "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is comected internally to an injection grid in the hexode. The isolation between oscillator and converter tube is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter eircuit shown in Fig.

Fig. 5-12-Typical circuits for triode-hexode (A) and pentagrid (B) converters. Values for R_{1}, R_{2} and R_{3} can be found in Table $5-1$; others are given below.

$C_{1}-47 \mu \mu \mathrm{f}$.	$\mathrm{C}_{3}-0.01 \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{f}$.	$\mathrm{R}_{4}-1000$ ohms.

$5-1213$ can be used with a tube like the 6SA7, $6 \mathrm{SB} 7 \mathrm{Y}, 613.17$ or 613E6. Generally the only care necessury is to adjust the feedback of the oscillator circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver generally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Practically the same number of circuit components is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.

Typical circuit constants for converter tubes are given in Table 5-I. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of Figs. 5-11C and 5-12.

The effectiveness of converter tubes of the type just described becomes less as the signal frequency is increased. Some oscillator voltage will

TABLE 5-1								
Circuit and Operating Values for Converter Tubes Plate voltage $=250 \quad$ Screen voltage $=100$, or through specified resistor from 250 volts								
Seif-excited Separate Excitation								
T'ube	Cathode Resistor	Screen Resistor	Grid Leak	Grid Current	Cathode Resistor	Sicreen Resistor	Grid Leak	Grid Current
6BA7 ${ }^{1}$.	0	12.000	22.000	0.3 .5 ma .	68	1.5,000	22.000	0.35 ma .
${ }_{6} 13 \mathrm{E} 6^{1}$	${ }^{0}$	$2 \cdot$,00	22.000	0.5	150	$\bigcirc 2,000$	22,000	
${ }_{6} 6 \mathrm{~K}^{2}{ }^{2}$	- 240	-T, 2000	17,000	0.15-0.2				
$6547{ }^{2}$	0	18,000	22.000	0.5	1.50	18,000	22,000	
$6 \mathrm{SB} 7 \mathrm{Y}^{2}$.	0	15,000	22,000	0.35	68	15,000	22,000	0.35
${ }^{1}$ Miniature	Octal base	, metal.						

5-HIGH-FREQUENCY RECEIVERS

be coupled to the signal grid through "spacecharge" coupling, an effect that increases with frequency. If there is relatively little frequency difference between oscillator and signal, as for cxample a 14 - or $28-\mathrm{Mc}$. signal and an i.f. of 455 kc ., this voltage can become considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.c. system, considerable bias can be developed which will cut down the gain. For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than 5 or 10 percent of the signal frequency, for best results.

Transistors in Mixers

Typical transistor circuitry for a mixer operating at frequencies below 20 Mc . is shown in Fig. 5-13. The local oscillator current is injected in the emitter circuit by inductive coupling to $L_{1} ; L_{1}$ should have low reactance at the oscillator frequency. The input from the r.f. amplifier should be at low impedance, obtained by inductive coupling or tapping down on the tuned circuit. The output transformer ' T_{1} has the collector connection tapped down on the inductance to maintain a high Q in the tuned circuit.

Fig. 5-1 3-Typical transistor mixer circuit.
L_{1}-Low-impedance inductive coupling to oscillator.
T_{1}-Transistor i.f. transformer. Primary impedance of 100,000 ohms, secondary impedance of 1700 ohms, unloaded $Q=100$, loaded $Q=35$.

Audio Converters

Converter circuits of the type shown in Fig. 5-12 can be used to advantage in the reception of code and single-sideband suppressed-carrier signals, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 kc . and usually below 100 kc . An ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the incoming carrier.

Since the beat oscillator modulates the electron
stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

The "product detector" of Fig. 5-6 is also a converter circuit, and the statements above for audio converters apply to the product detector.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular care should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanical shock and changes in voltage and loading. Thermal effects (slow change in frequency because of tube or circuit heating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning capacitor too close to a tube. Propping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.
Sensitivity to vibration and shock can be minimized by using good mechanical support for coils and tuning capacitors, a heavy chassis, and by not hanging any of the oscillator-circuit components on long leads. Tie-points should be used to avoid long leads. stiff short leads are excellent because they can't be made to vibrate.
smooth tuning is a great convenience to the operator, and can be oltained by taking pains with the mounting of the dial and tuning capacitors. They should have good alignment and no back-lash. If the capacitors are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The capacitors should be selected with good wiping contacts to the rotor, since with age the rotor contacts can be a source of erratic tuning. AH joints in the oscillator tuning circuit should be carefully soldered, because a loose connection or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its harmonic output should be as low as possible to reduce the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, pref-

I.F. Amplifiers

Fig. 5-14-High-frequency oscillator circuits. A, pentade grounded-plate oscillator; B, triode grounded-plate oscillator; C, triode oscillator with tickler circuit. Coupling to the mixer may be taken from points X and Y. In A and B, coupling from Y will reduce pulling effects, but gives less voltage than from $X_{\text {; }}$ this type is best adapted to mixer circuits with small oscillator-voltage requirements. Typical values for components are as follows:

Circuit A	Circuit B	Circuit C
$\mathrm{C}_{1}-100 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$.	$0.01 \mu \mathrm{f}$.	$0.01 \mu \mathrm{f}$.
$\mathrm{C}_{3}-0.01 \mu \mathrm{f}$.		
$\mathrm{R}_{1}-47,000$ ohms.	47,000 ohms.	47,000 ohms.
$\mathrm{R}_{2}-47,000$ ohms.	10,000 to	10,000 to
	25,000 ohms.	25,000 ohms.

The plate-supply voltage should be 250 volts. In circuits B and $C_{1} R_{2}$ is used to drop the supply voltage to $100-150$ valts; it may be omitted if voltage is obtained from a voltage divider in the power supply.
erably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f.-oscillator frequency is affected by changes in plate voltage, a voltage-regulated plate supply (VR tube) can be used.

Circuits

Several oscillator circuits are shown in Fig. $5-14$. Circuits A and B will give about the same results, and require only one coil. However, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Mc . and higher frequencies when a.c.-heated-cathode tubes are used. The circuit of Fig. 5-14C reduces hum because the cathode is grounded. It is simple to adjust, and it is also the best circuit to use with filament-type tubes. With filament-type tubes, the other two circuits would require r.f. chokes to keep the filament above r.f. ground.
Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feedbaek to obtain optimum results. Too much

feedback may cause "squegging" of the oscillator and the generation of several frequencies simultaneously; too little feedback will cause the output to be low. In the tapped-coil circuits (A, B), the feedback is increased by moving the tap toward the grid end of the coil. In C, more feedback is obtained by increasing the number of turns on L_{2} closer to L_{1}

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more elaborate sets.

Choice of Frequency

'The selection of an intermediate frequency is a compromise between conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the imare nearer the desired signal and hence decrases the image ratio. A low i.f. also increases pulling of the oscillator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the gain is lowered and selectivity is harder to obtain by simple means.

An i.f. of the order of 455 kc . gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies up to 7 Mc . The image ratio is poor at 14 Mc . when the mixer is connected to the antemna, but adequate when there is a tuned r.f. amplifier between antenna and mixer. At 28 Mc . and on the very high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Mc., pulling is likely to be bad without very loose coupling between mixer and oscillator.
With an i.f. of about 1600 kc ., satisfaetory image ratios ean be secured on $1+, 21$ and 28 Mc. with one r.f. stage of good design. For frequencies of 28 Mc . and higher, a common solution is to use a double superheterodyne, choosing one high i.f. for image reduction (5 and 10 Mc . are frequently used) and a lower one for gain

5-HIGH-FREQUENCY RECEIVERS

and selectivity.
In choosing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such signals may be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sidehand frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 cycles, it must at least be capable of amplifying equally all frequencies contained in a band extending from 5000 cycles above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, the i.f. amplification must be uniform over a band 5 ke. wide, when the carrier is set at one edge. If the carrier is set in the center, a $10-\mathrm{kc}$. band is required. The signal-frequency circuits usually do not have enough over-all selertivity to affert materially the "adjacentchannel" selectivity, so that only the i.f.-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplifiration over the band of frequencies occupied by the modulated signal, some of the sidebands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.

The selectivity of an i.f. amplifier, and hence the tendency to cut sidehands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of commumication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as $4 \overline{5} 5 \mathrm{kc}$. A two-stage i.f. amplifier at 85 or 100 kc . will be sharp enough to cut some of the higher-frequency sidebands, if good transformers are used. However, the cutting is not at all serious, and the gain in selectivity is worthwhile in crowded amateur bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 455 kc . two stages generally give all the gain usable, and also give suitable selectivity
for phone reception.
A typical circuit arrangement is shown in Fig. 5-15. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically always uses a remote cut-off pentode-type tube operated as a Class A amplifier. For maximum sclectivity, double-tuned transformers are used for interstage coupling, although single-tuned circuits or transformers with untuned primaries can be used for coupling, with a consequent loss in selectivity. All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of tuned circuits in it.

In Fig. $5-15$, the gain of the stage is reduced by introducing a negative voltage to the lead marked "AVC" or a positive voltage to R_{1} at the point marked "manual gain control." In either case, the voltage increases the lias on the tube and reduces the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sources. The decoupling resistor, R_{3}, helps to prevent unwanted interstage coupling. C_{2} and R_{4} are part of the automatic volumecontrol circuit (described later); if no a.v.e. is used, the lower end of the i.f.-transformer secondary is connected to chassis.

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. amplifier stages, since grid-bias gain control is practically always applied to the i.f. amplifier. Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high nutual conductance will give greatest gain. The choice of i.f. tulxes normally has no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and r.f. amplifier.

Typical values of cathode and screen resistors for common tubes are given in Table 5-II. The $6 \mathrm{~K} 7,6 \mathrm{Sk} 7$ and 6BJJ are recommended for i.f. work because they have desirable remote cut-off characteristics. The indicated screen resistors drop the plate voltage to the correct screen voltage, as R_{2} in Fig. 5-15.

When two or more stages are used the high gain may tend to cause instability and oscillation, so that good shielding, bypassing, and careful circuit arrangement to prevent stray coupling between input and output circuits are necessary.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the screen

Fig. 5-15-Typical intermediate-frequency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
$C_{1}, C_{3}, C_{4}, C_{i}-0.02 \mu \mathrm{f}$. of 455 kc ; $0.01 \mu \mathrm{f}$. at 1600 kc . and higher.
$C_{2}-0.01 \mu \mathrm{f}$.
$\mathbf{R}_{1}, \mathbf{R}_{2}$-See Table 5-ll.
$\mathbf{R}_{3}, \mathbf{R}_{5}-1500$ ohms.
$\mathbf{R}_{4}-0.1$ megohm.

TABLE 5-II Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplifiers				
Tube	Plate Volts	Screen Volts	Cathode Resistor R_{1}	Screen Resistor R_{2}
$6 \mathrm{AB7}^{-1}$	300		200 ohms	33,000 ohms
$6 \mathrm{AC7}^{1}$	300		160	62,000
$6 \mathrm{AH6}{ }^{2}$	300	150	160	62,000
6AK5 ${ }^{2}$	180	120	200	27,000
6.Al ${ }^{6}{ }^{2}$	250	150	68	33,000
6BA6 ${ }^{20}$	250	100	68	33,000
$61316{ }^{2}$	250	150	100	33,000
6BJ6 ${ }^{\text {* }}$	250	100	82	45,000
613\% $6^{2 *}$	200	150	180	20,000
6 J 71	250	100	1200	270,000
$6 \mathrm{~K}^{7}{ }^{\text {²* }}$	250	125	240	47,000
6SG7\%	250	125	68	27,000
6 SH 17	250	150	68	39,000
6857:	250	100	820	180,000
6SK゙「*	250	100	270	56,000
1 Octal b * Remote	metal. off ty	2 Min	ture tube	

bypass capacitor directly on the bottom of the soeket, crosswise between the plate and grid pins, to provide additional shielding. If a paper capacitor is used, the outside foil should be grounded to the chassis.

I.F. Transformers

The tuned cireuits of i.f. amplifiers are built up as transformer units consisting of a metal shield container in which the eoils and tuning eapacitors are mounted. Both air-eore and powdered iron-core universal-wound coils are used, the latter having somewhat higher Q_{s} and hence greater selectivity and gain. In universal windings the coil is wound in layers with each turn traversing the length of the coil, back and forth, rather than being wound perpendieular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large eaparitance can exist between layers. Lniversal winding, with its "criss-crossed" turns, tends to reduce distributed-capacity effects.

For tuning, air-dielectrie tuning capaeitors are preferable to mica compression types because their capacity is practically unaffected by changes in temperature and humidity. Iron-eore transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variable air-eapacitor tuning can be obtained by use of high-stability fixed mica or eeramic capacitors. Sueh stahility is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and selectivity of the amplifier. 'Typical i.f.-transformer construetion is shown in lig. 5-16.
The normal interstage i.f. transformer is loosely coupled, to give good selectivity eonsistent with idequate gain. A so-called diode transformer is similar, but the eoupling is tighter, to give sufficient transfer when working into the finite load presented by a diode detector. ITsing a diode transformer in place of an interstage transformer would result in loss of selectivity;
using an interstage transformer to couple to the diode would result in loss of gain.
lBesides the type of i.f. transformer shown in Fig. $\overline{5}-16$, special units to give desired selectivity characteristics are available. For higher-than-ordinary adjacent-channel selectivity tripletuned transformers, with a third tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer.

A method of varying the selectivity is to vary the coupling hetween primary and secondary, overeoupling being used to broaden the seleetivity eurve. Speeial eircuits using single tuned eircuits, coupled in any of several different ways, are used in some advanced reeeivers.

Fig. 5-16-Representative i.f.-transformer construction. Coils are supported on insulating tubing or (in the airtuned typel on wax-impregnated wooden dowels. The shield in the air-tuned transformer prevents capacity coupling between the tuning capacitors. In the permea-bility-tuned transformer the cores consist of finely-divided iron particles supported in an insulating binder, formed into cylindrical "plugs." The funing capacitance is fixed, and the inductances of the coils are varied by moving the iron plugs in and out.

Selectivity

The over-all selectivity of the r.f. amplifier will depend on the frequency and the number of stages. The following figures are indicative of the bandwidths to be expected with goodquality transformers in amplifiers so constructed as to keep regeneration at a minimum:

Intermediate Frequency	Bandwidth in Kirocycles		
	6 db .	20 db .	40 db .
	doun	down	down
One stage, 50 kc . (iron eore).	2.0	3.0	4.2
One stake, 450 kc . (air core)	8.7	17.8	32.3
Onestage, 45 \% kc. (iron core).	4.3	10.3	20.4
Two stages, 455 kc . (iron core).	2.9	6.4	10.8
Twostages, 1600 kc .	11.0	16.6	27.4

Transistor I. F. Amplifier

A typieal cireuit for a two-stage transistor i.f. amplifier is shown in Fig. 5-17. Constants are given for a $455-\mathrm{ke}$, amplifier, but the same gen-

5 - HIGH-FREQUENCY RECEIVERS

Fig. 5-17-Typical circuit for a twostage transistor i.f. amplifier. At high frequencies a neutralizing capacitor may be required, as mentioned in the text.

T_{1}-Transistor input i.f. transformer. Primary impedance $=$
100,000 ohms, secondary impedance $=1700$
ohms, unloaded $Q=100$, loaded $Q=35$.
T_{2}-Transistor interstage i.f. transformer. Primary im-
pedance $=4600$ ohms, secondary impedance
cral circuitry applies to an amplifier at any frequency within the operating range of the transistors. When higher frequencies are used, it may be necessary to neutralize the amplifier to avoid overall oscillation; this is done by connecting a small variable capacitor of a few $\mu \mu$ f. from base to base of the transistors.

Automatic gain control is ohtained by using the developed d.c. at the 1×295 diode detector to modify the emitter hias current on the first stage. As the bias current changes, the input and output impelances change, and the resultant impedance mismatches causes a reduction in gain. Such a.g.c. assumes, of course, that the amplifier is set up initially in a matched condition.
$=1700$ ohms, unloaded $Q=39$, loacied $Q=$ 35.
T_{3}-Transistor oulput i.f. transformer. Primary impedance $=30,000$ ohms, se condary impedance $=1000$ ohms, unloaded $Q=100$, loaded $Q=35$.

THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second detector of a superheterodyne receiver performs the same function as the detector in the simple receiver, but usually operates at a higher input level because of the relatively great amplification ahead of it. Therefore, the ability to handle large signals without distortion is preferable to high sensitivity. Plate detection is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control. The basic circuits have been described, although in many

Fig. 5-18-Delayed automatic volume control circuits using a twin diode (A) and a dual-diode triode. The circuits are essentially the same and differ only in the method of biasing the a.v.c. rectifier. The a.v.c. control voltage is applied to the controlled stages as in (C). For these circuits rypical values are:
$C_{1}, C_{3}, C_{4}-100 \mu \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{8}-0.01 \mu \mathrm{~F}$.
$\mathrm{C}_{6}-5-\mu \mathrm{f}$. electrolytic.
$R_{1}, R_{9}, R_{10}-0.1$ megohm.
$\mathrm{E}_{2}-0.47$ megohm.
R3-2 megohms.
$R_{4}-0.47$ megohm.
$\mathrm{R}_{5}, \mathrm{R}_{6}$-Voltage divider to give $\mathbf{2}$ to 10 volts bias at 1 to 2 ma . drain.
$\mathrm{R}_{7}-0.5-\mathrm{megohm}$ volume control.
\mathbf{R}_{s}-Correct bias resistor for triode section of dualdiode triode.

Second Detectors

cases the diode elements are incorporated in a multipurpose tube that contains an amplifier section in addition to the diode.

Audio-converter circuits and produet detectors are often used for code or s.s.b. detectors.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Special beat-oscillator transformers are available, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. F-14.d and I3, with the output taken from Y. . 1 variable capacitor of about $25-\mu \mu$. capacitance can be connected between cathode and ground to provide fine adjustment of the frequency. The beat oscillator usually is coupled to the seconddetector tuned cireuit through a fixed eapacitor of a few $\mu \mu$.

The beat oscillator should be well shielded, to prevent coupling to any part of the receiver except the second detector and to prevent its harmonies from getting into the front end and being amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest signals. However, if the beat-oscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

AUTOMATIC VOLUME CONTROL

Automatic regulation of the gain of the receiver in inverse proportion to the signal strength is an operating convenience in phone reception, since it tends to keep the output level of the receiver constant regardless of input-signal strength. The average rectified d.c. voltage, developed by the received signal across a resistance in a detector circuit, is used to vary the bias on the r.f. and i.f. amplifier tubes. Since this voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete and the output more constant as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits

Although some receivers derive the a.v.c. voltage from the diode detector, the usual practice is to use a separate a.v.c. rectifier. Typical circuits are shown in Figs. 5-18A and 5-18B. The two rectifiers can be combined in one tube, as in the 6H6 and 6AL5. In Fig. 5-18A V_{1} is the diode deteetor: the signal is developed across $R_{1} R_{2}$ and coupled to the audio stages through (i_{3}. (it,R_{1} and ('2 are included for r.f. filtering, to prevent a large r.f. component being coupled to the audio eircuits. The a.v.e, rectifier, V_{2}, is coupled to the last i.f. transformer through (${ }_{4}$, and most of the rectified voltage is developed arross $R_{3} . V_{2}$ does not rectify on weak signals, however; the fixed
bias at R_{5} must be exceeded before rectification can take place. The developed negative a.v.e. bias is fed to the controlled stages through R_{4}.

The eircuit of Figg. 5-1813 is similar, exerpt that a duat-diode triode tube is used. Since this has only one common cathode, the cirenitry is slightly different but the principle is the same. The triode stage serves as the first andio stage, and its bias is developed in the cathode circuit across R_{8}. This same bias is applied to the a.v.c. rectifer hy returning its load resistor, R_{3}, to ground. To avoid placing this bias on the detertor, V_{1}, its load resistor $R_{1} R_{2}$ is returned to cathode, thus avoiding any bias on the detector and permitting it to respond to weak signals.

The developed negative a.v.c. bias is applied to the controlled stages through their grid circuits, as shown in Fig. 5-18C. (${ }_{7} R_{9}$ and $C_{8} R_{10}$ serve as filters to avoid common roupling and possible feedback and owillator. The a.v.c. is disabled by closing switch S_{1}.

The a.v.c. rectifier bias in F'ig. 5-18B is set by the bias required for proper operation of V_{3}. If less bias for the a.v.c. rectifier is required, R_{3} can be tapped up on R_{8} instead of being returned to chassis ground. In Fig. 5-18A, proper choice of bias at R_{5} depends upon the over-all gain of the receiver and the number of controlled stages. In general, the bias at R_{5} will be made higher for receivers with more gain and more stages.

Time Constant

The time constant of the resistor-capacitor combinations in the a.v.c. circuit is an important part of the system. It must be long enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audiofrequency variations in the a.v.c. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too long or the a.v.c. will be unable to follow rapid fading. The capacitance and resistance values indicated in Fig. i-18 will give a time constant that is satisfactory for average reception.

C. W. and S.S.B.

A.v.c. can be used for c.w. and s.s.b. reception but the circuit is usually more complicated. The a.v.c. voltage must be derived from a rectifier that is isolated from the beat-frequency oscillator (otherwise the rectified b.f.o. voltage will reduce the receiver gain even with no signal coming through). This is done by using a separate a.v.c. channel connected to an i.f. amplifier stage ahead of the second detector (and b.f.o.) or by rectifying the audio output of the detector. If the selectivity ahead of the a.v.c. rectifier isn't good, strong adjacent-channel signals may develop a.v.c. voltages that will reduce the receiver gain while listening to weak signals, When clear channels are available, however, c.w. and s.s.b. a.v.r. will hold the receiver output constant over

Fig. 5-19—Audio "hang" a.v.c. system. Resistors are $1 / 2$-watt unless specified otherwise.
R_{1}-Normal audio volume control in receiver. $\mathrm{T}_{1}-1: 3$ step-up audio transformer (Stancor A-53 or equiv.)
The hang time can be adjusted by changing the value of the recovery diode load resistor (4.7 megohms shown here). The a.v.c. line in the receiver must have no d.c. return to ground and the receiver should have good skirt selectivity for maximum effectiveness at the system.
a wide range of signal inputs. A.v.c. systems designed to work on these signals should have fast-attack and slow-decay characteristics to work satisfactorily, and often a selection of time constants is made available.

The a.v.e. circuit shown in Fig. 5-19 is applicable to many receivers without too much modification. Audio from the receiver is amplified in $V_{1 a}$ and rectified in V_{23}. The resultant voltage is applied to the a.v.c. line through $V_{2 c}$. The capacitor (' charges quickly and will remain charged until discharged by $V_{1 B}$. This will occur some time after the signal has disappeared, because the audio was steppred up through T_{1} and rectified in $V_{2 A}$, and the resultant used to charge ('2. This voltage holds I's cut off for an
appreciable time, until C_{2} discharges through the $4 . \overline{7}$-megohm resistor. The threshold of compression is set by adjusting the bias on the diodes (changing the value of the 3.3 K or 100 K resistors). There can be no d.c. return to ground from the a.v.c. line, because r_{1} must be discharged only hy $V_{1 B}$. Fiven a v.t.v.m. across the a.v.c. line will be too low a resistance, and the operation of the system must be observed by the action of the S meter.

Occasionally a strong noise pulse may cause the a.v.c. to hang until (2 discharges, but most of the time the gain should return very rapidly to that set by the signal. A.v.c. of this type is very helpful in handling netted s.s.b. signals of widely varying strengths.

Noise Reduction

Types of Noise

In addition to tube and circuit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic or industrial electrical equipment and by automobile ignition systems. The interference is of two types in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the receiver noise. It is largely reduced hy high selectivity in the receiver, especiatly for colle reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is caused by commatator sparking in d.c. and series-wound a.c. motors, while the "shot" type results from separated spark discharges (a.c. power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to relucing tube and circuit noise is through better "front-end" design and through more over-ill selectivity.

Impulse Noise

Impulse noise, because of the short duration of the pulses compared with the time between them, must have high amplitude to contain much average energy. Hence, noise of this type strong enough to cause much interfer-
ence generally has an instantancous amplitude muel higher than that of the signal being rereived. The general principles of devices intended to redure such noise is to allow the desired signal to pass through the receiver unaffected, but to make the receiver inoperative for amplituades greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" because of its short durition, and very effective noise reduction is obtained. Such devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, berause of the ($?$ of the circuits. Thus the more selectivity ahead of the noise-reducing deviee, the more difficult it becomes to secure good pulse-type noise suppression.

Audio Limiting

A considerable degree of noise reduction in code reception can be accomplished by am-plitude-limiting arrangements applied to the audio-output circuit of a receiver. Such limiters

Noise Reduction

Fig. 5-20-Series-valve noise-limiter circuits. A, as used with an infinite-impedance detector; B, with a diode de-
tector. Typical values for components are as follows:
$R_{1}-0.27$ megohm. $\quad R_{4}-20,000$ to 47,000 ohms.
$\mathrm{R}_{2}-47,000$ ohms.
$\mathrm{C}_{1}-270 \mu \mu \mathrm{f}$.
$\mathrm{R}_{3}, \mathrm{R}_{5}-10,000$ ohms.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.1 \mu \mathrm{f}$.
All other diode-circuit constants in B are conventional.
also maintain the signal output nearly constant during fading. These output-limiter sustems are simple, and adaptable to most receivers. However, they cannot prevent noise peaks from overloading previous stages.

SECOND-DETECTOR NOISE LIMITER CIRCUITS

The circuit of Fig. 5-20 "chops" noise peaks at the second detector of a superhet receiver by means of a biased diode, which beeomes nonconducting above a predetermined signal level. The audio output of the detector must pass through the diode to the grid of the amplifier tube. The diode normally would be noncondueting with the connections shown were it not for the fact that it is given posilive bias from a 30 -volt source through the adjustable
potentiometer, R_{3}. Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio.
The audio signal from the detector can be considered to modulate the steady diode current, and conduction will take place so long as the diode plate is positive with respect to the cathode. When the signal is sufficiently large to swing the cathode positive with respect to the plate, however, conduction ceases, and that portion of the signal is cut off from the audio amplifier. The point at which cut-off oceurs can be selected by adjustment of R_{3}. By setting R_{3} so that the signal just pabses through the "valve," noise pulses higher in amplitude than the signal will be cut off. The circuit of Fig. 5-20A, using an infinite-impedance detector, gives a positive voltage on rectifcation. When the rectified voltage is negative, as it is from the usual diode detector, the cireuit arrangement shown in Fig. 5 -2013 must be used.
An audio signal of about ten volts is requived for good limiting action. The limiter will work on either c.w. or phone signals, but in either case the potentiometer must be set at a point determined by the strength of the signal.
Serond-detector noise-limiting circuits that automatically adjust themselves to the recrived carrier level are shown in Fig, 5-21. In either eirenit, V_{1} is the usual diode second detertor, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. bypass, A negative voltage proportional to the carrier level is developed arross ('2, and this voltage camot change rapielly beceanse R_{3} and C_{2} are both large. In the cireuit at A, diode V arts as a comductor for the audio signal up to the point where its anode is negative with respect to the cathode. Noise peaks that exceed the maxinum carrier-modulation level will drive the anode negative instantancously, and during this time the diode does not conduct. The long time constant of ('2 R_{3} prevents any rapid change of the raference voltage. In the circuit at 13 , the diode V_{2} is inastive until its cathode voltage exceeds its anode voltage. This condition will obtain unter noise praks and when it does, the diode V_{2} shortcircuits the signal and no voltage is passed on to the audio amplifier. Diode rectifiers such as the GIlf ${ }^{2}$ and GAL5 can be used for these types of noise limiters. Neither cirenit is useful for c.w. or s.s.b. reception, but they are both quite effective

Fig. 5.21-Self-adjusting series (A) and shunt (B) noise limiters. The functions of V_{1} and V_{2} can be combined in one tube like the 6H6 or 6AL5.
$C_{1}-100 \mu \mu$.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.05 \mu \mathrm{f}$.
$R_{1}-0.27$ meg. in $A_{;} 47,000$ ohms in B.
$R_{2}-0.27$ meg. in $A ; 0.15$ meg. in B.
$R_{3}-1.0$ megohm.
$\mathrm{R}_{4}-0.82$ megohm.
R_{5} - 6800 ohms.

Fig. 5-22-Practical circuit diagram of an i.f. noise silencer. For best results the silencer should be used ahead of the high-selectivity portion of the receiver.
T_{1}-Interstage i.f. transformer
T_{2}-Diode i.f. transformer.
RFC C_{1}-R.f. choke, preferably self-resonant of i.f.
for a,m, phone work. The series rircuit (A) is slighty better than the shunt cireuit.

- I.F. NOISE SILENCER

The i.f. noise silencer cireuit shown in Fig. 5-22 is designed to be used in a receiver as far along from the anterma stage as possible but ahead of the highselectivity section of the receiver. Noise pulses are amplified and rectified, and the resulting negative-going d.e. pulses are used to cut off an amplifier stage during the pulse. A manual "threshold" "ontrol is set by the operator to a level that only permits rectification of the noise pulses that rise above the peak amplitude of the desired signal. The clamp diode, $V_{1 A}$, short circuits the positive-going pulse "overshoots." Running the GBLK controlled i.f. amplifier at low sereen voltage makes it possible for the No. 3 grid (pin 7) to cut off the stage at a lower voltage than if the sereen were operated at the morenormal 100 vols, but it also reduces the available gain through the stage.

It is necessary to avoill i.f. feedback around the 613106 stage, and the closer RF''s can be to selfresonant at the i.f. the better will be the filtering. The filtering cannot be improved by increasing the values of the $150-\mu \mu \mathrm{f}$. capacitors berause this will tend to "stretch" the pulses and reduce the signal strength when the silencer is operative.

SIGNAL-STRENGTH AND TUNING INDICATORS

The simplest tuning indicator is a milliammeter comerted in the d.e. plate lead of an a.v.c.-
controlled r.f. or i.f. stage. Since the plate current is reduced as the a.v.c. voltage becomes higher with a stronger signal, the plate current is a measure of the signal strength. The meter can have a $0-1,0-2$ or $0-5$ ma. movement, and it should be shunted by a 25 -ohm rheostat which is used to set the no-sigmal reading to full scale on the meter. If a "forwarl-reading" meter is desired, the meter can be mounted upside down.

Two other S-meter circuits are shown in Fig. 5-23. The system at Λ uses a milliammeter in a bridge circuit, arranged so that the meter readings increase with the a.v.e, voltage and signal strength. The meter reads approximately in a linear decibel scale and will not be "crowded" at some point.

To adjust the system in Fig. 5-23A, pull the tube out of its socket or otherwise break the cathode circuit so that no plate current flows, and adjust the value of resistor R_{1} aeross the meter until the scale reading is maximum. The value of resistance reguired will depend on the internal resistance of the meter, and must be determined by trial and error (the current is approximately 2.5 ma.). Then replace the tube, allow it to warm up, turn the a.v.e. switch to "off" so the grid is shorted to ground, and adjust the 3000 -ohm variable resist or for zero meter current. When the a.v.c. is "on," the meter will follow the signal variations up to the point where the voltage is high enough to cut off the meter tube's plate current. This will occur in the neighborhood of 15 volts with a 6.55 or $6 S N 7 G T$, and represents a rather high-amplitude signal.

The circuit of Fig. 5-2:313 requires no additional tubes. The resistor R_{2} is the normal cathode

Fig. 5-23-Tuning indicator or S-meter circuits for superheterodyne receivers.
MA- 0.1 or 0.2 milliammeter. $R_{1}-R_{4}$-See text.
resistor of an a.v.c.-controlled i.f. stage; its cathode resist or should be returned to chassis and not to the manual gain control. The sum of R_{3} phus R_{4} should equal the normal cathode resistor for the audio amplifier, and they should be proportioned so that the arm of R_{3} can pick off a voltage equal to the normal cathode voltage for the i.f. stage. In some cases it may be necessary to interchange the positions of R_{3} and R_{4} in the circuit.

The zero-set control R_{3} should be set for no reading of the moter with no incoming signal, and the 1500 -ohm sensitivity control should be set for a full meter reading with the i.f. tube removed from its socket.

Neither of these S-meter circuits can be "pinned", and only severe misadjustment of the zero-set control can injure the meter.

HEADPHONES AND LOUDSPEAKERS

There are two basic types of headphones in common use, the magnetir and the crystal. A magnetic headphone uses a small electromagnet that attracts and releases a steel diaphragm in arcordance with the electrical output of the radio receiver; this is similar to the "receiver" portion of the household telephone. A crystal headphone
uses the piezoelectric properties of a pair of Rochelle-salt or other crystals to vibrate a diaphragm in accordance with the electrical output of the radio receiver. Magnetic headphones can be used in circuits where d.e. is flowing, surh as the plate cirenit of a vacuum tube, provided the current is not too heavy to be carred by the wire in the coils; the limit is usually a few milliamperes. Crystal headphones can be used only on a.c. (a steady d.e. voltage will damage the erystal unit), and consequently must be coupled to a tube through a device, such as a capacitor or transformer, that isolates the d.c. but passes the a.c. Most modern receivers have a.c. coupling to the headphones and hence either type of headphone can be used, but it is wise to look first at the circuit diagram in the instruction book and make sure that the headphone jack is connected to the secondary of the output transformer, as is usually the case.

In general, crystal headphones will have considerably wider and "flatter" audio response than will magnetic headphones (except those of the "hi-fi" type that sell at premium prices). The lack of wide response in the magnetic headphones is sometimes an arlvantage in code reception, since the desired signal can be set on the peak and be given a boost in volume over the undesired signals at slightly different frequencies.

Crystal headphones are availahle only in highimpedance values around 50,000 ohms or so, while magnetic headphones run around 10,000 to 20,000 ohms, although they can be obtained in values as low as 15 ohms. Usually the impedance of a headphone set is unimportant because there is more than enough prower available from the radio receiver, but in marginal cases it is possible to improve the acoustic output through a better match of headphone to output impedance. When headphone sets are connected io series or in parallel they must be of similar impedance levels or one set will "hog" most of the power.

Loud speakers are practically always of the low-impedance permanent-field dynamic variety, and the loudspeaker output comnections of a receiver can connect directly to the voice coil of the loudspeaker. Some receivers also provide a " 500 -ohm output" for connection to a long line to a remote loudspeaker. A loudspeaker requires mounting in a suitable enclosure if full lowfrequency response is to be obtained.

Improving Receiver Selectivity

INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this section, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For phone reception, the limit to useful selectivity in the i.f. amplifier is the point
where so many of the sidebands are cut that intelligibility is lost, although it is possible to remove completely one full set of side bands without impairing the quality at all. Maximum receiver selectivity in phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 cycles for hand-key speeds, but this much selectivity requires good stability in both transmitter and

5-HIGH-FREQUENCY RECEIVERS

receiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne c.w. reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 456 kc . (the i.f. being 455 kc .) to give a 1000 -cycle beat note. Now, if an interfering signal appears at 457 kc ., or if the receiver is tuned to heterodyne the incoming signal to 457 kc , it will also be heterodyned by the beat oscillator to produce a 1000 cycle beat. Hence every signal can be tuned in at two places that will give a 1000 -cycle beat (or any other low audio frequency). This audiofrequency image effect can be reduced if the i.f. selectivity is such that the incoming signal, when heterodyned to 457 kc ., is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

The necessary selectivity is not obtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effect, particularly when the i.f. is $4 \overline{5} \mathrm{kc}$. or lower. The resonance curve of an i.f. stage at critical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 kc . at 10 times down and 5 kc , at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -cycle beat note (image 2000 cycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, connected to the grid, into the vicinity of the plate lead usually will suffice. The feedback may be controlled hy the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.

The higher selectivity with regeneration reduces the over-all response to noise generated in the earlier stages of the receiver, just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. However, the regenerative gain varies with signal strength, being less on strong signals,

Crystal-Filters; Phasing

Probably the simplest means for obtaining high selectivity is by the use of a piezoelectric

Fig. 5-24-Typical response curve of a crystal filter. The notch can be moved to the other side of the response peak by adjustment of the "phasing" control. With the above curve, setting the b.f.o. at 454 kc . would give good singlesignal c.w. reception.
quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned circuit, the Q of such a crystal is extremely high. The crystal is ground resonant at the i.f. and used as a selective coupler between i.f. stages.

Fig. 5-24 gives a typical crystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a 50 db . or more. Besides practically eliminating the a.f. image, the high selectivity of the crystal filter provides good discrimination against adjacent signals and also reduces the noise.

Two crystal-filter circuits are shown in Fig. $5-25$. The circuit at A (or a variation) is found in many of the current communications receivers. The crystal is connected in one side of a bridge circuit, and a phasing capacitor, C_{1}, is connected in the other. When C_{1} is set to balance the crystal-holder capacitance, the resonance curve of the filter is practically symmetrical; the crystal acts as a series-resonant circuit of very high Q and allows signals over a narrow band of frequencies to pass through to the following tube, More or less capacitance at C_{1} introduces the "rejection notch" of Fig. 5-24 (at 453.7 kc . as drawn). The Q of the load circuit for the filter is adjusted by the setting of R_{1}, which in turn varies the bandwidth of the filter from "sharp" to a bandwidth suitable for phone reception. Some of the components of this filter are special and not generally available to amateurs.

The "band-pass" crystal filter at B uses two crystals separated slightly in frequency to give a band-pass characteristic to the filter. If the frequencies are only a few hundred cycles apart, the characteristic is an excellent one for c.w.

R.F. Amplifiers

Fig. 5-25-A variable-selectivity crystal filter (A) and a band-pass crystal filter (B).
reception. With crystals about 2 kc . apart, a good phone characteristic is obtained.

Additional I.F. Selectivity

Many commercial communications receivers do not have sufficient selectivity for amateur use, and their performance can be improved by additional i.f. selectivity. One method is to loosely couple a BC-45:3 aircraft receiver (war surplus, tuning range 190 to 550 kc .) to the tail end of the $455-\mathrm{kc}$. i.f. amplifier in the communications receiver and use the resultant output of the $\mathrm{BC}-453$. The aircraft receiver uses an $85-\mathrm{kc}$. i.f. amplifier that is sharp for voice work 6.5 kc . wide at -60 db . - and it helps considerably in separating phone signals and in backing up crystals filters for improved c.w. reception.

If a BC-453 is not available, one can still enjoy the benefits of improved selectivity. It is only necessary to heterodyne to a lower frequency the $455-\mathrm{kc}$. signal existing in the receiver i.f. amplifier and then rectify it after passing it through the sharp low-frequency amplifier. The J. W. Miller Company offers $50-\mathrm{kc}$. transformers for this application.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, discrimination against radio-frequency images can only be obtained in circuits ahead of the first detector. These tuned circuits and their associated vacuum tubes are called radio-frequency amplifiers. For top performance of a communications receiver on frequencies above 7 Mc ., it is mandatory that it have a stage of r.f. amplification, for image rejection and a good noise figure (mixers are noisier than amplifiers).

Receivers with an i.f. of 455 kc . can be expected to have some r.f. image response at a signal frequency of 14 Mc. and higher if only one stage of r.f. amplification is used. (Regen-
eration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplification and an i.f. of 455 kc ., no images should be apparent at 14 Mc., but they will show up on 28 Mc . and highor. Three stages or more of r.f. amplification, with an i.f. of 455 kc ., will reduce the images at 28 Mc ., but it really takes four or more stages to do a good job. A common solution at 28 Mc . is to use a "double-conversion" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 kc. or higher, A normal receiver with an i.f. of 455 kc . can be converted to a double conversion by connecting a "converter" ahead of the receiver.

For best selectivity, r.f. amplifiers should use high- Q circuits and tubes with high input and output resistance. Variable- μ pentodes are practically always used, although triodes (neutralized or otherwise connected so that they won't oscillate) are often used on the higher frequencies because they introduce less noise. Pentodes are better where maximum image rejection is desired. because they have less loading effect on the tuned circuits.

Transistor R. F. Amplifier

A typical r.f. amplifier circuit using a 2N370 transistor is shown in Fig. 5-26. Since it is desirable to maintain a reasonable Q in the tuned circuits, to reduce r.f. image response, the base and collector are both tapped down on their tuned circuits. An alternative method, using lowimpedance inductive coupling, is shown in Fig. $5-26 \mathrm{BB}$; this method is sometimes easier to adjust than the taps illustrated in Fig. 5-26A. The tuned

Fig. 5-26-Transistor r.f. amplifier circuit. The low-impedance connections to the base and collector can be (A) taps on the inductors or (B) low-impedance coupling links. $L_{1} C_{1}, L_{2} C_{2}$-Resonant at signal frequency.

5-HIGH-FREQUENCY RECEIVERS

circuits, $L_{1} C_{1}$ and $L_{2} C_{2}$, should resonate at the operating frequency, and they should be mounted or shielded to eliminate inductive coupling between cach other.

feedback

Feedback giving rise to regeneration and oscillation can oceur in a single stage or it may appear as an over-all feedback through several stages that are on the same frequency. To avoid feedback in a single stage, the output must be isolated from the input in every way possible, with the vacuum tube furnisling the only coupling letween the two eircuits. An oscillation can be obtained in an r.f. or i.f. stage if there is any undue capacitive or inductive coupling between output and input circuits, if there is too high an impedance between cathode and ground or screen and ground, or if there is any appreciable impedance through which the grid and plate currents can flow in common. This means good shielding of coils and tuning capacitors in r.f. and i.f. circuits, the use of good by-pass capacitors (mica or ceramic at r.f., paper or ceramic at i.f.), and returning all bypass capacitors (grid, cathode, plate and screen) for a given stage with short leads to one spot on the chassis. If single-ended tubes are used, the screen or cathode by-pass capacitor should be mounted across the socket, to serve as a shield between grid and plate pins. Less care is required as the frequency is lowered, but in high-impedance eircuits, it is sometimes necessary to shield grid and plate leads and to be careful not to run them close together.
To avoid over-all feedrack in a multistage amplifier, attention must be paid to avoid running any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might run along a chassis in a straight line, run into a mixer where the frequency is changed, and then the i.f. amplifier could be run back parallel to the r.f. amplifier, provided there was a very large frequency difference between the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the safe side. Good shielding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it becomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. Good bypassing and the use of scries isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the heater leads where necessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a bundwidth measured in hundreds of ke. at 14 Mc . or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through several r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired sigmal. This effect is called cross-modulation, and is often encountered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effect is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antenna input to the receiver. The 6BJJ6, 613A6 and 61)C6 are recommended for r.f. amplifiers where cross-modulation may be a problem.
A receiver designed for minimum cross-modulation will use as little gain as possible ahead of the high-selectivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid cross-modulation and other overload effects in the mixer and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is accomplished by using variable- μ tubes and varying the d.c. grid bias, either in the grid or cathode circuit. If the gain control is automatie, as in the case of a.v.c., the bias is controlled in the grid circuit, Manual control of r.f. gain is generally done in the cathode circuit. A typical r.f. amplifier stage with the two types of gain control is shown in schematic form in Fig. 5-27.

Tracking

In a receiver with no r.f. stage, it is no incon-

Fig. 5-27-Typical radio-frequency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
C_{1} to $\mathrm{C}_{4}-0.01 \mu \mathrm{f}$. below 15 Mc ., $0.001 \mu \mathrm{f}$. at 30 Mc .
$\mathrm{R}_{1}, \mathrm{R}_{2}$-See Table 5-1l.
$\mathrm{R}_{3}-1800$ ohms.

Fig. 5.28 - A practical squelch circuit for cutting off the receiver output when no signal is present.
venience to adjust the high-frequency oscillator and the mixer circuit independently, because the mixer tuning is broad and requires little attention over an amateur band. However, when r.f: stages are added ahead of the mixer, the r.f. stages and mixer will require retuning over an entire amateur band. Hence most receivers with one or more r.f. stages gang all of the tuning controls to give a single-tuming-control rocoiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. circuits, and when this condition is arhieved the circuits are said to track.

In amateur-band receivers, tracking is simplified by choosing a bandspread circuit that gives practically straight-line-frequency tuming (equal frequency change for each dial division), and then adjusting the uscillator and mixer tuned circuits so that both cover the same total number of kilocycles. For example, if the i.f. is 45.5 kc , and the mixer circuit tunes from 7000 to 7300 kc . between two given points on the
dial, then the oscillator must tune from 7455 to 77.5 kc . between the same two dial readings. With the bandspread arrangement of Fig. 5-9A, the tuming will be practically straight-line-frequency if (2 (bandset) is 4 times or more the maximum capacity of C_{1} (bandspread), as is usually the case for strictly amateur-band coverage. ('1 should be of the straight-line-capacity type (semicircular phates).

Squelch Circuits

An audio squelch circuit is one that cuts off the receiver output when no signal is coming through the receiver. It is useful in mobile or net work where the no-signal receiver noise may be as loud as the signal, causing undue operator fatigue during no-signat periods.

A pratetical squeleh circuit is shown in Fig. 5-28, When the a.v.e. voltage is low or zero, the 6S.J7 draws plate current. Voltage drop across the 47,000 -ohm resistor in its plate circuit cuts off the $6 . J 5$ and no receiver signal or noise is passed. When the a.v.c. voltage rises to the cut-off value of the GNJT, the pentode no longer draws current and the bias on the bob is now only the operating bias, furnished by the 1000 -ohm cathode resistor. The triode now functions as an ordinary amplifier and passes signals. By varying the screen voltage on the (is.j. 7 through R_{1}, the pentode's cut-off bias can be varied, so that the relation between a.v.e. voltage and signal cut-off point of the amplifier is adjustable.

Connections to the receiver consist of two a.f. lines (shielded), the a.v.c. lead, and chassis ground. The squelch circuit is normally inserted between detector output and the audio volume control of the receiver. Since the circuit is used in the low-level audio point, its plate supply must be free from a.c. or objectionable hum will be introduced.

Improving Receiver Sensitivity

The sensitivity (signal-to-moise ratio) of a reeeiver on the higher frequencies above 20 Mc. is dopendent upon the hand width of the reeeiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that image pejection may be poor, a receiver with no r.f. stage is generally satisfactory, from a sensitivity point, in the 3.5 - and $\overline{7}-\mathrm{Mc}$. bands. However, as the frequency is increased and the atmospheric noise beromes less, the advantage of a good "front end" beoomes apparent. Hence at 14 Mc. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for best sensitivity as well as image rejertion. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve
the receiver noise figure at 14 Mc . and higher, a high- g_{m} pentode or triode should he used. Among the pentodes, the best tubes are the $6.4\left(7,6.1 K 5\right.$ and the $6 S^{\prime}(77$, in the order named. The 6.MK5 takes the lead around 30 Mr . The $6.54,6.56,7 \mathrm{~F} 8$ and triode-connected 6.1Kir are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavier tham optimum. This cannot give best selectivity in the antema circuit, so it is futile to try to maximize sensitivity and selectivity in this eircuit.

When a receiver is satisfactory in every respect (stability and selectivity) except sensitivity on 14 through 30 Me., the best solution for the amateur is to add a preamplifier, a stage of r.f. amplification designed expressly to improve the sensitivity. If image rejection is lacking in the receiver, some selectivity should be built in to the preamplifier (it is then called a preselector). If, however, the receiver operation is poor on the
higher frequencies but is satisfactory on the lower ones, a "converter" is the best solution.
some commercial receivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antema. This can be accomplished by changing the antenna feed line to the right value (as determined from the receiver instuction book) or by using a simple matching device as described later in this chapter. Overcoupling the input circuit will of en improve sensitivity hut it will, of course, always reduce the image-rejection contribution of the antenna circuit.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it provides serves to mask more completely the firstdetector noise, and it also provides a measure of automatic matehing to the antenna through tighter coupling. However, accurate ganging becomes a problem, because of the increased selectivity of the regencrative r.f. stage, and the receiver almost invariatly becomes a two-handed-
tuning device. Regeneration should not be overlooked as an expedient, however, and amateurs have used it with considerable success. High- $\boldsymbol{H}_{\mathrm{m}}$ tubes are the best as regenerative amplifiers, ard the fcedback should not be controlled by changing the operating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feed-back coupling. This is a tricky process and another reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the g_{m} of the first tube is reduced, and its noise figure becomes higher. A good receiver might well have two gian controls, one for the first radio-frequency stage and another for the i.f. and other r.f. stages.

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-uscillator frequency, first tune in a moderately-weak but steady carrier with the beat oscillator turned off, Adjust the receiver tuning for maximum signal strength, as indicated by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat mote. The beat oscillator need not subsequently be touched, except for orcasional rherking to make certain the frequeney has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequency side of zero beat.

The best receiver condition for the reception of code signals will have the first r.f. stage running at maximum gain, the following r.f., mixer and i.f. stages operating with just emough gain to maintain the signal-lo-moise ratio, and the audio gain set to give comfortalble headphone or speaker volume. The audio volume should be controlled by the audio gain control, not the i.f. gain control. Under the above comditions, the selectivity of the receiver is being used to lest advantage, and aross-modulation is minimized. It predudes the use of a receiver in which the gains of the r.f. and i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the receiver is equipped with a crustal filter the tuning instructions in the preceding paragraph still apply, but more care must be used
both in the initial adjustment of the beat oscilbator and in tuning. The beat oscillator is set as described above, but with the crystal filter set at its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control in an intermediate position. Once adjusted, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same sigual to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by careful adjustment of the phasing entrol. This is the adjustment for normal operation; it will be formd that one side of zero beat has practically disappeared, leaving maximum response on the other.

In interfering signal having a beat note differing from that of the a.f. image can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to leng then out so that they serm to "run together." It must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its high selectivity often makes it difficult to find the dosired station quickly, if the filter is switched in only when interference is present.

Phone Reception

In reception of phone signats, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the a.v.c., and use the audio gain

Alignment and Servicing

control for sctting the volume. This insures maximum effectiveness of the a.v.c. system in compensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which case the weaker station may disappear because of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking" by the stronger signal.

When receiving an a.m. signal on a frequeney within 5 to 20 ke. from a single-side-band signal it may also be necessary to switch off the a.v.c. and resort to the use of manual gain control, unless the receiver has excellent skirt selectivity. No ordinary a.v.e. circuit can handle the syllabic bursts of energy from the s.s.l. station, but there are special circuits that will.

A crystal filter will help reduce interference in phone reception. Although the high selectivity cuts sidebands and reduecs the audio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. As in conde recoption, it is advisable to do all tuning with the filter in the circuit. Variableselectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produce a beat note equal to the frequency difference. Such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter.

A tone control often will be of help in reducing the effects of high-pitched heterodynes, side-band
splatter and noise, by cutting off the higher audio frequencies. This, like side-band cutting with high selectivity circuits, reduces naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. Using a crystal filter with the beat oscillator on, an image witl peak on the side of zero beat opposite that on which desired signals peak.
llarmonic response can be recognized by the "tuming rate," or movement of the tuning dial required to give a specified change in beat note. Signals getting into the i.f. via high-frequency oscillator harmonics tune more rapidly (less dial movement) through a given change in beat note than do signals received by normal means.

Ilarmonics of the beat oscillator can be recognized by the tuning rate of the beat-oscillator pitch control. A smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorlyshielded receivers it is often possible to find b.f.o. harmonics below 2 Mc ., but they should be very weak at higher frequencies.

Alignment and Servicing of Superheterodyne Receivers

I.F. Alignment

A calibrated signal generator or test oscillator is a useful device for alignment of an i.f. amplifier. Some means for measuring the output of the receiver is required. If the receiver has a tuning meter, its indications will serve. Lacking an S meter, a high-resistance voltmeter or a vacuumtube voltmeter can be connected across the sec-ond-detector load resistor, if the second detector is a diode. Altornatively, if the signal generator is a modulated type, an a.c. voltmeter can be connected across the primary of the transformer feeding the speaker, or from the plate of the last audio amplifier through a $0.1-\mu$. blocking capacitor to the receiver chassis. Lacking an anc voltmeter, the audio output can be judged by ear, although this method is not as accurate as the others. If the tuning meter is used as an indication, the a.v.c. of the receiver should be turned on, but any other indication requires that it be turned off. Lacking a test oscillator, a steady signal tuned through the input of the receiver (if the job is one of just touching $u p$, the i.f.
amplifier) will be suitable. However, with no oscillator and tuning an amplifier for the first time, one's only recourse is to try to peak the i.f. transformers on "noise," a difficult task if the transformers are badly off resonance, as they are apt to be. It would be much better to haywire together a simple oscillator for test purposes.

Initial alignment of a new i.f. amplifier is as follows: The test oscillator is set to the correct frequency, and its output is coupled through a condenser to the grid of the last i.f. amplifier tube. The trimmer capacitors of the transformer feeding the second detector are then adjusted for maximum output, as shown by the indicating device boing used. The oscillator output lead is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be necessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought

5-HIGH-FREQUENCY RECEIVERS

into use. It is desirable in all cases to use the minimum signal that will give useful output readings. The i.f. transformer in the plate circuit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tuned circuit feeding the mixer grid may have a very low imperdance at the i.f., it may be necessary to boost the test generator output or to disconnect the tuned cireuit temporarily from the mixer grid.

If the i.f. amplifier has a crystal filter, the filter should first be switched out and the alignment carried out as above, setting the test oscillator as closely as possible to the crystal frequency. When this is completed, the crystal should be switched in and the oscillator frequency varied back and forth over a small range either side of the erystal frequency to find the exact frequency, as indicated by a sharp rise in output. Leaving the test oscillator set on the crystal peak, the i.f. trimmers should be realigned for maximum output. The necessary readjustment should be small. The oscillator frequency should he checked frequently to make sure it has not drifted from the erystal peak.

A modulated signal is not of much value for aligning a erystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inaceurate if the andio output is used as the tuning indieation. lacking the a.v.c. tuning meter, the transformers may be conveniently aligned by ear, using a weak unmodulated signal adjusted to the crystal peak. Switeh on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realignod by using any steady signal, such as a local broadeast station, instead of the test oscillator. One's 100 -ke. standard makes an excellent signal source for "touching up" an i.f. amplifier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, be sure to read the instruction book carefully before attempting to realign the receiver. Most instruction books include alignment details, and any little sperial tricks that are prouliar to the receiver will also be deseribed in detail.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to socure adequate tracking over bach tuning range. The adjustment may be carried out with a test oscillator of suitable frequency range, with harmonics from your $100-\mathrm{kc}$. standard or other known oscillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequency end of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oscillator output may be comnected to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer capacitor
in the receiver to give maximum response on the test-oscillator signal, then reset the receiver dial to the low-frequency end of the range. Set the test-oscillator frequency near the frequency indicated by the receiver dial and tune the test oscillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial, more inductance (or more capacity in the tracking capacitor) is needed in the receiver oscillator circuit; if the frequency is lower, less inductance (less tracking capacity) is required in the receiver oscillator. Most commercial receivers provide some means for varying the inductance of the coils or the capacity of the tracking caparitor, to pormit aligning the receiver tuning with the dial calibration. Set the test oscillator to the frequency indicated by the receiver dial, and then adjust the tracking caparity or inductance of the receiver oscillator coil to obtain maximum response. After making this adjustment, recheck the high-frequency end of the scale as previously described It may be necessary to go back and forth between the ends of the range several times before the proper combination of inductance and capacity is secured. In many cases, better over-all tracking will result if frequencies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the highfrequency end of the range. Adjust the mixer trimmer capacitor for maximum hiss or signal, then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency end of the range, and repeat; if the circuits are properly designed, no changr in trimmer settings should be nerossary. If it is necessary to incroase the trimmer capacity in any cirenit, more inductance is needed: conversely, if less cupacity resonates the cirenit, less inductance is required.

Tracking seldom is perfect throughout a tuning range, so that a check of alignment at intermediate points in the range may show it to be slightly off. Normally the gain variation will be small, however, and it will suffice to bring the circuits into line at both cuds of the range. If most reception is in a particular part of the range, surh as an amatemb hand, the circuits may be aligned for maximm performanes in that region, even though the conds of the frecqueney range as a whole may be slightly out of aligment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequency amplifier and mixer circuits shows up as squeals or "hirdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to cause the a.v.c. system to reduce the receiver gain drastically. Oscillation can be caused by poor connections in the common ground circuits. Inadequate or defective by-pass caparitors in cathode, plate and sereen-grid circuits also can cause such oscillation. A metal tube with an ungrounded shell may cause trouble. Improper

One-Tube Regen

screen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may be responsible for such instability

Oscillation in the i.f. eircuits is independent of high-frequency tuning, and is indicated by
a continuous squeal that appears when the gain is advanced with the c.w. beat oscillator on. It ean result from defects in i.f.-amplifier circuits. Inadequate sereen or plate hypass capacitance is a common cause of such oscillation.

Improving the Performance of Receivers

Frequently amateurs unjustly eriticize a receiver's performance when actually part of the trouble lies with the operator, in his latek of knowledge about the receiver's operation or in his inability to recognize a readily-curable fault. The best example of this is a complaint about "lack of selectivity" when the receiver contains an i.f. erystal filter and the operator hasn't bothered to learn how to use it properly. "Lack of sensitivity" may be nothing more than poor alignment of the r.f. and mixer tuning. The cures for these two complaints are obvious, and the details are treated both in this section and in the receiver instruetion book.

However, many complaints about selcetivity, sensitivity, and other points are justified. Inexpensive, and most second-hand, receivers cannot be expected to measure up to the performance standards of some of the current and toppriced receivers. Neverthcless, many amateurs overlook the possibility of improving the performance of these "bargains" (they may or may not be bargains) by a few simple additions or modifications. From time to time articles in QS'T describe improvements for specific receivers, and it may repay the owner of a newlyacquired second-hand receiver to examine past issues and see if an applicable article was published. The annual index in each lecember issue is a help in this respect.

Where no applicable article can be found, a few general principles ean be laid down. If the complaint is the inability to separate stations, better i.f. (and occasionally audio) selectivity is indicated. The subject has been treated earlier in this section, and several constructional articles follow. The answer is not to be found in better bandspread tuning of the dial as is sometimes erroneously concluded. However, with the addition of more i.f. selectivity, it may be
found that the receiver's tuning rate (number of ke. tuned per dial revolution) is too high, and consequently the tuning with good i.f. selectivity becomes too critical. If this is the case, a 5 -to-1 reduction phanetary dial drive mechanism may be added to make the tuning rate more favorable. These drives are sold by the larger supply houses and can usually be added to the receiver if a suitable mounting bracket is made from sheet metal. If there is already some backlash in the dial mechanism, the addition of the planetary drive will magnify its effect, so it is necessary to minimize the backlash before attempting to improve the tuning rate. While this is not possible in all cases, it should be investigated from every angle before giving up. Replaeing a small tuning knob with a larger one will add to ease of tuning.
In many of the inexpensive receivers the frequency calibration of the dial is not very accurate. The receiver's usefulness for determining band limits will be greatly improved by the addition of a $100-\mathrm{kc}$. crystal-controlled frequency standard. These units can be built or purchased complete at very reasonable prices, and no amateur station worthy of the name should be without one.

Some receivers that show a considerable frequency drift as they are warming up can be improved by the simple expedient of furnishing more ventilation, by propping up the lid or by drilling extra ventilation holes. In many cases the warm-up drift can be cut in half.

Receivers that show frequency changes with line-voltage or gain-control variations can be greatly improved by the addition of regulated voltage on the oscillators (high-frequency and b.f.o.) and the screen of the mixer tule. There is usually room in any receiver for the addition of a VR tube of the right rating.

A One-Tube Regenerative Receiver

The receiver shown in Figs. 5-29, 5-31, and 5-32 represents close to the minimum requirements of a useful short-wave receiver. ('nder suitable conditions, it is capable of receiving signals from many foreign countries. It is a good receiver for the beginner, because it is easy to build and the components are not expensive.

With this receiver it is possible to hear amateur and commereial stations in the 2 - to $20-\mathrm{Mc}$. range. This tuning range will enable the builder to listen to the two low-frequency Novice bands. Also, if one is interested in obtaining code prac-
tice, W1AW, the ARRL Hq. station, can be tuned in for its nightly code-practice sessions.
While the title indicates that the receiver has one tube, actually it uses two tubes in one envelope - envelope meaning the glass enclosure. The 6U8 is a triode-pentode, and in this receiver the pentode section is used as a regenerative detector and the triode as an audio amplifier.
Referring to Fig. 5-30, the antenna coil, L_{1}, couples the signal to the detector tuned circuit $L_{2} C_{2} C_{3}$. The capacitor, C_{2}, is larger than C_{3} and is used as the "bandset" capacitor - once C_{2} is set for a particular frequency range, C_{3} is used as

Fig. 5-29-Frant view of the one-tube regenerative receiver and power supply. The cantral at the upper left is the general-coverage tuning, center is bandspread, lawer left, the regeneration control, and the bottom center the antenna trimmer.
the "handspread" tuning control. To facilitate using manufactured coils, the coil L_{2} is tapped to obtain a feedback or "tiekler" winding. Regeneration in the detector is controlled by changing the sareen voltage obtained at the potentiometer R_{1}. An r.f. filter, using two capacitors and an r.f. choke, is plared in the plate circuit of the pentode detector to reduce r.f. appearing at the grid of the triode audio amplifier. Still further attenuation of r.f. at the grid is obtained through the use of a series resistor and an shant capacitor right at the grid of the audio stage. The audio coupling choke, L_{3}, is made from an interstage audio transformer with the two windings connected in series. A highinductinne choke could be used here, but the series-ronnected transformer is less expensive.

The headphones are connected directly in the plate circuit of the audio stage, and consequently the plate volatge appears at the terminals you can get an electrical shock here if you aren't careful. Some receivers eliminate this hazard by feeding the plate through an audio choke and coupling to the headphones through a eapacitor, but in the interest of saving a few dollars this protective feature was not included. Be sure to use "high-impedance" headphones with this receiver - the low-impedance headphones that have been available in surplus will not work well in this particular cireuit.

The receiver is built on a $7 \times 7 \times 2$-inch aluminum chassis, with the power supply momated on a separate chassis. In order to minimize hum pickup and vibration from the power transformer, it is not advisable to mount the power supply on the same chassis as the receiver. An aluminum chassis is easy to work; a $1 / 8^{-}$and $1 / 4-$ inch drill, phus a small rat tail file and hack-saw blade are all the tools needed for the job, although two socket punches will save some work.

The first step is to moant the coil and tube sockets. They are spaced 2 inehes from the sides at the center of the chassis. Ground lugs should be mounted under the nuts that hold the tube socket and also under the rear nut holding
the coil socket. Next, the panel holes are drilled.
Looking at Fig. 5-29, front, the knob at the lower left is the regeneration control, lower center is the antenna trimmer, and the headphone tips are at the lower right. The knob at the upper left is for the general-coverage capacitor, and the

[^3]
One-Tube Regen

one at the right the band spread tuning. The dial shown in the photograph is the National type K.

After the holes are drilled in the panel, it is held in place against the chassis and the four holes along the bottom are used as a template for the chassis holes. A small right-angle bracket to hold the antenna-trimmer capacitor is made from a piece of aluminum. The hole in the bracket should be large enough to clear the rotor of the capacitor, since both the rotor and stator are insulated from the chassis. The trimmer is mounted to the bracket by screws and the insulated nuts on the capacitor frame. The bracket, tie points, and audio choke L_{3} can now be mounted in place.

The two capacitors, C_{2} and C_{3}, should then be installed on the panel. When the potentiometer R_{1} and the pin jacks are mounted in place, they will hold the panel to the chassis. Be sure to insulate the pin jacks from the panel and chassis with fiber washers. The through-shaft bushing is then measured and cut to size, making allow-
ance for the insulated coupler.
If this is your first construction project, see the section on Construction Practices for tips on wiring and soldering before starting this job.

It is important that a separate ground lead be connected to the rotors of C_{2} and C_{3} and the lead brought below the chassis to a common grounding point at the tube socket. This will help make the receiver stable and reduce hand capacity.

There are five leads coming from the interstage transformer: red, blue, black, and two green. The red lead and green lead that are directly opposite each other are connected together. After the leads are soldered and taped, the end of the black lead is also taped. These leads are then rolled up and tucked in the corner of the chassis. The remaining blue and green leads then become those used for wiring the seriesconnected transformer into the circuit. One is connected to the junction of the $0.01-\mu$ f. disk capacitor and the $1-\mathrm{mh}$. r.f. choke and the other lead is connected to the $B+$ voltage terminal.

Fig. 5-31-Rear view of receiver and power supply showing the placement of ports. The varioble capocitor on the left is for band-spread and the one on the right for generol coverage. The leods from the two copacitors ore run through rubber grommets to ovoid shorting to the chassis top.

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-32-Bottom view of the two units. At the lower left in the receiver is the interstoge tronsformer L_{3}. To the right of L_{3} is the ontenno-trimmer copocitor mounted on o right-ongle brocket. Immediotely in front of the brockets is the insuloted shoft coupler which connects the through-shoft bushing to the ontenno trimmer.

The selenium rectifier in the power supply is visible between the two electrolytic copocitors.

The Barker \& Williamson coils are mounted on five-prong plugs, although only four of the contacts are used. The link mounted at one end of the coil is L_{1} and the coil proper is L_{2}. To make the tickler tap, a short piece of hook-up wire approximately 3 inches long is soldered to the fifth prong on the plug. The piece of wire is then run through the middle turns of the coil and soldered to the tap point. For the 80 -meter coil, the tap is connected to the 8th turn in from the link end. To get the tap wire through the middle turns of the coil, it will he necessary to bend two or three turns of the coil in towards the center of the coil. This will provide sufficient clearance for the tap lead. It is also necessary to bend in the 8 th turn to make the tap connection. Be sure that none of the bent turns touches adjacent turns.

For maximum bandspread on 40 meters, it is neecssary to remove nine turns from the 40 meter coil. The turns are taken from the end opposite the link end of the coil. The tickler tap is made on the 4 th turn end from the link end.

To bandspread the 20 -meter coil, two turns are removed from the end opposite the link end. The tap is placed on the 4th turn from the link end. In all three coils, the tap lead should be insulated where it passes through the coil turns.

The power-supply components can now be wired. There are two important points that beginners should keep in mind when wiring the supply. The first is that the electrolytic capacitors slrould be wired with the leads marked with a minus sign, or negative, connerted to the chassis. The plus sign, or positive, connects to the choke leads. Likewise, the selenium rectifier is marked with a plus sign, and this lead is connected to the choke lead. Four leads are brought out from the power supply to connect to the receiver: the two heater leads, the $B+$ lead, and the B - lead.

When the power supply is wired and the leads
connected to the receiver, the unit is ready to test.
If you already have an antenna strung up, comnect the end of it to Terminal 2 - the one connected to the rotor of C_{1}. If you don't have an antenna, any wire, 20 to 40 feet long or longer, can be strung up. An outside antenna will perform better than one indoors, although you'll hear many signals with just a wire in the room.

Connect your headphones to the tip jacks and plug in the 80 -meter coil. Plug the power cord into the 115 -volt a.c. line and watch the 6U8 to see if the heater lights up. If it doesn't, turn off the power and check wiring from the power supply to the heater pins on the GU8 socket.

The receiver will only take a minute to warm up. Turn the regeneration control and, at one point, you should hear a change in the characteristic of the noise. This is the point where the receiver starts to oscillate. Tune the generalcoverage capacitor slowly and you should hear signals. Leave the capacitor set at or near one of the signals and then tune the handspread capacitor. This capacitor gives a slower tuning rate, making it much casier to tune in signals.

With a signal tuned in, rotate the antennatrimmer control and the signal should get louder at one point. If it docsn't, change the antenna to terminal number 1 and short terminals 2 and 3 together with a short piece of wire. Try the antenna trimmer again, and you should find that the signai will peak up. The regeneration control setting may have to be changed to maintain oscillation. The antenna trimmer or regencration control may affect the tuning slightly.

Locating the amateur Novice bands is simple. Tune the receiver until you find an amateur phone station. The Novice band on both 80 and 40 meters is immediately below the phone bands. To tune lower in frequency than the phone bands, the bandspread capacitor is turned so that the plates mesh more.

The "SimpleX Super" Three-Tube Receiver

The name of this recoiver derives from "simple", " λ " for crystal (filter), and "super" for superheterodyne: hence a "simple ervstal-filter superheterodyne." For about fifty dollars and a few nights at the workbench this little receiver will allow you to copy practically any c.w. or s.s.b. signal in the 40 - or 80 -meter band that a much more expensive receiver might drag in. By the flip of a switch you can tune to 5 Mc . for WWV.

This 3 -tube receiver will permit the singlesignal reception of code signals. Single-sideband phone can be handled with no diffieulty at all. With the b.f.o. turned off for the reception of a.m. signals, a threshold effeet shows up that prevents digging all the way down for the weak ones, but one can still copy plenty of a.m. signals. Since the receiver uses only three tubes, it doesn't have the more-than-enough gain of a big receiver, and its performance won't be very impressive on a poor (short or low) antenna. However, if the transmitting antenna is also used for receiving, you will find yourself backing down on the volume control to save your cars.

Referring to the cirenit diagram in lig. $\mathbf{5}$-3.4, the receiver is a superheterodyne with an intermediate frequency of 1700 kc . With the h.f. oscillator tuning 5.2 to 5.7 Mc., the $3.5-$ or the $7-\mathrm{Mc}$. amateur bands can be tuned merely by retuning the input cireuit, $L_{1} C_{1}$. Since ('1 is large enough to hit the two bands without a coil change, the band-changing process consists of turning (c) to the low- or high-capacitance end of its range. To cony WWV at 5 Mc ., the oscillator must be tuned to 3.3 Mc., and this is done by switching in an additional eapacitor across the oscillator circuit.

If you are disappointed because the receiver
"lo'sn't tume the 2l-Mc. band, remember that the "under- $\$ 100$ " receivers don't either. Sure, the dials show 21 Me., but try to use the receivers to hold a signal for any length of time! The Simple. Super, with a ervstal-controlled converter between it and the antenna, will handle 15 meters like 80.

Selectivity at the i.f. is obtained through the use of a single crystal. Although not as sharp as the usual $45 \overline{5}$-ke. crystal filter, it is sharp enough to provide a fair degree of single-signal c.w. reception and yet broard enough for good copy of an s.s.b. phone signal.

In the detector stage, the pentode section of a 6U8A is used as a grid-leak detector, and the triode section serves as the b.f.o. Stray coupling at the socket and in the tube provides adequate injection. Audio amplification is obtained from the two triode sertions of a 6 CG 7 . The primary of a small output transformer, T_{1}, serves as the coupling for high-impedance headphone output, and a small loudspeaker or low-impedance headphones can be connected at the output winding of the transformer. Although the audio power output is less than a watt, it is suffieient to drive a loudspaker adequately in a small cuiet room.

The power supply uses a large choke and two 40- $\mu \mathrm{f}$. caparitors, and the very slight hum that can be detected in the headphones with the volume full on is stray a.c. picked up by the detector grid; it doesn't come from inadequate filtering of the power supply. (The hum can only be heard with no antema on; under normal operation the incoming noise will mask the slight hum.)

A switch at the input of the receiver is included so that the receiver can be used to listan to one's own transmitter without too severe blocking. Lsing the b.f.o. switeh to cut in the WWV pad-

Fig. 5-33-The SimpleX Super receiver uses three dual tubes and a crystal filter to cover the $80-$ and 40 -meter bands, and it can tune to 5 Mc . for copying WWV. The dial scale is made from white paper held to the panel by red Scotch tape; the pointer is a slice of the tape.

Fig. 5-34-Circuit diagram of the SimpleX Super receiver. Unless atherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ahms, resistars are $1 / 2$ watt. Palarity shown on electrolytic capaciters; fixed capaciters $330 \mu \mu$. or less are silver mica ar NPO ceramic. Nanelectrolytic fixed capacitcrs over $0.025 \mu \mathrm{f}$. are 400 -volt malded tubulars.

Fixed capacitors 0.001 through 0.025 are ceramic.
C_{1} - $40-\mu \mu \mathrm{f}$. midget variable (Hammarlund APC-1 40-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-15).
C_{3} - $15-\mu \mu \mathrm{f}$. trimmer (Hammarlund MAPC-15-B).
$C_{4}, C_{6}-3-30-\mu \mu \mathrm{f}$, mica campression trimmer.
C_{5}-Dual 40- μ f. 450 -volt electralytic (Mallory TCD. 78 or equiv.).
J_{1}, J_{3}-Phono jack.
J_{2}-Open-circuit headphone jack.
L_{1}, L_{2}-See Fig. 5-35.
$L_{3}, L_{4}-105-200-\mu$ h. slug-tuned (North Hills 120.H coil mounted in North Hills S - 120 shield can).

L-36-64- $\mu \mathrm{h}$. slug-funed (North Hills 120-F cail maunted in North Hills S-1 20 shield can).
L6-16-hy. $50-\mathrm{ma}$. filter choke (Knight 62-G-137 or equiv.).
$\mathrm{R}_{1}-1 / 2$ megahm volume cantrol, audia taper, with switch $\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-2.5-\mathrm{mh}$. r.f. chake (Waters C1155).
S_{1}-1-pole 12 -position (2 used) rotary ceramic switch (Centralab PA-2001).
S_{2}-2-pole 6-pasition (4 used) rotary ceramic switch (Centralab PA-2003).
S_{3} —S.p.s.t. switch, part of R_{1}.
T_{1} - 10,000-ohms-to-voice-cail autput Iransformer (Stancor A. 3822 or equiv.)
$\mathrm{T}_{2}-480 \mathrm{v}$. c.t. at $40 \mathrm{ma}, 5 \mathrm{v}$. at $2 \mathrm{amp} ., 6.3 \mathrm{v}$. ot 2 amp (Knight 62-G-034 or equiv.).
$\mathrm{Y}_{1}-1700$-kc. crystal in FT-243 halder (E. B. Lewis or equiv.).
(All radio stores do not handle the above components. For prices and names of dealers write to North Hills Electric Co., 402 Sagomore Ave., Mineola, N. Y.; Knight is handled by Allied Radio, 100 N. Western Ave., Chicago 80, III.; Waters Mfg. Inc., Boston Post Rd., Wayland, Mass.; E. B. Lewis, 11 Bragg St., E. Horlford, Conn.)

Fig. 5-35-Details of the coil construction. Each one is made from B \& W 3016 Miniductor stock, which is wound 32 t.p.i. and 1 -inch diameter. The separation between coils in L_{1} is 7 turns; the separation befween coils L_{2} is 1 furn. It is important that the coils be connected as indicated. The Miniductor stock can be cut into the required lengths by pushing in a furn, cutting it inside the coil and then pushing the newly-cut ends through to outside the coil. Once outside, it is easy to peel away the wire with the help of long-nose pliers. When sufficient furns have been removed, the support bars can be cut with a fine saw.
der was done (instead of by the more logical S_{1}) to keep the input short-eircuiting leads short.

An $8 \times 12 \times 3$-inch aluminum chassis takes all of the parts without crowding, and the location of the components can be seen in the photographs. The $71 / 4 \times 13$-inch aluminum panel ($1 / 16$-inch thick) is held to the chassis by the b.f.o. (apacitor mounting screws, the phone jack, the dial drive and the two rotary switches. The tuning capacitor C_{2} is mounted on a small aluminum bracket made from an extra strip of the panel material; before the bracket is finally fastened to the chassis the eapacitor and bracket should be used to locate the dial hole on the panel. When drilling the hole for the dial drive, measure the dimension instead of using the template provided with the National K dial. It pays to take care in mounting the tuning capacitor and the dial, since a smooth tuning drive is an essential in any receiver. To facilitate tuning, a National HLT knob was used instead of the puny knob furnished with the K dial. The other knobs are gray National HR and HR-4.

Tie points are used liberally throughout the recoiver, as junctions for components and interconnecting wires. The coils L_{1} and L_{2} are mounted on tie points, using short leads. If the leads from L_{2} are too long, the coil will be "floppy" and the receiver may be unstable. Fig. 5-35 shows how coils L_{1} and L_{2} are constructed and connected. The leads from ('1 and ('2 are brought through the chassis in insulating grommets. The $3-$ to $30-$ $\mu \mu \mathrm{f}$. mica compression trimmer across L_{2} is soldered to the tie points that support the coil.
The receiver is wired with shielded wire for many of the leads, in an effort to minimize hum in the audio and feedthrough around the erystal filter. The shielded leads are marked in Fïg. 5-34 where feasible; the simple rule to follow is to shield all $\mathrm{B}+$ leads along with those shown shielded in Fig. 5-34. For easy of wiring, these shielded leads should be installed first or at least early in the construction. As the wiring progresses, a neat-looking unit can be obtained by dressing the leads and components in parallel lines or at right angles. D.c. and a.c. leads can be tucked out of the way along the edges of the chassis, while r.f. leads should be as direct as is reasonable.

If this is your first receiver or construction job, there are several pitfalls to be avoided. When in-
stalling a tube socket, first give a little thought to where the grid and plate leads will run, and orient the socket so that these leads will he direct and not cross over the socket.

Another thing to look out for is the wellmeaning store clerk who sells you stranded wire for making the connections throughout the receiver. The only stranded wire in this receiver is in the leads from the transformers, filter capacitor and filter choke, and in the shiclded wire, and all this only because there was no choice. Where stranded wire is used, be very careful to avoid wild strands that stray over to an adjacent socket terminal and short-circuit a part of the circuit without your knowing it. No. 20 or 22 insulated solid tinned copper wire should be used for connections wherever no shielding is used. I ong bare leads from resistors or capacitors should be covered with insulating tubing unless they go to chassis grounds.

The final bugaboo is, of course, a poorlysoldered connection. If this is your first venture, by all means practice soldering before you start to wire this receiver. Read an artiele or two on how to solder, or get a friend to show you how and to criticize your first attempts. A good soldering iron is an essential; there have bern instances of a first venture having been "soldered" with an iron that would just barely melt the solder; the iron was ineapable of heating the solder and work to the point where the solder would flow properly.

There is no need to worry about the dial scale when the recciver is first built, because the receiver has to be checked. The scale is a sheet of white paper held in place by red or blark Scotch tape. The pointer on the dial is a slice of the same tape.

When the wiring has been completed and checked once more against the circuit diagram, plug in the tubes and the line cord and turn on the receiver through S_{3}. The tube heaters and rectifier filament should light up and nothing should start to smoke or get hot. If you have a voltmeter you should measure about 250 volts on the $\mathrm{B}+$ line.

With headphones plugged in the receiver, you should be able to hear a little hum when the volume control is advanced all the way. If you can't hear any hum, touching a screwdriver to Pin 2 should produce hum and a loud click. This shows that the detector and audio amplifier are

5-HIGH-FREQUENCY RECEIVERS

Fig. 5.36 -Top view of the SimpleX Super. The fube between the two variable capacitors is the mixer-oscillator 6U8A; the 6CG7 audio amplifier is at the for right. The flexible insulated coupling between main tuning diat and the funing capacitor is a Millen 39016.
working.
The next step is to tune $L_{33} L_{4}$ and L_{5} to 1700 ke., the erystal frequency. If you have or cin borrow a signad generator, put $1700-k e$. r.f. in at the grid of the $6 \mathrm{U8} \mathrm{~A}$ mixer and peak L_{3} and L_{4}. lacking a signal generator, you may be lucky enough to find a strong signal by tuning around with ('2, but it isn't likely. Your best bet is to tume a broadcast reeciver to around 1245 ke ; if the reeciver has a $455-k e$. i.f. the oscillator will then be on 1700 ke . Don't depend upon the calibration of the broadeast receiver: make your own by cherking known stations. 'The oscillator of the broadeast reremer will furnish a steady (possibly hum-modulated) carrier that can be pieked up by running a wire tomporarily from the grid of the bU8A mixer to a point near the chassis of the b.e. receiver. Aljust L_{5} until you get a beat with
the $1700-\mathrm{kr}$. signal, and then prak L_{3} and L_{4}. If the signal gets too loud, reduee the signal bey moving the wire away from the b.c. receiver. Now slowly swing the signal frequency back and forth with the b.f.o. turned off; you should find a spot where the noise rushes up quickly and then drops off. This is the crystal frequency, and L_{3} and L_{4} should be peaked again on this frequency if you were a little off the first time.
An antenna conneeted to the receiver should now permit the reception of signals. With ('1 nearly unmeshed, you will be in the region of the T-Me. band, and with ('i almost completely meshed, you will be near 3.5 Me . Ino your tuning with the compression trimmer in the oscillator circuit, until you find a known frequency (it can be your own transmitter). Let's say your transmitter has a erystal at 3725 ke . Sot ('2 at half

Fig. 5-37-Shielded wire, used for most of the d.c. and 60 -cycle leads, lends to the clean appearance underneath the chassis. The switch at the left shorts the inpul of the receiver, and the adjacent switch handles the b.f.o. and the padding capacitor for WWV.

The phono jack at the top left is for the antenna; the other phono jack is for low-impedance audio output. The headphone jack (lower right) is for high-impedance audio output.

Five-Tube Superhet

capacitance and tune with C'6 until you hear your transmitter. You shouldn't need any antennat on the receiver for this test. Once you have the setting for the trimmer, put the antenna on the rereiver and look around for other known signals. (CIIU, the Canadian standard-frequency station at 7335 kc ., is a good marker.) With luck you should just be able to cover the 80 -meter band; if you can get one end hut not the other, a minor readjustment of the trimmer is indicated.

Once you have acquainted yourself with the 80 - and 40 -meter bands, and appreciate that you have to peak up) the input cireuit (${ }^{1}{ }_{1}$) fairly often as you tume arross the bands, you are ready to trim up, the crystal filter. Run the volume fairly high, so that you can hear noise from the prop-rely-peaked input circuit, and turn ('s until the noise takes on a higher-pitehed charateristic. (The b.f.o. stage is originally set up with ('3 at mideaparitancre and L_{5} adjusted for lowestpitched noise.) Now tune in a code signal with ('2 and swing back and forth through it. "One side" of the signal should be louder than the other. Tune to the weak side with a beat note of around 800 ceycles and then adjust (4 a for minimum signal. After a few attempts, juggling (${ }^{\prime}{ }_{3},\left({ }^{\prime} 4, L_{3}\right.$ and L_{4}, you should get a condition where the single-signal c.w. effect is quite apparent.

All that remains is to install the dial scalde and
calibrate it. A 100-ke. oscillator is ideal for this job: latcking one or the ability to borrow one, you will have to rely on other signals. If your crystal filter is 1700 ke . exactly, the 80 - and 40 -moter calibrations will coincide as they do on the scale shown in Fig. 5-33; if not, the calibration marks will he offset on the two bands.

If you find that you can't get WWV at 5 Me. with the $150-\mu \mu$. capacitor switehed in, substituto at $1: 30-\mu \mu \mathrm{f}$. mica in parallel with a $30-\mu \mu \mathrm{f}$. trimmer, and adjust so that WIVV falls on scale.

As you acquaint yourself with the operation of the receiver, you will notice that tuning $~_{1}$ will have a slight ceffect on the tuning of the signal. In other words, tuning ('i "pulls" the oscillator slightly, To remedy this would have made the recriver more complicated, and the simple solution is merely to first peak C_{1} on noise and then tune with C_{2}.

You will find this to be a practical receriver in every way for the c.w. (or s.s.1s.) operator. The tuning rate is always the same on 80 or 40 , or 15 with a converter, and 21-Mc. s.s.b. signals tune as easily as those on 3.9 Me. The warm-up drift is negligible, and the oseillator is surprisingly insensitive to voltage changes. Whether or not the oscillator is insensitive to shock and vibration will depend upon the care with which the components aro anchored to their respective tie points.

A Two-Band Five-Tube Superheterodyne

The five-tube superheterodyne shown in Figs. 5-38, 5-40 and $5-41$ is a double-conversion receiver tuning the 3.5-and 7 -Mc. amateur bands. It is not difficult to build, and it has stability and selectivity not surpassed by factory-built receivers costing much more.

Ascan be seen in Fig. 5-39, the cireuit diagram, the receiver uses intermediate frequencies of 1700
and 100 kc . The $1700-\mathrm{ke}$. first i.f. permits using an oscillator that tuncs only one range for the two bands. Tuning the oscillator from 5.2 to 5.7 Me. gives an i.f. of 1700 ke , for the 3.5 to $4.0-\mathrm{Me}$. range and the same i.f. for the 6.9 - to $7.4-\mathrm{Mc}$. range. The oscillator eomponents are soldered in phare (no switching or plug-in coils) and the dial calibration is made onee and can then be relied

Fig. 5-38-The five-tube doubleconversion superheterodyne tunes the 3.5 - and $7-\mathrm{Mc}$. bands without bandswitching. The controls on the left are audio volume (upper) and b.f.o. switch, and those on the right are ontenna tuning (upper) and i.f. gain.

Fig. 5-39-Wiring diagram of the five-tube receiver.

All capacitances in $\mu \mu \mathrm{f}$. unless specified otherwise. All resistors $1 / 2$-watt unless specified otherwise.
C_{1} - $140 \cdot \mu \mu$.-per-section dual variable (Hammarlund MCD.140.M).
$\mathrm{C}_{2}-35-\mu \mu \mathrm{f}$. midget variable (Hammarlund MF-35).
$\mathrm{C}_{3}-100 \cdot \mu \mu \mathrm{f}$. midget variable (National PSR-100).
R_{5} - 1000 -ohm wire-wound potentiometer (Mallory A1MP).
$L_{1}-8$ turns Ns. 30 d.c.c. close-wound over ground end of L_{2}.
$\mathrm{L}_{2}, \mathrm{~L}_{3}-35$ turns No. 30 d.c.c. close-wound on National XR- 50 slug-funed form. $L_{4}-23$ turns No. 24 bare space-wound 32 turns per inch, 5/a-inch diam. Tickler is $13 / 4$ turns spaced 1 turn from L_{4}. See text. (Made from B \& W 3008 Miniductor.)

Ls-20-mh. (opprox.) slug-funed coil (RCA 73576 or Merif TV-162).
L_{6} - 20 henry, 15 ma. choke (Stancor C1515).
T_{1}-1700-kc. i.f. transformer (made from two Vori Loopsticks shunted by 100- $\mu \mu$ f. mica capacitors. See fext).
$T_{2}, T_{3}-100-k c$. transformers made from TV components (RCA 73576 or Merif TV-162). See text.
\boldsymbol{T}_{4}-Small 3:1 audio transformer (Stancor A.63-C).
RFC $_{1}-750 \mu \mathrm{~h}$. (National R-33).
The 1600 -ke. crystal is a Peterson Radio type Z-2.

Five-Tube Superhet

Fig. 5-40-A top view of the fivetube superheterodyne shows how on aluminum and a steel chassis are combined for greater weight and strength. The 6C4 oscillafor and $6 A C 7$ mixer are at the left, and the two 6SN7s are af the extreme right. Note the shieid between the stator sections of the copocitor on the left.

upon. To change hands, it is only necessary to swing the input capacitor, C_{1}, to the 80 - or 40 meter band. The $1700-\mathrm{ke}$. i.f. eliminates any pulling on the oscillator, in rither range.
With no r.f. stage, the receiver's signal-tonoise ratio is determined by the mixer. The 6 AC 7 is the best tube available for the purpose. To minimize spurious responses, two tuned circuits are used in the input betweren antema and converter grid. The stator plates of the dual car pacitor, C_{1}, are shielded from each other, as are the two coils L_{2} and L_{3}, and the coupling between circuits is obtained by the $0.001-\mu \mathrm{f}$. eapacitor.

The 1700 -ke. signal from the first converter is converted in the 6 k 8 second converter to 100 kr . The use of a $1600-k e$ erystal for the oscillator at this point permits using an i.f. gain control that has no effect on the frequency. No frequency change with gain-control setting is a desirable characteristic of any good receiver, so the $1600-$ kc. crystal at $\$ 2.75$ is not a luxury. While the $1600-\mathrm{kc}$. oscillator could be made self-eontrolled, it would be almost certain to "pull" with gaincontrol changes.

Instead of a commercial unit, a homemade 1700 -kc. i.f. transformer is used at T_{1}. It is made from two "Vari Loopsticks" (high- Q broadcast antennas) shunted by $100-\mu \mu$ f. fixed capacitors. This works well and is cheaper than any com-mercially-available unit.

The $100-k c$. output from the 6188 is filtered through three tuned circuits and feeds a triode plate detector ($1 / 2$ 6SN7). This deteetor is regenerative, but the regeneration is fixed and doesn't have to be bothered with by the operater unless he changes tubes and the new tube has considerably different characteristics. The regenera-
tion in the 100 -kc. detector gives the receiver its single-signal c.w. reception characteristic, since there aren't enough tumed cirenits to give it otherwise. The b.f.o. uses the other triode in the GSN7 envelope, and stray coupling is ased for the b.f.o. injection. No panel control of b.f.o. pitch is available, because the selertivity is not adjustable and the variahle-pitch feature is not essential.

Up to this point the gain of the receiver is not too high, and two stages of aurlio amplification are used. Onitting the cathode bypass capacitors still leaves more than enough audio for any pair of high-impodance headphones.

By kerping the signal kevel low up to and through the selective stages, there is a minimum opportunity for overloading and cross-modulation, and the gain need be kept only high enough to prevent degrading the signal-to-noise ratio. Further, a regenerative stage has a tondency to "Haften out" with strong signals, so the regenerative detector is somewhat protected by holding the gain down. llowever, the receiver has quite adequate sensitivity - in any normal location and with a fair to good antenna, any signal that can be heard by a large receiver can be heard by this one, except in rare cases where the large receiver's superior selectivity makes the difference.

Construction

The construction of the receiver is unconventional in that two chassis are used, as shown in Figs. 5-38 and 5-40, and the panel is mounted away from the chassis. All of the electrical components are mounted on the aluminum $7 \times 11 \times$ 2 -ind chassis, and this sits on an inverted 7×11 $\times 2$-inch steel chassis that serves as a base and bottom cover. The brottom chassis has rubber feet

5-HIGH-FREQUENCY RECEIVERS

(grommets) at its corners that prevent its slipping on the table. The 8×12-inch panel is supported away from the aluminum chassis on $1 / 2$-inch-long brass collars, secured by suitable washers and (6-32 screws, as shown in Fig. 5-41. The pancl is supported by two such collars at each end of the chassis and be two more that make up to two of the mounting screws of the National ACN dial at the center. The two center collars add to the strength of the assembly by furnishing additional support for the panel and dial, and they should not be omitted.

The aluminum chassis is bolted to the steet chassis hy two $41 / 4$-inch lengths of $1 / 8$-inch diameter brass rod, threaded $6-32$ at each end. These rods pass through holes in the top and lip of eatch chassis. The only holes that are required in the steel chassis are those for the two tie rods, the four holes for the rubber feet, and at $11 / 4$-inch diameter hole to clear the headphone jack.

In the oscillitor circuit, the $35-\mu \mu \mathrm{f}$. tuning eapacitor, (${ }_{2}$, is supported by a small aluminum bracket. The correct location of the eapacitor on the bracket ean be found after the dial-andchassis assembly has been completed. It is imperative to the smooth operation of the tuning cap:acitor that the shaft of the capacitor be correctly aligned with the coupling of the dial. The $1(X)-\mu \mu \mathrm{f}$. trimmer, C_{3}. is mounted under the chassis with its shaft extending through to the top, so that the cappacitor is adjustable from above the chatsis. Neither $C_{2}{ }_{2}$ nor C_{3} is grounded to the chassis through its mounting - leals from the rotors are grounded to the chassis at
one point near the 6.107 tuhe socket. The oscillator coil, L_{4}, is mounted by its keads on a multiple tie point.
The shiehl between the input coils, L_{2} and L_{3}, is made of thin aluminum. It has a notch in the edge that goes against the chassis side, to clear the antenna-coil leads, and it has a hole through it for the lead between the bottoms of L_{2} and $L_{L_{3}}$. The dual capmeitor, C_{1} is fastened to the ehatsis by a single 6-32 screw, and the houl of this screw has a conper shield soldered to it for minimizing coupling between $C_{1 A}$ and C_{113}. The shiold is easily cut out from copper flashing and soldered to the screw head. The rotor assembly of C_{1} must be removed to put the shiok in place, but this is just a matter of loosening four serews. Don't touch the stator plates. The serew with the shield on it, which holds C_{1} to the chassis, also holds the coil shield in place underneat the chassis.

The 1700 -ke. i.f. transformer is made by mounting the two "Loopsticks" 1 -inch ipart on the chassis, as shown in Figs. $\overline{\mathrm{j}}-38$ and $5-40$. The $100-\mu \mu \mathrm{f}$. caparitors are mounted on the coils.

The looke. circuits use a TV eomponent, a sperial horizontal oscillator coil. As purchased, they have the soldering lags and tuning serew out of the top of the can, but they are a a aily reversed by uncrimping the can and reversing the assembly. Before rassembly, however, there are a few things to be done. The large eotil is used for the 100 -ke. tuned circuit by connerting a 100 $\mu \mu$. mica eapacitor botween lins A and F and lifting the center-tip from lin C. Don't break the renter-tap - the easiest way is to scrape the two

Fig. 5-41-A bottom view of the five-fube superheterodyne. The audia choke, L_{6}, is in the upper right-hand corner, near where the power leads leave the chassis. The 6SN7 sacket nearer the panel is the detector-b.f.o. section.

wires first to remove the insulation, flow a drop of solder on the seraped portion, and then cut the two wires away at the pin. The other winding is used as the primary in T_{2} and the tickler in T_{3}. The primary in T_{2} can be tuned from the top, because there is also an iron slug in this smaller coil.

In wiring the set, use tie points liberally so that no componerts will be flopux. The only shiedded wires are the one running from the volume control to Pin 1 of the audio amplifier and the leads from T_{3} to l'ins 4 and 5 of the detector. The shields are grounded to the chassis at the ends and any other convenient points.

The oscillator coil, L_{4}, is made from $13 \& \mathrm{~W}$ Miniductor. To separate the two coils of L_{4}, push the 3rd or th turn from one end of the piece of Miniductor through toward the center of the coil. Snip this wire with a pair of cutters and push the two ends back out. Fach end is then peeled around for $1 / 2$ turn. The two coils are adjusted to the right number of turns by working in from the outside ends.

The rotor of C_{1} is connected underneath the chassis to the 0.OM1-mf. coupling eapacitor by running a wire from the front support of the rotor through a $1 / 4$-inch clearance hole in the chassis. The $0.001-\mu \mathrm{f}$. coupling capacitor and L_{2} and L_{3} are grounded to the lug under L_{2}.

Adjustment

There are two types of adjustment that must be made to get the receiver working: adjusting the cireuits to the proper frequencies and adjusting the oscillators and the regenerative detector to the proper amplitudes. To this latter end, leave the eathode end of R_{1} disconnerted in the original wiring, and lightly solder (so) that it can be changed later) the lead from l'in 5 of the detector to Terminal C of T_{3}. Resistors R_{2} and R_{3} may require changing, so don't solder them too well at first.
Connect a power supply to the receiver and see that the tubes light and that the power-supply voltages are approximately correct. The 250 volts can be anything 25 volts either side of 250 , and the 105 volts, coming from a VR tube, will be nothing to worry about if the VIX tube lights.

Next connert a low-range milliammeter between R_{1} and cathore (+ lead to cathode) and apply power again. The grid current should read ahout 0.05 ma . ($50 \mu \mathrm{a}$.). If it reads much more than this, try a slightly larger resistor at R_{2}, or a smaller one if the grid current is too low. Make these adjustments with the rotor arm of the r.f. gain control at the grounded end.

Next check the oscillation of the 6C4 highfrequency oscillator. To do this, connect a $0-10$ voltmeter across the $47(0)$-ohm resistor in the plate circuit of the $6 \mathrm{C} 4(+$ terminal to +105 side, - terminal to the 0.001- $\mu \mathrm{f}$. capacitor). Observe the voltage reading and then touch your finger to the stator of C_{2} or C_{3}. If the oscillator is working, the voltmeter reading will increase. If you get no change, it means the oscillator isn't working. With both coils of L_{4} wound in the same direction (as they will be
if Miniductor is used), the stator of the tuning capacitor should be eonnected to the outer end of the larger coil, and Pin 5 of the 6 C 4 should be conneeted to the outside turn of the smaller coil.

If you can borrow a serviceman's test oseillator that will give a modulated signal at 1700 kc ., this signal can be introduced at the grid of the GK8 and the $100-\mathrm{ke}$, i.f. circuits can be poaked (b.f.o. turned off), listening in the headphones for maximum response. The $1700-\mathrm{kr}$. signal can then be transferred to the grid of the 6 AC 7 and the slugs peaked on T_{1}. Latcking the signal generator, the alternative is to provide a modulated signal in the 80 - or 40 -meter band and couple it to the stator of $C_{1 \mathrm{~B}}$. If the signal is from a crystal oseillator or v.f.o. at 3750 ke . (for example), running from an unfiltered power supply to furnish the modulation, set the tuning dial vertical. If the signal is at 3500 kc ., set the tuning capacitor C_{2} at almost full capacity. Roock C_{3} slowly until the signal is heard. Then peak the 100 -ke. transformers T_{2} and T_{3}, reducing the signal input as necessary to avoid overloading. Next turn on the b.f.o. and adjust the slug in L_{5} until a beat note is heard. Then peak the slugs in T_{1}.

With the initial tuning of the $100-\mathrm{kc}$. channel done, the slugs of L_{2} and L_{3} ean be adjusted for maximum signal, with no antenna conneeted. Set C_{1} at almost full caparity, the signal near 3.5 Mc., and adjust the iron slugs for maximum in the headphones. If a v.f.o. or crystal oscillator is furnishing the signal, there will probably be enough piek-up without any apparent coupling, hut a short 6 -inch wire conneeted to the antenna terminal may be required to piek up the output from a low-powered signal source.

It is not likely that the $100-\mathrm{kc}$. cireuits will be tuned to the exact frequency that makus the calibrations coincide on 80 and 40 meters. While this isn't necessary, of course, it does make the dial look cleaner. To bring the calibrations into line, beg or borrow a frequeney standard that will give signals at $100-\mathrm{kc}$. intorvals. First locate the 4.0- and $7.0-\mathrm{Me}$. points on the receiver dial, by referring the harmonies from the $100-\mathrm{ke}$. standard to the original signal you used for alignment. If, for example, the 80 -meter signal you used was at 3650 kc, you know that the first 100 -ke. harmonic you hear on the high-frepuency side will be 3700 ke., and the first one on the low side will be 3600 kc . The second harmonic of the 3650 -ke. signal will furnish a check point at 7300 kc . (2×3650), so swinging C_{1} to about $1 / 3$ meshed (where it will peak the 7 -Mc. signals) will allow you to locate the $7-\mathrm{Mc}$. points. Thus you will have 100 -ke. intervals on the dial from 3.5 to 4.0 Mc . and from 6.9 to 7.4 Mc ., but not necessarily coinciding. To make them coincide, some slight retuning of the 100 -kc. transformers is required. If, for example, the $7.0-\mathrm{Mc}$. point occurs to the right of the $3.6-$ Mc. point, the 100 -kc. amplifier is tuned low, and the slugs should be turned out slightly. A few trials will bring the circuits into place.

Now check the regeneration of the detector by connecting the lead from P'in 5 of the detector to

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-42-Suggested circuit diagram for the receiver power supply. T_{1}-Stancor PM-8407 or equivalent. $\mathrm{S}_{1}-$ S.p.s.t. toggle switch.

D on T_{3}. If a steady beat is heard, indicating that the detector is oscillating, tune both circuits of T_{2} and see if they will kill the oscillation. Their action is to load the regenerative detector to where it won't oscillate - if the action persists, try a 4700 -ohm resistor at R_{3} as a last resort. These circuits should be peaked on a modulated signal, with the b.f.o. turned off.

After the detector has been made regenerative, the calibration can again be checked as in a preceding paragraph, and any minor changes in tuning made as are found necessary. Once the $100-\mathrm{kc}$. circuits have been aligned they can be left alone, and if the $3.5-$ and $4.0-$ Mc. points don't come where you want them on the tuning dial, a slight adjustment of C_{3} will correct it.

Connect a $140-\mu \mu \mathrm{f}$. variable in series between antenna and the antenna post. On 80 meters,
peak C_{1} on a signal and rock the adjustment slug of L_{2}. If it tunes fairly sharp, the antenna coupling is not too tight on that hand. Swing C_{1} out until you are listening on 40 (to a signal) and again rock the slug on L_{2}. If it tunes broad, reduce the capacity of the $140-\mu \mu$ f. antenna capacitor until L_{2} shows a definite peak. Note the settings of the capacitor for the two bands.

The input capacitor, C_{1}, will tune sharply on either loand, and it should always be peaked when listening to a weak signal. It can be detured slightly when receiving abnormally loud signals.

The power-supply requirements for the receiver are slight: about 15 ma . at 250 volts and 25 ma . at 105 . A $60-\mathrm{ma}$. power supply will take care of this and the extra 10-12 ma. for a VR-105. A circuit diagram with suggested values is shown in Fig. 5-42.

A Selective Converter for 80 and 40 Meters

Many inexpensive "communications" receivers are lacking in selectivity and bandspread. The 80 - and 40 -meter performance of such a receiver can be improved considerably by using ahead of it the converter shown in Figs. 5-43 and 5-45. This converter is not intended to be used ahead of a broadeast receiver except for phone reception, because the BC set has no b.f.o. or manual gain control, and both of these features are necessary for good c.w. reception. The converter can be built for less than $\$ 20$, and that cost can be cut

Fig. 5.43-Used ahead of a small receiver that tunes to 1700 kc ., this converter will add tuning ease and selectivity on the 80 - and 40 -meter bands. The input capacitor is the dual section unit at the upper left-hand corner. The crystal and the tuning slug for L_{6} are near the center at the foreground edge.
appreciably if the power can be "borrowed" from another source.

The converter uses the tuning principle employed in the two-band superheterodynes deseribed earlier in this section. A double-tuned input circuit with large capacitors covers both 80 and 40 meters without switching, and the oscillator tunes from 5.2 to 5.7 Mc . Consequently with an i.f. of 1700 kc . the tuning range of the converter is 3.5 to 4.0 Mc . and 6.9 to 7.4 Mc . Which band is being heard will depend upon the setting of the input cireuit tuning (C_{1} in Fig. $5-44$). The converter output is amplified in the receiver, which must of course be set to 1700 kc . To add selectivity, a $1700-\mathrm{kc}$. quartz crystal is used in series with the output connection. A small power supply is shown with the converter, and some expense can be eliminated if 300 volts d.c. at 15 ma . and 6.3 volts a.c. at 0.45 ampere is available from an existing supply.

Construction

The unit is built on a $7 \times 11 \times 2$-inch aluminum chassis. The front panel is made from a 6×7-inch piece of aluminum. The power supply is mounted to the rear of the chassis and the converter components are in the center and front. The layout shown in the bottom view should be followed, at least for the placement of L_{1}, L_{2}, L_{3} and L_{4}.

The input and oscillator coils are made from a single length of $\mathrm{B} \& \mathrm{~W}$ Miniductor stoek, No.

Converter For 80 and 40

 noted.
$\mathrm{C}_{1}-365-\mu \mu \mathrm{f}$. dual variable, t.r.f. type.
$\mathrm{C}_{2}-3-30 \cdot \mu \mu \mathrm{f}$. trimmer.
$\mathrm{C}_{3}-15-\mu \mu \mathrm{f}$. variable (Bud 1850, Cardwell ZR-15AS, Millen 20015).
$L_{1}, L_{2}, L_{3}, L_{4}, L_{5}-B$ \& W No. 3016 Miniductor, 1 -inch diameter, 32 turns per inch, No. 22 wire, cut as below.
$L_{1}-8$ turns separated from L_{2} by one turn (see text).
3016. Count off 31 turns of the coil stock and bend the 32 nd turn in toward the axis of the eoil. Cut the wire at this point and then unwind the 32 ud turn from the support bars. Using a havksaw bate, carefully eut the polystyrene support hars and separate the 31 -turn coil from the original stock. Next, count off ! turns from the 31-turn coil and cut the wire at the !日th turn. At the out unwind a half turn from each eoil, and also unwind a half turn at the outside ends. This will kave two coils on the same support bars, with half-turn leads at their ends. One coil has 21 turus and the other has 8 turns, and they are separated by the space of one turn. These coils are L_{4} and \dot{L}_{5}.

The input coils L_{1} and L_{2} are made up in the
$L_{2}, L_{3}-19$ turns.
$L_{4}-21$ turns separated from L_{5} by one turn.
Ls -8 turns.
L_{6} - 105-200- $\boldsymbol{\mu}$. slug.tuned coil (North Hills Electric 120H).
L_{7}-See text.
Crystal-1700 kc. (E. B. Lewis Co. Type EL-3).
same manner. Standard bakelite tie points are used to mount the coils. Two 4 -terminal tie points are needed for $L_{1} L_{2}$ and $L_{4} L_{5}$, and a oneterminal unit is required for L_{3}. The plate load inductance L_{6} is a $10 \overline{5}-200 \mu \mathrm{~h}$. variable-inductance coil (North Hills 120H). The coupling coil L_{7} is 45 turns of No. 32 enam. scramble-wound adjarent to L_{6}. If the eonst ructor should have difficulty in obtaining No. 32 wire, any size smadl enough to allow 45 turns on the coil form can be substituted.

The input capacitor, C_{1}, is a 2 -gang t.r.f. variable, $365 \mu \mu \mathrm{f}$. per section. As both the stators and rotor must be insulated from the chaesis, extruded fiber washers should be used with the serews that hold the unit to the chassis. The panel shaft hole should be made large enough to

Fig. 5.45-Bottom view of the converter showing plocement of parts. The coil at the lower left is l_{3}, and the input coil, $l_{1} L_{2}$, is just to the right of L_{3}. The oscillator coil $L_{4} L_{5}$, is at the left near the center. The output coil, L_{0}, is near the top center.

clear the rotor shaft.
A National trpe () dial assembly is used to tune (3. One word of advice when drilling the holes for the dial assembly: the template furnished with the unit is in error on the 2 -inch dimension (it is slightly short) so use a ruler to measure the hole sparcing.

In wiring the unit, it is important that the output lead from the crystal soeket be run in shielded wire. A phono jark is mounted on the back of the chassis, and a piece of shielded lead conmerts from the jarek to the arystal socket terminal. The leads from the stators of C_{1} and (${ }_{3}$ atre insulated from the ehassis by means of rubber grommets.

Testing and Adjustment

A length of shielded wire is used to connect the converter to the receiver: the inner conductor of the wire is ronnerted to one antenna terminal: the shield is conmerted to the other terminal and grounded to the receiver ehassis. The use of shiedded wire helps to prevent piekup of unwanted $1700-k e$ signals. Turn on the converter and receiver and allow them to warm up. Tune the recoiver to the $5.2-$ Mc. region and listen for the oscillator of the converter. The b,foo, in the receiver should be turned on. Tune around until the oscillator is heard. Once you spot it, tune ('3 to maximum capacitance and the receiver to as close to 5.2 Me. as you cam, Adjust the oscillator trimmer caparitor, ('2, until you hear the oscillator signal. Put lour receiving antenna on the converter, set the receiver to 1700 kc , and tune
the input capacitor, C_{1}, to near maximum eapacitance. At one proint you'll hear the background noise come up. This is the 80 -meter tuning. The point near minimum caparitance - where the noise is loudest - is the 40 -meter tuning.

With the input tuning set to 80 meters, turn on your transmiter and tune in the signal. Byy spotting your crystal-controlled frequence you'll have one sure calibration point for the dial. By. listening in the evening when the band is crowded you should be able to find the band edges for calibration points. If you have areese to a signal gencrator, it is a simple matter to calibrate the dial.

You'll find by experimenting that there is one point at or near 1700 kc , on your receiver where the background noise is the loudest. Set the rereiver to this point and adjust the slug on L_{6} for maximum noise or signal. When you have the receiver tuned exactly to the frecuucney of the crystal in the converter, you'll find that you have quite a bit of selectivity. Tume in at \because.w. signal and tune slowly through zeroboat. You should notice that on one side of zero beat the signal is strong. and on the other side you won't hear the signal or it will be very wak (if it isn't, off-set the b.f.o. a bit). This is known as single-signal cow. reception, because the "audio image" of the cow. signal is reduced.

When listening to phone signals, it maty be found that the use of the puartz erysal downows some of the naturahares of the voior sigmal. If this is the ease, the crystal should be umphagged and replaced by a 10 - or $2(0)-\mu \mu$ i. capaceitor.

The "Bonus" 21-Mc. Converter

The cure for most of the high-frequencer ills of many reecevers is the installation of a good rerstateontrolled converter between the antematand the rereiver. The converter shown in ligs, $\overline{5}-48$ and $\overline{5}-\mathrm{i} 0$, while intended primarily for 21-Mt. operation, gives a bonus of 28 -the reception without any additional parts or switching. This is accomplished be using signal cireuits that tome more than the $2 i-$ to 30 -Nt. range and using a

rystalacontrolled owillator at 25 Mc. ['sing the eonverter ahead of a rereiver. the lim-moter hand. 21.0 to $21.45 \mathrm{M} \cdot \mathrm{O}$, will be fonmel from 1.0 to 3 3.in on the reereiver. The rereiver thenes "hatekwards." The 10 -meter band tumes 3,0 to 1.7 Ite, on the recoiver.

Reforring to Fig. is-17. the convertar comsistis of three stages. but it uses only two tubes. An ref. stage amplifies the incoming signals, and an oseillator provides a steady signal that. in a mixer stage, heterodynes the incoming signal to the difference froqueney mentioned above. If the input and output circuits of the r.i.

Fig. 5-46-This view of the "bonus" converter shows all of the components projecting above the chassis. At the left on the front is the r.f. control and next to it is the mixer tuning. At the far right is the a.c. switch. The tube at the left is the r.f. amplifier, and the crystal is between the transformer and the mixer tube. Screw adjustment to the right of the mixer tube sets the slug of L_{s}.

Fig. 5-47-Circuit diagram of the two-band crystal-controlled converter. Unless indicated otherwise, all capacitances are in $\mu \mu \mathrm{f}$., all resistors are $1 / 2$ watt, all resistances ore in ohms.
$C_{1}, C_{2}-35-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAPC. 35-8).
$\mathrm{C}_{3}-270-\mu \mu \mathrm{f}$. silver mica or NPO ceramic.
$\mathrm{C}_{4}-5-\mu \mu \mathrm{f}$. silver mica or NPO ceromic.
C_{5}-Dual electrolytic, 20-20 μ f. at 250 volts.
CR1-100-ma. 150-volt selenium rectifier (Internotionol Rectifier RS-100-E or equiv.).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Phono jock, RCA style.
$L_{1}, L_{2}, L_{3}, L_{1}$-Mode of No. 20 bore, $5 / 8$-inch diam., 16
t.p.i. stock. See text. (B \& W Miniductor No. 3007). Lr-2- to 3 - μ h. slug-tuned inductor (North Hills 120-A).
RFC $_{1}-50-\mu h$. r.f. choke ($\left.N o t i o n a l ~ R-33, ~ M i l l e n ~ 34300-50\right) . ~$.
S_{1}-S.p.s.t. toggle.
$\mathrm{T}_{1}-125$ volts of 50 ma ., 6.3 volts at 2 omperes (Stancor PA8422) or 135 volts at 50 ma., 6.3 volts af 1.5 amperes (Triod R-30-X).
$\mathrm{Y}_{1}-25.00$ - Mc. erystol (Internotionol Crystol Co., type FA.9).
stage aren't tuned to 21 Me . the $21-\mathrm{Mr}$. signals can't be amplified to the full capability of the stage. However, the $21-\lambda l$. tumed cirenits aren't too sharp, so a single setting will usually suffice for most of the 21-Mc. band, and all of the tuning will normatly lo done at the receiver alone. The 47,000 -ohm resistor across ('2 was used to make the associated cireuit a bit broader.

The sedenium-rectifier power supply is quite adequate for the jol) and makes the converter a solf-sufficient unit, although the power may be "Iorrowed" from the reederer if it is folt that the selonimm supply is an mane essary expense.

In the erystal-rontrolled oscillator portion, a caparitive divider ($\left({ }_{3}\right.$, and (${ }^{4}$) provides a tap on the tank cireuit so that the oscillator is loaded very lightly. If you didn't tap down on the tuned dircout the overtone revstal, l_{1}, might show lower-fregueney energy as will, or it might not oscillate at all.

The size of the chassis shown in Figs, $\overline{5}-46$ and $5-18$ is $2 \times 5 \times 7$ inches. However, any chassis lange enough to accommodate the parts can be used. Most of the construction is simple but there are a fow places where certain precautions should be taken, and these will be treated in detail.
study the photographs, particularly the bottom view, to see how the coils and tube serket are mounted. Notice the shied that ruts arross the 6 AK 5 socket. The purpose of the shied is to minimize the coupling between the grid and plate
rircuits of the r.f. stage, to avoid oscillation. A scrap of roofing ropper was cut to 31 多 he 2 inches for the shield. Brass, or any other motal that ean lo soldered, could be substituted. The shield and socket should be mounted so that the shirld biserts the socket between lins 4 and 5 . There is a $1 / 4$-inch lip on the shield which is used to mount it to the chassis top). The metal tule in the center of the tule socket should be soldered to the shield; the shield is held to the chassis by two 6-32 sorews. Soldering lugs should be mointed under the muts that hold the 6AK5 socket, and all the chassis ground conmertions of the 6.1 K 5 grid and plate circuit should be made to these huse

The coils are made from B \& W 3007 Miniductor stork. To make the eoils, first cut off a coil of 21 turns from the stork. Next, unwind one turn from each end of the 21-turn coil. Now coment off $51 / 2$ turns from one end and cut the wire at this point. If you bend the 4 th and 6 th turns in toward the center of the coil you should be able to reath the 5 th turn with your wire eutters. Unwind the half turn from each side leaving two coils on the same support bars, one 5 turns and the other 13 turns. Two of these dual coils are needed, one for the ref. stage and the other for the mixer. They can be mounted on a standard terminal tie point or supported by their own leads. Tie points provide a more rigid support.

The power supply is a simple half-wave rectifier, using a transformer, selenium rectifier, and

Fig. 5.48-All of the components of the power supply are grouped at the right. The tubular capacitor, C_{5}, mounts against the chassis wall. At the opposite side of the chassis, the metal strip shields the input circuit of the r.f. stage. The coils to the right of the shield are L_{3}, and L_{4}.
an $R C$ filter circuit. Incidentally, when connecting the rectifier, the + side is connected to the output side of the supply. Again, a standard terminal tie point is used for most of the connections of the supply.

The preliminary checks are simple and should present no problems to the buider. First, turn on S_{1} and see if the tubes light up. If they don't, turn off the switch and carofully cherk the wiring. Once the tubes light, allow a minute or two for the unit to warm up. The first thing to check is the erystal-rontrolled oscillator. If your receiver tunes to 25 Me., listen in that region lor the oseillator signal, which should come in loud and elear. If it doesn't, aljust the slug of L_{5} until the oseillator starts. Should you find that it doesn't oseillate you'll need to make some voltage cherks to make sure there is phate voltage on the oseillator. The voltage shouk be approximately 110, give or take 10 volts. If no voltage is indieated, cheek the wiring for errors.

Connect the converter to your receiver, using a piece of coas as the connecting line. (bax is used for the lead between the two units to mini-
mize any pickup of unwanted signals near or in the 80 -meter band. Set your receiver to tune the right range, 1000 to 3550 kc ., and turn both units on.

Idjust C_{1} and C_{2} for maximum lackground noisr. You'll find two vatues of caparitance (four points) on cach capacitor that will give an increase in noise, one near minimam capacitance (plates ummeshed) and the other with more capacitane. The setting at the greater capacitance point is 21 Mr . While the lesser is 28 Mr. Adjust the ronverter for maximum noise at 21 Mc. and tunce your recoiver across the band. If the band is open - and don't forget that sometimes it's as dead as the famous doomail - you should hear signals. Tune in one and peak it up by tuning ('1 and f'2 of the converter. Wach control should give a definite peak. Pretty nice to know that your receiving front end is lined up, isn't it? And it is, you know: you align it when you prak the two controls. Your receiver is now working as a tunable i.f. and the only adjustment required is to peak the entoma trimmer (if you have one) for maximum signal.

Variable-Coupling Antenna Tuning Unit

A variable-coupling antenna tuning unit connected between antema and receiver is useful for three reasons. In many instances it will improve reception slightly bey providing a better match between antenna aud receiver. Where trouble from r.f. inages is rncountered, as is often the case on the higher frequencies with simple receivers, an antenn: unit will provide additional selectivity. The unit shown on this page improved image rejection 15 dm . at 10 Mc . and 12 db . at 25 Mc. in a typical ease. The third useful feature of this unit is the variahle coupling, which provides an auxiliary gan control that is useful on
strong local signals as well as permitting a wide range of matching.

As cisn be seen in Fig. 5-49, the unit provides for series or parallel tuning of the tuned circuit, bandswitching over the range 1.8 to 30 Mc . Band 1 tumes 1.8 to 4.9 Me., Band 2 covers 4.9 to 13 Mc., and Band 3 tunes 12 to 30 Mc .

The antenna tuning unit is built in a $3 \times 10 \times$ 5 -inch aluminum chassis. To aid in shielding, a side plate for the box is made from a piece of flat aluminum stock. The four operating controls are mounted on one encl of the box with the anfenna terminal and output jack on the

Antenna Tuning Unit

Fig. 5-49-Schematic of the variable-coupling antenna tuning unit.
C_{1} - $140-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-140).
$\mathrm{S}_{1}, \mathrm{~S}_{2}-2$-pole miniature rotary switch (Centralab PA2003).
$L_{1}-72$ turns ($21 / 4$ inches).
$L_{2}, L_{4}-20$ turns ($5 / 3$ inches).
$\mathrm{L}_{3}-4$ turns ($1 / 8$ inches).
$L_{i}-12$ furns ($3 / 8$ inches).

$L_{6}-2$ turns.

All coils 1 -inch diometer 32 turns per inch (B \& W 3016).
other. Three coils, L_{1}, L_{2} and L_{3}, are bonded to a Lucite bar with Duco rement, and the bar is in turn supported by three ceramic cone insulators. The three coils should be spaced about one coil diameter from each other and from the ends of the box. Three variable coupling links, $L_{4} L_{5} L_{6}$, are soldered to small machine serews that have been bolted to a length of $1 / 4$-inch diameter lucite rod. The rod extends the full length of the box and is supported at the ends by a bushing and a panel bearing. An insulated roupling is used to join the panel bearing shaft and the lucite rod. Connections to the links are made by soldering the leads to the machine screws in the rod. The "pancl" end of the box can be finished off with decals indicating the knob) functions.

In operation, the tuner is connected between the antenna and the receiver. With some antenna systems the parallel connection will give the better results, while with other antennas and other frequencies the opposite will be true. It is a simple matter to switch between the two conditions and see which gives the sharper peak or louder signals at resonance.

Fig. 5-50-Yiew inside the case of the ontenna tuning unit. The input terminols ore a National FWH strip, and the output jack is a shielded phono jack.

Fig. 5.51-Front view of the antenno tuner.

The "Selectoject"

The Selectoject is a receiver adjunct that can be used as a sharp amplifier or as a single-frequency rejection filter. The frequency of operation may be set to any point in the audio range by turning a single knob. The degree of selectivity (or depth of the null) is continuously adjustable and is independent of tuning. In phone work, the rejection notch can be used to reduce or eliminate a heterodyne. In c.w. reception, interfering signals may be rejected or, alternatively, the desired signal may be picked out and amplified. The Selectoject may also be operated as a low-distortion variable-frequency audio oscillator suitable for amplifier frequency-response measurements,
modulation tests, and the like, by advancing the "selectivity" control far enough in the selectiveamplifier condition. The Selectoject is connected in a receiver between the detector and the first audio stage. Its power requirements are 4 ma. at 150 volts and 6.3 volts at 0.6 ampere. For proper operation, the 150 volts should be obtained from across a VR- 150 or from a supply with an output caparity of at least $20 \mu \mathrm{f}$.

The wiring diagram of the Selectoject is shown in Fig. 5-52. Ikesistors R_{2} and R_{3}, and R_{4} and R_{5}, can be within ${ }^{10}$ per cent of the nominal value but they should be as close to each other as possible. An ohmmeter is quite satisfactory for doing the

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-52 - Complete schematic of Selectoject using 12 AX 7 tubes.
$\mathrm{C}_{1}-0.01-\mu \mathrm{f}$. mica, 400 volts.
$C_{2}, C_{3}-0.1-\mu f$. paper, 200 volts.
$\mathrm{C}_{4}, \mathrm{C}_{8}-0.002-\mu \mathrm{f}$. paper, 400 volts.
$\mathrm{C}_{5}-0.05-\mu \mathrm{f}$. paper, 400 volts.
C_{8} - 16 - $\mu \mathrm{f}$. 150 -volt electrolytic.
$\mathrm{C}_{7}-0.0002-\mu$ f. mica.
R_{1} - 1 megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}-1000$ ohms, 1 watt, matched as closely as possible (see text).
$R_{4}, R_{5}-2000$ ohms, 1 watt, matched as closely as possible (see text).
matching. Onc-watt resistors are used because the larger ratings are usually more statble over a long period of time.

If the station receiver has an "accessory socket" on it, the cable of the Selectoject can be made up to match the connections to the socket, and the numbers will not necessarily mateh those shown in Fig. 5 -52. The lead between the serond detector and the recoiver gain control should be broken and run in shielded leads to the two pins of the socket corresponding to those on the plug marked "A.F. Input" and "A.F. Output." If the
$\mathrm{R}_{8}-20,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{7}-2000$ ohms, $1 / 2$ watt.
Rs- 10,000 ohms, 1 watt.
$\mathrm{R}_{9}-6000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{10}-20,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{11}-0.5$-megohm $1 / 2$-watt potentiometer (selectivity).
R_{12}-Ganged 5 -megohm polentiometers (tuning control) (IRC PQ11-141 with IRC M11-141.)
$\mathrm{R}_{13}-0.12$ megohm, $1 / 2$ watt.
$S_{1}, S_{2}-$ D.p.d.t. toggle (can be ganged).
receiver has a VR-150 incluled in it for voltage stabilization there will he no problem in getting the plate voltage - otherwise a suitable voltage divider should be incorporated in the receiver, with a $20-$ to $40-\mu \mathrm{f}$. electrolytic rapacitor connected from the +150 -volt tap to ground.

In operation, overload of the recoiver or the Solectoject should be avoided, or all of the possible selectivity may not be realized.

The Selectoject is useful as a means for ohtaining much of the performance of a crystal filter from a receiver lacking a filter.

A Clipper/Filter for C.W. or Phone

The elipper/filter shown in Fig. 5-5.3 is phuged into the reeciver headphone jack and the headphones are plugged into the limiter, with no work required on the receiver. The limiter will eut down serious noise on phone or c.w. signals and it will keep the strength of e.w. signals at a constant level, and while the filter will add selectivity to your receiver for e.w. reception, the unit will do much to relieve the operating fatigue caused by long hours of listening to statie crashes, key dieks encountered on the air and with break-in operation, and the like.

There are times when only the selective audio eirecuits will be wanted. while on other oeceasions
only (elipping will be needed. Since it is a simple matter to provide a switching arrangement so that either funetion, or both, can be used at will, this has been done in the unit described here.

The frequency response of the selective eireuits reaches a peak at about 700 creles and has a null at ahout 2000 eveles. The prak frequency is determined by the combined values of L_{1}, C $^{\prime}$, and ('22 (or L_{2}, C_{3} and (${ }_{4}$), while the noteh frequency is that of the parallel-resonant areuit $L_{1} \mathrm{C}_{1}$ (or $L_{2}\left({ }^{\prime} 3\right)$. If different poak and null frequencies are desired the values of ('1 and C_{2} (and ('3 and ('4) can be changed; for raising the noteh frequency the caparitance of ('1 and ('3 should be made

Clipper/Filter

Fig. 5.53-Circuit of the two-stage clipper-filter. All capacitances are in μ f. All $0.01 \mu \mathrm{f}$. capacitors may be ceramic; capacitors marked with polarity are electrolytic. Others should be tubular plastic or mica. Resistors are $1 / 2$ walt unless otherwise specified. Switch functions are as follows: Position 1, dual filter alone; Position 2, clipper and dual filter; Position 3, clipper alone; Position 4, straight through with cathode-follower output.
$C R_{1}-50-\mathrm{ma}$. selenium rectifier.
$\mathrm{h}_{1}-6.3$-volt pilot lamp.
J_{1}-Open-circuit phone jack.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-5-\mathrm{h} .65-\mathrm{ma}$. filter choke; frame removed and choke remounted as described in the text.
$S_{1}-S . p . s . t$. toggle switch.

S—3-section 6-pole 4-position rotary switch, shorting type preferable. (Centralab PA-1020).
T_{1}, T_{2}-Output transformer: 7000-10,000-ohmprimary to 3.2-ohm voice coil (Thordarson24S52).
T3-Power transformer: Half-wave: 125 volts, 50 ma .; 6.3 volts, 2 amps. (Stancor PA-8421).
smaller; to raise the peak frequency reduce the raparitancer at C_{2} and C_{4}.

The rotary switeh s. (Fig. 5-5.3) is used to provide different combinations of the clipper and filter. To simplify the wiring diagram the switehing cireuit is shown separately in the diagram.

The filter-clipser can be buit on an aluminum chassis, but a sted rablinet should be used to house the unit. Steel is preferable to aluminum breatuse L_{1} and L_{2} are sensitive for stray magnetic fields (which would show up as hum at the output) and the steel rabinet aids in shichling. One layout precaution should be olserved: Plate the filter inductors L_{1} and L_{2} as far as possible from the power transformer, and mount them with their cores at right angles to the core of the transformer. 'This will minimize hum pickup by the induetors.

Before mounting L_{1} and L_{2}, it will be neeessary to remove the mounting frames and insulate the "I" laminations, as shown in Fig. 5-54. The frame is removed casily by prying out its two legs and then lifting it from the core. The "I " laminations are in the form of a bar lying across the top of the "li"" core.

By mounting the chokes with nonmetallic strips the (will remain high. If aluminum or other nommagnetic materials are used the Q will be adversely afferted and the selectivity of the filter will suffer.

The switch wiring shown at the botton of the schematic diagram can be done before mounting S_{2} in place. After the switch is mounted the wiring between it and the other components can be completed.

Apply power by elosing S_{1}, insert the plug in

Fig. 5-54-Sketch showing the method of clamping and tuning the filter inductors. Clamping strips must be of bakelite, phenol, plastic or other suitable insulating material. Metal should not be used.

5-HIGH-FREQUENCY RECEIVERS

the receiver phone jack and turn switeh S_{2} to the "out" or straight-through position. Tune the receiver until a c.w. signal is found and adjust the receiver controls for comfortable copying.

Now turn S_{2} to the "elipper" position. In order to become familiur with the action of the elipper these steps should be followed: Adjust the "elipping" control so no clipping occurs (maximum positive bias on the diode plates). Set the "(elip level" control on the unit so that there will be no apparent change in the strength of the e.w. signal when switching from "elipper" to "out" and back to "clipper." Then turn the "clipping" control until the positive bias is low enough to cause limiting to start; the point at which limiting begins can be recognized by the fact that the signal strength begins to decrease. Bark off slightly with the "clipping" control so that the signal strength in the phones is just at the original level.

Tuning the recoiver without the use of the limiter shows signals of all strengths, some so loud as to be ear-breaking: but switching to "elipper" will make these big ones drop down to the "comfortable" preset level.

The filter can be aligned with the help of an
audio signal generator and a scope. The procedure is to set the two tuned circuits individually to within 10 to 15 cycles of the chosen peak frequency, but on opposite sides of that frequency. This adjustment can be made by tightening or loosening the clamping serews on each choke antil each eireuit is tuned to the desired frequeney. Altering the number of layers of paper placed between the "I" and " E " laminations of either or both chokes will allow any two similay chokes which, due to manufacturing tolerances, may be of slightly different inductances, to be tuned to the same frequency. The filter is then realy to go. If the response is too sharp, slightly greater sepatration of the two frequencies can be achieved by readjusting the clamp on one of the chokes.

In order to peak a desired signal the receiver l, f.o. or tuning control should be adjusted so the pitch of the signal is 700 reves. Since the selectivity curve is rather sharp, any adjacent undesired signals will fall short of the peak and be attenuated. If the receiver b.f.o. has sufficient range to tune 700 cyeles or more on both sides of zero beat, the undesired signal can always be plaed on the noteh side of the peak.

A Regenerative Preselector for 7 to $\mathbf{3 0} \mathbf{M c}$.

The performance of many receivers begins to drop off at 14 Mc. and higher. The signal-tonoise ratio is reduced, and unless double conversion is used in the receiver there is likely to be increased trouble with r.f. imangs at the higher frequencies. The preselector shown in Figs. 5-j5 and $5-5$ - can be added ahead of any receiver without making any changes within the receiver, and a self-contaned power supply eliminates the problem of furnishing heater and phate power. The poorer the receiver is at the higher frequendies, the more it will benefit by the addition of the preselector. A truly good receiver at 28 Mc. would show little or no improvement when the preselector was alded, but a mediocre receiver or one without an r.f. stare will be improved greatly through the use of the preselector.

A $6.1 N S$ triode-pentode is used in the preselector, the pentode as a bund-switeh regemerative r.f. stage and the triode as athode follower. The conventional sereen-grid neutralizing circuit is used; by upsetting this circuit enough the stage can be made to oscillate. Smooth conthol of regeneraticn up to this point is obtained by varying one of the capacitances in the neutralizing cireuit. To hundle a wide range of antemat impedaners, idjustable antenma coupding is included, while cathode bias control of the pentode allows the gain to be reduced if and when it becomes necossary to do so. One presition of the bandswitch permits straight-through operation, so the preselector unit can be left connected to the receiver even during low-frequency reception.

The preselector is built on a $5 \times 10 \times 3$-inch

Fig. 5-55-A regenerative preselector for 7 to 30 Mc. This unit can be used ahead of any receiver to add gain and image rejection; its effect will be most marked with receivers that fall off in performance of the higher frequencies. Adjustable antenno coupling is obtained by supporting the antenna coils on an insulated rod that is controlled from the panel.

Regenerative Preselector

Fig. 5-56-Schematic diagram of the regenerative preselector. Capacitances are in $\mu \mu \mathrm{f}$. unless otherwise specified. Resistors are $1 / 2$-watt unless otherwise specified.
$\mathrm{C}_{1}-140 . \mu \mu \mathrm{f}$. variable capacitor (Hammarlund HF-140). $\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. variable capacitor (Hammarlund MAPC. 100-8).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$. mica (see text).
$\mathrm{C}_{4}-0.5$ to $5-\mu \mu \mathrm{f}$. tubular trimmer (Erie 532-08-OR5).
CR_{1} - 50 -ma. selenium rectifier (International Rectifier RSO50).
L_{1} through L_{4} made of No. 20, $3 / 4$ inch diam., 16 furns per inch (8 \& W 3011 Miniductor).
$L_{1}-2$ turns.
$\mathrm{t}_{2}-5$ turns.
$\mathrm{L}_{3}-7$ furns.
$L_{1}-19$ turns.
$\mathrm{L}=100$ - $\mu \mathrm{h}$. r.f. choke (National R-33 $100 \mu \mathrm{~h}$.).
$\mathrm{R}_{1}-2500$-ohm potentiometer (Mallory U7).
$\mathrm{S}_{\mathrm{I}_{\mathrm{A}}}, \mathrm{S}_{1_{\mathrm{B}}}-1$-pole 3 -position wafer (Centralab PA-1).
$\mathrm{S}_{1 \mathrm{C} \cdot}{ }^{-}$-2-pole 3 -position wafer (Centralab PA-3). See text for switch assembly instructions on indexing head (Centralab PA-301).
S_{2}-S.p.s.s.t switch, part of R_{1} (Mallory US-26).
$\mathrm{T}_{\mathrm{l}}-125$ volts at $15 \mathrm{ma} ., 6.3$ volts at 0.6 amp. (Stancor PS-8415).
chassis (3 und $\mathrm{AC}-404$) A $5 \times 61 / 2$-inch atuminum punel is held to the chassis by the regeneration and bandswiteh controls. Coils L_{2} and L_{4} are supported on a small staging of $11 / 4 \times 3$-inch clear plastic. (It can be made from the lid of the box that the Sprague 5GA-SI .01- μ f. disk ceramic capacitors come in.) All coils can be made from a single length of IBdW 3011 Miniductor; L_{4} is brought to the proper height by removing turns but retaining the plastice support bars. The coils are cemented to the plastic staging with Duro cement. The links L_{1} and L_{3} are moved by means of a 6 -inch length of $1 / 4$-inch diameter lucite rod; the rod is supported at each end hy panel bushings, and a friction lock is provided by washers and a rubler grommet. A screw through the lucite shaft and two others in the end bracket provide stops that linit the antemat eoil rotation
to 45 degrees.
The rotor of C_{1} must be insulated from the chassis, and its shaft is extended through the use of an insulated extender shaft (Allied Radio No. $6015355)$. The bandswiteh S_{1} is made from the sperified sections (see IFig. 5 -55). The first section is spaced $3 / 4$ inch from the indexing head, there is 1 -inch separation between this and the next section (S_{13}), and the next section ($S_{1 C}, S_{1 D}$) is spaced $21 / 2$ inches from $S_{1 B}$.

The regeneration control, C_{2}, is mounted on a small aluminum bracket. Its shaft does not have to be insulated from the chassis, so an insulated or solid shaft connector can be used. The small neutralizing caparitor, C_{4}, is supported by soldering one lead of it to a stator bar of C_{2} and rumning a wire from the other lead to pin 6 of the tube socket. The rotor and stator connections from C_{1}

Fig. 5-57-The r.f. components are bunched around the tube socket. Power supply components ore supported by screws and tie points.

5-HIGH-FREQUENCY RECEIVERS

are brought through the ohassis deck through small rubber grommets.

Power supply components, resistors and capacitors are supported ly suitable hugs and tie points. The selenium rectifier is held hy the same screw that secures the link supporting bracket. Phono plugs are used for the input and output jacks.

The leads to R_{1} are run up through the deck in shielded wire. Switch S_{2}, part of the R_{1} assembly, can be comnected with ordinary wire.

Adjustment

Assuming that the wiring is correct and that the coils have been constructed properly and eover the required ranges, the only preliminary adjustment is the proper setting of C_{4}. Comect an antena to the input jark and connect the receiver to the output jack through a suitable length of $\mathrm{RG}-59 / \mathrm{U}$. Turn on the receiver b.f.o. and tune to 28 Mc . with S_{1} in the ocr position. Now turn S_{1} to the 21- to $28-\mathrm{Mc}$. range, and set the gan and antexna couphing controls to maximum (R_{1} arm at ground end and L_{2} close to L_{4}). Swing the twing capacitor and listen for a loud rough signal which indicates that the preselector is oscillating. If nothing is heard, advance the regeneration control toward the minimum capacitance end and repeat. If no oscillation is heard, it may be neerssary to change the setting
of C_{4}. Once the oscillating condition has been found, set the regeneration control at minimum capacitance and slowly adjust C_{4} until the preselector oscillates only when the regeneration control is set at minimum capacitance. You can now swing the receiver to 21 Mc. and peak the preselector tuning capacitor. It will be found that the regeneration caluacitance will have to be increased to avoid oscillation.
Cherk the performance on the lower range by tuning in signals at 14 and 7 Mr . and peaking the preselector. It sloould be possible to set the regeneration control in these two ranges to give both an oscillat ing and a nom-oscillating condition of the preselector. If it is not possible, a different value may be required at C_{3}.

A little experience will be required before you can get the best performance out of the preselector. It will be found, for example, that loosening the antema coupling when the preselector is close to oscillation will bring it into oscillation, which will then require backing off on the regeneration control. This is perfectly normal. Reducing the tube gain by changing the setting of R_{1} will also reduce the regencration, and the gain control will probably only require touching in the presence of extremely strong signals. Strong signals can also be held down by reducing the antenna coupling, but this will require backing off on the regeneration control.

A Selective I.F. Amplifier for Phone and C.W.

The i.f. amplifier shown in Figs. 5 -58 and 5-(6) operates at a frequency of 2.215 Mc . High selectivity is ohtained through the use of commer-cially-available band-pass crystal filters that have selectivity characteristios similar to lower-frequency devieres. A high-frequency i.f. amplifier of this type retains the advantage of a high-frequency first i.f. (good image rejection), overcomes some of the disadvintages of multiple conversion (spurious signals, cross modulation) and retains the advantages of high adjacenterhamed selectivity heretofore obtained only through multiple conversion. An a.v.e. circuit that works well on s.s.b. and c.w. is included, together with an audio limiter for noise reduction.

The i.f. amplifier is designed for both phone and code rereption; you can save the price of one filter if you're a phone or code sperialist loy using just one filter. The broad filter is the first element in the i.f. (following a coupling device), and this is followed by the sharp filter, which ean be switched in or out. Following the filters there is a two-stage i.f. amplifier that feeds a product detector for heterodyne reception or a diode detector for a.m. work. The detector output is then amplified after passing through an aljustable clipper circuit. The a.v.e. amplifier is taken off through a separate i.f. amplifier after the first stage because it was found that getting any closer to the detector allows a lit the b.foo. voltage to leak into the a.v.e. circuit, A buffer stage is used between the b.f.o. and product detector so that
the b.f.o. can be run at low input and consequent low drift.

The broad filter has a bandwidth of 2800 cycles at -6 db . and 9.5 kc . at -60 db ., giving it an excellent characteristic for phone work. The sharle filter has a band width of 220 eyeles at -6 db . and just over 1 kc . at -60 dh ., which is about as sharp) as can be used for code.

The schematic diagram of the i.f. amplifier up to the audio amplifier is shown in Fig. 5-58. The intent is to take the input signal from the plate circuit of a mixer stage (high impedance) into the broad filter at 4000 ohms. The input tuning coil, L_{1}, is adjusted to resonate at 2.215 Me . with the fixed capacitor C_{1} and the capacitance of the length of commerting coasial line comnected to J_{1}. since the impedance of this resonant cireuit (in shunt or not with the mixer output cirenit, depending upon how you utilize the amplifier) maty not be known with decent aceuracy, provision for impedance matching is included by using the 3to $3(0)-\mu \mu \mathrm{f}$. adjustable trimmer. To go from 4000 to 300 ohms between the two filters, an L section is used, consisting of the $68-\mu \mu \mathrm{f}$. capacitor and the $75-\mu \mu h$. inductor. (The computed value of ettparitance is $63 \mu \mu \mathrm{f}$., but $68 \mu \mu \mathrm{f}$. is close enough.) To step up the imperdance level at the grid of the first i.f. stage, a tapped cireuit is used. The caparitance divider uses 150 and $1200 \mu \mu$. These values are based on a coil Q of 60 , the measured Q of the coil specified. The langer caparitor ealculates to $1350 \mu \mu$. but $1200 \mu \mu \mathrm{f}$. is close enough.

Fig. 5-58-This i.f. amplifier uses cascaded band-pass crystal filters at 2.2 Mc. The filters are of the left of the chassis. Moving from left to right near the frant of the chassis, the tubes are 6AH6 i.f., 6BJ6 i.f., two 12AU7 detector tubes and the 648 b.f.o. Moving back from the S meter, the a.v.c.-circuit tubes are 6BJ6 amplifier, 12AU7 and 6AL5. The remaining tubes of the rear right are 6 AL5 limiter, $12 A U 7$ audia and 6AR5 audio. The shielded leads an the top of the chassis run to the S meter.

Panel controls, from left to right, are selectivity switch, limiter set, gain control, a.v.c. switch, a.m.-s.s.b. switch, audio volume, b.f.a. pitch and speaker/ headphones switch. The b.f.o. trimmer shaft is in front of the 6 U8.

If it is dereded to eliminate one erystal filter, or to install it hater, you can simply add a jumper where the filter terminals woud have been.

It is worthwhile to use as good a first i.f. tube as possible, hecunse if the gatim ahead of this stage isn't high enough there can be some alegrating of

Fig. 5.59-Schematic diagram of the i.f. amplifier up to and including the detector circuits. Capacitances in $\mu \mathrm{f}$. unless otherwise noted. Resistors are $1 / 2$ watt unless otherwise nated.
$C_{1}-150 \mu \mu$. less the capacitance of the cable connected to J. RG. 59 /U runs $21 \mu \mu$ f. per foat.
FLi-2.215-Mc. band-pass crystal filter, 2800 cycles wide at -6 db . (Hycon Eastern* Type 22 Model 159-1 PI).
FL2-2.215-Mc. band-pass crystal filter, 220 cycles wide at -6 db . (Hycon Eastern Type 22 Model 159 1Q1).
Jt-Phono jack.
L_{1} through Ln-36-64- μ h. adjustable coils (North Hills Type 120 F coil mounted in North Hills S-120 shield con).

[^4]L- 18 turns Na. 20, 16 t.p.i., $3 / 4$-inch diam. (B \& W 3011 stock).
L. -9 furns No. 20, 16 t.p.i., $3 / 4$-inch diam. (B \& W 3011 stock). $1 / 8$ inch between L_{8} and L_{9}.
$L_{10}-75 \mu \mathrm{~h}$. National R-33 $100-\mu \mathrm{h}$. choke with 20 turns removed.
M_{1} - $0-200$ microammeter (Triplett Model 327-PL).
RFC $_{1}$, RFC. $_{2}$-National R-30, $2.5-\mathrm{mh}$. choke.
S_{I} — Two-pole 2-position 2-section rotary switch (Centralab PA-31 sections on PA-301 assembly).
S_{2} —Three-pole 2 -position rotary switch (Centralab PA. 1007).
S_{3}-Six-pole (5 used) 2-position 2-section rotary switch (Centralab PA-1019). See Fig. 5-62.

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-60-Schematic diagram of the audio portion of the amplifier.
J_{2}-Open-circuit phone jack.
J_{3} —Phono jack.
S_{3}-See Fig. 3.
S_{4}-Two-pole 3 -position rotary switch (Centralab PA. 1002).
T_{1}-7000-ohms-to-voice-coil outpuit transformer, 4 wotts (Stancor A-3822).
the over-all noise figure. This is the retson a 6.116 is used in the first i.f. stige instend of a 6B.J6. Since the seleetivity has already been determined by the arystal filter(s), there is no need for additional selectivity in the i.f. amplifier, and a single tuncd circuit is used for coupling between first and second i.f. stages. The switeh that shifts the signal to (ither of the detectors, Δ_{3}, also switches the b.f.o. on ($S_{3 D}$), selects the output ($\mathrm{N}_{\mathrm{zc}} \mathrm{r}$), and shifts the a.v.e., when on, from the "hang" type for hoterodyne reception to the more conventional type for a.m. (N_{31}).

In the "hamg" a.v.e. circuit, an incoming signal will be rectified by $\mathrm{F}_{4 \mathrm{a}}$ and develop a voltage arross the $6.8-\mathrm{meg}$ ghm resistor. This voltage is applied to the grid of Vis. A voltage is also developed ateross the tolk load resistor of $V_{3 A}$; this is the voltage used for i.v.e. control. Through $V_{5 B}$, the a.v.e. voltage is used to charge up the $0.05-\mu$, capacitor in the at.v.e. line: this can be done quickly berause V_{53} has relatively little resistance. When the signal is removed, the only discharge path for the 0,0 in- μ f capareitor is through l^{2} as. By virtue of the $0.1-\mu \mathrm{f}$. capacitor across the 6.8 -mogohm load for $V_{4, ~}^{\prime,} I_{413}$ will remain at cutoof potential for a noticeable portion of a second, and the a.v.e. will "hang" at a given value until $\mathrm{V}_{4 \mathrm{~B}}$ beromes condurtive and starts to discharge the $0,0,0-\mu$ f. catpacitor.

In the a.v.e. rireuit, swit ch S'es turns the a.v.e. on or off, $S_{2, ~}$ opens the S-meter circuit when the a.v.e. isn't used, and sece takes the cathode return off the gain control so that the simeter reading isn't affeeted by the gain setting. The S-meter circuit meters the voltage differenco between it reference and the cathode voltage of an a.v.e.controlled stage. It helps to show which signals are stronger when a.v.e. is being used. If you have a signal generator you can ralibrate the meter in dh. above some arbitrary level. With the constants shown, the meter has a range of about (\%) (b). The no-signal point will be lower on a.m. than on s.s.b. hy a fow divisions, because of con-tact-potential effect in the hang-a.v.c. circuit,

Everything in the audio amplifier (Fig. 5-60) section is eonventional, with the exception of the threeposition switch S_{4}, which permits feeding outpent to headphones, loudspeaker or both. This is a convenience when visitors are in the shark. The rircuit is shown for low-impedance headphones that work at voice-roil impedance level; a construetor with high-impedance phones might take the headphone output from the plate of the 6.AIL5 through a $0.05-\mu$ f. capacitor.

Construction

The chassis is an $8 \times 17 \times 3$-inch aluminum one, and the pancl is a standard relay rack panel 7 inches high. The pancl is held to the chassis by the mounting nuts of the switches and potentiomoters: the shaft bushing of the liammarlund IIF-15X b.f.o. caparitor isn't long enough to the used in this wiy, and consequently a clearance hole is required in the panel large enough to clear the nut that holds the capacitor to the ehassis. lig. $\overline{5}$-6) shows that ceramir switches were used in this unit; there is no need for them, and the captions show phenolie switches sperified. Ceramice capacitors can be used for any of the values up to $0.01 \mu \mathrm{t}$., with the exception of those associated with the b.f.o., where silvered mica and air capacitors are recommended. The $150-\mu \mu$. capacitors shunting the i.f. eoils cinn be mira, since the circuits aren't sharp enough to justify silvered mica.
Figs. 5 -5!) and 5 -(60 show that a number of shielded leads are used, in the audio between tubes and switches and for some of the other leads. Aetually, the shichled leads in the audio cirenit are piecos of conaial line; this is done to carry the grounds batek to the audio tubes and not depend upon the chassis for a return. In some cases this latter prowedure can introduce a.e. ham when one side of the heaters is grounded as in this case. The ot her shiclded wires are inchuded to minimize the chatheres for feedlowek and b, f.o. leakage into the "front end." A shied partition masks the input tube and S_{1} from the rest of the

Fig. 5-61 The oudio output transformer is mounted on the side wall of the chassis, and the rear wall of the chassis has the input and output jacks, the power plug and the S-meter zero set. Audio leads between limiter and audio stage and panel, controls are carried in small coaxial cable. The shield at the left-hand side of the chassis is held in place by the mounting screws of the shield can.

amplifier; this is done to knock down some slight b.f.o. energy that otherwise might leak into the grid of the first tube.

Most of the remainder of the unit follows standard practices and requires no elaboration. The b.f.o. coil, L_{8} and L_{49}, is supported by its leads on a long tie point. The $1400-\mu \mu \mathrm{f}$. capacitor shown shunting the $100-\mu \mu \mathrm{f}$. trimmer is made up of two 680- and one $47-\mu \mu \mathrm{f}$. silvered mica capacitors; with tolerances running the way they do you may have to use something other than a $47-\mu \mu \mathrm{f}$. capacitor to bring the b.f.o. close enough to 2.215 Me . to be set hy the Hammarlund MAPC-100 trimmer. The $15-\mu \mu$ f. b.f.o. panel control tumes over more than 8 kc ., and some buidders might want to pull off a plate or so to bring this range down to about 6 kc ., although the tuning rate is quite adequate.

The power-supply requirements are 95 ma . at around 280 volts for the plates, a few ma. at regulated +105 (from a Vll tube), $31 / 4$ amperes at 6.3 volts for the heaters, and -15 volts at negligible current for one terminal of $S_{3 \mathrm{E}}$ (Fig. $5-62$). The latter voltage can be obtained from the same power transformer through a $1-\mathrm{V}$ rectifier and an RC filter.

Alignment

There is nothing unusual about the alignment of the amplifier. If you have a signal generator (or grid-dip meter) you can use the output to tume the circuits L_{2} through L_{5} close to 2.215 Me. This portion of the amplifier is broad, so if you get in the vicinity of 2.215 Mc . you will be able to hear a signal passed through the crystal filters, after which you can again patk the coils. The a.v.c. circuit can be aligned initially by connecting a voltmeter from ground to the cold ends of L_{6} and L_{7}, after which the S meter will serve as an indicator. It will repuire some further juggling, which will be described later. The b.f.o. is brought into tune with the $100-\mu \mu \mathrm{f}$, trimmer; if you can't hit because the silvered-mica capacitors are at the edges of tolerance you may have to add capacitance or else remove a turn from L_{8}. If you have a v.t.v.n. and r.f. probe, the voltage at the grid of $V_{2 \mathrm{~A}}$ should be adjusted to about 5 volts peak, by changing the value of the 22 K resistor between $S_{3 \mathrm{D}}$ and $L 9$.

With a stealy signal coming through the am-
plifier, its amplitude should be adjusted to give about -6 volts at the grid of $V_{4 B}$. You will need a v.t.v.m. for this job. Then measure the voltage at the cathode of $V_{5 B}$ and detune L_{7} until it gives a reading of about 40 per cent of the other reading, or $21 / 2$ volts. Don't try to measure the voltage on the a.v.e. line, because even the high input resistance of the v.t.v.m. (11 megohms) will impair the a.v.e. performance. When you get the a.v.e, completely aligned, as mentioned a little later, L_{6} will be peaked for maximum signal through $V_{4 \mathrm{~A}}$ and for something less than this through $V_{5 A}$.

The i.f. should now be in a condition suitable for the reception of signals, but it requires a "front end." The NC-300 can be used, because it has a first i.f. of 2.215 Mc ., or you can build or revise a ronverter for the job. Use a length of IRG-59/U to comnect from J_{1} to the plate of the mixer tube, with a $100-\mu \mu \mathrm{f}$. capacitor between plate and inside conductor of the coax to avoid short-rircuiting the plate supply in the receiver. If a home-built converter is used, the plate voltage to the mixer can be fed through L_{1}, by lifting the bottom of L_{1} and feeding the plate voltage to it through a 1000 -ohm resistor. Bypass the bottom of L_{1} with a $0.01-\mu \mathrm{f}$. capacitor to chassis.

Tune around until you find a signal or, better yet, feed in a stable signal from a signal generator or 100 -ke. crystal-oscillator harmonic. Peak L_{2} for maximum signal: then "rock" L_{1} and the 3-to-30- $\mu \mu$ f. trimmer for maximum signal. If you are using hoth filters, do these jobs with both filters switched in. You should now be able to tune around the bands and get accustomed to the i.f. and its operation. You will need a slow tuning rate when the sharp filter is used, because the signals come in and out rather fast with this much selectivity. You also need a slow tuning rate with s.s.b. reception, as any operator knows. You can get a line on the a.v.c. action by tuning in a few code signals. On slow sending around 12 or 15 words a minute the S meter will start to drop back between words, while at speeds of 20 w.p.m. or more the S meter should "hang" steady and only follow fading. If it doesn't hang in long enough, detune L_{7} a little.

As you familiarize yourself with the operation. of the amplifier, you may notice that the broad

5-HIGH-FREQUENCY RECEIVERS

filter characteristic isn't as "smooth" as one might expect for a band-pass filter. (If it is, it's just blind luck.) You won't notice this in operating in a ham band; it will show up when you tune slowly through a steady medium-strength signal (as from a $100-\mathrm{ke}$. calibration oscillator harmonis) with the selectivity in broad, the a.v.c. on, S_{3} in the a.m. position and with no antema on the receiver front end. As you tune slowly through the signal, the S meter may rise to a maximum, fall off slightly, rise again and then fall off. The slight falling off at the center
may be 5 db . or so; it has no obvious effect on signals, but it indicates that the filter isn't looking into and back to the correct terminations. When the center dip (or dips) is minimized, the terminations will be correct. You do this by tuming to the dip and giving the 3 - to $30-\mu \mu \mathrm{f}$. capacitor and L_{1} both a slight adjustment to make the S meter rise slightly. Now tune across the signal again and see if the dip has been reduced any. By trying this several times you will be able to bring the "ripple" at the top of the pass band of the filter down to a low value.

Conelrad

Liffective January 2, 1957, the "Conelrad" rules became part of the amateur regulations. Essentially, compliance with the rules consists of monitoring a broadeast station - standard band, f.m. or TV - either continuously or at intervals not exceeding ten minutes, during periods in which the amateur transmitter is in use. On receipt of a Conelrad Alert all transmitting must cease, except as authorized in 12.193 and 12.194 of the FCC regulations.
The existence of an Alert may be determined

Fig. 5-62-Converter circuit for monitaring broadcast stotions in connection with a cammunications receiver. Capacitances are in $\mu \mu \mathrm{f}$.
$C_{I_{A}}, C_{1_{B}}$-Two-gang broadcast capacitor, oscillator secfion according to infermediate frequency to be used.
L_{1}-Loop stick.
T_{1}-B.c. oscillator transformer (for i.f. to be used).
T_{2}-l.f. coil and trimmer. This can be taken from on i.f. transformer, or the transformer can be used intact, the output being taken from the secondary.
Note: If only ane braadcast station is to be monitored $C_{1_{A}}$ and $C_{1_{B}}$ can be padder-type capacitors (or a combination of padding and fixed capacitance as required) adjusted for the desired station and intermediate frequencies. Other types of converter tubes may be substituted if desired.

Power for the unit can be taken from the receiver's "accessory" sacket.
as outlined in $12.102(b)$ (3). Operation during hours when local broadcast stations are not on the air will require tuning through the standard broadcast band to determine if operation appears to be normal. The presence of any U. S. broadcast stations on frequencies other than 640 and 1240 kc. indicates normal operation.

P'erhaps the simplest form of compliance is by means of a simple converter working into the i.f. amplifier of the regular station receiver. A typieal cirenit is shown in Fig. 5-62. The converter can be built in a small metal case and mounted at à convenient spot on the recriver so that S_{1} can be closed at regular intervals for checking the broadeast station. As an alternative, the converter can be mounted out of the way at the rear of the receiver and the switch leads brought out to a convenient spot.

A "FAIL-PROOF" CONELRAD ALARM

The Conelrad alarm shown in Fig. 5-6:3 uses a small BC receiver to furnish both audible and visible indieations of a Conelrad Alert (the receiver may still be used for normal broadcast reception).

With the receiver tuned to a broadcast carrier and the alarm circuit in operation, a green "safe" light indicates that all is well on the broadeast band. When the broadeast earrier goes off, as it will in a Conelrad Radio Alert, the green light goes out, a red "danger" light comes on, a buzzer sounds, and the $11 \overline{5}$-volt a.c. line to the transmitter is opened up. In other words, the device puts you off the air! The audible and visible warnings also are given in the event of a component failure in either the control receiver or the alarm. Even the distppearance of the 115volt supply will not go unnoticed, since in that case the green "safe" light will go out, indicating that the alarm is inoperative.
The alarm requires a minimum of 0.7 volts (negative) from the receiver's a.v.c. circuit for dependable operation. Receivers having one stage of i.f. amplification will develop at least this much a.v.e. voltage when tuned to a signal of reasonable strength. But watch out for the "superhets" that do not have an i.f. stage; they are of little value as a source of control voltage for the alam. You can usually find out if the re-

Conelrad

Fig. 5-63-Circuit of the Coneirad alarm (B) connecied to the a.v.c. circuit (A) of a typical a.c.-d.c. broadcast receiver Resistors are $1 / 2$ watt unless otherwise specified. C_{1}, R_{1} and T_{1} in section A are components in the broadcast receiver
l_{1}-6-volt a.c. buzzer (Edwards 725).
$\mathrm{I}_{2}, \mathrm{I}_{3}$-6-volt pilot lamp, No. 47.
K_{1}-D.p.d.t. sensitive relay, 5000 -ohm coil, 5 -amp. contacts (Potter \& Brumfield GBIID).
$\mathrm{R}_{2}-5$-megohm potentiometer.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-$ S.p.s.t. rotary canopy switch (ICA 12571.
S_{2}-Momentary-contact switch (Switchcraft 101).
T_{2}-Replacement-type power transformer, 150 volts, 25 ma.; 6.3 volts, 0.5 amp . (Merit P- 3046 or equivalent).
ceiver has an i.f. stage by looking at the tube list pasted on dither the chassis or the inside of the cabinet.

The circuit of the alarm is shown in section B, Fig. 5-6:3. Section A is a typieal a.v.e.-detectorfirst audiostage of an at.e.-(l.e. receiver, and shows how the alarm circuit is tied into a receiver.

Although a 12AV6 is shown as the detector, other tubes may be used in some receivers. However, the basic circuit will be the same or very similar.

Finding the a.v.c. line in the jumble beneath the chassis of the ordinary a.c.-d.e. receiver is not always easy. Ifere are a few hints:

Using section A, Fig. 5-6:3, as a guide, locate the detector tube socket. Trace out the leads going to the secondary of the last i.f. transformer, T_{1}. This transformer usually will be adjacent to the detect or tube. The lower end of the secondary winding will be connected to several different resistors, one of these boing the diode-load filter resistor (approximately 50 K in most circuits) and another the a.v.c. filter resistor, R_{1}. The value of the latter resistor is ordinarily above one megohm. Trare through R_{1} in the direction of the arrow (Fig. 5-6:3), until you locate the fairly high value (0.0.) $\mu \mathrm{f}$. or so) a.v.e. filter capabitor, \boldsymbol{C}_{1}. Now you have the a.v.e. line clearly identified and the tap for the alarm circuit may be made.

Notice that the cathode of V_{1} and the cold side
of C_{1} are both returned to a common bus or -B line, not directly to the chassis. Also observe that the return for the alarm circuit is made to the common bus in the receiver, not to the chassis of the set. Do not ground this lead to the chassis or connect it to any exposed metal parts. If there is any difficulty in locating the common bus in the vicinity of the detector stage, check back from the negative side of the power-supply filter capacitors, as this point is always attached to the common bus.

The monitor should be built in an insulated box of some kind and not in a metal case. The box can be made of plywood, or a bakelite instrument case (e.g., ICA type 8202). The bakelite case is ideal for the application, but it must be handled with care during construction, to avoid scratching, chipping, or breakage. Be especially careful when drilling large holes such as those used in mounting the pilot-lamp assembies and switches, because a large drill iends to bind and crack the case.

Testing and Operating

The chances are pretty good that right after the receiver and the monitor have been turned on the red lamp will light and - if you haven't had the foresight to open S_{3} to prevent the noise the buzzer will sound. Tune the receiver to a broadcast station and see if the red light goes out

5-HIGH-FREQUENCY RECEIVERS

and the green light comes on. If this happens, close S_{3} and you're all set for Conelral compliance. If the "safe" light does not come on, tume around for a signal strong enough to actuate the alarm. Should the signal of greatest apparent strength fail to trigger the monitor, leave the reeeiver tuned to this signal and then momentarily press S_{g}. The alarm should now lock on "safe," provided the a.v.c. cireuit delivers 0.7 volt or
more to ${ }^{2}$ a.
The only d.e. measurements of any consequence that need be made in checking through the alarm circuit are the output voltage of the power supply and the voltage at the cathode of V_{23}. The proper voltages at these two points are given on the circuit diagram. If the alarm fails to respond properly, it mave be advisable to cheek the a.v.c. voltage with a v.t.v.m.

A Transistorized Q Multiplier

A "Q multiplier" is an electronic device that boosts the (ℓ of a tuned circuit many times leyond its normal value. In this condition the single tumed circuit has much greater selectivity than normal, and it can be utilized to reject or amplify a narrow band of frequencies. There are vacumtube versions of the (Q-multiplier cirenit, but the transistorized () multiplier shown in Figs. 5-6 t and 5-66 eliminates a power-supply problem and is very compact.

Circuit and Theory

Parallel-tunced cireuits have beon used for vars as "suck-out" trap circuits. Properly coupling a parallel-tuned cirenit loosely to a varum-tube amplifier stage, it will be found that the amplifier stage has no gain at the frequency to which the trap eireuit is tumed. The additional tuned eirenit puts a "notch" in the response of the amplitier. The principle is used in 'TV and other amplifiers to minimize response to a narrow band of frequencies. Increasing the Q of the trap, circuit

Fig. 5.64 -View of the Q mu!tiplier showing its single connecting cable to the receiver. The box can be placed in any convenient spot on or around the receiver.
reduces the wilth of the rejection notch.
The transistorized () multiplier makes use of the above effect for its operation. A tumed circuit is made regenerative to inerease its 0 and is coupled into the i.f. stage of a recoiver. By changing the frequency of the regenerative cironit, the sharp noteh can be moved about across the passband of the receiver. The width of the notch is changed by controlling the amount of regeneration.

Although it seems paradoxial, the transistorized () multiplier with no change in circuitry will also permit "praking" an incoming signal the way a vacuum-tube () multiplier does. The mrode of operation is seleeted by adjustment of the regeneration control, and this then usually requires a slight readjustment of the frequency control. The peaking effect is not quite as pronounced as the noteh, but it is still adequate to give fairly good singlo-signal c.w. reception with a receiver of otherwise inadequate selectivity.

The regenerative cirenit builds up the signal and feeds it back to the amplifier at a higher level and in the proper phase to add to the original signal. The noteh effect described earlier works in a similat manner except that the tuning of the regenerative cireuit is such that it feeds back the signal out of phase.
The sohematic diagnam of the Q multiplier is shown in Pigs. 5-65. The inductor L_{1} furnishes coupling from the receiver to the Q multiplier, and ("4 is required to prevent short-circuiting the recoiver's phate supply. The multiplier proper consists of the tumable circuit $C_{1} C_{3} C_{2}$ connected to a transistor in the collector-tuned commonbase oscillator circuit using caparitive feedback via C C_{2}. Regeneration is controlled by varying the d.e. operating voltage through dropping resistor R_{1}.

Layout

The unit and power supply are built in a small aluminum " Minibox" measuring $5 \times 21 / 4 \times 21 / 4$ inches (Bud ($L^{\circ}-3004$) and the operating controls are mounted on a lucite or aluminum subpanel. All parts of the unit are built on one half of the box. This feat ure not only simplifies construction but makes a battery change a simple job, even if this is required only a couple of times a year.

All major components, such as the two slugtuned coils, tie point, battery hotder, regemeration and tuning controls, are mounted directly on the box and subpanel. The remaining resistors,

Q Multiplier

Fig. 5-65-Circuit diagram of the $455-k c$. transistorized Q multiplier. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt.

$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. variable capacitor (Hammarlund HF-15).
$\mathbf{L}_{1}-1000-2000-\mu$. slug-tuned coil (North Hills 120-K. North Hills Electric Co., Mineola, N. Y.).
$\mathrm{L}_{2}-500-1000-\mu \mathrm{h}$. slug-tuned coil (North Hills 120-J).
Q
W_{1}-Three-foot length of RG-58/U cable.
capacitors and the single transistor are supported by their connertions to the alove parts.

The two slug-tuned coils, L_{1} and L_{2}, are entered on the box and spaced one inch apart on conters. Operating controls (1 and h_{1} are placed $11 / 4$ inches from the ends of the subpanel and rentered. The tie point mounts directly hehind tuning control C_{1}.

Power for the unit is supplied by four penlight cells (type 912) which are mounted in the battery holder (Lafayette Radio ('o. Stork No. MS-170) directly behind regeneration control R_{1}. Total drain on the battery mever exereds 0.2 ma.

Connection to the receiver is made with a threnfoot length of IR (i-58/U cable brought through the rear wall of the Minibox. A rubber grommet should be placed in the hole to prevent chafing of the cable insulation.

When soldering the transistor in place, be sure to take the usual preantions against heat damage.

Alignment

After completing the wiring (and double-chacking it) eonneet the open end of the three-foot cable to the plate cirenit of the receiver mixer tube. This can be done in a permanent fashion by soldering the imner condurtor of the cable to the plate pin on the tube sorket or any point that is commected directly to this pin, and by soldering the shield to any conveniont nearhe ground point. If you are one of those prophe who is afraid to take the bottom plate off his receiver. and you have a receiver with octal tubes, a "chicken connection" ean be made by removing the mixer tube and wrapping a short piece of small wire around the plate pin. Reinsert the tube in its socket and solder the center conductor of the coax to the small wire coming from the plate pin. Now ground the coax shield to the receiver chassis. It is important to keep the lead from the tube pin

Fig. 5-66-The Q multiplier and its baftery supply are combined in one small Minibox. The single transistor is visible near the top right corner.

5-HIGH-FREQUENCY RECEIVERS

to the coax as short as possible, to prevent stray pickup.

Cheek the sehematic diagram of the receiver for help in locating the above receiver connections.
Turn on the receiver and tume in a signal strong enough to give an S-meter reading, Any decent signal on the broadeast band will do. Next, tune the slug on L_{1} unt il the signal praks up. You are tuning out the reactanere of the connerting cable, and effectively peaking up the i.f. If the rereiver has no S meter, use an ate voltmeter arross the andio output. When this slep has been sucersslully completed the (Q multiplier is properly comnected to the receiver and when switched to "olf" will not affecet normal receovere operation.

The next step is to bring the multiplier into oseillation, and to adjust its frequency to a useful range. Set the tuning cont rol to half e:upurity and advanere the regemeration control to about half open. This latter movement also turns the power on. Tune the receiver to a clear spot and set the receiver b.f.o. to the eenter of the pass-band. Now adjust the slug of L_{2}. The multiplier should be oseillating, and somewhere in the adjust ment of L_{2} a beat note will be heard from the reereiver. This indioutes the frequener of oseillation is somewhere on or near the i.f. Swing this into zero beat with the b.f.o.

Final Adjustment

One of the best ways to make final alignment
is to simulate an unwanted heterolyne in the receiver and adjust the (multiplier for maximum attenuation of the unwanted signal. To do this, tume in a moderately weak signal with the b.for. on. A broadcast station received with the antenna discomnected will do. The b.f.o. will beat with the incoming signal, producing an audio tone. Adjust the b.f.o. for a tone of about I ke . or so.

Back off on control R_{1} until the oscillator becomes regenerative. Isy alternately adjust ing the tuning control, C_{1}, and the regencration control, R_{1}, a point ean be found where the andio tone disuppears, or at least is attemuated. Some slight retouching of L_{2} maty have to be done in the above aligmment, sinee the movement of any one control tends to "pull" the others. The optimum situation is to have the tuning control C_{1} set at about half capacity when the noth is in the center of the passband.

If you happen to get a super artive transistor and the regeneration control does not have the range to stop oseillator aetion, inerease the value of the series resistor Re. Conversely, if the unit fails to oscillate, reduce the value of $R 2$.

When making the above adjustments, you shouk notice that the audio tone ran be peaked as well as nulled. If it can not be peaked, a little more practice with the controls should produce this rondition. In the unit shown here, the bost null was produced with the regeneration control turned only a few degrees, optimum peak position was obtained with the regeneration control almost at the point of oscillation.

High-Frequency Transmitters

The principal requirements to be met in c.w. transmitters for the amateur bands between 1.8 and 30 Mc . are that the frequency must be as stable as good practice permits, the output signal nust be free from modulation and that harmonics and other spurious emissions must be eliminated or reduced to the point where they do not cause interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. I simple oscillator with satisfactory frequency stability may be used as a transmitter at the lower frequencies, as indicated in lig. 6-1.1, but the power output obtainable is small. As a general rule, the output of the oscillator is fed into one or more amplifiers to bring the power fed to the antenna up to the desired level, as shown in IB.

In amplifier whose output frequency is the same as the input frequency is called a straight amplifier. A buffer amplifier is the term sometimes applied to an amplifier stage to indicate that its primary purpose is one of isolation, rather than power gain.

Because it becomes increasingly difficult to maintain oscillator frequency stability as the frequency is increased, it is most usual practice in working at the higher frequencies to operate the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exciting frequency. A doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the exciting frequency by three, ete. From the viewpoint of any particular stage in a trausmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should not be used to feed the antenna system directly, but should feed a straight amplifier which, in turn, feeds the antenna system, as shown in Fig. 1-C, D and E. . Is the diagrams indicate, it is often possible to operate more than one stage from a single power supply.

Good frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequency desired (or multiples of that frequency). A self-controlled oscillator or v.f.o. (variable-frequeney oscillator) may be tuned to any frequency with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a crystal oscillator.

In all types of transmitter stages, sereen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exciter, the problem of harmonic reduction is made easier. Most satisfactory oscillator cireuits use a sereen-grid tube.

Fig. 6-1-Block diagrams showing typical combinations of ascillator and amplifiers and power-supply arrange. ments for transmitters. A wide selection is possible, depending upon the number of bands in which operation is desired and the power output.

6-HIGH-FREQUENCY TRANSMITTERS
 Oscillators

CRYSTAL OSCILLATORS

The frequency of a crystal-controlled oscillator is held constant to a high degree of accuracy loy the use of a quartz crystal. The frequency depends almost entirely on the dimensions of the erystal (essentially its thickness); other circuit values have comparatively negligible effect. Ilowever, the power obtainable is limited by the heat the erystal will stand without fracturing. The amount of heating is dependent upon the r.f. crystal current which, in turn, is a function of the amount of feedbark required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. Excitation should always be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

The simplest erystal-oscillator circuit is shown in Fig. 6-2A. An equivalent is shown at B. It is a Colpitts rireuit (see section on vacuum-tube principles) with the tube tapped across part of the tuned circuit. The rrystal has been replaced by its equivalent - a sorios-tumed rirouit $L_{1} \mathrm{C}_{4}$ (Were section on elerotrical laws and cireuits.) ('s and C_{6} are the tube grid-cathode and plate-
circuit in the actual plate circuit. Although the oscillator itself is not entirely independent of adjustments made in the plate tank circuit when the latter is tuned near the fundamental frequeney of the crystal, the effects can be satisfactorily minimized by proper choice of the oseillator tube.

The circuit of Fig. 6-3A is known as the Tritet. The oscillator circuit is that of Fig. 6-2C. Exeitation is controlled by adjustment of the tank $L_{1} C_{1}$, which shoukd have a low L / C ratio, and be tuned considerably to the high-frequeney side of the erystal frequeney (approximately 5 Mc , for a 3.5-Mc. crystal) to prevent over-excitation and high erystal current. Once the proper adjustment for average erystals has been found, C_{1} maty be replaced with a fixed capacitor of equal value.

The oscillator circuit of Fig. 3-B is that of Fig. 6-2.1. Excitation is controlled by C_{9}.

The oscillator of the grid-plate circuit of Fig. $6-3 \mathrm{C}$ is the same as that of Fig. 6-313, exeept that the ground point has been moved from the cathode to the plate of the oscillator (in other words. to the sereen of the tube). Excitation is adjusted by proper proportioning of C_{6} and C_{7}.

When most types of tubes are used in the circuits of Fig. 6-3, oscillation will stop when the output plate circuit is tuned to the crystal fre-

Fig. 6-2-Simple crystal-oscillator circuits. A-Pierce. B-Equivolent of circuit A. C-Simple triode oscillator. C_{1} is a plate blocking capacitor, C_{2} an output coupling capacitor, and C_{3} a plate bypass. L_{1}, C_{1}, C_{5} and C_{6} are discussed in the text. C_{7} and L_{2} should tune to the crystal fundamental frequency. R_{1} is the grid leak.
cathode capacitances, respectively. In lest practical form, C_{5} or C_{6}, or both, would be augmented by external capacitors from grid to cathode and plate to cathode so that feedback could be adjusted properly.

The circuit shown in Fig. 6-2C is the equivalent of the tuned-griel tumed-plate circuit discussed in the section on varuum-tube prineiples, the erystal replacing the tuned grid rireuit.

The most commonly used crystal-oscillator circuits are bused on one or the other of these two simple types, and are shown in Fig. 6-3. Although these circuits are somewhat more complicaterl, they combine the functions of oscillator and amplifier or frequance multiplier in a single tube. In all of these cireuits, the sereen of a tetrode or pentode is used as the plate in a triode oscillator. l'ower output is taken from a soparate tuned tank
quencr, and it is necessary to operate with the plate tank circuit critically detuned for maximum output with stability. However, when the $6.1 \mathrm{G7}, 5763$, or the lower-power 6AII6 is used with proper adjustment of excitation, it is possible to tune to the crystal frequency without stopping oscillation. The plate tuning characteristic should then be similar to Fig. 6-4. Therse tubes also operate with less crystal eurrent than most other typers for a given power output, and less frequency change occurs when the plate circuit is tuned through the erystal frequency (less than $2 \overline{5}$ eycles at 3.5 Mc .).

Crystal current may le estimated by observing the rolative brilliance of a $60-\mathrm{ma}$. dial lamp conneeted in series with the erystal. Current should be held to the minimum for satisfactory output by eareful adjustment of excitation. With the

Oscillators

operating voltages shown, satisfactory output should be obtained with crystal currents of 40 ma. or less.

In these circuits, output may be obtained at multiples of the crystal frequency by tuning the plate tank circuit to the desired hamonic, the

Fig. 6-3-Commonly-used crystal-controlled oscillator circuits. Values are those recommended for a 6AG7 or 5763 tube. (See reference in text for other tubes.) C_{1}-Feed-back-control capacitor-3.5-Mc. crystals-approx. $220-\mu \mu$ f. mica-7-Mc. crystals-approx. 150- $\mu \mu$ f. mica.
C_{2}-Output tank capacitor-100- $\mu \mu \mathrm{f}$. variable for singleband tank; $250-\mu \mu \mathrm{f}$, variable for two-band tank.
C_{3}-Screen bypass- $0.001-\mu \mathrm{f}$. disk ceromic.
C_{4}-Plate bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{5}-Output coupling capacitor-50 to $100 \mu \mu \mathrm{f}$.
C_{6}-Excitation-control capacitor-30- $\mu \mu \mathrm{f}$. trimmer.
C_{7}-Excitation capacitor-220- $\mu \mu \mathrm{f}$, mica for 6AG7; 100- $\mu \mu \mathrm{f}$. for 5763.
C_{8}-D.c. blocking capacitor- $0.001-\mu$ f. mica,
C_{9}-Excitation-control capacitor-220- $\mu \mu \mathrm{f}$. mica.
C_{10}-Heater bypass- 0.001 - $\mu \mathrm{f}$. disk ceramic.
R_{1}-Grid leak- 0.1 megohm, $1 / 2$ watt.
R_{2}-Screen resistor- 47,000 ohms, 1 watt.
L_{1}-Excitation-control inductance-3.5-Mc. crystals-approx. 4μ h.; 7 -Mc. crystals-approx. $2 \mu \mathrm{~h}$.
L_-Output-circuit coil--single band:-3.5 Mc.-17 $\mu \mathrm{h}$.; 7 Mc. $-8 \mu \mathrm{~h} . ; 14$ Mc. $-2.5 \mu \mathrm{~h} . ; 28$ Mc. $-1 \mu \mathrm{~h}$. Two-band operation: 3.5 \& 7 Mc. $7.5 \mu \mathrm{~h} . ; 7$ \& 14 Mc. -2.5μ.
RFC C_{1} - 2.5 -mh. 50 -ma. r.f. choke.
output dropping off, of eourse, at the higher harmonics. Especially for harmonic operation, a lowC plate tank circuit is desirable.

For best performance with a $6.1 \mathrm{G7} 7$ or 5763 , the values given under Fig. 6-3 should be followed closely. (For a discussion of values for other tubes, see QST for March, 1950, page 28.)

- VARIABLE-FREQUENCY OSCILLATORS

The frequency of a v.f.o. depencls entirely on the values of inductance and capacitance in the circuit. Therefore, it is necessary to take careful steps to minimize changes in these values not under the control of the operator. As examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but noticeable change in frequency called drift. The effective input capacitance of the oscillator tube, which must be connected across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the oscillator. To nake use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the oscillator, and variations in the load may reflect on the frequency. Very slight mechanical movement of components may result in a shift in frequency, and vibration can cause modulation.

V.F.O. Circuits

Fig. 6-5 shows the most commonly used eireuits. They are all designed to minimize the effects mentioned above. All are similar to the crystal oscillators of Fig. 6-3 in that the screen of a tetrode or pentode is used as the oscillator plate. The oscillating circuits in Figs. 6-5A and 13 are the Hartley type; those in C and D are Colpitts circuits. (See section on vacuum-tube principles.) In the circuits of A and C, all of the above-mentioned effects, except changes in inductance, are ninimized by the use of a high- Q tank circuit obtained through the use of large tink capacitances. Any uncontrolled changes in capacitance thus become a very small percentage of the total circuit caparitance.

In the series-tuned Colpitts circuit of Fig. 6-5D) (sometimes called the Chapp circuit), a high- Q circuit is obtained in a different manner. The tube is tapped across only a small portion of the oscillating tank circuit, resulting in very loose coupling between tube and circuit. The taps are provided by a series of three capacitors acrose the coil. In addition, the tube capacitances are shunted by large capacitors, so the effects of the tube - changes in electrode voltages and loading - are still further reduced. In contrast

Fig. 6-4- Plate tuning characteristic of circuits of Fig. 6-3 with preferred types (see text). The platecurrent dip at resonance broadens and is less pronounced when the circuit is loaded.

6-HIGH-FREQUENCY TRANSMITTERS

to the preceding eircuits, the resulting tank circuit has a high L / C ratio and therofore the tank current is much lower than in the circuits using high-C tanks. As a result, it will usually be found that, other things boing equal, drift will he lass with the low-C cireuit.

For best stability, the ratio of C_{13} or C_{14} (which are usually equal) to $C_{11}+C_{12}$ should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the (Q of the coil and the mutuab conduetance of the tube. If the cireuit does not oscillate over the desired range, a coil of higher ($)$ must be used or the capacitance of C_{13} and C_{14} reduced.

Load Isolation

In spite of the precautions alrcady discussed, the tuning of the output plate cireuit will cause a

(C) COLPITTS
noticeable change in frequency, particularly in the region around resonance. This effect can be reduced considerably by designing the oscillator for half the desired frequency and doubling frequency in the output circuit.

It is desirable, although not a strict necessity if detuning is recognized and taken into arcount, to approach as closely as possible the condition where the adjustment of tuning controls in the transmitter, beyond the v.f.o. frequeney eontrol, will have negligible effert on the frequency. This ean be done by substituting a fixed-tuned cirruit in the output of the oscillator, and adding isolating stages whose tuning is fixed between the oscillator and the first tunable amplifier stage in the transmitter. Fig. 6 - f shows such in arrangement that gives gool isolation. In the first stage, a 6 Ct is connected is a cathode follower. This

(D) SERIES-TUNED COLPITTS

Fig. 6-5-V.f.o. circuits. Approximate values for 3.5 Mc . are given below. For 1.75 Mc ., all tank-circuit values of capacitance and inductance, all tuning capacitances and C_{13} and C_{14} should be doubled; for 7 Mc ., they should be cut in haif.
C_{1}-Oscillator bandspread funing capacitor-150- $\mu \mu \mathrm{f}$. variable.
C_{2}-Output-circuit tank capacitor-100- $\mu \mu \mathrm{f}$.
C_{3}-Oscillator tank capacitor-500- $\mu \mu \mathrm{f}$. zero-temperta-ture-coefficient mica.
C_{1}-Grid coupling sapacitor-100. $\mu \mu \mathrm{f}$. zero-fempera. ture-coefficient mica.
C_{5}-Heater bypass- 0.001 - $\mu \mathrm{f}$. disk ceramic.
C_{6}-Screen bypass- 0.001 - μ. disk ceramic.
C_{7}-Plate bypass- 0.001 - μ. disk ceramic.
C_{8}-Output coupling capacitor-50 to $100-\mu \mu \mathrm{f}$. mica.
C!-Oscillator tank capacitor-680- $\mu \mu \mathrm{f}$. zero-tempera. ture-coefficient mica.
C_{10}-Oscillator tank capacitor-0.0022- μ f. zero-tem-perature-coefficient mica.
C_{11}-Oscillator bandspread padder-50- $\mu \mu \mathrm{f}$. variable air.
C_{12}-Oscillator bandspread tuning capacitor-25- $\mu \mathrm{\mu f}$. variable.
C_{13}, $\quad \mathrm{C}_{14}$-Tube-coupling capacitor-0.001- $\mu \mathrm{f}$. zero. temperature-coefficient mica.
$R_{1}-47,000$ ohms, $1 / 2$ watt.
L_{1}-Oscillator tank coil-4.3 $\mu \mathrm{h}$. , tapped about one-third-way from grounded end.
\mathbf{l}_{2}-Output-circuit tank coil- $22 \mu \mathrm{~h}$.
L_{3}-Oscillator tank coil-4.3 $\mu \mathrm{h}$.
L_{4}-Oscillator tank coil- $33 \mu \mathrm{~h}$. (B \& W JEL-80).
RFC_{1}-2.5-mh. $50-\mathrm{ma}$. r.f. choke.
V_{1} - 6 AG7, 5763 or 6AH6 preferred; other types usable.
V_{2}-6AG7, 5763 or 6AH6 required for feed-back capacitances shown.

Oscillators

drives a $\mathbf{5 7 6 3}$ buffer amplifier whose input rircuit is fixed-tuned to the approximate band of the vif.o. output. For le'st isolation, it is important that the $6 \mathrm{C}+\frac{d}{}$ does not draw grid eurrent. The output of the v.l.e., ar the cathorle resistor of the GC.4 should be adjusted until the voltage arross the cathode resistor of the 6 C 4 (as measured with a high-resistance d.c. voltmeter with an r.f. choke in the positive lead) is the same with or without excitation from the v.f.o. L_{1} should be adjusted for most constant output from the satis over the band.

Chirp

In all of the circuits shown there will be some change of frequency with changes in screen and plato voltages, and the use of regulated voltages for both usually is necessary. One of the most serious results of voltage instability occurs if the oscillator is keyed, as it often is for break-in operation. Although voltage regulation will supply a steady voltage from the power supply and therefore is still desirable, it cannot alter the fact that the voltage on the tube must rise from zero when the key is open, to full voltage when the key is closed, and must fall back again to zero when the key is opened. The result is a chirp each time the key is opened or closed, unless the time constant in the keying circuit is reduced to the point where the chirp takes place so rapidly that the receiving operator's Gar cannot detect it. Unfortunately, as explained in the section on keying, a certain minimum time eonstant is neeessary if key elieks are to be minimized. Therefore it is evident that the measures necessary for the reduction of chirp and clicks are in opposition, and a compromise is necessary. For best keying characteristics, the oscillator should be allowed to run continuously while a subsequent amplifier is keyed. However, a keyed amplifier represents a widely variable load and unless sufficient isolation is provided between the oscillator and the keyed amplifier, the keying characteristics may be little better than when the oscillator itself is keyed. (wee keying section for other methods of break-in keying.)

Frequency Drift

Frequency drift is further reduced most easily by limiting the power input as much as possible and by mounting the eomponents of the tuned circuit in a separate shielded eompartment, so that they will be isolated from the dirert heat from tubes and resistors. The shiclding also will
eliminate changes in frequency caused by movement of nearby objects, such as the operator's hand when tuning the v.f.o. The eireuit of Fig. $6-5 \mathrm{D}$ lends itself well to this arrangement, sinco relatively long leads between the tube and the tank eircuit have negligible effect on frequency because of the large shunting capacitances. The grid, cathode and ground leads to the tube can the bunched in a cable up to sevoral feet long.

Variable capacitors should have ceramic insulation, good bearing contacts and should preferably be of the double-bearing type, and fixed capacitors should hatve zoro temperature cocfficient. The tule sorket also should have coramic insulation and special attention should be paid to the selection of the coil in the oscillating section.

Oscillator Coils

The Q of the tank coil used in the oscillating portion of any of the cirsuits under discussion should be as high as circumstances (usually space) permit, since the losses, and therefore the heating, will be less. With recommended care in regard to other factors mentioned previously, most of the drift will originate in the coil. The coil should be well spared from shiclding and other large metal surfaces, and be of a type that radiates heat well, surh as a commereial air-

Fig. 6-6-Circuit of an isolating amplifier for use between v.f.o. ond first tunoble stage. All capocitonces below $0.001 \mu \mathrm{f}$. ore in $\mu \mu \mathrm{f}$. All resistors ore $1 / 2$ wott. l_{1}, for the $3.5-\mathrm{Mc}$. band, capocitonces below 0.001μ f. ore in $\mu \mu \mathrm{f}$. All resistors ore $1 / 2$ wott. L_{1}, for the $3.5-\mathrm{Mc}$. band,
consists of 93 turns No. 36 enom., $17 / 32$ inch long, $1 / 2$-inch diometer, close-wound on Notionol XR-50 iron-slug form. Inductonce 69 to $134 \mu \mathrm{~h}$. All copocitors ore disk ceramic.

wound typre, or should be wound tightly on a threaded ceramic form so that the dimensions will not ehange readily with temperature. The wire with which the coil is wound should be as large as practicalle, especially in the high- C circuits.

Mechanical Vibration

To eliminate mechanical vibration, components should be mounted securely. Particularly in the circuit of Fig. (6-5!), the capacitor should preferably have small, thirk plates and the coil braced, if necessary, to prevent the slightest mechanical movement. Wire comnections between tank-rircuit components should be as short as possible and flexible wire will have less tembeney to vilmate than solid wire. It is advisable to cushion the entire oscillator unit by mounting on sponge rubser or other shock mounting.

6-HIGH-FREQUENCY TRANSMITTERS

Tuning Characteristic

If the circuit is oscillating, touching the grid of the tube or any part of the circuit connected to it will show a change in plate eurrent. In tuning the plate output circuit without load, the plate current will be relatively high until it is tuned near resonance where the plate current will dip to a low value, as illustrated in Fig. 6-t. When the output circuit is loaded, the dip should still be found, but broader and much less pronounced as indicated by the dashed line. The circuit should not be loaded beyond the point where the dip is still recognizalble.

Checking V.F.O. Stability

A v.f.o. should be checked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristies, final tests should be made with the complete transmitter in operation. Almost any v.f.o. will show signals of good quality and stability when it is running free and not connected to a load. A well-isolated monitor is a necessity. Perhajes the most convenient, as well as one of the most satisfactory, well-shichled monitoring arrangements is a receiver combined with a crystal oscillator, as shown in Fig. 6-7. (See "(rystal ()scillators," this section.) The erystal frequency should lie in the band of the lowest frequency to be checked and in the frequency range where its harmonics will fall in the higher-frequency bands. The receiver b.f.o. is turned off and the v.f.o. signal is tuned to beat with the signal from the crystal oseillator instead. In this way any receiver instability caused by overloading of the input circuits, which may result in "pulling" of the $h{ }^{5}$. oscillator in the receiver, or by a change in line voltage to the receiver when the transmitter is keyed, will not
affect the reliability of the cheek. Most crystals have a suffieiently-low temperature coefficient to give a cheek on drift as well as on chirp and signal quality if thry are not overloaded.

Itarmonics of the crystal may be used to beat with the transmitter signal when monitoring at the higher frequencies. Since any chirp at the lower frequencies will be magnified at the higher frequencies, accurate checking can best be done by monitoring at a harmonic.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the erystal oscillator and the transmitter signal. When using harmonies of the crystal oscillator, it may be necessary to attach a piece

Fig. 6-7--Setup for checking v.f.o. stability. The receiver should be funed preferably to a harmonic of the v.f.o. frequency. The crystal oscillator may operate somewhere in the band in which the v.f.o. is operating. The receiver b.f.o. should be turned off.
of wire to the oscillator as an antenna to give suffieient signal in the receiver. Checks may show that the stability is sufficiently good to permit oscillator keying at the lower frequencios, where break-in operation is of greater value, but that chirp becomes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this case to use oscillator keving at the lower frequencies and amplifier keying at the higher frequencies.

R.F. Power-Amplifier Tanks and Coupling

R.f. power amplifiers used in amateur transmitters usually are operated under Class C conditions (see section on vacuunt-tube fundamentals). Fig. ($0-10$ shows a screen-grid tube with the required tuned tank in its plate circuit. Equivalent cathode connections for a filamenttype tube are shown in Fig. 6-8 It is assumed that the tube is being properly driven and that the various electrode voltages are appropriate for Class C operation.

- plate tank 0

The main objective, of course, is to deliver as much fundamental power as possible into a load, h, without excoeding the tube ratings. The load resistance R may be in the form of a transmission line to an antenna, or the grid circuit of another amplifier. A further objective is to minimize the harmonic energy (always generated by a Class C amplifier) fed into the load circuit. In attaining these objectives, the Q of the tank circuit is of importance. When a load is coupled inductively, as in Fig. 6-10, the () of the tank circuit will have an effect on the coefficient of coupling nec-
essary for proper loading of the amplifier. In respect to all of these factors, a tank Q of 10 to 20 is usually considered optimum. A much hower (Q) will result in less efficient operation of the amplifier tule, greater harmonic output, and greater difficulty in coupling inductively to a load. A much higher Q will result in higher tank current with increased loss in the tank coil.
The Q is determined (sce chapter on electrical laws and cireuits) by the L / C ratio and the load resistance at which the tube is operated. The tube load resistance is related, in approximation, to

Fig. 6-8-Filament center-fop connections to be substituted in place of cathode connections shown in diagrams when filament-type tubes are substituted. T_{1} is the filament transformer. Filoment bypasses, C_{1}, should be $0.001-\mu \mathrm{f}$. disk ceramic capacitors. If a self-biasing (cathode) resistor is used, it should be placed between the center tap and ground.

Fig. 6-9-Chart showing plate tank capacitance required for a Q of 10 . Divide the tube plate voltage by the plate currant in milliamperes. Select the vertical line corresponding to the answer obtained. Follow this vertical line to the diagonal line for the band in question, and thence horizontally to the left to read the capacitance. For a given ratio of plate-voltage/plate current, doubling the capacitance shown doukles the Q etc. When a split-stator capacitor is used in a balanced circuit, the capacitance of each section may be one half of the value given by the chart.
the ratio of the d.c. plate voltage to d.c. plate current at which the tube is oprerated.

The amount of (' that will grive a (? of 10 for various ratios is shown in Fig. 6-9. For a given plate-voltate, plate-eurrent ratio, the () will vary directly as the tank caparitance. twice the capacitance doubles the Q ete. For the same (, the rapacitance of each sectuon of a split-stator capacitor in a badanced cirenit should be hatf the value shown.

These values of capacitance include the output capacitance of the amplifior tube, the input capat(ittince of a following amplificr tube if it is coupled caparitively, and all othor stray capacitances. At the higher plate-voltage plate-euremt ratios, the chart may show values of capacitance, for the higher frequencios. smabler than those attainable in practice. In surh a case, a tank Q higher than 10 is unavoidable.

In low-power exciter stages, where rapacitive coupling is used, very low-() eirenits, tumed only by the tube and stray circuit capacitances are sometimes used for the purpose of "broadband-
ing" to avoid the necessity for retuning a stage across a band. Iligher-order harmonies penemated in sudh a stage ran usuatly be attentuated in the tank circuit of the final amplifier.

INDUCTIVE-LINK COUPLING

Coupling to Flat Coaxial Lines

When the load R in Fig. 6-10A is located for convenience at some distance from the amplifier, or when maximum harmonic reduction is desired, it is advisable to feed the power to the load through a low-impedance coaxial cable. The shidded construction of the cable prevents radiation and makes it possible to insta'l the line in any convenient manner without danger of unwanted coupling to other cirenits.

If the line is more than a small fraction of a wavelongh long. the load resistance at its ontput end should be adjusted, by a matching cireuit if neressatry, to mately the impedance of the ebble. This reduces losses in the cable and makes the cooupling adjustmonts at the transmitter independent of the cable length. Matching circoits for use between the cable and another transmission line are discussed in the sertion on transmission lines, while the matehing adjustments when the load is the grial cirruit of a following amplifier are described elsewhere in this seetion.

Assuming thit the cable is properly terminated, proper loatling of the amplificr will be assured, using the circuit of lieg. 6-11C, if

1) The plate tank circuit has reasonably high value of (Q. A value of 10 is usia tily sumficient.
2) The inductance of the piek-up or link coil is close to the optimum value for the irequency and type of line used. The optimum cuil is one whose self-inductance is surh that its reactance at the operating fropurney is ropat to the charac-

Fig. 6-10-inductive-link output coupling circuits.
C_{1}-Plate tank capacitor-see text and Fig. 3-9 for capacitance, Fig. 6-33 for voltage rating.
C_{2}-Heater bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{3}-Screen bypass-voltage rating depends on method of screen supply. See paragraphs on screen considerations. Voltage rating same as plate voltage will be safe under any condition.
C_{4}-Plate bypass- $0.001-\mu \mathrm{f}$. disk ceramic or mica. Voltage rating same as C_{1}, plus safety factor.
L_{1}-To resonate at operating frequency with C_{1}. See IC chart in miscellaneous-data chapter and inductance formula in electrical-laws section, or use ARRL Lightning Calculator.
L_{2} - Reactance equal to line impedance. See reactance chart and inductance formula in electrical-laws section, or use ARRL Lightning Calculator.
R-Representing load.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6.11-With flat transmission lines power transfer is obtained with looser coupling if the line input is tuned to resonance. C_{1} and L_{1} should resonate at the operating frequency. See table for maximum usable value of C_{1}. If circuit does not resonate with maximum C_{1} or less, inductance of l_{1} must be increased, or added in series at \boldsymbol{l}_{2}.
teristic impedance, Z_{0}, of the line.
3) It is possible to make the coupling between the tank and piek-up eoils very tight.

The second in this list is often hard to meet. Few manufactured link coils have adergate inductancer even for coupling to a 50 ohm line at low frequencies.

If the line is oprotting with a low s.w.r., the s!stem shown in lig. (i-11C will require tight coupling between the two roils. Nince the seco ondary (pick-up eoil) circuit is not resonant, the leakage rearetaner of the pirk-up enil will cotuse some detuning of the amplifier tank eireuit. This detuning affect incroases with increasing eoupling. but is usually not serious. Howevar, the atmplifior tuning must he adjusted to resonanere, as indicated be the phate-current dip, each time the eotupling is changed.

Capacitance in $\mu \mu \mathrm{I}$. Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit		
Frequenry	Characteristic	cdunce
Ihand	52	7.5
M/r.	ohms ${ }^{1}$	ohms ${ }^{\text {a }}$
1.8	90	(61)
3.5	4.31	3(1)
7	2311	15
1.4	11.5	\therefore
28	(1)	40

${ }^{1}$ Capacitance values are maximum usable.
Note: Inductance in circuit must be adjusted to resonate at oprating frefucncy.

Tuned Coupling

The design difficulties of using "untuned" pick-up coils, mentioned ilhove, can be avoided by using a coupling circuit tuned to the operating frequency. This contributes additional selectivity as well, and henee aids in the suppression of spurious radiations.

If the line is flat the input impedance will be essentially resistive and equal to the Z_{0} of the line. With coanial cable, a cireuit of reasonable ? can be obtained with practicable values of inductance and caparitance comerted in serjes with the line's input terminals. Suitable circuits are given in lig. 6-11 at A and B. The Q of the coupling circuit often may be as low as 2 , without running into difficulty in getting adequate coupling to at tank direuit of proper design. Latrger values of Q can be used and will result in increased ease of coopling, but as the Q is increased the frequoney range over which the circuit will operate without readjustment becomes smatler. It is usually good prackice, therefore, to use a couplingcirenit (? just low enough to permit operation, over as much of a band as is normally used for a particular trpe of communieation, without requiring retuning.

Citparitance values for a () of 2 and line impedances of 52 and 75 ohms are given in the accompanying table. These are the maximum values that should be used. The inductance in the circuit should be adjusted to give resonance at the operating frequency. If the link coil used for a particular band does not have enough induetance to resonate, the additional inductance may be connected in series as shown in Fig, 6-11B.

Characteristics

In practice, the amount of inductance in the circuit should be chosin so that, with somewhat loose coupling between L_{1} and the amplifier tank eoil, the amplifier phate current will increase when the variable cupacitor, C_{1}, is tuned through the value of caparitance given hy the table. The coupling betwern the two coils should then le increased until the amplifior loads normally, without changing the satting of C_{1}. If the transmission line is flat over the entire frequeney band under consideration, it should not be neressary to readjust C' $_{1}$ when changing frequenery, if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some readjustment of Ci may he needed to compensate for changes in the input impedance of the line. If the input impedance variations are not large, C C_{1} may be used as at loading control. no changes in the coupling betwern L_{1} athed the tank coil being neeressary:

The degree of coupling between L_{1} and the amplifier tank coil will depend on the couplingcircuit Q. With al Q of 2 , the coupling should be tight -- comparable with the coupling that is typical of "fixed-link" manufactured coils. With a swinging link it may be necessary to increase the Q of the coupling circuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

Pi-Section Output Tanks

PI-SECTION OUTPUT TANK

A pisection tank circuit may also be used in coupling to an antenna or transmission line, as shown in Fig. 6-12. The values of capacitance for ('1 and C_{2}, and inductance for L_{1} for any values: of tube load resistance and output load resistanee may be calculated from the formulas in the chapter on electrical laws.

Fig. 6-1 2-Pi-section output tank circuit.
C_{1}-Input capacitor. See text or Fig. 6-1 3 for reactance. Voltage rating should be equal to d.c. plate voltage for C.W.; double this value for plate modulation.
C_{2}-Output capacitor. See text or Fig. 6-15 for reactance. See text for voltage rating.
C_{3}-Heater bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{4}-Screen bypass. See Fig. 6-10.
C_{5}-Plate bypass. See Fig. 6-10.
C_{f}-Plate blocking copacitor-0.001- $\boldsymbol{\mu}$. disk ceramic or mica. Voltage rating same as C_{1}.
L_{1}-See text or Fig. 6-14 for reactance.
RFC_{1}-See later paragraph on r.f. chokes.
RFC_{2} - 2.5-mh. receiving type (essential to reduce peak voltage across both input and output capacitors).
Values of reactance for (${ }_{1}, L_{1}$ and (2 may be taken direetly from the charts of Figs. (6-13, 6-14 and ($6-15$ if the output load resistance is 52 or 72 ohms. It should be borne in mind that these values apply only where the output load is resistive. i.e., where the antemna and line have been matehed. The tube load resistance R_{1} in ohms is determined be dividing the plate voltage by twice the d.e, plate current in decimal parts of an ampere.

Output-Capacitor Ratings

The voltage rating of the output capacitor will depend upen the s.w.r. If the loid is resistive, receiving-tape air eaparitors should be adequate for amplifier input powors up to 1 kw. with plate modulation when feeding 52 - or 72 -ohm loads. In obtaining the larger capacitances required for the lower frequencies, it is common practior to switeh fixed capactitors in parallel with the variable air caparitor. While the voltage rating of a mica or ceramic capateitor may not be execerled in a particular case, capacitors of these theses are limited in eurrent-rarrying capacity. Postage-stamp silver-mica caparitors should be adequate for amplifier inputs over the range from about 70 watts at 28 Mr . to $4(\mathrm{~K})$ watts at 14 Mc . and lower. The larger mica eapacitors (CM-45 case) having voltage ratings of 1200 and $25(0)$ volts are usually satisfactory for inputs varying from about 350 watts at 28 Me . to 1 kw . at 14 Mc . and lower. Berause of these current limitations; particularly at the higher frequencies, it is ad-

PI-NETWORK DESIGN CHARTS FOR FEED-
ING 52- OR 72-OHM COAXIAL TRANS-
MISSION LINES

Fig. 6-13-Reactance of input capacitor, C_{1}, as a function of tube load resistance, R_{1}, for pi networks.

Fig. 6-1 4-Reactance of tank coil, L_{1}, as a function of load resistance. R_{1}, for pi networks.

Fig. 6-15-Reactance of loading capacitor, C_{2}, as a function of tube load resistance, R_{1}, for pi networks.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6.16-Multiband funer circuits. In the unbalanced circuit of A, C_{1} and C_{2} are sections of a single split-stator capacitor. In the balanced circuit of D, the two splif-stator capacitors are ganged to a single control with an insulated shaft coupling between the two. In D, the two sections of L_{2} are wound on the same form, with the inner ends connected to C_{2}. In A, each section of the capacitor should have a voltage rating the same as Fig. 6-33A. In D, C_{1} should have a rating the same as Fig. 6-33H (or Fig. 6-33E if the feed system corresponds). C_{2} may have the rating of Fig. 6.33E so long as the rotor is not grounded or bypassed to ground.
visable to use as large an air capacitor as practicable, using the micts only at the lower frequencies. Broadeast-receiver replarement-type caparitors can be obtained very reasonably. They are available in triple units totaling about $1100 \mu \mu \mathrm{f}$., or dual units totaling about $900 \mu \mu \mathrm{f}$. Their insulation shoukd loe sufficient for inputs of 500 watts or more. Air capacitors have the additional advantage that they are seldom permanently damaged by a voltage break-down.

Neutralizing with Pi Network

Screen-grid amplifiers using a pi-network output cireuit may be neutralized by the system shown in Figs. 6-2:3B and C.

- MULTIBAND TANK CIRCUITS

Multiband tank circuits provide a convenient means of covering several bands without the need for changing coils. Tuners of this type consist cessentiatly of two tank circuits, tuned simultaneously with a single control. In a tuner designed to cover 80 through 10 meters, each circuit has a sufficiently large capacitance variation to assure an approximately 2 -to-1 frequency range. Thus, one cireuit is designed so that it covers 3.5 through 7.3 Mc., while the other covers 14 through 29.7 Mc.

A single-ended, or unbalanced, circuit of this type is shown in Fig. 6-16A. In principle, the reactance of the high-frequency coil, L_{2}, is small enough at the lower frequencies so that it can the largely neglected, and C_{1} and C_{2} are in parallel arross L_{1}. Then the circuit for low frequencies becomes that shown in Fig. 6-16B.

At the high frequencies, the reactance of L_{1} is high, so that it may be considered simply as a choke shunting C_{1}. The high-frequency circuit is essentially that of Fig. $6-16 \mathrm{C}, L_{2}$ being tuned by C_{1} and C_{2} in series.

In practice, the effect of one circuit on the other cannot be meglected entirely. L_{2} tends to increase the effective capacitance of C_{2}, while L_{1} tends to decrease the effective capacitance of C_{1}. This effect, however, is relatively small. Each eircuit must cover somewhat more tham a 2-to-1 frequency range to permit staggering the two ranges sufficiently to avoid simultaneous responses to a frequency in the low-frequency range, and one of its harmonics lying in the range of the high-frequency circuit.

In any circuit covering a frequency range as great as 2 to 1 by capacitance alone, the circuit () must vary rather widely. If the circuit is designed for at Q of 12 at 80 , the (Q will be 6 at 40 , 24 at 20,18 at 15 , and 12 at 10 meters. The increase in tank curront as a result of the inerease in Q toward the low-frequency end of the highfrequeney range may make it necessary to design the high-frequency coil with care to minimize loss in this portion of the tuning range. It is generally found desirable to provide separate output coupling coils for each circuit.

Fig. 6-16D) shows a similar tank for balanced circuits. The same principles apply.

Series or parallel feed may be used with either balanced or unbalanced circuits. In the balanced circuit of Fig. 6-16D), the series feed point would be at the center of L_{1}, with an r.f. choke in series.
(For further discussion see QST, July, 1954.)

R.F. Amplifier-Tube Operating Conditions

In addition to proper tank and output-coupling circuits discussed in the preceding sertions. an r.f. amplifier must be provided with suitable electrode voltages and an r.f. driving or excitation voltage (see vacuum-tube sertion).

All r. f. amplifier tubes require a voltage to operate the filament or heater (a.c. is usually permissible), and a positive d.e. voltage betwen the plate and filament or cathorle (plate voltage). Most tubes also require a negative d.e. voltage (biasing voltage) between control grid (Grid No. 1) and filament or cathode. Soreen-grid
tubes require in addition a positive voltage (scren voltage or (irid No. 2 voltage) between sereen and filament or eathode.
Biasing and plate voltages may be fed to the tule either in series with or in parallel with the associated r.f. tank circuit as discussed in the chapter on clectrical laws and cireuits.

It is important to remember that true plate, sercen or biasing voltage is the voltage between the partieular eleetrode and filament or cathode. Only when the cathode is directly grounded to the chassis may the electrode-to-chassis voltage

Transmitting-Tube Ratings

be taken as the true voltage.
The required r.f. driving voltage is applied between grid and eathode.

Power Input and Plate Dissipation

Plate power input is the d.e. power input to the plate eircuit (d.e. plate voltage \times d.e. plate eurrent. Sereen power input likewise is the d.c. screen voltage \times the d.e. sereen current.
Plate dissipation is the difference between the r.f. power delivered ly the tube to its loaded plate tank circuit and the d.e. plate power input. The sereen, on the other hand, does not deliver any output power, and therefore its dissipation is the same as the screen power input.

TRANSMITTING-TUBE RATINGS

Tube manuficturers specify the maximum values that should be applied to the tubes they produce. They also publish sets of typieal operating values that should result in good efficiency and normal tule life.

Maximum values for all of the most popular trimsmitting tubes will be found in the tables of transmitting tubes in the last chapter. Also included are as many sets of typical operating values as space permits. However, it is recommended that the amateur secure a transmittingtube manual from the manufaeturer of the tule or tulues he plans to use.

CCS and ICAS Ratings

The same transmitting tube may have different ratings depending upon the manner in which the tube is to be operated, and the service in which it is to be used. These different ratings are based primarily upon the heat that the tube can safely dissipate. Some types of operation, surh as with grid or sereen modulation, are less efficient than others, meaning that the tube must dissipate more heat. Other types of operation, surh as e.w. or single-sideband phone are intermittent in mature, resulting in less average heating than in other modes where there is a continuous power input to the tube during transmissions. There are also different ratings for tubes used in transmitters that are in almost constant use (CCS Continuous Commercial Service), and for tules that are to be used in transmitters that average only a few hours of daily operation (IC.AS Intermittent Commercial and Amateur Service). The latter are the ratings used by amateurs who wish to obtain maximum output with reasonable tube life.

Maximum Ratings

Maximum ratings, where they differ from the values given under typical operating values, are not normally of signifieance to the amateur except in sprecial applications. . .o single maximum value slould the used unless all other ratings ean simultancously be held within the maximum values. As an example, a tube may have a maximum phate-voltage rating of $2(\%)$, a maximum
plate-eurrent rating of 300 mas, and a maximum plate-power-input rating of 400 watts. Therefore, if the maximum phate voltage of 300 is used, the plate current should be limited to 200 ma . (instead of 300 ma .) to stay within the maximum power-input rating of 400 wafts.

sources of electrode VOLTAGES

Filament or Heater Voltage

The filament voltage for the indireetly-heated cathode-type tubes found in low-power classifications may vary 10 per cent above or below rating without seriously reducing the life of the tube. But the voltage of the higher-porer fila-ment-type tubes should be held elosely between the rated voltage as a minimum and 5 per cent above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied.

Thoriatel-type filaments lose emission when the tule is overloaded apprectiably. If the overload has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for at period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.

Plate Voltage

D.e. plate voltage for the operation of r.f. amplifiers is most often obtained from a trans-former-rectifier-filter system (see power-supply chapter) designed to deliver the required plate voltage at the required eurrent. However, batteries or other d.e.-generating devices are sometimes used in certain types of operation (see prortable-mobile seetion).

Bias and Tube Protection

Several methods of obtaining bias are shown in Fig. 6-17. In A, bias is obtained by the voltage (drop) arross a resistor in the grid d.e. return circuit when rectified grid eurrent flows. The proper value of resistance may be determined by dividing the required biasing voltage by the d.e. grid eurrent at which the tule will be operated. Then, so long as the r.f. driving voltage is adjusted so that the d.c. grid current is the reeommonded value, the biasing voltage will be the proper value. The tube is biased only when excitation is applied, since the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the bias falls to zero. At zero bias most tubes draw power far in exeess of the plate-dissipation rating. So it is advisable to make provision for protecting the tube when excitation fails by aecident, or by intent as it does when a preeeding stage in a c.w. transmitter is keyed.

If the maximum e.w. ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that plate current be eut off completely but only to the point where the rated

6 - HIGH-FREQUENCY TRANSMITTERS

Fig. 6-17-Various systems for obtaining protective and operating bias for r.f. amplifiers. A—Grid-leak. 8-Battery. C-Combination battery and grid leak. D-Grid leak and adjusted-valtage bias pack. E-Combination grid leak and voltage-regulated pack. F-Cathode bias.
dissipation is not exceeded. In this case platemodulated phone ratings should be used for e.w. operation, however.

With triodes this protection can be supplied by obtaining all bias from a source of fixed voltage, as shown in Fig. 6-1713. It is preferable, however, to use only sufficient fixed bias to protret the tube and obtain the balance needed for operating bias from a grid loak, as in C. The gridleak resistance is calculated as above, except that the fixed voltage is subtracted first.

Fixed bias may be obtained from dry batteries or from a power pack (see power-supply sertion). If dry batteries are used, they should be checked periodically, since even though they may show normal voltage, they eventually develop a high internal resistance. Grid-current flow through this battery resistance may increase the bias considerably above that anticipated. The life of batteries in bias service will be approximately the same as though they were subject to a drain equal to the grid current, despite the fact that the grid-current flow is in such a direction as to charge the battery, rather than to discharge it.

In Fig. 6-17F, bias is olstained from the voltage drop across a resistor in the cathode (or filament (enter-tap) lead. Protertive hias is obtained by the voltage drop across R_{5} as a result of plate (and screen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cut-off protective bias cannot be obtained. When excitation is ap-
plied, plate (and sereen) current increases and the grid current also contributes to the drop across R_{5}, thereby increasing the bias to the operating value. Since the voltage betwern plate and cathode is reduced by the amount of the voltage (drop) arross R_{5}, the over-all supply voltage must be the sum of the plate and operating-bias voltages. For this reason, the use of cathode bias usually is limited to low-voltage tubes when the extra voltage is not difficult to obtain.

The resistance of the cathode biasing resisfor R_{5} should be adjusted to the value which will give the correct operating bias voltage with rated grid, plate and screen currents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time reguired to remove plate voltage. A disadvantage of this biasing system is that the cathode r.f. connertion to ground depends upon a bypass rapacitor. From the consideration of v.h.f. harmonies and stability with high-perveance tubes, it is preferable to make the cathode-to-ground impedance as close to zero as possible.

Screen Voltage

For c.w. operation, and under certain conditions of phone operation (see amplitude-modulat tion scetion), the sereen may be operated from a power supply of the same trpe used for plate supply, exeept that voltage and current ratings

Bias and Tube Protection

should be appropriate for sereen requiremonts The sereen maty also be oprerated through a series resistor or voltage-divider from a source of higher voltage, such as the phate-voltage supply, thus making a separate supply for the screen unheressary. (ertain precautions are necessary, depending upon the method used.

It should be kept in mind that sereen current varies widely with both exritation and loading. If the soreen is operated from a fixed-voltage source, the tube should never be operated without plate voltage and load, otherwise the serem may he damaged within a short time. Supplying the screen through a series dropping resistor from a higher-voltage souree, such as the phate supply, affords a measure of protection, since the resistor causes the sereen voltage to drop as the current increases, thereby limiting the power drawn be the serem. However, with a resistor, the sereen voltage may vary considerably with exitation, making it necessary to check the voltage at the serom terminal under actual operating conditions to make sure that the sereen voltage is nommal. Reducing exeitation will eanse the sereen current to drop, incrasing the voltage; fucrensing exciation will have the opposite dfert. These changes are in addition to those caused by changes in bias and plate loading, so if a seren-grid tube is operated from a series resistor or a voltage divider, its voltage should he checked as one of the final adjustments after exeltation and loading haw bern set.

An approximate value for the sereen-voltage dropping resistor may be obtained by dividing the voltage drop required from the supply voltage (difference between the supply voltage and rated sereen voltage) by the rated sereen curvent in derimat parts of an :mbere. Some further adjusiment may he neressatry, as mentioned above, so an adjustable resistor with a total resistance alove that caleulated should he provided.

Protecting Screen-Grid Tubes

sereen-grid tubes camot be cut off with bias unless the soreen is operated from a fixed-voltage supply. In this rase the cut-off bias is approximately the sereen voltage divided by the amplification lactor of the sereen. This figure is not ahatis shown in tubedata sheets, but rut-off voltage maty be determined from an inspection of tube curves, or by experiment.

When the sereen is supplied from a series dropping resistor, the tube ran be protected by the use of' a clamper tube, as shown in Fig. (f-18. The grid-leak bias of the amplifier tube with excitation is supplied also to the grid of the clamper tube. This is usually sufficient to eut off the rlamper tube. However, when exeitation is removed, the elamper-tube bias falls to zero and it draws chough eurrent through the sereen dropping resistor usually to limit the input to the amplifier to a safe value. If complete screenroltage cut-off is desired, a VI tube may be inserted in the screen lead as shown. The VRtule voltage rating should be high enough so that it will extinguish when excitation is removed.

Fig. 6-18-Screen clamper circuit for protecting screengrid power tubes. The VR tube is needed only for complete cut-off.
$C_{1}-0.001-\mu f$. disk ceramic. $R_{1}-100$ ohms.

FEEDING EXCITATION TO THE GRID

The required r.f. driving voltage is supplied by an oscillator genorating a voltage at the desired frequence either directly or through intermediate amplifiers or frequency multipliers.

As explained in the sertion on vacum-tube fundamentals, the grid of an amplifier operating under Class \mathbf{C} conditions must have an exeiting voltage whose peak value exceeds the negative biasing voltage over a portion of the exritation erve. During this portion of the evele, current will flow in the grid-rathode circuit ats it does in a diode circuit when the phate of the diode is positive in respect to the cathode. 'This requires that the r.f. driver supply power. The power required to develop the required peat ilriving voltage across the gridecathode impedture of the amplifier is the ref. driving power.

The tube tables give approximate figures for the grid driving power required for carh tube uncer various operating ronditions. These figures, however, do not inwlude circuit liseses. In general, the driver stage for any Clase (C amplifier shoukd be capable of supplying at least three times the driving power shown for trpical operating conditions at frequencies up to :30 Me, and from three to ten times at higher frequeneies.
sine the d.e. grid current relative to the biasing voltage is related to the prat driving voltage, the d.e. grid current is commonly used as a convenient indiator of driving conditions. A driver adjustment that results in rated d.e. grid current when the d.e. bias is at its rated value, indicates proper excitation to the amplifier when it is fully loaded.
In coupling the grid input circuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate cireuit so that the desired amplifier grid exaitation is obtained without exceeding the plate-input ratings of the driver tube.

Driving Impedance

The grid-current flow that results when the grid is driven positive in respert to the cathode

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-19-Coupling excitation to the grid of an r.f. power amplifier by means of a low-
impedance coaxial line.
$C_{1}, C_{3}, L_{1}, L_{3}$-See corresponding components in Fig. 6-10.
C_{2}-Amplifier grid tank capacitor-see text and Fig. 6-20 for capacitance, fig. 6-34 for voltage rating.
$\mathrm{C}_{4}-0.001-\mu \mathrm{f}$. disk ceramic.
l_{2}-To resonate at operating frequency with C_{2}. See IC chart in miscellaneous-data section and inductance formula in electrical-laws section, or use ARRL Lightning Calculator.
L_{1}-Reactance equal to line impedance-see reactance chart and inductance formula in electrical-laws section, or use ARRL lightning Calculałor.
R is used to simulate grid impedance of the amplifier when a low-power s.w.r. indicator, such as a resistance bridge, is used. See formula in text for calculating value. Standing-wave indicator $S W R$ is inserted only while line is made flat.
over a portion of the excitation cyele represents ath average resistance arross which the exoting voltinge must be developed by the driver. In other words, this is the lowd resistanee into which the driver plate ceireuit must be coupled. The approximate grid input resistance is given by:

$$
\begin{aligned}
& \text { Input impedance (ohms) } \\
& =\frac{\text { driving power (watts) }}{\text { l.c. } \text { gribl rurrent (ma.) }} \times 622 \times 10^{3}
\end{aligned}
$$

For normat operation, the driving power and grid current may be taken from the tube tables.
since the grid imput resistance is a matter of a few thousand ohms, an impedance step-down is necessatry if the grid is to be fed from a lowimpedance transmission line. This can be done by the use of a tank as an impedance-transforming deviee in the grid circuit of the amplifier as shown in Fig. 6-19. This roupling system maty be eonsidered cither as simply a means of obtaining mutual inductance between the two tank eoils, or as a low-imperance transmission line. If the line is longer thatn a small fraction of a wave length, and if a s.w.r. bridge is available, the line is more easily handled by adjusting it as a matched transmission line.

Inductive Link Coupling with Flat Line

In aljusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed earlier have been observed in connection with the driver plate circuit. So far as the amplifier grid circuit is conecrned, the controlling factors are the Q of the tuned grid cireuit, Low, (see Fig. $6-20$) the inductance of the coupling coil, L_{4}, and the degree of coupling between L_{2} and L_{1}. Variable coupling between the coils is convenient, but not strictly necessary if one or both of the other factors can be variod. An s.w.r. indicator (shown as "SWR" in the drawing) is essential. An indicator such as the "Mieromatch" (a commercially a vailable instrument) may be connected as shown and the adjustments made under actual operating
conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respeet to L_{2}, and adjust C_{2} for the lowest s.w.r. Then chauge the coupling slightly and repeat. Continue until the s.w.r. is as low as possible; if the circuit constants are in the right region it should not be difficult to get the s.w.r. down to 1 to 1 . The Q of the tuned grid circuit should be designed to be at least 10 , and if it is not possible to get a very low s.w.r. with such a grid circuit the probable reason is that L_{4} is too small. Miximum coupling, for a given degree of physi-

Fig. 6-20-Chart showing required grid tank capacitance for a Q of 12. To use, divide the driving power in watts by the square of the d.c. grid current in milliamperes and proceed as described under Fig. 6-9. Driving power and grid current may be taken from the tube tables. When a split-stator capacitor is used in a balanced grid circuit, the capacitance of each section may be half that shown.

Interstage Coupling

cal coupling, will occur when the inductance of L_{1} is such that its reactance at the operating frequency is equal to the characteristic impedance of the link line. The reactance can be calculated as deseribed in the section on electrical fundatmentals if the inductance is known; the inductance ciun cither be caldulated from the formula in the same sertion or measured as deseribed in the sertion on measurements.

Once the s.w.r. has been brought down to 1 to 1, the frequency should be shifted over the band so that the variation in s.w.r. can be observed, without changing C_{2} or the coupling between L_{2} and L_{4}. If the s.w.r. rises rapidly on cither side of the original frequency the circuit can be made "flatter" by reducing the (Q of the tuned grid circuit. This may be done by decreasing C_{2} and correspondingly increasing L_{2} to maintain resonance, and by tightening the eonpling between L_{2} and L_{4}, going through the same adjustment proeess again. It is possible to sot up the system so that the s.w.r. will not exered 1.5 to 1 over, for example, the entire 7 -Mc. hand and proportionately on other bands. Cinder these cirenmstances a single setting will sorve for work anywhere in the band, with essentially constant power transfer from the line to the power-amplifier grids.

If the coupling between L_{2} and L_{4} is not adjustable the same result may be secured by varying the L / C ratio of the tuned grid cirenit - that is, by varying its (). If any difficulty is moomtered it can be overeome by changing the number of turns in L_{4} until a match is secured. The two coils should be tightly couphed.

When a resistance-bridge type s.w.r. indicator (see measuring-equipment sertion) is used it is not possible to put the full power through the line when making adjustments. In such case the operating conditions in the amplifier grid cireuit can be simulated by using a carbon resistor ($1 / 2$ or 1 watt size) of the same value as the calculated amplifier grid impedaner, connerted as indicated by the arrows in Fig. (i-19, In this case the amplifier tube must be operated "cold" - without filament or heater power. The adjustment process is the same as described above, hat with the driver power reduced to a value suitable for operating the s.w.r. bridge.
When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frequency range, it is cortain that the power put into the link line will be delivered to the grid circuit. Coupling will be facilitated if the line is tuned as deseribed ander the earlier section on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to transmission-line effects, the link line must not offer appreciable reactance at the operating frequency. Any appreciable reatimer will in effect reduce the coupling, making it impossible to transfer sufficient power from the Iriver to the amplifer grid circuit. Coaxial cables especially have considerable capacitance for oven short lengths and it may be more desirable to
use a spaced line, such as Twin-Lead, if the radiation can be tolerated.

The reactance of the line can be nullified only by making the link rewonant. This may require changing the number of turns in the link coils, the length of the line, or the insertion of a tuning capacitance. Nince the s.w.r. on the link line may be quite high, the line losses inorease because of the greater current, the voltage increase may be sufficient to cause a breakdown in the insulation of the cable and the added tuned ritenit makes adjustment more critical with relatively small changes in frequency.
These troubles may not be encounterea if the link line is kept very short for the highest frequence: A length of 5 fret or more may be tolcrable at 3.5 Mc., but a lengt hof a foot at 28 Mc. may be enough to cause serions effects on the functioning of the system.

Adjusting the coupling in such a system must necossarily be largely a matter of cut and try. If the line is short enough so as to have negligible ratctance, the coupling between the two tank circuits will increase within limits by adding turns to the link eoils, or by coupling the link coils more tightly, if possible, to the tank coils. If it is impossible to change either of these, a variable capacitor of $300 \mu \mu \mathrm{f}$, may be connected in series with or in parallel with the link coil at the driver end of the line, depending upon which connection is the most effective.

If coaxial line is used, the capacitor should be connected in series with the inner conductor. If the line is long enough to have appreciahte reactance, the variable capacitor is used to resonate the entire link circuit.

As mentioned previously, the size of the link roils and the length of the line, as well as the size of the capacitor, will alfect the resonant frequeney and it may take an adjustment of all thre before the capacitor will show a pronounced effect on the conpling.

When the system has been made resonant, coupling may be adjusted by varying the link capacitor.

Simple Capacitive Interstage Coupling

The capacitive system of Fig. 6-21A is the simplest of all coupling systems. (See Fig. 6-8 for filament-trpe tubes.) In this circuit, the plate tank circuit of the driver, $C_{1} L_{1}$, serves also as the grid tink of the amplifier. Although it is used more frequently than any other system, it is less flexible and has certain limitations that must be taken into consideration.

The two stages cannot be separated physically any appreciable distance without involving loss in transferred power, radiation from the couphing lead and the danger of feedback from this loarl. since both the output capacitance of the driver tube and the input capacitance of the amplifier are across the single circuit, it is sometinnes difficult to obtain a tank cireuit with a sufliciontly low () to provide an efficient circuit at the higher frequencies. The coupding ean be varicd by altering the capacitance of the coupling

6-HIGH-FREQUENCY TRANSMITTERS

cupacitor, ''2. The driver load impedance is the sum of the amplifier grid resistane and the reactanere of the coupling capberitor in serios, the coupling capacitor serving simply as a serios reator. The driver load resistance increases with a decrease in the caparitame of the coupling capacitor.

When the amplifier grid impodance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tatnk coil, but this is not reeommonded hecause it invariably catuse an increase in v.h.f. harmonies and sometimes sets up a parasitic circuit.

So far as coupling is concerned, the Q of the circuit is of little significance. However, the other considerations disussed earlier in connection with tank-circuit Q should be ohserved.

Pi-Network Interstage Coupling

A pi-section tank circuit, as shown in Fig. 6-2113, maty be used as a coupling device betwern suren-grid amplifier stages. 'The rireuit is artually a capacitive coupling arrangement with the grid of the amplifier tapped down on the circuit by means of a capacitive divider. In eontrast to the tapped-coil method mentioned previously, this system will be vory effective in reducing
v.h.f. harmonies, because the output catpacitor, C_{8}, provides a direct cibuseitive shunt for harmonies across the amplifier grid circuit.
To be most effective in reducing v.h.f. harmonios. Cy should be a mica eaparitor eonnected directly across the tube-socket terminals. Tapping down on the circuit in this manner also helps to stabilize the amplifier at the operating frequency because of the grid-circuit loading provided by C_{8}. For the purposes both of stability and harmonic reduction, experience has shown that a value of $100 \mu \mu$ l $^{\prime}$ for ('s usually is sufficient. In gencral, C_{7} and L_{2} should have values approximating the eapacitance and inductance used in a ronventional tank circuit. A reduction in the inductance of L results in an increase in coupling because C_{7} must be increased to retune the circuit to resonamee. This changes the ratio of C_{7} to $C^{\prime} 8$ and has the effert of moving the grid tap up on the circuit. Since the coupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power cinpalbility of the driver stage. If sufficient exeitation (eamot he of tained, it may le neressary to raise the plate voltage of the driver, if this is permissible. Otherwise a larger driver tube may be required. As shown in Fig. (i-2113, parallel driver plate feed and amplifier grid feed are necossary.

Stabilizing Amplifiers

STABILIZING AMPLIFIERS

External Coupling

A st raight amplificr operates with its input and output cirenits funed to the same fregurenes. Therefore, unluss the coupling feetweren these two rireuts is brought to the neressary minimum, the amplifier will oscillate as a tuned-plate tumed-grid rircuit. Care should be used in arranging components and wiring of the two circuits so that there will be negligible opporturity for coupling external to the tube itsolf. Complete shielding betwen input and output circuits usually is reguired. .IIt ref. leads should be kept as short as possible and partieular attention should be paid to the r.f. roturn paths from plate and grid tank circuits to cathode. In general, the best arrangement is one in which the cathode (or filament renter tap) commertion to ground, and the plate tank cireuit are on the same side of the chassis or other shiolding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the sorket through a hole in the shielding. Then When the grid tank rapatcitor or bypass is grounded, a return path through the hole to rathode will be entouraged, sine transmissionline chanacteristids are simulated.

A cherk on extermad roupling betwern input and output rircuits can be made with a sensitive indicating device, such as the one diagrammed in lig. 6-22. The amplifier tule is removed from its socket and if the plate terminal is

Fig. 6-22-Circuit of sensitive neutralizing indicator. Xtal is a 1 N34 crystal detector, MA a 0-1 direct-current milliammeter and Ca $0.001-\mu \mathrm{f}$. mica bypass capacitor.
at the sorket, it should be disconnceted. With the driver stage rumning and tuned to resonance, the indicator should be coupled to the output tank roil and the output tank caparitor tumed for :my indiation of r.f. feedthrough. Fixporiment with shielding and rearrangement of parts will show whether the isolation can be improved.

Screen-Grid Neutralizing Circuits

The plater-grid capacitance of soreen-grid tubes is reduced to a fratcion of a micro-miorofarad by the interposed grounded sorem. Nevertheless, the power somsitivity of these tubes is so great that only a very small amount of foredback is necessary to start omillation. To assure a stable amplifior, it is usually neressary to load the grid circuit, or to use a noutralizing rivenit. A neutralizing circuit is one external to the tube that balances the voltage forl back through the grid-plate eapacitance, by another voltage of opposite phase.

Fig. (i-23.1 shows how a sereen-grid amplifier may be noutralized by the use of an inductive link line coupling the input and output

Fig. 6-23-Screen-grid neutralizing circuits. A-Inductive neutralizing. $\mathrm{B}-\mathrm{C}$-Capocitive neutralizing.
C_{1}-Grid bypass capacitor-approx. 0.001- f . mica. Voltage rating same as biasing voltage in B, same as driver plate voltage in C.
C_{2}-Neutralizing capacitor-approx, 2 to 10μ f.-see text. Voltage rating same as amplifier plate voltage for c.w., twice this value for plate modulotion. L_{1}, L_{2}-Neutralizing link-usually a turn or twe will be sufficient.
tank circuits in proper phase. The two coils must be property polarized. If the initial connection proves to be incorrect, conncetions to one of the link coils should be reversed. Neutmizing is adjusted by changing the distance between the link coils and the tank roils. In the case of cat pacitive rouphing between stages, one of the link coits will be roupled to the plate tank eol of the driver st:tge.

A capacitive neutralizing system for screengrid tubes is shown in Fig. ($\mathrm{i}-23 \mathrm{~B}$. ('s is the neutralizing captcitor. The capacitance should be chosen so that at some adjustment of ('2.

$$
\frac{C_{2}}{C_{2}}=\frac{\text { Tube grid-plate cuparitance (or } C_{\mathrm{Rp}} \text {) }}{\text { Tube inpul capariturce (or CiN) }}
$$

The tube interelertrode capouitances t_{gp}^{2} and GIN are given in the tube tables in the last section. The grid-cathode capacitance must include all

6 -HIGH-FREQUENCY TRANSMITTERS

strays directly across the tube capacitance, including the capacitance of the tuning-capacitor stator to ground. This may amount to 5 to 20 $\mu \mu$. In the case of caparitance coupling, as shown in Fig. 6-23C, the output capacitance of the driver tube must be added to the gridcathode capacitance of the amplifier in arriving at the value of C_{2}. If C_{2} works out to an impractically large or small value, C_{1} can be changed to compensate by using combinations of fixed mica capacitors in paralled.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplifier tube should be lighted and excitation from the preceding stage fed to the grid cireuit. Both screen and plate voltages should be disconnected at the transmitter terminals.

The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tube. This is clone hy adjusting carefully, bit by bit, the neutralizing capacitor or link coils until an r.f. indicator in the output circuit reads minimum.

The device shown in Fig. 6-22 makes a sensitive neutralizing indicator. The link shoutd be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is loose enough at all times to prevent burning out the meter or the rectifier. The plate tank caparitor should be readjusted for maximum reading after each change in neutralizing.

The grid-current meter may also be used as a nentralizing indicator. With plate and sereen voltages removed as described above, there will be a change in grid current as the plate tank circuit is tuned through resonance. The neutralizing capacitor should be adjusted until this deflection is brought to a minimum. As a final adjustment, plate and sereen voltages should be applied and the neutralizing caparitanee adjusted to the point where minimum phate corrent, maximum grid current and maximum sereen current oreur simultancously. An increase in grid current when the plate tank circuit is tuned slightly on the high-frequeney side of resoname indieates that the neutralizing eapacitance is too small. If the increase is on the low-frequeney side, the neutralizing capacitane is too large. When neutralization is complete, there should be a slight decrease in grid eurrent on either side of resonance.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power capability to spare. Loading by tapping the grid down on the grid tank coil (or the plate tank eoil of the driver in the case of capacitive coupling), or by a resistor from grid to cathode is effective in stabilizing an amplifier, but cither device may inerease v.h.f.
harmonics. The best loading system is the use of a pi-section filter, as shown in Fig. 6-21B. This fircuit places a capacitance directly between grid and cathode. This not only provides the desirable loading, but also a very effective capacitive short for v.h.f. harmonies, i $1(0)-\mu \mu \mathrm{f}$. micat capacitor for C_{8}, wired directly between tube terminals will usually provide sufficient loading to stabilize the amplifier.

V.H.F. Parasitic Oscillation

Parrasitic osellation in the v.h.f. range will take place in almost every r.f. power amplifier. To test for v.h.f. parasitie oscillation, the grid tank coil (or driver tank coil in the case of catpacitive coupling) should be short-circuited with a dip, lead. This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in itlentifying the parasitic. Any fixed bias should be replaced with a grid leak of 10,000 to 20,000 ohms. All load on the output of the amplifier should be diseonnected. Plate and sareen voltages should be reduced to the point where the rated dissipation is not exceeded. If a Variace is not available, voltage may be reduced hy a 115 -volt lamp in series with the primary of the plate transformer.

With power applied only to the amplifier under test, a search should be made by adjusting the input capacitor to several settings, including minimum and maximum, and turning the plate (apacitor through its range for eath of the gridcapacitor sattings. Any grid current, or any dip or flicker in plate rurrent at any point, indicates oscillation. 'This can be confirmed by an indirating absorption wavemeter tuned to the frequency of the parasitie and held close to the plate lead of the tube.

The heary lines of Fig. (i-24A show the usual parasitic tank eireuit, which resonates, in most cases, between 150 and 200 Me . For each type of tetrode, there is a region, usually below the parasitie frequency, in which the tube will be solfneutralized. By adding the right amount of inductance to the parasitic cerenit, its resomant frequency ean be brought down to the frequency

Fig. 6-24-A—Usual parasitic circuit. B—Resisfive loading of parasitic circuit. C-Inductive coupling of loading resistance into parasitic circuit.
at which the tube is self-neutralized. However, the resonant frequency should not be brought. down so low that it falls close to 'TV Channel if (88 Me.). From the consideration of TVI, the circuit may be loaded down to a frequence not lower than 100 Mr. If the self-neutralizing frequency is below 100 Mre, the circuit should be loaded down to somewhere bet were $1(0)$ and 120 Mr . with inductanes. Then the parasitice can be suppressed by loading with resistance, as shown in Fig. (i-24. A coil of 4 or 5 turns, $1 / 4$ inch in diameter, is a good starting size. With the tank capacitor turned to maximum rapacitance, the rireuit should be checked with a g.d.o. to make sure the resonance is above 100 Mc . Then, with the shortest possible leads, a noninductive 100 -ohm 1 -watt resistor should be conncted across the entire coil. The amplifier should be tuned up to its highest-frequency band and operated at low voltage. The tap should le moved a litile at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be inereased until the resistor begins to feel warm after several minutes of operation, and the power input noted. This input should be compared with the normal input and the power rating of the resistor increased by this proportion; i.e., if the power is half normal, the wattage rating should be doubled. This increase is best made by connecting 1 -watt carbon resistors in parallel to give a resultant of about 100 ohms. As power input is increased, the parasitic may start up again, so power should be applied only momentarily until it is made rertain that the parasitic is still suppressed. If the parasitic starts up again when voltage is raised, the tap must be moved to include more turns. So long as the parasitic is suppressed, the resistors will hat up only from the opratingfrequency current.
Sine the resistor can be placed across only that portion of the parasitic circuit represented by L_{n}, the latter should form as large a portion of the circuit as possible. Therefore, the tank and bypass capacitors should have the lowest possible inductance and the leads shown in heavy lines should be as short as possible and of the heaviest practical conductor. This will permit L_{p} to be of maximum size without tuning the circuit below the $100-\mathrm{Mr}$. limit.

Another arrangement that has been used suecessfully is shown in Fig. $6-24 \mathrm{C}$. A small turn or two is inserted in place of L_{p} and this is coupled to a circuit tuned to the parasitic frequency and loaded with resistance. The heavy-line circuit should first be cherked with a g.d.o. Then the loaded circuit should be tumed to the same frequency and coupled in to the point where the parasitic ceases. The two coils can be wound on the same form and the coupling varied by sliding one of them. Slight retuning of the loaded cireuit may be required after coupling. Start out with low power as hefore, until the parasitic is suppressed. Since the loaded circuit in this case carries much less operating-frequency current, a single 100 -ohm 1 -watt resistor will often be sufficient and a $30-\mu \mu$. miea trimmer should serve
as the tuning capacitor, C_{p}.

Low-Frequency Parasitic Oscillation

'The sereconing of most transmitting screen-grid tubes is sufficient to prevent low-frequency parasitic oscillation caused by resonant circuits set up by r.f. chokes in grid and plate circuits. Should this type of oscillation (usually between 1200 and 200 ke .) oceur, see paragraph under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The circuits for parallel-tube amplifiers are the same as for a single tube, similar terminals of the tubes being connerted together. The grid impedance of two tubes in parallel is half that of a single tubc. This means that twice the grid tank capacitance shown in Fig. (i-20) should be used for the same Q.

The plate load resistance is halved so that the plate tank rapacitance for a single tube (Fig. (i-10) also should be doubled. The total grid current will be doubled, so to maintain the same grid hias, the grid-leak resistance should be half that nsed for a single tube. The required driving power is doubled. The capacitance of a neutralizing caparitor, if used, should be doubled and the value of the sereen dropping resistor should be cut in half.

In treating parasitic oscillation, it may be neressary to use a choke in each plate lead, rather than one in the rommon lead. Input and output "aparitances arr doubled, which may be a factor in obtaining efficient operation at higher frequencies.

PUSH-PULL AMPLIFIERS

Basic push-pull rircuits are shown in Fig. 6-26C and I). Amplifiers using this circuit are considerably more difficult to construet and adjust than those using the parallel arrangement, and have little if any advantage. Also, the pushpull arrangement does not lend itself well to pi-nctwork output.

TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig. 6-26. Neglecting references to the screen, all of the foregoing information applies equally well to triodes. All triode straight amplifiers must be neutralized, as Fig. 6-26 indicates. From the tube tables, it will be scen that triodes require considerably more driving power than screengrid tubes. However, they also have less power sensitivity, so that greater feedback can be tolerated without the danger of instability,

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitstator tank capacitors combine with the r.f. chokes to form a low-frequeney parasitic circuit, unless the amplifier circuit is arranged to prevent it. In the circuit of Fig. 6-26B, the amplifier grid

6 -HIGH-FREQUENCY TRANSMITTERS

Fig. 6-25 - When a pi-network output circuit is used with a triode, a balanced grid circuit must be provided for neutralizing. A-Inductive-link input. B-Capacitive input coupling.

Fig. 6-26-Triode amplifier circuits. A-Link coupling, single tube. B-Capacitive coupling, single tube. C-Link coupling, push-pull. D-Capacitive coupling, push-pull. Aside from the neutralizing circuits, which are mandatory with triodes, the circuits are the same as for screen-grid tubes, and should have the same values throughout. The neutralizing capacitor, C_{1}, should have a capacitance somewhat greater than the grid-plate capacitance of the tube. Voltage rating should be twice the d.c. plate voltage for c.w., or four times for plate modulation, plus safety factor. The resistance R_{1} should be at least 100 ohms and it may consist of part or preferably all of the grid leak. For other component values, see similar screen-grid diagrams.

Grounded-Grid Amplifiers

(A)

(B)

Fig. 6-27-A—Grounded-grid triode input circuit. B—Tetrode input circuit with grid and screen directly in parallel. C-Tetrode circuit with d.c. voltage applied to the screen. Plate circuits are conventional.
pedance and a relatively high driver-power requirement. The additional driver power is not consumed in the amplifier but is "fed through" to the plate circuit where it combines with the normal plate output power. The total r.f. power output is the sum of the driver and amplifier output powers less the power normally required to drive the tube in a grounded-cathode cireuit.
lositive feedback is from plate to cathode through the plate-cathode, or plate-filament, rapacitance of the tube. Since the grounded grid is interposed between the plate and cathode, this capacitance is very small, and neutralization usually is not necessary.

A disadvantage of the grounded-grid circuit is that the cathode must be isolated for r.f. from ground. This presents a practical difficulty, esperially in the case of a filament-type tube whose filament current is large. Another disadvantage in plate-modulated phone operation is that the driver power fed through to the output is not modulated.

The chief application for grounded-grid amplifiers in amateur work at frequencies below 30 Mc. is in the case where the available driving power far exceeds the power that can be used in driving a conventional grounded-cathode amplifier.
D.e. electrode voltages and currents in grounded-grid triode-amplifier operation are the same as for grounded-cathode operation. Approximate values of driving power, driving impedance, and total power output in Class C operation can be calculated as follows, using information normally provided in tube data sheets:

$$
\begin{aligned}
\boldsymbol{E}_{\mathrm{p}} & =\text { r.m.s. value of r.f. plate vollage } \\
& =\frac{\text { d.c. plate volts }+ \text { d.c. bias volts }- \text { peak r.f. orid volls }}{1.41} \\
I_{\mathrm{p}} & =\text { r.m.s. value of r.f. plate current } \\
& =\frac{\text { rated pouer output reatts }}{E_{\mathrm{p}}} \\
E_{\mathrm{g}} & =\text { r.m.s. valuc of grid driving vollage } \\
& =\frac{\text { prak r.f. orid volts }}{1.41} \\
I_{\mathrm{g}} & =\text { r.m.8. value of r.f. grid current } \\
& =\frac{\text { rated driving power watts }}{E_{g}}
\end{aligned}
$$

Then,
Driving power (walts) $=E_{\mathrm{g}}\left(I_{\mathrm{p}}+I_{\mathrm{g}}\right)$
Driving impedance $(o h m s)=\frac{E_{\mathrm{R}}}{I_{\mathrm{g}}+I_{\mathrm{p}}}$
Power fed through from driver stage (watts) $=E_{\mathrm{s}} I_{\mathrm{p}}$
Total power output (watts) $=I_{\mathrm{p}}\left(E_{\mathrm{g}}+E_{\mathrm{p}}\right)$
Screen-grid tubes are also used sometimes in grounded-grid amplifiers. In some cases, the screen is simply connected in parallel with the grid, as in Fig. 6-2713, and the tube operates as a high- μ triode. In other cases, the screen is bypassed to ground and operated at the usual d.c. potential, as shown at C. Since the screen is still in parallel with the grid for r.f., operation is very much like that of a triode except that the positive voltage on the screen reduces driver-power requirements. Since the information usually furnished in tube-data sheets does not apply to triode-trpe operation, operating conditions are usually determined experimentally. In general, the bias is adjusted to produce maximum output (within the tube's dissipation rating) with the driving power available.

Fig. ($\mathbf{i}-28$ shows two methods of coupling a grounded-grid amplifier to the 50 -ohm output of an existing transmitter. It A an 1 , network is used, while a conventional link-coupled tank is shown at I3. The values shown will be approximately correct for most triode amplifiers operating at 3.5 Mc . Values should be cut in half each time frequency is doubled, i.e., $250 \mu \mu$. and 7.5 $\mu \mathrm{h}$. for 7 Me., ete.

Filament Isolation

Since the filament or cathode of the groundedgrid amplifier tule operates at some r.f. potential ahove ground, it is necessary to isolate the filament from the power line. In the case of lowpower tubes with indirectly-heated cathodes, it is sometimes feasible to depend on the small capacitance existing hetween the heater and cathode, although it is preferable to provide additional isolation.

In Fig. 6-29, isolation is provided by a special low-capacitance filament transformer. $R P C_{1}$ carries only the cathode current. However, since transformers of this type are not generally avail-

6-HIGH-FREQUENCY TRANSMITTERS

(A)

(B)

Fig. 6-28-Two methods of coupling a low-impedance driver to a grounded-grid input. A-L network. B-Link-coupled tank circuit.
ahle, other means must usually be employed.
In Fig. (i-29)B, chokes are used to isolate the filament from the filament transformer. The reautance of the chokes should be several times the input impedance of the amplifier and must be wound with conductor of sufficient size to carry the filament current. It is usually necessary to use a transformer delivering more than the rated filament volage to compensate the voltage drop across the chokes. In Fig. ($-20(0)$, r.f. chokes are placed in the primary side of the transformer. This reduces the current that the chokes must handle, but the filament transformer must be mounted so that it is spaced from the chassis and other grounded metal to minimize the capacitance of the transformer to ground. $R F C^{\prime}$ carries cathode current only.

In the case of the input circuit of Fig. (0-2813, it is sometimes feasible to wind the tank inductor with two conductors in parallel, and feed the filament voltage to the tube through the two condurtors, as shown in Figg. (i-2:91). This arrangement dors not lend itself well to bandehanging, however.

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequeney at which it is being driven may be obtained from an amplifier stage if the output circuit is tuned to a harmonic of the exciting frequency instad of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc ., output at 7 Mc ., 10.5 Me., It Mc., ete., may be ohnained by tuning the plate tank circuit to one of these frequencies. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplier efliciency.

Efficiency in a single- or parallel-tube multiplier comparable with the efliciency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube

Fig. 6-29-Methods of isolating filament from ground. A-Special low-capacitance filament transformer. BR.f. chokes in filament circuit. C-R.f. chokes in transformer primary. D-Filament fed through input tank inductor.

(B)

168

Frequency Multipliers

ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be redued as necessary to limit the dissipation to the rated value by increasing the bias. High efficiency in multipliers is not often required in practice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a bower-frequency crystal, but in the majority of bwer-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, hecause of the rapid decline in practicably obtainable efficiency as the multiplication factor is increased. Screen-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easier to drive properly than triodes.

Since the input and output eircuits are not tuned close to the same frequency, neutralization usually will not be required. Instances may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring neutralization. The link neutralizing system of Fig. (-23.1 is convenient in such a contingeney.

Push-Push Multipliers

A two-tube circuit which works wedl at even harmonies, but not at the fundamental or odd harmonics, is shown in Fig. 6-30. It is known as

Fig. 6-30-Circuit of a push-push frequency multiplier for even harmonics.
$C_{1} L_{1}$ and $C_{2} L_{2}$-See text.
C_{3}-Plate bypass- $0.001-\mu$ f. disk ceramic or mica. Voltage rating equal to plate voltage plus safety factor.
RFC -2.5 -mh. r.f. choke.
the push-push circuit. The grids are connected in push-pull while the plates are connected in parallel. The efficiency of a doubler using this circuit may approach that of a straight amplifier, berause there is a plate-current pulse for earh revele of the output frequency.

This arrangement has an advantage in some applications. If the heater of one tube is turned off, its grid-plate capacitance, being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either
straight amplification at the fundamental with a single tube, or doubling frequener with two tubes as desired.

The grid tank ritenit is tumed to the frequens: of the driving stage and should have the same constants as indieated in Fig. 6-20 for balaneed grid eireuits. The plate tank circuit is tuned to an even multiple of the exciting freduency, and should have the same values as a straight amplifier for the harmonic frequency (se Fig. (-10), bearing in mind that the total plate current of both tubes determines the C to be used.

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at either even or odd multiples of the exciting frequency. A push-pull multiplier dows not work satisfactorily at even multiples because evon harmonies are largely canceled in the output. On the other hand, amplifiers of this type work well as triplers or at other odd harmoniss. The operating requirements are similar to those for single-tube multipliers, the plate tank eireuit being tuned, of course, to the desired odd harmonic frequency.

- METERING

Fiig. (i-31 shows how a voltmeter and milliammeter should tee connected to read various voltagos and currents. Voltmeters are seldom instatled permanently, since their principal use is in preliminary checking. Also, milliammeters are not normatly installed permanently in all of the positions shown. Those most often used are the ones reading grid current and plate current, or grid current and cathode current.

Milliammeters come in various current ranges. Current values to be expected ean be taken from the tube tables and the meter ranges selected acrordingly. To take care of normal overloads and pointer swing, a meter having a current range of about twice the normal current to be expected should be selected.

Meter Installation

Grid-current meters connected as shown in Fig. (-31 and meters connected in the cathode circuit need no sperial precautions in mounting on the transmitter pand so far as safety is conerened. Howevor, milliammeters having zeroadjusting serews on the face of the meter should be recessed behind the panel so that aceidental contart with the adjusting screw is not possible, if the meter is connected in any of the other positions shown in Fig. (i-31. The meter can be mounted on a small subpanel attached to the front patnel with long serews and spacers. The meter opening should be covered with glass or rellubid. Illuminated meters make reading easior. Reference should also be made to the TVI section of this Handbook in regard to wiring and shielding of moters to suppress TV'.

Meter Switching

Milliammeters are expensive items and there-

6 -HIGH-FREQUENCY TRANSMITTERS

Fig. 6-31-Diagrams showing placement of voltmeter and milliammeter to obtain desired measurements. A-Series grid feed, parallel plate feed and series screen voltage-dropping resistor. B-Parallel grid feed, series plate feed and screen voltage divider.

AMPLIFIER ADJUSTMENT
Earlier sections in this section have dealt with the design and adjustment of inpur (grid) and output (plate) coupting systems, the stabilitization of amplifiers, and the methods of obtaining the required electrode voltages. Reference to these sections should be made as necessary in following a proeedure of amplifier adjustment.

The objeetive in the adjustment of an intermediate amplifier stage is to secure adequate excitation to the following stage. In the case of the output or final amplifier, the objective is to obtain maximum power output to the antenna. In both eases, the adjustment must be consistent with the tube ratings as to voltage, eurrent and dissipating ratings.

Adequate drive to a following amplifier is normally indicated when rated grid current in the following stage is obtained with the stage operating at rated bias, the stage loaded to rated phate current, and the driver stage tuned to resonance. In a final amplifier, maximum output is normally indicated when the output coupling is adjusted so that the amplifier tube draws rated plate current when it is tuned to resonance.

Resonance in the plate circuit is normally indicated be the dip in plateeurrent reading as the plate tank capacitor is tumed through its range. When the stage is unloaded, or lightly
fore it is seldom feasible to provide even gridcurrent and plate-eurrent meters for all stages. The expiter stages in a multistage transmitter often do not require metering aftor initial adjustments. It is common practice to provide a meterswitching system by which a single milliammeter may be switehed to read currents in as many cireuits as desired. Such a meter-switching circuit is shown in Fig. 6-32. The resistors, R, aro conneeted in the various circuits in place of the milliammeters shown in Fig. (i-31. Since the resistanee of R is several times the internal resistance of the milliammetor, it will have no pratetical effect upon the reading of the meter.

When the meter must read currents of widely differing values, a meter with a range suffieiently low to accommodate the lowest values of current to be measured may le selected. In the circuits in whieh the eurrent will be above the scale of the meter, the resistance of R can be adjusted to a lower value which will give the meter reading a multiplying factor. (bee section on measurements.) Care should be taken to olsorve propor polarity in making the connections between the resistors and the switch.

Fig. 6-32-Switching a single milliammeter. The resistors, R, should be 10 to 20 times the internal resistance of the meter; 47 ohms will usually be satisfactory. S_{1} is a 2 section rotary switch. Its insulation should be ceramic for high voltages, and an insulating coupling should always be used between shaft and control.

Amplifier Adjustment

loaded, this dip in plate cument will be quite pronomeed. As the loading is increased, the dip will berome less noticeable. Ser Fig. (j-4. However, in the case of a sereen-grid tulne whose sereen is fed through a series resistor, maximum output may not be simultancous with the dip in plate current. The reson for this is that the screen eurrent varies widely as the plate circuit is tuned through resonance. This variation in sereen corrent causes a corresponding variation in the voltage drop ateross the sereen resistor. In this case, maximum output may orcere at an adjustment that results in ant optimum rombination of sereen voltage and nearness to resomanee. This effect will seldom $1 \times$ ob served when the serern is operated from a fixed-

(E) Fig. 6-33-Diagrams showing the peak voltage for which the plate tank capacitor should be rated for c.w. operation with various circuit arrangements. Z is equal to the d.c. plote voltoge. The values should be doubled for plate modulation. The circuit is assumed to be fully loaded. Circuits A, C and E require that the tank capacito be insulated from chassis or ground, and from the contrel. voltage sourre.

The first step in the adjustment of an amplifier is to stabilize it, loth at the operating frequency ly meutralizing it if neressiry, and at parasitie frequencies by introducing suppression circuits.
If "flat" tramsmission-line coupling is used, the output end of the line should be matehed, as desuribed in this sartion for the ease where the amplifier is to feed the grid of a following stage, or in the tratnsmission-line sertion if the amplifier is to feed an antenma system. After proper mateh has been obtained, all adjustments in coupling should be mate at the input end of the line.

Until preliminary adjustments of excitation have been made, the amplifier should be operated with filament voltage on and fixed bias, if it is required, but sureen and plate voltages off. With the exciter coupled to the amplifier, the coupling to the driver should be adjusted until the amplifier draws rated grid current, or somewhat above the rated value. Then a load (the antemna grid of the following stage, or a dummy load) should be coupled to the amplifier.

With sereen and plate voltages (preferably reduced) applied, the plate tank capacitor should be adjusted to resonance as indieated by a dip in plate eurrent. Then, with full sereen and plate voltages applied, the coupling to the load should be adjusted until the amplifier draws rated plate current. Changing the coupling to the load will usually detune the tank circuit, so that it will be meeressary to readjust for resonance each time a ehange in coupling is made. An amplifier should not be operated with its plate circuit off reso-
nance for any except the briefest necessary time, since the plate dissipation increases greatdy when the plate circuit is not at resonanee. Also, a screen-grid tube should not be operated without normal load for any appreciable length of time, since the sereen dissipation inereases.

It is normal for the grid current to decrease when plate voltage is applied, and to elecrease agatin as the amplifier is loaded more heavily. As the grid current falls off, the eoupling to the driver should be increased to maintain the grid current at its rated value.

COMPONENT RATINGS AND installation

Plate Tank-Capacitor Voltage

In selecting a tank eapacitor with a spacing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage aeross a tank eircuit under load, but without modulation, may be taken conservatively as equad to the d.e. plate voltage. If the d.e. plate voltage also appears aeross the tank capacitor, this must be added to the peak r.f. voltage, making the total peak voltage twice the d.e. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.e. plate voltage, beeause both d.c. and r.f. voltages double with 100 -per-cent plate modulation. At the higher plate voltages, it is desirable to choose a tank cireuit in which the d.e. and modulation voltages do not appear across the tank eapacitor, to prermit the

6-HIGH-FREQUENCY TRANSMITTERS

use of a smaller capacitor with less plate spacing. Fig. 6-33 shows the peak voltage, in terms of d.e. plate voltage, to be expected aross the tank eapacitor in various circuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher.
The plate spacing to be used for a given peak voltage will depend upon the design of the variable eapacitor, influencing factors being the mechanical construction of the unit, the insulation used and its pharement in respect to intense fields, and the capacitor plate shape and degree of polish. Capacitor manufacturers usually rate their products in terms of the peak voltage between phates. Typical phate spacings are shown in the following table.

Typical Tank-Capacitot Plate Spacings					
spacing (/4.)	Jeak Vollage	Natacing (In.)	reak l'ollage	spacing (In.)	reak Voltage
0.015	1000	0.07	3000	0.175	7000
0.02	1200	0.08	3500	0.2\%	9000
0.03	1.000	0.125	4500	0.35	11000
0.05	2000	0.15	(6000	0.5	13000

Plate tank (elpatcitors should be mounted as dose to the tube as temperature eonsiderations will permit to make possible the shortest capacitive path from phate to cathode. Especially at the higher frequencies where minimum eireuit eapacitance becomes important, the eapacitor should be mounted with its stator phates well spared from the ehassis or other shiehling. In circuits where the rotor must be insulated from ground, the rapacitor should be mounted on ceramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of safety to the operator - it well-insulated coupling should be used betwen the capacitor shaft and the dial. The seetion of the shaft attuched to the dial should be well groumled. This can be done conveniently through the use of panel shaft-bearing units.

Grid Tank Capacitors

In the cirruit of Fig. 6-34, the grid tank capacitor should have a voltage rating approximately equal to the biasing voltage plus 20 per cent of the plate voltage. In the balanced circuit of 3 , the voltage rating of each section of the capateitor should be this same value.

The grid tank capacitor is preferably mounted with shielding between it and the tube sorket for isolation purposes. It should, however, be mounted close to the socket so that a short lead can be passed through a hole to the socket. The rotor ground lead or hepass lead should be rum directly to the nearest point on the ehassis or other shielding. In the cirenit of Fig. (i-34.1, the same insulating precautions mentioned in connection with the plate tank capacitor should be used.

(A)

Fig. 6-34-The voltage rating of the grid tank capacitor in A should be equal to the biasing voltage plus about 20 per cent of the plate voltage.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest phate-voltago/ plate-current ratio likely to be used at the maximum power level for which the coil is designed. Therefore in the majority of cases, the (aparitance shown by Figs. (6-9) and ti-20 will be greater than that for which the eoil is designod and turns must be removed if a Q of 10 or more is needed. At 28 Mc ., and sometimes 14 Me ., the value of capacitance shown by the chart for a high plate-voltage/plate-current ratio may be lower than that attamable in practiee with the components available. The design of manufartured coils usually takes this into consideration also and it may be found that values of capacitance greator than those shown (if stray eapacitance is included) are required to tune these coils to the band.
Manufactured coils are rated according to the phate-power imput to the tube or tubes when the stage is loaded. Since the eireulating tank eurrent is much greater when the amplitier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive hoating.

Tank coils should be mounted at least their diameter away from shielding to prevent a marked loss in (). Execpt perhaps at 28 Me., it is not important that the coil be mounted quite close to the tank capacitor. Leads up to (i) or 8 inches are permissible. It is more important to keep the tank eapacitor as well as other eomponents out of the immediate field of the eoil. For this reason, it is preferable to mount the coil so that its axis is parallel to the equaritor shaft, either alongside the capacitor or above it.

There are many factors that must be taken into consideration in determining the size of wire that shoukd be used in winding a tank coil. The considerations of form factor and wire size that will produce a coil of minimum loss are often of less importanere in practiee than the coil size that will fit into available space or that will handle the required power without execssive heating. This is particularly true in the case of sereengrid tubes where the relatively small driving power required can be easily ohtained eren if the losses in the driver are quite high. It may be considered preferable to take the power loss if the physieal

Component Ratings

size of the exciter can be kept down by making the coils smill.

The acompanying table shows typical ronductor sizes that are usually found to be adequate for various power levels. For powers under 25 watts, the minimum wire sizes shown are largely a matter of obtaining a coil of reasonable Q. so far as the power is concerned, smaller wire could be used.

Wire Sizes for Transmitting Coils		
I'ower Input (Walts)	Band (1/c.)	Nire Size
1000	$\begin{aligned} & 28-21 \\ & 1!-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ 10 \end{array}$
300	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 8 \\ 12 \\ 14 \end{array}$
150	$28-21$ 1 1 -7 3.5-1.8	$\begin{aligned} & 12 \\ & 14 \\ & 18 \end{aligned}$
75	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \\ & 22 \end{aligned}$
25 or less*	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \\ & 28 \end{aligned}$
* Wire size limited principally by consideration of Q.		

Spare-winding the turns invariably will result in a roil of higher (), especially at frequencies above 7 Mc, and as form fiactor in which the turns spacing results in a coil length between 1 and 2 times the diameter is usually considered satisfantory. Space winding is especially desirable at the higher power levels because the heat developed is dissipated more readily. The power lost in a tank eoil that develops appreciable heat at the higherpower levels does not usually represent a serious loss percentagewise. A more serious consequence, especially at the higher frequencies, is that coils of the popular "air-wound" type supported on plastic strips may deform. In this case, it may be necessary to use wire (or copper tubing) of sufficient size to make the coil self-supporting. Coils wound on tubular forms of ceramic or mica-filled bakelite will also stand higher temperatures.

Plate-Blocking and Bypass Capacitors

Plate-blocking caparitors should have low inductance: therefore eapacitors of the micat or eramice tepe are preferred. For freguencies between 3.5 and 30 Ne., a capacitance of 0.001 is commonly used. The voltage rating should be 25 to $50 / 6$ above the plate-supply voltage (twice this rating for phate modulation).
small disk coramic capacjors (approximately $1 / 4$ inch in diameter) are to be proferred as loyass caparitors, sime when they are applied eorreefly (nee 'TVI section), they are series resonatht in the TV' range and therefore are an important measure in filtering powar-supply leads. Caparitors of this
type are rated at 600 to 1000 volts. At higher voltages, disk ceramics with higher-voltage ratings, or capacitors of the TV "doorknob" type are recommended. Voltage ratings of bypass capacitors should be similar to those for blocking caparitors.

R. F. Chokes

The chanacteristics of any r.f. chake will vary with frequency, from characteristics resembling those of a parallel-resonant cireuit, of high impedance, to those of a series-resonant eircuit, where the impedance is lowest. In between these extremes, the choke will show varying amounts of inductive or capacitive reactance.

In series-feed circuits, these characteristics are of relatively small importance because, in a correctly-operating circuit, the r.f. voltage across the choke is negligible. In a parallelfeed circuit, however, the choke is shunted arross the tank circuit, and is subject to the full tank r.f. voltage. If the choke does not present a sufficiently high impedince, enough power will be absorbed by the choke to cause it to burn out. With chokes of the usual type, wound with small wire for compactness, a relatively small amount of power loss in the choke will cause excessive heating.
'lo avoid this, the choke must have a sufficiently high reat tance to be effective at the lowest frequency, and yet have no series resonances near the higher-frequeney bands. The design of a choke that meets requirements over a range as wide as 3.5 to 30 Me , at the higher voltages is quite critical.

Universal pie-wound chokes of the "receiver" type (2.5 mh ., 125 ma .) are usually satisfactory if the plate voltage does not exced 750 . For higher voltages, a single-layer solenoid-t pe choke of correct design has been found satisfactory. The National type R-175A and Raypar RL-100, R1-101 and RL - 102 are representative manufactured types. An example of a satisfactory homemade choke for voltages up to at least 3000 consists of 112 turns of No. 26 wire, spared to a length of $37 / 8$ inches on a 1 -inch ceramic form (Centrialath stand-olf insulator, type X3022II). A ceramie form is advisable from the consideration of temperature. This choke has only one series resonane (near $2+$ Me.), and exhibits an equivalent paralled resistance of 0.25 megohm or more in all of the amatemr hands from 80 through 10.

Since the charateristies of a choke will be alfected by any metal in its field, it should be checked when mounted in the position in which it is to be used, or in a temporary set-up simulating the same eonditions. The plate end of the choke should not he connected, but the power-supply end should be connected directly; or by-passed, to the chassis. The g.t.o. should be coupled as close to the ground end of the choke as possible. Heries resonances, indieating the frequencies of greatest loss, should be cherked with the choke short-cireuited with a short piece of wire. Parablel resonamees, incticating frequeneios of least loss are cheeked with the short removed.

6-HIGH-FREQUENCY TRANSMITTERS

A Three-Band Oscillator Transmitter for the Novice

Abstract

The novice transmitter shown in Figs. (i-30-(i-38, inclusive, is casy to buikd and get working. It is a crystal-controlled, one-tulse oscillator (apable of rumning at 30 watts input on the $3.5-$, $\overline{7}$, and 21 Me. Novice bands. I spereial feature of the transmitter is a built-in kerving monitor which permits the operator to listen to his own sending.

Regulated voltage is used on the serem of the oscillator. This minimizes freduency shift of the oscillat or with keving, which is the cause of chirp. In addition, a small amount of cathode bias $\left(R_{4}\right)$ is used on the oscillator. This also tends to improve the keying characteristics in a cathodekeyed simple-oscillator transmitter.

Circuit Details

The oscillator circuit used is the grid-plate type, and the tule is a 6)(o6id pentorle. The power output is taken from the plate cirenit of the tube. On 80 moters, an 80 -meter erystal is nerded. On 40, wither 80 - or f0-meter crestals can be used, although slightly more output will be ohtained by using 10 -meter erystals. To operate on 15 metors, a 40 -meter erystal is used.

The tank circuit is a pi network. The plate tank capacitor is the variable (6 , and the tank inductance is $L_{2} L_{3 / 3}$. ('s is a two-section variable, approximately 3(6) $\mu \mu$ f. per section, with the stators romeneted together to give a total caparib tance of about $730 \mu \mu$. This range of catabitanme is adequate for coupling to 50 or 75 ohms on 7 and 2l Mre. When oprating on 3.5 Mr ., an additional $1000 \mu \mu$. ($(\%)$ is atded to furnish the needed range of raparitance. L_{1} and fra are essential for suppressing v.h.f. parasitic oscillations.

The keving-monitor cireuit uses a neon bulb (type NLE-2) audio-frequency oseillator connected to the cathode of the 6 i)Qtid at the key jack, J_{1}. The headphones are plugged into J_{2}, a
jack mounted on the back of the transmitter chassis. Another jack, J_{3}, is used as a terminal for the leads that go to the headphone jack on the receiver.

Power Supply

The power supply uses a $5 \mathrm{C}^{\circ} \mathrm{tG}$ in a full-wave cireuit. A capacitor-input filter is used and the output voltage is approximately 370 volts with a cathote current of 90 milliamperes. A $0-150$ milliammeter reads rathote current. The sereen and grid eurrents are approximately $\&$ mat when the oscillator is loaded.

Construction

All of the components, including the power supply, are mounted on a $2 \times 7 \times 13$-inch aluminum chassis that is in turn andosed in a $7 \times 9 \times 15$-inch aluminum box. (l'remier AC 1597). One of the removalbe covers of the box is used as the front pancl, as shown in Fig. (i-3.3.). The box has a $1 / 2$-inch lip around both openings, so the bottom edge of the chassis should be placed one inch from the leoterm of the pand. The sides of the rhassis are also one inch from the sides of the panel. The chassis is held to the panel by S_{2}, J_{1}, and the momenting screws for the erystal socket, so both the front edge of the chassis and the panel must be drilled alike for these components. S_{1}, at the left in the from view, is one inch from the edge of the chassis (that is, two inches from the edge of the panel) and centered vertically on the chassin edge. Thus it is one inch from the bottom of the chassis edge and two inches from the bottom edge of the panel. The hole for J_{1} is centered on the chassis redge and the holes for the erystal sooket are drilledat the right-hand end of the chassis to correspond with the position of S_{1} at the left.

Fig. 6.35-This 30 -watt three-band Novice transmitter is enclosed in a $7 \times 9 \times$ 15 -inch aluminum box. A group of $1 / 4$-inchdiameter holes should be drilled in the top of the box over the oscillator tube, as shown, to provide ventilation. A similar set of holes should be drilled in the back cover behind the ascillator circuit.

Fig. 6-36-Circuit diagram of the three-band transmitter. Unless otherwise specified, capacitances are in $\mu \mu \mathrm{f}$. Resistances are in ohms ($K=1000$).
$\mathrm{C}_{1}-3$-30- $\mu \mathrm{\mu}$. trimmer.
$\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{15}, \mathrm{C}_{16}-0.001-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{4}, \mathrm{C}_{5}-0.001-\mu \mathrm{f}$. 1600 -volt disk ceramic.
$\mathrm{C}_{6}-365-\mu \mu \mathrm{f}$. variable eapacitor, single section, broad-cast-replacement type.
$\mathrm{C}_{7}-0.001-\mu \mathrm{f}$. 600 -volt mica.
$\mathrm{C}_{8}-365-\mu \mu \mathrm{f}$. variable capacitor, dual section, broadcastreplacement type.
$\mathrm{C}_{12}-500-\mu \mu \mathrm{f}$. mica or ceramic.
$\mathrm{C}_{13}-0.01-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{14}-8 / 8-\mu \mathrm{f}$. 450 -volt dual electrolytic capacitor.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Open-circuit phone jack.
J_{3}-Phono jack, RCA type.
J_{4}-Coaxial chassis connector, SO-239.
$L_{1}-10$ turns No. 18 wire space-wound on R_{2}.
There is nothing eritical about the placement of the meter or the shalts for C_{6}, C_{8} and S_{1}. As shown in Fig. 6-38, C6 is mounted direetly above J_{1} and approximately two inches from the top of the panel. C's similarly is above the crystal socket and on the same horizontal line as C_{6}. S_{1} is about at the middle of the sepuare formed by these four components.

The holes on the rear edge of the chassis for the coaxial connector J_{4}, phone jack J_{2}, receiver connector J_{3}, and for the a.c. cord are drilked at the same height as those on the front edge. Acess holes should be eut in the rear cover of the box at the corresponding positions; these holes may be large enough to clear the components, but not larger than is necessary for this purpose. The cover fits tightly against the rear edge of the chassis and thus maintains the shiclding for preventing radiation of harmonics
$L_{2}-6$ turns No. 16 wire, 8 furns per inch, $1 / \frac{1}{4}$ inches diam. (B \& W 3018).
$\mathrm{L}_{3}-23$ turns No. 16 wire, 8 turns per inch, $11 / 4$ inches diam. ($\mathrm{B} \& \mathrm{~W} 3018$). The 7 -Mc. tap is 18 turns from the junction of L_{2} and L_{3}.
$\mathrm{L}_{1}-8$-h. $150-\mathrm{ma}$. filter choke (Thordarson 20C54).
$M_{1}-0.150 \mathrm{ma}$. (Shurite 950).
$R_{1}-R_{8}$ inc.-As specified.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-2.5$-mh. r.f. choke (National R-50 or or similar).
S_{1}-Single-pole 3 -position switch (Centralab 1461).
S_{2}-Single-pole single-throw toggle switch.
T_{1}-Power transformer: $360-0-360$ volts, $120 \mathrm{ma}$. ; 6.3 volts, 3.5 amp .; 5 volts, 3 amp (Stancor PM8410).
Y_{1}-Crystal (see text).
in the television bands. However, it is advisable to fasten the cover to the chassis edge with a few sheet-metal screws, in order to insure goon electrical contact.

There are several different types of broadeastrephacement variable capacitors on the market. Some of these have holes tapped in the front of the frame, and this type can be mounted directly on the panel using machine sorews and spacers. Others have mounting holes only in the bottom. In this case, the capacitor can be mounted on a pair of 1 -shaped brackets made from strips of aluminum.

Both L_{2} and L_{3} are supported by their leads. One end of L_{3} is connected to the stator of C_{8} and the other end is connected to a junction on top of a one-inch-long steatite stand-off insulator. L_{2} has one end connected to the stator of C_{6} and the other end to one of the terminals on S_{1}.

Fig. 6-37-Rear view of the transmitter showing the placement of components above chassis. The loading capacitor, C_{s}, is at the left, L_{3} is the vertical coil and L_{2} the horizontal one. Rubber grommets are used to prevent chafing and to furnish additional insulation on the leads coming from below chassis.

The voltage-dividing network consisting of R_{6} and R_{7} provides the correct voltage for operating the keying monitor, R_{6} is 1.6 i megohme, a value obtained by using two 3.3 -megohm 1 -watt resistors in parallel. These resistors and other small components may be mounted on insulating lug strips.

Adjustment and Testing

When the unit is really for testing, a $15-$ or $2 \bar{j}$-watt eleetrie light will sorve as a dummy load. One side of the lamp should be comerted to the output lead and the ot her side to chassis grounel. A crystal approprate for the band to be used should be plugged into the erystal socket, and a key connected to the key jack. S_{1} should be set to the proper band. S_{2} may then be closed and the transmitter allowed to warm up.

Set C_{8} at maximum capacitance (plates rompletely meshed) and close the ker. (euickly ture C_{6} to resonance, as indicated by a dip in thro cathode-current reading. (iradually decrease the capacitance of C_{8}, while retouching the tuning of C_{6} as the loading increases. Increased loading
will be indicated by inceasing lamp brightness and loy larger values of cathode current. Tune for maximum lamp brilliance. The cathode current should read between 90 and 100 milliamperes when the oscillator is fully loaded.
C_{1} should be adjusted for the best keying characteristics consistent with reasonably good power output. It is not advisable to attempt to adjust C_{1} with a lamp dummy load, since tho tamp resistance will change during the heating and rooling that take place during keying, and this will affert the keying characteristic of the oscillator. Usc a regular antemna, with or without an antenna coupler or matching network as the antema system may reguire, and listen to the keying on the station receiver. Remove the anterna from the receiver to prevent overloading, and adjust the r.f. gain control for a signal level comparable with that at which signals on that band are normally heard. Further details on checking keying will be found in the section on keying and break-in.
(Originally deseriled in QST Deember, $19 \overline{\mathrm{z}}$.

Fig. 6-38-Below-chassis view. Powersupply components are mounted in the left-hand side and the oscillator section is at the right-hand side. Mounted on the back wall of the chassis is the keying monitor. Although not visible in this view, the monitor components are mounted on a four-terminal tie point.

A One-Tube 50-Watt Transmitter

The tramsmitter shown in ligs, (i-it!) and 6-11 is similar in some resperts to the one deservibed previously. However, it demonstrates a different type of construction and will handle more power. For simplicity: operation is confined to two bands - 80 and 10 meters.

The circuit is shown in lig. 6-10. The single (iltt is used in a Colpitts-type rystal-oscillator ribenit. The dial lamp $/ I_{1}$ serves as an indicator of r.f. crystal current and will also ace as at fuse in case the crystal cument becomes sufliciont to endanger the ervatal. (A erystal will fracture if the current through the rivistal is sufficiont to (:anse exeressive heating.)

The output circuit, consisting of C_{2}, L_{1} and $\left({ }_{4}\right.$, is a pi network designed to feed a low-impedance ($50-\overline{50}$-ohm) loat. The band switeh s_{1} shorts out a portion of the eoil for 40 -moter operation and adds C_{3} in paralled with r_{4} for s0-meter output.

One of the functions of the ref. choke RPC' is that of a safety deviere. Shoudd the $1000-\mu \mu \mathrm{l}$. 1200 -volt blocking caparcitor break down, high voltage would be fed to the anteman of transmission line - a dangerous situation for the operator. The dhoke provides a d.e. short to ground should this orcur, although it has no effect on the normal operation of the transmitter. The choke also makes it possible to use capacitors with a lower break-down voltage rating at ('2 and ${ }^{\prime}{ }_{4}$.

The meter A_{1} and the key are in the cathode eirenit. Sereen voltage is obtained from a voltage divider consisting of h_{1} and h_{2}. l_{1} consists of

Where :33,000-ohm 1 -watt resistors romected in parallel, and $/$ be is two 100,000 -ohm resistors in parallel. If desired, 10,000 -ohm and 50.000 -ohm 10-watt resistors can he used instead.

Power Supply

A power supply delivering approximately 400 volts is included. The supply uses a 5Ut(iA or shatiy rectifier and a caparitive-input filter. The 100,000 -ohm bleoder resistance across the output of the supply (shown in Fig. (6-40 as 1001, 5 watts) is made up of three 33,000 -ohm, 2 -wat resistors in series.

Construction

The transmitter is built on a $7 \times 11 \times 3$-ineh aluminum chassis. The meter requires a 3 -inch hole, and the two tube sockets (Amphenol type Mll') take $11 / 8$-inch holes. 'The power transformer is monnted in the left rear corner of the chassis with the rectifier tube alongside. The ervisal socket and $61+6$ tulo are plared close together in front of the transformer. The lamp I_{1} is mounted in a $1 / 2$-inch rubber grommet set in the chassis close to the erystal socket. Comertions to the lamp are made by soldering directly to its terminals.

On the front wall of the chassis, the powar switch and key jack are mounted at the left-hand end. On the other side of the meter are the plate tank capacitor ('2, the band switeland the output (:iplacitor ('4.

On the under side of the chassis, the filter choke is fastened against one end watl, and the

Fig. 6.39-This view of the 50 watter shows the panel arrangement and layout of the components above chassis. The crystal is between the 6146 and dial-light grommet.

Behind the 6146 is the power transformer and to its right is the rectifier tube.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-40-Circuit diagram of the Novice 50 watter. Unless otherwise specified. capacitanses are in $\mu \mu \mathrm{f}$. Capacitors marked with polarity are electrolytic. Capacitors not otherwise identified are disk ceramic.
$\mathrm{C}_{1}-470-\mu \mu \mathrm{f}$. mica capacitor.
$\mathrm{C}_{2}-\mathbf{2 5 0}-\mu \mu \mathrm{f}$. variable capacitor (Hammarlund MC250M).
$\mathrm{C}_{3}-680-\mu \mu$ f. mica capacitor.
C: \mathbf{C} 365- $\mu \mu \mathrm{f}$.-per-section dual variable capacitor, broad-cast-replacement type, sections connected in parallel(Allied Radio 60H725).
I_{t}-Dial lamp, 2 volts, 60 ma ., No. 48 or 49.
J_{1}-Key jack, open-circuit.
J_{2}-RCA fype phono jack.
L. -35 turns No. 20, $11 / 4$-inch diam., 16 t.p.i., tapped 15 turns from the C_{4} end (B \& W No. 3019).

```
\(\mathrm{L}_{2}-\mathbf{9}\)-hy \(\mathbf{1 2 5 - m a}\). filter choke (Triad \(\mathrm{C}-10 \mathrm{X}\) or equiv.) \(M_{1}-21 / 2\)-inch square (Shurite 850 ).
\(\mathrm{R}_{1}-11,000\) ohms 3 watts. (See text.) \(\mathrm{R}_{2}-50,000\) ohms, 2 watts. (See text.)
\(\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-\mathrm{I}\)-mh. r.f. choke (National R-50, Millen 34300-1000).
\(\mathrm{RFC}_{4}-2.5\)-mh. r.f. choke (National R-100S).
\(\mathrm{S}_{1}\)-1-pole 2 -position switch (Centralab No. 1460).
\(\mathrm{S}_{2}\)-Single-pole single-throw toggle switch.
\(\mathrm{T}_{1}-750\) volts, c.t., 150 ma ., 5 volts 3 amp., 6.3 volts, 4.5 amp . (Stancor PC-841) or equiv.).
```

filter caparitors are against the rear wall, supported at the positive end by an insulated terminal strip, and at the negative end by soldering to the grounded terminal of the phono jark used as an output connertor.

The roil L_{1} is suspended by its leads between the stator terminals of the tank caparitor (2 and the output or loading caparitor ('s.

On the 6146 socket, the three cathode prongs, Nos. 1, 4 and 6 , should be connected together and the leads from ('1 and $R F^{\prime} C_{2}$ should be soldered to any of the three prongs.

On S_{1}, the center terminal comerts to the stators of ('4. The 40 -meter tap from L_{1} goes to one outside terminal on S_{1}, and the mier caparitor r's goes to the other terminal.

Operation

After completing the wiring, cherk all conmections to make sure you haven't made a mistake. When you feel you are ready to try the transmitter, phug in the key, an 80-meter crystal,
the line cord, and turn the power on. Jeave the key open until the ($1+46$ warms up. A 40 watt light bulb makes a good load for tosting the transmitter, the threaded portion connecting to the chassis ground and the base pin to the output lead.

Switch S_{1} to the 80 -meter position and set ('s at maximum capacitance (plates fully meshed) Close the key and tume ('2 for a "dip)" in meter reading. Once you've resonated the tank cirenit by tuning ('2 to a dip, you may or may not find that the lamp lights. Also, the meter reading at the dip will probably be only 20 or 30 ma . liy decreasing the rapacitance of (4 and rodipping with (C_{1} you'll find that the lamp will get brighter and the loading heavier, as indieated by an increasing meter reading at the dep point. Be careful not to hold the key down any longer than neerssary with the 6146 out of resonanee as the tube is easily damaged during such operation. Increase the loading until the meter reads 100 to 125 ma. at the dip. This will be an mput

Fig. 6-41 - This view shows the arrangement of the components below chassis. At the far right, mounted against the side of the chassis, is L_{2}, the power-supply choke. The filter capacitors are mounted along the back wall. At the lower left is C_{4}, the output capacitor. The other variable is C_{2}.
of approximatcly 50 watts, and the dummy bad should be fairly bright. Under these conditions sou should have approximately 400 volts on the plate of the $61+6$ and roughty 150 volts on the sereen, Use an 80-meter erystal for 80-meter operation and at f0-meter one for 40. It is possible to use ath 80-meter erystal for 40 -meter work, but the oscillator will be oprerating as a frequency doubler and the output is less tham when operating straight through at the cerstal frequency.

Antennas

Antemna systems of any of the types discusied in the antenna chapter of this Hambook may be used with the transmittex, provided it is appropriate for the bands to be used. Two simple types of antenna are shown in the sketeh of Fig. (i-42. liach will work on both of the two bands rovered by the transmitter. The antenna shown in Fig.

Fig. 6-42-Sketch of simple antennas described in the text. A shows a parallel-dipale system. The system of B requires a ground connection.

6-42.4 ronsists of two dipoles, one for 80 meters and one for 40 meters, connected in paratlel at the eenter where the feod line is attached. The antemat wan be made of 300 -ohm television ribloon line. Finst measure off two sections of rilhon each bif ft. long. Then at the renter of each seretion cut one of the two wires in the ribbon. leol off one of the two $3: 3-\mathrm{ft}$. sections of wire. 'Then conned the remasining $333-\mathrm{ft}$. wire and the bitift. section of the other conductor together as shown in the sketch. Reprat the same operation with the other 66 -ft. sextion of ribbon line ame attach an insulator lxetween the two sections. The feed line should be connected across the insulator as shown.

The antenna shown in Fig. (i-42B is similar in principle, exeept that the antennas are ftarterwave sustems. This antenna is suitable if a good gromed commection, such as a water pipe is available within a few feet of the base of the antenna. The antenna is constructed in a manner similar to that deseribed previously for the half-wave system. The antenna may be run vertically or run slanting to a tree or other support. If necessary, the first portion of it may be run vertically and the remainder horizontally.

The system of Fig. (i-42A should be fed with 72-ohm coax or ribbon line. The system of Fig. $6-42$ shoulad be fed with 52 -ohm coaxial line.

To avoid possible second-hamonic radiation, parficularly when operating in the 80 -meter Novice band, an antoma tuner, such as the one deseribed in QSF for August, 1958, is rerommemded.
(Originally described in QST for December, 1!58.)

6-HIGH-FREQUENCY TRANSMITTERS
 A Two-Band Low-Power V.F.O. Transmitter

Figs. 6-43 and (i-45 show exterior and interior views of a small transmitter that may be used as a low power home station, or as a transportable station that can be carried on trips. By the sul)stitution of a vibrator or transistor power supply, it may also be oporated from a car battery. With the built in power supply, normall input is alout 25 watts.

The eireuit diagram is shown in Fig. 6-4.4. The oscillator tube is a 6.1116 and the cireuit is a high (' Colpitts type, ('3 and ('4 in series making up most of the tank capabitance. (' 1 is the bandspread tuning capacitor. It is shunted by the trimmer caparitor C'? which is used to set the lowfrecurnery limit of the thang range.

The circuit operates in the 1.85 Ale. range. Operating the oscoilsating circuit one band lower than the lowest output band helps to maintain good v.f.o. stability.

The oscillator output cirrouit makes use of a slug-tuned coil, L_{2}, in a fixed-tuned circuit in the 3.5-Ne. range, When this rireuit is peaked at 3300 ke ., adequate drive for the final is maintainod over a range of 3300 to 3700 ke . It may be readjusted, of course, for other portions of the bind.

The oscillator is caparitively compled to at 2 Wet amplifior/donbler. The main diagram of Fig. 6-4t shows a ronventional parallar-tumed output tank cirreuit with simple capacitive ontput coupling to the antema. This system ran be used to fered random lengths of wire. If preferred, the pi-network output cirenit shown in the inset of
 tively, may be single- and dual-mit broadeastreplacement type variable rapacitors having a raparitance of :3ija $\mu \mu \mathrm{l}$. per section, or more. $L_{\text {a }}$
 or Airdux 816 (18 turns of No. 20 . 1 inch in diameter). These values arre appropriate for a \quad or to \bar{j}-ohm load. I milliammeter, M_{1}, in the plate
circuit of the amplifier is used as a tuning indicator.

To assure good keying chanacteristies, only the amplifier is kered. The key is in the cathode circuit. S_{1} in the cathode cireuit of the oscillator is used to cout off the oseillator during receiving periods. Also, by elosing S_{1} with the key open, the v.l.o. maty be set to freepueney without putting at signal on the air.

Power Supply

The power supply uses a 700 -volt, c.t., 90 -mat. broadcast replamement-type transformer and a (alpatitive filter. The ontput voltage is approximately 400. An 0.dz voltage-regulator tule is used to provide a constant voltage of 150 for the sereens of both the oweillator and the amplifier. The output of the power supply is fed through a separable plug and cable so that another type of power supply, such as a transistor supply (typical (ifernit shown in Fig. (i-4i), maty be quickly and (ansil! substituted without disturbing either transmitter or power-supply seretions. It also permits. using the power supply for other purposes when the transmitter is not in use.

Construction

The enclosure for the transmitter is made of two $7 \times$ I? $\times 3$-inch aluminum chassis hinged together. The transmitter proper is built into one chassis, and the power-supply unit in the other. Plonty of space is left for storing key, intenna and the line cord which phugs in at the rear. The two chassis are locked together by means of a pair of fasteners made of pieress of aluminum $1 / 2$
 one an! which slides under a wing nut on the other' chatssis.

An chuminum shelf 2^{2} 首 inchere wide was made with the long colges folded down about a half inch. Most of the assembly was done before

Fig. 6-43-WIJLN's 25 -wott v.f.o. tronsmitter. A Notionol type AM diol may be used for the v.f.o. instead of the surplus dial shown. The knobs af the right are for the final-tank and coupling capacitors. The toggle below cuts the v.f.o. off while receiving. The carrying handles of both units, which may be included for portable use, are offset toward the power-supply ends to balance the load.

2-Band Low-Power V.F.O. Transmitter

$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$. midgel variable (Hammarlund MC-100-M or similar).
$\mathrm{C}_{2}-140-\mu \mu \mathrm{f}$. air trimmer (Hammarlund APC-140-C or similar).
$C_{3}, C_{4}, C_{5}, C_{6}-$ Silver mica.
C_{i}-Mica.
$\mathrm{C}_{s}-140-\mu \mu \mathrm{f}$. midget variable (Millen 19140 or similar).
$C_{9}-100-\mu \mu \mathrm{f}$. midget variable (Bud CE-2004 or similar).
C_{A}, C_{B}-See text.
J_{1}-Open-circuit jack.
$\mathrm{J}_{2}, \mathrm{~J}_{3}$ —Pin jack.
$J_{4}-4$-prong fube sockel.
installing the shelf in the front chassis. The shelf is spaced about tinches from the top of the chassis.

The layout shown should be followed somewhat closely to avoid interaction between cincuits, for there is no shielding around the v.f.o. The oweillator tank roil is small (for 160 meters) and, if phared in the spot shown, eoupling to other cireuits will lx megligible.

Looking at the rear view of the transmitter, from right to left, are the oweilator tank coil L_{1}, and the bandspread capacitor (i mext to it. Under the coil is the band-setting rapacitor ('y mounted on an end wall of the chassis. Next to the band-spread rapacitor on the shelf is the diAllf oseillator tube, then the shen serew of the osidlator plate coil L_{2}, and the $21: 26$ with the grid choke Rere behind it. It the left are the plate tank eapacitor ("s, the plate tank coil L_{3}, and in back of it the coupling caparitor (${ }^{0}$. The
L_{1} - 39 turns No. 24, $3 / 4$ inch diam., $11 / 4$ inches lorg $(B \& W$ 3012 or Air Dux 632).
L_{2} - 38 furns No. 26 enam., $1 / 2$ inch diam., iron-slug form, approx. 20μ h. (National XR-50 form).
$\mathrm{L}_{3}-47$ furns No. 20, 1 inch diam., 3 inches long (B \& W 3015 or Air Dux 816).
L 1 - 15 -hy. 75 -ma. filter choke (Stancor C-1002).
L_{A}-See text.
$M_{1}-0-100$-ma. d.c. milliammeter ($21 / 2$ inch $)$.
P_{1}-4-prong plug to fit J_{1}.
$\mathrm{S}_{1}-$ S.p.p.s.t toggle.
T_{1} —Power transformer: 700 volts e.t., 90 ma.; 6.3 volts 3.5 amp .; 5 volts, 3 amp . (Triad R-11A).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-2.5 \mathrm{mh}$. rf. choke (National R-50).
fow fixed caparitors and resistors are below the shelf along with the weillator plate coil.

In the rear chassis can be seen the power supply with the 0.ie voltage regulator tube for the sereens of the two tubes. Since the power transformer has the same depth as the chassis, a small piece hatd to be cut from the lip of the chassis to get the transformer in phace. But the transformer is flush with the chassis edge and doess not prevent elosing the two chassis together. The filter choke is aloove the transformor and the rectifier and VIR tube are mounted on small brackets. The bleeder resistor and voltagedropping resistor for the VIR tube are mounted on at terminal-lug strip fastened under the top alge of the chassis.
The key jatek is at one end of the chessis and two jacks are placed on the top for the antenna and ground connections.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-45 - The enclosure for the 25 -watt v.f.o. transmitter is made up of two chassis hinged together. One chassis houses the power supply while the transmitter is mounted in the other. The a.c. cord plugs in at the rear. The coils are cemented to cone insulators.

If the pi-network output circuit is substituterl, the input capacitor (s may be momed on top) of the shelif and the output rapacitor (we bew.

Adjustment

No tricky adjustments are involved. When tuming up the v.f.o., remove the $21 ;$ for from its socket until everything in the oscillator is working and tuned to rower the band. The bandeot capacitor has a shalit with a serewdriver slot and shoukd be adjusted from the outside with the (hassis abed together. A sleat lowth should be provided so that the setting will not rhange after the correre point hats been found. The ouput circuit of the oseillator can be tuned either by sotting it to frequency with the add of a gridelip) moter, or by inserting a 10 -ma, moter between the amplifier grid beak and ground and tuming for maximum grid current. It will be found that
the maximum-output point is not foo broad. If the ciralut is poaked at about 3 (int) ke, drive will be aderguate over the range of 3.500 to 3800 ke . If a hole is drilled in the chassis, above the slug of the XR-50 form, a long-bladed serewdriver ean be inserted for adjusting the shag.

Tuning the final consists simply of adjusting the antenna tap and the compling caparitor for the desired loading of the amplifier, keoping the tank tuned to pesonance with ("s. The antemna may consist of a random longth of wire. (ioed results have beren obtained with a 30 -foot piere of wirestrung up across the room and back, keeping the sections as far apart as room permitted; push pins were used to hold the wire in place. For 40 meters, approximately half of the turns on L_{3} should be shorted out, shorting from the ground and.
(Originally descriled in QST' for July, 1958.)

Fig. 6-46-Circuit of a transistor power supply for the 25 -watt v.f.o. Iransmitter. The unit can be built in $4 \times 5 \times 6$-incn aluminum box. The transistors should be mounted externally, insulated from the box by mica washers 0.002 -inch thick. Polyethylene sheet cutfrom a radio parts bag may be used as a substitute. Circuit delivers 300 volts at 100 ma . when operated from a 12 -volt car battery.
$C_{1}-10-\mu \mathrm{f} .450$-volt electrolytic
$C R_{1}, C R_{2}, C R_{3}, C R_{4}-500-m a$. silicon rectifiers with mounting clips (Sarkes Torzian M-500).
F_{1} - 10 -amp. fuse.
$\mathrm{Q}_{1}, \mathrm{Q}_{:}-2 \mathrm{~N} 278$ or 2 N 627 transistor.
$\mathrm{R}_{1}-150$ ohms $1 / 2$ watt for 2 N278.
100 ohms $1 / 2$ watt for 2 N627.
$R_{2}-10$ ohms 2 watts for 2N278.
18 ohms 2 watts for 2N627.
$\mathrm{R}_{3}-270,000$ ohms, $1 / 2$ watt.
T_{1}-Transistor power transformer, 12-14 volts input, 300 volts, 100 ma . d.c. oulput after filter (Triad TY-69S).

75 Watts on Four Bands

75 Watts on Four Bands

ligg. $\mathrm{f}-18$ shows the circuit of a simple bandswitching transmitter that can be operated at imputs up to 75 watts on the 80-, 40 -, 20- and 15 meter bands. A GA(i7 grid-plate erystal oscillator drives a pair of 6 L di(ilss. Either 80 or 40 -meter reystals may be used for to-moter output, and (0)-meter crystals will supply adecutate drive to the amplifier on the 20 - and 15 -meter bands.

The pi network in the output of the amplifier
 triple-gang BC-type variable (ICA is31, Miller 2113, Philmore 9047 or similar), having a caparitance of $365 \mu \mu \mathrm{f}$. or more per sertion. The sections are wired in parallel. L_{3} and L_{4} are v.h.f. parasitie suppressors. Eitch consists of ($\mathbf{6} \frac{1}{2}$ turns of No. 18 wire wound around a 10 ohm 1 -watt atrbon rosistor across which the eoil is connected.

A single milliammeter, M_{1}, may be switehed to read cither amplifier grid current or amplifier mathode current. A combination of series resistor R_{3} and shunt resistors R_{1} and R_{2} provides fullscale moter readings of 20 ma . for grid current and 300 ma . for cathode current.

A power supply is included, and ample space remains on the chatsis for adding a modulator. The power supply as described should be adequate for powaring the modulator in addition to the transmittor. If e.w. operating only is contemplated, a similar transformer and choke having current ratings of 200 mat. misy be substituted.

Construction

Most of the constructional details are apparent in the photographs. A $12 \times 17 \times 3$-inch ilumi-
num chassis surmounted by a $12 \times 7 \times 6$-inch aluminum bos (Premior AC-127(i) is used as a shichding enclosure. '1'wo octal tube sockets, phaed between S_{1} and the diAcit sooket, are used ats erystal sockets. Etwh will acommodate two F'T-243 crystal holders. On euch sorket, Pins 1 and 3 should be wired wogther and grounded to the chassis. lins 5 and 7 should eadh be conmeeted to a terminal on S_{1}. 'The rerestals should be plugged in between Pins 3 and 5 and between Pins 1 and 7.

The shaft of Comust be insulated from the chatssis. This is done lov drilling at clearance hole for the shaft, and using insulating washers both inside and outside the chassis.

Coil dimensions are given in the table. 'Taps are most easily made by bending in toward the renter of the coil one or two turns on cither side of the turn to which the titp is to be soldered. Make sure that no turns are shorted by the solder.

Adjustment

The implifier must be neutratizal first. For this it is neecessary to discommet the high-voltuge line to the amplifier plates and sareons at the point marked " X " in the diatgram. With at-Mc, (rystal plugged into the erystal socket, power turned on and the key dosed, turn Sy to the 21-Mc. position, and adjust ('2 for maximum grid current to the amplifior. The moter should reid half scale or more. Listen to the signal on a receiver and adjust C_{1} for best keying ch uracteristies.

Fig. 6-47-A 75-watt 4 -band transmitter. The shafts of S_{4} (below the meter) and C_{5} (see Fig. 6-47) are placed symmetrically. S_{3}, C_{5} and I_{1} are centered on the same vertical line, as are the meter, S_{4} and S_{1} at the opposite end. C_{i} is at the center of the panel, with S_{2} directly below. C_{2} and S_{5} are spaced evenly on either side of S.: A series of $1 / 4$-inch ventilating holes is drilled in the box cover, above each of the tubes, and along the back of the box, toward the bottom. The power transformer, filter choke and rectifier tube are grouped in the left rear corner of the chassis.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6.48-Circuit of the 75 -watt 4-band transmitter. All capacitances less than $0.001 \mu f$. are in $\mu \mu f$. All 0.001 -and $0.01 \cdot \mu$. capacitors are disk ceramic. Capacitors marked with polarity are electrolytic. Other fixed capacitars should be mica. Alt resistors ore $1 / 2$ watt unless otherwise specified. Amplifier screen resistors are each 1 wo 22 K l-watt resistors in parallel.
$C_{1}-30 . \mu \mu \mathrm{f}$. mico trimmer.
$\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. midget variable (Bud MC-1885).
$\mathrm{C}_{3}-15-\mu \mu \mathrm{f}$. air trimmer (Jahnson 15M11).
$\mathrm{C}_{4}-300 \cdot \mu \mu$ f. variable (Bud MC-1860).
C_{5}-3.gang $B C$ variable (see text).
1 - 6 -volt dial lamp.
J_{1}-Open-circuit key jack.
J_{2}-Coaxial receptacle (SO-239).
$L_{2}=L_{R}$-See text and table.
Li-10-h. 200-ma. filter choke (Triad C16-A).
$M_{1}-0.1$ d.c. milliommeter (Triplett 227-T).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-750 \mu \mathrm{~h}$. (National R-33).
$\mathrm{RFC}_{4}-2.5 \mathrm{mh}$. (National R-50).
RFC:- $\mathbf{2 . 5}$ mh. (National R-300).
S_{1}-1-pole 6-position rotary (Centralab 1401).
S_{2}, S_{3}-1-pole 6.position rotary (Centralab 2501).
S_{1}-2-pole 2-position rotary (Centralab 1464).
S_{5}--S.p.s.t. toggle switch.
$\mathrm{T}_{1}-800$ volts c.1., 300 ma .; 5 volts, 3 amps.; 6.3 volts 4 amps. (Triad R24-A).

Fig. 6-49-Ls is mounted on the right-hand end of the box by soldering lugs to the end turn and fustening the lugs to 1 -inch cone insulators which ore centered 2 inches down from the tap. t_{-i} is soldered directly between the $21-M c$. switch terminal and the stator terminal of C_{4}. C_{5} is fastened directly to the chassis, with its shaft 2 inches from the righthond end. S_{4} is ploced symmetrically ot the opposite end of the panel.

75 Watts on Four Bands

Now turn S_{3} to the 2l-Me. position and turn Githrough its range. At some point there should be a kick in the griderurrent reading. Aljust r_{3} to the point where this kick is redured to a minimum. Onere this adjustment has berom made, it should require mu further attention.

Sow turn off the poucer suppla, ami recommert the high voltuge to the amplitier. Comere a
 (:ubsuitance, turn S_{4} to read cathode current. turn on the power and close the key. Adjust C ' for at dip in cathode current (resonamer). Thern redure the catpacitance of C_{5} a little at at time. resetting C C_{4} each time for resonamere. As there adjustments are continued alternately, the rurrent :t the dip will increase and the dip will forome less pronounced (ser Figg. (i-4). Simult:meously, the load limps should increase it brilliance. Contime these adjustments until the highest reading is obtained with Cis adjusted to resonature. However, do not allow the eurrent at this point to rise :thowe about $2: 30$ mat.

The framemitter e:m be tested on the other bands in a similar mantor. first tuning rez for maximum grid current. and then adjusting the output eircuit. Br sure that the switches are

	Turns	Wire Size	Diam. In.	Lgth. In.	$\begin{gathered} \text { Tap }^{*} \\ \text { Turns } \end{gathered}$	Approx.	B \& W No.
1.1	36	$\because 1$	1	11/8	29, 32	19	3016
$1: 1$	$\bar{\square}$	20	3	${ }^{3} 16$	-	0.3	:3111
1.5	i	1.4	1	$11 / 4$	-	0.3	-
1.6	11	16	2	$1{ }^{3}$	71/2.11	8.7)	(3)7-1
*From 3.j-Ma. end of coil.							

turned to the proper band, and that the proper (rystal is in use.

I simple anternat sysem for multilatud operattion is the parallel-dipole system deseribed in (ぶT for July, 1!aje. Othor types of antomats may le fed through an antemat eoupler. Adjustment when ferding an antemat is similar to that Wescribed for the dammer lowd. An outpat indi-

With the power supply shown, the outpat voltage with the amplifier fully louded slould be about foo. The amplitior serrem voltage should be approximately 200 . Cheder fully-loaded conditions. maximum ontput should be obtaned with a grid current of about if ma. If the grid marrent. exereds this value, it can be redued by slightly dothuinge ${ }^{2} \%$
(Originatly deseribed in (SST, Jan., 1957.)

Fig. 6-50-Bottom view showing the orrangement of components underneoth the chossis. C_{3} is mounted by soldering its stator rods to insulated contocts on a terminal strip. L_{1} is cemented to a 1 -inch cone insulator. L_{2} is soldered between the rotor terminal of C_{2} and the $21-\mathrm{Mc}$. contact on $\mathrm{S}_{2} . \mathrm{C}_{2}$ must be insuloted from the chassis as described in the text. The crystal sockets ore to the rear of S_{i}. Shielded wire is used as indicated in Fig. 6-46. Not shown in this view ore C C_{6} and C_{-}, which ore mounted between terminal strips farther to the rear, and J_{1} which is set in the rear edge of the chassis.

185

6-HIGH-FREQUENCY TRANSMITTERS

A 6-Band 90-Watt Transmitter

liges. ti-al through 6-97 show photographs and -ircuit diagrams of a ! (1)-watt bathdswitching transmiture eovering all hands from Itio (if a lan)meter oseillator is provided. of course) through 10 moters. The r.f. circuit is shown in lig. (i-i) 0 . A string of four multipher stages drives a $6 \mathrm{t}+\mathrm{f}$ timal amplifior. A well-sirrerned tube (6.Jだ 6) is used in the first stage, whose output is in the so-meter bume, so that the stage will be stable when driven hy an oscillator opketating in the same band. For simplicity, triodes ($6 \mathrm{C} / \mathrm{s}$) aro used in the remaining multiplier stages. The thimb stage of this seretion operates cither as a doubler to $1+\mathrm{Mc}$., or ats at tripler to 21 Ma., the chamge being made as the band switch opens or choses athort arroses a portion of the tank inductor. "Toung iatjustments are simplified by ganging the tuming rapuejtors of all four multiphier stages to a single eontrol. The su-meter tank aireuit. ('as-LA, is designed to cover the reguired tuning range - 3500 to 4000 ke . The vartous multiplier cirevits are designed to track at the multiples of this range that are reguired to cover the higher-frequene? hands. The parallel-e:apacitor mothod of tracking is used. This sustem requires a fixed cireuit-minimum caparetance. Sinere the input capacitanere of the 6 at 46 is greater than that of the 60 \%/s, trimmer rapacitors are comeneded arross the inputs of the fic tis to compensate the differenere.

A pi-section tank circuit is used in the output of the $\mathbf{6}-16$. It is designed to work into lowimusedance coanjal rable. In order to obtain bedter operation on 10 meters, and to sover 1 fif moters, the tank inturtor, L_{6}, is broken up into three sertions. $L_{6 A}$ is the only indurtance in the cireuit when operating on 10 moters, the roller contact on $L_{6 a}$ being run all the wate to one chel to short L_{661} out. In its last pesition, S_{213} opkens the short arross L_{66}, adding its inductather for lito meters.
L_{3} is a v.h.f. parasitic suppressor. L_{7} and ("s comprise a sorios-resonant direnit that mave be adjusted to attemuate 'TV' in the most suseeptible chanmel. Rif' 2 provides a do short across C_{7} so that the latter need have only:
approximately half the vollager rat ing that might othrorwise be required.

The milliammater. I/A, may be switehed to real total exeiter phate earrent, amplifier grial current, or amplifier rathode rurrent. Re and R_{1} arre shmes that multiply the meter reading by 10 when reading exejter curvent, and by 20 when reading amplifior cathode eurront.

Construction

The shitelding enclosure is mate up of two $8 \times 17 \times 3-3$ inch aluminum chassis. fastoned torgether with top surfares onde against the other. It the right-latad end, the rhatssis tops : :re cut away to provide an opening 7 inches deep bex S ineches wide. Into this operning the "dish" of lig. (0 -it t is fastenced to provide a woll for the final-amplitior components. I somies of $\frac{1}{4}$-inch ventilating holdes should be drilled in the bottom of the werll, and in both top and bottom eovers in the areat above and below the filla.

The components should be mounted so that the six control knobs on the pand eome at the same level, using spaters under the components where neressary to areomplish this. The three centrols at the left. and the there at the right are grouped with copal sparing. The motor is mounted at the renter line, and the tuning chart is ermored over the exater tuning eontrol. A combination of gears (see lig. (6-in), oproting from the shaft of the rotary inductor, was used to drive a surphas tums-counter dial, but the Groth (R. W). Giroth
 1ll.) counter should be extually comparet.

In the exejter seetion, the four tube sorkets are lined up betwern the tuning-atpateror gang and the hand switeh. The 6.15 k (is towand the front, with the 6 CI multipliers following in logieal serpurne to the reat.

The capacitor gathg, (i, is made ap of two Hammarland ILFI)-I(R) dual units whose shatits are joined with a Millon 3 3:0ndis rigid brass coupling. Sinere the tail shat of the Itammanlund unit is rather short, it maty be neressary to grind down the front cod of the Millen eompling almost to the set-screw hole to allow the set screw to

Fig. 6-51-Controls, from left to right, are for band switch, exciter tuning, meter switch, pi-section tank capacitor, rolary inductor and turns counter, and oufput-capacitor switch. The panel is 7 by 19 inches. The top cover (a chassis bottom cover) is in place in this view.

6 Bands, 90 Watts

Fig. 6-52-Wiring diagram of the 7 -band 90 -watt transmitter. All resistars $1 / 2$ watt unless atherwise specified. Copacitar values below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f} . \mathrm{M}=$ mico. $S M=$ silver mica. $T=$ mico trimmer. All other fixed capacitors are disk ceramic.
$\mathrm{C}_{\text {1A-Approx. }} 65 \mu \mu$. (see text).
$\mathrm{C}_{1 \mathrm{~B}}$-Approx. $35 \mu \mu \mathrm{f}$. (see text).
$\mathrm{C}_{1 \mathrm{C}}, \mathrm{C}_{1 \mathrm{D}}$-Approx. $25 \mu \mu \mathrm{f}$. (see text).
$\mathrm{C}_{3}-300-\mu \mu \mathrm{f} ., 0.026$-inch plate spacing (National TMS300).
\mathbf{R}_{1}-Two 4700-ahm 1 -watt resistors in parallet.
R_{3}-4700- and 3300-ohm I-watt resistors in parallel.
R_{3}, R_{4} —Meter shunts (see text).
$\mathrm{L}_{1}-12 \mu \mathrm{~h} .-24$ turns No. 22 d.c.c., 1 inch diam., closewound.
$L_{2}-4.2 \mu h .-17$ turns, $3 / 4$ inch diam., $17 / 32$ inch long (B \& W 3012 Miniductor).
L3-1.8 $\mu \mathrm{h} .-12$ turns, $3 / 4$ inch diom., $3 / 4$ inch lang, topped
$61 / 2$ turns fram graund end (B \& W 3011 Minia ductor).
$L_{4}-0.4 \mu \mathrm{~h} .-7$ turns, $1 / 2$ inch diam., 7 /í inch lang is \& W 3003 Miniductor).
$L_{5}-8$ turns No. 18, $1 / 4$ inch diam., $5 / 9$ inch lang.
Los- $0.3 \mu \mathrm{~h} .-4$ turns, $3 / 4$ inch diam., 1 inch long $i B \& W$ 3009 Miniductor).
$L_{013}-10-\mu \mathrm{h}$. variable (Johnson 229-201).
L_{ij} - $11 \mu \mathrm{~h} .-18$ furns No. 16, 2 inches diam., $13 / 4$ inches long (B \& W 3907 inductar).
L_{7}-See text.
J_{1}, J_{2}-Coox connector.
MA-3-inch, 10-ma. meter.
S_{1}-Ceramic rotary switch, 5 sections, 6 pasitions (see (ext).
$\mathrm{S}_{2 \mathrm{~A}}$-Centralab PIS section (see text).
$\mathrm{S}_{2 \mathrm{~B}}$-Centralab X section (see text).
S_{3}-Bakelite ratary.

AMPLIFIER

Fig. 6-53-Top view of the amplifier comparment, showing the pi-section tank capacitor, the rotary inductor with separate 10 -meter coil, ond the output capacitor switch. The 160 -meter loading coil, removed for this picture, normally is mounted between the stand-off insulator off the right rear corner of the rotary inductor and the rear rotary-inductor terminal. Exciter tubes ore to the left.
be:ar on the tail shaft.
The eaparitor serdions must be moditied as follows: Cia - remove the last 5 rotor plates: ('us - renowe the first ! rotor plates; fac remove all rotor plates exerept the first four, and remowe the fourth stator plate; rin remove all rotor plates exerept the last four. After the modifieation is complete, test earlo section to make sure that no plates are shorting. l"se ato ohmmeter, or use a lamp in series with the :are. line.

The band switch, s_{t}, is made up of ('entralath Switclakit parts. The index assembly is type 1'-12:3; the erramic waters ame type \mathcal{N}. For short leads, the waferes are spared out so as to come approximately half-way betwern the tule sorkets. Tertieally-mounted r.f. chokes arre used, since ther oreupe a minimum of chassis spater.
L_{1} is wound on : Millan toon form, $1 \mathrm{im} \cdot \mathrm{h}$ in diameter. It is mounted to the left of ("1.s. and "an be seen in the bottom-view photograph. The other multipliar coils are supported by their leach, soldered to the capacitor terminats. The tap lead on L_{3} should be a piere of wire alnout :3 inches long. The length oì this tap is adjusted later for tracking over the 21-Mr. hand.

The micit frimmer caparitors are meunted in such positions that ther can be adjusted through holes drilled in the chassis and in the bottom cower.
The socket for the 6116 is mounted near the inside wall of the well by monens of an la bracket
attarked to the rear wall of the rhassis. Moles are drilled in the wall of the woll for wires connecting to the aroked terminals. Sinere working spare is limited. all neressary bypassing and other wiring at the 6146 sockert should be done lwefore the sorket is mounted.

The output raparitor wwiteh is assembled on a (antralah) P-121 index head.

The rear of the metrer is shielded with an IC:I type bitu shield can rat down to a depth of 2 inches. Shickded leads are brought out through notches in the wall of the can, "lose to the pamel. Thes motor shunts, i_{3} and h_{4}. are wound with woper wire as deseribed in the metasurements chapter. h_{3} should be adjusted to inerease the full-scalte roading to $1(6)$ mat., and R_{4} to increas ${ }^{-}$ the range to $2(k)$ mal.

Following standard practice (see whater on BCl and TVI) all d.e. and filament wiring is done with shicheded wim.

The diagram of a suitable power supply is shown in lig. (i-5t; A pair of voltage-regulator tulnes regulates the voltage drop arross the fooknomm. 25-watt sorices resistor that drops the voltage $t=300$ for the exciter. The GAQ5 is at screven damper which, in combination with the 22 volts of battery hias, kerps the input to the 6146: at zero when exaltation is removed.

Adjustroent

Until the exiter has heen tuned up, screen and high-voltage lines should to disconnected

Fig. 6-54 -The "dish" for the final amplifier. It is bent fram aluminum sheet.
from the transmitter, and the $6.0 Q 5$ clamp tube should te removed from its socket. The meter switch should be turned to its grid-current position, and the $61 t 6$ heater turned on.

If an oscillator with 160 -meter output is available, turn the band switch to the 160 -meter position, and adjust the coupling to the oscillator until the meter reads a grid current of 3 ma.

Then with an oscillator delivering output on either 160 or 80 meters, turn the hand switch to the 80-meter position, and adjust C_{1} for maximum grid current. This should be at least 3 ma. If it is less, tre readjusting the coupling to the oscillat or. If a v.f.o. is used, the multiplier should be checked at both 3500 and 4000 kc . to make sure that it is covering the proper flequency range. It may be neecssary to spread out the last fow furns on L_{1} to get the eircuit to hit both ends of the band. If the output from the v.f.o. is reasonably constant, the grid current should remain essentially constant over the band.

With the 80 -meter stage working properly, the switch should be turned to the t(0)meter position. Sot the v.f.o. to 350) ke., and adjust (' 1 for maximum grid-current reading. If there is no indication of drive to the amplifier, it may he necessary to adjust the 7 -Me. trimmer, C_{2}, a little bit at a

Fig. 6.55-Sketch af drive and indicator far the final-tank variable inductar. The gears are stondard Baston Gear Works items.
time, retuning C_{I}, until an indication of output is obtained. As an aid, the meter, when switehed 10 read exciter plate current, should show a *light dip when r_{2} is tuned through resonance. When an indication of grid current is olotained, tune (${ }_{1}$ for prak drive, and then readjust C_{2} to increase the prak. The correct aljustment is the one where no readjustment of either (a or C_{2} will increase the drive. Now tune the oscillator to 3750 ke . (half this frequency, of course, if the oscillator output is in the 160 -meter bend $)$ and retune (' 1 . The drive to the 6146 should remain essentiadly unchanged.

Now tune the oscillator back to 3500 kc . and retune C_{1} for maximum drive. Lave the oscillator and C_{1} at this point, and turn the band switch to 14 De. Adjust first (${ }_{4}$, and then C_{3} for maximum grid curront. It may take a little juggling back and forth betwern these two before a maximum reading is obtained. The meter, when turned to read exciter current should show a dip when C_{4} is tuned through resonance.

Leaving all tuning adjustments fixed, turn the switeh to the 21-Mr. position. Adjust C_{1} carefully, and note whether an inerease or a decrease in eapacitance causes an increase in drive to the 6146 . If it is an increase, lengthen the tap wire slightly. Then turn the switeh back to 14 Mc. and readjust C_{4} for maximum drive. Then switeh back to 21 Mc. and check carefully again. By adjusting the length of the tap wire carvfully, it should be possible to arrive at a condition where maximum drive is obtained at both 14 and 21 Mc. at the same setting of C4. Remember, after each adjustment of the tap length, first go back to 11 Mc. and retune, then switeh to 21 Mc.

Adjustment for 28 Me. is similar to that for 1+ Mc., although it will be more critical. Careful adjustment of C_{5} and C_{6} will be necesstry for maximum drive. The various circuits should be sure that they are tuning to the right multiple.

When the above adjustments for the lowfrequency ends of the various bands howe been completed as described, it should be faund that the output will be essentially the same at tuy point within any seleeted band. Although such accuracy in lining up is not necessary, it should be possible to resonate (${ }_{1}$ for maximun drive at 7000 kc . and then, without retuning, 3 witch to 14,21 and 28 Mc. and find that the stages are delivering maximum drive.

The hitrmonie trall), $L_{7}-C_{8}$, is adjusted to resonate at the frequency of the TV channel most susceptible to TVI, with the coax-connector terminals shorted. The frequency should be checked with a grid-dip meter. As an example, 3 turns of No. 18, 1/4 inch diameter for L_{7} and $100 \mu \mu \mathrm{f}$. for C_{8} resonates in Channel 6 , by proper adjustment of the turns spacing of L_{7}.

Adjustment of the final amplifier is conventional. (In all bands, the output coupling capacitanee should be set initially at maximum, and then reduced a step at a time, re-resonating with ('7 each time, until the desired loading is attioned.
The 80 -meter hand is tuned with all of L_{613} in

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-56-Power-supply and clamp-tube circuit.
L_{1}-Swinging choke, $5-25 \mathrm{~h} ., 20-200 \mathrm{ma}$. (Triad C-31 A).
L.2-Smoothing choke, $10 \mathrm{~h} ., 200 \mathrm{ma}$. (Triad C.16A).
S_{3}-3-pole 2-position rotary ceramic switch (Centralab 2507).
$\mathrm{I}_{1}, \mathrm{I}_{2}-115$-volt pilot lamp.
(1-Plate transformer: 750 volts d.c., 225 ma. (Merit P-3159).
T_{2} —Filament transformer: 5 volts, 3 amp.; 6.3 valts, 6 amp . (Stancor P-5009).
the (ifeuit, fo is tuned with about 12 turns in the circuit. 20 meters with about 7 thans, and 15 meters with about io turns. For 10 meters. L_{66} is shorted out entirely be raming the contactor atl the way to the end of the eoil. In cath rase, the inductor is sot, and the circuit resonated

We metans of (" . Then the lowding is adjusted by S_{2}, re-resonating with ''z for wath position of S_{2}. The output rireut is designed to couple into a matchod low-impedance line fereding an antomad thener or coas-fod antemna.
(Originally deseribed in Qst' for May 1955.)

Fig. 6-57-Bottom view of the exciter section, showing the meter switch, tuning-capacitor gang and the band switch, The r.f. choke near top center is the amplifier grid choke. Ventilating holes in the bottom of the amplifier "dish" are duplicated in the bottom plate which was removed for this picture.

A Self-Contained 500-Watt Transmitter

Figs. (i-58 through 6-6i3 show the details of a 500 watt rew. transmitter, completely selferontaned exerept for the externall remote v.f.o. thening box shown in Figs, f-(62 and (i-6i3. 1 Provision is made for introducing s.s.b. input at the grid of the driver stage. While plate modulation ran be applied to the final amplifier in the usual manner, ratings of the phate power supply limit the safe input to about 250 watts.

The rireuit is shown in Fig, (i-5!), Switch S_{2} permits rither v.f.o. or erystal-entrolled operation using a 6Allf osidlator. Fither 80- or 40meter crystals maty be used. The v.for cireuit is in the 80-mater bamed and S_{1} solfects rither of two freduener ranges - 3.5 to + Mr. for complete roverage of all bands, and 3.5 to 3.6 Me. for greater bandsperad over the low-frequener ends of the wider bands. The plate cirenit of the osedlator is on 80 meters for all output bands exoept 10 meters where it doubles to $\overline{7} \mathrm{Me}$.

A 6 ('L, 6 buffer separates the oseillator and the first keyed stage. This stage doubles to 20 meters for 20 - and 10 -metor output and triples to 15 moters. The driver is a $2 \mathrm{l}: 6 \mathrm{Q}$ which doubles to 10 moters and works straight through on all other bands. This stage is noutralized and a potentiometer in its sereon rireuit serves as an exritation control.

The final is a $\mathbf{7} 0$ on, also noutralizad, with a
 switching inductor unit.

A differential broak-in kering systom using a 12417 is incladed. Both the final amplifier and driver are keved by the grid-blook method. The differential is adjusted by R_{1}. Clicks are prevented be envelope-shaping riredits which include ('z, ('11 and the grid-kak resistances.

The 100 -ohm moter shonts give a full-sable reading of 50 mat, the 51 -ohm shunts a full-scale reading of 100 ma , and the 10 -ohm resistor in the negative high-voltage lead provides a $500-\mathrm{ma}$. scale,

Power Supply

The phate transformer in the high-voltage supply uses a transformor desigued for a conventional full-wave rectifier circuit with an ICAS dec. output rating of 300 ma . it 750 volts. A bridge rectifier is used with this transformer so that an output voltage of 1500

Fig. 6-58-A 500-watt transmitter. Pawer supplies and a differential keyer are included. It aperates with the external v.f.a, tuner shawn in Fig. 6-62. Cantrals along the bottam, fram left to right, are far law-valtage pawer, v.f.a./crystals/s.s.b. switch, driver tank switch, driver tank capacitar, final laading, v.f.a. set switch, and high-valtage. Abave, fram left ta right, are cantrols far excitatian, final tank switch, final tank capacitar and meter switch. The band-switch painter is made by cutting down the metal skirt of a dial similar ta the ane to the right.

All dials are Jahnsan.
is obtained. The short duty cyrle of ew. or s.s.l. opreration makes it possible to draw up to the rated maximum of the $70 \cdot 9$ ($3: 30$ ma.) through a choke-imput filtor without a prohibitive rise in transformor temperature.

The low-voltage supply has two rectifiers. A full-wave rectificr with a rapacitive-imput filter provides 400 volts for the plate of the driver and the sereen of the final amplifier. A tap on a voltage divider across 400 volts provides 300 volts for the plates of the oscillator, buffer and kever tubes, A half-wave rectifier with a choke-input filter supplies 250 volts of bias for the keyer ind fixed bias for the $2 \mathrm{~F}: 26$ and $\overline{0} 0+4$ when the are operating as Chass $A 3_{1}$ Iinear amplifiers.

Control Circuits

$s_{;}$is the main powror switeh. It turns on the low-voltage, filament and bias supplics. Until it has been closed, the high-voltagesupply camnot be turned on, In addetion to turning on the highvoltage supply, So oprates the relay K_{1} which applies sereen voltage to the final amplifins. Thus, to protert the sarean, sareen voltage cemnot be applied without applying phate voltage simultancously. J_{8} is in parallel with S_{8} so that the high-voltage supply can be controlled remotely from an cxternal switch. Also, in paradel with the primary of the high-voltage transfarmer is another jack, f_{7}, which permits control of an antema relay or other deviece he S_{8} if desired.

The v.f.o.-set switch S_{5} turns on the exiter and grounds the sereen of the final amplifier.
S_{2} has three positions. (one is for arstial control. the serond for v.f.o. operation, and the third position is for opreating the last two stages of the transmitter as linear amplifiers with an external s.s.b. exciter. In addition to shilting the input of the driver stage from the buffer amplifier to :11 s.s.b. input connector, fixed bias is provided for $A 3_{1}$ operation of hoth stages.

Construction

The transmitter is assembled on a $16 \times 1: 3 \times$

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-59-Circuit of the 500 -watt self-contained transmitter. Capacitance less than $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Fixed capacitors of capacitance greater than $100 \mu \mu \mathrm{f}$. should be disk ceramic, except as noted below. Fixed capacitors of $100 \mu \mu \mathrm{f}$. and $220 \mu \mu \mathrm{f}$. should be mica. Capacitors marked with polarity are electrolytic. Resistors not otherwise marked are $1 / 2$ watt.
B_{1}-Blower (Allied 72P715).
$\mathrm{C}_{1}, \mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. air trimmer (Hammarlund APC-100-B). $\mathrm{C}_{2} \rightarrow$ Midget dual variable, $25 \mu \mu \mathrm{f}$. per section (Johnson 167-51 altered as described in the text).
$C_{1}, C_{5}-0.001-\mu f$. silver mica.
$\mathrm{C}_{\mathrm{n}}-30-\mu \mu \mathrm{f}$. mica trimmer (National M-30).
$C_{i}, C_{11}-0.1-\mu f$. paper (keyer shaping).
$\mathrm{C}_{s}-30-\mu \mu \mathrm{f}$. miniature variable (Johnson 160-130).
C9—100- $\mu \mu \mathrm{f}$. midget variable (Johnson 167-11).
$\mathrm{C}_{10}-330-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{12}-10-\mu \mu \mathrm{f}$. neutralizing capacitor (Johnson 159-1 25).
$\mathrm{C}_{13}-0.001$ - $\mu \mathrm{f}$. 3000 -volt disk ceramic.
$\mathrm{C}_{14}-0.001$ - $\mu \mathrm{f}$. 5000 -volt ceramic (CRL 858S).
$\mathrm{C}_{15}, \mathbf{2 5 0}-\mu \mu \mathrm{f} .2000$-volt variable (Johnson 154-1).
C_{18}-Triple-gang broadcast variable, $365 \mu \mu \mathrm{f}$. or more per section, sections connected in parallel.
$\mathrm{h}_{1}, \mathrm{I}_{2}$-One-inch 115 -volt panel lamp.
J_{1}, J_{2}-Cable connector for RG-22/U (Amphenol 83-22R, UG-103/U).
J_{3}-Crystal socket (Millen 33102).

I2AU7 6X5 6AH6 6CL6 $2 E 267094$

$\mathrm{J}_{1}, \mathrm{~J}_{5}$-Coaxial receptacle (SO-239).
J_{6}-Key jack, open circuit.
J_{i}, J_{s}-Chassis-mounting a.c. receptacle (Amphenol 61-F). K_{1}-S.p.s.t. 115-volt a.c. relay (Advance GHA/1C/ 115 VA or similar).
$\mathbf{L}_{1}-35 \mu \mathrm{~h},-32$ turns No. 18, 2 inches diameter, 2 inches long (Airdux 1616).
L_{2}-Approx. $10 \mu \mathrm{~h} .-65$ turns No. 26 enam., on $3 / 7$-inch iron-slug form (Waters CSA-1011-3).

500-Watt Transmitter

L3-Approx. $2 \mu \mathrm{~h} .-16$ turns No. 26 enam., close-wound at center of form similar to L_{2}.
La-Approx. 1 hh.- 13 turns No. 26 enam., $1 / 2$ inch long at center of form similar to L_{2}.
$L_{5}-16$ turns No. 20, $3 / 4$ inch diameter, 1 inch long, tapped at 10 turns and 13 turns from Le end (Airdux 616).
$L_{0}-40$ turns No. $16,11 / 4$ inches diameter, $23 / 4$ inches long, ropped of mid point and at L_{5} end (Airdux 1016).
L_ 3 turns No. $14,1 / 2$ inch diamefer, $3 / 4$ inch long.
Ls-4 turns $3 / 16 \times 1 / 16$-inch copper strip, $13 / 8$ inches diameter, $21 / 2$ inches long (port of B\&W 851 coil unit).
$\mathrm{L}_{0}-43 / 4$ turns No. 8, $21 / 2$ inches diameter, $13 / 4$ inches long, topped af $13 / 4$ turns from Ls end, plus $91 / 2$ turns No. 12, $21 / 2$ inches diameter, $1 / 2$ inches long, tapped at 6 turns from output end (part of B\&W 851 coil unit).
Li0-7-hy. 150 -ma. filter choke (Stancor C-1710).
L_{11} - 15 -hy. 75 -ma. filter choke (Stancor C-1002).
$\mathrm{L}_{12}-5 / 25-\mathrm{hy}$. 300 -ma. swinging filter choke (Triad C.33A).
M_{1}-Shielded 0. 5-ma. d.c. milliammeter, $31 / 2$-inch rectangular (Phaostron).
P_{1}, P_{2}-Plug for RG-22/ U cable (Amphenol 83-22SP).
R_{1}-100,000-ohm potentiometer.
$\mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{6}-100$ ohms, 5%.
R_{4}-20,000-ohm 4 -wat potentiometer (Mallory M20MPK).
$R_{5}, R_{8}-51$ ohms, 1 watt, 5%.
R_{7} - Two 10,000-ohm 2-watt resistors in series.
R_{9}-Three 100 -ohm 1 -watt noninductive resistors in porallel.
$R_{10}-25,000$ ohms, 25 watts with slider.
$R_{11}-15,000$ ohms, 20 watts, with slider.
$\mathrm{R}_{12}-4700$ ohms, 1 watt.
$\mathrm{R}_{13}-2200$ ohms, 1 watt.
$\mathrm{R}_{14}-10$ ohms (Five 51 -ohm 1 -watt 5% resistors in parallel.)
$R_{15}-1000$ ohms $1 / 2$ watt 5%.
S_{1}-Single-pole ceramic rotary switch (Centralab 2000, 2 of 12 positions used)
S_{2}-Two-wafer ceramic rotary switch (Centralab PA-300 index, PA-4 wafers. $S_{2 A}$ and $S_{2 B}$ are on one wafer, $\mathbf{S}_{2 \mathrm{c}}, \boldsymbol{S}_{2 \mathrm{D}}$ and $\mathbf{S}_{2 \mathrm{E}}$ on second wofer).
S_{3}-Three-wafer ceramic rotary switch (Centralab PA-301 index, wafers PA-0, 5 positions used).
S_{4}-Part of B\&W 851 coil unit.
S_{5} —Double-pole ceramic rotary switch (Centralab 2002, two positions used).
S_{6} —Double-pole ceramic rofary switch (Centralab 2002). S_{7}, S8-S.p.s.i. foggle switch.
T_{1}-Power transformer: 750 v.a.c., c.t., 150 ma.; 5 volts 3 amps.; 6.3 volts, 4.7 amps. (Thordarson 22R06).
$\mathrm{T}_{2}, \mathrm{~T}_{3}$-Filament transformer: 2.5 volts, c.t., 3 amps. (Triad F-1X).
T4 - Plate transformer: 1780 volts, c.t., 310 ma., cenfer tap not used (Triad P-14A).
T_{5}-Filament transformer: 5 volts, c.t., 3 amps. (Triad F-7X).

4 -inch ahuminum chassis with a $19 \times 121 / 4$-inch panel. The amplifior enclosure measures $81 / 2$ inchos wide, $8 \frac{1}{4}$ inches derp and $71 / 2$ inches high. The three permanent sidens shown in Fig. (i-60 can be bent up from a single sheet of solid aluminum stock. The top and bark (not shown) are mader from a single piece of Revolds perforated sheret aluminum

The tube socket is mounted on $3 / 4$-inch ceramic rones over a large hole cat in the chassis and covered with a pateh of perforated shoet. The tank capacitor C_{15} is mounted on metal spacers to bring its shaft level up to that of the switeh on the BdW inductor which is mounted directly on the chassis. The two shafts are spaced 4 inches.

Exciter

A $4 \times 5 \times 6$-inch aluminum box is used as the foumdation for the exciter. The driver tank eaparitor is centered on the chassis with its center approximately 3 inehes back from the front edge of the chassis. The capacitor sperified has an the ehassis. The two shafte are spared 4 ine hes.

Fig. 6-60-The only shielding required on top of the chassis is the amplifier enclosure shown A perforated cover for the enclosure is not shown.
$21 / 2$ inches and centered on the front end of the box. On the side of the box toward the tuning capacitor, the oscillator tube, the buffer tube, the lowfrequency section (L_{6}) of the driver tank coil, and the 21:26 are lined up so as to clear the tank eapacitor and its shaft. The latter is fitted with an insulated coupling and a panel-bearing unit. The slug-tuned coils are mounted in holes near the bottom edge of the box. Neutralizing capacitor ('s is mounted at the rear end of the hox, close to the 21226 socket. The high-frequency sertion (L_{5}) of the tank coil is suspended between the outer end of the low-frequency section and the plate cap of the 2 E 26 . Coil-tap leads run through small feed-through points or grommeted clearance holes in the side of the box.

The loading capacitor ('16 is placed so that its shaft is symmetrical with the shaft of S_{3}, and S_{5} is spaced from it to halanee S_{2} at the other end.

The V.F.O. Tuner

The v.f.o. tuner is assembled in a $5 \times 6 \times 9$-inch aluminum box (1'remier AC-5!(6). The dual tuning capacitor C_{2} has 7 plates, 4 rotor and 3 stationary, in each section. In the front section, which is used to cover the entire 80 -meter band, the two rotor plates nearest the front should be removed. This leaves two rotor plates and two arctive stator plates, the front stator plate being inactive. In the roar section, the front rotor plate and the last two rotor plates are removed. This leaves one rotor plate riding between two stators.

The capacitor is mounted on a bracket fastened against the bottom of the box, although it could be mounted from the front rover with spacers to clear the huh of the Millen 100:35 dial. The shaft of the capacitor should be central on the front cover. The coil is suspended between a pair of $21 / 2$-inch

Fig. 6-61 - The exciter is assembled using a standard aluminum box as the foundation. The perforated cover has been removed. The bottom of the chassis should also have a perforated metal cover.
ceramic pillars (Millen 31002). It is phaced immediately to the rear of the tuning capacitor. The two air trimmers, ('1 and C'3, are mounted on the top side of the box with their shafts protruding so that they can be adjusted from the top. The bandspread switeh is mounted in one end of the box and the cable connector at the other cond.

The unit is housed in a standard cabinet (Bud C-1781) having an 8×10-inch panel. The dial should be fastened to the panel, making sure that the hul) of the dial lines up aceurately with the shaft of the tuning capacitor. Then the box is inserted in the cabinet through the front opening. The switeh shaft goes out through a hole drilled in the side of the cabinet, and the cable goos

Fig. 6-62-The remote v.f.o. tuning unit is housed in a standard metal cabinet. The cable at the right plugs into the main chassis.
through a hole in the opposite end to the cable connertor. The dial should be set to read zero at maximum eaparitance of the tuning capacitor. The box should be supported on spacers.

Adjustment

With all tubes except the rectifiers out of their sockets, the power supplies should be checked first to be sure that they are functioning properly. The voltage output of the low-voltage supply should be in exeess of 400 volts, the biasing voltage 300 or more and the high voltage above 1500 . The slider on the low-voltage bleeder should be set at approximately three quarters of the way from ground. The slider on the biassupply bleeder should be set for a reading of -250 volts to ground.

Plug in the oscillator and buffer tubes and an 80 -meter crystal if one is availathe; otherwise connect the v.f.o. tuncr. With the low-voltage supply turned on, the 0.12 should glow. When the key is closed, the 0.12 should dim but stay ignited. If it does not, the value of the 1018 VR resistor shoukd be reduced.

The v.f.o. can now be adjusted to frequency. Set ('2 at maximum caparitance. Set S_{1} to the 80 -meter position. Adjust the 80 -meter trimmer until a signal is heard at 3500 ke , on a calibrated receiver. Then set the receiver to 4000 kc . and tune the v.f.o. until the signal is heard. If the signal is not close to 100 on the dial, carefully

Fig. 6-63-Interior of the v.f.o. tuning box showing the mounting of the coil and other components.
bend the rear rotor plate of the 80 -me eer section of (2 outward a little at a time to get the desired bandspread. Bach time this adjustment is made, the trimmer should be reset to bring 3500 kc . at zero on the dial.

The same procedure should be followed in adjusting for the other v.for, range, aimity for 3600 ke. (or above if desired) at $\mathbf{1 0 0}$ on the dial.

The 2E26 should now be plugged in and the excitation control R_{4} set at the ground end (zero screen voltage). Sy should be set in the v.f.o. position. With low voltage on and the key closed, a 5 atbis gridecurrent reading should be obtained with the band switch in the 80-meter position. With the switch in the 40 -meter position, the slug of L_{2} should be adjusted for maximum grid current to the 2E26. With the band switch in the 20-meter position, L_{3} should be adjusted for maximum grid current, and then the slug of L_{4} should be adjusted for maximum grid current with the band switch in the 15 -meter position.

Now insert the 7094 in its socket and neutralize the 2 E 26 as described earlier in this chapter.

Testing of the final amplifier requires a load applied to the output connector. Two 150 -watt lamis connected in paratlel should serve the purpose. Turning on the high voltage will also apply sereen voltage through the relay K_{1}. With both hand switehes sot to 10 meters, and C_{16} set at about half caparitance, quickly tune the output circuit to resonance as indicated by the plate-current dip. The load lamp shouhd show an indication of output. Switeh the meter to read grid current and neutralize as described earlier in this chapter. After neutralization the amplifier can be loaded to rated plate current. If it is above the rated maximum valie, inerease C_{16} and retune to resonance, or decrease ('16 if the plate current is below the rated value.

With the final adjusted and the entire transmitter operating, make a final check on the voltage at the tap on the low-voltage sumply, adjusting the slider if necessary to bring the voltage to 300 with the key closed. Be sure to turn off all voltages each time an aljustment is made.

The last adjustment is in the keyer. Adjust the potentiometer R_{1} to the point where the oscillator cannot be heard between dots and dashes at normal keving speed.

6 -HIGH-FREQUENCY TRANSMITTERS

A Single 6146 Amplifier

The photographs of Figs ($6-6.4,6-67$, and 6 -68, show views of an amplifier using a single $61 \cdot 46$. With the built-in supply shown, it ran be operated at an imput of about 70 watts, or up to 30 watts with a 750 -volt supply. The circuit is shown in Fig. (i-65. The input circuit is a conventional parallel-tuned tank with link coupling. However, the inductor is made up in two sections to avoid the indefferencies of shorting turns on a single large coil in switehing to the higher frequencies. A separate link coil is used with each of the two grid coils.

A pi-section tank eircuit is used in the output. The implifier is keved in the cathode circuit. The single milliammeter maty be switehed to real either grid corrent or cathode current. The 150 ohm serios resistor and the 22 -ohm parallel resistor form a meter shunt that increases the full-scale reading to 250 ma , when checking rathode rument.

Construction

The layout of components is shown in the
photographs. In the box, the tube socket should be placed far enough back on the chassis so that the tube will clear the meter. C' is phaced to the rear to space it about an inch from the tube. It is mounted on an aluminum bracket so ats to bring its shaft up to the proper level. A pancel bearing is coupled to the shaft.
$R F C_{3}$, ('s and Cy are mounted on an insulated terminal strip to the left of the tube socket. The fexible plate lead to the 6146 is connected to $R P^{\prime} C_{3}$ and ('8 at this strip. The v.h.f. parasitic suppressor L_{5} is connereted between this le:th and the plate connector.

To the rear of the tuber socket is another strip with two insulated terminals. A piece of No. 16 wire about 2 inches long is soldered verticatls to each of the insulated terminals. Then a pieco of "spathhetti" is slid over each of the wires. The capacitance betwere these wires provides the capareitance shown in Fig. 6 - 65 as ('3. This (apacitor is the neutralizing caparitor to stabilize the amplifier.

A erystal socket is used as the input connector J_{1}, as shown in Fig. if-i6. If proferred, a coasial

Fig. 6.64 -The base for the 6146 amplifier is a $11 \times 7 \times 3$-inch aluminum chassis. $A 6 \times 6 \times 6$-inch aluminum box encioses the amplifier fube and its output circuit. S_{2} is to the right of the meter. Below, from left to right, are controls for S_{3}, C_{7} and C_{4}. On the chassis, from leff to right, are the power-supply switches (see Fig. 6-66), J_{1} (see text) and J_{3}, and controls for C_{1} and S_{1}. Ventilation holes are drilled in the cover in the area above the fube, and along the sides of the box, near the bottom. The power-supply diagram is shown in Fig. 6-66.

Fig. 6-65-Circuit of the 6146 band-switching amplifier. All capacitances less than 0.001μ f. are in $\mu \mu$. All unmarked bypasses are disk ceramic. All resistors are $1 / 2$ watt unless otherwise specified. Filament and meter wiring should be shielded as indicated.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$. variable (Hammarlund MC-100-S).
$\mathrm{C}_{2}-470-\mu \mu \mathrm{f}$. mica.
C_{3}-Neutralizing capacitor (see text).
$\mathrm{C}_{4}-\mathbf{2 5 0}-\mu \mu \mathrm{f}$. variable (Hammarlund MC-250-S).
$\mathrm{C}_{5}-400-\mu \mu \mathrm{f}$. tub. ceramic (Centralab DC-401).
$\mathrm{D}_{6}-820-\mu \mu$ f. tub. ceramic (Centralab D6-821).
$\mathrm{C}_{7}-400-\mu \mu \mathrm{f}$. variable capacitor (broadcast replacement type).
$\mathrm{C}_{8}-\mathrm{C}_{9}$-Disk ceramic.
J_{1}-See text.
J_{2}-Coaxial receptacle (SO-239).
J_{3}-Close-circuit key jack.
$L_{1}-L_{7}$-See coil data opposite.
$M_{1}-0-25$-ma. d.c. milliammeter, $21 / 2$-inch square (Shurite).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{4}-1$ - or $2.5-\mathrm{mh}$. (National R-50).
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}-1$ - or $2.5-\mathrm{mh}$. (National R-100).
S_{1}, S_{2}-Double-pole 6 -position rotary switch (Centralab PA-2003).

COIL DATA

The coils $L_{1} L_{2}$ are made from a single length of B \& W Miniductor stock. Unwind 8 turns from the support bars and using side citters, snip off the projecting bars. Snip the unwound piece of wire off about one inch from the coil stock. Next count off 13 turns and bend the 13th turn in toward the axis of the coil and cut the wire at this point. At the cut, unwind $1 / 2$ turn from each coil. This leaves two coils on the same support bars. ["nwind $1 / 2$ turn at the end of the large coil. The 12-turn coil is L_{1} and the 42 -turn coil is $/ 2$. Similar procedure is followed in making $L_{3} L_{4}$.
L_{1} - 12 turns of No. 24, 1-inch diam, 32 turns per inch ($\mathrm{B} \& \mathrm{~W}^{2} 3016$).
Le - 42 turns of No. 24, 1-inch diam., 32 turns per inch (B\&W 3016).
40 -meter tap is made at 25 th turn counting from junction of $L_{2} L_{4}$.

L,3-4 turns of No. 20, 5/8-inch diam., 16 tures per inch (B \& W 3007)
L/4-13 turns of No. 20, $5 / 8$-inch diam., 16 turris per inch (B \& W 3007)
20 -meter tap is made at junction of $L_{2} L_{4}$.
1.j-meter tap is made $41 / 2$ turns from junction of $L_{2} L_{4}$.

10 -meter tap is made $7 \frac{1}{2}$ turns from junction of $L_{2} L_{4}$.
Ls- 4 turns of No. 14, 1/4-inch diam., turns spaced wire diam.
$\mathrm{L}_{6}-51 / 2$ turns of No. 12, 1-inch diam., turns spaced so that coil is 1 -inch long.
10 -meter tap is made $1 \frac{1}{2}$ turns from junction of $L_{0} L_{7}$.
L7 - $171 / 2$ turns of No. 16. 2-inch diam., 10 turns per inch ($\mathrm{B} \& \mathrm{~W} 3007-1$).
15 -meter tap is made 2 turns from junction of $L_{6} L_{7}$.
20 -meter tap is made 5 turns from junction of $L_{8} L_{7}$.
40 -meter tap is made 9 tirns from junction of $L_{8} L_{7}$.

Fig. 6-66-Economy power supply for 6146 amplifier.

4-10.5 henrys, 110 ma., 225 ohms.
$\mathrm{S}_{3}-1$-pole 6 -position (2 used) wafer switch, non-shorting (Centralab 1401).
S_{4}-1-pole 6-position (2 used) steatite wafer switch, nonshorting (Centralab 2501).
T_{1} —Filament transformer, 6.3 volt, 1.2 amperes.
T_{2}-Power transformer, $360-0-360$ volts, 120 ma., 6.3 volts 3.5 amperes, 5 volts 3 amperes (Stancor PC8410).

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-67-This view shows the arrangement of components in the box. $L_{\text {- }}$ is supported by two lugs soldered to the end turn and fastened to 1 -inch cone insulaters centered $13 / 4$ inches down from the top of the box. L_{i} is supported at right angles to L_{7} by soldering its top end to the inner end of L_{r}. The twisted insulated wires forming $C_{\text {: }}$ oppear immediotely in front of C_{7} neor the center.
receptacle similar to I_{2} may be momeded at the re:ar.

Adjustment

The amplifier requires a driver delivering at least 2 watts. The usual v.f.o. will not drive it Without an intermodiate amplifier, such as a (iAgi). Howerer, most arysal oscillators operating at 300 volts should be aldequate.

The first step in the adjustment is to neutralize the amplifier. The high-voltage line to the phate and sereen should be diseonneeted temporarily at the high voltage terminal in Fig. ti-6ī), The exeiter shonld be tuned up on the highest-frequency band available.

With the heater voltage only applied to the Gl fti, exeitation should be applied, and C_{1} adjusten to give naximum grid current. Then, with Si, set to the same hand as the grid circuit, and ('z set at maximum capateitance, ('4 should be thrued through its range. Unlass the amplifire is neut ralized, there should be a kiek in the grid current at some perint within the range of C_{4}. When this point has heren found, the two insulated wires represinting ('3 should be twisted together a bit at a time until the gridereurent kick is brought to a minimum.
The high-voltage commertion to the plate and
 be romereded across J_{2} to serve as a dumme load duming testing. With power and excitation applied, and ('z at maximum (apacitancer, adjust C_{4} lor a dipin cathode current. Then reduce C"7 a little at a time, cath time readjusting C 4 for the dip in cathode current. Is ('tis reduced, the dip) in athode rurrent should berome lass pronouned and the load lamps should inerease in brilliatue. Continue these alternate adjustments until the cathode current at the point of dip is maximum, but do not allow it to exered lion ma.

Tha output circuit is designed to foed 50 - or 70-rhm matehed antemas systems. For other antemat systems, atn antemnit there should be nsed between the amplifier and the antenna. With an antemat replawing the dumme load, the adjust ment procedure should be similar.
(Originally deserihed in (0.5T', August, 1956.)

Fig. 6-68-The grid tank coils L_{2} and L_{4} are supported on soldering-lug strips to the rear of S_{1} and C_{1}. Power-supply filter components are grouped in the lower right-hand corner.

An All-Purpose 813 Amplifier

Figs. 6-69 through 6-72 show the cireuit and photographs of an $81: 3$ amplifier designed for c.w., a.m., or s.s.b. operation. Provision has been made for convenient changing from one mode to another as well as to any of the bands from 80 through 10 meters.

The cireuit is shown in 6-70. A turret-type grid circuit is used and the output rircuit is a pi net work designed to work into coax rable. The inductor is the rotary-type variable. Provision for neutralizing is included. R_{1} is a parasitic suppressor.

For Class C e.w. or phone operation, S_{4} is open. The 90 volts of fixed bias, furnished by a small bias supply and regulated by the Vlas, is augmented by a drop of about 50 volts arross the grid-leak resistor $R 2$ at a normal grid eurent of 15 ma. This brings the total bias to 140 volts. With S_{4} closed, the wrid leak is short-rirenited and the 90 volts of fixed bias alone remains for $A B_{2}$ s.s.l). operation. (An advantage in $A B_{2}$ for c.w. operation is that it preserves the keving characteristics of the exciter better than with (Class C operation.) R_{3} should be adjusted so that the VR!90 just ignites with no exditation.
Screen voltage is regulated at 750 volts by a string of five 0A2s for s.s.b, operation. When the grid drive is increased for Class C operation, the sereen current increases, increasing the drop) across the sereen resistor R_{5}, and the sereen voltage falls to 400 . The regulators then lose control and the amplifier is ready for plate-sereen modutation.

The sereen is protected against exeessive input, should the load or plate voltage be removed, by the overload relay K_{1}. The tripping point is set at 40 mat by t e variable shunt resistor R_{4}. If the relay trips, current through R_{a} will hold the sareen circuit open until plate voltage is removed. One meter, M_{1}, measures cathode current, while the other meter, M_{2}, may be switched to read either
grid current or sercen current.
Forced-air ventitation is always advisable for a medium- or high-power amplifier if it is buttoned up tight to suppress TVI. A surphus 100 e.f.m. blower does the job more than adequately.

Construction

The amplifier is built on a $13 \times 17 \times 4$-inch aluminum chassis fastencel to a standard $123 / 4 \times$ 19-inch ratek panel. The r.f. output portion is enclosed in a $121 / 2 \times 13 \times 81 / 2$-ineh box made of aluminum angle and sheet. The VIR tubes, relay, blower and moters are monted external to the box.

The grid tank-cireuit components are mounted underneath the chassis and are shiclded with a $5 \times 7 \times 3$-inch aluminum box. A standard chassis of these dimensions might be substituted. The bias and filament transformers are in a second box measuring $(6$ loy 3 by 3 inches. This type of construction, together with the use of shieded wire for all power cireuits, was followed to reduce TVI to a minimum. Each wire was bypassed at both ends with $0.001-\mu$. ceramic disk capanitors. L_{4} can be adjusted to series resonate with the ($600-\mu \mu \mathrm{f}$. (apacitor at the frequeney of the most troublesome ehamel, A Bud low-pass filter completes the TVI treatment. As a result, the amplifier is completely free of TVI on all ehannels even in most fringe areas.

Adjustment

In the pi network, the output capacitors are fixed. However, the adjustment of the metwork is similar to that of the more conventional arrangement using a variable portion of the output capacitance. The only difference is that the "fine" loading adjustment is done with the variable inductor.
The inductor is fitted with a Groth turns counter, making it casy to return to the proper

Fig. 6-69-W4SUD's all-purpose 813 amplifier. The output-capaciter switch (coarse loading) is above the turns counter for the variable inductor. Dials near the center are for the plate tank capaciter C_{4} (above) and the grid tank capacitor C_{1} (below). To the right of the dials are the controls for the plate padder switch S_{3} (above) and the grid band switch S_{1} (below). The toggle switch below the meters is the mode switch S_{4} with the meter switch S_{5} to the left. Ventilating holes are drilled in the cover in the area above the tube. The output connector is on the left-hand wall of the shielding box.

002

B_{1}-Ventilating blower, 100 c.f.m. (surplus).
$\mathrm{C}_{1}-\mathbf{2 5 0 - \mu \mu \mathrm { f }}$. variable (Hammarlund MC-250-M)
C_{2} - $1000-\mu \mu \mathrm{f}$. тіса.
C_{3} —Neutralizing capacitor, $10 \mu \mu \mathrm{f}$. maximum (Johnson 159-250).
$C_{4}-150-\mu \mu$ f. 6000-volt variable (Johnson 153-12).
$\mathrm{C}_{5}-100-\mu \mu \mathrm{f} .5000$-volt fixed capacitor (surplus vacuum Amperex VC-100, or two $200-\mu \mu \mathrm{f}$. 5000 -volt micas in series).
$C R_{1}$ - 130 -volt 50 -ma. selenium rectifier.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial receptacle ($\mathrm{SO}-239$).
K_{1}-Screen overload relay, 2500 ohms, 7 ma. (Potter \& Brumfield KCP5).
$\mathrm{L}_{1}-3.5 \mathrm{Mc}$. -32 turns No. 20, 1 -inch diam., 2 inches long, 5 -furn link (B\&W 3015 or Airdux 816).
-7 Mc,- 18 turns No. 20, $3 / 4$-inch diam., $11 / 2$ inches long, 3 -furn link (B\&W 3011 or Airdux 616).

- 14 Mc. -10 turns No. $18,5 / 8$-inch diam., $11 / 4$ inches long, 2 -turn link (B\&W 3006 or Airdux 508).
-21 Mc. -7 turns No. $18,5 / 8$-inch diam., $7 / 8$ inch long, 1-furn link (B\&W 3006 or Airdux 508).
-28 Mc.-5 turris No. 18, 5/8-inch diam., 5/8 inch long, 1 -turn link (B\&W 3006 or Airdux 508).
$L_{2}-3$ furns $3 / 16$-inch copper tubing, 1 -inch diam., $13 / 4$ inches long.
$\mathbf{L}_{3}-15-\mu h$. variable inductor (B\&W 3852).
L4-See text.
$M_{1}, M_{2}-31 / 2$-inch d.c. milliammeter.
$\mathrm{R}_{1}-39$ ohms, $1 / 2$-watt carbon.
$\mathrm{R}_{2}-3300$ ohms, 2 watts.
$R_{3}-15,000$ ohms, 10 watts with slider.
$R_{3}-15,000$ ohms, 10 watts with slider.
R_{4}-2000-ohm 4-watt variable resistor (Mallory M2MPK).
RFC $_{1}$, RFC $_{3}-2.5$-mh. r.f. choke (National R-50 or similar).
RFC_{2}-Plate r.f. choke (National R-175-A).
RFC $_{4}$-V.h.f. choke (National R-60).
S_{1}-Rotory switch: 3 wafers, 3 poles, 11 positions per pole, 5 positions used (Centralab PA-O wafers, PA-301 index).
S_{2}-Rotory switch: single pole, 10 positions, progressively shorting, 6 positions used (Centralab PA-2042).
S_{3} —Rotary switch: s.p.s.t., ceramic lantenna link switch from BC-375 tuning unit, or Communications Products Model 65).
S_{4}-S.p.s.t. toggle switch.
S_{5}-D.p.d.t. rotary switch (Centralab 1405).
T_{1}-Filament transformer: 10 volts, 5 amp . (Thordarson 21F18).
T_{2}-Bias transformer: 120 volts, 50 ma.; 6.3 volts, 2 amp., filament winding not used; could be used for pilot light (Merit P-3045).

813 Amplifier

Fig. 6.71-This view shows the placement of components on the chassis. The 813 socket is mounted on spacers over a large clearance hole in the chassis. The several mica output capacitors are assembled in a stack on a threaded rod fastened to the left-hand wall of the shielding box. The neutralizing capacitor and the 80 -meter plate padder are to the right of the tank capacitor. To the right of the box are the five OA2s (the front one hidden), the screen overload relay and the VR90, the blower and meters.

setting for each band. Until the settings for each band have been found, S_{3} should be turned so that all of the output capacitance is in circuit. The inductor should be set near maximum for 80 , and approximately half maximum for 40 . (nn the higher-frequency bands, the inductor should be set so that the circuit resonates with the tank capacitor near minimum capacitance. Loading should increase as the output capacitance is de-
creased. A change in outpul capacitance requires a readjustment of C_{4} for resonance. When the loading is near the desired point, final adjustment can be made by altering the inductance slightly.

A 20-A or similar exciter is well suited as a driver for this amplifier on all modes. The 813 runs cool at 500 watts input on a.m. and c.w. and at 1000 watts p.e.p. on s.s.b. (Originally described in QST for lugust, 1958.)

Fig. 6.72-Bottom view of the all-purpose 813 amplifier. The grid tank-circuit components within dashed lines in Fig. 6-70 are enclosed in the box atlower center. Input links are wound over ground ends of grid coils. Filament and bias transformers are in the second box. The large resistor to the left of the grid box is the screen resistor. The variable resistor in the upper left-hand corner is the relay shunt R_{f}. The selenium bias rectifier is fastened against the left-hand wall of the chassis

6-HIGH-FREQUENCY TRANSMITTERS A Medium-Power Tetrode Amplifier

Fig. 6-73-This medium-power tetrode amplifier is assembled on a $17 \times$ 12×3-inch aluminum chassis with o $19 \times 121 / 4$-inch rack panel. Controls along the bottom of the panel are for the grid band switch, grid tuning copacitor, meter switch, a.c. power, and pi-network loading capacitor. Above are the controls for the plate tank capacitor and plate band switch. The sides and back of the shielding enclosure are a single piece of Reynolds perforated aluminum sheet "wropped" around the chassis. A 1 -inch lip is bent along the three top edges so that the top cover can be fostened on with sheetmetal screws.

Figs. 6-7.3 through ($0-76$ show photographs and circout diagram of an amplifier using an RC.A $709+$ tetrode that will handle up to 500 watts input on cow. or :330 waths with plate-sereern modulation. Construelion has been simplified by the use of mandactured subassemblies - a Hiarrington liferetronics (il-50 multiband grid tank and a 13 \& W^{\prime} typ 8isl bandswitching pinetwork inductor. The amplifier is noutralized loy the capateitive-bridge method. R_{1} and L_{5} are adjusted to suppress v.h.f. parasitic oscillation. The single milliammeter H_{1} may be swite hed to read cither grid or plate current. The shunt R2 multiplies the original j0-mat sate by 10, giving readings up to 500 ma . when the moter switch S_{3} is in the plate-eurrent position. Forred-air ventilation is provided by a small blower B_{1}.

Shiclded wire is used in all power cirenits and terminal leads are bypassed for v.h.f. as they enter the chassis.

Construction

The phate blocking capacitor is threaded onto one of the plate tank-raparitor stator rods. Phate-circuit leads are made of $1 / 2$-inch copper strip. Screen and filament bypasses are comented direatly betwern the thbersocket terminals and the perforated sheet. Dach of the three sareen terminals is hepassed with a $1000-\mu \mu \mathrm{f}$. 1 b 00 -volt disk ceramic capacitor. The grid-tank unit is spaced from the front wall of the chassis on I-inch pillar insulators to provide space for an insulating shaft coupling.

Along the rear wall of the chassis are the raas

Fig. 6-74-Rear view of the mediumpower amplifier. The shafts of the plate band switch and plate tuning capacitor are $23 / 4$ and $61 / 4$ inches from the left-hand end of the chassis in this view. A ventilating hole somewhat larger than the tube sockel (829-8 type) is centered $61 / 2$ inches from the right-hand end of the chossis and 6 inches from the rear. A piece of perforated aluminum covers the hole and supports the tube socket mounted on 1 -inch ceramic cones. Feed-through insulators carry connections to the bottom terminals of the plate tank-coil unit, the plate r.f. choke and the neutralizing capocitor. The meter is enclosed in a $4 \times 4 \times 2$-inch aluminum box.

Fig. 6-75-Circuit of the 7094 amplifier. Unless specified otherwise, capacitances are in $\mu \mu \mathrm{f}$. All fixed capacitors rated at less than 5 kv . are disk ceramic. The $5-\mathrm{kv}$. capacitors are TV-type ceramics (Centralab 858). Dashed lines in grid circuit enclose components of Harrington GP-50 multiband tank unit. Those in the plate circuit enclose components of the B \& W 851 pi-network inductor.

B1-Blower (Allied Radio Cat. No. 72P715).
$\mathrm{C}_{1}-250-\mu \mu \mathrm{f}$. midget variable (special).
C_{2}-Neutralizing capacitor- $11 \mu \mu \mathrm{f}$. max. (Johnson N1 25).
$\mathrm{C}_{3}-250-\mu \mu \mathrm{f} .3000$-volt variable (Johnson 250 E 30).
$\mathrm{C}_{4}-1100-\mu \mu \mathrm{f}$. variable—triple-gang broadcast replacement type, $365 \mu \mu$ f. (or more) per section, sections connected in parallel.
I_{1}-6.3-volt dial lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coax receptacle (SO-239).
$L_{1}-2$ turns No. 16, 1 inch diam., over ground end of L_{2}.
$L_{2}-14$ turns No. 16, $3 / 4$ inch diam., 2 inches long.
L_{3} - 3 turns No. 16, 1 inch diam., over ground end of L_{4}
$L_{4}-38$ turns No. 22, $3 / 4$ inch diam., $11 / 2$ inches long.
$\mathrm{L}_{5}-3$ turns No. $12,3 / 9$ inch diam., 1 inch long.
$\mathrm{L}_{6}-4$ turns $3 / 16 \times 3 / 16$-inch copper strip, $13 / 8$ inches diameter, $21 / 2$ inches long.
$\mathrm{L}_{7}-43 / 4$ turns No. 8, $21 / 2$ inches diam., $13 / 4$ inches long,
output connector, a.c. power connector, fuse, sereen-voltage, bias and ground terminals, highvoltage connector (Millen) and the coax input connector. Strips of $1 / 2$-inch aluminum angle fastened to the panel provide a means of fastening the shielding enclosure to the panel. Paint should be removed where the angle rests against the panel so that there will be good electrical contact between the two.

Preliminary Adjustment

To maintain a tank Q of 10 at 4 and 7.3 Me., 4 turns should be removed or shorted out at the front end of the B\&W unit, and the 40-meter tap should be moved one turn toward the rear. (l'or operation at less than maximum ICAS ratings, see pi-network charts earlier in this section.)
tapped at 3 turns from the L_{s} end.
$L_{s}-91 / 2$ turns No. 12, $21 / 2$ inches diam., $11 / 2$ inches long, tapped at 6 turns from the output end (see text).
Note: L_{7} and L_{8} are mounted close together on the same axis; L_{6} is mounted of right angles.
M_{1}-D.c. milliammeter, $0-50-\mathrm{ma}$. scale- $33 / 8$ inch rectangular (Triplett Model 327-PL).
\mathbf{R}_{1}-Three 150 -ohm 1 -watt carbon resistors in parallel.
\mathbf{R}_{2}-Approx. 32 turns No. 24 on a $1 / 4$-inch diam. form (see measurements section for method of adjustment).
RFC $_{1}$-750- μ h. r.f. choke (National R-33).
RFC_{2} —Plate r.f. choke $120 \mu \mathrm{~h}$ (Raypar RL-101).
RFC_{3}-2.5-mh. r.f. choke (National R-50).
S_{1} - Two-wafer 5 -position ceramic rotary switch.
S_{2}-Special heavy-duty 5 -position rotary switch (component of $B \&$ W inductor unit).
T_{1}-Filament transformer: 6.3 volts, 3.5 amps. minimum (Thordarson 21F11).

Before applying excitation, the amplifier should be checked for v.h.f. parasitic oscillation as described earlier in this section. A resistor of about 20,000 ohms should be connected between the bias terminal and ground. Full plate voltage may be applied, but the sereen should be operated from an adjustable 50,000 -ohm 50 -watt series resistor connected to the plate supply. The grid band switch should be turned to the 10 -meter position and the plate switch to the 80 -meter position. Wit h the meter switched to read plate current, the screen resistance should be reduced until the plate power input is about 100 watts. The meter should then be switched to read grid current and the recommended procedure followed. The objective is to suppress the parasitie oseillation with the smallest possible coil to keep the parasitic-eircuit

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6.76 - Bottom view of the 7094 amplifier. The grid-tank assembly in the upper left-hand corner and the outputloading capacitor in the lower right-hand corner are placed so that the shaft of the latter and the shaft of the grid band switch are $11 / 2$ inches from the ends of the chassis. Spacers between the chassis and the output capacitor bring its shaft level with those of the grid-tank unit. The meter switch is at the center. The filament transformer is mounted on an aluminum bracket. The ventilating fan is bolted against the rear wall of the chassis,
resonant frequency between the two v.h.f. TV bauds. If oscillation is detereted, atditional loading resist ors should he tried first. If this does not work, another turn should be added to the eoil, or the turns squered eloser together. With the parasitic eoil described, the resonant frequeney of the cireuit is about 100 megareveles.

Neutralizing

Neutralizing should be done with exeitation applied to produce rated grid current. The input and output cireuits should be tumed to the same frequency. 'late and sereen voltages should be disconnected at the transmitter terminals. The neut atizing capacitor should then be adfusted until a point is found where there is no change in grid eurrent as the plate tank cirenit is tuned through resonance. The entput eaparitor should be set at maximum capacitance for this cheok. After plate and sereen voltages have been applied and the amplifier loaded, the neut ralizing capacitor should be given a fiual adjustment to the point where minimum plate eurrent and maximum grid and screen currents oceur simultaneously.

Power Supply

Maximum ICAS ratings on the 7094 are 1500 volts, $3: 30 \mathrm{ma}$. on c. $16 ., 1500$ volts, 200 ma . (max.) (Class 13_{1} s.s.l), and 1200 volts, 275 ma . for a.m. phone. However, the tube will work well at plate voltages down to at least 700 volts, provided appropriate values are used in the pi network as mentioned previously. The recommended sereen voltage is 100 for all classes of operation at sereen
currents up to 30 ma ., depending on the type of operation. Therefore a regulated sereen voltage (an be obtained using a pair of 01)3s and one 0C3 in series. If sereen voltage is obtained from the plate supply, an adjustable 100 -watt 75,000 -ohm series resistor should be used and the value adjusted to obtain the desired operating plate current after initial tuning adjustments have been made.

Biasing

A fixerl biasing voltage of 50 is required for s.s.l). operation. Batteries should last indefinitely. The biasing voltage may also be obtained from a voltage divider aeross a V'R tube with suitable suries resistor. A biasing voltage of $1: 30$ is recommended for plate-modulated Class C service, and 100 volts for c.w. operation. Reconmmended grid current is 5 ma . If the screen is operated from a fixed-voltage source, a source regulated by an 0.13 should provide plate-current ent off. The balaner of the required operating bias may be obtained from a grid leak (5000 ohms for e.w. or 11,000 ohms for phone). In case the sereen is supplied through a dropping resistor from the plate supply, fixed biasing voltages of 100 for c.w. or 130 for phone (no grid leak) should provide reasonable protertion for the tube in case of failure of exeitation.

The rated driving power is 5 watts, easily furnished by a 2 E 26 without pushing it. Existing transmiters usiug a $6 \mathrm{~L} 6,6146$ or 807 in the final may be used if provision is made for controlling the output of these units by adjustment of screen voltage.

650-Watt Amplifier
 A Compact 650-Watt Amplifier

Computness in the high-power amplifier shown in ligs. 6-77 through 6-82 is achieved through the use of germanium rectifiers in the power supply and tubes of the radial-beam type. When driven by an expiter delivering ahout 30 watts output, the amplifier runs at about 6000 watts input and gives an output of about 400 watts on (c.w. or p.e.p. s.s.b. It covers 80 through 10 moters be means of band switehing and has a fixed $50-$ ohm output impedance.
Two $4 \mathrm{~N}^{2} 2 \mathrm{j} 013$ tubes operating Class AB are used in a grounded-eathode cireuit (see lig. (0-78). No grid funing is used, since an exciter of the size mentioned will drive the grids directly andoss the 110-ohm resistance. L_{l} is a series peaking coil to increase the drive on 10 meters. A paralleltumed tank with fixed-link output couphing is used in the plate rireuit. This system hats the advantage that series plate feed can be used, and no large output capacitance is needed. Tuning is straightforward and the coupling, once adjusted holds over a wide frequency range.

The link circuit is grounded through a removable jumper at the output connector, so that a balanced loud can be fed if desired.

The small $15-\mu \mu$. capacitor (CIRL, Type 850), from the plates to ground, provides a short path for harmonic currents and keeps them out of the ontput coil. On the $3,5-$ to 4 - Me. range a fixed $100-\mu \mu \mathrm{l}$. capacitor is connected across the roil, so that a proper L-to-C ratio can be maintained at 4 Me. When switehed out of the circuit, the coil and fixed caparitor resonate around 5 Mc ., which is sufficiontly removed from any of the other ranges to avoid any difficulty.

The 10 -ohm resistor in the $13+$ lead serves as a fuse in case of a shorted tube or other fault that might endanger the power supply.

Power Supply

The plate supply uses two voltage doublers in
series; see Fig. 6-81. Two 325-volt windings on T'2 feed strings of germanium rectifiers in full-wave voltage-doubler ronnections. Each doubler capacitance is $160 \mu \mathrm{f}$., made up of two parallel $80-\mu \mathrm{f}$. 450-volt cartridge type units with cardboard sleeves. The chassis is lined with insukating material under the ('5 and C_{6} capacitors, since their onter cans run as high as +1300 volts. The ripple is around 3 per cent r.m.s., and the regulation from no load to full load is about 15 per cent, Sixteen cells are used. Wach group of faur cells in one side of a voltage doubler has two 560 K resistors conneeted across pairs of cells to equalize the reverse voltage drop. (Other 560 K resistors are connected as bleeders only as a safety measure, since no bleeders are needed for proper circuit operation. But even with the bleders, the capacitors can retain a charge for several minutes, so be careful!

Grid bias is furnished by a 75 -volt winding on T_{1}, a half-wave rectifier and an $80-\mu f$. caparitor. About - 90 volts is developed arross (99 and applied to the tubes during stand-be periods. The operating hias is adjustable from -30 to -60 volts $\mathrm{ly} \mathrm{R}_{3}$.
screen voltage is taken from the +375 -volt point of the plate supply (junction (': and (8). It is dropped through the 613155 regulator to deliver a low-impedance output adjustable from about 250 to 325 volts at up to 75 ma . Since this type of regulator will not handle reverse current, bleader R_{2} (Fig. 6-78) is provided to offset no-signal negative screen eurrent to the 4×25013 and make the sereen meter real on seale.

When in operating condition, the "reference" voltage for the sereen regulator is the -90 volt bias supply. In stand-by condition the reference is switched down to the tap on R_{3}, thats reducing the sereen voltage from its nominal +300 or so to a lower value. This action, together with the increased grid bias, insures that the $4 \times 25013 s$

Fig. 6.77-The panel of this 650 -watt amplifier built by W9LZY measures only 10 by 14 inches. Below the meter are the meter switch, high-voltage switch and filament/bias switch. To the right are controls for the band switch (above) and the lank capacitor (below).

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-78-Circuit diagram of the r.f. portion of the amplifier. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$. . resistances are in ohms, resistors are $1 / 2$ watt. The $1000-\mu \mu \mathrm{f}$. plate bypass is a CRL Type $858-5$; the $1000-\mu \mu \mathrm{f}$. feedthrough capacitors are 500-volt ceramic.
C_{1}, C_{2}-Four $1000-\mu \mu \mathrm{f} .500$-volt disk ceramic capacitors in parallel.
$C_{3}-115-\mu \mu$ f. variable, 2000 -volt spacing. See text.
C_{4}-Two $25-\mu \mu \mathrm{f}$. NPO ceramic and one $50-\mu \mu \mathrm{f}$. N750 ceramic in parallel, 7500 -volt rating.
J_{1}-UG-291/U BNC panel jack (Amphenol 31-001).
J:SO. 239 UHF panel jack (Amphenol 83-1R).
$L_{1}-6$ turns No. 20, $3 / 8$-inch diam., $1 / 2$ inch long.
L2-4 $1 / 2$ turns $1 / 8$-inch copper tubing, $11 / 4$ inches long, $11 / 8$-inch diam. Link is 3 turns No. 16 wire, $3 / 4$ inch long, $3 / 4$-inch diam
L_{3} - 6 turns $1 / 8$-inch copper tubing, $11 / 2$ inch long, $15 / 8$-inch
diam. Link is 2 turns No. 12, $1 / 2$ inch long, $11 / 8$-inch diam.
L4-81/2 turns No. 12, $11 / 8$ inches long, $21 / 8$-inch diam. Link is 3 turns No. 12, $5 / 8$ inch long, $11 / 2$-inch diam.
L:;-Two coils, see text. Outer is 10 turns No. 12, $13 / 8$ inches long, $21 / 8$-inch diam. Inner coil is $61 / 2$ turns No. $12,3 / 4$ inch long, $13 / 4$-inch diam., inside plate end of outer coil. Link is 4 turns No. 12, $1 / 2$ inch long, $11 / 2$-inch diam.
RFC $_{1}-100 \cdot \mu$ h. r.f. choke (National R-33-4).
$\mathrm{RFC}_{2}-21-\mu \mathrm{h} .600$-ma. r. f. choke (Ohmite Z-28).
draw no current in standby condition. In operadion the grid, sereen, and phate voltages all tend to vary in proportion to line-voltage changes.
The sorect current is measured by switching the $0-6$ milliammeter across 2.2 ohms in the lead
to the sereen-voltage regulator. The resistor has negligible shunting afferet. For measuring plate rarrent the meter is switehed arross a low resistance h_{6}, comerted betwern the two sections of the wate supply. R_{5} was adjusted for

Fig. 6-79-Rear view of the 650 -watt amplifier showing mounting of the 4×2508 s and the plate transformer. Shields in the foreground enclose voltage-regulator tubes and a relay. The shaft protruding from the rear edge of the chassis operates the bias potentiometer.

650-Watt Amplifier

Fig. 6-80-Side view of the 4X250B o nolifier showing mounting of the bond switch ond tonk cails. The chossis is perforoted for ventilotion.

full-scale meter reating at 750 ma. There is a maximum of 425 volts betwern swith contares and 850 volts from contacts to ground.

The stand-ly relay K_{t} is one that plugs into at 7 -pin miniature socket. It operates from 11.5 volts a.ce and a half-wave power supply. The input is brought out to two terminals on the rear of the chassis, where connertion is made across the intenna relay coil.

Construction

The amplifier is built on an 8×1-inch chassis with a 10×14-inch panel. The chassis is $41 / 2$ inches deep, to provide spare for the filter caparitors and cooling fan moderneath. As can be seen by studying the photographs, the plate power supply oceupies the left end of the chassis, and the r.f. circuits take most of the remaining spare. The heater and hias supply is stowed under the right rear corner of the chassis behind the plate tuning eapacitor. The sereen regulator and standby relay are at the rear of the chassis in the erenter.

The controls are few and simple. The band switch has four positions, for the 80 -, 40-, 20and 15- and 10 -meter bands. Other controls are the plate tuning capacitor, plate-current/seremcurrent meter switch, power and phate voltage switches.
The plate tank eapacitor is one from a BC375 tuming unit, monnted under the chassis on four remamic feed-through bushings. (Any other capacitor of equivalent rating, such as the Johnson 155-4 may be substituted.) Four holes were drilled and tapped in the $1 / 4$-inch sultare frame rods on the right-hand side of the catpacitor. and 6 - 32 threaded rod was serewed into the holes and passed through the insulators. The four serews project above the insulators at
the top of the chassis, where the 13+ ends of the phate coils connect to them via copper strips. An insulated shaft extension goes through the panel to the tuning knol.
The wire from eath coil was wrapped around a pipe of suitable diameter. Four Plexiglass strips were drillesl with elearanee holes at the desired spacing, then the coil wire was fed through the holes. The 80 -meter coil was made with two concentric sections in series to get enough inductance into the available space. The 80 - and t0-meter links were also threaded through strips, while the 20 - and 10 -meter links are self-silpporting. All links are a push fit inside the insulating strips of their rexpertive coils, and are hold with a drop or two of erment after adjustment.

The two haud-switch wafers are each singlepole, t-position, 60 -degree throw (Communications Products (\%o., Type 8if). A (00-degree index-and-shaft assmaty from an Oak Type H switch was used. The rest of the switch was made up from ($6-322$ threaded hrass roci, $1 / 4$-ineh o.d. tubing. $1 / 16$-inch alluminum sheot, and miserllaneons ceramic spacers and fiber washers from junked rotary switches.
The front wafer switches the plate coils, The links are comeded to the rear water through 12(i-58/U cable, except the 80-meter link which gress direct. The sold sides of all links are soldered to a strizo of copper ruming aromed the waffer, supported by $2-56$ surews through the unuseal holes bewwen contarts. The u.h.f.-type output comector is mounted on a strip of bakelite fastened to the rear swith h bracket; its shell is grounded through a couple of solder lugs shown. $T 2$ wrighs about twenty pounds; the chassis should be at least 0.08 -inch aluminum to be strong chough to carry it.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-81 - Circuit of the power supply. Unless otherwise indicated, resistances are in ohms, resistors are $1 / 2$ watt.
$B_{1}-3250$-r.p.m. motor with 4 -inch fan blade (Rotron* 92. AS motor).
$\mathrm{C}_{5} \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$-Two $80-\mu$. electrolytics in parallel (Sprague TVA-1716). Insulate as described in text.
$C R_{1}$-CR R_{4}-Four $500-\mathrm{ma} .300$-volt peak inverse (1N153 or equiv.).
CRs-100-ma. 380 -volt peak inverse.
$C R_{6}-65-\mathrm{ma} .380$-volt peak inverse (Federal 1002A).
$\mathrm{I}_{1}-150-\mathrm{ma} .6-8$ volits (GE No. 47).
$K_{1}-5000$-ohm coil, 4 ma . pull-in (Terado Series 600 or *Rotron Mfg. Co., 7 Schoonmaker Lane, Woodstock, New York.
equivalent).
\mathbf{R}_{2}-2-watt linear potentiometer (Ohmite CU-1021).
R_{4}-2-watt linear potentiometer (Ohmite CU-2541).
$\mathrm{S}_{2}, \mathrm{~S}_{3}$ - 15 -amp. 125 -volt toggle (Cutler-Hammer 7501K13).
S_{4}-Two-pole 2-throw 60-degree throw ceramic rotary switch, non-shorting. See text.
$T_{1}-6.2$ volts at $5.5 \mathrm{amp} ., 6.3$ volts af 1 amp., 75 volts of 100 mo . (Forest Electric Co.** T-423).
T_{2}-Two-secondaries, each 325 volts, 1 amp. (Forest ${ }^{* *}$ T.412).
**Forest Electric Co., 7216 Circle Rd., Forest Park, III.

650-Watt Āmplifier

Fig. 6-82-This bottom view show the ventilating fan, tank capacitor, rectifier stacks and filter capacitors.

A bottom cover and a per-forated-metal shield over the top, sides and rear shouki be added, for safety as well as TVIproofing. An opening should be cut above the r.f. tubes and covered with hardware eloth.

Cooling

Wach $4 \times 250 \mathrm{~B}$ tube requires at least 3.6 cubic feet of air per minute through the anode cooler. The base also sequires some air. The tube is ordinarily mounted in an limace "air-system" socket so that the air flows first over the base, then through the anode rooler. This leads to a fairly large pressure drop, which is ordinarily considered to require a centrifugal hower. Sine a blower of this type requires considerable space, the design has been altered to permit the use of a fan. Only the insulating rings and contarts from Eimare sockets are used, mounted by the cathode tabs in oversized holes in the chassis. Many small holes are drilled in the chassis to provide additional air passage. A small aluminum housing above the chassis directs all the air through the anote coolers. It comes to within $1 / 4$ inch of the anode cooldrs. The opening is closed by a piece of Fiberglas-lase plastic fitting on top). It comes to within $1 / 16$ inch of the tubes, so that a small amount of the air flows around the outside of the coolers.

All of the left end and part of the right end of the chassis are perforated by $3 / 8$-inch holes. The air drawn in by the fan passes over the plate rectifier fins and past the heater transformers. The whole air path is direct and free from large obstructions and sharp bends.
The fan is a t-inch blade driven by a Rotron Mifg. Co. Type 92-AS motor at 3250 r.p.m. It is mounted in a hole $41 / 8$ inches in diameter in the grid housing, with about $1 / 3$ of the blade thickness projecting into the housing. The motor is a capacitor-run type. The $1-\mu \mathrm{f}$. 600 -volt phasing rapacitor mounts on the side of the grid housing. The motor, housing and capacitor can be removed as a unit, leaving only the front and rear walls of the housing in place.

Under the conditions deseribed, the preswure vs. flow curves of the fan and of the tubers indieate that somewhere around 10 r.i.m. of air is delivered. This is entirely ample for the pair of 4.250 Bs . Since the only major source of heat is the tubes, and since this heat is quickly removed by the air, the whole amplifier runs at a satisfactorily low temperature.

Operation

For Chass Al_{2} operation, the sereen voltage is set at 300 volts, and the grid bias at a point (about -40 volts) where the tubes draw 150 ma . without drive. When operating and fully loaded, full output from an HT-30 or similar exciter should swing the plate current to approximately 400 ma.

The various links are of approximately the right inductance to couple to a 50 -ohm load. They must be guite tightly coupled to their plate coils. When properly positioned with a 50 -ohm loal connected, the plate current dips 10 or 15 ma . as the phate capacitor is tuned through resonance with r.f. drive applied. Once adjusted, these links are left alone. The antema is tuned with the aid of ans.w.r. bridge to present a 50 -ohm load to the amplifier. The amplifier should not be oprerated without a suitable load

Operation is now very simple. The heaters are warmed up for at least 30 seronds. With the plate power switeh off, the band switch is set to the proper range. The exciter is tuned up to give e.w. output. (Not more than 40 volts rin.s.) The plate power is tarned on and the plate (apacitor tuned to the plate current dip, or to maximum indieated output if a Mieronsteh is being used. The exciter is then set to give the type of output desired.
(Originally deseribed in QST' for Sept. 1958.)

6-HIGH-FREQUENCY TRANSMITTERS

4-250-A's in a 1-Kw. Final

The amplifier shown in the arcomp:anying photographs uses two $4-2$ onols in parallel and covers 3.5 to 28 Me. with complete band-switching. The output circuil is a pi net work designed for working into reasonably well-matehed $52-$ to 75-ohm coaxial lines. The amplifier can handle a kilowatt input in Class C operation on cither phone or cew. without pushing the tubes to their limits. It can also be operated as a linear amplifier for single side band.

The various eomponents are mounted on a $17 \times 13 \times 4$-inch aluminum chassis attached to a standard 1 !-inch relay rack pancl 153/4-inches high. The above-chassis sertion is enclosed in a $11 \frac{1}{2}$-inch high shied made from $1 / 1$ tinch sheet aluminum. An ahuminum bottom plate eompletes the below-rhassis shiehding. Enclosing the amplifier in this way, plus the use of shielded wire and filters in the supply leads, takes care of the harmonic 'TVI question.

The $4-250 \mathrm{As}$ are cooled by forcing air into the chassis and thence up past the tubes by means of a 21 eu. ft. per mimute bower. The air is exhausted through two 3 -inch diameter eireular openings over the tubes in the top cover. To maintain the shiclding intart, these are covered with perforated aluminum.

A Barker and Williamson Model 850 bandswitching pi-tank inductor is used in the output circuit. It is tumed by a vateum variable (at-
pacitor operated through the counter dial (Groth $\mathrm{TC}-3$) shown in the panel viow.

Circuit Details

The eircuit, Fig. (6-8:3, is electrically the more-or-less standard arrangement of a parallel-tumed grid eireuit and a pi-network output eirenit. The amplifier is neutralized by the capacitive bridge method. A filament transformer is inchuded, but all other voltages come from external supplies.

The grid input cireuit of the amplifier uses a slightly modified BdW turret assembly. The grid coils are tumed by a $75-\mu \mu \mathrm{f}$. variable. The $20-$, $15-$, and 10 -meter coils cach must have a few turns removed for proper grid tuning on these bands

The eirruit includes a 2000 -ohm grid leak and has provisions for external bias, which should be used in combination with the leak. The by-pass eapacitors on the screen leads all carry a rating of $1(6,0)$ volts. This rating is necessary to avoid capacitor breakdowns when operating the amplifier sereens at their rated voltages for $A B_{1}$ operation, and also with plate-modnlated Class C operat ion where the 600 -volt rat ing of the smaller ceramic rapacitors would be exceeded on modulation praks. All of the $0.001-$ and $0.00: 3-\mu$ f. eapacitors are the disk type, and aside from the sareen by-passes are used mainly for filtering TV hamonics from the supply leads.

The by-pass capacitors in the high-voltage lead

Fig. 6-83-A 1 -kw. final using a pair of 4-250-A's in parallel.

Fig. 6-84-Circuit diagram of the 4-250A amplifier. B_{1}-Blower-motor assembly, 21 c.f.m. (Ripley model 8433).
$\mathrm{C}_{1}-75-\mu \mu \mathrm{f}$. variable, receiving spacing (Millen 19075). $\mathrm{C} 2-7-\mu \mu \mathrm{f}$. neutralizing capacitor (Cardwell type ADN). $\mathrm{C}_{3}-300-\mu \mu \mathrm{f}$. vacuum variable (Jennings type UCS). $\mathrm{C}_{4}-1500-\mu \mu \mathrm{f}$. variable (Cardwell type 8013). $\mathrm{C}_{5}-220-\mu \mu \mathrm{f}$. mica or NPO ceramic.
J_{1}, J_{2}-Coax receptacle, chossis mounting.
L_{1}-Turret ossembly (B\&W BTEL with 14-, 21-, ond 28-Mc. coils modified by removing turns).
3.5 Mc.: 39 turns No. 22, $11 / 4$ inches diam., $13 / 8$ inches long, link 3 turns No. 18.
7 Mc.: 20 turns No. 20, $11 / 4$ inches diam., $1 W$ inches long, link 3 turns No. 18.
are the TV high-voltage ceramic type, as is also the blocking capacitor in the tank eireuit. The loading caparitor, C_{4}, in the output circuit of the amplifier is a variable having enough range (1500) $\mu \mu \mathrm{f}$. total capacitance) to give adequate loading on 80 through 10 meters when working into a 52 - or 75 -ohm resistive load.

Plate current is metered by a (0-1 ammeter shomted across a resistor in the negative highvoltage lead. As shown in Fig. 6-84, this resistor is incorporated in the power supply, not in the amplifier unit, A 50 -watt rating represents an ample safety factor, since the power dissipated would not exceed a few watts should the ammeter open up.

Separate milliammeters are provided for the grid and sereen circuits. The screen moter is quite essential since the screen current, and hence screen dissipation, is very sensitive to grid driving voltage and plate tuning.

Layout Details

Fig. 6-85 is a view looking into the amplifier with the top cover removed. The variable capari-

14 Mc.: 8 turns No. 18, $11 / 4$ inches diam., $3 / 4$ inch long, link 2 turns No. 18.
21 Mc.: 4 turns No. 16, $11 / 4$ inches diam., $1 / 2$ inch long, link 1 turn No. 18.
28 Mc.: $21 / 2$ turns No. 16, $11 / 4$ inches diam., $1 / 2$ inch long, link 1 turn No. 18.
L_{2}-V.h.f. parasitic suppressor, 4 turns No. 12, $1 / 4$ inch dia., turns spaced wire diameter.
L3-Pi-tank inducter (B\&W Model 850). Inductances os fallows: 3.5 Mc., $13.5 \mu \mathrm{~h} . ; 7 \mathrm{Mc} ., 6.5 \mu \mathrm{~h}$.; 14 Mc . 1.75μ.; 21 Mc., $1 \mu \mathrm{~h} . ; 28 \mathrm{Mc}, 0.8 \mu \mathrm{~h}$.
RFC 1 -National type R175A r.f. choke.
RFC $_{2}-2-\mu$ ph. 500-mo. r.f. choke (Nationol type R-60).
RFC_{3}-2.5-mh. r.f. choke.
T_{1}-Filament transformer, 5 volts, 29 amp. (Thordarson T-21FO7-A).
tor at the right is the output louding control, C_{4}. To the left of C_{4} is the Moded 850 inductor unit. Immediately to the raar (below, in the photograph) of the inductor is the ontput lead, connected to a coaxial rereptanle mounted on the rear cover. The vacuum variable, C_{3}, is nomonted between the inductor and the +-250 is. It is supported by an aluminum bracket (a inches high and t inches wide. The neutralizing capacitor C_{2} is betwen the $4-250 \mathrm{As}$ and the front panel.
The grid turret and tuning capacitor are mounted underneath the chassis to take advantage of the shichding afforded thereby. To fit under the chassis the turret is mounted with the switch shaft vertical, neressitating a rightangle drive to the panel control. The slaft approathes the panel at an angle, so a flexible coupling of the ball type (Millen 39000) is used between the shaft and panel bearing.

The meters are in a soparate enclosure measuring $11 \times 3 \times 3$-inches. It is mounted to the front of the box by countersunk flat-head screxs. The top lips of the meter box are drilled to take sheetmetal screws when the lid is in place.

6 - HIGH-FREQUENCY TRANSMITTERS

Fig 6.85 (above)
Fig. 6.86 (below)

Fig. 6.87

Comertions to the tube plates and neut ralizing capacitor are made from flexible brass strip $1 / 2$ inch wide. A piece of $3 / 4$-inch wide brass st rip is used for the comnection between the stator terminal of the vacuum variable and the tank indurtor. The blocking caparitor is mounted on this strip.

Fig. 6-86 shows the amplifier with the top and barek panels removed. The blower assembly is mounted on the rear chassis wall. To the right of the motor is the high-voltage terminal, the 115 volt connector, the grid and screen terminals, and the high-voltage negative connedor. Ladas from these last thre bemmats run bedow (bassis in shielded wire and then up to the meter box. These leads are visible in front of the loading (apacitor. Beden 8885 shiched wire is used for the leads. The inner conductor is bypassed to the shich braid at eadre end. The $2.5-\mathrm{mh}$. "safoty" choke, $R P C_{3}$, shunting the output end of the pi network is mounted on the back of the tank roil between the output lead and chassis ground.

The isolantite feed-through insulator to the left of the inductor is uased to bring the high voltage through the chassis. Adjacent to it is the bypass at the bottom of the plate choke, $R P C_{1}$.

Mounting details of the right-angle drive assembly for switching the grid eireuit are clearly visible in lig. ($0-87$. A $1 / 2$-inch square rod $23 / 4$ inches long is drilled and tapped at both euds to support the drive.

The sockets for the $4-250.1 \mathrm{~s}$ are mounted on onc-ineh isolantite pillars. The sereen and filament terminals are byassed directly at the sotket terminals. The grid terminats on the sockets face each othor, and a small feedthrough is used to bring the grid lead up through the chassis.
lig. $6-88$ is a bottom view of the amplifier and Fig. 6-89 is a close-up view of the grid cireuit. A short length of $\mathrm{RF-i} 8 / \mathrm{L}$ is used to comnert J_{1} on the rear chassis wall to the link terminals on the tured assembly. The high-voltage lead is filtered bev the $500-\mu \mu$. coramie bypass and $R F^{\prime} C_{2}$. These two eomponents are visible on the inside of the rear wall above the blower assembly. Twoterminal tie-points are used for the a.c. connegtions to the filament transformer and blower motor. Shiedded laals are used between the tiepoints and the $11 \overline{5}$-volt connector.

Fig. 6-89) shows the grid-cirenit wiring in a bit more detail, particularly the grid choke, grid resistor and C_{5}^{\prime} chustered just above the tuning capacitor. The modifications to the $10-$ and 15 motor coils also are somewhat more casily' seen in this photograph.

Adjustment and Operating Data

The :mplifier should be neutralized with the plate and screen supply leads disconnected and the bandswite hat to 28 Mr . An indicating wave meter should be coupled to the tank cireuit and drive applied to the amplifier. Resonate the grid

6-HIGH-FREQUENCY TRANSMITTERS

and plate tanks and adjust the nentralizing capacitor for minimum r.f. in the tank circuit as indirated by the wave meter. The same neatralizing adjustment should hold for all bands. Jon't attempt to mentralize with the pate and soreen supply leads eommerted-i.e., with it complate cirenit for d.e. - beraluse oven with the power turned off this permits alectrons to flow from the rathode to the plate and sereem, and r.f. will be presunt that eamot be nemtalized out.

The parasitic choke will, in genmal, resomate the plate lead in one of the low v.h.f. TV channols, and will trand to inerease harmonio output in that chamed. Measure the resonant frepueney of the plate leal at L_{2} with a grid-dip moter, and if it is in one of the chamels reroved in your locality, either pull the tarus apart, or sumerze them together to mowe the frepureney to :m mused chamel. Any fropueney from F to 100 Me . should be sat isfaretory.

Power Supply

For 1 kw. imput, a plate voltage of at least 2000 is required. sereen woltage is obtamed preforably: from a sepatate too-volt supply. For Class C operation, an external bias supply randated by a VR-150, plas a grid laak of 2006 ohms is remommended. With this combination the grid emerent should be 25 mat. siceren eurrent should be about G0) ma. with the amplifier filly haded.

Some sort of r.f. output indicator, such as a
Fig. 6-88
 ean hathelle an s.w.r. in the coan line of about 2 to 1 , hut with higher s.w.r. values it may not be prsisible to get the desired loading. Also, although the construetion is surh that the :mplifier is "rlean" insofar as direer radiation and leakage of harmonies in the TV bands aro (onicemod, a good low-pass filter will be required in most installations. A low s.ere in the come line is definitely a requirement if excessive build-up of curvents or voltages in the filter is to be avoided. If the line rammot be matehed at the antemat, ath :uxiliary antenna compler will have to he used.

For plate motulation at choke conil maty be ronnereded in the d.e. sereen lead so the scrern voltage will follow the andio variations in plate voltare. The choke should hawe an inductance of about 10 hemrys, and must be capable of rarrying 12\% mat. d.e. For Class $\lambda 13_{1}$ operat iom on situgle side band the eireuit naty be left intart, the only requirement being to supply the proper operating voltages from suitahly well-regulated supplics. If the amplifier is to be operated in $1 B_{2}$ on s.s.b. the grid-leak resisto: should he shorted out; also, suitable loading should in applied to the grid tank to maintaing good reguiation of the r.f. driving voltage.
(From QsT', June, 1956.)

A V.F.O. With Differential Keyer

Figs. (-90 through 6 (-94 show a v.f.o. with output on either 3.5 or 7 Me. Included are a differential system for keving the soreen of an amplifier, and means for silduring the receiver. The diagram is shown in Fig. t-91. The sertion of a $12 . \mathrm{AT}^{7}$ is used in the Vackar os.oillator circuit, while the serond section is used as a cathode follower driving a $5 \overline{5}(6)$ amplifier/doubler. S_{1} solerets either of two frequency ranges - 3.5 to 4 Me. for use in the 80 -meter hand, and 3.5 to 3,(is) Me. for multiplying to the higher-frequenery bands. If only the first range is desired, f_{1} and ('s may be omitted and the stators of C'2 and ('s comereted to the junction of $\left(\begin{array}{c}5 \\ \text { and } \\ L_{1}\end{array}\right.$. If both 3.5 - and 7 -Me. output is desired, the two coils coun be put on a switroh seretion ganged to S_{1}.

A $6 B \times 7$ (iT and 121315 are used in the keying system. With the key open, V'2B, $V_{3 A}$ and $V_{3 B}$ are biased to cout-off, while $V_{2 A}$ conducts heavily so that the sereen of the koyed amplifier in the transmiture is assentially at the potential of the athode of $V_{2 A}\left(-105\right.$ volts). Since V^{2} eB is not ronducting, \mathcal{K}_{1} is in the nommal position shown and the cathode of the v.f.o. is open. When the key is closed, the grids of $\Gamma_{3 A}$ and l'3 ${ }^{3}$ are grounded, making them positive in resperet to their cathodes (which are negatively biased) and these two units ronduct. When V_{313} ronduets, the drop across its 1 -megohm (athode resistor will charge f_{6} to a positive potential. This phares a positive potential on the grid of loes which rondurts, and K_{1} closes the eathode of the v.f.o. When $V_{3 A}$ ronducts, the drop atross the 330 K resistor in the grid cireuit of V^{2} a will bias lian to cut-off, and the sereen voltage of the keved amplifier in the ransmitter will return to normal operating valou at a rate depending on the value of ('8. This rate determines the "make" chatacteristic of the keying an-
veloper, while the value of ('7 determines the "break" characteristic. Adjustment of the 10 k bias control in the cathode of V_{3} determines the differential betwern the keying of the oseillafor and that of the amplifier. It should be adjusted so that the oscillator is turned on an instant before the amplifier and turned off an instant after the amplifier, eliminating any oscillator chirp in the output.

The back contart of K_{1} is used to control ant additional gain potentiomoter in the remeiver so that the gain of the receiver is redured when the key is closed. Upon opening the kes, normal rereiver gain is restored.

The power supply inchudes a hias rectifier an filter delivering -300 volts and a regulated 150 -volt positive tap for the v.f.o. S_{2} is a pushbutton switch to turn on the v.f.o. onaly while setting to frequener.

If broak-in keying is not a requirement, the differential system may be omitted by eliminating the circuit and components enclosed in the broken-dash lines of Fig. 6 (1) 91 and grounding the rathode lead of the v.f.o. tube as shown in dotted lines. In this case, the $0.01-\mu \mathrm{f}$. cathode by-pass rapacitor is not needed.

Construction

The unit is built on a $7 \times 12 \times 2$-inch aluminum chassis that will fit inside an $8 \times 141 / 2 \times$ $8 \frac{1}{4}-\mathrm{inch}$ cabinet (Bud $\mathrm{C}-1747$). The panel is 8 by 12 inches and the dial is a Millen 10035. Before monnting the components, it is alvisable to stiffen the chassis against vibration by fastening two lengths of aluminum angle stock running lengthwise against the under surface of the chassis. Sevoral mathine serews should be used with rach.

The v.f.o. tumederireuit components are en-
fig. 6-90-The v.f.o. unit mounted in its cabinet. Holes are drilled in the dial cover to accommodate the switch shafts. At the right, a poker chip has been cemented to the v.f.o. set push-button switch so that it can be operated while tuning the v.f.o.

6 -HIGH-FREQUENCY TRANSMITTERS

Fig. 6-91 - Circuit diagram of the v.f.o., with its power supply and the keying system. Except as otherwise indicated, fixed resistors are $1 / 2$ watt, capacitances are in $\mu \mu f$., resistances are in ohms. Capacitors marked with polarity are electrolytic.
$\mathrm{C}_{1}, \mathrm{C}_{2}-75-\mu \mu \mathrm{f}$. variable (Hammarlund APC-75).
$\mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. variable (Hammarlund APC-100).
$\mathrm{C}_{4}-25-\mu \mu$ f. variable (Millen 20025).
$\mathrm{C}_{5}-50-\mu \mu \mathrm{f}$. (Hammarlund APC-50); see text.
$\mathrm{C}_{\mathrm{B}}-0.015 \mu \mathrm{f}$.
$\mathrm{C}_{7}-0.01 \mu \mathrm{~F}$.
$\mathrm{C}_{8}-0.1 \mu$.
J_{1}-Coax connectors, chassis mounting.
J_{2} - J_{3}, inc.-Phono-rype connector.
K_{1}-S.p.d.t. relay, 200-ohm coil (Advance MKIC12VD).
$L_{1}-30$ turns No. 16, $13 / 4$ inch diameter, 10 turns/inch (Airdux 1410 T).
$\mathrm{L}_{2}-3.5 \mathrm{Mc},-72$ turns No. 22 enam., close-wound on $3 /^{\prime \prime}$ diameter slug-tuned form (Waters CSA-1012-1-WH).
7 Mc. -40 turns No. 22 close-wound on same form as above; 5 -turn link.
$\mathrm{L}_{3}-10$ turns, wound on cold end of, but insulated from, L_{2} L4-10 hy., 50 ma. (Triad C-3X).
$\mathrm{L}_{5}, \mathrm{~L}_{6}-12$ hy., 75 ma. (Triad C-5X).
S_{1}-Miniature rotary, 2-position (Centralab PA-2001\}.
\mathbf{S}_{2}-Push-button switch (Switchcraft 1001 modified with a longer shaft so as to extend through the main dial housing).
$\mathrm{T}_{1}-700$ v. c.t., $90 \mathrm{ma}$. ; $5 \mathrm{v} ., 3 \mathrm{amp} . ; 6.3 \mathrm{v.}$,3.5 amp . (Triad R-1|A).

A V.F.O. With Differential Keyer

Fig. 6-92-Rear view of the v.f.o. unit. Powersupply components are to the left of the tunedcircuit compartment, ond r.f. and keyer tubes to the right. The three screws along the center line of the bax are used to fasten a stiffening strip of angle stock inside. Similar strips should be fastened against the side covers.

closed in a $4 \times 5 \times$ (${ }^{2}$-inch aluminum box. This should also be stiffened with lengths of angle stock, one strip rumning under the top of the box, and one externally along each of the side covers.

The coil is supported on $21 / 2$-inch cerramic pillars (Millen 31002). The tuning caparato: ('4 is elevated above the bottom of the box on an aluminum bracket so that its shaft wil! line up with the dial. The band spread switeh S_{1} is monnted in the bottom of the hox, to the rear of the coil, with its shaft vertieal. The shaft is controlled from the panel by means of
a National R.AJ) right-angle drive and a "uni-versal-joint" type shat coupler (Millen 39001), as shown in the bottom-viow photograph.

The three trimmer capacitors are mounted in the top of the box. ('s is submounted so that its shaft, which is at high r.f. potential, will not protrude from the box. It is adjusted with an insulated serewdriver through a hole in the top of the box. ("s is an air trimmer used here as a fixed rapacitor. It is mounted on a bra ket fastened to the bettom of the bos, under the roil.

The box should be placed en the chassis so that an extension of the shaft oi the tuning ca-

Fig. 6-93-The v.f.o. coil is mounted on ceramic pillars. The funing capacitor C_{4} can be seen behind the rear poir of insulators. The air copocitor C_{5} is partially hidden by the $1000-\mu \mu \mathrm{f}$. silver mica copocitor below the coil. No. 14 wire is used between the switch ond the coil and capocitors. In the foreground, tubes hove been removed to show the adjusting screw of L_{2} and the shoft of the l0K bios control.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6.94-Bottom view of the v.f.o, unit. The rightangle drive, right of center drives the band-spread switch S_{I}. The small sections of aluminum angle stack are stiffeners added after the components were mounted. The method suggested in the text is preferable.
pacitor will line up with the diad. This places the box somewhat off center.

Power-supply components are mounted at the left-hand end of the chassis as viewed from the rear. The power transformer, plate and bian rectifiers. voltage-regulator tube and filter choke L_{5} are placed on the top side of the chassis. The bias filter shoke, the plate filter choke L_{6} and the filter capacitors are underncath. I I_{6} mounts with the same screws used for mounting L_{5} above. Several $1 / 4$-inch holes should be drillod in the chassis in the vicinify of the power-suphly components to help ventilate the under side of the chasses.

The v.f.o./eathode follower, amplifier and kever tubes and their assoriated circuit eomponents are at the right-hand end of the chassis. The v.f.o. tube is close to the pand, followed by the amplifier, 1213117 and GBX7(iT. The slugtuned coil L_{2} is mounted alongside the 57633 , and the bias-rontrol potentiometer for the 12 BH 7 is mounted near the tube. Both can be adjusted from the top of the chassis.

Along the rear edge of the chassis are a connector for the a.e. line, connectors for the contacts of K_{1}, for connecting a remote switch in parallel with S_{2}, for the key, for the output connections of $V_{2 A}$, and a coavial connector for r.f. output.

Large rectangular ventilating holes are eut in the lid of the cabinet and then haved with patches oi Reynolds perforated aluminum.

Adjustment

In adjusting the v.f.o. frequeney ranges, first set S_{1} to the 80-meter position. With the dial set at zero (ℓ_{4} at maximum capacitance) adjust (${ }_{2}$ for a signal at 3500 ke . on a calibrated receiver. Then, with the dial of the v.f.o. set at the upper region of the seale, the signal should be heard at thoo ke. If it is impossible to reach 4000 ke , with the v.f.o., the coil should be trimmed a part of a turn at a time.

In adjusting the serond range (3500 to 3650 ke.), turn S_{1} to the $7-28$-Mr position. Set ($_{3}$ temporarily at about half capacitance. Thers, with the w.f.o. dial sat at zero, adjust ('i until a signal is leard at 3500 ke . Then check the v.f.o. frequeney at the upper end of the dial. If the range does not go up to 3600 kr ., ("3 should be inereased a little and C_{1} decreased to bring Bhoo kc . ast zerg on the dial. If the tuning range goes atove 36050 kc ., C3 should be decreased, and C_{1} inereased. A few trial settings should yield the corrert rauge. The only other aljustment of the r.i. circuit is resonating the slug-tuned output coil. If set in the center of the tuning range, output should be reasonathly constant over the entire range.

Adjustment of the keving cireuit should be in accordane with the factors mentioned earlier. The sereen resistor in the keved amplifier stage shouk be of normal value. The output connections of the keyer should go directly from the sereen terminal to ground.

Power Supplies

Essentially pure direct-current phate supply is required to prevent serious hum in the output of recoivers, spereh amplifiers, modulators and transmitters. In the case of transmitters, pure d.e. plate supply is also dictated by government regulation.

The filaments of tubes in a transmitter or motulator usually may be operated from ace. However, the filament power for tubes in a receiver (excepting power audio tubes), or those in a sperch amplifier may be a.c. only if the tubes are of the indi-rectly-heated-cathode type, if hum is to be avoided.

Wherever commercial a.c. lines are availathle, high-voltage d.e. plate supply is most cheaply and conveniently obtained by the use of a transformer-rectifier-filter system. An example of such a system is shown in Fig. $\overline{\text { s }}-1$.

In this circuit, the plate transformer, T, steps up the ace, line voltage to the required high voltage. The a.ce is changed to pulsating d.e. by the rectifiers, V_{1} and V_{2}. Pulsations in the d.e. appearing at the output of the rectifier (points A and B) are smoothed out by the filter eomposed of L_{1} and C_{1}, R_{1} is ablerfer rexistor. Its chind function is to discharge ('i, as a safety measure, after the supply is turned off. B_{y} proper selection of value, R_{1}
also helps to minimize changes in output voltage with changes in the amount of currenf drawn from the supply. $T 2$ is a step-down transformer to provide filament voltage for the rectifier tubes. It must have sufficient insulation between the

Fig. 7.1-A trpical transformer-rectifierfilter system. In this instance the circuit is that of a full-wave rectifier with a chokeinput filter.
filament winding and the core and primary winding to withstand the peak value of the rectified voltage. T'3 is a similar transformer to supply the filaments or heaters of the tubes in the equipment operating from the supply. Frequently, these three transformers are combined in a single unit having a single 115 -volt primary winding and the required three secondary windings on one core.

Rectifier Circuits

Half-Wave Rectifier

Fig. 7-2 shows three rectilier circuits covering most of the common applications in amateur equipment. Fig. $7-21$ is the cireuit of a half-wave rectifier. I buring that half of the a.c. crele when the rectifior plate is positive with respect to the cathode (or filament), current will flow through the rectifier and load. But during the other half of the eycle, when the plate is regative with respect to the cathode, no current can flow. The shape of the output wave is shown in (A) at the right. It shows that the current always flows in the same direction but that the flow of eurrent is not continuous and is pulsating in amplitude.

The average output voltage - the voltage read by the usual d.c. voltmeter - with this circuit is 0.45 times the r.m.s. value of the a.c. voltage delivered by the transformer secondary. Because the frequency of the pulses in the output wave is relatively low (one pulsation per cycle), considerable filtering is required to
provide adequately smooth d.e. output and for this reason this eireuit is usually limited to applications where the current involved is small, such as in supplies for cathote-ray tubes and for protective bias in a transmitter.

Another disadvantage of the half-wave rectifier cireuit is that the transformer must have a considerably higher primary volt-ampere rating (approximately to per cent greater), for the stme d.c. power output, than in other rectifier circuits.

Full-Wave Center-Tap Rectifier

The most universally-used rectifier circuit is shown in Fig. 7-213. Being essentially an arrangement in which the outputs of two halfwave rectifiers are combined, it makes use of both halves of the a.c. cycle. A transformer with a center-tapped secondary is required with the circuit. When the plate of V_{1} is positive, current flows through the load to the center tap. Current cannot flow through V_{2} because at this
instant its cathode (or filament) is positive in respeet to its plate. When the polarity reverses, V_{2} conducts and current again flows through the load to the eenter-tap, this time through V_{2}.

The average output voltage is 0.45 times the r.m.s. voltage of the entire trans-former-secondary, or 0.9 times the voltage across half of the transformer seeondary. For the same total secondary voltage, the average output voltage is the same as that delivered with a half-wave rectifier. However, as can be seen from the sketches of the output wave form in (B) to the right, the frequency of the output pulses is twice that of tho half-wave reetifier. Therefore much less filtering is required. Sinee the rectifiers work alternately, each handles half of the average load current. Therefore the load-current rating of each rectifier need be only half the total load current drawn from the supply.

Two separate transformers, with their primaries conneeted in parallel and secondaries connected in series (with the proper polarity) may be used in this circuit. However, if this substitution is made, the primary volt-ampere rating must be reduced to about 40 per cent less than twice the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig. $7-2 \mathrm{C}$. In this arrangement, two rectificrs operate in series on each half of the cyole, one rectifier being in the lead to the loal, the other being in the return lead. Over that portion of the cycle when the upper end of the transformer secondary is positive with respect to the other end, current flows through V_{1}, through the load and thence through V_{2}. During this period current cannot flow through rectifier V_{4} because its plate is negative with respect to its eathode (or filament). (Over the other half of the cyele, eurrent flows through V_{3}, through the load and thence through V_{4}. Three filament transformers

Fig. 7-2-Fundamental vacuum-tube rectifier circuits. A-Half-wave, B-Fullwave. C-Full-wave bridge. A.c.-input and pulsating-d.c. output wave forms are shown at the right. Output-voltage values indicated do not include rectifier drops. Other types of rectifiers may be substituted.
are needed - one for V_{1} and V_{3} and one each for V_{2} and V_{4}. The output wave shape (C), to the right, is the same as that from the simple eenter-tap rectifier circuit. The output voltage obtainable with this cireuit is 0.9 times the r.m.s. voltage delivered by the transformer secondary. For the same total transformersecondary voltage, the average output voltage when using the bridge rectifier will be twice that obtainable with the center-tap rectifor circuit. However, when comparing reetifier cireuits for use with the same transformer, it should be remembered that the power which a given transformer will handle remains the same regardless of the rectifier cireuit used. If the output voltare is doubled by substituting the bridge circuit for the center-tap rectifier circuit, only half the rated load current can be taken from the transformer without exceeding its normal rating. Each reetifier in a bridge cireuit should have a minimum load-eurrent rating of one half the total load current to be drawn from the supply.

Rectifiers

High-Vacuum Rectifiers

ligh-vacuum reetifiers depend entirely upon the thermionie emission from a heated filament and are characterized by a relatively high internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in eases where the relatively high
internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome electrical noise sometimes associated with other types of rectifiers.
some rectifiers of the high-vacuum full-wave type in the so-called receiver-tulse class will handle up to 27.5 ma. at 400 to 500 volts d.e. out-
put. Those in the higher-power class can be used to handle up to 500 ma. at 2000 volts d.c. in fullwave circuits. Most low-power high-vacuum rectifiers are produced in the full-wave type, while those for greater power are invariably of the halfwave type, two tubes being required for a fullwave rectifier circuit. A few of the lower-voltage types have indirectly heated cathodes, but are limited in heater-to-cathode voltage rating.

Mercury-Vapor Rectifiers

The voltage drop through a mercury-vapor reetifier is practically constant at approximately 15 volts regardless of the load current. For high power they have the advantage of cheapnuss. Rectifiers of this type, however, have a tendency toward a type of oscillation which produces noise in nearby receivers, sometimes difficult to eliminate. R.f. filtering in the primary circuit and at the rectifier plates as well as shielding may te required. As with high-vacuum rectifiers, full-wave types are available in the lower-power ratings only. For higher power, two tubers are required in a full-wave circuit.

Selenium and Other Semiconductor Rectifiers

Selenium, germanium and silicon rectifiers are finding increasing application in power supplies for amateur equipment. These units have the advantages of compactness, low internal voltage drop (ahout 5 volts per unit) and low operating temperature. Also, no filament transformers are required.

Individual units of all three types are available with input ratings of 130 volts r.m.s. Selonium units are rated at up to 1000 ma. or more d.e. load current: germanium units have ratings up to 400 ma., and silicon units up to 500 ma . In full-wave circuits these loul-current figures can be doubled.

The extreme compactness of silicon types makes feasible the stacking of several units in series for higher voltages. Standard stacks are available that will handle up to 2000 volts r.m.s. input at a d.c. load current of 325 ma . Two of these stacks in a full-wave circuit will handle 650 ma., although they are comparatively expensive.

Semiconductor rectifiers may be substituted in any of the basie cirouits shown in Fig. 7-2, the terminal marked " + " or "cathode" corresponding to the filament connection, Advantage may be taken of the voltage-multiplying circuits discussed in a later section of this chapter in adapting rectifiers of this type.

Rectifier Ratings

Vacuum-tube rectifiers are subject to limitations as to breaklown voltage and current-hanrlling capability. Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate. This is sometimes dependent on whether a choke- or caparitiveinput filter is used. Others. particularly mercuryvapor types, are rated according to maximum inverse peak voltage - the peak voltage between plate and cathode while the tube is not ron-
ducting. In the circuits of Fig. 7-2, the inverse peak voltage across each rectifier is 1.4 times the r.m.s. value of the voltage delivered by the entire transiormer secondary, exepent that if a capacitive-input filter is used with the halfwave rectifier cirenit of Fig. $7-2 \mathrm{~A}$, the multiplying fartor becomes 2.8 .

All rectifier tubes are rated also as to maximum d.c. load current and many, in addlition, carry peak-current ratings, all of which should be earefully observed to assure normal tube life. With a capacitive-input filter, the peak current may rum several times the d.e. current, while with a chokeinput filter the peak value may not run more than twice the d.e. load current.

Operation of Rectifiers

In operating rectifiers requiring filament or cathode heating, care should be taken to provide the correct filanent voltage at the tube terminals. Low filament voltage can eause excessive voltage drop in high-vacuum rectifiers and a considerable reduction in the inverse peak-voltage rating of a mercury-vapor tube. Filament connections to the rectifier socket should be firmly soldered, particularly in the case of the larger mercury-vapor tubes whose filaments operate at low voltage and high current. The socket should be selected with care, not only as to contact surface but also as to insulation, since the filament usually is at full output voltage to ground. Bakolite sockets will serve at voltages up to 500 or so, but ceramic sockets, well spared from the chassis, always should he used at the ligher voltages. Sperial filament transformers with high-voltage insulation between primary and secondary are required for rectifiers operating at potentials in excess of 1000 volts inverse peak.

The rectifier tubes should be placed in the equipment with adequate spare surrounding them to provide for ventilation. When mercury-vapor tubes are first placed in service, and each time after the mercury has been disturbed, as by removal from the socket to a horizontal pasition, they should be run with filament voltage only for 30 minutes before applying high voltage. After

Fig. 7-3-Connecting mer-cury-vapor rectifiers in parollel for heavier currents. R_{1} and R_{2} should hove the same value, between 50 ond 100 ohms, and corresponding filament terminols should be connecled together.

that, a delay of 30 seconds is recommended each time the filament is turned on.

Rectifiers may be connected in parallel tor current higher than the rated current of a single unit. This includes the use of the sections of a double diode for this purpose. With mercuryvapor types, equalizing resistors of 50 to 100 ohms should be comected in series with each pilate, as shown in lig. $7-3$, to help maintain an equal division of current between the two rectifiers.

7 -POWER SUPPLIES

Filters

The pulsating d.c. waves from the rectifiers shown in Fig. 7-2 are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of capacitances and inductances are required between the rectifier and the load to smooth out the pulsations to an essentially constant d.c. voltage. Also, upon the design of the filter depends to a large axtent the d.e. voltage output, the vollaye regulation of the power supply and the maximum load current that can be drawn from the supply without exceeding the peak-eurrent rating of the ractifier.

Power-supply filters fall into two classifications, depending upon whether the first filter element following the rectifier is a capacitor or a ehoke. Capacitive-input filters are charaterized by relatively high output voltage in respect to the transformer voltage, but poor voltage regulation. Choke-input filters result in much better regulation, when properly designed, but the output voltage is less than would be obtained with a capacitive-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always decreases as more current is drawn, not only because of increased voltage drops in the transformer, filter chokes and the rectifier (if highvacuum rectifiers are used) but also because the output voltage at light kads tends to soar to the peak value of the transformer voltage as a result of charging the first eapacitor. I3y proper filter design the latter effect can be chiminated. The change in output voltage with load is called vollage regulation and is expressed as a percentage.

$$
\text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}}
$$

Exanıple: No-load voltage $=E_{1}=15.50$ volts.
Full-load voltage $=E_{2}=1230$ volts.

$$
\begin{aligned}
\text { Pereentage regulation } & =\frac{100(1.50)-1230)}{1230} \\
& =\frac{32.000}{1230}=26 \text { per eent. }
\end{aligned}
$$

Regulation may be as great as 100% or more with a caparitive-input filter, but by proper design can be hekl to 20% or less with a choke-input filter.

Good regulation is desirable if the load current varies during operation, as in a keyed stage or a Class B modulator, becanse a large change in voltage may increase the tendency toward key elicks in the formor case or distortion in the latter. On the other hand, a steady load, such as is represented by a recoiver, speech amplifier or unkeyed stages in a transmitter, does not require good regulation so long as the proper voltage is obtained under load conditions. Another consideration that makes good voltage regulation desirable is that the filter capacitors must have a voltage rating safe for the highest value to which the voltage will soar when the external load is removed.

When essentially constant voltage, regardless
of current variation is required (for stabilizing an oseillator, for example), special voltage-regulating circuits described elsewhere in this chapter are used.

Load Resistance

In discussing the performance of power-supply filters, it is sometimes convenient to express the load comerted to the output terminals of the supply in terms of resistance. The load resistance is equal to the output voltage divided by the total current drawn, including the current drawn by the bleeder resistor.

Input Resistance

The sum of the trunsformer impedance and the rectifier resistance is called the input resistance. The approximate transformer impedance is given by

$$
Z_{\mathrm{TR}}=N^{2} R_{\mathrm{PRI}}+R_{\mathrm{SEC}}
$$

where N is the transformer turns ratio, primary to secondary (primary to $1 / 2$ secondary in the case of a full-wave redifior), and $R_{\text {PRI }}$ and $R_{\text {sec }}$ are the primary and secondary resistances respectively, $K_{\text {sle }}$ will be the resistance of half of the secondary in the case of a full-wave circuit.

Bleeder

A bleeder resistor is a resistance connected arross the output terminats of the power supply (see Fig. $7-1$). Its functions are to discharge the filter caparitors as a safety measure when the power is turned off and to improve voltage regulation by providing a minimum load resistance. When voltage regulation is not of importance, the resistance may be as high as 100 ohms per volt. The resistance value to be used for voltageregulating purposes is diseussed in later sections. From the ronsideration of safety, the power rating of the resistor should be as conservative as possible, since a burned-out bleeder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter may be considered to consist of shunting capacitors which short-rircuit the a.c. component while not interfering with the flow of the d.c. component, and series chokes which pass d.c. readily but which imperde the flow of the a.c. component.

The alternating component is called the ripple. The effectiveness of the filter can be expressed in terms of per cont ripple, which is the ratio of the r.m.s. vaiue of the ripple to the d.c. value in terms of percentage. For c.w. transmitters, the output ripple from the power supply should not excead 5 per cent. The ripple in the output of supphies for voice transmitters should not exceed 1 per cent. Class I3 modulators require a ripple reduction to about 0.25%, while v.f.o.'s, high-

Filters

gain speeeh amplifiers, and receivers may require a reduction in ripple to 0.01%.

Ripple frequency is the frequency of the pulsations in the rectifier output wave - the number of pulsations per second. The frequeney of the ripple with half-wave rectifiers is the same as the frequency of the line supply - 60 eyeles with $60-$ cyele supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequeney is doubled - to 120 eyeles with 60 -eyele supply.

The amount of filtering (values of inductance and eapacitanee) required to give adequate smoothing depends upon the ripple frequency: more filtering being required as the ripple fre quency is lowered.

CAPACITIVE-INPUT FILTERS

Capacitive-input filter systems are shown in Fig. 7-4. Disregarding voltage drops in the chokes, all have the same charaeteristies exeept

Fig. 7-4-Capacitive-input filter circuits. A-Simple capacative. B-Single-section. C-Double-section.
in respeet to ripple. Better ripple reduction will be obtained when $L C C$ seetions are added. as shown in Figs. $7-4 \mathrm{~B}$ and C.

Output Voltage

To determine the approximate d.e. voltage output when a capacitive-input filter is used, reference should be made to the graph of Fig, 7-5.

> Example:
> Transformer r.m.s, voltage -3.50
> Input resistance $-2(6)$ ohms
> Maximum load current, including bleeder current -175 ma .
> Load resistance $=\frac{3.20}{0.175}=2000$ ohms approx.

From Fig. 7-5, for a load resistance of 2000 ohms and an input resistance of 200 ohms, the d.c. output voltage is given as slightly over 1

Fig. 7.5-Chart showing approximate ratio of d.c. output voltage across filter input capacitor to transformer r.m.s. secondary voltage for different load and input resistances.
times the transformer r.m.s. voltage, or about 350 volts.

Regulation

If a bleeder resistance of $50,000 \mathrm{ohms}$ is used, the d.c. output voltage, as shown in Fig. 7-5, will rise to ahout 1.35 times the transformer r.m.s. value, or about 470 volts, when the external load is removed. For greater aecuraey, the voltage drops through the input resistance ant the resistance of the chokes should be subtracted from the values determined above. For best regulation with a capacitive-input filter, the Weeder resistance should be as low as possible without exceeding the transformer, rectifier or choke ratings when the external load is connected.

Maximum Rectifier Current

The maximum eurrent that can be drawn from a supply with a eapacitive-input filter without exceerling the peak-eurrent rating of the reetifier may be estimated from the graph of F'ig. 7-6. Using values from the preeding example, the ratio of peak rectifier current to d.e. load current for 2000 ohms, as shown in Fig. 7-6 is 3. Therefore, the maximum load eurrent that can be drawn without execeding the rectifier rating is $1 / 3$ the peak rating of the rectifier. For a load current of 175 ma ., as above, the rectifier peak current rating should be at least $3 \times 175=525 \mathrm{ma}$.

With blemder current only, Fig. 7-6 shows that the ratio will inerease to over 8 . But since the bleeder draws less than 10 ma . d.c., the rectifier peak current will be only 90 ma. or less.

7 -POWER SUPPLIES

Fig. 7-6-Graph showing the relotionship between the d.c. load current and the rectifier peok plate current with capacitive input for various values of load and input resistance.

Ripple Filtering

The approximate ripple percentage after the simple caparitive filter of Fig. 7 - 4 A may be determined from Fig. 7-7. With a load resistanee of 2000 ohms, for instance, the ripple will be approximately 10 , with an $8-\mu \mathrm{f}$. eatparitor or 20% with a $4-\mu$. eapacitor. For other raparitances, the ripple will be in inverse proportion to

Fig. 7-7-Showing opproximote 120-cycle percentage ripple across filter input copacitor for various loads.
the caparitance, e.g., 5% with $16 \mu \mathrm{f} ., 40 \%$ with $2 \mu \mathrm{f}$., and so forth.

The ripple can be reduced further by the addition of $L C^{\prime}$ sections as shown in Figs. 7-4B and C. Lix. 7-8 shows the factor by which the ripple from any preceding section is reduced depending on the product of the eapacitance and induetance added. For instance, if a section composed of a choke of 5 h . and a capacitor of $+\mu \mathrm{f}$. were to be added to the simple capacitor of Fig. $7-4.1$, the product is $4 \times 5=20$. Fig. $7-8$ shows that the original ripple ($10 \% / \%$ ato abo with 8μ f. for example) will be redured by a factor of about 0.08. Therefore the ripple percentage after the new section will be

Fig. 7.8-Ripple-reduction factor for various values of L and C in filter section. Output ripple $=$ input ripple X ripple factor.
approximately $0.0 \times \times 10=0.8 \%$. If another section is added to the filter, its reduction factor from Fig. 7-8 will be applied to the 0.8% from the preceding sertion; $0.8 \times 0.08=0.064^{\circ}$ (if the second section has the same $L C^{*}$ product as the first).

CHOKE-INPUT FILTERS

Much better voltage regulation resulte when a choke-input filter, as shown in Fig. 7-9, is used. ('hoke input also permits better utilization of the rectifier, since a higher load current usually can he drawn without exceding the peak current rating of the rectifier.

Minimum Choke Inductance

A choke-input filter will tend to ant as a capaci-tive-input filter unless the input choke his at least a certain minimum value of inductance called the critical value. This eritical value is given by

$$
L_{\mathrm{A}}=\frac{E_{\mathrm{yon}} \cdot \mathrm{Ts}}{I_{\mathrm{MAA}}}
$$

Whare E is the output voltage of the supply, and I is the current boing drawn from the supply.

If the ehoke has at least the critical value, the output voltage will be limited to the average value of the rectified wave at the input to the

Fig. 7-9-Choke-input filter circuits. A -Single-section. B-Double-section.
choke (see Fig. $\overline{7}-2$) when the current drawn from the supply is small. This is in contrast to the caparitive-input filter in which the output voltage tends to soar toward the peak value of the rectified wave at light loads. Also, if the input choke has at least the critical value, the rectifier peak plate current will be limited to about twice the d.e. current drawn from the supply. Most rectifier tubes have peak-current ratings of three to four times their maximum d.c. output-current ratings. Therefore, with an input choke of at least critical induetance, current up to the maximum outputecurrent rating of the rectifier may be drawn from the supply without exceeding the peak-current rating of the rectifier.

Minimum-Load-Bleeder Resistance

From the formula above for critical inductance, it is obvious that if no current is drawn from the supply, the critical inductance will be infinite. So that a practical value of inductance may be used, some current must be drawn from the supply at all times the supply is in use. From the formula we find that this minimum value of current is

$$
I_{\mathrm{MA} \cdot}=\frac{E_{\mathrm{volts}}}{L_{\mathrm{t}}}
$$

Thus, if the choke has an inductance of 20 h ., and the output voltage is 2000 , the minimum load eurrent should be 100 ma. This load may be provided, for example, by transmitter stages that draw eurrent eontimuously (stages that are not keyed). However, in the majority of cases it will be most convenient to adjust the bleeder resistance so that the bleder will draw the required minimum current. In the above example, the bleeder resistance should be $2000 / 0.1=20,000$ oluns.

From the formula for eritieal inductance, it is seen that when more current is drawn from the supply, the eritical inductance becomes less. Thus, as an example, when the total current, inchuding the 100 mat drawn by the bleeder rises to 100 ma., the choke need have an induetance of only 5 h . to maintain the eritical value. This is fortunate, because chokes having the required induetance for the bleeder load only and that will maintain this value of inductance for much larger currents are very expensive.

Swinging Chokes

Less costly chokes are available that will maintain at least critical value of inductanee over the range of eurrent likely to be drawn from practical supplies. These chokes are called swinging chokes. As an example, a swinging choke may have an inductance rating of $5 / 25 \mathrm{~h}$. and a eurrent rating of 225 ma . If the supply delivers 1000 volts, the minimum load current should be $1000 / 25=40 \mathrm{ma}$. When the full load eurrent of 225 ma . is drawn from the supply, the inductance will drop to 5 h . The critical inductance for 225 mat at 1000 volts is $1000 / 225=4.5 \mathrm{~h}$. Therefore the $5 / 25-\mathrm{h}$. choke maintains at least the eritical inductance at the full current rating of 225 ma . At all load currents bet ween 40 ma . and 225 ma ., the choke will adjust its inductance to at least the approximate critical value.

Table 7-I shows the maximum supply output voltage that can be used with commonly-available swinging chokes to maintain ritical induetance at the maximum current rating of the choke. These chokes will also maintair eritical inductance for any lower values of voltage, or current down to the required minimum drawn by a proper bleeder as diseussed above.

TABLE 7-I				
L_{h}	Max.ma.	Max.volts	Max. R^{1}	Min.ma. ${ }^{2}$
3.5/13.5	150	525	13.5K	39
5/25	175	875	25 K	35
2/12	200	400	12K	33
5/25	200	1000	2:5\%	40
5/25	225	1125	25 K	45
2/12	250	500	12K	42
4/20	300	1200	20K	60
5/25	300	1500	2.5 K	60
3/17	400	1200	17K	71
4/20	400	1600	20K	80
5/25	400	2000	2.5 K	80
4/10	500	2000	16 K	125
5/25	500	2500	25K	100
5/25	550	27.50	2.5 K	110
Maximum bleeder resistanee for eritical inductance. 2 Minimum current (bleeder) for critical indmetance.				

In the ease of supplies for higher voltages in particular, the limitation on maximum load resistance may result in the wasting of an appreeiable portion of the transformer power capacity in the bleoder resistance. Two input chokes in series will permit the use of a bleeder of twice the resistance, cutting the wasted current in half. Another alternative that ean be used in a c.w. transmitter is to use a very high-resistance bleeder for protective purposes and only sufficient fixed bias on the tules operating from the supply to bring the total current drawn from the

7 -POWER SUPPLIES

supply, when the key is open, to the value of current that the required bleeder rosistance should draw from the supply. (Jperating bias is brought back up to normal by increasing the grid-leak resistance. Thus the entire current capacity of the supply (with the exreption of the small drain of the protective bleceder) can be used in operating the transmitter stages. With this system, it is advisable to operate the tubes at phone, rather than c.w., rating, since the average dissipation is increased.

Output Voltage

Provided the input-choke inductance is at least the reitical value, the output voltage mare be calculated quite elosely by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{\imath}}-\left(I_{\mathrm{B}}+I_{\mathrm{L}}\right)\left(R_{1}+R_{2}\right)-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.mas voltage between center-tap and one and of the secondary in the case of the renter-tap rectifier) ; I_{B} and I_{L} are the bleeder and lowd currents, respeetively, in amperes: R_{1} and h_{0} atre the resistanes of the first and serond filter chokes: and F_{i} is the drop between reetifier phate and rathode. The various voltage drops are shown in Fig. $\overline{7}-12$. At no load I_{L} is zero, hence the no-load voltage may. be calculated on the basis of bereder corrent only: The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

Ripple with Choke Input

The pereentage ripple output from a singlesection filter (lig. 7-9.1) mas be determined to a elose approximation, for a ripple freguency of 120 cycles, from Fig. 7-10.

Example: $L=5 \mathrm{~h} ., C=4 \mu$ f., $L C^{\prime}=20$
From Fig. $7-10$, percentage ripple $=\overline{5}$ jer comt.

Fig. 7-10-Graph showing combinations of inductance and capacitance that may be used to reduce ripple with a single-section choke-input filter.

Abstract

Example: $L=5 \mathrm{~h}$. What capacitance is needed to reduce the ripple to 1 per cent? Following the d-per-eent line to the right to its intersertion with the diagonal, thence downward to the $L C$ seale, read $L C=100.100 / 5=$ $20 \mu \mathrm{f}$,

In selecting values for the first filter section, the induetance of the ehoke should be determined by the considerations diseused previously: Then the rapacitor should be selected that when eombined with the choke induetance (minimum induetance in the case of a swinging ehoke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple down to the desired figure with practical values in a single sertion, a second section ran be added, as shown in Fig. 7-913 and the reduction fartor from Fig. 7-8 applied as discussed under eapacitive-input filters. The second choke should not lee of the swinging type, but one having a more or less constant inductance with changes in current (smoothing choke).

OUTPUT CAPACITOR

If the supply is intended for use with an audio-frequency amplifier, the reactance of the last filter rapacitor should be small (20 per cent or lass) rompared with the other atudiofreguency resistance or impedance in the circuit, ustally the tube phate resistance and had resistance. (On the basis of a lower a.f. limit of 100 eveles for sperech amplification, this condition usually is satisfied when the output eapacitance (lisst filter (aparitor) of the filter has a capacitance of 4 to 8μ., the higher value of caparitance being used in the case of lower tube and load resistances.

RESONANCE

Resonance efferets in the series eireuit aeross the output of the rectifier which is formed by the first choke (L_{1}) and first filter capacitor (C') must be awoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intended, but also may catuse exerssive reetifier prak currents and abomomally-high inverse prak woltages. For full-wave rectification the ripple frequence will be 120 excles for a 60 -eyele supply, and resonance will oeedr when the prodwet of choke inductance in henres times eapacitor cabsucitance in mierofarads is equal to 1.77. 'The corresponding figure for 50 -evele supply (100 -e yele ripple frequency) is 2.53 , and for
 At least twiee these products of inductance and capacitaner should be used to msure against resonance effects. With a swinging choke, the minimum rated inductance of the choke should be used.

RATINGS OF FILTER COMPONENTS

Although filter capacitors in a choke-input filter are subjected to smaller variations in d.e. voltage than in the eapacitive-input filter, it is

Transformers

advisable to use capacitors rated for the peak transformor voltage in case the blemeder resistor should burn out when there is mo load on the power supply, since the voltage then will rise to ther same maximum value as it would with a filter of the caparitive-ingut type.

In a capacitive-input filter, the capacitors should have a working-voltage rating at least as high, and proforably somewhat higher, tham the peak-voltage rating of the transformer, Thus, in the case of a center-tap rectifier having a transformer delibering sino volts each side of the center-tiaf, the minimum safe rapuritor voltage rating will be 5.50×1.41 or 77.5 volts. An 800-volt caparitor should be used, or prefeably a 1000 -volt mit.

Filter capacitors are made in several different types. lilectrolytic capacitors, which are available for peak voltagos up to about 800 , combine high raparitance with small size. since the dideretric is an extremely-thin film of oxide on ahuminum foil. Capacitors of this type may be connected in series for higher voltages, although the filtering capacitance will be reduced to the resultant of the two capacitances in series. If this arrangement is used, it is important that each of the capacitors be shanted with a resistor of ahout 100 ohms per volt of supply voltage, with a power rating adequate for the total resistor current at that voltage. These resistors mays serve as all or part of the bleder resistance (see choke-input filters). (apacitors with highervoltage datings usually are made with a dielectric; of thin paper impregnated with oil. The working voltage of a capacitor is the voltage that it will withstand continuously.

The input choke may be of the swinging type, the required minimum no-load and full-load inductance values being calculated as described above. For the second choke (smoothing choke) values of 4 to 20 henrys ordinatily are used. When filter chokes are plated in the positive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.e. output voltage of the supply and be capable of handling the required load current.

Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability decreases, consequently the inductance also decreases. Despite the air gap, the in-

Fig. 7-11-In most applications, the filter chokes may be placed in the negative instead of the positive side of the circuit. This reduces the danger of a voltage breakdown between the choke winding and core.
ductance of a choke usually varies to some extent with the direct current flowing in the winding; hence it is nocessary to sperify the inductance at the arrment which the choke is infonded to carry. Its inductance with little or no direet current flowing in the winding may be considerably higher than the value when full load current is flowing.

NEGATIVE-LEAD FILTERING

For many vears it has been almost universal practice to place filtor chokes in the positive leads of phate power supplies. This moms that the insulation betwern the choke winding and its core (which should be grounded to chassis as a safety measure) must be adeduate to withstand the output voltage of the supply. This voltage requirement is removed if the chokes are placed in the negative lead as shown in lig. $7-11$. With this eommetion, the capamitance of the transformer secondary to ground appears in parabled with the filter chokes tending to bupass the chokes. Howrever, this effect will be regligible in practical appliation exerpt in rases where the output ripple must be reduced to a very low figure. Such appliations are usually limited to low-voltage deviees such as receivers, speech amplifiers and v.for's where insulation is no problem and the chokes maty be placed in the positive side in the conventional manner. In highor-voltage applications, there is no reason why the filter chokes should not be phaced in the negative lead to reduce insulation requirements. Choke terminals, negative capacitor terminals and the transformer center-tap) terminal should be well protected agitinst accidental contact, since these will assume full supply voltage to chassis should a choke burn out or the chassis connection fail.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required d.c. load voltage and the type of filtor circuit.

With a choke-input filter, the required r.m.s. secondary voltage (each side of center-tap) for a center-tap rectifier) can be calculated by the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{0}+I\left(R_{1}+R_{2}\right)+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.c. output voltage, I is the load current (including bleeder current) in amprers, h_{1} and R_{2} are the d.c. resistances of the chokes, and E, is the voltage drop in the rectifier. E_{t} is the full-load r.m.s, secondary voltage; the open-eireuit voltage usually will be

7-POWER SUPPLIES

Fig. 7-12-Diagram showing various voltage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired output voltage.

5 to 10 per cent higher than the full-load value.
The approximate transformer output voltage reguired to give a desired d.c. output voltage with a given load with a capacitive-input filter system can be calculated with lig. 7-12.

Example:

Required d.c. output volts - 500
load current to be drawn - 100 ma. (0.1 amp) l.oad resistance $=\frac{\overline{500}}{0.1}=\overline{5000}$ ohus.

If the rectifier resistance is $\mathbf{2 0 0}$ olums, Fig. 7-5 shows that the ratio of d.e. volts to the reduired transformer rimes. voltage is approximately 1.15 .

The required transformer terminal voltage under load with chokes of 200 and 300 ohms is

$$
\begin{aligned}
E_{t} & =\frac{E_{0}+I\left(R_{\mathrm{t}}+R_{2}+R_{\mathrm{r}}\right)}{1.15} \\
& =\frac{500+0.1(200+300+200)}{1.15} \\
& =\frac{570}{1.15}=495 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the type of filter (capacitive or ehoke input). With a eapacitive-input filter the heating elfect in the secondary is higher beeause of the high ratio of peak to average current, eonsequently the volt-amperes eonsumed by the trinsformer may be several times the watts delivered to the load. With a choke-input filter, provided the input choke has at least the critical inductance, the scondary volt-amperes can be calculated quite closely by the equation:

$$
\text { Sec. } V . A .=0.00075 E I
$$

where E is the total r.m.s. voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the d.c. output current in milliamperes (load current plus bleeder eurrent). The primary volt-amperes will be 10 to 20 per cent higher because of transformer losses.

Broadcast \& Television Replacement Transformers in Amateur Transmitter Service

Small power transformers of the type sold for
replacement in broadeast and television receivers are usually designed for service in terms of use for several hours contimuously with capacitorinput filters. In the usual type of amateur transmitter service, where most of the power is drawn intermittently for periods of several minutes with equivalent intervals in between, the published ratings can be exceeded without excessive transformer heating.

With capacitor input, it should be safe to draw 20 to 30 per ecnt more eurrent than the rated value. With a choke-input filter, an increase in current of aloout 50 per cent is permissible. If a bridge rectifier is used (with a choke-input filter) the output voltage will be approximately doubled. In this case, it should be possible in amateur transmitter serviee to draw the rated eurrent. thus obtaining about twiee the rated output power from the transformer.

This does not apply, of course, to amateur transmitter plate transformers which are usually already rated for intermittent serviee.

Filament Supply

Exerpt for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmittors and receivers are universally operated on alternating current obtained from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes used. The transformer should be designed to carry the current taken by the number of tubes which may be connected in parallel across it. The filament or heater transformer generally is center-tapped, to provide a balanced eircuit for eliminating hum.

For medium- and high-power r.f. stages of trinsmitters, and for high-power audio stages, it is desirable to use a separate filament transformer for each section of the transmitter, installed near the tube sockets. This avoids the necessity for abnormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, since under- or over-voltage may reduce filament life.

Typical Power Supplies

Figs. 7-13 and 7-14 show typical powersupply circuits. Fig. 7-13 is for use with trans-
formers commonly listed as broadeast or television replacement power transformers. In addi-

Fig. 7-13-Typical a.c. powersupply circuit for receivers, exciters, or low-power transmilters. Representative values will be found in Table 7-II. The 5 -volt winding of T_{1} should have a current rating of at least 2 amp . for types 5 Y 3 GT and 5 V 4 G , and 3 amp . for $5 U 4 G(G A, G B)$.
tion to the high-voltage winding for plate supply, these transformers have windings that supply filament voltages for both the rectifier tube and the 6.3 -volt tubes in the receiver or low-power transmitter or exciter. Transformers of this type may be obtained in ratings up to 1200 volts r.m.s. center-tapped, 200 d.c. ma. output.

Fig. 7-13 shows a two-section filter with capacitor input. However, depending upon the maximum hum level that may be allowable for a particular application, the last eapacitor and choke may not be needed. In some low-current applications, the first capacitor alone may provide adequate filtering. Table 7 -II shows the approximate full-load and bleeder-load output voltages and a.c. ripple percentages for several representative sets of components. Voltage and ripple values are given for three points in the circuit - Point A (first capacitor only used), Point B (last capacitor and choke omitted), and Point C (complete two-section filter in use).

In each case, the bleeder resistor R should be used across the output.

Table 7-II also shows approximate output voltages and ripple percentages for choke-input filters (first filter capacitor omitted), for Point. B (last capacitor and choke omitted), and Point C (complete two section filter, first capacitor omitted).

Actual full-load output voltages may be somewhat lower than those shown in the table, since the voltage drop through the resistance of the transformer secondary has not been included.

Fig. 7-14 shows the conventional circuit of a transmitter plate supply for higher powers. A full-wave rectifier eireuit, half-wave rectifier tubes, and separate transformers for high voltage, rectifier filaments and transmitter filaments are used. The high-voltage transformers used in this circuit are usually rated directly in terms of d.c. output voltage, assuming rectifiers and filters of the type shown in Fig. 7-14. Table 7-III shows typical values for representative supplies, based on commonly-available components. Transformer

Table 7-II																
Capacitor-Input Power Supplies																
Ti Rating		$\begin{gathered} V_{1} V_{1} \\ \text { Tybe } \\ \text { Type } \end{gathered}$	C		L		R		Approximate Full-load d.c. Volta at			$\begin{gathered} \text { Approximate } \\ \text { Ripple } \% \\ \text { at } \end{gathered}$			$\begin{gathered} \text { Approx. } \\ \text { Outpul } \\ \text { Volls } \\ \text { Bleeder } \\ \text { Load } \end{gathered}$	Useful Output Ma.*
$\begin{aligned} & \text { R.M.S.S. } \\ & \text { (C.T.) } \end{aligned}$	${ }_{D . C}^{M a .}$		μf.	Volts	H.	Ohms	Ohms	Watts	A	B	C	A	B	C		
650	40	5Y3GT	8	600	8	400	90K	5	375	360	345	2.5	0.08	0.002	450	36
650	40	5V4G	8	600	8	400	90K	5	410	395	375	2.5	0.08	0.002	450	36
700	90	5Y3GT	8	600	10	225	46K	10	370	350	330	6	0.1	0.002	460	82
700	90	5V4G	8	600	10	225	46 K	10	410	390	370	6	0.1	0.002	460	82
750	150	5U4G	8	700	8	145	25K	10	375	350	330	9	0.2	0.006	500	136
750	150	5V4G	8	700	8	145	25K	10	425	400	380	9	0.2	0.006	50c)	136
800	200	5U4G	8	700	8	120	22 K	20	375	350	325	12	0.3	0.008	550	184
					Ch	oke-I	nput P	Power	Sup	plies						
650	40	5Y3GT	8	450	15	420	18 K	10	-	240	225	-	0.8	0.01	26.5	25
650	40	5V4G	8	450	15	420	18K	10	-	255	240	-	0.8	0.01	280	25
700	90	5Y3GT	8	450	10	225	11 K	10	-	240	220	-	1.25	0.02	250	68
700	90	5V4G	8	450	10	225	11 K	10	-	270	250	-	1.25	0.02	280	68
750	150	5Y3GT	8	450	12	150	13K	20	-	265	245	-	1	0.015	325	125
750	150	5V4G	8	450	12	150	13K	20	-	280	260	-	1	0.015	340	125
800	200	5U4G	8	450	12	140	14 K	20	-	275	250	-	1	0.015	350	175
* Balance of transformer current capacity consumed by bleeder resistor.																

7 -POWER SUPPLIES

Fig. 7-14-Conventional powersupply circuit for higher-power transmitters.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4 \mu \mathrm{f}$. for approximately 0.5% output ripple; $2 \mu \mathrm{f}$. for approximately 1.5% output ripple. C_{2} should be $4 \mu \mathrm{f}$. if supply is for modulator.

R-25,000 ohms.

L_{1}-Swinging chake: $5 / 25$ h., current rating same as T_{2}.
L_{2}-Smoothing choke: current rating same as T_{2}.
$T_{1}-2.5$ volts, 4 amp. for type $816 ; 2.5$ volts, 10 amp .
for 866A.
T_{2}-D.c. voltage rating same as output voltage.
T_{3}-Voltage and current rating to suit transmitter-tube requirements.

$$
\begin{aligned}
& \text { V } \text {-Type } 816 \text { for } 400 / 500 \text {-volt supply; } 866 \mathrm{~A} \text { for } \\
& \text { others shown in Table } 7 \text {-ll. } \\
& \text { See Table } 7 \text {-III for other values. }
\end{aligned}
$$

voltages shown are reppresentative for units with dual-voltage seeondaries. The bleederload voltages shown may be somewhat lower than actually found in practice, because transformer resistance has not been included. Ripple at the output of the first filter section will be approximately 5 per cent with a $4-\mu$. capacitor, or 10 per cent with a $2-\mu$ f. capacitor. Transformers made for amateur service are designed for choke-input. If a ca-pacitor-input is used rating should be redueed about 30%.

TABLE 7.III							
$\begin{gathered} \text { Approx. D.C. } \\ \text { Oulput } \end{gathered}$		$\underset{\text { Rating }}{\text { Tiz }}$		$\begin{aligned} & L_{2} \\ & \mathrm{I}_{1} \end{aligned}$	Volinge Rating C_{1}, C_{2}	$\begin{gathered} R \\ \text { Walls } \end{gathered}$	Approx. Bleederload Output Volts
Volts	Ma, ${ }^{1}$	$\begin{aligned} & A p p r o x \\ & V . R . M . S . \end{aligned}$	Ma.				
400/500	230	520/615	250	4	700	20	440/540
600/750	260	750/950	300	8	1000	50	6.50/800
1250/1500	240	1500/1750	300	8	2000	150)	1300/1900
1250/1500	440	1500/1750	500	6	2000	150	1315/1015
2000/2600	200	2400/2900	31004	8	3000	$320{ }^{2}$	2050/2530
2000/2500	400	2400/2400	500	6	3000)	3202	2065/2565
2500/3000	380	2500/3450	5005	6	4000	5003	2505/3065

${ }^{1}$ Balance of transformer current rating consumed by bleeder resistor.
${ }^{2}$ U'se two 160-watt, 12,500-ohm units in series.
${ }^{3}$ Use five 100 -watt, 5000 -ohnt units in series.
${ }^{4}$ Regulation will be somewhat better with a 400- or 500 -ma. choke.
${ }^{5}$ Regulation will be somewhat better with a 5 500-ma. choke.

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and screens of the various tubes in a transmitter or receiver often require a variety of operating voltages differing from the output voltage of an available power supply. In most cases, it is not economieally feasible to provide a separate power supply for each of the required voltages. If the current drawn by an electrode, or combination of electrodes operating at the same voltage, is reasonably constant under normal operating conditions, the required voltage may be obtaned from a supply of higher voltage by means of a voltagedropping resistor in series, as shown in Fig. $7-15 \mathrm{~A}$. The value of the series, resistor, h_{1}, may be obtained from Ohm's Law; $R=\frac{E_{\mathrm{d}}}{I}$, where E_{d} is the voltage drop required from the sup-
ply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the screens of the tubes in two other stages require an operating woltage of 250 . The nearest available supply voltage is 400 and the total of the rated plate and screen eurrents is 75 ma . The required resistance is

$$
R=\frac{400-2.50}{0.075}=\frac{150}{0.075}=2000 \mathrm{ohms}
$$

The power rating of the resistor is obtained (rom $P^{2}($ watts $)=l^{2} R=(0.07 .5)^{2}(2000)=11.2$ watts. A 20 -watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this mamer obviously is poor, since any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop arross the resistor. The regulation can be im-

Voltage Stabilization

Fig. 7-15-A-Series voltage-dropping resistor. BSimple voltage divider. C-Multiple divider circuit.

$$
R_{3}=\frac{E_{1}}{I_{b}} ; R_{4}=\frac{E_{2}-E_{1}}{I_{b}+I_{1}} ; R_{5}=\frac{E-E_{2}}{I_{b}+I_{1}+I_{2}}
$$

proved somewhat by comeeting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. 7-1513. Such an arangement constitutes a voltage divider. The second resistor, R_{2}, acts as a constint load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total eurrent through R_{1}. The heavier the current drawn by the resistors when they alone are connected across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typiral arrangement is shown in Fig. $7-15 \mathrm{C}$. The terminal voltage is E, and two taps are provided to give lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respeetively. The smaller the resistance between taps in proportion to the total resistanee,

the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carrics only the bleeder current, $I_{1} ; R_{4}$ carries I_{1} in addition to $I_{1} ; R_{5}$ carries I_{2}, I_{1} and I_{b}. To calculate the resistances required, a bleeder cur-. rent, I_{b}, must be assumed; generally it is low compared with the total load curient (10 per cent or so). Then the required values ean be calculated as shown in the caption of Fig. 7-15C, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance section being calcukated by Ohm's Law using the needed voltage drop across it and the total current through it. The power dissipated by each section may be ealculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-eurrent circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseons regulator tubes (()C:3/ VR105, OI):3/VR150, etc.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are available for regulated voltages near 150, 105, 90 and 75 volts.

The fundamental circuit for a gascous regulator is shown in Fig. 7-10.1. The tube is con-

Fig. 7-16-Voltage-stabilizing circuits using VR tubes.
nected in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 to 40 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma . is required. The maximum permissible current with most types is 40 ma ; consequently, the load current cannot exceed 30 to 35 ma. if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tube eurrent to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{B} is the voltage of the source across which the tube and resistor are conneted, E_{r} is the rated voltage drop across the regulator tube, and

7 -POWER SUPPLIES

Fig. 7-17-Electronic voltoge-regulator circuit.
$\mathrm{C}_{1}-0.1-\mu \mathrm{f} .400$-volf poper.
$\mathrm{R}_{1}-160$-ohm 10 -wott potentiometer (balonce).
$R_{2}, R_{5}-12,000$ ohms, 2 watts.
$R_{3}, R_{4}-0.47$ megohm, $1 / 2$ wott.
$\mathrm{R}_{6}-68,000$ ohms, 1 watt.
$\mathrm{R}_{7}-15,000$ ohms, 2 watts.
$\mathrm{R}_{8}-10,000$-ohm potentiometer (output control).
R_{9} - 1 megohm, $1 / 2$ wott.
I is the maximum tube current in amperes, (usually 40 ma ., or 0.04 amp .).

Fig. $7-16 \mathrm{~B}$ shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for $E_{\text {r }}$. Since the upper tube must carry more current than the lower, the load donnected to the low-voltage tap must take sraall current. The total current taken by the loads on both the high and low taps should not exceed 30 to 35 milliamperes.

Voltage regulation of the order of 1 per cent can be obtained with these regulator circuits.

A single VR tube may also be used to regulate the voltage to a load current of almost any value
so long as the variation in the current does not exceed 30 to 35 ma . If, for example, the average load current is 100 ma ., a VIR tube may be used to hold the voltage constant provided the current does not fall helow 85 ma . or rise ahove 115 ma. In this case, the resistance should be calculated to drop the voltage to the VR-tube rating at the maximum load current to he expected plus about 5 ma . If the load resistance is constant, the effects of variations in line voltage may he eliminated by basing the resistance on the load current plus 15 ma. Voltage-regulator tubes may also be connected in parallel as described later in this chapter.

Electronic Voltage Regulation

Several circuits have been developed for regulating the voltage output of a power supply elec-

232

Voltage Stabilization

tronically. While more complicated than the VIRtube cireuits, they will handle higher voltages and currents and the output voltage may be varied continuously over a wide range. In the circuit of Fig. 7-17, the 5 e5s regulator tube supplies the grid (4) of the (isLL 7 with a constant reference voltage. When the load connected ateross the output terminals inereases, the output voltage tends to decrease. This decreases the plate (i) voltage. Since grid (1) is connected directly to plate (5), grid (1) beomes less positive and that triode draws less plate current. The voltage drop across R_{3} being less, the biats on the grids of the 6 Asia is reduced, decreasing the voltage drop ancross the GASTG: and thereby matintaning the original output voltuge.

For a maximum regulated voltage output of 250, the filtered d.c. input voltage should be 325 volts at 225 mat. For a constant line voltage the output voltage will remain constant within 0.2 volt over a load-current range of 0 to 225 ma . With a line-voltage variation of plus or minus 10 per cent, the output voltage will vary less than 0.1 volt.

Another similar regulator cireuit is shown in Fig. 7-18. The prineipal difference is that screengrid regulator tubes are used. The fact that a screen-grid tube is relatively insensitive to changes in plate voltage makes it possible to obtain a reduction in ripple voltage adequate for many purposes simply ly supplying filtered d.c. to the screens with a consequent saving in weight and cost. The accompanying table shows the performance of the circuit of Fig. 7-18. Column I shows various output voltages, while Column II shows the maximum current that can be drawn at that voltage with negligible variation in output voltage. Column III shows the measured ripple at the maximum current. The second part of the

I	11	III	Output voltage - 300
450 v .	$22 \text { ma. }$	3 mv .	150 ma .2 .3 mv .
42.5 v.	$4.5 \mathrm{ma}$	4 mv.	125 ma. 2.8 mv .
400 v .	注 ma.	6 mv .	100 ma. 2.6 mv .
375 v .	$97 \text { ma. }$	8 mv .	75 ma .2 .5 mv .
350%	122 ma .	9.5 mv .	50 ma . 3.0 mv .
325 v .	150 ma.	3 mv .	25 ma .3 .0 mv .
300 v .	150 ma .	2.3 mv .	10 ma .2 .5 mv .

table shows the variation in ripple with load current at 300 volts output.

High-Voltage Regulators

Rogulated sereen voltuge is required fdr screengrid tubes used as lincar amplifiers in single-sideband operation. Figs. 7-19 through 7-22 show various different circuits for supplying regulated voltages up to 1200 volts or more.

In the eircuit of Fig. 7-19, gas-filled regulator tubes are used to establish a fixed |reference voltage to which is added an electronicallyregulated variable voltage. The design can be modified to give any voltage from 225 volts to 1200 volts. with earh design-center voltage variable by plus or minus 60 volts.

The output voltage will depend upon the number and voltage ratings of the VR tubes in the string between the 991 and ground. The total VR-tule voltage rating needed can be determined by subtracting 250 volts from the desired output voltage. As examples, if the desired output voltage is $3 \overline{50}$, the total VIRtube voltage rating should be $350-2 \overline{50}=100$ volts. In this case, a VR-105 would be used. For an output voltage of 1000 , the VR-tube voltage rating should le $1000-250=750$ volts. In this case, five VR-150s would be used in series.

Fig. 7-19—High-voltage regulator circuit by W4PRM. Resistors are 1 watt unless indicated otherwise.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4-\mu \mathrm{f}$. paper, voltage rating above peak-voltage output of T_{1}.
$\mathrm{C}_{3}-0.1-\mu \mathrm{f}$. paper, 600 volts.
$\mathrm{C}_{4}-12-\mu \mathrm{f}$. electrolytic, 450 volts.
$\mathrm{C}_{5}-40 \mu \mathrm{f}$., voltage rating above d.c. output voltage. Can be made up of a combination of electrolytics in series, with equalizing resistor. (See section on ratings of filter components.)
$\mathrm{C}_{8}-4-\mu \mathrm{f}$. paper, voltage rating above voltage rating of

VR string.
$\mathrm{R}_{1}-50,000-$ ohm, 4 -watt potentiometer.
R2-Bleeder resistor, 50,000 to 100,000 ohms, 25 watts (not needed if equalizing resistors mentioned above are used).
T_{I}-See text.
T_{2}-Filament transformer; 5 volts, 2 amp.
T_{3}-Filament transformer; 6.3 volts, 1.2 amp.
$V_{1}, V_{2}, V_{3}-$ See text.

Fig. 7-20-Screen regulator circuit designed by W9OKA. Resistances are in ohms ($K=1000$).
$R_{1}-6000$ ohms for 211; 2300 ohms for 812A, 20 watts.
$\mathrm{R}_{2}-25,000$ ohms, 10 watts.
R_{3}-Output voltage control, 0.1-megohm, 2 -watt potentiometer.
T_{1}-Filament transformer: 10 volts, 3.25 amp. for $211 ; 6.3$ volts, 4 amp . for 812A.
T_{2} —Filament transformer: 6.3 volts, 1 amp.

The maximum voltage output that can be oltained is approximately equal to 0.7 times the r.m.s. voltage of the transformer T_{1}. The current rating of the transformer must be somewhat above the load current to take care of the voltage dividers and bleeder resistances.
; A single 6L6 will handle 90 ma . For larger currents, 6LCs may be added in parallel.

The heater circuit supplying the GL6 and GSJ7 should not be grounded. The shaft of R_{1} should be grounded. When the output voltage is ahove 300 or 400 , the potentioneter should be provided with an insulating mounting, and should be controlled from the panel by an extension shaft with an insulated coupling and grounded control.

In some cases where the plate transformer has sufficient current-handling capacity, it may be desirable to operate a screen regulator from the plate supply, rather than from a separate supply. This can be done if a regulator tube is used that can take the required voltage drop. In Fig. 7-20, a type 211 or 812 A is used, the control
tuhe being a 6AQ5. With an input voltage of 1800 to 2000 , an output voltalge of 500 to 700 can be obtained with a regulation better than 1 per cent over a current range of 0 to 100 ma .

In the circuit of Fig. 7-21, a V-701) (or 8005) is used as the regulator, and the control tube is an 807 which can take the full output voltage, making it unnecessary to raise it above ground with VR tubes. If taps are switched on R_{1}, the output voltage can be varied over a wide range. Increasing the screen voltage decreases the output voltage. For each position of the tap on R_{1}, decreasing the value of R_{3} will lower the minimum output voltage as R_{2} is varied, and decreasing the
Fig. 7-21 - This regulator circuit used by WISUN operates from the plate supply and requires no VR string. A small supply provides screen voltage and reference bias for the control tube.
Ur.less otherwise marked, resistances are in ohms. ($K=1000$). Capacitors are electrolytic.
$\mathrm{R}_{1}-50,000$-ohm, 50 -watt adjustable resistor.
$\mathrm{R}_{2}-0.1$-megohm 2-watt potentiometer.
$\mathrm{R}_{3}-4.7$ megohms, 2 watts.
$\mathrm{R}_{4}-0.1$ megohm, $1 / 2$ watt.
T_{1} —Power transformer: 470 volts center tapped, 40 ma.; 5 volts, 2 amps.; 6.3 volts, 2 amps.
$\mathrm{T}_{\mathbf{2}}$-Filament transformer: 7.5 volts, 3.25 amp . (for V-70D).

Bias Supplies

value of R_{4} will raise the maximum output voltare. However, if these values are made too small, the 807 will lose control.
At 850 volts output, the variation over a current change of 20 to 80 ma . should be negligible. At 1500 volts output with the same eurrent change, the variation in output voltage should be less than three per cent. Lip to 88 volts of grid bias for a Class A or Class AB_{1} amplifier may be taken from the potentiometer across the refer-ence-voltage source. This bias cannot, of eourse, be used for biasing a stage that is drawing grid current.

A somewhat different type of rogulator is the shunt regulator shown in Fig. 7-22. The VIR tubes and $R 2$ in series are across the output. Since the voltage drop across the VR tulnes is constant. any ehange in output voltage appears across R_{2}. This causes a change in grid bias on the $811-\mathrm{A}$ grid, eausing it to draw more or less current in

Fig. 7-22-Shunt screen regulator used by W2AZW. Resistonces are in ohms ($K=1000$). $C_{1}-0.01 \mu \mathrm{f}$., 400 volts if needed to suppress oscillation.
M_{1}-See text.
R_{1}-Adjustable wire-wound resistor resistance and wattage as required.
inverse proportion to the current heing didawn by the amplifier sereen. 'This provides a constant load for the series resistor R_{1}.

The output voltuge is equal to the sum of the VR drops plus the grid-to-ground voltage of the 811-A. This varies from 5 to 20 volts between full load and no load. The initial adjustment is made by placing a milliammeter in the filament center-tap lead, as shown, and adjusting R_{1} for a reading of 15 to 20 mas. higher than the normal peak screen eurrent. This adjustment should be made with the amplifier connected but with no excitation, so that the amplifier draws idling eurrent. After the adjustment is complete, the meter may be removed from the circuit and the filament center tap eonneeted directly to ground. Adjustment of the tap on R_{1} should, of course, be made with the high voltage turned off.

Any number of VIR tubes may be used to provide a regulated voltage near the desired value. The maximum eurrent through the $811-\mathrm{A}$ should be limited to the maximum plate-eurent rating of the tule. If larger eurrents are necessary, two 811-As may be connected in parallel. Over a eurrent range of 5 to 60 ma ., the reguletor holds the output voltage eonstant within 10 or 15 volts.

Bias Supplies

As discussed in Section 6 on high-frequency transmitters, the chief function of a bias supply for the r.f. stages of a transmitter is that of providing protective bias, although under rertain circumstancos, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-23A shows the diagram of a simple bias supply. R_{1} should be the recommended grid leak for the amplifier tube. No grid la ak should tee used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value between the bias re-
quired for plate-current cut-off and the recommended operating bias for the amplifier tube. The transformer peak voltage (1.4 times the r.m.s. value) should not exceed the recommonded operating-bias value, otherwise the output vollage of the pack will soar above the operating-hias value with rated grid current.

This soaring can be reduced to a eonsiderable extent by the use of a voltage divider across the transformer secondary, as showr at 13 . Such a system can be used when the transiormer voltage is higher than the operating-hias value. The tap, on R_{2} should be adjusted to give amplifier cut-off bias at the output terminals. The lower the total value of R_{2}, the less the soaring will be when grid current flows.

7-POWER SUPPLIES

(C)

Fig. 7-23-Simple bios-supply circuits. In A, the peak transformer voltage must not exceed the operating value of bios. The circuits of B (half-wave) and C (full-wave) may be used to reduce transformer voltage to the rectifier. R_{1} is the recommended grid-leak resistance.

Fig. 7-24-Illustrating the use of VR tubes in stabilizing protective-bias supplies. R_{t} is a resistor whose value is adjusted to limit the current through each VR tube to 5 ma . before amplifier excitation is applied. R and R_{2} ore current-equalizing resistors of 50 to 1000 ohms.

A full-wave circuit is shown in Fig. 7-23C. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases. the transformer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. 7-23 and the difliculty of predicting values in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-24.1. A Vlk tube with a voltage rating inywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifier excitation, until the Vli tube ignites and draws about 5 ma. Additional voltage to bring the bias up to the operating value when excitation is applied can be obtained from a grid loak resistor, as discussed in the transmitter chapter.

Each VR tube will handle 40 ma . of grid current. If the grid current exceds this value under any eondition, similar VI? tubes should be added in parallel, as shown in Fig. $7-2413$, for cach to ma., or less, of additional grid current. The

Bias Supplies

Fig. 7-25-Circuit diagram of an electronically-regulated bias supply.
$\mathrm{C}_{1}-20-\mu \mathrm{f} .450$-volt ele ctrolytic.
$\mathrm{C}_{2}-20-\mu \mathrm{f}$. 150-volt electrolytic.
$\mathrm{R}_{1}-5000$ ohms, 25 watts.
$\mathrm{R}_{2}-22,000$ ohms, $1 / 2$ watt.
$R_{3}-68,000$ ohms, $1 / 2$ watt.
$R_{4}-0.27$ megohm, $1 / 2$ watt.
$\mathrm{R}_{5}-3000$ ohms, 5 watts.
$R_{6}-0.12$ megohm, $1 / 2$ watt.
resistors l_{2} are for the purpose of helping to maintain equal currents through each VR tube, and should have a value of 50 to 1000 ohms or nore.

If the voltage rating of a single VR tube is not sufliciently high for the purpose, other Vik tubes may be used in series (or series-parailled if required to satisfy grid-current requirements) as shown in the diagrams of Fig. $\overline{7}-24 \mathrm{C}$ and 1).

If a single value of fixed bias will serve for more than one stage, the biasing terminal of each such stage may be connected to a single supply of this type, provided only that the total grid current of all stages so connected does not exceed the current rating of the VIf tube or tubes. Alternatively, other separate VR-tube branches may be added in any desired combination to the same supply, as in Fig. $7-24 \mathrm{E}$, to adapt them to the needs of earh stage.

Providing the VR-tube current rating is not exceded, a series arrangement may be tapped for lower voltage, as shown at F.

The eireuit diagram of an clectronicallyregulated bias-supply is shown in Fig. 7-25. The output voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid eurrents up to 200 ma. over the range of 30 to 80 volts, and 100 ma . over the remainder of the range. This will take care of the biats requirements of most tubes used in Class 13 amplifier sorvice. The regulation will hold to about 0.001 volt per milliampere of grid current. The regulator operates as follows: Since the voltage drop across 1_{3} and V_{4} is in paralled with the voltage drop across I_{1} and R_{5}, iny change in voltage arross V_{3} will appear arross R_{5} berause the voltage drops ateross both VR tubes remain constant. R_{5} is at cathode biasing resistor for V_{2}, so any voltage change arross it appears as a grid-voltage change on ly. This change in grid voltage is amplified by l_{2} and appears across R_{4} which is commerted to the plate of V_{2}^{\prime} and the grids of V_{3}. This change in vollatge swings the grids of V_{3} morr positive or
$\mathrm{R}_{7}-0.1$-megohm potentiometer.
Rs-27,000 ohms, $1 / 2$ watt.
L_{1}-20-hy. 50 -ma. filter choke.
T_{1}-Power transformer: 350 volts r.m.s. each side of center 50 ma.; 5 volts, 2 amp.; 6.3 volts, 3 amp .
negative, and thus varies the internal resistance of V_{3}, mantaning the voltage drop across V_{3} pratetically constant.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a squrce other than a separate supply. A half-wave rectifier may be connected with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-26A. In an-

Fig. 7-26-Convenient means of obtaining biasing voltage. A-From a low-voltage plate supply. B-From spare filament winding. T_{1} is a filament transformer, of a voltage output similar to that of the spare filament winding, connected in reverse to give 115 volts r.m.s. output. If cold-cathode or selenium rectifiers are used, no additional filament supply is required.
other arrangement, shown at B, a spare filament winding can be used to operate a filament transformer of similar voltage ratine in reverse to olotain a voltage of about 130 from the winding that is eustomarily the primary. This will be sufficient to operate a VR75 or VIR!0 regulator tube.

7 -POWER SUPPLIES

A bias supply of any of the types diseussed requires relatively little filtering, if the outputterminal peak voltage does not approach the
operating-bias value, because the effect of the supply is cntirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the circuits shown in Figs. 7-27, 7-28 and $7-29$ may be used with any type of rectifier, they find their greatest advantage when used with selenium rectifiers which reguire no filament transformer. These cireuits must be used with caution, observing line polarity in the circuits so marked, to avoid shorting the line, since the negative output terminal should alwars he grounded. In cireuits showing isolating transformers, the transformer is a requirement, since without the transformer, the negative output terminal canmot be grounded in following good practice for salety without shorting out part of the rectifier rircuit. In the eirecuits which do not show a transformer, the transformer is preforable, sinee it avoids the neeressity for eorreetly polarizing the connertion to the power line to prevent a short cireuit.

Fig. $7-2 \boldsymbol{2}$ is a straightforward half-wave rectifier cireuit which may be used in applicat tions where 115 to 130 volts d.e. is desired. It can be used for bias supply, for instance.
Three voltage-doubler circuits are shown in Fig. $7-28$. At 1 is a full-wave cirenit, while the

Fig. 7-27-Simple half-wave circuit for selenium rectifier. $C_{1}-0.05-\mu \mathrm{f} .600$-volt paper.
$\mathrm{C}_{2}-40-\mu \mathrm{f}$. 200 -volt electrolytic.
$\mathrm{R}_{1}-25$ to 100 ohms.
other two, at A and B, are half-wave circuits. Although rasier to filter, the rircuit of A has the disalvantage that the output camot be grounded direatly unless an isolation transformer is used. 13 and C are similar, except that the series rapacitor is in different sides of the cireuit. The output of 13 ciun be grounded directly if proper line polarity is olserved. Cirenit (\%, which inchudes a filter for illustration purposes, requires an isolation transformer if the output is to be grounded, but since all three rapamitors, including the filter caparitor, have a rommon negative connertion, a triphe-mit capacitor may be used where spate must be conserved.

Fig. $7-2$? shows voltage tripher and quatrupler rircuits. The circuit of A is a halfwave tripler. A full-wave tripler, requiting an additional rectifier element, is shown at B. The circuit of Fig. $7-29 \mathrm{C}$ is a half-wave voltage quadrupler. The full-wave version is shown at D). Both full-wave cirenits reguire an isolation transformer to permit grounding of the output.
In the circults of Figs $7-28$ and $7-29$ where an isolation transfomer is not shown, it is ressential that the indicated line polarity be obs served if the output is to be groumded. Otherwise part of the cirenit will be shorted out.

The resistors R_{1} are for rectifier protective purposes, and recommended minimum values are given in the table at the end of this section. The value of capacitane given is representative. larger values will improve voltage regulation. smaller values may be used at a suerifice in regulation.

Fig. 7-28-Voltage-doubling circuits for use with selenium rectifiers.
$\mathrm{C}_{1}-40-\mu \mathrm{f}$. 200-volt electrolytic. $\mathrm{C}_{2}-40-\mu \mathrm{f} .450$-volt ele ctrolytic. $\mathrm{R}_{\mathrm{t}}=25$ to 100 ohms.
L_{t} —Filter choke.
T_{1}-Isolation transformer.

Selenium Rectifiers

(A)

Fig. 7.29-A-Tripler circuit. B-Half-wave quadrupler. C-Full-wave quadrupler.
$\mathrm{C}_{1}-40-\mu \mathrm{f} .200$-volt electrolytic.
$\mathrm{C}_{2}-40-\mu \mathrm{f} .450$-volt electrolytic.
$\mathrm{C}_{3}-48-\mu \mathrm{f}$. 600-volt electrolytic (three $16-\mu \mathrm{f}$. units in parallel).
$C_{4}-48-\mu f$. 700-volt electrolytic (three $16-\mu \mathrm{f}$. units in parallel).
$R_{1}-25$ to 100 ohms.
T_{1}-lsolating transformer.

(B)

(C)

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, special consideration should be given to the a.c. line rumning into the station. In some residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230 , while half of this voltage (115) appears between each of these wires and neutral, as indicated in Fig. 7-30A. In systems of this type, usually it will be found that the $115-$ volt household load is divided as evenly as possible between the two sides of the circuit, half of the load being connerted between one wire and the neutral, while the other half of the load is comeeted between the other wire and neutral. Heavy appliances, such as electric
stoves and heaters, normally are designed for 230 -volt operation and therefore are eonnected across the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The reason for this is that opening the neutral wire does not disconnert the equipment. It simply leaves the equipment on one side of the 230 -volt circuit in series with whatever load may be across the other side of the circuit, as shown in Fig. 7-30 [3. Furthermore, with the neutral open, the voltage will then be divided between the two sides in inverse proportion to the load resistance, the voltare on one side dropping below normal, while it soars on the ot her side, unless the loads happen to be equal.

The usual line muning to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, modulator, receiver and other auxiliary equipmert, it is not

Fig. 7-30-Three-wire power-line circuits. A-Normal 3 -wire-line termination. No fuse should be used in the grounded (neutral) line. B-Showing that a switch in the neutral does not remove valtage fromether side of the line. C-Connections for both 115 - and 230 -volt transformers. D-Operating a 115 -volt plate fransformer from the 230 -volt line to avoid light blinking. T_{1} is a 2 -to-1 step-down transformer.
unusual to find this $\mathbf{1 5}$-ampere rating excecded by the requirements of a station of only moderate power. It must also be kept in mind that the same branch may be in use for other household purposes through another oullet. For this reason, and to minimizo light blinking when keving or modulating the tramsmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (. three-volt drop in line voltage will cause noticeable light blinking.)

If the system is of the three-wire type, the three wires should be brought into the station so that the load can be distributed to keep the line bataned. The voltage aeross a fixed load on one side of the circuit will increase as the load current on the other side is increased. The rate of inerease will depend upon the resistance introduced by the nentral wire. If the resistance of the neutral is low, the increase will be correspondingly small. When the currents in the two circuits are babaneed, no corrent flows in the noutral wire and the system is operating at maximum efficiency.

Light blinking can be minimized by using transformers with 230 -volt primaries in the power supplies for the keyed or intermittent part of the load, connecting them arross the two ungrounded wires with no connection to the neutral, as shown in Fig. 7-30C. The same can be arcomplished by the insertion of a stepdown transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional 115 -volt transformers may be operated from the secondary of the step-down transformer (see Fig. 7-301)).

When a special heavy-duty line is to be installed, the local power company should be consulted as to loral requirements. In some localities it is necessary to have such a job done by a licensed electrician, and there may be sperial requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the station at a switch box, while others may use electric-stove recoptacles as the termination. The power is then distributed around the station lyy means of conventional outkets at convenient points. All circuits should be properly fused.

Fusing

All transformer primary circuits should be properly fused. To deternine the approximate current rating of the fuse to be used, multiply each current being drawn from the supply in amperes by the voltage at which the current is being drawn. Include the current taken by bleeder rosistances and voltage dividers. In the case of series resistors, use the source voltage, not the voltage at the equipment end of the resistor. Include filament power if the transformer is supplying filaments. After multiplying the various voltages and currents, add the individual products. Then divide by the line voltage and add 10 or 20 per cent. Use a fuse with the ncarest larger current rating.

LINE-VOLTAGE ADJUSTMENT

In errain communities trouble is sometimes experiencerl from fluctuations in line voltage. L'sually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the timez when lights are turned on at evening, they may be taken care of by the use of a manuallyoperated compensating deviece A simple arrangement is shown in Fig. 7-31 A. A toy transformer is used to boost or buck the line voltage

Fig. 7-31-Two methods of transformer primary control. At A is a tapped toy transformer which may be connected so as to boost or buck the line voltage as required. At B is indicated a variable transformer or autotransformer (Variac) which feeds the transformer primaries.
as required. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrving the full load current of the entire transmitter, or that portion of it fed by the toy transformer.
The secondary is connected in serios with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primariss of the transmitter transformers can be brought up to the rated 115 volts bey setting the toy-transformer tap switeh on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 115 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affert the voltage regulation as seriously. The circuit of $7-3113$ illustrates the use of a variable autotransformer (Variac) for adjusting line voltage.

Another scheme by which the primary voltage of each transformer in the oransmitter may be adjusted to give a desired secondary voltage, with a master control for compensating for elanges in line voltage, is shown in Fig. 7-32.

This arrangement hats the following features:

1) Adjustment of the switch S_{1} to make the volt meter read 10 a volts automatically adjusts all transformer primaries to the predetermined correct voltage.

2) The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 115 to another, etc., as required to obtain the desired output voltage.
3) Independent control of the plate transformer is afforded by the tap switeh S_{2}. This permits power-input control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although comparatively expensive, special

Fig. 7-32-With this circuit, a single adjustment of the tap switch S_{1} places the correct primary voltage on all transformers in the transmitter. Information on constructing a suitable autotransformer at negligible cost is contained in the text. The light winding represents the regulor primary winding of a revomped tronsformer, the heavy winding the voltage-adjusting section.
transformers called constant-voltage transformers are available for use in cases where it is necessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 va. at 6.3 volts output, for small tube-heder demands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their output voltages within one per cent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a factor in construction. More important are the points of good high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safety to the operator. Exposed high-voltage terminals or wiring which might be bumped into accidentally should not be permitted to exist. They should he covered with adequate insulation or placed inaccessible to contact during normal operation and adjustment of the transmitter. Powersupply units should be fused individually. All negative terminals of plate supplies and positive terminals of bias supplies should be securely grounded to the chassis, and the chassis comnected to a waterpipe or radiator ground. All transformer, choke, and capacitor cases should also be gromded to the chassis. A.c. power cords and chassis connectors should be arranged so that exposed contacts are never "live." Starting at the conventional a.c. wall outlet which is female, one end of the cord should be fitted with a male plug. The other end of the cord should have a female receptacle. The input connertor of the power supply should have a male receptacle to fit the female receptacle of the cord. The power-output connector on the power supply should be a female socket. A male plug to fit this socket should be
connected to the cable going to the equipment. The opposite end of the cable should be fitted with a female connector, and the series should terminate with a male connector on the equipment. If connections are made in this manner, there should be no "live" exposed contacts at any point, regardless of where a disconnection may be made.

Rectifier filament leads should be kept short

Fig. 7-33-A typical low-voltage power supply. The two a.c. connectors permit independent control of filament and high voltage.

7-POWER SUPPLIES

to assure proper voltage at the rectifier socket, through a metal chassis, grommet-lined clearance holes will serve for voltages up to 500 or 750 , but ceramic feed-through insulators should be used for higher voltages. Bleeder and voltage-dropping resistors should be placed where they are open to air circulation. l'lacing them in confined space reduces the rating.

Fig. 7-34. A bottom view of the low-volrage power supply. The separate filament transformer is mounted against the lower wall of the chassis. The electrolytic filter capacitors are mounted on terminal strips. Rubber grommets are used where wires pass through the chassis.

It is highly preferable from the standpoint of operating eonvenience to have separate filament transformers for the rectifier tubes, rather than to use combination filament and plate transformers, such as those used in receivers. This permits the transmitter plate voltage to be switched on without the necessity for waiting for rectifier filaments to come up to temperature after each time the high voltage has been turned off. When using a combination power transformer, high voltage may be turned off without turning the filaments off by usiug a switch betwen the transformer renter tap and chassis. This switch should be of the rotary
type with good insulation between eontaets. The shaft of the switch must be grounded.

SAFETY PRECAUTIONS

All power supplies in an installation shouhl be fed through a single main power-line switeh so that all power may be cut off quickly, either before working on the equipment, or in case of an areident. Spring-operated switches or relays are not sutficiently reliable for this important service. Foolproof deviees for cutting off all power to the transmitter and ot her equipment are shown in lig. $7-37$. The arrangements shown in Fig. 7-$3-\mathrm{A}$ and 13 are similar circuits for two-wire (115volt) and three-wire (2:30-volt) systems. s is an enclosed double-throw knife switch of the sort usually used as the entrance switch in house installations. J is a standard a.c. outlet and P a shorted plug to fit the outlet. The switch should be located prominently in plain sight and ment-

Fig. 7-36-Bottom view of the high-voltage supply. The electrolytic capacitors (connected in series) are mounted on an insulating board. Voltage-equalizing resistors are connected across each capacitor. Separate input connectors are provided for filament and plate power.

Fig. 7-35-A typical high-voltoge supply. The sockets for the 866A mercury-vapor rectifier tubes ore spaced from the metal chassis by small cone insulators. Note the insulated tube plate connectors, the safety high-voltage output terminol and the fuse.

Fig．7．37－Reliable arrangements for cutting off all power to the transmitter．S is an enclased double－pole knife－type switch，J a standard a．c．outlet．Pa shorted plug to fit the outlet and I a red lamp．

A is for a two－wire 115 －volt line，B for a three－wire 230 －volt system，and C a simplified arrangement for low－power stations．
bers of the honschold should be instructed in its lowation and use，l is a red lamp located atongside the switeh．Its purpose is not so much to serve as a warning that the power is on as it is to help， in identilying and quickly lorating the switern should it berome neressary for somerone else to cut the power off in in emergency．

The outlet J shonld be plated in some comen out of sight where it will not be a temptation for chikren or others to phey with．The shorting phag can be removed to open the power circuit if there are others around who might inadvertently throw the switch while the operator is working on the rig．If the operator takes the plug with him，it will prevent someone from turning on the power
in his absence and either injuring themedves or the equipment or perhaps starting a fire．Of ut－ most importance is the fuct that the outlet J must be plated in the ungrounded side of the line．
Those who are operating low power and feel that the expense or complication of the switeh isn＇t warranted can use the shorted－plug idea as the main power switeh．In this case，the outlet should be located prominently and identified by a signal light，as shown in Fig．7－37C．
＇The test bench ought to be fed through the main power switch，or a similar arrangement at the bench，if the bench is located remote from the transmitter．

A bleoder resistor with a power rating gi ving a considerable margin of safety should be used across the output of all transmitter power sup－ plies so that the filter caparitors will be dis－ chargod when the high－voltage transformer is turnod off．

All types listed below are rated as follows：Max． input r．ans．volts－130，Max．peak inverse volts －380．Series resistors of 47 olums are recom－ mended for units rated at less than（6ī ma．， 22 ohms for 7%－and 100 －ma．units， 15 ohms for $1: 30$－ma． units，and 5 ohms for all higher－current units．						
D．C．	Manufacturer					
	A	B	C	D	E	F
20	1159		85：20			
30	．．．．			811	\cdots	\ldots
35			8535			
50		RSC6a			50	
（i）	1002． 4	R＊＊6\％	6 S 6 5	8.11	$6{ }^{-}$	NA－5
75	1003． 1	1RS\％	6×75	5 M 4	75	NH－5
100	1004.4	RSiot	（3） 100	5×11	100	NC－5
150	1005.1	RS150	6×1.50	－P1	150	ND． 5
200	1006.4	1RS200	6＊：300	－ R 1	200	NE－5
250	1028.4	18ล2．0）	6ぐ20）	－Q1	250	Nr－s
300	1000.1	1RS300	6 CW 300	601	300	
3.80	1023	RSs3．0	6x 350	\％osi		NK－5
400	11：30	RS 400	6 S 400	ふ上2	400	N11－5
45		RStio	6 S 450			NJ－5
500	1179	12S500	6 S 500	が1	500	
fio）					600	
1000		12 S 1000				
A－Federal．B－International．C－Mallory． 1）－Radio Receptor．E－Sarkes－＇Rarzian F－ Sylvania．						

Silicon Rectifier Table		
JETEC Type	M／ar，／R．M．ハ． Input V＂olls	M/n.r. D.C. Lond Curtent
1N108：	140	¢（0）ma．
1． 1084	280	\％（0）ma．
1N110\％	840	42.5 ma．
1－N1110	1120	40）ma．
1．N1113	1960	32.5 ma．
＊ 111.50	1：30）	1.50 mat
＊ 1150	130）	5（\％）ma．

Germanium Rectifier Table					
（．11l 300 ma．d．c．output）					
JETEC Type	Mar．R．，1／s․ Volts Input	$\begin{gathered} J E T E C \\ T_{I /} \end{gathered}$	Mar．R．M．S． Volts Input	$\begin{gathered} \text { JETEC } \\ \text { Type } \end{gathered}$	Mar．R．M．S． Volls Input
1 Niom	70）	1 Nithol	70	1N611	210
1 N601	10．	1 N603．	210	1 N613	3：0
1 Nem	180	1 NGOHA	280	1N607A	35
1．Niol	280	1 N （0）．is	350	1N608A	70
1．Ntios	3．\％	1 N607	3.5	IN611A	210
	3\％	1 N 608	70	1N612A	280

Keying and Break-In

Sation 12.13:3 of the fec rembations says ". . . The frequencer of the emitted wave shatl be are ronstant as the state of the art permits." It also saty ". . . spurious radiat tion shall not be of sufficient intensity to (ause intorforence in receiving equipment of good engitherring design including aderguate selertivits characteristics, which is tuned to a fregueney or frequencies outside the fregueney bind of emission normally required for the tipe of emission loing employed be the amateur station."

The state of the art is such that an cmitted wave can be mighty stable, wet many corle (and phone) stations show f.m. and chirp that leavers them open to a citation bex the Commission. Kiry clicks (and splattor) represent violations of the spurious radiation "hanse, and it isn't hard to find evidences of them in any of the ham bands.

There are four factors that have to be eonsid(red in the keying of a transmiter. They are r.f. clicks, envelope shape, dhipp and backwave.

R.F. Clicks

Whenever any cirenit carrying d.e. or anc. is closed or broken, the small or large spark (depending upon the voltage and eurront) generates a small amount of r.f. during the instant of make or break. This r.f. covers a frequencer range of mathy megatereles. A typical exampla of this type of miniature transmitier is when a lamp or other appliance is switehed off in the house; at that instant a click maty be heard in the broadeast or short-wave radio. When a transmitter is keyed, of necessity some current must be handled by the key (and relay, if one is used), and the minute spark at the contanets usually eauses a click in the rocriver. This click has no effect on the transmitter, although many amateurs think it has. Nine it occurs at the same time that a (liek (if any) appears on the transmitter output, it is not possible for one to judge the clicks on his own transmitted signal by olseervation within the shack unless he has first removed the efferts of therse r.f. clicks. Fortunately, this is usually a simple matter, involving only a small r.f. filter at the contarets of the key (and relay, if used). TYpieal circuits and values are shown in Fig. 8-1. The effertiveness of the filter ean be easily cheeked by interrupting the normal amount of current with the key and listening to observe if any cliek can be heard. In other words, if your key mormally handles, for example, 50 ma. of current, the efferetiveness of the filter cem be chereked by keying that amount of current, without the tramsmitter rumning. The eurrent ran be ohtained from your power supply through a suitable resistor (romputed by (Ohm's Law). If vou don't eare to go to this trouble, and ofton it isn't necessary, listen on a lower freguener band
than vour transmitter and see if applying an r.f. filter at the key reduces the elicks. Ho this with the gain eontrol of the remiver bateked off and only a short length of wire comnereted to the reeriver antenna torminal. This cherek will work if your tramsmitter keying is alroady fiairly "soft," hut it is not a sure-fire test like interrupting the normal amount of current with no radio transmittor rumning.

Envelope Shape

The key chicks that go out on the air with your signal, and which make up one of the forms of spurious radiations mentioned in the opmong paragraph (the other two are harmonies and parasitio oscillations), are controlled loy the shape of the envelope of the sigual. The envelope is

A

B

C

Fig. 8-1 - Typical filter circuits to apply af the key (and relay, if used) to minimize r.f. clicks. The simplest circuit (A) is a small capacitor mounted at the key. If this proves insufficient, an r.f. choke can be added to the ungrounded lead (B) or in both leads (C). The value of C_{1} is .001 to $.01 \mu \mathrm{f}_{\mathrm{I}}, R F C_{1}$ and $R F C_{2}$ can be 0.5 to 2.5 mh ., with a current-carrying ability sufficient for the current in the keyed circuit. In difficult cases another small capacitor may be required on the other side of the r.f. choke or chokes. In all cases the r.f. filter should be mounted right of the key or relay terminals; sometimes the filter can be concealed under the key. When cathode or center-tap keying is used, the resistance of the r.f. choke or chokes will add cathode bias to the keyed stage, and in this case a highcurrent low-resistance choke may be required, or compensating reduction of the grid-leak bias (if it is used) may be needed.

A visible spark on "make" can often be reduced by the addition of a small (10 to 100 ohms) resistor in series with C_{1} (inserted at point " x "). Too high a value of resistor reduces the arc-suppressing effect on "break."

Keying Factors

simply the outline of the oscilloscope pattern of your transmitter output, but you don't need an oscilloseope to observe the elfoets. Fig. 8-2 shows representative soope patterns that might be obtatined with a given transmitter undor various conditions. The pattern at Fig. 8-2A is the transmitter output with no envelope-shaping provisions. A signal like this has horrible clicks on the

A

B

C

Fig. 8-2-Typical oscilloscope displays of a code transmitter. The rectangular-shaped dots (A) have serious key clicks extending many kc. either side of the transmitter frequency. Using proper shaping circuits increases the rise and decay times to give signals with the envelope form of B. This signal would have practically no key clicks. Carrying the shaping process too far, as in C , results in a signal that is too "soft" and is not easy to copy.
air, which are the inescapable result of turning the transmitter on and off too rapidly. The clicks can be redured bey providing cireuits that eanse the transmitter output to rise to full output and drop off to zero output relatively showly each time the key is closed and opened. The pattern of such a transmitter might look like Fig. 8-213, and it would be found that such a signal shows little if any clicks outside of the narrow reveiver range over which the code signal can be heard. If the shaping process is carried too far, and a signal like Fig. 8-2C is obtained, it may be found that the keying is too "soft" aml, while it shows no clicks anywhere, it is not too easy or pleasint to copy under weak-signal conditions.

One should understand that the on-the-air clicks are determined by the shaping, while the r.f. clicks caused by the spark at the key can only be heard in the station receiver and possibly a broalcast receiver in the same house or apartment.

Chirp

The frequency-stability ruference in the opening paragraph refers to the "chirp" observed on many sigmals. This is caused by a change in frequency of the signal during at single dot or dash. Chirp is an easy thing to detect if you know how to listen for it, although it is amazing how some operators will listen to a signal and say it has no chirp, when it actually has. The ausiest way to detect chirp is to tume in the code signal at a low beat note and listen for any change in frequeney during a dash. The lower the beat note, the easior it is to detert the frequence: change. Listening to a harmonic of the signal will aceentuate the frequency change.

The "state of the art" is such that code trans-
mitters can be built with no chirp, and it is fortunate that the FCCC hasn't seen fit to eniorce the regulation. Actually, a smatl amount of chirp, while notireable, does not prevent copy even under the sharpest selectivity conditions, although it is sometimes said that high-selectivity receivers can't hold chirpy signals. This just isn't true, unless the chirp is so band that the signal shouldn't be on the air anyway. The matin reasom for minimizing chirp, aside from complying with the letter of the regulations, is one of pride. since a properly-shaped chirp-free signal is a pleasure to copy and is likely to at tract attention by its rarity. Chirps camot be olserved on an oscilloscope pattern of the envelope.

Backwave

The last factor is "backw:be," a sigmal during key-up conditions from some amplifier-keyed transmitters. It isn't a very important factor these days, sine most amateurs are aware of it, although some operators listening in the shack to their own signals and hearing a backwove think that the backwate is hoard on the air. It isn't necessarily so, and the loest way to check is with an amateur a mile or more awsy. If he can't hear a backwave on your sion signal, you can be sure

Fig. 8-3-The basic cathode (A) and center-tap (B) keying circuits. In either case C_{1} is the r.f. return to ground, shunted by a larger capacitor for shaping. Voltage ratings at least equal to the cut-off voltage of the fube cre required. T_{1} is the normal filament transformer. C_{2} can be about $0.01 \mu \mathrm{f}$.

The shaping of the signal is controlled by the values of L_{1} and C_{1}. Increased capacitance at C_{1} will make the signol softer on break; increased inductance at L_{1} will moke the signal softer on make. In mony coses the make will be satisfoctory without ony inductance.

Values at C_{l} will range from 0.5 to 4μ., depending upon the tube type and operating conditions. The value of L_{1} will olso vary with tube type and conditions, and may range from a fraction of o henry to severol henrys. When tetrodes or pentodes are keyed in this manner, a smaller volue can sometimes be used at C_{1} if the screenvoltage supply is fixed and not obtained from the plate supply through a dropping resistor.

Oscillators keyed in the cathode circuit connot be softened on break indefinitely by increasing the volue of C_{1} becouse the grid-circuit time constant enters irto the oction.

Fig. 8.4-The basic circuit far blacked-grid keying is shawn at A. R_{1} is the narmal grid leak, and the blacking valtage must be at least several times the narmal grid bias. The click an make can be reduced by making C_{1} larger, and the click an break can be reduced by making R_{2} larger. Usually the value af R_{2} will be 5 to 20 times the resistance of R_{1}. The pawer supply current requirement depends upan the value of R_{2}, since clasing the key circuit places R_{2} acrass the blocking valtage supply.

An allied circuit is the vacuum-tube keyer of B. The fube V_{1} is connected in the cathade circuit af the stage ta be keyed. The values af C_{1}, R_{1} and R_{2} determine the keying envelape in the same way that they do far blacked-grid keying. Values ta start with might be 0.47 megahm far $R_{1}, 4.7$ megahm far R_{2} and $0.0047 \mu \mathrm{f}$. for C_{1}.

The blacking valtage supply must deliver several hundred valts, but the current drain is very low. The 684-G or ather law plateresistance triade is suitable for V_{1}. Ta increase the current-carrying ability af a tube keyer, several tubes can be cannected in parallel.

A vacuum-tube keyer adds cathade bias and draps the supply voltages to the keyed stage and will reduce the autput af the stage.
stiges) has no effect on the oscillator frequency. This ean be checked by listening on the oscillator frequency while the amplifier stage is keyed. Be sure to listen for chirp on either side of zero beat to eliminate the possible effert of a chirpy recoiver eaused by linevoltage changes or pulling. If no ehirp of the steadily-ruming oscillator cam be detected, you know that the transmitter can be keyed without chirp in the stage or stages you used for the test. You have no assurance that the transmitter can be keyed in an carlier stage without ehirp until you make the same tast with the earlier stage. Be proud if your transmitter ean be ampli-fier-keyed without chirp, but don't be surprised to find that it can't. Many transmitters, including some commercial desigus, won't pass the test. They just don't have sufficient isolation and buffer action.

An amplifier can be keved by any method that redures the output to zero. Neutralized stages can be keved in the cathode eircuit, although where powers over 50 or 75 watts are involved it is often desirable to use a keying relay or vaeum tube keyer, to minimize the chances for electrical shook. Tube keying drops the supply that it isn't there when your signal is weaker. Backwave is undesirable on your signal because it makes your signal a little harder to eopy, even with acepptable shaping and no ehirp.

Amplifier Keying

You can look at keving an amplifier either as turning it on and off with the key (and shaping properly) or as "modulating" the rarrier with the proper envelope. (The proper envelope might be something resembling lifg. 8-2B.) Using the latter approach, you recognize immediatedy that the applied modulation must have no effect on the oscillator frequeney if chirp is to be avoided. In a phone tramsmitter this means having adequate isolating stages between modulated stage and oseillator, and it means exuclly the same thing in a eode transmitter. Miny two-, three- and even four-stage transmitters are utterly incalpable of completely chirp-free amplifier keying beeause the severe "modulation" of the output stage has an effect on the oscillator frequency and "pulls" through the several stages. This is particularly true when the oseillator stage is on the same frequency as the keved output stage, but it can also happen when frequency multiplying is involved. Another source of reation is the variation in oscillator supply voltage under keying ronditions, although this ean usually be handed by stabilizing the oscillator supply with a l'R tube. If your objective is a completely chirp-free transmitter, the very first step is to make sure that keying the eontemplated amplifier stage (or
voltages and adds eathode bias, ponts tobe considered where maximum output is reguired. Bloeked-

Fig. 8-5-When the driver stage plate valtage is roughly the same as the screen valtage of a tetrade final amplifier, combined screen and driver keying is an excellent system. The envelape shaping is determined by the values of L_{1}, C_{1}, and R_{3}, although the r.f. by-pass capacitors C_{1}, C_{2} and C_{3} also have a slight effect. R_{1} serves as an excitation control for the final amplifier, by contralling the screen voltage of the driver stage. If a triode driver is used, its plate voltage can be varied for excitation control.

The inductor L_{1} will not be too critical, and the secondary of a spare filament transfarmer can be used if a low-inductance choke is not available. The values af C_{4} and R_{3} will depend upan the inductance and the voltage and current levels, but good starting values are $0.1 \mu \mathrm{f}$. and 50 ohms.

To minimize the possibility of electrical shack, it is recammended that a keying relay be used in this circuit, since both sides of the circuit are "hot." As in any transmitter, the signal will be chirp-free anly if keying the driver stage has no effect on the oscillatar frequency.

Stages to Key

grid keying is applicable to many neutrablized stages, but it presents problems in high-powered amplifiers and requires a source of negative voltage. Output stages that aren't neutralized, such as many of the tetrodes and pentodes in widespread use, will usually leak a little and show some backwave regardless of how they are keyed. In a case like this it may be necessary to key two stages to eliminate backwave. They can be keyed in the cathodes, with blocked-grid keying, or in the screens. When screen keying is used, it is not always suffieient to reduce the screen voltage to zero; it may have to be pulled to some negative value to bring the key-up plate current to zero, unless fixed negative control-grid bias is used. It should be apparent that where two stages are keyed, keying the earlier stage must have no effect on the oscillator frequency if completely chirp-free output is the goal.
Shaping of the keying is obtained in several ways. Blocked-grid and vacuum-tube keyers get suitable shatping with proper choice of resistor and capacitor values, while cathode and screengrid keying can be shaped by using inductors and capacitors. Sample circuits are shown in Figs. 8-3, 8-4 and 8-5, together with instructions for their adjustment. There is no "best" alljustment, since this is a matter of personal preference and what you want your signal to sound like. Most operators seem to like the make to be heavier than the break. All of the circuits shown here are capable of a wide range of adjustment.

If the negative supply in a grid-block keyod stage fails, the tule will draw excossive key-up current. To protect against tube damage in this eventuality, an overload relay can be used or, more simply, a fast-acting fuse can be included in the cathode circuit.

Oscillator Keying

The reader may wonder why oscillator keying hasn't been mentioned earlier, since it is widely used. The sad fact of life is that excellent oscillator keying is infinitely more difficult to obtain than is excellent amplifier keying. If the objeetive is no detectable chirp, it is probably impossible to obtain with oscillator keying, particularly on the higher frequencies. The reasons are simple. Any keyed-oscillator transmitter requires shan)ing at the oscillator, which involves changing the operating conditions of the oscillator over a significant period of time. The output of the oscillator doesn't rise to full value immediately, so the drive on the following stage is changing, which in turn may reflect a variable load on the oscillator. No oscillator has been devised that has no change in frequency over its entire operating voltage range and with a changing load. Furthermore, the shaping of the keyed-oscillator envelope usually has to be exaggerated, because the following stages will tend to sharpen up the keying and introduce clicks unless they are operated as linear amplifiers (as deseribed in detail later).

Acceptable oscillator keying can be obtained on the lower-frequency binds, and the methods used to key amplifiers can be used, but chirp-free
clickless oscillator keying is probably not possible at the higher frequencies. Occasionally some additional shaping of the signal will be introduced on make through the use of a clamp tube (and associated time constants) in the output stage, but it is no help on breik.

Break-In Keying

The usual argument for oscillator leying is that it permits break-in operation, which is true. If break-in operation is not contemplated and as near perfect keying as possible is the objective, then keying an amplifier or two by the methods outlined earlier is the solution. For operiting convenience, an automatic transmitter "turneronner" (see Camphell, QST', Aug., 1956), which will turn on the power supplies and switch antenna relays and receiver muting devices, can be used. The station switches over to the complete "transmit" condition where the first dot is sent, and it holds in for a length of time dependent upon the setting of the delay. It is equivalent to voice-operated phone of the type commonly used by s.s.h. stations. It does not permit hearing the other station whenever the key is up, as does full break-in.

Full break-in with excellent keying is not easy to come by, but it is easier than many amateurs think. Many use oscillator keying and put up with a second-best signal.

Three solutions to chirp-free break-in keying have been developed. One is the "silent v.f.o.,"

Fig. 8-6-When satisfactory blocked-grid or tube keying of an amplifier stage has been obtained, this VR-tube break-in cir cuit can be applied to the transmitter to furnish differential keying. The constants shown here are suitable for blocked-grid keying of a 6146 amplifier; with a tube keyer the $6 J 5$ and VR fube circuitry would be the same.

With the key uf, sufficient current flows through R_{3} to give a vo!tage that will cut off the oscillator tube. When the key is closed, the cathode voltage of the 6J5 becomes close to ground potential, extinguishing the VR tube and permitting the oscillator to operate. Too much shunt capacity on the leads to the VR tube, and too large a value of grid capacitor in the oscillator, may slow down this action, and best performance will be obtained when the oscillator (turned on and off this way) sounds "clicky." The output envelope shaping is obtained in the amplifier, and it can be made softer by increasing the value of C_{1}. If the keyed amplifier is a tetrode or pentode, the screen voltage should be obtained from a fixed poltage source or stiff voltoge divider, not from the plate supply through a dropping resistor.

A switch connected in series with the VR tube will, when opened, turn on the oscillator for "frequency spotting."

8-KEYING AND BREAK-IN

which consists of a well-shiclded oscillator and butfer stage running continuously at a low frequence. The output is keved before it gets out of the shielded eompartment, and in some applications several subserquent stages are also keyed. The ststem is still subject to sharpening by following stages. but it is quite satisfactory and is used in at least one commercial transmitur.

A second approach is to use a conversion exriter, in which two oscillators (one (rystal-controlled, one v.f.o.) run continuously and their outputs, with suitable buffer stages intervening, are fed to a mixer stage. The mixor stage output is the sum or difference frequency of the two oscillator frequencies, which hatve been selected to give a sum or difference in an amateur band. When the mixer stage is turned off by keying, no output appears in the amateur hand, and the offect is the same as keving an oscillator stage that ramot possibly chirp. The oseillator frequencies must be selected carefully so that none of their harmonies fall within an amateur band, and suflicient selectivity must be present in stages following the mixer to insure that no spurious signals are amplified. If the mixer alone is keyed, its envelope is subject to sharpening by later stages unless they are linear amplifiers.

A third approach is to turn the oscillator on fast before a keyed amplifier stage can pass any signal and turn off the oscillator fast after the keyed amplifier stage has cut off. The primeiple is called "differential keving" and a number of rircuits have been devised for accomplishing the artion. One of the simplest can be applied to any grid-block keyed amplifier or tube-keved stage by the addition of a triode and a VR tube, as in lig. 8-6. The triode is used as a cathode follower; with the key up a negative hias is applied to the oscillator grid through the VIR tube and the 10,000 -ohm resistor. When the key is elosed, the 6.J cathode goos immediately to ground potential, the VR tube is extinguished and the bias is removed from the oscillator. The oweillator turns on quickly. In the meantime, the amplifier bias, the voltage to which (${ }^{\prime} 1$ is charged, is discharging through R_{1}, the amplifier grid leak. The oscillator is turned on before the amplifier bias has been reduced to a value low enough for conduction through the tube. When the key is opened, the oscillator continues to run until the grid of the cathode follower has reached a voltage of more than - 175 volts, by which time the amplifier has stopped conducting. Using this keying
sustem for break-in, the keying will be chirp-free if it is chirp-free with the VR tube removed from its socket, to permit the oscillator to run all of the time. If the transmitter can't pass this test, it indicates that more isolation is required between keyed stage and oscillator.

Clicks in Later Stages

It was mentioned earlior that key clicks can be generated in amplifier stages following the keved stage or stages. This is often a puzzling problem to an operator who has spent considerable time adjusting the keying in his exciter unit for clickless keying, only to find that the clicks are bad when the amplifior unit is alded. There are two possible causes for the elicks: low-frequency parasitic oscillations and amplifier "clipping."

Under some conditions an amplifier will be momentarily triggered into low-frequency parasitic oscillations, and clicks will be generated when the amplifier is driven by a keyed exciter. If these clicks are the result of low-frequency parasitic oscillations, they will be found in "groups" of elicks occurring at 50 - to $150-\mathrm{ke}$. intervals either side of the transmitter frequency. Of course low-frequency parasitic oscillations ean be generated in a keyed stage, and the operator should listen carefully to make sure that the output of the exeiter is clean before he blames a later amplifier. Low-frequency parasitic oscillations are usually caused by poor choice in r.f. choke values, and the use of more inductance in the plate choke than in the grid choke for the same stage is recommenderl. (See Section Six and "low-frequency parasitic oscillations.")

When the elicks introduced by the addition of an amplifier stage are found only near the transmitter frequency, amplifier "elipping" is indicated. It is quite common when fixed hias is used on the amplifier and the hias is well past the "cut-off" value. 'The effect can usually be minimized or climinated by using a combination of fixed and grid-leak hias for the amplifier stage. The fixed hias should be sufficient to hold the kev-up phate current only to a low level and not to zero. In a triode amplifier. overdriving the amplifier can also result in elipping that will add key clicks, and the cure is to reduce the drive. The output won't suffer appreciably.

A linear amplifier (Class $A 3_{1}, \dot{A} 3_{2}$ or 13) will amplify the excitation without adding any clicks, and if clicks show up a low-frequency parasitic oscillation is probably the reason.

Testing Your Keying

The choice of a keying circuit is not as important as its complete testing. Any of the rircuits shown in this section can be made to give satisfactory keying, but it must be adjusted properly.

The easiest way to find out what your keyed signal sounds like on the air is to trate stations with a near-by ham friend some evening for a short QSO. If he is a half mite or so away,
that's fine, but any distance where the signals are still s9 will be satisfactory.

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash spacing. (The letter "I"" at about $5 \mathrm{w} . \mathrm{p} . \mathrm{m}$.) With the crystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get crisp signals instead of mushy ones) and tune slowly

No clicks on"make"beyond these
points

RECEIVER TUNING DIAL

Fig. 8-7-Representations of a clean c.w. signal as a receiver is tuned through it. (A) shows a receiver with no crystal filter and the b.f.o. set in the center of the pass band, and (B) shows the crystal filter in and the receiver ddjusted for single-signal reception. The variation in thickness of the lines represents the relative signal intensity. The audis frequency where the signal disappears will depend upon the receiver selectivity characteristic and the strength of the signal.
from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as yours or someone else's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the click on "break" should be practically negligible at any point. Fig. 8-7.1 shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of $35-$ or $40-\mathrm{w}, \mathrm{p} . \mathrm{m}$. dots with the bug - if they are easy to copy, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keying. If the receiver has poor selectivity with the crystal filter out, make one last check with the filter in (Fig. $8-7 \mathrm{~B}$), to see that the clicks off the signal are negligible even at high signal level,

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little more careful. The first step is to get rid of the r.f. click at the key, as described earlier, because if you don't you cammot make further olservations. Locally (meaning in your own receiver) this click will coincide in time with clicks that may or may not be on your signal, so there is just no way to observe your signal without first eliminating the r.f. click.

So far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you may have cleaned up some clicks in the broadeast set. Now disconnect the antenna from vour receiver and short the antenna terminals with a short piece of wire. Tune in your own signal and reduce the r.f. gain to the point where your receiver doesn't overload. Detune any antenna trimmer the receiver may have. If you can't avoid overload within the r.f, gain-control range, pull out the r.f. amplifier tube and try again. If you still ean't avoid overload, listen to the second harmonic as a last resort. Since an overloaded receiver can generate clicks, it is casy to realize the importance of eliminating overload during any tests or observations.

Describing the volume level at which you should set your receiver for these "shack" tests is a little difficult. The r.f. filter should be effective with the receiver running wide open and with an antenna connected. When you turn on the transmitter and take the other steps mentioned to reduce the signal in the receiver, run the audio up and the r.f. down to the point where you can just hear a little "rushing" sound with the b,f.o. off and the receiver tuned to the signal. This is with the crystal filter in. At this level, a properly-adjusted keying circuit will show no clicks off the rushing-sound range. With the b.f.o. on and the same gain setting, there should be no clicks outside the beat-note range. When observing clicks, make the slow-dash and fast-dot tests outlined previously.

Now you know how your signal sounds on the air, with one possible exception. If keying your transmitter makes the lights blink, you may not be able to tell too accurately about the chirp on your signal. However, if you are satisfied with the absence of chirp when tuning either side of zero beal, it is safe to assume that your receiver isn't chirping with the light flicker and that the observed signal is a true representation, No chirp) aither side of zero beat is fine. Don't try to make these tests without first getting rid of the r.f. click at the key, because clicks can mask a chirp.

Exchanging stations temporarily with another interested amateur is probably the best way tor cherk your keying. The second-best method is to check it in the shack as outlined sabove. The least satisfactory way is to ask another ham on the air how your keying sounds, although this seems to be a very popular method. The reason it is the least satisfactory is that many hams, for reasons of etiquette or QSL-card collecting, are reluctant to be highly eritical of another amateur's signal. In a great many coses they don't actually know what to look for or how to deseribe any aberrations they may olserve. Many can describe what the like to hear in the way of a clean code signal, but the little factors that soil a signal are indistinguishable. However, they can all be summed up as chirps and elicks on make and break. A signal can have none or all of these.

8 -KEYING AND BREAK-IN

Vacuum-Tube Keyers

The practical tube-kever circuit of Fig. 8-8 can be used for keying any stage of any transmitter. Depending upon the power level of the kered stage, more or fewor Type GBt-(tubes ean be eonmeeted in parallel to hathalle the neerssary current. The voltage drop, through a single $63+$ (; varies from about 70 volts at 50 mat. to 50 volts at 20 ma. Tubes added in parallel will reduce the drop in proportion to the number of tubes used.

When comnerting the output terminals of the kever to the cireuit to be keved, the grounded output terminal of the keyer must be conneeted to the transmitter ground. Thus the kever can be used only in negative-lead or cathode keying. When used in eathode keying, it will introduce
associated resistors and capacitors, since they are incorporated only to allow the operator to select the combination he prefers. But one the values have been selected, they can be soldered permanontly in place. The rule for adjusting the keving characteristie is the same as for blocked-grid keving.

A Low-Power Keyer

If a low-level stage ruming only a few watts is to be keved, the tube-kever circuit of Fig. 8-9 offers a simple solution. By using a $117 \mathrm{~L}, \overline{7}$ trpe tube, which incorporatos its own rectifier, it is only necessary to eonnect to some existing power

Fig. 8-8-Wiring diagrom of a practical vocuum-tube keyer.
cathode hias to the stage and reduce the output. This can be compensated for by a reduction in the grid-leak bias of the stage.

The negative-voltage supply a an be eliminated if a negative voltage is available from some other source, such as a hias supply. A simplified version of this circuit could eliminate the switehes and

Fig. 8-9-Simple low-pawer vacuum-tube keyer.
Connect keyer to a low-valtoge power supply of paint " X ".
their supply at the point marked " N ". The keving chanatoristie will vary with many fators, so the values of R_{1} and R_{2} only represent starting points for experimentation.

When the key or keying leatd hats poor insulation, the resistance may hecome low enough (particularly in humid weather) to reduce the blocking voltage and allow the keyer tube to pass some current. 'This may cause a slight baekwave, but it atn be cured by better insulation, or bey reduced valurs of resistors and inereased vabues of capacitors.

Monitoring of Keying

In general, there are two eommon methods for monitoring one's "fist" and signal. The first, and perhats more eommon type, involves the use of an andio oscillator that is keyed simultaneously with the transmitter.

The seeond method is one that permits reeciving the signal through one's receiver, and this gencrally requires that the receiver be tuned to
the transmitter (not always ronveniont unless working on the same fregueney) and that some mothod be provided for preventing overloading of the reeriver, so that a good repliea of the transmitted signal will be reecived. Dxenpt where quite low power is used, this usually involves a rolay for simultanemsly shorting the receiver input terminals and reducing the receiver gain.

"Little Oskey"- A Monitoring Oscillator and Keyer

Without modifying a recoiver or eathodekeyod transmitter in any way, "little ()akey" banks the recerver ontput and injerts a sidetome in the headphones when the key is down. It can also be used as a codr-pratice oscillator. No changes are required when frequency or band is changed.

Rederring to the cireuit in Fig. 8-10, the left-hand sertion of the 12,107 amplifier mixer handles the receiver output and delivers it to the phones jark. Its grid return is the 4.7 -megohm resistor and the $0.27-\mathrm{mog}$ ghm resistor. When the key is chosed a negative voltage is placed ateross the 0.27 -megohm resistor, and this bits ruts off the signal from reeociver to phones jack. At the same time the voltage is applied to the audio oscillator section of the lower 12Al 7 , and any desired amomet of the developed tone is applied to the phones jarek viat the right-hand seetion of the 12.AL' amplifier-mixer. The desired amount is controlled hy the setting of the 0 , 5 -megohm oscillator gain control. Two power supplies are used; plate voltage for the oseillator-mixer is provided by a selenium reertifior in a half-wave rectifier circuit, and the megative supply for the bias and oscillator is fumished by a voltage tripler using a section of a 12.107 and two erystal diodes. Two small (i-volt filament transformers
comnerted "back to back" are used for obtaining the neressary operating voltages. A toggle switeh, S_{2}, permils keying the transmitter without banking the receriver or introdueing the athdis sidetone, should this be required for frequency spotting or monitoring.

No sperial preatutions are necessary in laying out the unit. In fart, the monitor may be built in at cobinot and plamed alongside of the receiver. When wiring the unit, it is a good idea to keep the leads courving ace away from the amplifier input to prevent hum. Care should also be taken whon soldering the crystal diodes. Ilolding the diode lads with a pair of long-nose pliors white soldering is good insuraber against ruining a erystal. Terminal strips can be used conveniently for mounting parts surh as the solenium rectifier and to serve as tie points for resistors, capacitors, ete.

The frequency of the sidetone audio oseillator can be adjusted by changing the grid capabitor, ('1. If the audio oscillator fitils to oscillate, the primary leads of the interstage thansformer should be reversed.

It is a very simple matter to insert the monitor into an existing station. The cable from the unit is phaged into the keyed circuit and the receiver output and head-phones are plugged into the

Fig. 8-10-Schematic diagram of "Little Oskey." All resistors $1 / 2$ watt. All capacitors in $\mu \mu \mathrm{f}$. unless specified otherwise. The tube heaters get their power from the 6.3 -volt line between T_{1} and T_{2}; pins 4 and 5 go to one side of the 6.3 -volt line and pin 9 to the other.

8 -KEYING AND BREAK-IN

unit. Switch S_{1} is used to turn the unit off and on. If for some reason it is desired to operate temporarily without the unit (such as when zerobeating) the toggle switch, s_{2}, may be opened and the unit becomes inoperative.

With S_{2} closed, everything is ready. When the key is up the receiver is heard; when the key is down a sidetone is heard and the transmitter is keved. The oscillator tone level can be adjusted with the gain control on the unit, while the receiver level is controlled at the receiver. If the station being worked wishes to break in, his signals can be heard between the characters being transmitted.
Since the receiver is actually on during keydown conditions (even though in the headphones it appears to be off), care should be taken not to damage the recciver by r.f. overloading. The monitor has been used successfully with a cathode-keyed transmitter running as high as 200 watts input but separate transmitting and
receiving antennas were used. The unit cannot be used with grid-block keyed transmitters - it is designed for cathode-keyed rigs only. However, it is usually a simple matter to change the keying circuit of a transmitter. "Little ()skey" does nothing to the keying of the transmitter, and that must still be shaped by the methods outlined elsewhere in this chapter. In some installations it may not be possible to work full break-in because the receiver does not recover fast enough from the overload the transmitter places on it. In such cases it may be helpful to use a smaller receiving antenna or one that is farther from the transmitting antenna, to reduce the transmitter pick-up and the receiver overload that is causing the long recovery time.

If the transmitter and receiver are turned off the monitor can be keyed and used as a codepractice oscillator. The sidetone will appear in the headphones as the unit is keyed.
(From QST', October, 1955.)

Break-In Operation

Break-in operation requires a separate receiving antenna, since none of the available antena change-over relays is fast enough to follow keying. The receiving antenna should be installed as far as possible from the transmitting antenna. It should be mounted at right angles to the transmitting antema and fed with low pick-up lead-in material such as coaxial cable or 300 -ohm Twin-Lead, to minimize pick-up.

If a low-powered transmitter is used, it is often quite satisfactory to use no special equipment for break-in operation other than the separate receiving antenna, since the transmitter will not block the receiver too seriously. Even if the transmitter keys without elicks, some clicks will be heard when the receiver is tuned to the transmitter frequeney because of overload in the receiver. An output limiter, as described in Section Five, will wash out these clicks and permit good break-in operation even on your transmitter frequency.

When powers above 25 or 50 watts are used, special treatment is required for quiet break-in
on the transmitter frequency. A means should be provided for shorting the input of the receiver when the code characters are sent, and a means for reducing the gain of the receiver at the same time is often necessary. The system shown in Fig. $8-11$ permits quiet break-in operation for higher-powered stations. It requires a simple operation on the receiver but otherwise is perfectly straightforward. h_{1} is the regular receiver r.f. and i.f. gain control. The ground lead is lifted on this control and run to a rheostat, R_{2}, that goes to ground. A wire from the junction runs outside the receiver to the keying relay, K_{1}. When the key is up, the ground side of R_{1} is connected to ground through the relay arm, and the receiver is in its normal operating condition. When the key is closed, the relay closes, which breaks the ground connection from R_{1} and applies additional bias to the tubes in the receiver. This bias is controlled by R_{2}. When the relay closes, it also closes the circuit to the transmitter oscillator. A filter at the key suppresses the clicks caused by the relay current.

The keying relay should be mounted on the

Fig. 8-11-Wiring diagram for smooth break-in operation. The lead shown as a heavy line and the lead from bottom relay contact to ANT post on receiver should be kept as short as possible for minimum pickup of the transmitter signal.
R_{1}-Receiver manual gain control.
$\mathrm{R}_{2}-5000$ - or 10,000 -ohm wire-wound potentiometer.
K_{1}-S.p.d.t. keying reloy. Al-
though battery and
d.c. relay are shown, any suitable a.c. or d.c. relay and power source can be used.

Break-In Operation

receiver as close to the antenna terminals as possible, and the leads shown havy in the diagram should be kept short, since long leads will allow too much signal to get through into the receiver. A good high-speed keying relay should be used.

A fow of the recent communications receivers bring the return lead from the r.f. gain control to a normally-shorted terminal at the rear of the receiver. The preceding break-in system can be readily applied to a receiver of this type, and it will repay the receiver owner to study the instruction book and determine if his receiver already has this connection made in it. Other receivers have provision for reducing the gain or for blanking the receiver; one popular model
has provision for bringing in negative bias from a transmitter grid leak to cut off an audio stage during transmit periods.

Full descriptions of systems for break-in operation can be found in the following (QST' articles:
Crawfis, "Simplified 'Break-In with One Antenna," "Nov., 1954.
Goodman, "VIR Break-In Keying," Feb., 1954.
Hays, "Selenium Break-In Keying," July, 1955.
Miller and Meichner, "TVG - An Aid to BreakIn," March, 1953.
Puckett, "'De Luxe' Keying Without Relays," September, 1953 ; Part II, Dec., 1953.
Puckett, "C.W. Man's Control Unit," Feb., 1955.

Receiver Muting and Grid-Block Keying

The muting system shown in Fig. 8-12 can be used with any grid-block or tube-keyed transmitter, and it is particularly applicable to the VR-tube differential keying eireuit of Fig. 8-6. Referring to Fig. 8-12, R_{1}, R_{2} and C_{1} have the same values and functions that the similarlydesignated components in IFigs. 8-4 and 8-6 have. When the key is open, a small current will flow through R_{3}, the 0A2 and R_{2}, and the voltage drop across R_{3} will be sufficient to cut off the 6 C 4 . With the 6C4 cut off, there is no current through R_{4} and consequently no voltage appearing across R_{4}. The voltage of the receiver a.v.c. bus is zero with respect to ground.

When the key is closed, there is insufficient voltage across the 0az to maintain conduction, and consequently there is no current flow through R_{3}. With zero voltage between grid and cathode, the 604 passes current. The drop across R_{4}, and thas the nogative voltage applied to the a,v.c. line in the recoiver, is determined by the value of R_{4}. Thus the key-down grain of the receiver can be adjusted to permit listening to one's own signal, by increasing the value of R_{4} until the receiver output level is a comfortable one. To utilize the same antenna for transmitting and receiving, and thus benefit during receiving from any directional properties of the antenna, an electronic transmit-receive switch can be used (sce later in this section).

The receiver a.v.c. bus can be located by reference to the receiver instruction manual, and connection be made to it through a length of shielded

Fig. 8-12-Circuit diagram of a receiver muter for use with grid-block or tube keying.
C_{1}-Shaping capacitor, see text.
$\mathbf{R}_{1}, \mathbf{R}_{2}$-Shaping resistors, see text.
$\mathrm{R}_{3}-0.1$ megohm.
R_{4}-15,000-ohm 2 -watt potentiometer
$\mathrm{RFC}_{1}-1$ mh. or less.
wire. The a.v.c. switch in the receiver must be turned to on for the muter to be effective.

If desired, the muting circuit can be built into the transmitter, or it ran be mounted on a shelf or small chassis behind the receiver. The two negative voltages can be furnished by one supply and a reasonably heavy voltage divider; the main requirement of the supply is that the nominal -125 volts remain below the normal voltage drop of the 0A2 (150 volts). Installation of the muting circuits should have little or no effect on the keying characteristic of the transmitter; if it does the characteristic can be restored by proper values for R_{1}, R_{2} and C_{1}.

The "Matchtone"

The "Matehtone" is a rombination of the Monimatch (see Section 21) and a c.w. tone generating monitor. It consists of a transistor audio oscillator which uses the Monimateh as a keyed source of d.c. power. In addition to the usual function it can be used by the sightless amateur as an audible transmitter-antenna tuning indicator.

While direct monitoring of c.w. transmissions
via the receiver is a preferred method because it can reveal much about the keying characteristics, transmissions offset from the receiving frequency call for a separate monitor. The self-powered transistorized monitor fills the bill nicely. The use of the r.f. bridge, already connected in the r.f. transmission line, as a source of power for the monitor is a logical choice.

The cireuit of the Matchtone and the connec-

8 -KEYING AND BREAK-IN

tions to the Monimateh and the reeriver are shown in Figg. 8-13. A smatl 2- or 3-to-1 push-pull grid-to-phate audio interstage transformer is used for feedback as well as for coupling to the receiver. If a transformer having a p.p. grid winding is not available from the junk box, the audio coupling to the receiver can be obtained by connerting ('a to the ungrounded sud of R_{1}. While use of a low value of eapacitance for f_{2} is necessary to avoid excessive shunting of the high-impedance rerciver audio eirenit, the value shown will provide sufficiont coupling for a good audio tone level from the monitor. A third possibility for the audio output connection from the monitor is to substitute the hadphones for R_{1}, togother with a singlepole double-throw switch or relay to switch the phones between the monitor and the rereiver. The on-off switch, S_{1}, can lo made a part of R_{2} by use of a volume control switeh attachment.

The value shown for C_{1} gives an audio piteh in the $500-1000$ revele range, deproding sonewhat on the particular transformer, the setting of R_{2} and the transmitter output power. Other values of C_{1} can be used to adjust the piteh to the operator's individual proterenec. Rem may be adjusted to compensate for the changes in the d.e. current from the Monimateh caused by a change in transmitter frequency band or power. Using (rither a 2 N 109 or a CK゙2! transistor, the circuit should oscillate with usable audio level with as little as 0.1 ma. d.e. flowing to ground through the monitor. Other low-rost transistors such as the $2 N 10^{-7}$ and the $2 N 170$ should work equally well.

Berause the pitch of the audio tone is to some degree dependent upon the d.e. voltage oltatined from the Monimateh, the piteh gives a reasonably acourate indication of correet fimal amplifier plate (eircuit tuning (maximum power output) and, if an antemna tuner is used, will also indieate resonance of the tuner to the transmitter output frequency. This chartucteristic of the Matchtone
should be of considerable aid to sightless ama-

Fig. 8-13-Circuit of the Matchtone. Section enclosed in dashed line is the Monimatch and its indicating circuit. Braid of shielded lead to audio grid should connect to receiver chassis.
C_{t}-Paper.
C_{2}-Mica or ceramic.
$\mathrm{Q}_{1}-2 \mathrm{~N} 109$, CK7 22 or similar.
$R_{t}-1000$ ohms, $1 / 2$ watt.
$R_{2}-0.25$-megohm volume control.
$S_{1}-$ S.p.s.t. toggle.
T_{1}-Push-pull interstage audio transformer, 2:1 or 3:1 total grid to plate.

Electronic Transmit-Receive Switches

No antenna relay is fast enough to switeh an antenna from transmitter to reereiver and back at normal keying speods. As a consequence, when it is desired to use the same antenna for transmitting and receiving (a "must" when directional antemas are used) and to operate e.w. break-in or voice-controlled sideband, an electronir switch is used in the antenna. The word "switch" is a misnomer in this case; the transmitter is connected to the antenna at all times and the t.r. "switch" is a device for preventing burn-out of the receiver by the transmitter.

One of the simplest approtehes is the circuit shown in Fig. 8-14. The 6Ct cathode follower couples the incoming signal on the line to the receiver input with only a slight reduction in gain. When the transmitter is "on." the grid of the 6 C 4 is driven positive and the rectified current biases the $6 \mathrm{C}+$ so that it can pass very little power on to the receiver. The factors
that limit the r.f. voltage the circuit can handle are the voltage break-down rating of the $4 \bar{i}-\mu \mu \mathrm{f}$. capacitor and the voltage that may be safely applied loetween the grid and cathode of the tube.

To avoid stray pick-up on the lead between the cathode and the antenna terminal of the recoiver, this lead should be kept as short as possible. The entire unit should be shielded and mounted on the recoiver near the antema terminals. In wiring the tube socket, input and output circuit components and wiring should be spiparated to reduce feed-through by stray coupling.

The t.r. switeh of Fig. 8-15 differs in two ways from the preceding example. By using a grounded eathode and a tumed plate circuit, a voltage gain is obtained through the tube. The input is taken from the plate of the transmitter output stage instead of from the transmission line, and as a result the voltage build-up

Electronic Transmit-Receive Switches

Fig. 8-14-Schematic diagram of cathode-follower t.r. switch. Resistors are $1 / 2$-watt. The unit. should be assembled in a small chassis or shield can and mounted on or very close to the receiver antenna terminals. The transmitter transmission line can be connected at J_{1} with an M-358 Tee adapter.
The heater and p!ate power can be "borrowed" from the receiver in most cases. (QST, May, 1956) J_{1}-SO- 239 coaxiol chassis receptocle.
in the transmitter tank is utilized. Linlike the preceding t.r. switch, which permits listening on frequencies or bands to which the transmitter is not tuned, this switch will not permit much receiver rosponse at frequencies removed from the transmitter frequency. In most cases this is no problem, since most operation is around one's transmitter frequency. The 2.2 K resistor across the plate circuit broadens the frequeney response and reduces the need for retuning over a band. In a commercial version of this switch, a broad-hand output transformer replanes L_{1} and the variable eaparitor, and no eroil ehanges are required in the range 3.5 to 30 Me

The switch of Fig. 8-15 ain be built in a small metal box and mounted in the transmitter close to the output stage. The plate and heater power can be "borrowed" from the transmitter: the plate power will be less than 15 ma. at 100 to 150 volts. The coaxial line to the recoiver can be any convenient length.

The capacitive voltage divider for foeding the t.r. switch is composed of the t.r. switch input capacitance (about $10 \mu \mu \mathrm{f}$.) and a series caparitor for connertion to the phate tank. A conservative value of the series capacitor for an a.m. platemodulated final can be caleulated by the following formula:

$$
C_{1}(\mu \mu \mathrm{f} .)=\frac{2500}{\text { l.c. plate volts }}
$$

The series capacitance as calculated above may be cloubled in value when the final is not modulated, as in e.w., grid modulation or in a linear power amplifier.

The series capacitance is generally less than $20 \mu \mu \mathrm{f}$. The capucitor should be of the low-loss variety and should be capable of withstanding
the tank voltage. For plate voltages of 800 volts or less, the disk type ceramic capacitors have been found to be adeduate. For greater voltages, an inexpensive capacitor may be fabricated from $\mathrm{RG}-8 / \mathrm{U}$ coaxial cable. This cable has a rating of approximately 6000 peak r.f. volts, and in the laboratory it withetands in excess of 20,000 volts of d.c. Actually, in normal use it is usually limited by current rather than voltage. The capacitance of the cable is $30 \mu \mu \mathrm{f}$. por foot, so that one may measure off the required capacitance by the inch, and end up with a really low-loss and practical unit.
The t.r. switch input is a high impedance for low frequencies. It is advantageous, fherefore, to) have the tank circuit at d.e. ground potential so that crosstalk at power-line frequencies will be eliminated. Fortunately, this is the case in practically all modern transmitters. A type of noise customarily picked up with electronic t.r. switches is that caused by plate current flowing in the power amplifier. It is necessary, therefore, to bias the tubes beyond cutoff when receiving.

TVI and T.R. Switches

The preceding t.r. switches generate harmonics when their grid circuits are driven positive, and these harmonies can eause TV1 if steps are not taken to prevent it. The switch of Fig. 8-14 should be well-shielded and used in the antenna transmission line betwen transmitter and lowpiass filter. The switch of Fig. 8-15, when mounted in a transmitter that was TVl-free, should not introduce any TVI beause the filtering that is successful for the transmitter should be successful for the harmonies generated by the t.r. switch.

Fig. 8-15-A t.r. switch that mounts in the transmitter. Resistors are $1 / 2$-watt.
C_{1}-Depends upon transmitter. See text.
L_{1} - Plug-in coil to tune to band in use. Coupling coil to receiver, 20 percent turns in L_{1} wound tight over "cold" end of L_{1}.

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelephone transmitters operate on the principles outlined earlier in this book in the section on vaeuum tubes. The design requirements are determined principally by the type of modulation system to be used and by the type of mierophone to be employed. It is necessary to have a clear understanding of modulation principles before the problem of laying out a speech system can be approached successfully. Those princibles are discussed under appropriate section headings.

The present section deals with the design of audio amplifier systems for commumication purposes. In voice communication the primary objective is to obtain the most effertive transmission; i.e., to make the message be understood at the receiving point in spite of adverse conditions created by noise and interference. The methods used to arcomplish this do not necessarily coincide with the methods used for
other purposes, such as the reproduction of music or other program material. In other works, "naturalness" in reproduction is distinctly secondary to intelligibility.

The fact that satisfactory intelligibility can be maintained in a relatively narrow band of frequencies is particulariy fortumate, because the width of the channel occupied by a phone transmitter is directly proportional to the width of the audio-frequeney hand. If the chamel width is reluced, more stations can ocrupy a given band of frequencies without mutual interference.

In speech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. The importance of such distortion in communication lies almost wholly in the fact that many of the audio-frequency harmonies caused by it lie outside the chammel needed for intelligible speech, and thus will ereate unnecessary interference to other stations.

Speech Equipment

In designing speech equipment it is necessary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the required audio power without overloading or undue distortion anywhere in the system.

MICROPHONES

The level of a microphone is its electrical output for a given sound intensity. Level varies greatly with microphones of different types, and depends on the distance of the speaker's lips from the microphone. Only approximate values based on averages of "normal" speaking voices can be given. The values given later are based on close talking; that is, with the microphone about an inch from the speaker's lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. lior understandable speed tramsmission only a limited frequency range is necossary, and intelligible specch can be obtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 cycles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the microphone is said to be flat between those limits.

Carbon Microphones

The carbon microphone consists of a metal diaphragm placed against an insulating cup containing loosely-parked carbon gramules (microphone button). Current from a battery flows through the granules, the diaphragm being one comection and the motal backplate the other. Fig. 9-1A shows connections for carbon mierophones. A variable resistor is included for adjusting the button current to the value as specified with the mierophone. The primary of a transformer is connected in series with the battery and microphone.

As the diaphragm vibrates, its pressure on the gramules alternately increases and decreases, causing a corresponding increase and decrease of current flow through the circuit, sinee the pressure changes the resistance of the mass of gramules The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer secondary.

Good-quality carbon mirrophones give outputs ranging from 0.1 to 0.3 volt aeross 50 to 100 ohms; that is, across the primary winding of the microphone transformer. With the step-up of the tramsformer, a peak voltage of between 3 and 10 volts can be assumed to be available at the grid of the

Speech Equipment

amplifier tube. The usual button current is 50 to 100 ma .

Piezo-electric Microphones

The crystal microphone makes use of the piezoelectric properties of Rochelle salts crystals. This type of microphone requires no battery or transformer and can be connected directly to the grid of an amplifier tube. It is a popular type of microphone among amateurs, for these reasons as well as the fact that it has good frequency response and is available in inexpensive models. The input circuit for the crystal microphone is shown in Fig. 9-1B.

Although the level of crystal microphones varies with different models, an output of 0.03 volt or so is representative for communication types. The level is affected by the length of the cable connecting the microphone to the first amplifier stage; the above figure is for lengths of 6 or 7 feet. The frequency characteristic is unaffected by the cable, but the load resistance (amplifier grid resistor) does affect it; the lower frequencies are attenuated as the value of load resistance is lowered. A grid-resistor value of at least 1 megohm should be used for reasonably flat response, 5 megohms being a customary figure.

The ceramic microphone utilizes the piezoelectric effect in certain types of ceramic materials to achieve performance very similar to that of the crystal microphone. It is less affected by temperature and humidity. Output levels are similar to those of crystal microphones for the same type of frequency response.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallic ribbon suspended between the poles of a magnet.

Velocity microphones are built in two types, high impedance and low impedance, the former being used in most applications. A high-impedance microphone can be directly connected to the grid of an amplifier tube, shunted by a resistance of 0.5 to 5 megohms (Fig. 9-1C). Lowimpedance microphones are used when a long connecting cable (75 feet or more) must be employed. In such a case the output of the microphone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. 9-1D.

The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies directly to the high-impedance type, and to the low-impedance type when the voltage is measured across the secondary of the coupling transformer.
The dynamic microphone somewhat resembles a dynamic loud-speaker. A lightweight voice coil is rigidly attached to a diaphragm, the coil being suspended between the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the coil back and forth between the magnet poles and generating an alternating voltage.

The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connecting cable must be unusually long, a lowimpedance type should be used, with a step-up transformer at the end of the cable.

THE SPEECH AMPLIFIER

The audio-frequency amplifier stase that causes the r.f. carrier output to be varied is called the modulator, and all the amplifier stages preceding it comprise the speech amplifier. Depending on the modulator used, the speech amplifier may be called upon to deliver a power output ranging from practically zero (only voltage required) to 20 or 30 watts.

Before starting the design of a speech anıplifier, therefore, it is necessary to have selected a suitable modulator for the transmitter. This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the type of modulation system selected, as described in Section 10. With the modulator picked out, its driving-power requirements (audio power required to excite the modulator to full output) can be determined from the tube tables in a later chapter. Generally speaking, it is advisable to choose a tube or tubes for the last stage of the speech amplifier that will be capable of

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-2-Resistance-coupled voltage-amplifier circuits. A, pentode; B, triode, Designations are as follows:
C_{1}-Cathode by-pass capacitor.
C_{2}-Plate by-pass capacitor.
C_{3}-Output coupling capacitor (blocking capacitor).
C_{i}-Screen by-pass capacitor.
R_{1}-Cathode resistor.
R_{2}-Grid resistor.
R_{3}-Plate resistor.
\mathbf{R}_{4}-Next-slage grid resistor.
R_{5}-Plate decoupling resistor.
R_{b}-Screen resistor.
Values for suitable tubes are given in Table 9-I. Values in the decoupling circuit, $C_{2} R_{5}$, are not critical. R_{5} may be about 10% of R_{3}; an 8 - or 10- $\mu \mathrm{f}$. electrolytic capacitor is usually large enough at C_{2}.
developing at least 50 per cent more power than the rated driving power of the modulator, This: will provide a factor of safety so that loseses in coupling transformers, ete., will not upset the calculations.

Voltage Amplifiers

If the last stage in the suerech amplifier is a Class AB_{2} or Class 13 amplifier, the stage ahead of it must be capable of sufficient power output to drive it. Ilowever, if the last stage is a Class $\mathrm{A} \mathrm{B}_{1}$ or Class A amplifier the prereding stage can be simply a voltage amplifier. From there on back to the mierophone, all stages are voltage amplifiers.

The important characteristics of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that can be secured from the stage without distortion. The amplifier frequency response should be adequate for voice reproduetion; this requirement is casily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amplifiors are given in Table 9-I, for resistance-coupled amplification.

The output voltage is in terms of peak voltage rather than r.m.s.; this makes the rating independent of the waveform. Exceeding the peak value causes the amplifier to distort, so it is more useful to consider only prak values in working with amplifiers.

Resistance Coupling

IResistance coupling generally is used in volt-age-amplifier stages. It is relatively inexpensive, good frequency response can be socured, and there is little clanger of hum piek-up, from stray magnetid fields assoriated with heater wiring. It is the most satisfactory type of foupling for the output rireuits of pentodes and high- μ triodes, because with transformers a sufficiently high loarl impedance cannot be obtained without considerable freguency distortion. Typical circuits are given in Fig. 9-2 and dexign data in Table !9-I.

Transformer Coupling

Transformor coupling betwern stages ordimarily is used only when power is to be transferred (in such a case resistance compling is very inefficient), or when it is neressaty to couple between a single-ended and a piosh-pull stage Triodes having an amplification factor of 20 or less are used in transformereoupled voltage amplifiers. With transormor compling, tubses should be operated under the (Mass i conditions given in the tube tables at the end of this books.

Representatior rircuits for roupling singleended to push-pull stages are shown in Fig. !-3. The circuit at 1 combines resistance and transformer coupling, and may be used for exciting the

Fig. 9-3-Transformer-coupled amplifier circuits for driving a push-pull amplifier. A is for resistance-transformer coupling; B for transformer coupling. Designations correspond to those in Fig. 9-2. In A , values can be token from Table 9-1. In B, the cathode resistor is calculated from the rated plate current and grid bias as given in the tube tables for the particular type of tube used.

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the ratio of the new voltage to 300 volts．Voltage gain is measured at 400 cycles．Capacitor values given are based on 100 －cycle cutoff．For increased low－irequency response，all capacitors may be made larger than specified（cut－off frequency in inverse proportion to capacitor values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen Bypass μ ．	Cathode Bypass μ ．	Blocking Capacitor $\mu \mathrm{F}$ ．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
6SJ7，12S］7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	0.019 0.016 0.007	$\begin{array}{r} 72 \\ 96 \\ 101 \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	0.25 0.5 1.0	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	0.07 0.06 0.06	8.5 7.4 6.9	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{gathered} \text { 6J7, 7C7; } \\ \text { 12J7-GT } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	61 82 94
	0.25	0.25 0.5 1.0	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	1100 1200 1300	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	0.008 0.005 0.005	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
6AU6，6SH7， 12AU6，12SH7	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \\ \hline \end{array}$	109 145 168
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \\ \hline \end{array}$	164 230 262
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	8.0 7.6 7.3	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 122 \\ \hline \end{array}$	248 318 371
6AQ6，6AQ7， 6AT6，6Q7， 6SL7GT，6S27． 6T8，12AT6． 12Q7－GT 12SL7．－GT （one triode）	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	－	4.4 3.6 3.0	0.027 0.014 0.0065	$\begin{aligned} & 40 \\ & 54 \\ & 63 \\ & \hline \end{aligned}$	34 38 41
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	二	$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \end{aligned}$	－	2.5 1.9 1.6	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 51 \\ & 65 \\ & 77 \end{aligned}$	42 46 48
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \end{aligned}$	－	$\begin{aligned} & 1.2 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	48 50 51
$\begin{gathered} \text { 6AV6, 12AV6, } \\ \text { 12AX7 } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二	$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$	\square	4.6 4.0 3.6	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	$\begin{aligned} & 45 \\ & 52 \\ & 57 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 2200 \\ & 2800 \\ & 3100 \end{aligned}$	－	$\begin{aligned} & 3.0 \\ & 2.3 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 54 \\ & 69 \\ & 79 \end{aligned}$	59 65 68
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 4300 \\ & 5200 \\ & 5900 \end{aligned}$	－	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 62 \\ & 77 \\ & 92 \end{aligned}$	69 73 75
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$	二	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	\square	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \end{aligned}$	－	－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \\ & 64 \end{aligned}$	39 42 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3280 \end{aligned}$		－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 72 \end{aligned}$	45 48 49
$\begin{aligned} & \text { 6CG7, 6J5, } \\ & \text { 7A4, 7N7, } \\ & \text { 6SN7-GT, } \\ & \text { 12J5-GT; } \\ & \text { (one triode) } \end{aligned}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	二	$\begin{aligned} & 1300 \\ & 1580 \\ & 1800 \end{aligned}$	－	3.6 3.0 2.5	$\begin{aligned} & 0.061 \\ & 0.032 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 59 \\ & 73 \\ & 83 \end{aligned}$	14 15 16
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二	$\begin{aligned} & 2500 \\ & 3130 \\ & 3900 \end{aligned}$	－	1.9 1.4 1.2	$\begin{aligned} & 0.031 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 68 \\ & 82 \\ & 96 \end{aligned}$	16 16 16
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 4800 \\ & 6500 \\ & 7800 \end{aligned}$	二二	$\begin{aligned} & 0.95 \\ & 0.69 \\ & 0.58 \end{aligned}$	0.015 0.0065 0.0035	$\begin{aligned} & 68 \\ & 85 \\ & 96 \end{aligned}$	16 16 16
$\begin{gathered} \text { 6C4; } \\ \text { 12AUU7 } \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	二	$\begin{array}{r} 870 \\ 1200 \\ 1500 \\ \hline \end{array}$	二	$\begin{aligned} & 4.1 \\ & 3.0 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 38 \\ & 52 \\ & 68 \end{aligned}$	12 12 12
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二二	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \end{aligned}$	二	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \end{aligned}$	12 12 12
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	二	$\begin{array}{r} 5300 \\ 8800 \\ 11000 \end{array}$	二二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 82 \\ & 92 \end{aligned}$	12 12 12

[^5]
9-SPEECH AMPLIFIERS AND MODULATORS

grids of a Class A or $A B_{1}$ following stage. The resistance coupling is used to keep the d.c. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its no-current value; this improves the low-frequency response. With low- μ triodes ($6 \mathrm{C} 5,6 \mathrm{~J} 5$, etc.), the gain is equal to that with resistance coupling multiplied by the sec-ondary-to-primary turns ratio of the transformer.

In 13 the transformer primary is in series with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transferring power (within the capabilities of the tube) to a following Class AB_{2} or Class B stage.

Phase Inversion

Push-pull output may be secured with resistance coupling by using phase-inverter or phasesplitter circuits as shown in Fig. 9-4.

The eircuits shown in Fig. 9-4 are of the "selfbalancing" type. In A, the amplified voltage

Fig. 9-4-Self-balancing phase-inverter circuits. V_{1} and V_{2} may be a double triode such as the 12AU7 or $12 A X 7$.
V_{3} may be any of the triodes listed in Table $9-1$, or one section of a double triode.

\mathbf{R}_{1}-Grid resistor (1 megohm or less).

\mathbf{R}_{2}-Cathode resistor; use one-half value given in Table $9-1$ for tube and operating conditions chosen.
$\mathbf{R}_{3}, \mathbf{R}_{4}$-Plate resistor; select from Table 9-1.
 ohm).
R_{7} - 0.22 megohm.
R_{8}-Cathode resistor; select from Table 9-I.
$\mathrm{R}_{9}, \mathrm{R}_{10}$-Each one-half of plate load resistor given in Table 9-I.
$C_{1}-10-\mu$ f. electrolytic.
$C_{2}, C_{3}-0.01$ - to $0.1-\mu \mathrm{f}$, poper.
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appears across R_{7} from V_{2} opposes the voltage from V_{2} across R_{7}, thus reducing the signal applied to the grid of V_{2}. The negative feedback so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially equal. The gain is slightly less than twice the gain of a single-tube amplifier using the same operating conditions.

In the single-tube circuit shown in Fig. 9-4B the plate load resistor is divided into two equal parts, R_{9} and R_{10}, one being comnected to the plate in the normal way and the other between cathode and ground. Since the voltages at the plate and cathode are 180 degrees out of phase, the grids of the following tubes are fed equal a.f. voltages in push-pull. The grid return of V_{3} is made to the junction of R_{8} and R_{10} so normal bias will be applied to the grid. This circuit is highly degenerative because of the way R_{10} is connected. The voltage gain is less than 2 even when a high- μ triode is used at V_{3}.

Gain Control

A means for varying the over-all gain of the amplifier is necessary for keeping the final output at the proper level for modulating the transmitter. The common method of gain control is to adjust the value of a.c. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentioncter.

The gain-control potentiometer should be near the input end of the amplifier, at a point where the signal voltage level is so low there is no danger that the stages ahead of the gain control will be overloaded by the full microphone output. With carbon microphones the gain control may be placed directly across the microphone-transformer secondary. With other types of microphones, however, the gain control usually will affect the frequency response of the microphone when connected directly across it. Also, in a high-gain amplifier it is better to operate the first tube at maximum gain, since this gives the best sigual-to-hum ratio. The control therefore is usually placed in the grid circuit of the second stage.

- DESIGNING THE SPEECH AMPLIFIER

The steps in designing a speech amplifier are as follows:

1) Determine the power needed to modulate the transmitter and select the modulator. In the case of plate modulation, a Class 13 amplifier may be required. Select a suitable tube type and determine from the tube tables at the end of this book the grid driving power required, if any.
2) As a safety factor, multiply the required driver power by at least 1.5.

Speech Amplifier Design and Construction

3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifier. Receiver-type power tubes can be used (beam tubes such as the 6L6 may be needed in some cases) as determined from the receiving-tube tables. If the speech amplifier is to drive a Class B modulator, use a Class A or AB_{1} amplifier.
4) If the speech-amplifier output stage is also the modulator and must operate Class AB_{2} to develop the required power output, use a lowor medium $-\mu$ triode to drive it. If more power is needed than can be obtained from one tube, use two in push-pull, in the driver. In either case transformer coupling will have to be used, and transformer manufacturers' catalogs should be consulted for a suitable type.
5) If the speech-amplifier output stage operates Class A or AB_{1}, it may be driven by a voltage amplifier. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a balanced secondary, or may be a dual-triode phase inverter. Determine the signal voltage required for full output from the last stage. If the last stage is a single-tube Class A amplifier, the peak signal is equal to the grid-bias voltage; if push-pull Class A, the peak-to-peak signal voltage is equal to twice the grid bias; if Class AB_{1}, twice the bias voltage when fixed bias is used: if cathode bias is used, twice the bias figured from the cathode resistance and the maxi-mum-signal cathode current.
6) From Table 9-I, select a tube capable of giving the required output voltage and note its rated voltage gain. A double-triode phase inverter (Fig. 9-4A) will have approximately twice the output voltage and twice the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium $-\mu$ triode and calculate the gain and output voltage as described earlier in this chapter.
7) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the peak voltage required at the grid of the next-to-the-last stage.
8) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be obtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will serve.
9) Divide the voltage found in (7) by the output voltage of the microphone. The result is the over-all gain required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
10) From Table $9-\mathrm{I}$, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in cascade. If high gain is required, a pentode may be used for the first speech-amplifier stage, but it is not advisable to use a second pentode because of the possibility of feedback and self-oscillation. In most cases a triode will give enough gain, as a seeond stage,
to make up the total gain required. If not, a medium- μ triode may be used as a third stage.

A high $-\mu$ double triode with the sections in cascade makes a good low-level amplifier, and will give somewhat greater gain than a pentode followed by a medium $-\mu$ triode. With resistancecoupled input to the first section the cathode of that section may be grounded (contact potential bias), which is helpful in reducing hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two dillisulties excessive hum, and unwanted fcedback. For reasonably humless operation, the hum voltage should not exceed about 1 per cent of the maximum audio output voltage - that is, the hum and noise should be at least 40 db . below the output level.
Unwanted feedback, if negative, will reduce the gain below the calculated value; if positive, is likely to cause self-oscillation or "howls." Feedback can be minimized by isolating each stage with decoupling resistors and capacitors, by avoiding layouts that bring the first and last stages near each other, and by shielding of "hot" points in the circuit, such as grid leads in lowlevel stages.

Speech-amplifier equipment, especially voltage amplifiers, should be constructed on steel chassis, with all wiring kept below the chassis to take advantage of the shielding afforded. Exposed leads, particularly to the grids of low-level high-gain tubes, are likely to pick up hum from the electric field that usually exists in the vicinity of house wiring. Even with the chassis, additionsl shielding of the input circuit of the first tube in a highgain amplifier usually is necessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly-high power levels; this will minimize magnetic coupling to the grid circuit and thus reduce hum or audio-frequency feedback. It is always safe, although not absolutely necessary, to separate the speech amplifier and its power supply, building them on separate chassis.

If a low-level microphone such as the crystal type is used, the microphone, its connecting cable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shielding; this should be connected to the speech-amplifier chassis, and it is advisable - as well as usually necessary - to connect the chassis to a ground such as a water pipe. With the top-cap tubes, complete shielding of the grid lead and grid cap is a necessity.

Heater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-

9-SPEECH AMPLIFIERS AND MODULATORS

tap is grounded, the heater leads to cach tube should be twisted together to reduce the manetie field from the heater current. With either type of connection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the corner to the tube socket by the shortest possible path.

When metal tubes are used, always ground the shell conmertion to the chassis. Glass tubes used in the low-level stages of high-gatin amplifiers must be shiedded; tube shiolds are obtainable for that purpose. It is a good plan to enclose the mbtire amplifier in a metal box, or at least provide it with a cane-metal cover, to avoid feod-back difli-
culties cansed by the r.f. field of the transmitter. 1R.f. pieked up on exposed wiring, leads or tube elements catses overloading, distortion, and self-oseillation of the amplifier.

When using paper capacitors as bypasses, be sure that the terminal marked "outside foil" is connected to ground. This utilizes the outside foil of the caparitor as a shield around the "hot" foil. When papor capabitors are used for coupling betwern stages, always ronmert the outside foil terminal to the side of the rirruit having the lowest imperdance to ground. [sually, this will be the plate side mather than the following-grial side.

Modulators and Drivers

CLASS AB AND B MODULATORS

Class AB or 13 modulator circuits are basionally identical no matter what the power output of the modulator. The diagrams of Fig. !-i) therefore will serve for any modulator of this type that the amateur may clece to buikl. The trionde cirenit is given at A and the circuit for tetrodes at B . When small tubes with indirectly-heated cathodes are used, the cathodes should be comeneded to ground.

Modulator Tubes

The audio ratings of various types of trams-

Fig. 9-5-Modulotor circuit diagroms. Tubes ond circuit considerations are discussed in the text.
mitting tubes are given in the seretion containing the tube tables. Choose a pair of tubes that is rapable of delivering sine-wave atuliopower equal to somerwhat more than half the d.e input to the modulated ('lass (: amplifier. It is sometimes convenient to we tubes that will oprotate at the sime plate voltage as that applined to the (Alass C stage, berause one power supply of adequate current capacity may then sullice for both stagers.

In estimating the output of the modulator, remember that the figures given in the tables are for the tube output only, and do not inclade out-put-transformer losses. To be arlequate for modalating the transmitter, the modulator should have a theoretical power rapability 15 to 25 per erent greater than the artual power nerded for modulation.

Matching to Load

In giving audio ratings on powrer tubes, manufarturers sperify the plate-to-plate load imperdanere into which the tubes must opreate to doliver the rated audio power output. This load impedance seldom is the same as the modubating impedanere of the Class Cer.f. stage, so a match most the brought about by adjusting the turns ratio of the coupling transformer. The requires thrus ratio, primary to secondary, is

$$
\therefore=\sqrt{\frac{Z / 11}{Z_{11}}}
$$

whore l Turns ratio, primary to seromblary
$Z_{12}=$ Modulating impodance of ('lass C r.t. amplifier
Z_{1}, Plate-to-plate load imperdance for (lass 13 tubes

Example: The modulated r.f. amplifier is to operate at 1250 volts and 250 ma. The power input is

$$
I=E I=1250 \times 0.25=312 \mathrm{watts}
$$

so the modulating power required is $312 / 2=$ 156 watts, lncreasing this by 25% to allow for losses and a reasonable operating margin gires

Modulators and Drivers

$156 \times 1.2 .5=195$ watts. The modulating impedance of the ("lass C stage is

$$
Z_{m}=\frac{E}{I}=\frac{1250}{0.25}=.3000 \text { ohms. }
$$

From the tube tables a pair of Class 13 tulum is sclected that will give 20) watti ontput when working into a 690 -ohm lowl. Wate-to-plate, "The primary-to-secondary thras ratio of the modulation transformer thedefore should the

$$
N=\sqrt{\frac{\overline{\%}}{\%+1}}=\sqrt{\frac{\sqrt{6+1(00}}{50(100)}}=\sqrt{1.3 \%}=1.17 .5: 1
$$

The reguired tramsiomerer ration fore the ordinats: range of imperdances are shown graphically in Fig. 9-6.

Dany morlulation transformers are provided with primary and secondary taps, so that varions turns ratios can be obtained to meet the requirements of particular tube combinations. However, it may be that the exact turns ratio poquired camnot be seroured, even with a tapperl modulation transformer. small departures from the proper turns ratio will have no scrions effer if the modulator is operating well within its capatbilities; if the actual turns ratio is within 10 per rent of the ideal value the system will operato satisfiactorily. Where the discrepaney is larger it is usually possible to choose a new set ol operating conditions for the Class C stage it give a modulating impedance that can bo matched by the turns ratio of the availatho transformer. This may require operating the Class (amplifier at higher voltage and less phate can' rent, if the modulating imperlanee must be increased, or at lower voltage and higher current if the modulating impedane must be derreated. However, this process cannot be carvied very fay without exceoding the ratings of the Class \mathbb{C} tubes for cither plate voltage or phate current, even though the power input is kept at the same figure.

Suppressing Audio Harmonics

Distortion in either the driver on Class B modulator will cause a.f. harmonies that may lie outside the frequency band neded for intelligible derech tramsmission. While it is almost impossible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequency hatrmonics.

The purpose of apateitors ('1 and ('z atoross the primary and secondary, respectively, of the Class
 strength of hamonies and unneressaty highfrequeney components existing in the mordulation. The capacitors at with the leakage inductanco of the transformer winding to form a rudimentary low-pass filter. The values of capacitane required will depend on the load resistance (modulating impedance of the Class C amplifier) and the leakage inductance of the particular trimsformer used. In gencral, raparitances betwem about 0.001 and $0.01 \mu \mathrm{f}$. will be required; the larger values are necessary with the lower values of load resistance. The voltage rating of cach capacitor should at least be equal to the d.e. voltage at the transformer winding with whith it is assoriated. In the case of C_{2}, part of the total capacitane re-

Fig. 9-6-Transformer rotios for matching a Class C modulating impedance to the required plate-to-plote laad for the Closs B madulator. The ratios given on the curves ore from total primary to secondory. Resistonce values are in kilohms.
quired will be supplied by the plate lin-pass or blocking raparitor in the modulated amplifier.

I still better arrangement is to use a low-pass filter as shown later, evern though chiphing is not dehiberately employed.

Grid Bias

Cortain triode designed for (Clase 13 audio work ran be operated without grid bias. Besides eliminating the grid-hias supple, the fact that arid current flows over the whole audio evele means that the load resistance for the driver is fairly constant. With these tubes the gaid-return lead from the center-t:ap of the input trinsformer seroudary is simply connected to the filament center-tap or cathode.

When the modulator tubes require bias, it should always be supplied from a fixed voltage soures. (athode bias or grid-leak bias canot be used witha (Cass 13 amplifier: with both types the hias changes with the amplitude of the signal voltage, whereas proper operation demands that the hias voltage be unvarying no matter what the strength of the signal. When only a small amount. of hias is required it can be obtained conveniently from a few dry rells. For langer hias voltages a heavy-duty" "K" battory may be used if tha grid current does not exceed 40 or 50 milliamperes on voice peaks. The batteries are charged by the grid current rather than discharged, but a battery nevertheless will deteriorate with time and its internal resistance will increase. When the increase in internal resistance becomes appreciable, the battery tends to act like a gridleak resistor and the bias varies with the applied signal. Batteries should be chereked with a voltmeter oreasionally while the amplifier is operating. If the bias varies more than 10 pe cent or wo with voice excitation the battery should be replaced.

9-SPEECH AMPLIFIERS AND MODULATORS

As an alternative to batteries, a regulated bias supply may be used. This type of supply is described in the power supply section.

Plate Supply

In addition to adequate filtering, the voltuge regulation of the plate supply should be as good as it can be made. If the d.c. output voltage of the supply varies with the load current, the voltage at maximum current determines the amount of power that can be taken from the modulator without distortion. A supply whose voltage drops from 1500 at no load to 1250 at the full modulator plate current is a 1250 -volt supply, so far as the modulator is concerned, and any estimate of the power output available should be based on the lower figure.

Good dynamic regulation-i.e., with sud-denly-applied loads - is equally as important as good regulation under steady loads, since an instantaneous drop in voltage on voice peaks also will limit the output and cause distortion. The output capacitor of the supply should have as much caparitance as conditions permit. A value of at least $10 \mu \mathrm{f}$. should be used, and still larger values are desirable. It is better to use all the available capacitance in a single-section filter rather than to distribute it between two sections.

It is particularly important, in the case of a tetrode Class B stage, that the screen-voltage power-supply source have excellent regulation, to prevent distortion. The screen voltage should be set as exactly as possible to the recommended value for the tube. The audio impedance between screen and cathode also must be low.

Overexcitation

When a Class B amplifier is overdriven in an attempt to secure more than the rated power, distortion increases rapidly. The high-frequency harmonics which result from the distortion modulate the transmitter, producing spurious sidebands which can cause serious interference over a band of frequencies several times the channel width required for speech. (This can happen even though the modulation percentage, as defined in the section on amplitude modulation, is loss than 100 per cent, if the modulator is incapable of delivering the audio power required to modulate the transmitter.)

As shown later, such a condition may be reached by deliberate design, in case the modulator is to be adjusted for peak
clipping. But whether it happens by accident or intention, the splatter and spurious sidebands can be eliminated by inserting a low-pass filter (Fig. $9-13$) between the modulator and the modulated amplifier, and then taking care to see that the actual modulation of the r.f. amplifier does not exceed 100 per cent.

Operation Without Load

Excitation should never be applied to a Class B modulator until after the Class C amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to absorb the power, the primary impedance of the transformer rises to a high value and excessive audio voltages may be developed in the primary - frequently high enough to break down the transformer insulation.

DRIVERS FOR CLASS.B MODULATORS

Class AB_{2} and Class B amplifiers are driven into the grid-current region, so power is con-

Fig. 9.7-Triode driver circuits for Class B modulators. A, resistance coupling to grids; B, transformer coupling. R_{1} in A is the plate resistor for the preceding stage, value determined by the type of tube and operating conditions as given in Table 9-1. C_{1} and R_{2} are the coupling capacitor and grid resistor, respectively; values also may be taken from Table 9-I.
In both circuits the output transfomer, ($T_{\mathrm{l}} T_{2}$) should have the proper turns ratio to couple between the driver fubes and the Class B grids. T_{1} in B is usually a $2: 1$ transformer, secondary to primary. R, the cathode resistor, should be calculated for the particular tubes used. The value of C, the cathode bypass, is determined as described in the text.

Modulators and Drivers

Fig. 9-8-Speech-amplifier driver for 10-15 watts output. Capacitances are in $\mu \mathrm{f}$. Resistors are $1 / 2$ watt unless specified otherwise. Capacitors with polarity indicated are electrolytic; others may be paper or ceramic.
CR_{1}-Selenium rectifier, 20 ma .
$\mathrm{R}_{1}-50,000$-ohm potentiometer, preferably wire wound.
T_{1}-Interstage audio transformer, single plate to pushpull grids, turns ratio 2 to 1 or 3 to 1 , total secondary to primary.
T_{2}-Class-B driver transformer, 3000 ohms plate-to-
plate; secondary impedance as required by Class- 8 tubes used; 15 watt rating.
T_{3} —Power transformer, 700 volts c.t., 110 ma.; 5 volis, 3 amp ; 6.3 volts, 4 amp .
T_{4}-Power transformer, 125 volts, 20 ma.; 6.3 volts, 0.6 amp .
sumed in the grid circuit. The preceding stage or driver must be capable of supplying this power at the required peak audio-frequency grid-to-grid voltage. Both of these quantitios are given in the manufarturer's tube ratings. The grids of the Class I3 tubes represent a varying load resistanm over the audio-frequency cycle, because the grid current does not increase directly with the grid voltage. To prevent distortion, therefore, it is necessary to have a driving source that will maintain the wave form of the signal without distortion even though the load varies. That is, the driver stage must have good regulation. To this end, it should be capable of delivering somewhat more power than is consumed by the Class B grids, as previously described in the diseussion on speerh amplifiers.

Driver Tubes

To secure good voltage regulation the internal impedance of the driver, as seen by the modulator grids, must be low. The principal component of this impedance is the plate resistance of the driver tube or tubes as reflected through the driver transformer. Hence for low driving-source impedance the effective plate resistance of the driver tubes should be low and the turns ratio of the driver transformer, primary to secondary,
should be as large as possible. The maximum turns ratio that can be used is that value which just permits developing the modulator grid-togrid a.f. voltage required for the desired power output. The rated tube output as shown by the tule tables should be reduced by about 20 per cent to allow for losses in the Class B input transformer.

Low $-\mu$ triodes such as the 6 B 4 G and 2 A 3 have low plate resistance and are therefore good tubes to use as drivers for Class AB_{2} or Class 1 B modulators. Tetrodes such as the 6 V 6 and 6 L 6 make very poor drivers in this respect when used without negative feedback, but with such feedback the effective plate resistance can be reduced to a value comparable with low- μ triodes.

Fig. 9-7 shows representative circuits for a push-pull triode driver using cathode bias. If the amplifier operates Class A the cathode resistor need not be bypassed, because the a.f. curronts from each tube flowing in the cathode resistor are out of phase and cancel each other. However, in Class AB operation this is not true; considerable distortion will be generated at high signal levels if the cathode resistor is not bypassed. The bypass capacitance required can be calculated by a simple rule: the cathode resistance in ohms multiplied by the hypass capacitance in microfarads should equal at least 25,000 . The

9-SPEECH AMPLIFIERS AND MODULATORS

voltage rating of the capacitor should be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the cathode resistance.

Example: A pair of 6 B 4 Gs is to be used in Class $A B_{1}$ self-biased. From the tube tables, the cathode resistance should be 780 ohins and the maximum-signal plate current 120 ma. From Ohm's Law,

$$
E=R I=780 \times 0.12=93.6 \text { volts }
$$

From the rule mentioned previously, the bypass capacitance required is

$$
C=25,000 / R=25,000 / 780=32 \mu \mathrm{f}
$$

A $40-$ or $50-\mu$ f. 100 -volt electrolytic capacitor would be satisfaetory
Fig. 9-8 is a typical circuit for a speech amplifier suitable for use as a driver for a Class $A B_{2}$ or Class 13 modulator. An output of about 13 watts can be realized with the power supply circuit shown (or any similar well-filtered supply delivering 300 volts under load). This is sufficient for driving any of the power triodes commonly used as modulators. The 6134Gs in the output stage are operated Class AB_{1}. The cireuit provides several times the voltage gain needed for communications-type crystal or ceramie microphones.

The two sections of a $12 \mathrm{AX7}$ tube are used in the first two stages of the amplifier. These are resistance coupled, the gain control being in the grid cireuit of the seeond stage. Although the eathode of the first stage is grounded and there is no separate bias supply for the grid, the grid

Fig. 9-9-Negative.feedback circuits for drivers for Class B modu* lators. A-Single-ended beam.tetrode driver. If V_{1} and V_{2} are a $6 J 5$ and 6V6, respectively, or one section of a 6CG7 and a 6AQ5, the following values are suggested: $R_{1}, 47,000$ ohms; $R_{2}, 0.47$ megohm; R3, 250 ohms; $R_{1}, R_{5}, 22,000$ ohms; $C_{1}, 0.01 \mu f_{1} ; C_{2}, 50 \mu \mathrm{f}$.

B-Push-pull beam-tetrode driver. If V_{1} is a 6J5 or 6CG7 and V_{2} and V_{3} 6L6s, the following values are suggested: $R_{1}, 0.1$ megohm; $R_{2}, 22,000$ ohms; $R_{3}, 250$ ohms; $C_{1}, 0.1 \mu \mathrm{f}$.; $C_{2}, 100 \mu \mathrm{f}$.
bias actually is about one volt because of "contact potential."

The third stage uses a medium- μ triode which is coupled to the 6B4G grids through a transformer having a push-pull secondary. The ratio may be of the order of 2 to 1 (total secondary to primary) or higher; it is not critical since the gain is sufficient without a high step-up ratio.

The output transformer, T_{2}, should be selected to couple between push-pull 6B4Gs (or 2A3s) and the grids of the particular modulator tubes used.

The power supply has a capacitor-input filter the output of which is applied to the 6B4C plates through T_{2}. For the lower-level stages, additional filtering is provided by suceessive RC filters which also serve to prevent audio feedback through the plate supply.

Grid bias for the 6B4Gs is furnished by a separate supply using a small selenium rectifies and a TV "booster" transformer, T4. The bias may be adjusted by means of R_{1}, and should be set to -62 volts or to obtain a total plate current of 80 ma . (as measured in the lead to the primary center tap of T_{2}) for the 6B4Cs.

In building an amplifier of this type the constructional precautions outlined earlier should be observed. The Class AB_{1} modulators described subsequently in this section are representative of good constructional practice.

Negative Feedback

Whenever tetrodes or pentodes are used as drivers for Class 13 modulators, negative feedback should be used in the driver stage, for the reason already discussed.

Suitable cireuits for single-ended and push-pull tetrodes are shown in Fig. 9-9). Fig. 9-9A shows resistance coupling between the preceding stage and a single tetrode, such as the 6 V 6 , that operates at the same plate voltage as the preceding stage. Part of the a.f. voltage across the primary of the output transformer is fed back to the grid of the tetrode, V_{2}, through the plate resistor of the preceding tube, V_{1}. The total resistance of R_{4} and R_{5} in series should be ten or more times the rated load resistance of V_{2}. Instead of the voltage divider, a tap on the transformer primary can be used to supply the feed-baek voltage, if such a tap is available.

The amount of feed-back voltage that appears at the grid of tube V_{2} is determined by R_{1}, R_{2} and the plate resistance of V_{1}, as well as by the relationship, between R_{4} and R_{5}. Circuit values for typical tube combinations are given in detail in Fig. 9-9.

The push-pull circuit in Fig. 9-9B requires an audio transformer with a split secondary. The feed-back

Modulators and Drivers

voltage is oltained from the plate of each output tube hy means of the voltage divider, R_{1}, R_{2}. The blocking capacitor, ('1, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$; the reactance of this capacitor should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequeney to be amplified. Also, the sum of R_{1} and R_{2} should be high (ten times or more) compared with the rated load resistance for V_{2} and ${ }^{3}{ }_{3}$

In this circuit the feed-back voltage that is developed across R_{2} appears at the grid of V_{2} (or V_{3}) through the transformer secondary and grid-cathode circuit of the tube, provided the tubes are not driven to grid current. The per eent feredhack is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feed-back pereentage, and R_{1} and
R_{2} are connected as shown in the diagram. The higher the feed-back percentage, the lower the effertive plate resistance. However, if the perrentage is made too high the preceding tube, V_{1}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonic distortion. Distortion in V_{1} is not compensated for by the feed-back circuit.

If V_{2} and V_{3} are 6 ond operated self-biatsed in Class $\mathrm{A} 3_{1}$ with a load resistance of 9500 ohms, V_{1} is a tidjo or similar triode, and T_{1} has a turns ratio of \because-to-1. total secondary to primary, it is possible to use over 30 per cent feedback without going beyond the output-voltage capsibilities of the triode. Twenty per cent feedbatck will reduce the effective phate resistance to the point where the output voltage regulation is better than that of 6134(is or 2A3s without feedback. The power output under these conditions is about 20 watts.

Increasing the Effectiveness of the Phone Transmitter

The effectiveners of an amateur phone transmitter can be incrased to a considerable extent by taking advantage of sperch characteristics. Measures that may be taken to make the modulation more affective include hand compression (filtering), volume compression, and speech clipping.

Compressing the Frequency Band

Most of the intelligibility in speech is contained in the medium band of frequencies; that is, betwem about 500 and $2: 00$ eveles. On the other hand, a large portion of speech power is normally fond below 500 cyeles. If these low frequencies are attemated, the frequenrias that carry most of the actual commoniration can be increased in amplitude withont exereding $100-$ per-ent modalation, and the effertiveness of the transmitter is correspondingly increased.

One simple way to reduce low-frequency response is to use small values of coupling raparitance between resistance-coupled stages, as shown in Fig. 9-10.1. A time constant of 0.0005 second for the (oupling capacitor and following-stage grid resistor will have little effect on the amplification at 500 ceveles, but will practically halve it at 100 eycles. In two cascaded stages the gain will he down about 5 db, at 200 eveles and 10 db . at 100 eveles. When the grid resistor is $1 / 2$ megohm a conpling capacitor of $0.001 \mu \mathrm{f}$. will give the required time constant.

The high-frequency response can be reduced by using "tone control" methods, ntilizing a capacitor in series with a variathle resistor connected across an audio impedance at some point in the speech amplifier. The best spot for the tone control is across the primary of the output transformer of the speed amplifier, as in lig. 9-1013. The eapacitor should have a reantamer at l000) eydes about equal to the loud resistance required by the amplifier tube or tubes, while the variable resistor in series may have a value egual to four or five times the load resistance. The control can
be adjusted while listening to the amplifier, the object being to cut the high-frequency response without unduly sucrificing intelligibility.

Restricting the frequency response not only puts more modulation power in the optimum frequency band but also reduces hum, beanase the low-frequency response is reduced, and helps reduce the width of the chamel occupied by the transmission, berause of the reduction in the amplitude of the high sudio frequencies.

Volume Compression

Although it is obviously desirable to modulate

Fig. 9-10-A, use of a small coupling capacitor to reduce low-frequency response; B, tone-control circuits for reducing high-frequency response. Values for C and R are discussed in the text; 0.01μ f. and 25,000 ohms are typical.

9-SPEECH AMPLIFIERS AND MODULATORS

the transmitter as completely an possible, it is difficult to maintain constant voice intensity when speaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantaneous) variations in speech amplitude. This can be done ly rectifying and filtering some of the audio output and applying the rectified and filtered d.e. to a control clertrode in an early stage in the amplifier.

A praetieal cireuit for this purpose is shown in Fig. 9-11. V_{1}, a medium- μ triode, has its grid commected in parallel with the grid of the last speceh amplifier tube (the stage preceding the power stage) through the gain control h_{1}. The amplified output is coupled to a full-wave rectifier, l_{2}. The rectified audio output develops a negative d.c. voltage across $C_{1} R_{3}$, which has a sufficiently long time constant to hold the voltage at a reasonably steady value between syllables and words. The negative d.c. voltage is applied as control bias to the suppressor of the first tube in the speech amplifier (this cireuit requires a pentode first stage), cffecting a reduction in gain. The gain reduction is substantially proportional to the average microphone output and thus tends to hold the amplifier output at a constant level.

Fig. 9-11-Speech-amplifier output limiting circuit. V_{1}-6C4, 6C5, 6CG7, 6J5, 12AU7, etc.
$V_{2}-6 \mathrm{H} 6,6 \mathrm{AL5}$, etc.
T_{1} - Interstage audio, single plate to p. p. grids.
An ardustable bias is applied to the cathodes of V_{2} to cut off the tube at low levels and thus prevent rectification until a desired output level is reached. K_{2} is the "threshold control" which sets this level. R_{1}, the gain control, determines the rate at which the gain is redued with inrreasing signal level.
The hold-in time can be increased be inctotsing the capacitance of C_{1}, C_{2} and R_{4} may not be necessary in all cases; their function is to prevent too-rapid gain reduction on a sudden voice peak. The "rise time" of this circuit can be increased ly inereasing C_{2} or R_{4}, or both.
The over-all gain of the system must be high enough so that full output can be secured at a moderately low voice level.

Speech Clipping and Filtering

In speech wave forms the average power con-
tent is considerably less than in a sine wave of the same peak amplitude. Since modulation percentage is based on peak valucs, the modulation or sideland power in a transmitter modulated 100 per cent by an ordinary voice wave form will be considerably less than the sideband power in the same transmitter modulated 100 per cent by a sine wave. In other words, the modulation percentage with voice wave forms is determined byy peaks having relatively low average power content.

If the low-energy peaks are clipped off, the remaining wave form will have a considerably higher ratio of average power to pak amplitude. More side-band power will result, therefore, when such a clipped wave is used to modulate the transmitter 100 per cent. Although clipping distorts the wave form and the result therefore does not sound exactly like the original, it is possible to secure a worth-while increase in modulation power without sacrificing intelligibility. Once the system is properly adjusted it will be impossible to overmodulate the transmitter hecause the maximum output amplitude is fixed.

By itself, clipping generates the same highorder harmonics that overmodulation does, and therefore will cause splatter. To prevent this, the audio frequeneies above those needed for intelligible speech must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequencies below about 2500 cycles, but high attenuation for all frequencies above' 3000 cycles.

It is possible to use as much as 25 db . of clipping before intelligibility suffers; that is, if the original peak amplitude is 10 volts, the signal can be clipped to such an extent that the resulting maximum amplitude is less than one volt. If the original 10 -volt signal represented the amplitude that eaused 100 -pereerent modulation on peaks, the clipped and filtered signal can then be amplified up to the same 10 -volt peak lovel for modulating the transmitter.

There is a loss in naturadness wilh "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 dl .) there is almost no change in "quality" but the voice power is increased considerably:

Before drastic clipping can be used, the speech signal must be amplified several times more than is necessary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the woise in the output of the amplifier increases in proportion to the gain.

One type of clipper-filter system is shown in block form in Fig. 9-12.A. The clipper is a peaklimiting rectifier of the same general type that is used in receiver noise limiters. It must clip both positive and negative peaks. The gain or clipping control sets the amplitude at which clipping starts. Following the low-pass filter for eliminating the harmonic distortion frequencies is a second gain control, the "level" or modulation control. This control is set initially so that the

Fig. 9-12-(A) Block diagram of speech-clipping and filtering amplifier. (B) Practical speech clipper circuit with low-pass filter. Capacitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Resistors are $1 / 2$ watt.
$\mathrm{L}_{1}-20$ henrys, 900 ohms (Stancor C-1515).
$S_{1}-$ D.p.d.t. toggle or rotary.
amplitude-limited output of the clipper-filter cannot cause more than 100 per cent modulation.

It should be noted that the peak amplitude of the audio wave form artually applied to the modulated stage in the transmitter is not necessarily held at the same relative level as the peak ampliturle of the signal coming out of the clipper stage. When the clipped signal goes through the filter, the relative phases of the various frequency components that pass through the filter are shifted, particularly those components near the cut-off frequency. This may cause the peak amplitude out of the filter to exceed the peak amplitude of the clipped signal applied to the filter input terminals. Similar phase shifts can occur in amplifiers following the filter, especially if these amplifiers, including the modulator, do not have good low-frequency response. With poor low-frequency response the more-or-less "square" waves resulting from elipping tend to be changed into triangular waves having higher peak amplitude. Best practice is to cut the lowfrequency response before clipping and to make all amplifiers following the clipper-filter as that and distortion-free as possible.

The best way to set the modulation control in such a system is to check the actual modulation percentage with an oscilloscope comnected as deseribed in the section on modulation. With the gain control set to give a desired clipping level with normal voice intensity, the level control should le adjusted so that the maximum modulation does not exceed 100 per cent no matter how much sound is applied to the microphone.

A practical elipper-filter circuit is shown in Fig. 9-12B. It may ho inserted between two speech-amplifier stages (but after the one having the gain control) where the level is normally a few volts. The cathode-coupled clipper eircuit gives some over-all voltage gain in addition to performing the elipping function. The filter constants are such as to give a cut-off characteristic that
combines reasonably good fidelity with adequate high-frequency suppression.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the lowlevel stages of the speech amplifier. In one rather simple but effective arrangement of this type the clipping takes place in the Class-B modulator itself. This is accomplished by carefully adjusting the plate-to-plate load resistance for the modulator tubes so that they saturate or clip peaks at the amplitude level that represents 100 per cent modulation. The load adjustment can be made by choice of output transformer ratio or by adjusting the plate-voltage/plate-current ratio of the modulated r.f. amplifier. It is best done by examining the output wave form with an oscilloscope.
The filter for such a system consists of a choke coil and capacitors as shown in Fig. 9-13. The values of L and C should be chosen to form a lowpass filter section having a cut-off frequency of about 2500 cycles, using the modulating impedance of the r.f. amplifier as the load resistance. For this cut-off frequency the formulas are

$$
L_{1}=\frac{R}{7850} \quad \text { and } \quad C_{1}=C_{2}=\frac{63.6}{R}
$$

where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a plate-modulated amplifier operating at 1500 volts and 200 ma. (modulating impedance 7500 ohms) L_{1} would be $7500 / 7850=0.96$ henry and C_{1} or C.2 would be $63.6 / 7500=0.0085 \mu$. By-pass capacitors in the plate circuit of the r.f. amplifier should be included in C_{2}. Voltage ratings for C_{1} and C_{2} when connected asshown must be the same as for the plate blocking capacitor - i.e., at least twice the d.c. voltage applied to the plate of the modulated amplifier. L and C values can vary 10 per cent or so without seriously affecting the operation of the filter.

Besides simplicity, the high-level system has the advantage that high-frequency components

Fig. 9-13-Splatter-suppression filter for use at high level, shown here connected between a Class B modulator and plate-modulated r.f. amplifier. Values for L_{1}, C_{1} and C_{2} are determined as described in the text.

9-SPEECH AMPLIFIERS AND MODULATORS

of the atudio signal fed to the modulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, are suppressed along with the distortion components that arise in elipping. Also, the undesirable effeets of poor low-frequency response following clipping and filtering, mentioned in the preceding sertion,
are avoided. Phase shifts can still orcur in the high-level filter, however, so adjustments preferably should be made by using an oseilloscope to check the actual modulation pereentage under all ronditions of speerh intensity. (For further discussion see Bruene, "I Iigh-Levell Clipping and Filtering", QST, November, 1951.)

Low-Power Modulator

A modulator suitable for plate modulation of low-power tramsmitters or for sereed or controlgrid modulation of high-power amplifiers is pictured in Figs. 9-14 and ! $1-16$, As shown in Fig. 9-15, it uses a pair of 6.10.5's in push-pull in the output stage. These are driven by a fict phase inverter. A two-stage preamplifier using a 12AN/ brings the output voltage of a crystal on cramic microphone up to the proper lewe for the 6C1 grid. I power supply is included on the same chassis.

The undistorted atudio outpon of the amplifion is $7-8$ watts. This is sufficient for modulating the plate of an r.f. amplificr ruming 10 to 15 Watts input, or for mothating the control grids of screens of ril. amplifiers using tubes having platedissipation ratings up to 2.0) watts. When servern modulation is used the screm power for the modulated amplifier (up to 2 (0) volts) can he taken from the modulator power supply. The wiring shown in Jig. !-15 provides for this, through ant aljustable tap on the $25,000-0$ hm beeder resistor, R_{5}, in the power supply, If at separate sereen supply is used, or if the modulator is used for grid-bias or phate modutation of ant r.f, anplifier, the d.e. cirenit shomld bre opened at point "x" in lig. ! $3-15$.

The amplifier uses resistance (ompling up) to the output-stage grids. The first seetion, $V_{1.1}$, of the 12AN7 has "contact-potential" bias. The gain control, R_{1}, is in the grid eirenit of the seeend section, ${ }^{\text {ren }}$, of the 12.1NT. Negative feredback from the serondary of the output transformer, T_{1}, is introduced at the eathode of this tube seetion. The feed-back voltage is dependent on

The ratio of R_{2} to R_{3} approximately, and with the ronstants given is sufficiont to result in at considerable reduction in distortion along with improved regulation of the audio output voltage The latter is important when the unit is used for modulating a sereen or control grid, as described in the chapter on amplitude modulation.

The phase inverter is of the split-losed type described artior in this section. It drives the push-pull 6.1Qs's in the power amplifier. The output transiomer used in the power stage is a multitap modulation transformar suitable fon any of the types of modulation mentioned above.

Capacitor ('z across the secondary of the output transformer, T_{1}, is used to reduce the high-freguenery response of the amplifier. Withont it, sclf-oscillation is likely to oecur at a high amalio frequency (usually above audibility) beatuse phase shift in the output transformer at the end of its useful frequency range catuses the foedback to berome positive.

The prower supply uses a replatement-tye transformer and choke with a caparitor-input lilter. Voltage under the modulator and speechamplifier boul is 250 . The decoupling resistance"apacitance networks in the plate rirenits of Vis and Vien rontributa additional smoothing of the die. for these low-level stages.

The unit includes provision for send-recerve switching, s, being used for that purpose. Sis ata be used to control the r.f. section - for example, bev being connected in parallel with the key used for c.w. operation, Simultaneously $S_{1 A}$ short-cirenits the secondary of T_{1} so the transformer will not be damaged by being left

Fig. 9.14-Speech amplifier ond low-power modulator suitoble for screen or control-grid modulation of high. power omplifiers, or for plate modulation of an r.f. stage with up to 15 watts plote input. It is assembled on o $7 \times 9 \times 2$-inch steel chassis, with the power supply occupying the left-hond section and the oudio circuits the right. The 12AX7 preamplifier is at the lower right-hand corner, the 6C4 phase inverter is to its left, and the 6AQ5 power amplifiers are behind the two. Controls along the chassis edge are, left to right, the power switch, send-receive switch, gain control, and microphone jack.

A Low-Power Modulator

Fig. 9-15-Circuit of the speech amplifier and modulator. All capacitances are in $\mu \mathrm{f}$.; ca* pacitors with polarities marked are electrolytic, others are ceramic. Resistors are $1 / 2$ watt except as noted belaw. Voltages measured ta chassis with v.t. valtmeter.
J_{1} —Microphone connectar (Amphenol 75.PC1M).
L_{1} - 10 henrys, 90 ma . (Triad C.7X).
S_{1}-D.p.d.t. taggle.
Sn-S.p.s.t. toggle.
T_{1}-Modulation transformer, tapped secondary, primary 10,000 ohms plate to plate (Thordarson 21 M 68).
without load. If $S_{1 s}$ is connected across the transmitter key, S_{1} also can be used as a phonec.w. switeh, being left in the " R " position for c.w. operation.

The terminals marked "B Switeh" should be short eircuited (indicated by the dashed line) if S_{1} is used as a send-recoive switeh. If a switch on the transmitter is used for send-receive, these terminals may be used for turning the plate voltage in the modulator on and off through
T_{2} —Power transformer, 525 v.c.t., $90 \mathrm{ma} . ; 6,3$ v., 5 amp .; 5 v., 2 amp. (Triad R-10A).
R2- 1500 ohms, $1 / 2$ watt.
R_{4} —App. 200 ohms, 2 watts (two 390-ohm 1-watt resistors in parallel).
an extra pair of contacts on the transmitter sendreceive switch. In that case S_{1} should he left in the "send" position for phone operation.
The proper secondary taps to use on T_{1} will depend on the impedance of the load to which the amplifier is connected. Methods for determining the modulating impedance with various types of modulation are given in the section on amplitude modulation, together with information on connecting the modulator to the r.f. stage.

Fig. 9-16-Below-chassis view of the modulator. The rectifier-tube socket and electrolytic filter capacitors are at the right in this view. The $12 \mathrm{AX7}$ socket is at the lower left. Bleeder resistor R_{5} is ot the upper left, near the 6 -terminal connection strip on the rear edge of the chassis. Placement of components is not critical, but the leads in the first two stages should be kept short and close to the chassis to minimize hum troubles.

9-SPEECH AMPLIFIERS AND MODULATORS

25-Watt Modulator using Push-Pull 6BQ6GTs

The speech amplifier-modulator shown in Figs. $9-17$ to $9-19$, inclusive, can be used for plate modulation of low-power transmitters running 25 to 50 watts input to the final stage. The cireuit as shown is capable of an audio output of 25 watts, but this can be increased to 30 watts by a simple modification. The GBQ6s in the output stage are operated in Class AB_{1}. Inexpensive receiver-type replacement components are used throughout, except for the modulation transformer.

Circuit

The speech amplifier uses a pentode first stage resistance-eoupled to a triode second stage. This combination gives sufficient gain for a crustal mirrophone. The pentode and trinde are the two sections of a dual tube, the 6.1N8. Transtomer coupling is used between the triode and the modulator tubos, in order to get push-pull voltage for the 6BQ6GT grids. Cathode bias is used on the final stage.

The coupling caparitance between the first and second stages is purposely made small to redure the low-frequency response, and the primary of the output transformer is shunted by C_{2} to reduce the amplification at the high-frequency end. ('i, on the first stage, also tends to reduce highfrequency response in addition to bypassing any r.f. that might be pirked up on the mierophone cord. These measures confine the frequency response to the most useful portion of the voice range.
S_{2} is the "send-receive" switch. One section opens the power transformer renter tap, thus cutting off the plate voltage during receiving periods. The other section can be comnected to the key terminals on the trumsmiter, as indicated in the circuit diagram, to turn the transmitter on and off along with the modulator. If the transmitter is one in which the oscillator is not
keyed, $S_{2 B}$ may be used to control the transmitter plate voltage, usually by being connected in the 115 -volt circuit to the plate-supply transformer.

The "phone-c.w." switch, S_{3}, short-circuits the secondary of the modulation transformer, T_{3}, when the transmitter is to be keyed, and also opens the renter-tap of ' T_{1} so plate voltage camnot be applied to the modulator.

The power supply uses a receiver replacementtype transformer with a caparitor-input filter. Additional filtering for the speech-amplifier stages is provided by the $10-\mu$ f. eapacitors and the series resistors in the plate cirruits. Hum is also redured by the VR-150 used to regulate the modulator sereen voltige. Note that the regulator tube is comberted botween the soreens and cathodes so that the artual sereen voltage is 150 and is not reduced by the drop in the cathode bias resistor. Maintaining full screen voltage is important if the rated output is to be secured.

Operating

The 6 B 26 GT amplifier requires a plate-toplate load of 4000 ohms, and the output transformer ratio must be chosen to reflect this load to the plates (see later section on matching a modulator to its load). For most small transmitters rumning 30) to 50 watts input to the final st:Lge a l-to-1 transformer ratio will he satisfactory, since the modulating impedance of such transmitters usually is in the neighborhood of $t(0) 0$ ohms. The secondary of T_{3} is connected in series with the d.e. lead to the plate (and sereen, if a sereen-grid tube) of the Class C amplifier to be modulated. For further details, see the section on amplitude modulation.

For checking the modulator operation a mitliammeter ($0-200$ range satisfactory) may be connected in the lead to the center-tap of the

Fig. 9.17-A madulatar far transmifters operating at plate inputs up to 50 watts. The speech amplifier and madulator ore of the left in this view; pawer supply campanents are at the right. The chassis is $7 \times 11 \times 2$ inches.

Fig. 9-18-Circuit diagram of the 25 -watt modulator. Capacitances below $0.001 \mu \mathrm{f}$, are in $\mu \mu \mathrm{f}$. Capacitors up to $0.01 \mu \mathrm{f}$. are ceramic. Resistors are $1 / 2$ watt unless otherwise specified.
$L_{1}-8$ henrys, 150 ma .
S_{1}-S.p.s.t. toggle.
S_{2}-D.p.d.t. toggle.
S_{3}-2-pole 2-position rotary (Centralab PA-2003).
primary of T_{3}. Without voice input to the microphone the plate current should be approximately 50 ma . When modulating the transmitter, the current should "kick" to 60 or 70 ma .; this will usually represent 100 per cent modulation. If the amplifier can be tested with a single-tone signal replaning the microphone, the plate current will be about 165 ma . at full output.

The audio power output can be increased to
T_{1} —Power transformer, 650 volts c.t., 150 ma .5 volts, 3 amp .; 6.3 volts, 5 amp .
T_{2}-Interstage audio, single plate to p.p. grids, pri, to total sec. ratio 1 to 3.
T_{3}-Modulation transformer, multimatch type (UTC S-19).
about 30 watts, suflicient for modulating an 807 at its full phone rating, if the 6BQ6GT cathodes are grounded and bias of about 30 volts from a fixed source such as a smatl battery is applied to the grids. The battery may be substituted for the eathode resistor if the ground connection is moved from the center tap of the scoondary of T_{2} to the cathodes of the 6BQ6GTs.
(From QST', December, 1955.)

Fig. 9-19-Under-chassis view of the 6BQ6GT modulator. The two large capacitors af the right are the filter capacitors in the power supply. The modulator bias resistor and by-pass capacitor $\left(R_{1} C_{3}\right)$ are at lower left. Leads from the modulation transformer go through the three holes in the chassis. Shielded wire is used for heater, misrophone input, and gain-control leads.

9-SPEECH AMPLIFIERS AND MODULATORS Class AB1 Modulator Using 807s

The modulator unit shown in Figs, 9-20 to 0-22, inclusive, uses a pair of 807 s as Class AB_{1} power amplifiers. Its audio power output depends on the plate voltage applied to the 807 s ; approximate values and optimum plate-to-plate load resistances are as follows:

I'late Voltage
400
500
600
750

Plate-to-Plate

> Load
> $(6200$ ohms
> 8000 ohms
> 9800 ohms
> 12,500 ohms

Power Output
30 watts
40 watts
45 watts
60 watts
The power-output figures are conservative, and will vary somewhat with the losses in the output transformer. These in turn may vary with different combinations of tap connections. The nominal tube output (without transformer losses) is 20 to 25 per cent higher than the figures given.

The modulator is intended for use with an external plate and screen supply for the 807 s , but includes a sereen regulator circuit. The unit has a built-in power supply for the spech amplifier section. Fixed bias for the 80 is is taken from this supply.

Speech Circuit

The speech amplifier uses at high- μ dual triode as a two-stage resistance-coupled amplitier. followed by a medium- μ triode. The latter is trimsformer-eoupled to the modulator grids. The gain from the mierophone input to the 807 grids is more than ample for erystal microphones and others of similar output level.

The fregueney response of the amplifier is adjusted to pat maximum energy in the range where it cont ributes most to speech intelligibility: that is, the output is highest between 500 and 1200 eveles and drons off gradually on either side. The lower frequencios are reduced by using low
values of coupling caparitance between the re-sistance-coupled stages, and the high-frequency end is attenuated by ('1. Further high-frequency attenuation, particularly for such components generated in the modulator itself, is provided by capacitor ('2, connected across the output terminals of the modulation transformer.

Power Supply

The plate-supply requirements of the $12 . A N$: and 6 C 4 in the speerh amplifier are quite smal! and easily can be supplied by" a small "TV hooster" type transformer, T_{3}. As shown in the diagram, a half-wave selenium rectifier works into a capacitor-input filter from this transformer. Bias for the 80 ss is obtained from this supply by making the output current flow through R_{2} and R_{3} in series, these resistors being connected between the negative output terminal of the supply and ground so that a negative voltage is developed with resperet to chassis. The bias is adjustable by varving R, A single variable resistor having a total resistance of 10,000 ohms ratn be used instead of the two 5000 -ohm units in series; the adjustment becomes somewhat more critical with the larger resistor but the operation is otherwise the satme.

Heater power for the speech amplifier and modulator tubes is supplied by a separate filament transformer, T_{4}.

Plate power for the $80 \overline{\mathrm{~s}}$ s is intended to be taken from an external soure at a voltage level suitable for the output power desired. Sereen voltage for the 807s comes from the same source, but is regulated at 300 volts by means of two 0A2 voltage-regulator tubes in series. Such regulation is essential for proper operation of the modulator tubes. The current through the $0.12 s$ should be adjusted to 25 to 30 ma ., with no signal on the

Fig. 9-20-Speech amplifier and modulator using Class $A B_{1} 807 \mathrm{~s}$. Depending on plate voltage used, audio power outputs up to at least 60 watts may be obtained.

Fig. 9-21-Circuit diagram of the 807 modulator. Capacitances are in μ. unless otherwise specified; electrolytics are marked with polarity; others may be either ceramic or paper. Resistors are $1 / 2$ watt except as indicated,
$\mathrm{C}_{1}-470-\mu \mu$. mica or ceramic.
C_{2}-App. $0.005 \mu \mathrm{f} ., 1600$ volts (see discussion on modu. lators earlier in this section).
C_{3}-Dual $40-\mu$ f. electrolytic, 250 volts. Must be type that can be insulated from chassis.
CR1_Selenium rectifier, 20 -ma. or higher rating, 130 volts.
\boldsymbol{J}_{1}-Chassis-type microphone connector (Amphenol 75. PC1M).
$L_{1}-10$ henrys, 50 ma . (Triad C-3X).
$\mathrm{R}_{1}-1$-megohm control, oudio taper.
R2- $\mathbf{5 0 0 0}$ ohms, 2 watts.
grids of the $80{ }^{-}$s. by setting the slider on the $20,000-\mathrm{ohm}$ adjustable resistor, R_{4}.

A pair of terminals is provided for comerting a d.e. milliammeter (0 -200 mat. range is suitable) in series with the 80^{-}plates for measuring plate courent. Such a meter is usoful as a cherek on the oncration of the modulator during initial testing. and ass a modulation indic:thor during artual opration. If a meter is not used the moter termimals should be comected together through a jumper.

Construction

The modulator shown is built on a $7 \times 11 \times 2$ inch steel rhassis, but other chassis sizes and layouts may be used if the builder prefers. The prinripal eonstructional precantion to be olserved is to keep the modulation transformer, 7 , reasonably well separated from the low-level spered components so stray coupling between the wiring of these stages is minimized. The interstage transformer, T_{1}, should not be mounted too close to the power transformer, T_{3}, since there is a pos-
$\mathrm{R}_{3}-5000$-ohm wire-wound control, 2 watts.
$\mathrm{R}_{1}-20,000$-ohm adjustable wire-wound, 25 watts.
S_{1}-S.p.p.t. toggle.
T_{1}-Interstage audio transformer, single piate to pushpull grids; $10-\mathrm{ma}$. primary; 3 -to-1 furns ratio, total secondary to primary (Merit A-2914).
Tz-Multimatch modulation transformer, 30-watt rating adequate for voice work (UTC CVM-1).
T_{3}-Power transformer, 125 volts at $15 \mathrm{ma} ; 6.3$ volts at 0.6 dmp . (Stancor PS8415).
T_{4}-Filoment transformer, 6.3 volts at 3 amp.
sibility of hum pickup in T_{1} if these two units are -lose together.

It is necessary to cout a large hole - about :3 inches in diameter - for mounting the particular type of modulation transformer used in the unit shown. The connection terminals on this transformer are lugs on the bottom of the case, so the chassis opening must be large enough to permit making connertions without danger of a shortcircuit to chassis.

In wiring the speech-amplifier seetion, the leads to grids and plates should be kept short and separated as much as possible from heater wiring. The heater leads should be tun along a fold in the edge of the chassis except where they must be brought out to reach the tribe sorkets. In this unit shielded wire was used for the heater witing, hut this is not necessary as a hum-reducing precation. The principal reason here was mechanical; the shielded wire stays in place better and the shields can be "tacked" together with a spot of solder as a simple method of cabling.

Fig. 9-22-Below-chassis view of the 807 modulator.

In the top view, Fig. 9-20, the speech-amplifier section is along the right-hand edge of the chassis. The tube near the front is the 12AN7 dual-triode amplifier. The 6 Ct driver is just behind it, and the filament transformer, T_{4}, is on the rear right-hand corner. The modulation transformer is in the left center alongside the 807 modulator tubes. Along the left edge of the chassis are the power transformer, T_{3}, the dual filter eapacitor, C_{3}, and the two gas regulator tubes. The negative terminal of C_{3} must be insulated from the chassis; the capacitor shown is a "twist-lok" type with a bakelite socket.

In the below-chassis view, Fig. 9-22, the power-supply components are at the right. L_{1} is mounted on the right-hand wall of the chassis, with the selenium rectifier, $\left(R_{1}\right.$, just to its left. The dropping resistor for the VIR-regulated screen circuit is near the upper right eorner, close to the 0A2 sockets. The 115 -volt socket and fuse are on the chassis wall near the regulator tubes. The speech-amplifier sertion is at the lower left in this view, with components laid in as convenient. The interstage audio transformer, T_{1}, is mounted between the 807 sockets at the left. The control on the top wall is R_{3}, for setting the grid bias on the 807 s . Audio output, high voltage, and meter connections are made through the terminal strip (Millen 37306) between the fuse and bias control.

Operating Notes

The speech amplifier section may be tested independently of the modulator, since it has its own power supply. Testing may be done as described later in the section, preferably with an audio oscillator and oscilloscope to check wavo form.

The modulation transformer taps to be used will depend on the plate-to-plate load resistance required for the desired power output and on the modulating impedance of the r.f. amplifier. The
chart furnished with the transformer should be consulted for this information.

If the Class-C amplifier plate supply has the proper voltage and has sufficient excess capacity to furnish an average current of 70 to 100 ma . in addition to its normal Class C load, it may be used for this modulator as well. If not, a separate supply of conventional design (see section on power supply) may be used. It should have a choke-input filter and should have a minimum output apacitance of about $10 \mu \mathrm{f}$. for good dynamic regulation.

Before attempting to test the modulator, remove the 807 s from their sockets and adjust R_{4} (shut off the voltage before making each adjustment) for a current of 25 to 30 ma . through the VR tubes. The current may be measured by connecting a milliammeter of suitable range in serics with the positive high-voltage lead between the external power supply and this unit, since with the 807 s out of their sockets the only current is that through R_{4} and the VR tubes.

After R_{4} is properly adjusted, replare the 807 s and with R_{3} at maximum resistance (maximum bias) connect the plate milliammeter to the meter terminals. Then apply plate power and adjust R_{3} for a plate current of 40 to 50 ma .: the value is not especially critical, but should not be too near cutoff and should not be so large as to cause the rated plate dissipation of the tubes to be exceeded. With the Class-C load connected the plate eurrent should rise to approximately 140 ma. at full output, using a sine-wave signal. With voice input the current should kick to $65-75 \mathrm{ma}$. on peaks. These figures for plate current are the same regardless of the plate voltage used, so long as the screon is maintained at 300 volts.

If c.w. as well as phone operation is to be employed, provision should be made either in the modulator or the r.f. unit for short-circuiting the secondary of the modulation transformer when the transmitter is being keyed.

6146 Modulator and Speech Amplifier

The nodulator shown in Figs. $9-2: 3$ to $9-2 \overline{2}$, inclusive, uses a pair of 61 the in $A B_{1}$, and is complete with power and bias supplies on a $10 \times 17 \times 3$-ineh chassis. The modulator also is equipped with an andio takeooff for seoper monitoring.

The atdio power that rim be ohtaned (hased on measurements) is at follows:

Nominal		Mate-fo-Ilate
Mate Vollage	Power Outpul	Coad Resistance
500 volts	75 watts	4200 ohns
600 volts	9.5 watts	5200 ohms
750 volts	120 watts	6700 ohms

Suitable sets of components for all three of the voltages listed ahove are readily available, so the power level can be selected to suit the Class C amplifier to be modulated. The modulator shown in the photographs is set up for 750 -volt operation, but aside from the power and modulation transformers all components are the same regardless of the voltage level.

Audio Circuits

As shown in the circuit diagram, Fig. 9-2t, the audio system ronsists of a $12 \mathrm{AN} \overline{7}$ preamplifier with the two tube sections in caseade, followed by a 6 CH voltage amplifier which is trans-former-couphed to the grids of the Class $A B_{1}$ modulator tubes. The combination provides ample gain for a communieations-type erystal, erramic, or dynamic microphone.

The first stage of the amplifier is "contactpotential" biased, and is resistancoroupled to the serond stage. The gain control, R_{1}, is in the grid circuit of the serond stage. Deronpling resistors and caparitors are included in the platesupply eireuits of these two stages: these decoupling eircuits also provide additional platesupply hum filtering for the two low-level stages.

The serondary of T_{1}, the transformer conpling the third speech stage to the modulator grids, is shunted loy a $780-\mu \mu \mathrm{f}$. capacitor to reduce high-
frequency response. The optimum value of capacitance will depend on the particular type of audio transformer selected, as well as on the highfroguency chatacteristios of the mierophone emplowed. Different values should be trie: with the object of cutting the high-frequency response ats much as possible, consistent with intelligibility.
The modulation transformer is of the multimatch type, and the taps should be selected to reflect the proper phate-to-phate load impedance, as given earlier, for the desired power output. The impedance ratio, secondary to primary, will depend on the modulating impedance of the modulated r.f. amplifier, as deseribed earlier in this section. The secondary of the modulation transformer is shunted by C_{1} to reduce output at the higher audio frequencies, particularly for attenuating high-frequeney harmonies that might be generated in the modulator at high output levels. The value suggested ($0.005 \mu \mathrm{f}$.) is an averag. figure and should be modified according to the modulating impedance of the Class-C stage as distussed earlier in this chapter.

Power Supply

llate power for all tubes in the unit is supplied by a single power transformer. Mercury-vapor rectifiers are used because good voltage regulation is desirable. The filter is a single section with choke input and a large (over $25 \mu \mathrm{f}$.) output caparitance. The filter capacitor consists of three $80-\mu \mathrm{f}$. +50 -volt electrolytic capacitors in series for 750 -volt d.e. output. If the output voluage is 600 or less only two capacitors in serics will be needed. These capacitors are shunted by 0.1megohm resistors to help equalize the d.e. voltages arross them.
The 200 -volt (approximately) supply for the (i146 screens and the plates of the speech-amplifier tubes is taken from the main supply through a dropping resistor, and is regulated by two 0B2 voltage-regulator tubes in series. A $20-\mu \mathrm{f}$, ea-

Fig. 9-23-Class- $\mathrm{A} \mathrm{B}_{1}$ modulator using 6146 s, complete with speech amplifier and power supply. The relay-rack panel is $101 / 2$-inches high. Plate- and filament-supply primary switches, each with its own pilot lamp, are near the lower edge of the panel. The gain control is at lower center. Aleng the front of the chassis, just behind the panel, are the plate power transformer, filter choke, and modulation transformer, going from left to right. The tubes at the left are the 816 rectifiers, with the 6146s of the right. Along the rear edge are the two voltage-regulator tubes, the 12AX7 and 6C4 speech amplifier tubes, and the interstage audio transformer, T_{1}.

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-24-Circuit diagram of the 6146 modulator and power supply. Capacitances are in μ. unless indicated other. wise; capacitors marked with polarity are electrolytic, others may be paper or ceramic as convenient. Resistances are in ohms; resistors are $1 / 2$ watt except as indicated.
C_{1}-See text.
CR_{1}-Selenium rectifier, 20 ma . or higher rating, 130 volts.
$I_{1}-6.3$-volt pilot lamp.
$\mathrm{I}_{2} —$ Neon lamp, NE-51.
J_{1}-Microphone connector (Amphenol 75-PC1M).
J_{2} —Phono jack.
$\mathrm{J}_{3}, \mathrm{~J}_{4}-115$-volt chassis-mounting plug (Amphenol $61-\mathrm{M1}$).
K_{1}-Antenna changeover relay, 115 -volt coil (Advance AH/2C/115VA; type AM also suitable).
L_{1}-Filter choke, 10 henrys, 300 ma. (Triad C-19A).
$\mathrm{R}_{1}-0.5$-megohm control, audio taper.
$\mathrm{R}_{2}-50,000 \cdot \mathrm{ohm}$ wire-wound control, 4 watts.
$\mathrm{R}_{3}-15,000$-ohm adjustable, 50 watts.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-$ S.p.s.t. toggle.
$S_{3}-S$. p.s.t., mounted on R_{1}.
pacitor is comected across the VIR tubus to improve the dynamic regulation in the 6146 soreen circuit, sinee the peak instantaneous sereen current exreeds the regulating caparity (30 mat) of the V'R tubes when the modulator is driven to maximum output.

Fixed hias for the 6146 grids is taken from a built-in bias supply using a TV "booster" transformer with a seleniom rectifier. This bias is
T_{1}-Interstage audio, single plate to p.p. grids, 3 -to- 1 secandary-to-primary ratio (Stancor A.63-C).
Ti-Multimatch modulation transformer, 125 watts (Triad M-12AL).
T_{3} —Filament transformer, 6.3 volts at 4 amp. (Triad F-53X).
T_{4}-Power transformer, 117 volts at 20 ma ; 6.3 -volt winding unused (Thordarson 26R32).
T_{s}-Plate transformer. For 500 valts d.c.: 1235 volts c.t., 310 ma. (Triad P-7A); for 600 volts d.c.: 1455 volts c.t., 310 ma . (Triad P-11A). Transformer shown is for either 600 or 750 volts d.c. autput at 310 ma ; sec. voltage 1780 c.t. for 750 volts (Triad P-14A).
T_{6}-Filament transformer, 5 volts at 3 amp., 2500-volt insulation (Stancor P-4088).
adjustable by means of $R 2$. The bias supply and filament transformer are on the same a.c. circuit so that bias is applied to the modulator grids whenever the tube heaters are energized.

Control and Auxiliary Circuits

The modulator includes an oseilloseope takeoff circuit consisting of the $0.05-\mu f$. capacitor and three 1-megolm resistors in serics. This can be

Fig. 9-25-Below-chassis view of the 6146 modulator. The 816 sockets and filament transformer (T_{0}) are at the lower left. The chassis wall at the bottom has on it, left to right, the 115 -volt a.c. plugs, fuse holders, bias cantrol (R_{2}), microphane input connector (J_{1}), scope take-off connector (J_{2}) and a three-terminal strip (Millen 37303) far audio output and positive high voltage connections. The high-voltage filter capacitor bank is in the center, mounted an a plate of plastic insulation which is supported away from the chassis on small pillars. The 6.3-volt transformer (T_{3}) is to the right of the copacitors. The antenna changeover relay used for shorting the modulation-transformer secondary is on the right-hand chassis wall.
used for horizontal deflection of a c.r. tube to give the trapezoidal modulation pattern (see section on amplitude modulation). Usually, it will be neressary fo use an external control for adjusting the amplitude of the sweep voltage so obtained. If desired, a 1-megohm control can be sulstituted for the fixed resistor at the bottom of the string. thus avoiding the necessity for an extermal control.

The normally-closed contacts of an antenmatype relay, K_{1}, are used to short-rirenit the secondary of the modulation transformer when the transmitter is to be used for e.w. work. The switeh, S_{3}, that controls the relay is mounted on the gain control, h_{1}, so that when the gain is turned all the way off, thus opening the switch, the relay contacts close. This insures that the modulator is inoporative and cammot be driven by accidental voice imput (which would result in excossive plate current) when the transomer secondary is short-circuited.

Separate ace inputs are povided for the fila-ment-bias and plate power circuits. The plate supply can thus be controlled by an external switeh without disturbing the operation of the filament circuits or requiring a modifieation of the 115 -volt wiring.

Terminals are provided for taking out highvoltage d.e. for an external unit. The powersupply equipment has more eapacity than is needed by the modulator unit itself (the rating for amateur-type service is somewhat over 300
ma.) and may in some cases be sufficient for operation of the modulated r.f. amplifier as well. At least 200 mal . should be available for this purpose, sine the average plate-supply current in the modulator unit alone is less than 100 ma ., including the speech-amplifier and Vil-tube drain.

Operating Data

The dropping resistor in the screen-supply circuit should be aljusted so that the eurrent through OB3:s is 30 ma . with the bias on the 6146 grids adjusted so that the no-signal plate current is approximately 50 ma. The current through the VIR tubes may be measured by temporarily onening the lead to the upper 0B2 at pin 5 and inserting a milliammeter of appropriate range.

If a sine-wave signal is used for testing the modulator, full output should be secured with a modulator plate current of approximately 240 ma. This value will be the same for all plate voltages, provided the sereen voltage is maintained at approximately 200 volts and the values of plate-to-plate load resistance as specified earlier are used. With voice input the plate eurrent will kick up to about 100 ma . on peaks, depending on the characteristics oi the speaker's voice and those of the mierophone used. This peak value should be determined under actual operating conditions with an oscilloseope, after which the plate milliammeter ean be used as a modulation indicator.

9-SPEECH AMPLIFIERS AND MODULATORS
 Class B Modulator with Filter

Representative Class I3 modulator construction is illustrated by the unit shown in Figs. 9-26 and 9-28. This modulator includes a splatter

Fig. 9-26-A typical Class B modulator arrangement. This unit uses a pair of 811 As, capable of an audio power outpul of 340 watts, and includes a solatter filter. The modulation fransformer is at the left and the splotter choke at the right. All high-voltage terminals are covered so they cannot be touched accidentally.
filter, $C_{1} C_{0} L_{1}$ in the circuit diagram, Fig. 9-2-, and aton has provision for short-rireuiting the modulation transformor secondery when rew. is to be used.
The andiog imput transformer is not built into this unit. it being asemmed that this transiormer

Fig. 9-27-Cirsuit diagram of the Class 3 modulator.
C_{1}, C_{2}, L_{1}-See text. (L_{1} is Chicago Transformer type SR-300).
K_{1}-D.p.d.t. relay, high-voltage insulation (Advance type 400).

M-0-500 d.c. milliammeter, bakelite case.
T_{1}-Variable-ratio madulation trarsfomer (Chicago Transformer type CMS-1).
T_{2}-Filament tronsformer, 6.3 v ., 8 amp.
$\mathrm{I}_{1}-6.3$-valt pilot light.
X_{1}, X_{2}-Chassis-type 115 -volt plugs, male.
X_{3}-Chassis-type 115 -volt receptacle, female.
S_{1}-S.p.s.t. toggle.
will be included in the driver assembly as is customary. If the morlulator and speech amplifierdriver are mounted in the same rack or cabinet, the length of leads from the driver to the modulator grids presents no problem. The bias required by the modulator tubes at their ligher platevoltage ratings should be fed through the erenter tap on the serondary of the driver transformer. At a plate voltage of 1000 or less no biats is needed and the center-tap comertion on the transformer can be grounded.

The values of C_{1}, C_{2} and L_{1} depend on the modulating imperdame of the (lass (1 r.f. amplifier. They can be determined from the formulas given in this chapter in the seetion on high-level elipping and filtering. The splatter filter will be effertive regardless of whether the morklator operating conditions are ehosen to give high-lovel clipping, but it is worth while to design the sesstem for elipping at 100 per ront modulation if the tube curves are available for that purpose. The voltage ratings for C'1 and ("2 should at least equal the d.e. voltage applied to the modulated r.f. amplificr.

A relay with high-voltage insulation (actually an antenna relay) is used to short-sireuit the

Fig. 9-28-The filament transformer is mounted below the chassis. The relay is used as described in the text. C_{1} and C_{2} are mounted on small stand-off insulators.
secondary of T, when the relay coil is not energized. A nommally-rlosed contact is used for this purpose. The other arm is used to close the primaty cirpuit of the modulator plate supply when the melay is energized. shorting the transformer secondary is neressary when the r.f. amplifier is keved, to prevent an indurtive discharge from the transformer winding that would put "tails" on the keved chararters and, with cathode keying of the anplifier, would cause excosside sparking at the key contarts. The comtrol circuit should be arranged in surh a woy that K_{1} is not onergized during c.w. operation but is energized hy the send-receive switch during phone operation.
Careful attention should be paid to insulation sine the instantaneous voltages in the secondary circuit of the transormer will be at least twice the al.e. voltage on the r.f. amplifier. stand-off insulators are twed in this unit wherever neressary, including the mounting for the relay.

Checking Speech Equipment

Checking Amplifier Operation

An adequate job of checking speech equipment can be done with equipment that is neither elaborate nor expensive. A typical setup is shown in Fig. 9-29. The construction of a simple audio oscillator is described in the section on measurements. The audio-frequency voltmeter can be either a vacuum-tube voltmeter or a multirange volt-ohm-milliammeter that has a rectilier-type a.c. range. The headset is included for aural cheeking of the amplifier performance.

An audio oscillator usually will have an output control, but if the maximum output voltage is in excess of a volt or so the output setting may be rather critical when a high-gain speech amplifier is being tested. In such cases an attenuator such as is shown in Fig. 9-29) is a convenience.

Fig. 9-29-Simple oscillator-attenuator test setup for checking a speech amplifier. It is not necessary that the frequency range of the audio oscillator be continuously variable; one or more "spot frequencies" will be satisfaclory. Suitable resistor values are: $\boldsymbol{R}_{\mathbf{I}}$ and $\boldsymbol{R}_{3}, 10,000$ ohms; \boldsymbol{R}_{2} and $\mathbf{R}_{\mathbf{4}}, 1000$ ohms.

Each of the two voltage dividers reduces the voltage by a factor of roughly 10 to 1 , so that the over-all attenuation is about 100 to 1 . The relatively low value of resistance, R_{4}, connerted across the input terminals of the amplifier also will minimize stray hum pickup on the connecting leads.

The output of a power amplifier such as a modulator or driver for a Class B stage may be checked by using a resistance load of the rated value for the amplifier. A useful circuit arrangement is shown in Fig. 9-30. The load resistance, R_{1}, may be a single adjustable unit of appropriate power rating or may be made up of several resistors in series or parallel to give the required resistance. If measurement of the resistance is necessary an ohmmeter will be sufficiently accurate. In the case of a multimatch output transformer the taps should be those that will actually be used with the Class C amplifier with which the modulator is intended to work. R_{1} then should have a value equal to the modulating impedance of the r.f. amplifier.

If an andio oscillator generating a good sine wave is used as the signal source the output power of the amplifier may be measured by an audio-frequency voltmeter as indicated by V. Either a vacuum-tube voltmeter on its a.c. scale or a rectifier-type a.c. voltmeter will be satisfactory, the principal requirements being relatively high impedance (1000 ohms per volt or more) and a reasonably accurate calibration. The power output will be equal to E^{2} / R_{1}, where E is the

Fig. 9-30-Circuit for measuring power and making qualitative checks of the amplifier output. Values to be used for R_{1} and R_{2} are discussed in the text. The secondary winding of the output transformer in the amplifier should be disconnected from any d.c. source in the unit and one end connected to chassis as shown. An earth ground should be used on the system.
r.m.s. value of the voltage across the resistor (a.c. instruments usually are calibrated in r.m.s. values). This assumes that the distortion generated in the amplifier is small; if distortion is high, the voltmeter reading will be inaccurate.

If the amplifier is a driver for a Class B modulator, the value of R_{1} should be calculated from R / N^{2}, where N is the turns ratio, primary to total secondary, of the class B input transformer, and R is the rated plate-to-plate load for the driver tube or tubes. R_{1} should of course be connected across the total secondary in this case.

For a qualitative check on distortion, provision is made in Fig. 9-30 for monitoring the output of the amplifier. R_{2} should be a wire-wound potentiometer having a resistance of 10 or 20 ohms. A headset may be connected to the "Monitor" terminals. Using the audio oscillator as a signal source, start with the gain control at minimum and then advance it slowly while listening carefully to the tone signal in the headset. When it begins to sound like a musical octave instead of a single tone, or when higher harmon-ically-related tones can be heard along with the desired one, distortion is starting to become appreciable. This effect usually will be detectable, but not serious, at full output of the amplifier as indicated by the voltmeter reading. Keep the signal in the headset at a moderate level by adjusting R_{2} when necessary. If the amplifier passes the distortion test satisfactorily, reduce the audio input to zero and note whether any hum is audible in the headset. There should be none, if the tone level in the headset at full sine-wave output was no more than moderately high.

After completing these checks with satisfactory results, substitute the microphone for the oscillator input to the amplifier and have someone speak into it at a moderate level. The headset will serve to indicate the speech quality at various output levels. A tape recorder, if available, is useful at this stage since it can be substituted for the headset and will provide a means for comparing the effect of changes and adjustments

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-31 - Test sefup using the oscilloscope to check for distortion. These connections will result in the type of pattern shown in Fig. 9-32, the horizontal sweep being provided by the oudio input signal. For wave-form patterns, omit the connection between the audio oscillator and the horizontal amplifier in the scope, and use the horizontal linear sweep.
in the amplifier as well as giving a belter over-all check on speech quality than the average headset. The effect of measures taken to attenuate high- or low-frequency response in the amplifier is readily observed by comparing recordings made before and after changes. The output quality of the amplifier also can be compared with the original output of the mierophone as registered on the reeorder. In using a recorder catre must be taken to set l_{2} so that the first stage in the recorder amplifier is not overloaded. Wise the normal gain setting of the recorder and adjust $R 2$ to give normal leved indications.

Amplifier Troubles

If the hum level is too high, the amplifier stage that is causing the trouble can be located by tomporarily short-circuiting the grid of each tub) to ground, starting with the output amplifior. When shorting a particular grid makes a marked decrease in hum, the hum presumably is coming from a preceding stage, although it is possible that it is getting its start in that particular grid cireuit. If shorting a grid does not derrease the hum, the hum is originating rither in the plate rireut of that tube or the grid rireuit of the next. Aside from wiring errors, a defeetive tube, or inadequate plate-supply filtering, objectionable hum usually originates in the first stage of the amplifior.

If distortion occurs below the point at which the experted power output is secured, the stage in which it is oceurring can be located loy working from the last stage toward the front end of the amplifier, applying a signal to earh grid in turn from the audio oscillator and adjusting the signal voltage for maximum output. In the case of push-pull stages, the signal may be applied to the primary of the interstage transformer - affer diseonnerting it from the plate-voltagesouree and the amplifier tube. Assuming that normal design principles have been followed and that all stages are theoretieally working within their capabilities, the probable catuses of distortion are wiring arrors (such as aceidental short-cirenit of a cathade resistor), defective components, or use of wrong values of resistance in cathode and plate circuits.

Using the Oscilloscope

Surerh-amplifier checking is facilitated ronsiderably if an oscilloscope of the thpe having
amplifiers and a linararserp eireuil is available. Itypical setup for using the oscilloseope is shown in Fig. 9-31. With the ronnertions shown, the sweep circuit is not required but horizontal and vertical amplifiers are neressary. Audio voltage from the oscillator is fed dirertly to one ascillosoope amplifier (horizontal in this case) and the output of the speech amplifier is connereted to the other. The seope amplifier gains should be adjusted so that wach signal gives the same line longth with the other signal shut off.

Under these conditions, when the input and output signals are applied simultancously they are compared direetly. If the sperech amplifier is distortion-frere and int rodures no phase shift, the resulting pattern is simply a straight line, as shown at the upper loft in Fig. :1-32, making ath angle of about to degrees with the horizontal and vertical axes. If there is no distortion but there is phase shitt, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendeney of the ellipse to grow into a circle. When there is evenharmonic distortion in the amplifier one end of the line or ellipse becomes eurved, as shown in the second row in Fig. ! -32 . With odd-harmonic distortion such as is characteristic of overdriven push-pull stages, the line or cllipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a lairly good sine wave. They will tend to become complicated if the input wave form is complex and the speech amplifier introduces appreriable phase shifts. It is therefore advisable to test for distortion with an input signal that is as nearly as possible a sine wave. Also, it is best to use a frequeney in the 500-1000 covele range, since improper phase shift in the amplifier is usually least in this region. Phase shift in itself is not of great importance in an atudio amplifier of ordinary design beeause it does not change the chararter of speech so far as the ear is roncerned. However, if a eomplex signal is used for testing, phase shift may make it difficult to detert distortion in the oscilloscope pattern.

Sinee the oseilloscope amplifiers themselves may introduce phase shift and possibly distortion as well, it is alvisable to check the scope before attempting to make checks on the speech amplifier. Apply the signal from the audio oscillator simultaneonsly to the horizontal and vertial amplifier input terminals. If both amplifiers have the

Checking Speech Equipment

same phase characteristios and negligible distortion the pattern, after suitable adjustment of the gains, will be a straight line as shown at the upper left in Fig. 0-32. If distortion is visible, note whether it changes when the scope gain rontrols are reduced: if not, the signal voltage from the audio oseillator is too great and should be redueed to the point where the input amplifiers are not overloaded. After finding the proper setting: for signal input and seope gains, leave the fatter alone in making chereks on the speerh equipment and adjust the input to the seope he means of Rez and the output of the andio oscillator. Phase shift in the seope itself is not serious since the presence of distortion in the speed amplifier can be detected by the patterns shown at the right in Fig. 9-32.

In amplifiers having negative feedback, excossive phase shift within the ferd-back loop may catuse selforemillation, sine the signal fod back may arrive at the grid in phase with the applied sighal voltage instead of out of phase with it. Such a phase shift is most likely to be associated with the output transformer. Oseillation usually orcurs at some frequency above 10,000 recles, although ocemsionally it will oecur at a very low frequener. If the pass band in the stage in which the phase shift occurs is deliberately restricted to the optimum voice range, as described cartier, the gain at both very high and very low frequenciss will be so low that self-oseillation is unlikely, even with large amounts of feedback.

Generally speaking, it is easier to detect small amounts of distortion with the type of pattern shown in Fig. !-32 than it is with the wave-form pattern obtained by feeding the output signal to the vertical plates and making use of the linear sweep in the seope. However, the waverorm pattern can he used satisfactorily if the signal from the audio oscillator is a reasomably good sime wave. One simple method is to examine the output of the oseillator alone and trace the pattern on a sheet of transparent paper. The pattern given be the output of the amplifier can then be compared with the "standard" pattern by adjusting the oncilloscope gains to make the two patterns coinoide as closely as powible. The pattern discrepancies are a measure of the distortion.

In using the oscilloseope care must be taken to avoid introducing hum voltages that will upset the measurements. Hum pickup on the seope leads or other exposed parts such as the amplifier load resistor or the voltmeter cin be lletected by shutting off the addio oseillator and speed am-

Fig. 9-32-Typical patterns obtained with the connections shown in Fig. 9-31. Depending on the number of stages in the amplifier, the pattern may slope upward to the right, as shown, or upward to the left. Also, depending on where the distortion originates, the curvature in the second raw may appear either af the tap or bottom of the line or ellipse.
plifier and connecting first one and then the other to the vertical phates of the scope, satting the internal horizontal sweep to an appropriate width. The trace should be a straight horizontal line when the vertical gain control is set at the frosition used in the actual measurements. W:aviness in the line indicates hum. If the ham is not in the seope itsolf (eherk by disoonnerting the leads at the instrument) make sure that there is a good ground connection on all the equipment and, if necessary, shiedd the hot leads.

The oscilloseope can be used to good advantage in stage-by-stage testing to cheek wave forms at the grid and plate of each stage and thus to determine rapidly where a source of trouble may be located. When the scope is connected to cirenits that are not at ground potential for d.e., a capacitor of about $0.1 \mu \mathrm{f}$. should be connected in series with the hot oscilloscope lead. The probe lead should be shiedded to prevent hum piekup.

Amplitude Modulation

As described in the section on circuit fundamentals, the process of modulation sets up groups of frequencies called sidebands, which appear symmetrically above and below the frequency of the unmodulated signal or carrier. If the instantaneous values of the amplitudes of all these separate frequencies are added together, the result is called the modulation envelope. In amplitude modulation (a.m.) the modulation envelope follows the amplitude variations of the audio-frequeney signal that is being used to modulate the wave.

For example, modulation by a 1000 -cycle tone will result in a modulation cnvelope that varies in amplitude at a 1000 - yode rate. Theactual r.f.signal that produres such an envelope consists of three frequencies - the carrier, a side freduency 1000 cyelos higher, and a side frequener 1000 eycles lower than the carrier. These three frequencies a asily can be separated by a receiver having high selectivity. In oriter to reproduce the original modulation the receiver must have enough bandwidth to aceept the carrier and the sidebands simultaneously. This is because an a.m. detector responds to the modulation envelope rather than to the individual signal components, and the envelope will be distorted in the receiver unless all the frequency components in the signal go through without change in their relative amplitudes.

In the simple case of tone modulation the two side frequencies and the carrier are constant in amplitude - it is only the envelope amplitude that varies at the modulation rate. With more complex modulation such as voice or music the amplitudes and frequencies of the side frequencies vary from instant to instant. The amplitude of the modulation envelope varies from instant to instant in the same way as the complex audio-frequency signal causing the modulation. Nevertheless, even in this case the carrier amplitude is constant if the transmitter is properly modulated.

A.M. Sidebands and Channel Width

Speech can be electrically reproduced, with high intelligibility, in a band of frequencies lying between approximately 100 and 3000 cycles. When these frequencies are combined with a radio-frequency carrier, the sidebands occupy the frequency spectrum from about 3000 cycles below the carrier frequency to 3000 cycles above a total band or channel of about 6 kilocycles.

Actual speech frequencies extend up to 10,000 cycles or more, so it is possible to occupy a 20 -kc. chamel if no provision is made for reducing its width. For communication purposes such a channel width represents a waste of valuable spectrum space, since a 6 -kc. channel is fully adequate for intelligibility. Occupying more than
the minimum channel creates unnecessary interference. Thus speech equipment design and transmitter adjustment and operation should be pointed toward maintaining the channel width at the minimum.

THE MODULATION ENVELOPE

In Fig. 10-1, the drawing at Λ shows the unmodulated r.f. signal, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent either voltage or current.

In B, the signal is assumed to be modulated by the audio-frequency shown in the small drawing above. This frequency is much lower than the carrier frequeney, a necessary condition for good modulation. When the modulating voltage is "positive" (above its axis) the envelope amplitude is increased abore its unmodulated amplitude; when the modulating voltage is "negative" the envelope amplitude is decreased. Thus the envelope grows larger and smaller with the polarity and amplitude of the modulating voltage.

The drawings at C shows what happens with stronger modulation. The envelope amplitude is doubled at the instant the modulating voltage reaches its positive prak. (On the negative peak of the modulating voltage the envelope amplitude just reaches zero: in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detected in a receiver, the detector output follows the modulation envelope. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in Fig. 10-1C would produce considerably more useful audio output than the one shown at B.

The "depth" of the modulation is expressed as a percentage of the unmodulated carrier amplitude. In either B or C ', lig. $10-1, X$ represents the unmodulated carrier amplitude, Y is the maximum envelope amplitude on the modulation up-peak, and Z is the minimum envelope amplitude on the modulation downpeak.

In a properly-operating modulation system the modulation envelope is an accurate reproduction of the modulating wave, as can be seen in Fig. 10-1 at B and C by comparing one side of the outline with the shape of the modulating wave. (The lower outline duplicates the upper, but simply appears upside down in the drawing.)

The percentage of modulation is
$\%$ Mod. $=\frac{Y-X}{\lambda} \times 100$ (upward modulation), or
$\%$ Mod. $=\frac{X-Z}{X} \times 100$ (downward modulation)

Fig. 10-1-Graphical representation of (A) r.f. output unmodulated, (B) modulated 50%, (C) modulated 100%. The modulation envelope is shown by the thin outline on the modulated wave.
If the wave shape of the modulation is such that its peak positive and negative amplitudes are equal, then the modulation percentage will be the same both up and down. If the two percentages differ, the larger of the two is customarily specified.

Power in Modulated Wave

The amplitude values shown in lig. $10-1$ correspond to current or voltage, so the drawings may be taken to represent instantaneous values of either. The power in the wave varies as the square of either the current or voltage, so at the peak of the modulation up-swing the instantaneous power in the envelope of Fig. 10-1C is four times the unmodulated carrier power (because the current and voltage both are doubled). At the peak of the down-swing the power is zero, since the amplitude is zero. These statements are true of 100 per cent modulation no matter what the wave form of the modulation. The instantaneous envelope power in the modulated signal is proportional to the square of its envelope amplitude at every instant. This fact is highly important in the operation of every method of amplitude modulation.

It is convenient, and customary, to describe the operation of modulation systems in terms of sine-wave modulation. Although this wave shape is seldom actually used in practice (voice wave shapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common basis. With sine-wave modulation the average power in the modulated signal over any number of full cyctes of the modulation frequency is found to be $1 \frac{1}{2}$ times the power in the unmodulated carrier. In other words, the power output increases 50 per cent with 100 per cent modulation by a sine wave.

This relationship is very useful in the design of modulation systems and modulators, because any such system that is capable of increasing the average power output by 50 per cent with sinewave modulation automatically fulfilld the requirement that the instantancous power at the modulation up-peak be four times the carrier power. Consequently, systems in which the additional power is supplied from outside the modulated r.f. stage (e.g., phate modulation) usually are designed on a sim-wave hasis as a matter of convenience. Modulation systems in which the additional power is secured from the modulated r.f. amplifier (e.g., grid modulation) usually are more conveniently designed on the basis of peak envelope power rather than average power.

The extra power that is contained in a modulated signal gors entirely into the sidelands, half in the upper sidehand and half in the lower. As a numerical example, full modulation of a $100-$ watt carrier by a sine wave will add 50 watts of side-band power, 25 in the lower and 25 in the upper sideband. Supplying this additional power for the sidelands is the objeet of all of the various systems devised for amplitude moldulation.
No such simple relationship exists with complex wave forms. Complex wave forms such as speech do not, as a rule, contain as much average power as a sine wave. Ordinary speech wave forms have about half as much average power as a sine wave, for the same peak amplitude in both wave forms. Thus for the same modulation percentage, the side-band power with ordinary speech will average only about half the power with sine-wave modulation, since it is the peak envelope amplitude, not the average power, that determines the percentage of modulation.

Unsymmetrical Modulation

In an ordinary electric circuit it is possible to increase the amplitude of current flow indefinitely, up to the limit of the power-handling capability of the components, but it canmot very well be decreased to less than zero. The same thing is true of the amplitude of an r.f. signal; it can be modulated "pward to any desired extent, but it cannot be modulated downward more than 100 per cent.

When the modulating wave form is unsymmetrical it is possible for the upward and downward modulation percentages to be different. A simple case is shown in Fig. 10-2. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward molulation is just 100 per cent $(Z=0)$ the peak upward modulation is 300 per cent $(Y=4 X)$. The carrier amplitude is represented by X, as in Fig. 10-1. The modulation envelope reproduces the wave form of the modulating signal aceurately, henee there is no distortion. In such is modulated signal the inerease in power output with modulation is considerably greater than it is when the modulation is symmetrical and therefore has to be limited to 100 per cent both up and down.

10-AMPLITUDE MODULATION

Fig. 10-2-Modulation by an unsymmetrical wave form. This drawing shows 100% downward modulation along with 300% upward modulation. There is no distortion, since the modulation envelope is an accurate reproduction of the wave form of the modulating voltage.

In Fig. 10-2 the peak envelope amplitude, Y, is four times the carrier amplitude, X, so the peakenvelope power is 16 times the carrier power. When the upward modulation is more than 100 per cent the power capacity of the modatating system olviously must be inereased sufficiently to take care of the much larger prak amplitudes.

Overmodulation

If the amplitude of the modulation on the downward swing beromes too great, there will be a period of time during which the r.f. output is entirely cut off. 'This is shown in Fig. 10-3. The shape of the downward half of the modulating wave is no longer accurately reproduced by the modulation envelope, consequently the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulattion envelope cause's new frequencies (harmonies of the modulating froguency) to be gencrated. 'these combine with the earrior to form new side frequencies that widen the channel oerupiod by the modulated signal. These spurious froquencies are commonly called "splatter."

It is important to realize that the chammed

Fig. 10-3-An overmodulated signal. The modulation envelope is not an accurate reproduction of the wave form of the modulating voltage. This or ony type of distortion occurring during the modulation process generates spurious sidebands or "splatter."
occupied by an amplitude-modulated signal is dependent on the shrape of the morlulation envelope. If this wave shape is complex and can be resolved into a wide band of audio frequencies. then the channel occupied will be correspondingly large. An overmodulated signal splatters and occupies a mueh wider channel than is necessary beciuse the "clipping" of the modutating wave that occurs at the zero axis changes the envelope wave shape to one that contains highorder harmonies of the original modulating frequenery. These harmonies appear as side frequendies separated by, in some cases, many kilocycles from the carrier frequency.

Bocause of this elipping action at the zero axis, it is important that care be taken to provent applying too large a modulating signal in the downward direction. Overmodulation downward results in more splatter than is caused by most other types of distortion in a phone transmitter.

- GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated transmitter there are a few general requiroments that must be met no matter what partieular method of modulation may be used. liailure to meet these requirements is accompanied by distortion of the modulation envelope. This in turn increases the chamel width as compared with that required by the legitimate frequencies contained in the original morlulating witve.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequency must be entirely unalieeted by modulation. If the application of modulation causes a change in the carrier frequeney, the frequency will wobble back and forth with the modulation. This eauses distortion and widens the channel taken by the signal. Thus unnecessary interference is caused to other transmissions.

In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling oscillator by a buffer amplifier. . Implitude modulation applied directly to an oscillator always is accompanied by frequency modulation. Lnder existing FiCC regulations amplitude modulation of an oscillator is permitted only on frequencies above 144 Mc. Below that frequency the regulations require that an amplitude-nodulated transmitter be completely free from frequency modulation.

Linearity

At least up to the limit of 100 per cent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. 10-4 is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneous modulation am. plitude. The modulation swings the r.f. ampli-

Fig. 10-4 - The modulation characteristic shows the relationship between the instantaneous envelope amplitude of the r.f. output current (or voltage) and the instantaneous amplitude of the modulating voltage. The ideal characteristic is a straight line, as shown by curve A.
tude back and forth along the curve A, as the modulating voltage alternately swings position and negative. Issuming that the negative peak of the modulating wave is just sufficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the positive direction $(+1)$ should coune the r.f. amplitude to reach twice its ummodulated value. The ideal is a straight line, as shown by curve A. Such a modulation chatracteristic is perfertly linear.

A nonlinear chatacteristic is shown by curve ls. The r.f. amplitude does not reach twice the ummodulated carrier amplitude when the modulating voltage rearhes its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the uppeak; in other words, the modulation envelope is not an exact reproduction of the modulating wave. It is therefore distorted and harmonics are generated, causing the transmitted signal to
occupy a wider ehannel than is necessary. A nonlincar modulation characteristie cain easily result when a transmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum capability ran never exceed 100 per cent on the down-peak but it is possible for it to be higher on the up-peak. The modulation rapability should be as close to 100 per cent as possible, so that the most effective signal ean be transmitted.

Plate Power Supply

The d.c. power supply for the plate or plates of the modulated amplifier should be well filtered; if it is not, plate-supply ripple will modulate the carrier and rause anoying hum. The ripple voltage should not be more than about 1 per eent of the d.e. output voltage.

In amplitude modulation the plate eurrent of the modulated r.f. amplifier varies at an audiofrequency mate; in other words, in alternating corrent is superimposed on the d.e. plate current. The output filter celparitor in the plate supply must have low reactance, at the lowest audio frequency in the modulation, if the transmitter is to modulate equally well at all audio frequencies. 'The catparitance required depends on the ratio of die. plate current to plate voltage in the modulated amplifier. 'The requirements will be met satisfartorily if the capacitance of the output capacitor is at least equal to

$$
C=25 \frac{l}{E}
$$

where $C=$ Capacitance of output capaseitor in μ.
$I=$ D.c. plate eurrent of modulated amplifier in milliamperes
$E=$ Plate voltage of modulated amplifier

Example: A modulated amplificr operates at $12: 50$ volts and 275 ma . The capacitance of the output capacitor in the plate-supply filter shonld be at least

$$
C=25 \frac{I}{E}=25 \times \frac{275}{1250}=25 \times 0.22=1.5 \mu \mathrm{f}
$$

Amplitude Modulation Methods

MODULATION SYSTEMS

As explained in the preceding seetion, amplitude modulation of a carrier is accompanied by an increase in power out put, the additional power being the "useful" or "talk power" in the sidebands. This additional power may be supplied from an external source in the form of audiofrequency power. It is then added to the unmodulated power input to the amplifier to be modulated, after which the combined power is converted to r.f. This is the method used in plate modulation. It has the advantage that the r.f. power is gemerated at the high efficioney
characteristic of Class $(1$ amplifiers - of the order of 65 to 75 per cent - but has the accompanying disadvantage that generating the audio-frequeney power is rather expensive.

An alternative that does not require relatively large amounts of audio-frequency power makes use of the fact that the power output of an amplifier can be controlled by varying the potential of a tube element - such as a control grid or a sereen grid - that does not, in itself, consume appreciable power. In this case the additional power during modulation is secured by saterificing carrice power; in other words, a tube is capatble of delivering only so much total power

10 - AMPLITUDE MODULATION

Fig. 10.5-Plate modulation of a Class C r.f. amplifier. The r.f. plate by-pass capacitor, C , in the amplifier stage should have reasonably high reactance at audio frequencies, A value of the order of $0.001 \mu \mathrm{f}$. to $0.005 \mu \mathrm{f}$. is satisfactory in practically all cases. (See section on modulators.)
within its ratings, and if more must be delivered at full modulation, then less is available for the unmodulated carrier. Systems of this type must of necessity work at rather low efficiency at the unmodulated carrier level. As a practical working rule, the efficiency of the modulated r.f. amplifier is of the order of 30 to 35 per cent, and the unmodulated carrier power output obtainable with such a system is only about one-fourth to onethird that obtainable from the same anplifier with plate modulation.

It is well to appreciate that no simple modulation scheme that purports to get around this limitation of grid modulation ever has actually done so. Methods have been devised that have resulted in modulation at high over-all efficiency, without requiring audio power, by obtaining the necessary additional power from an auxiliary r.f. amplifier. This leads to circuit and operating complexities that make the systems unsuitable for amateur work, where rapid frequency change and simplicity of operation are almost always essential.

The methods discussed in this section are the basic ones. Variants that from time to time attain passing popularity can readily be appraised on the basis of the preceding paragraphs. A simple grid modulation system that claims high efficiency should be looked upon with suspicion, since it is almost certain that the high efficiency, if actually achieved, is obtained by sacrificing the linear relationship between modulating signal and modulation envelope that is the first essential of a good modulation method.

Plate modulation

Fig. 10-5 shows the most widely-used system of plate modulation, in this case with a triode r.f. tube. A balanced (push-pull Class A, Class AB or Class B) modulator is transformer-coupled to the plate circuit of the modulated r.f, amplifier. The audio-frequency power generated by the modulator is combined with the d.c. power in the modulated-amplifier plate circuit by transfer through the coupling transformer, T. For 100 per cent modulation the audio-frequency power output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twice the d.e. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. output.

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
Z_{\mathrm{m}}=\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000 \mathrm{ohms}
$$

where $E_{\mathrm{b}}=$ D.c. plate voltage

$$
I_{\mathrm{p}}=\text { D.c. plate current (ma.) }
$$

E_{b} and I_{p} are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the instantancous plate voltage (the r.f. output voltage must be proportional to the plate voltage) for the modulation to be linear. This will be the case when the amplifier operates under Class C conditions. The linearity depends upon having sufficient grid excitation and proper bias, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class C' operation are described in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.c. plate voltage used, and the grid excitation should be great enough so that the amplifier's plate efficiency will stay constant when the plate voltage is varied over the range from zero to twice the unmodulated value. For best linearity, the grid bias should be obtained from a fixedbias source of about the cut-off value, supplemented by enough grid-leak bias to bring the total up to the required operating bias.

Fig. 10-6-Plote ond screen modulotion of o Closs C r.f. omplifier using o screen-grid tube. The plate r.f. by-pass copacitor, C_{1}, should have reasonobly high reactance at all audio frequencies; o value of 0.001 to $0.005 \mu \mathrm{f}$. is generally sotisfoctory. The screen byposs, C_{2}, should not exceed $0.002 \mu \mathrm{f}$. in the usuol case.

When the moduloted amplifier is a beam tefrode the suppressor connection shown in this diogrom moy be ignored. If o bose terminal is provided on the tube for the beom-forming plotes, it should be connected os recommended by the tube monufacturer.
The maximum permissible d.c. plate power input for 100 per cent modulation is twice the sine-wave audio-frequency power output available from the modulator. This input is obtained by varying the loading on the amplifier (keeping its tank circuit tuned to resonance) until the product of d.c. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correct output-transformer turns ratio. This point is considered in detail in the section on modulator design.
Neutralization, when triodes are used, should be as nearly perfect as possible, since regeneration may cause nonlinearity. The amplifier also must be completely free from parasitic oscillations.
Although the total power input (d.c. plus audio-frequeney a.c.) increases with modulation, the d.c. plate current of a plate-modulated amplifier should not change when the stage is modulated. This is because each increase in plate voltage and plate current is balanced by an equivalent decrease in voltage and current on the next

Fig. 10-7_Plate modulotion of a beom tetrode, using an oudio impedonce in the screen circuit. The value of L_{1} is discussed in the text. See Fig. 10-6 for dota on byposs capacitors C_{1} and C_{2}.
half-cycle of the modulating wave. D.c. instruments cammot follow the a.f. variations, and since the aterage d.e. plate current and plate voltage of a properly-operated amplifier do not change, neither to the meter readings. A change in plate current with modulation indicates nonlinearity. On the other hand, a thermocouple r.f. ainmeter connected in the antemat or transmission line will show in increase in r.f. current with modulation, bectuse instruments of this type respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Screen-grid tubes of the pentode or beamtetrode type can be used as Class C plate-modulated amplifiers by applying the modulation to both the plate and screen grid. The usual method of feeding the screen grid with the necessary d.c. and modulation voltages is shown in Fig. 10-6. The dropping resistor, R, should be of the proper value to apply normal d.c. voltage to the screen under steady carrier conditions. Its value can be calculated hy taking the difference between plate and sercen voltages and dividing it by the rated screen current.
The modulating impedance is found by dividing the d.c. plate voltage by the sum of the plate and screen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the basis for determining the audio power required from the modulator.

Modulation of the screen along with the plate is necessary because the screen voltage has a much greater effect on the plate current than the plate voltage does. The modulation characteristic is nonlinear if the plate alone is modulated. However, some beam tetrodes can be modulated satisfactorily ly applying the modulating power to the plate circuit alone, provided the screen is connected to its d.c. supply through an audio impedance. Under these conditions the sereen becomes self-modulating, because of the variations in sereen current that occur when the plate voltage is varied. The circuit is shown in Fig. 10-7. The choke coil L_{1} is the audio impedance in the screen circuit; its inductance should be large enough to have a reactance (at the lowest desircd audio frequency) that is not less than the impedance of the screen. The sereen impedance can be taken to be approximately equal to the d.c. sereen voltage divided by the d.c. screen current in amperes.

Choke-Coupled Modulator

The choke-coupled Class A modulator is shown in Fig. 10-8. Because of the relatively low power output and plate efficiency of a Class A amplifier, this method is seldom used except for a few special applications. The audio power output of the modulator is combined with the d.e power in the plate circuit, as in the case of the trans-former-coupled modulator. But there is considerably less freedom in adjustment, since ne transformer is available for matching impedanees.
The modulating impedance of the r.f. amplifier must be adjusted to the value of load impedance
required by the particular modulator tube used, and the power input to the r.f. stage should not exceed twice the rated a.f. power output of the modulator for 100 per cent modulation. A complication is the fact that the plate voltage on the

Fig. 10.8-Chake-coupled Class A madulatar. The cathode resistar, R_{2}, shauld have the normal value for operation of the madulator fube as a Class A power amplifier. The modulation choke, L_{1}, should be 5 henrys or more. A value of 0.001 to $0.005 \mu \mathrm{f}$. is satisfactory at C_{2}, the r.f. amplifier plate by-pass capacitor. See text for discussion of C_{1} and R_{1}.
modulator must be higher than the phate voltage on the r.f. amplifier, for 100 per cent modulation. 'This is because the a.f. voltage developed by the modulator cannot swing to zero without a great deal of distortion. R_{1} provides the necessary d.c. voltage drop between the modulator and r.f. amplifier, but its value cannot be calculated without using the published plate family of cinves for the modulator tube used. The d.c. voltage drop through R_{1} must equal the minimum instantaneous plate voltage on the modulator tube under normal operating conditions. C_{1}, an audiofrequency bypass across R_{1}, should have a caparitance such that its reactance at 100 cyeles is not more than about one-tenth the resistanere of R_{1}. Without $R_{1} C_{1}$ the percentage of modulation is limited to 70 to 80 per cent in the average calse.

GRID MODULATION

The principal disadvantage of plate modulation is that a considerable amount of audio power is necessary. This requirement can be avoided by applying the modulation to a grid element in the modulated amplifier. However, the convenience and economy of the low-power modulator must be paid for, since no modulation system gives something for nothing. The increased power output that accompanies modulation is paid for, in the case of grid modulation, by a reduction in the carrier power output obtainable from a given r.f.
amplifier tube, and by more rigorous, operating requirements and more complicated adjustment.
The term "grid modulation" as used here applies to all types - control grid, sereen, or suppressor - since the oprating principles are exactly the same no matter which grid is actually modulated. With grid modulation the plate voltage is constant, and the increase in power output with modulation is obtained by making both the plate current and plate efliciency vary with the modulating signal as shown in Fig. 10-9. For

relative modulating voltage
Fig. 10.9-In a perfect grid-modulated amplifier both plate current and plate efficiency would vary with the instantaneous modulating voltage as shown. When this is so the modulation characteristic is as given by curve A in Fig. 10.4 , and the peak envelope output power is four times the unmodulated carrier power. The variations in plate current with modulation, indicated above, do not register on a d.c. meter, so the plate meter shows no change when the signal is modulated.

100 per eent modulation, both plate current and efficiener must, at the prak of the modulation up-swing, be twice their carrier values. Thus at the modulation-envelope prak the power input is doubled, and since the plate efficiency also is doubled at the same instant the peak envelope output power will be four times the carrier power. The efficieney obtanable at the envelope patk depends on how carcfully the modulated amplifier is adjusted, and sometimes ran be as high as 80 per eent. It is generally lows when the amplifior is adjusted for good linearity, and under average conditions a round figure of $2 / 3$, or 66 per eent, is representative. The efficiency without modulation is only half the peak effrience, or about $3: 3$ per cent. This low average effiriency reduces the permissible carrier output to ahout one-fonth the power obtainable from the same tube in e.w. operation, and to about one-third the carrier output obtainable from the tube with plate modulation.

The modulator is required to furnish only the audio power dissipated in the modulated grid under the operating eonditions chosen. A speech amplifier capable of delivering 3 to 10 watts is usually sufficient.

Grid Modulation

Generally spoaking, grid modulation does not give quita as linear a modulation characteristie as plate modulation, cven under optimum operating eonditions. When misardjusted the nonlinearity may be severe, resulting in bad distortion and splatter. However, with eareful adjustment it is capable of satisfactory results.

Plate-Circuit Operating Conditions

The d.c. plate power input to the molulated amplifier, aswming a round figure of $\frac{1 / 3}{3}$ (33 per eent) for the plate efficjency, should not exered $1 \frac{1}{2}$ times the plate dissipation rating of the tube or tules used in the modulated stage. It is genarally best to use the maximum phate woltage permitted by the mandfacturen's ratings, boranse the optimum operating eombitions are more amily achieved with high plate voltage and the linearity also is improwed.

$$
\begin{aligned}
& \text { Bxample: Two tubes having plate dissipation } \\
& \text { ratinge of } 5.5 \text { watts each are to be used with prid } \\
& \text { modulation. } \\
& \text { The maximmm peraniesibld power input, at } 33 \% \\
& \text { efficience: is } \\
& I^{\prime}=1.5 \times(2 \times 5.5)=1 . i \times 110=16.5 \text { watts } \\
& \text { The thaximum rocommended plate veltage for } \\
& \text { these tubes is } 1.000 \text { volts. D"sing this figure, the } \\
& \text { average wata eurrent for the two tubes will be } \\
& I=\frac{P}{R}=\frac{16: \%}{1 \overline{5}(0)}=0.11 \mathrm{amp} .=110 \mathrm{ma} . \\
& \text { At } 33 / 6 \text { efficiency, the carrior outbut to be ex- } \\
& \text { perted is is.j whats. } \\
& \text { The Matevoltage/platemement ratio at trice } \\
& \text { carrier phate marment is } \\
& \frac{1.600}{2.20}=6.8
\end{aligned}
$$

The tank-eireuit L / C ratio should be ehosen on the basis of twice the a verage or carrier plate eurrent. If the L / C matio is based on the plate voltage/plate current ratio under carricer conditions the (Q may be too low for good coupling to the output cireuit.

Screen Grid Modulation

Sereen modulation is probably the simplest form of grid modulation and the least critical of adjustment. 'The most satistiatory way to apply the modulating voltage to the sereen is through a transformer, as shown in Fig. 10-10. With pratetieal tuless it is necessary to drive the sereen somewhat negative with respeet to the eathode to get complete eutaif of r.f. output. For this reason the peak modulating voltage required for 100 per eent modulation is usually 10 per cent on so greater than the d.e. sereen voltage. The latter, in turn, is approximately half the rated sereen voltage recommended under maximum ratings for e.w, operation.

The audio power required for 100 pror ient modulation is approximately one-fourth the d.e. power input to the sorern in es. operation, but varies somewhat with the operating conditions. A receiving-type athdio power amplifier will suffice as the modulator for most transmitting tubes. The relationship, between seren voltage and screen current is not linear, which means that the load on the modulator varies over the

Fig. 10-10-Screen-grid modulation of beam tetrode. Capacilor C is an r.f. by-pass capacitor and should have high reactance at audio frequencies. A value of $0.002 \mu \mathrm{f}$. is satisfactory. The grid leak can have the same value that is used for c.w. operation of the fube.
audio-frequency reche. It is therefore highly aldvisable to use negative ferdback in the mondulator circuit. If exeess andio power is avatable, it is also advisable to load the modulator with a resistanee (R in Fig. 10-10) its value bring adjusted to dissipate the exers power. Unfortunately, there is no simple way to determine the proper resistance exeept experimentally, by observing its effect on the modulation envelope with the aid of an oseilloseope.

On the assumption that the modulator will be fully loaded by the sereen plus the additional load resistor R, the turns ratio required in the coupling transformer may be calculated as follows:

$$
N=\frac{l_{1,}}{2 . \bar{~} \sqrt{\rho R_{\mathrm{L}}}}
$$

where N is the turns ratio, secondary to primary; E_{a} is the rated sereon voltage for c.W. operation; I is the rated audio power output of the modulator; and R_{1} is the rated load resistance for the modulator.

Adjustment

A screen-modulated amplifier should be adjusted with the aid of an oscilloscope connected as shown in Fig. 10-11. A tone source for modulating the transmitter is a convenience, since a staady tone will give a steady pattern on the oseilloscope. A steady pattern is easier to study than one that flickers with voice modulation.

IIaving determined the permissible earrior plate eurrent as previously deseribed, apply r.f. excitation and d.r. plate and sereen voltages. Without modulation. adjust the plate loading to give the required plate eurrent, keeping the plate tank airenit tuned to resonance. Next, apply modulation and inerease the modulating voltage unt il the modubation characteristic shows curvature (see later in this section for use of the osrilloseope). If curvature oceurs well below 100 per cent modulation, the plate efficiency is too high at the carrier level. Increase the plate loading slightly and readjust the r.f. grid exeitation to maintain the same plate current; then apply modulation and chack the characteristie again. Contime until the characteristic is as linear as possible from zero to twice the carrier amplitude.

In general, the amplifier should be heavily

Fig. 10-11-Using the oscilloscope for adjustment of a screen-modulated amplifier.
L and C should tune to the operating frequency, and may be coupled to the transmitter tank circuit through a twisted pair or coax, using single-turn links at each end. The blocking capacitor ($0.05 \mu \mathrm{f}$.) that couples the audio voltage from the screen grid to the horizontal plates of the oscilloscope should have a voltage rating equal to at least twice the d.c. voltage on the grid that is being modulated. The r.f. and audio voltages should be fed directly to the deflection plates of the scope tube (through blocking capacitors if necessary or desirable), not through any vertical or horizontal amplifiers that may be in the instrument.
loaded. Under proper operating conditions the plate-current dip as the amplifier plate circuit is tuned through resonance will be little more than just discernible. It is desirable to operate with the grid current as low as possible, since this reduces the screen current and thus reduces the amount of power required from the modulator.

With proper adjustment the linearity is good up to about 90 per cent modulation. When the screen is driven negative for 100 per cent modulation there is a kink in the modulation characteristic at the zero-voltage point. This introduces a small amount of envelope distortion. The kink can be removed and the over-all linearity improved by applying a small amount of modulating voltage to the control grid simultaneously with screen modulation.

In an alternative adjustment method not requiring an oscilloscope the r.f. amplifier is first tuned up for maximum output without modulation and the rated d.c. screen voltage (from a fixed-voltage supply) for c.w. operation applied. Use heavy loading and reduce the grid excitation until the output just starts to fall off, at which point the resonance dip in plate current should be small. Note the plate current and, if possible, the r.f. antenna or feeder current, and then reduce the d.c. screen voltage until the plate current is one-half its previous value. The r.f. output current should also be one-half its previous value at this screen voltage. The amplifier is then ready for modulation, and the modulating voltage may be increased until the plate current just starts to shift upward, which indicates that the amplifier is modulated 100 per cent. With voice modulation the plate current should remain steady, or show just anl occasional small upward kick on intermittent peaks.

"Clamp-Tube" Modulation

A method of sereen-grid modulation that is convenient in transmitters provided with a screen protective tube ("clamp" tube) is shown in Fig.

10-12. An audio-frequency signal is applied to the grid of the clamp, tube, which then becomes a modulator. The simplicity of the circuit is somewhat dereptive, since it is considerably more difficult from a design standpoint than the transformer-coupled arrangement of Fig. 10-10.

For proper modulation the clamp tube must be operated as a triode Class A amplifier, and it will be recognized that the method is essentially identical with the choke-coupled Class A plate modulator of Fig. 10-8 except that a resistance, R_{2}, is sulstituted for the choke. R_{2} in the usual case is the screen dropping resistor normally used for c.w. operation. Its value should be at least two or three times the load resistance required by the Class A modulator tube for optimum audiofrequency output. Unfortunately, relatively little

Fig. 10-12-Screen modulation by a "clamp" tube. The grid leak is the normal value for c.w. operation and C_{2} should be $0.002 \mu \mathrm{f}$. or less. See text for discussion of C_{1}, R_{1}, R_{2} and R_{3}. R_{3} should have the proper value for Class A operation of the modulator tube, but cannot be calculated unless triode curves for the tube are available.

Clamp Tube Modulation

information is available on the triode operation of the tubes most frequently used for screenprotective purposes.

Like the choke-coupled modulator, the clamptube modulator is incapable of modulating the r.f. stage 100 per cent unless the dropping resistor, R_{1}, and audio bypass, C_{1}, are incorporated in the circuit. 'The same design considerations hold, with the addition of the fact that the screen must be driven negative, not just to zero voltage, for 100 per cent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to 40 per cent higher than the screen that it modulates. Proper design requires knowledge of the screen characteristics of the r.f. amplifier and a set of plate-voltage plate-current curves on the modulator tube as a triode.

Adjustment with this system, once the design voltages have been determined, is carried out in the same way as with transformer-coupled screen modulation, preferably with the oscilloscope. Without the oscilloscope, the amplifier may first be adjusted for c.w. operation as described earlier, but with the modulator tube removed from its socket. The modulator is then replaced, and the cathode resistance, R_{3}, adjusted to reduce the amplifier plate current to one-half its c.w, value. The amplifier plate current should remain constant with modulation, or show just a small upward flicker on occasional voice peaks.

Controlled Carrier

As explained earlier, a limit is placed on the output obtainable from a grid-modulation system by the low r.f. amplifier plate efficiency (approximately 3:3 per cent) under unmodulated carrier conditions. The plate efficiency increases with modulation, since the output increases while the d.c. input remains constant, and reaches a maximum in the neighborhood of 50 per cent with 100 per eent sine-wave modulation. If the power input to the amplifier can be reduced during periods when there is little or no modulation, thus reducing the plate loss, advantage can be taken of the higher efficiency at full modulation to obtain higher effective output. This can be done by varying the d.c. power input to the modulated stage in accordance with average variations in voice intensity, in such a way as to maintain just sufficient carrier power to keep the modulation high, but not exceeding 100 per cent, under all conditions. Thus the carrier amplitude is controlled by the average voice intensity. Properly utilized, controlled carrier permits increasing the effective carrier output at maximum level to a value about equal to the rated plate dissipation of the tube, or twice the output obtainable with constant carrier.

It is desirable to control the power input just enough so that the plate loss, without modulation, is safely below the tube rating. Excessive control is disadvantageous because the distant receiver's a.v.c. system must continually follow the variations in average signal level. The circuit of Fig. 10-13 permits adjustment of both the maximum and minimum power input, and al-

Fig. 10-13-Circuit for carrier control with screen moduIation. A small triode such as the 6C4 can be used as the control amplifier and a 6Y6G is suitable as a carriercontrol tube. T_{1} is an interstage audio transformer having a 1 -to- 1 or larger turns ratio. R_{4} is a 0.5 -megohm volume control and also serves as the grid resistor for the modulator. A germanium crystal may be used as the rectifier. Other values are discussed in the text.
though somewhat more complicated than some circuits that have been used is actually simpler to operate hecause it separates the functions of modulation and carrier control. A portion of the audio voltage at the modulator grid is applied to a Class A "control amplifier" which drives a rectifier circuit to produce a d.c. voltage negative with respect to ground. C_{1} filters out the audio variations, leaving a d.c. voltage proportional to the average voice level. This voltage is applied to the grid of a "clamp" tube to control the d.c. screen voltage and thus the r.f. carrier level. Maximum output is obtained when the carriercontrol tube grid is driven to cut-off: the voice level at which this occurs being determined by the setting of R_{4}, The input without modulation is set to the desired level (usually about equal to the plate dissipation rating of the modulated stage) by adjusting $R_{2} . R_{3}$ may be the normal screen-dropping resistor for the modulated beam tetrode, but in case a separate screen supply is used the resistance need be just large enough to give sufficient voltage drop to reduce the nomodulation power input to the desired value.
$C_{1} R_{1}$ should have a time constant of about 0.1 second. The time constant of $C_{2} R_{3}$ should be no larger. Further details may be found in QST for April, 1951, page 64. An oscilloscope is required for proper adjustment.

Suppressor Modulation

Pentode-type tubes do not, in general, modulate well when the modulating voltage is applied to the screen grid. However, a satisfactory modulation characteristic can be obtained by applying the modulation to the suppressor grid. The circuit arrangement for suppressor-grid modulation of a pentode tube is shown in Fig. 10-14.

The method of adjustment closely resembles that used with screen-grid modulation. If an oscilloscope is not available, the amplifier is first adjusted for optimum c.w. output with zero bias

Fig. 10-14-Suppressor-grid modulation of an r.f. amplifier using a pentode-type tube. The suppressorgrid r.f. by-pass capacitor, C, should be the same as the grid by-pass capacitor in control-grid modulation.
on the suppressor grid. Negative bias is then applied to the suppressor and increased in value until the plate current and r.f. output current drop to half their original values. When this condition has been reached the amplifier is ready for modulation.

Since the suppressor is always negatively liased, the modulator is not required to furnish any power and a voltage amplifier can be used. The suppressor bias will vary with the type of pentode and the operating conditions, but usually will be of the order of -100 volts. The peak a.f. voltage required from the modulator is equal to the suppressor bias.

Control-Grid Modulation

Although control-grid modulation may be used with any type of r.f. amplifier tube, it is seldom used with tetrodes and pentodes because screen or suppressor modulation is generally simpler to adjust. However, control-grid modulattion is the only form of grid modulation that is

Fig. 10-15-Control-grid modulation of a Class C amplifier. The r.f. grid by-pass capocitor, C, should have high reactance at audio frequencies ($0.005 \mu \mathrm{f}$. or less).
applicable to triode amplifiers. A typical triode circuit is given in Fig. 10-15.

In control-grid modulation the d.c. grid bias is the same as in normal Class C amplifier service, but the r.f. grid excitation is somewhat smaller. 'The audio voltage superimposed on the d.c. bias changes the instantancous grid bias at an audio rate, thus varying the operating conditions in the grid circuit and controlling the output and efficiency of the amplifier.
The change in instantaneous bias voltage with modulation causes the rectified grid current of the amplifier to vary, which places a variable load on the modulator. To reduce distortion, resistor $/ 1$ in Fig. 10-15 is connected in the output circuit of the modulator as a constant load, so that the over-all load variations will be minimized. 'This resistor should be equal to or somewhat higher thit the load into which the modulator tulee is rated to work at normal audio output. It is also recommended that the modulator circuit incorporate as much negative feedback as possible, as a further aid in relucing the internal resistance of the modulator and thus improving the "regulation" - that is, reducing the effeet of load variations on the audio output voltage. The turns ratio of transiomer ' T 'should be about 1 to 1 in most gases.
The load on the r.f. driving stage also varies with modulation. This in turn will canse the excitation voltage to vary and maty rause the modulation characteristie to be nonlinear. To overcome it, the driver should be capable of two or three times the r.f. power output actually required to drive the amplifier. The excess power may be dissipated in a dummy load (such as an incandeseont lamp of appropriate power rating) that then performs the same function in the r.f. cireuit that resistor R does in the audio circuit.

The d.c. bias souree in this system should have low intermal resistance. Batteries or a voltageregulated supply are suitahle. (irid-leak bias should not be used.

Satisfactory adjust ment of a control-grid modulated amplifior requires an oscilloscope. The seope connections are similar to those shown for screen-grid modulation in Fig. 10-11, with audio from the modulator's output transformer secondary applied to the horizontal plates through a blocking capacitor and volume control, and with r.f. from the plate tank cirenits coupled to the vertical plates. The adjustment procedure follows that for sereen modulation as previonsly deseribed.

- CATHODE MODULATION

Circuit

The fundamental eireuit for cathode modulation is shown in Fig. 10-16. It is a combination of the plate and grid mothods, and permits a carrier efficienty midway between the two. The andio power is introduced in the cathode circuit, and both grid bias and plate voltage are moduhated.

Becanse part of the modulation is by the

Fig. 10.16-Circuit arrangement for cathode modulation of a Class C r.f. amplifier. Values of by-pass capacitors in the r.f. circuits should be the same as for other modu. lation methods.
control-grid method, the plate efficiency of the modulated amplifier must vary during modulation. The carrier efficiency therefore must be lower than the efficiency at the modulation peak. The required reduction in efficiency depends upon the proportion of grid modulation to plate modulation; the higher the pereentage of plate modulation, the higher the permissible carrier afficiency, and vice versa. The audio power required from the modulator also varies with the pereentage of plate modulation, being greater as this pereentage is increased.

The way in which the various quantities vary is illustrated by the curves of Fig. 10-17. In these eurves the performance of the cath-ode-modulated r.f. amplifier is plotted in terms

Fig. 10.17-Cathode-modulation performance curves, in terms of percentage of plate modulation plotted against percentage of Class C telephony tube ratings. $W_{\text {in-D }}$-D.c. plate input watts in terms of percentage of plate-modulation rating.
$\mathrm{W}_{\text {o }}$ - Carrier output watts in per cent of plate-modula. tion rating (based on plate efficiency of 77.5%). W_{n} - Audio power in per cent of d.c. watts input. N_{1}-Plate efficiency of the amplifier in percentage.
of the tube ratings for plate-modulated telephony, with the percentage of plate modulation as a base. As the peresitage of plate modulation is decreased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per cent. The limiting condition, 1 b0 per cent plate modulation and no grid modulation, is at the right (A); pure grid modulation is represented hy the left-hand ordinate (B and C).

Fxanuple: Asaume that the r.f. tube to be used has a 190% slate-modulation rating of $2 \% 0$ watts input and will give a cartier fower outpht of 190 watts at that input. Cathode modulation with $40^{\circ} \%$ plate modulation is to be used. From liow $10-17$, the carrier efficiency will be $56{ }^{\circ}$; with 40 ; plate modulation, the permissible d.e. input will be fio's of the plate-modulation rating, and the r.t. output will be 48% of the plate-modulation rating. That is,

Power input $=250 \times 0.65=162.5$ watts
Power ontput $=190 \times 0.48=91.2$ watts
The recpuired audio power, from the chart, is equal $10: 20$ of the d.c. input to the modulated amplifier. Therefore

Audio power $=162.5 \times 0.2=32.5$ watts
The modulator should supply a small amount of extra power to take care of losses in the grid circuit. These should not exceed four or five watts.

Modulating Impedance

The modulating impedance of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}
$$

where $m=$ Percentage of plate modulation (expressed as a decimal)
$E_{1}=1$).e. plate voltage on modulated amplifier
$I_{5}=1$.e. plate current of modulated amplifier
Example: Assume that the modulated amplifier in the example above is to operate at a pate potential of 1250 volts. Then the d.c. plate eurrent is

$$
I=\frac{P}{E}=\frac{162.5}{1250}=0.13 \mathrm{amp},(130 \mathrm{ma})
$$

The modulating impedance is

$$
m \frac{E_{b}}{I_{\mathrm{h}}}=0.4 \frac{1250}{0.13}=3846 \mathrm{ohms}
$$

The modulating impedance is the load into which the modulator must work, just as in the case of pure plate modulation. This load must be matehed to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer, as described in the chapter on speech equipment.

Conditions for Linearity

R.f. excitation requirements for the cathodemodulated amplifier are midway between those for plate modulation and control-grid modulation. More exeitation is required as the percentage of plate modulation is increased. Grid bias should be considerably beyond cut-off; fixed bias from a supply having good voltage regulation is preferred, especially when the percentage of plate modulation is small and the amplifier is operating more nearly like a grid-bias modulated stage. At the higher per-

10-AMPLITUDE MODULATION

centages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in rectified grid current is smaller. The grid leak should be bypassed for audio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap on the modulation-transformer secondary.

The cathode circuit of the modulated stage must be independent of other stages in the transmitter. When directly-heated tubes are modulated their filaments must be supplied from a separate transformer. The filament by-pass capacitors should not be larger than about 0.002 μf., to avoid bypassing the audio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-bias modulation. The critical adjustments are antenna loading, grid bias, and excitation. The proportion of grid-bias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an oscilloscope connected in the same way as for grid-bias modulation. With proper antenna loading and excitation, the normal wedge-shaped pattern will be obtained at 100 per cent modulation. As in the case of grid-bias modulation, too light antenna loading will cause flattening of the upward peaks of modulation as also will too high excitation. The cathode current will be practically constant with or without modulation when the proper operating conditions have been established.

LINEAR AMPLIFIERS

If a signal is to be amplified after modulation has taken place, the shape of the modulation envelope must be preserved if distortion is to be avoided. This requires the use of a linear amplifier - that is, one that will reproduce, in its output circuit, the exact form of the signal envelope applied to its grid.

Linear amplifiers for amplitude-modulated r.f. signals cannot be operated with the grid bias beyond cut-off. To do so would mean that the
part of the modulation envelope near the zero axis (see Fig. 10-1C) would be clipped, since there would be times when the instantaneous signal voltage would be below the minimum value that would cause plate-curvent flow. The result would be overmodulation of the type shown in Fig. 10-3.

However, the grid bias may be set at any value less than cutoff. Usually, such amplifiers are operated at or near the Class I3 condition - that is, with the grid bias at or somewhat less than cutoff. Although Class 13 operation results in considerable distortion of the individual r.f. cycles applied to the grid, the modulation envelope is not distorted if the operating conditions are chosen properly. The r.f. distortion produces only r.f. harmonies, and these can be eliminated by the selectivity of the output tank circuit.

A linear amplifier used for a.m. has the same disadvantages with respect to efficiency that grid modulation docs. The reason also is much the same: since the amplifier must handle a peakenvelope power four times as great as the unmodulated carrier power, it cannot be operated at its full capabilities when it is amplifying only the unmodulated carrier. The plate efficiency of the amplifier varies with the instantaneous value of the modulation envelope in the same way that it varies with the instantaneous modulating voltage in grid modulation (Fig. 10-9). Hence the efficiency at the unmodulated carrier level is only of the order of $30-35$ per cent.

Because of this low efficiency, linear amplifiers have not had much application in amateur transmitters, especially since equivalent efficiency can be obtained with grid modulation, along with a less critical adjustment procedure. Recently there has been some increase in use of a.m. linears, particularly at v.h.f., as a means of stepping up the modulated power output of very low power transmitters with a minimum of complication in over-all equipment and operation. To obtain a useful increase in power output by this means the linear amplifier must use a tube or tubes capable of relatively large plate dissipation, since about two-thirds of the d.e. power input to the amplifier is consumed in heating the plate and only about one-third is converted to usetul carrier output.

Checking A.M. Phone Operation

USING THE OSCILLOSCOPE

Proper adjustment of a phone transmitter is aided immeasurably by the oscilloscope. The scope will give more information, more accurately, than almost any collection of other instruments that might be named. Furthermore, an oscilloscope that is entirely satisfactory for the purpose is not necessarily an expensive instrument; the cathode-ray tube and its power supply are about all that are needed. Amplifiers and linear sweep circuits are by no means necessary.

In the simplest scope circuit, radio-frequency voltage from the modulated amplifier is applied to the vertical deflection plates of the tube, usually through blocking capacitors as shown in the oscilloscope circuit in the section on measurements, and audio-frequency voltage from the modulator is applied to the horizontal deflection plates. As the instantaneous amplitude of the audio signal varies, the r.f. output of the transmitter likewise varies, and this produces a wedgeshaped pattern or trapezoid on the screen. If the oscilloscope has a built-in horizontal sweep, the

Checking A.M. Phone Operation

Fig. 10-18-Methods of connecting the oscilloscope for modulation checking. A-connections for wave-envelope pattern with any modulation method; 8-connections for trapezoidal pattern with plate modulation. See Fig. 10-11 for scope connections for trapezoidal pattern with screen modulation.
r.f. voltage can be applied to the vertical plates as before (never through an amplifier) and the sweep will produce a pattern that follows the modulation envelope of the transmitter output, provided the sweep frequency is lower than the modulation frequency. 'This produces a waveenvelope modulation pattern.

The Wave-Envelope Pattern

The connections for the wave-envelope pattern are shown in Fig. 10-18A. The vertical deflection plates are coupled to the amplifier tank coil (or an antenna coil) through a low-impedance (coax, twisted pair, etc.) line and pick-up coil. As shown in the alternative drawing, a resonant circuit tuned to the operating frequency may be connected to the vertical plates, using link coupling between it and the transmitter. This will eliminate r.f. harmonies, and the tuning control provides a convenient means for adjustment of the pattern height.

If it is inconvenient to couple to the final tank coil, as may be the case if the transmitter is tightly shielded to prevent TVI, the pick-up loop may be coupled to the tuned tank of a matching circuit or antenna coupler. Any method (even a short antenna coupled to the tuned circuit shown in the "alternate input connections" of Fig. 10-18A) that will pick up
enough r.f. to give a suitable pattern height may be used.

The position of the pick-up coil should be varied until an unmodulated carrier pattern, Fig. 10-19B, of suitable height is obtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the screen. When voice modulation is applied, a rapidly-changing pattern of varying height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone, the wave is being modulated 100 per cent. This is illustrated by Fig. 10-19D, where the point X represents the horizontal sweep line (reference line) alone, $Y Z$ is the carrier height, and $P^{\prime}()$ is the maximum height of the modulated wave.

If the height is greater than the distance $P Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direction is indicated by a gap in the pattern at the reference axis, where a single bright line appears on the screen. Overmodulation in either direction may take place even when the modulation in the other direction is less than 100 per cent.

(F)
(B)

(G)

CARRIER ONLY

(H)

100\% MODULATION

(I)
(E)

(J)

Fig. 10-19-Wave-envelope and trapezoidal patterns representing different conditions of modulation.

10-AMPLITUDE MODULATION

The Trapezoidal Pattern

Comections for the trapezoid or wedge pattern as used for checking plate modulation are shown in Fig. 10-18B. The vertical plates of the c.r. lube are coupled to the transmitter tank through a piek-up loop, proferably using a tuned dircuil, as shown in the upper drawing, adjustable to the operating frequency. Audio voltaige from the modulator is applied to the horizontal plates: through a voltage divider, $R_{1} R_{2}$. This voltage should be adjustable so a suitable pattern width (an be olstained; a 0.25 -megohm volume control can be used at h_{2} for this purpose.

The resistance required at l_{1} will depend on the d.c. plate voltage on the modulated amplifier. The total resistance of R_{1} and R_{2} in series should be about 0.25 megohm for each 100 volts of d.c. plate voltage. For example, if the modulated amplifier operates at 1500 volts, the total resistance should he 3.75 megohms, 0.25 megohm at R_{2} and the remainder, 3.5 megohms, in $R_{1} . R_{1}$ should be composed of individual resistors not larger than 0.5 megohm each, in which case l-watt resistors will he satisfactory.

For adequate coupling at 100 eyeles the catpacitance, in mierofarads, of the blocking capaceitor, (", should be at least $0.05 / R$, where R is the total resistance ($R_{1}+R_{2}$) in megohms. In the example above, where R is 3.75 megohms, the eaparitance should be $0.05 / 3.75=0.013$ $\mu \mathrm{f}$. or more. The voltage rating of the caparitor should be at least twice the d.c. voltage appliod to the modulated amplifier. The capacitance can be made up of two or more similar units in series, so long as the total capacitance is equal to that required, in case a single unit of sufficient voltage rating is not available. Two or more units may be used in parallel if capacitors having adequate voltage rating but insufficient capatcitance are available.

The corresponding scope connections for sereen modulation were given in Fig. 10-11. This cireuit will be satisfactory for d.c. screen voltages up to 200 volts or so, which will include most heam tetrodes. If the d.c. screen voltage, adjusted for proper modulation, exceeds 200 volts a voltage divider similar to that shown in Fig. 10-18 should be used, the values being calculated as described above using the screen voltage instead of the plate voltage.

Trapezoidal patterns for various conditions of modulation are shown in lig. 10-19) at F to J, each alongside the corresponding wave-envebope pattern. With no signal, only the eathoderay spot appars on the screen. When the unmodulated carrier is applied, a vertical line appears; the length of the line should be adjusted, by means of the pick-up coil coupling, to a convenient value. When the carrier is modulated, the wedge-shaped pattern appears; the higher the modulation proentage, the wider and mow pointed the wedge becomes. At 100 per eent modulation it just makes a point on the axis, X, at one cond, and the height, PQ, at the other end is equal to twice the carrier height, I\%. Over-

Fig. 10.20-Top-a typical tropezoidal pattern obtained with screen modulation adjusted for optimum conditions. The sudden change in slope near the point of the wedge occurs when the screen voltage passes through zero. Center-If there is no audio distortion, the unmodulated carrier will have the height and position shown by the white line superimposed on the sine-wave modulation pattern. Bottom-Even-harmonic distortion in the audio system, when the audio signal applied to the speech amplifier is a sine wave, is indicated by the fact that the modulation pattern does not extend equal horizontal distances on both sides of the unmodulated carrier.
modulation in the upward direction is indicated by increased height over $P^{\prime}($, and downward by an extension s.long the axis \bar{X} at the pointed end.

CHECKING TRANSMITTER PERFORMANCE

The trapezoiblal pattern is generally more useful than the ratve-cnvelope pattern for checking the operation of a phone transmitter. However, both types of patterns have their special virtues, and the le'st test setup is one that makes both available. The trabozoidal pattern is better adateded to showing the performane of a modulated amplifier from the standpoint of inherent linearity, without regard to the wave form of the audio modukating signal, than is the wave-envelope pattern. Distortion in the audio signal also (an be detected in the truperoidal pattern, although considerable experience in analyaing scope patterns is sometimes required to recognize it.

If the waverenvelope pattern is useal with a

Checking Modulation

sine-wave audio modulating signal, distortion in the modulation envelope is easily recognizable; however, it is diflieult to determine whether the distortion is caused by lack of linearity of the r.f. stage or by a.f. distortion in the modulator. If the trapezoidal pattern shows good linearity in such a case the trouble obviously is in the audio system. It is possible, of course, for both defects to be present simultaneously. If they are, the r.f. amplifier should be made linear first; then ang distortion in the modulation envelope will be the result of some type of improper operation in the sperech amplifier or modulator, or in coupling the modulator to the modulated r.f. stage.

R. F. Linearity

The trapezoidal pattern is actuatly' a graph of the modulation characteristic of the modulated amplifier. The sloping sides of the wedge show the r.f. amplitude for every value of instantaneous modulating voltage, exactly the type of curve plotted in Fig. 10-4. If these sides are perfectly struight lines, as drawn in Fig. 10-1!) at II and I, the modulation characteristic is linear. If the sides show curvature, the characteristic is nonlinear to an extent that is shown by the degree to which the sides depart from perfect, straightne's.s. This is true regardless of the wave form of the modulating voltage.

Audio Distortion

If the sprech system can be driven by a good audio sintowave signal instead of a microphone, the trapmoidal pattern also will show the presenere of even-harmonic distortion (the most common type, expecially when the modulator is over-
loaded) in the speeeh amplifier or modulator. If there is no distortion in the audio system, the trapezoid will extend horizontally equal distances on each side of the vertical line representing the unmodulated earrier. If there is even-harmonic distortion the trapezoid will extend farther to one side of the unmemblated-carrior position than to the other. This is shown in Fig. 10-20. The probable cause is inadequate power outpat from the modulator, or ineorrect load on the modulator.

An atudio oscillator having reasonably good sine-wave output is highly desimable for testing both speech equipment and the phone transmittar as a whole. A very simple audio oscillator such as is shown in Section 21 on measurements is quite adequate. With such an oscillator and the soope, the pattern is steady and can be studied closely to determine the effects of various operating adjustments.

In the ease of the wave-envelope pattern, alistortion in the audio sistem will show up in the modulation envelope (with a sine-wave input signal) as a departure from the sine-wave form, and may be checked byy comparing the anvelope with a drawing of a sine wave. Attributiug any such distortion to the audio system atsumes, of course, that a check has been made on the linearity of the modulated r.f. amplifier, preferably by use of the trapezoidal pattern.

Typical Patterns

Figs. 10-20, 10-21 and 10-22 show some typical scope patterns of modulated signals for different conditions of operation. The sereren-medulation patterns, Fig. 10-20, also show how the presence of even-harmonic andio distortion ean be detected in the trapezoidal pattern. The pattern

Fig. 10-21-Oscilloscope patterns showing proper modulation of a plate-and-screen modulated tetrode r.f. amplifier. Upper row, trapezoidal patterns; lower row, corresponding wave-envelope patterns. In the latter a linear sweep having a frequency one-third that of the sine-wave audio modulating frequency was used, so that three cycles of the modulation envelope show in the pattern.

Fig. 10-22-Improper operation or design. These pictures
transmitter and with hottom edges of the pattern montinue in straight lines up to the point representing 100 per cent modutation. If these edges tend to bend over toward the horizontal at the maximum height of the wedge the amplifier is "flattening" on the modulation up-peaks. This is usually caused by attempting to get too large a carrier output, and can be corrected by tighter coupling to the antenna or by reducing the d.c. screen voltage.

Fig. $10-21$ shows patterns indicating proper operation of a plate-and-screen modulated tetrode r.f. amplifier. The corresponding waveenvelope pattern is shown with each trapezoidal pattern. The slight "tailing off" at the modulation down peak (point of the wedge) can be minimized by careful adjustment of r.f. grid excitation and plate loading.
Several types of improper operation are shown in Fig. 10-22. In the photos at the left the linearity of the r.f. stage is good but the amplifier is being modulated over 100 per cent. This is shown by the maximum height of the pattern (compare with the unmodnlated carrier of Fig. $10-21$) and by the bright line extending from the point of the wedge (or between sections of the envelope).

The patterns in the center, Fig. 10-22, show the effect of a too-long time constant in the screen circuit, in an amplifier getting its sereen voltage through a dropping resistor, both plate and sareen being modulated. The "doubleedged" pattern is the resuli of audio phase shift in the screen circuit combined with varying screen-to-cathode resistance during modulation. The over-all effect is to delay the rise in output amplitude during the up-sweep of the modulation cycle, slightly distorting the modula-
tion envelope as shown in the wave-envelope pattern. This effect, which becomes more pronounced as the audio modulating frequency is increased, is usually absent at low modulation pereentages but develops rapidly as the modulation appproaches 100 per cent. It an be reduced by reducing the screen bypass caparitance, and also by connecting resistance (to be determined experimentally, but of the same order as the sereen dropping resistance) between sereen and cathode.
The right-hand pietures in Fig, 10-22 show the effect of insufficient audio power. Although the trapezoidal pattern shows good linearity in the r.f. amplifier, the wave-envelope pattern shows flattenel juaks (both positive and negative) in the modulation envelope even though the audio signal applied to the amplifier was a sine wave. More speeeh-amplifier gain merely increases the flattening without increasing the modulation percentage in such a case. The remedy is to use a larger modulator or less input to the modulated r.f. stage. In some cascs the trouble may be caused by an incorrect modu-lation-tansformer turns ratio, causing the modulator to be overloaded before its maximum power output capabilities are reached.

Faulty Patterns

The pattern deferts shown in Fig, 10-2: are only a few out of many that might be observed in the testing of a phone transmitter, all capable of being interpreted in terms of improper operation in some part of the transmitter. It is well to keep in mind, however, that it is not always the transmitter that is at fault when the scope shows an unucual pattern The trouble may be in some defect in the test setup.
l'atterns representative of two common taults:

Checking Modulation

of this nature are shown in Fig. 10-23. The upper picture shows what happens to the trapezoidal pattern when the audio voltage applied to the horizontal plates of the c.r. tube is not exactly in phase with the modulation envelope. The normal straight edges of the welge are transformed into collipses which in the case of 100 percent modulation (shown) tourh at the horizontal axis and reach maximum heights equal to the height of the normal wedge at the morlulation up-peak. Sueh a phase shift can occur (and usually will) if the audio voltage applied to the er. tube deflection plates is taken from any point in the audio system other than where it is applied to the modulated r.f. stage. The coupling capacitor shown in the recommended circuit of Figg, $10-18$ must have very low reartance compared with the resistance of R_{1} and R_{2} in sories - not larger than a few per cent of the resistance.

Fig. 10-23-Upper photo-Audio phase shift in coupling circuit between transmitter and horizontal deflection plates. Lower photo-Hum on verlical deflection plates.

The wave-envelope pattern in Fig. 10-2:3 shows the effect of hum on the vertical defleetion plates. This may aetually be on the carrier (poor power-supply filtering) or may be introduced in some way from the a.c. line through stray coupling between the scope and the line or because of poor grounding of the scope, transmitter or modulator.

It is important that r.f. from the modulated stage only be coupled to the oscilloscope, and then only to the vertical plates. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oseilloseope cannot be moved to a position where the unwanted piek-up disappears, a small bypass capacitor ($10 \mu \mu t$. or more) should ise connected across the horizontal plates as close to the cathode-ray tube as possible. An r.f.
choke (2.5 mh . or smaller) may also be conneeted in series with the ungrounded horizontal plate.

MODULATION CHECKING WITH THE PLATE METER

The plate milliammeter of the modulated amplifier provides a simple and fairly reliable means for checking the performance of a phone transmitter, although it does not give nearly as definite information as the oseilloseope does. If the modulated amplifier is perfeetly linear, its plate current will not change when modulation is applied if

1) the upward modulation pereentage does not exced the modulation eapability of the amplifier,
2) the downward modulation does rot exeeed 100 per cent, and
3) there is no ehange in the d.c. operating voltages on the transmitter when modulation is applied.

The plate current should be constant, ideally, with any of the methods of modulation diseussed in this chapter, with the single exception of the eontrolled-carrier system. The plate meter eannot give a reliable check on the performanee of the latter system beause the plate eurrent inereases with the intensity of modulation. With this system the plate-current variations should be correlated with the transmitter performanee as observed on an oscilloscope, if the plate meter is to be used for cherking modulation.

Plate Modulation

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insuffieient exeitation to the modulated r.f. amplifier.
2) Insufficient grid bias on the modulated stage.
3) R.f. amplifier not loaded properly to present the required value of modulating impedance to the modulator.
4) Insufficient output capacitance in the filter of the modulated-amplifier plate supply.
5) D.e. input to the r.f. amplifier, under carrier conditions, is in excess of the manufacturer's ratings for plate modulation. Alternatively, the cathode emission of the amplifier tubes may be low.
6) In plate-and-screen modulation of tetrodes or pentodes, the sereen is not being sufficiently modulated along with the plate. In systems in whieh the d.e. sereen voltage is obtained through a dropping resistor, a downward dip in plate eurrent may oceur if the sereen by-pass eapacitance is large enough to bypass audio frequencies.
7) Poor voltage regulation of the modulatedamplifier plate supply. This may be eaused by voltage (lrop in the supply itself, when the modulated amplifier and a Class B amplifier are operated from the same supply, or may be caused by voltage Irop in the primary supply from the power line when the modulator load is thrown on. It is readily

10 - AMPLITUDE MODULATION

checked bey mataring the voltage with and without modulation. Poor line regulation will be shown by a drop in fikment voltage with modulation.
Any of the following may cause an upward shift in plate current:

1) Overmodulation (excessive audio power, audio gain too high).
2) Incomplete neutralization of the moduLated amplifior.
3) Parasitic oscillation in the modulated amplifier.

Grid Modulation

With any type of grid modulation, any of the following may cather a downward shift in modu-lated-amplifier plate current:

1) T'oo much r.f. excitation.
2) Insufticient grid hias particularly with control-grid modulation. (irid hias is usually. not critical with serem and suppressor modulation, the value of grid leak recommended for ew. operation being satisfactory:
3) With controd-grid modulation, execssive resistance in the bias supply.
4) Insufficient output capacitance in platesupply filter.
5) Plate efficiener too high under carrior conditions; amplifier is not louded hoavily enough.
Because grid mondatation is not perfectly linear (always Ioss so than plate moxdulation) ath amplifier that is properly designed and operated may show a small ppward platereurrent shift with moxlulation, 10 per cent or lass with sineWave mohalation and amonnting to an oecasional upward flicker with voice. An upwand plate current shift in excess of this may be callacd by.
6) Overmodulation (excessive modulating voltage)
7) IRegeneration (incomplete neutralization).
8) With control-grid or suppresisor modulation, bias too great.
9) With screen modulation, d.c. sereen voltage too low.
10) Audio distortion in modulator.

In grid-modulation systems the modulator is mot necessarily operating lincarly if the plate current stays constant with or without modulation. It is readily possible to arrive at a set of operating conditions in which flattening of the up-peaks is just batanced by overmodulation downward, resulting in practically the same plate current as when the transmitter is unmodulated. The oscilloseope provides the only certain eheck on grid modulation.

COMMON TROUBLES IN THE PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum may be detected by listening to the signal on a receiver, provided the re-
ceiver is far enough away from the transmitter to avoid orerloading. 'lhe hum level should be low compared with the voice at 100 per cent modulation. Ilum maty come either from the speech amplifier and modulator or from the r.f. section of the tramsmitter. Hum from the r.f. sertion can be deterted hy completely shutting ofi the modulator; if hum remains when this is done, the power-supply filters for one or more of the r.f. stages have insumficient smoothing. With a humfree carrier, hum introduced by the modulator can be chocked by turning on the modulator but leaving the sperech amplifior off; power-supply. filtering is the likely souree of such hum. If earrier and modulator are both elan, connect the speech amplifier and observe the increase in hum level. If the hum disappears with the gain control at minimum, the hum is bering introduced in the staze or stages preceding the gain control. The microphone also may piek up hum, a condition that can be checked by removing the mierophone from the circuit lnat leaving the first spereh-amplifier grid eircuit otherwise mohangod. A good ground (to a eold water pipe, for example) on the microphone amt speech system usuatly is essential to hum-free operation.

Spurious Sidebands

A superheterodyne receiver having a variablesolectivity erystal filter is needed for checking spurions sidebands outside the normal communication channel. The r.f. input to the receiver must be kept low enough, ly removing the antema or by adequate separation from the transmitter, to avoid overloading and consequent spurions receiver responses. An "s"-moter reading of alout half scald is satisfactory. With the crystal filter in its sharpest position tume through the region ontside the normat channel limits (a) to $\&$ kiloryelas rach side of the carrier) while another person talks into the mierophone. Spurious sidebands will be observed as intermittent "clicks" or crackles well away from the carrier frequency. Sidebands more than is to 4 kiloreveles from the carrier should be of negligible. strength, compared with the carrier, in a properly moklutaterl phone transmittre. 'The causes are overmodulation or nonlineat operation.

With sine-wave modulation the relative intensities of sidebands can be olserved if a tone of 1000 reges or so is used, since the erystal filter readily can separate frequencies of this order. The "s""-meter will show how the spurious side" frequencies (those spaced more than the modulating frequency from the carrer) rompare with the carrior itself. Without an "s""-meter, the a.v.e. should be turned off and the b,ifo. turned on; then the r.f. gain should be set to give a moderately strong beat note with the carrier. The intensity of side frequencies can be estimated from the relative strength of the beats as the receiver is tuned through the spectrum adjacent to the earrier.

As an alternative to the sharp erystal filter, a Q-multiplier adjusted for sharpest selectivity can give equivalent results in amalyaing the

Modulation Monitoring

spectrum of the signal if the same rare is used to prevent overloading and spurious receiver responses. This generally requires kecping the r.f. and i.f. gain low.

Réceivers having steep-sided band-pass filters for single-sideband reception can be used, but He technique is more difficult. If the band pass is, say, is ke., the signal should first he thued in with the carrier placed at one enge of the pass band. If it is placed at the low edge, for example, the receiver should then be tuned 3 ke , highe, so its response will be in the region just outside the normal spectrum space oceupied by one sideband. Any "crackles" heard in this region represent the results of nonlinearity or overmodulation. This assumes that the precautions mentioned alove with respect to reaceiver overloading have been carefully observed.

R.F. in Speech Amplifier

A small amount of r.f. current in the speech implifier - particularly in the first stage, which is most susecptible to such r.f. pickup - will ealuse overloading and distortion in the low-level stages. Frequently also there is a regenerative effect which causes an adio-frequency oseillation or "howl" to be set up in the audio system. In such cases the gain control camot be advanced very far before the howl builds up, even though the amplifier may be perfectly stable when the r.f. seetion of the transmitter is not turned on.

Complete shiclding of the microphone, microphone cord, and speech amplifier is necessary to prevent r.f. pickup, and a ground connection separate from that to which the transmitter is connected is advisable.

If the transmitter is "hot" with r.f., the cause usually is to be found in the method of coupling to the antenna. Any form of coupling that involves either a direct or capacitive connection between the transmitter and the transmission line is likely to cause the transmitter chassis to assume an r.f. potential above ground becanse of "parallel" type currents on the line. An carth connection to the transmitter does not always help in such a case. The best remedy is to use inductive coupling between the transmitter and line, a matehing circuit surh as is
described in the section on transmission lines being suitable.

MODULATION MONITORING

It is always desirable to modulate as fully as possible, but 100 per cent modulation should not be exceeded - particularly in the downward direction - because harmonic distortion will be generated and the channel width increased. This causes unnecessary interference to other stations. The oscilloseope is the best instrument for continuously checking the modulation. However, simpler indicators may be used for the purpose, once calibrated.
A convenient indicator, when a Class B modulator is used, is the plate milliammeter in the Class B stage, since the plate current of the modulator fluctuates with the voice intensity. Using the oscilloscope, determine the gain-control setting and voice intensity that give 100 per cent modulation on voice peaks, and simultaneously olserve the maximum Class B plate-milliammeter reading on the peaks. When this maximum reading is obtained, it will suffice to adjust the gain so that it is not exceeded.

A high-resistance (1000 o-ohms-per-volt or more) reetifier-type voltmeter (copper-oxide or germanium type) also can be used for modulation monitoring. It should be connected across the output cireuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloscope to determine the reading that represents 100 per cent modulation.
The plate milliammeter of the modulated r.f. stage also is of value as an indicator of overmodulation. As explained earlier, the d.e. plate current stays constant if the amplifier is linear. When the amplifier is overmodulated, especially in the downward direction, the operation is no longer linear and the average plate current will change. A flicker of the pointer may therefore be taken as an indication of overmodulation or nonlinearity. However, since it is possible that under some operating conditions the plate current will remain constant even though the amplifier is considerably overmodulated, an indicator of this type is not wholly reliable unless it has been checked against an oseilloscope.

Suppressed-Carrier and Single-Sideband Techniques

A fully-modulated a.m. signal has two-thirds of its power in the carricr and only one-third in the sidebands. The sidehands carry the intelligence to be transmitted; the carrier "goos along for the ride" and servesonly to demodulate the signal at the receiver. By elininating the carrier and transmitting only the sidebands or just one sideband, the available transmitter power is used to greater advantage. The carrier must be reinserted at the receiver, but this is no great problem, as explained later under "Receiving Suppressed-Carrier Signals."
Assuming that the same final-amplifier tube or tubes are used either for normal a.m. or for single sideband, carrier suppressed, it can be shown that the use of s.s.b. can give an effective gain of up to 9 db . over a.m. - equivalent to increasing the transmitter power 8 times. Eliminating the carrier also eliminates the heterodyne interference that so often spoils communication in congested phone bands.

DOUBLE-SIDEBAND GENERATORS

The carrier can be suppressed or nearly eliminated by an extremely sharp) filter or by using a balanced modulator. The basic principle in any balanced modulator is to introduce the carrier in such a way that it does not appear in the output but so that the sidebands will. This requirement is satisfied by introducing the audio in push-pull and the r.f. drive in parallel, and connecting the output (plate circuit) of the tubes in push-pull, as shown in Fig. 11-1A. Balanced modulators can also be connected with the r.f. drive and audio inputs in push-pull and the output in parallel (Fig. 11-1B) with equal effectiveness. The choice of a balanced modulator circuit is generally determined by constructional considerations and the method of modulation preferred by the builder. Screen-grid modulation is shown in the examples in Fig. 11-1, but control-grid or plate modulation can be used equally as well. The balanced modulators of Fig. 11-1 can be operated at high power levels and the double-sideband output can be used directly into the antenna. A d.s.b. signal can be copied by the same methods that are used for single-sidehand signals, provided the receiver has sufficient selectivity to reject one of the sidebands.
In any of the vaeuum-type circuits, there will be no output with no audio signal. When pushpull audio is applied, the modulating voltages are of opposite polarity, and one tube will conduct more than the other. Since any modulation process is the same as "mixing" in receivers, sum and difference frequencies (sidebands) will be gen-
erated. The modulator is not balanced for the sidebands, and they will appear in the output.
The amount of carrier suppression is dependent upon the matching of the two tubes and their associated circuits. Normally two tubes of the same type will balance closely enough to give at least 15 or 20 db . carrier suppression without any adjustment. If further suppression is required, trimmer capacitors to balance the grid-plate capacities and separate bias adjustments for setting the operating points can be used.

Fig. 11-1-Two examples of balanced-modulator circuits using screen-grid modulation. In A the r.f. excitation is in parallel in both fubes, and the audio and output are in push-pull. In B the excitation and audio are in push-pull, the output is in parallel. In either case, the carrier frequency, f, does not appear in the output circuit-only the two sideband frequencies, $f+F$ and $f-F$, willappear. The bias on the screens is a practical requirement with all screen-grid tubes for low-distortion operation, and is not a special requirement of balanced modulators.

Fig. 11-2-Typical rectifier-type balanced modulators,
The circuit of A is called a 'bridge" balanced modulator and has been widely used in commercial work.

The balanced modulator at B is shown with constants suitable for of eration at 450 kc . It is useful for working into a crystal bandpass filter. T_{1} is a transformer designed to work from the audio source into a 600 -ohm load, and T_{2} is an ordinary i.f. transformer with the trimmer reconnested in series with a $0.001-\mu$. capacitor, for impedancematching purposes from the modulator. The capacitor C_{1} is for carrier balance and may be found unnecessary in some instances-it should be tried connected on either side of the carrier input circuit and used where it is more effective. The $\mathbf{2 5 0}$-ohm potentiometer is normally all that is required for carrier balance. The carrier input should be sufficient to develop several volts across the resistor string.

The balanced modulator circuit at C is shown with constants suitable for operation at 3.9 Mc . T_{3} is a small step-down output transformer (UTC R-38A), shunt-fed to eliminate dec. from the windings. L_{1} can be a small conpling coil wound on the "cold" end of the carrier-oscillator tank coil, with sufficient coupling to give two or three volts of r.f. across its output. L_{2} is a slug-tuned coil that resonates to the carrier frequency with the effective $0.001 \mu \mathrm{f}$. across it. The 1000 -ohm potentiometer is for carrier balance.

In the rectifier-type balanced modulators shown in Fig. 11-2, the dione rectifiers are connetted in such a manner that, if they have equal forward resistances, no ref. can pass from the carrier source to the output circuit via either of the two possible paths. The net effect is that no r.f. energy appears in the output. When audio is applied, it unbalances the circuit by biasing the diode (or diodes) in one path, depending upon the instantaneous polarity of the audio, and hence some ref. will appear in the output. The ref. in the output will appear as a double-sideband sup-pressed-carrier signal. (For a more complete description of diode-modulator operation, see "Diode Modulators," QST, April, 1953, p. 39.)

In any diode modulator, the ref. voltage should be at least 6 or 8 times the peak audio voltage, for
minimum distortion. The usual operation involves a fraction of a volt of audio and several volts of ref. The diodes should be matched as closely as possible - ohmmeter measurements of their forward resistances is the usual test.
(The circuit of Fig. 11-2B is described more fully in Weaver and Brown, "Crystal Lattice Filters for Transmitting and Receiving," QST, August, 1951. The circuit of Fig. 11-2C is suitable for use in a double-balancerl-modulator circuit and is so described in "SSB, Jr.," General Electric Ham News, September, 1950.)

Vacuum-tube diodes can also be used in the two- and fourdiode balanced-modulator circuits, and many operators consider them superior to the dry rectifier circuits. A typical balanced modulater circuit using a twin diode ($6 \mathrm{AL} 5,6 \mathrm{H} 6$, etc.) is shown in Fig. 11-3. In phasing-type s.s.b. generators (described later) two of these modulators are required, and they are usually worked

Fig. 11-3-A twin-diode balanced-modulator circuit. This is essentially the same as the circuit in Fig. 12-2C, and differs only in that a twin diode is used instead of dry rectifiers. The heater circuit for the twin diode can be connected in the usual way (one side grounded or center tap grounded).
into a common output circuit. (For a description of a complete s.s.b. exciter using 6AL5 balanced modulators, see Vitale, "Cheap and Easy S.S.B.," QST, March, 1956, and Mitty, 1958.)

SINGLE-SIDEBAND GENERATORS

Two basic systems for generating s.s.b. signals are shown in Fig. 11-4. One involves the use of a bandpass filter having sufficient selectivity to pass one sideband and reject the other. Filters having such characteristics can only be constructed for relatively low frequencies, and most filters used by amateurs are designed to work somewhere around 500 kc . Good sideband filtering can be done at frequencies as high as 5 Mc . by using multiple-crystal filters. The low-frequency oscillater output is combined with the audio output of a speech amplifier in a balanced modulator, and only the upper and lower sidebands appear in the output. One of the sidebands is passed by the filter and the other rejected, so that an s.s.b. signal is fed to the mixer. The signal is there mixed with the output of a high-frequency r.f. oscillator to produce the desired output froquincy. For additional amplification a linear ref. amplifier (Class A or Class B) must be used. When the s.s.b. signal is generated around 500 kc . it may be necessary to convert twice to reach the operating frequency, since this sim-
plifies the problem of rejeeting the "image" frequencies resulting from the heterodyne process. The problem of image frequencies in the frequeney conversions of s.s.b. signals differs from the problem in receivers because the beat-ing-oscillator frequeney becomes important. Fither balanced modulators or sufficient selectivity must be used to attenuate these frequencies in the output and hence minimize the possibility of unwanted radiations. (Examples of filter-type exciters can be found in QST for June, 1958, and January, 1950.J

The second system is based on the phase relationships between the carrier and sidebands in a modulated signal. As shown in the diagram, the audio signal is split into two components that are identical except for a phase difference of 90 de-
level can be inereased in a following amplifier.
Properly adjusted, either system is capable of good results. Arguments in favor of the filter system are that it is somewhat casier to adjust without an oscilloscope, since it requires only a receiver and a v.t.v.m. for alignment, and it is more likely to remain in adjust ment over a long periond of time. The chief argument against it, from the amateur viewpoint, is that it requires quite a few stages and at least one frequency conversion after modulation. The phasing system requires fewer stages and can be designed to require no frequency conversion, but its alignment and adjustment are often considered to be a little "trickier" than that of the filter system. This probably stems from laek of familiarity with the system rather than any actual diffieulty, and now that

Fig. 11-4-Two basic systems for generating single-sideband suppressed-carrier signals. Representations of a typical envelope picture (as seen on an oscilloscope) and spectrum picture (as seen on a very selective panoramic receiver) are shown above and below the connecting links.
grees. The output of the r.f. oseillator (which may be at the operating frequeney, if desired) is likewise split into two separate components having a 90 -degree phase difference. (ne r.f. and one audio component are combined in each of two separate balanced modulators. The carrier is suppressed in the modulators, and the relative phases of the sidebands are such that one sideband is balaneed out and the other is accentuated in the combined output. If the output from the balanced modulators is high enough, such an s.s.b. exciter can work direetly into the antenna, or the power
conmercially-available preadjusted audio-phasing networks are available, most of the alignment difficulty has been eliminated. In most cases the phasing system will cost less to apply to an existing transmitter.
Regardless of the method used to generate a s.s.b. signal of 5 or 10 watts, the minimum cost will be found to be ligher than for an a.m. transmitter of the same low power. However, as the power level is increased, the s.s.b. transmitter becomes more economical than the a.m. rig, both initially and from an operating standpoint

Phasing-Type Exciters

Phasing-Type S.S.B. Exciters

It should be olvious that a phasing-type s.s.b. exeiter can take many forms, but in general it will consist of a speech amplifier, audio phaseshift network, audio amplifier, balanced modulators, r.f. source, r.f. phase-shift network, and r.f. amplifier. If operation on a band other than that of the r.f. source, a mixer stage will also be required, for hetrodyning the signal to the dosired frequency. Siuce there are several batancedmodulator, adodio- and r.f. phasing circuits, it is apparent that many different combinations are available. ()ne of the simplest of all combinations is that shown in Fig. 11-5.

Referring to Fig. $11-5$, the speech amplifier builds up the signal from a crystal mierophone
to a useful level. The audio signal is then fed to an audio phase-shift network, PSN, which applies equal-amplitude audio signals 90 degrees out of phase to the grids of the $12 \mathrm{AT}^{7}$ audio amplifier. The two audio signals, 90 degrees out of phase, are applied to two balanced modulators that have their outputs in parallel (L_{3}). The r.f. excitation to the balanced modulators is also 90 degrees out of phase, obtained by coupling from the two tuned cireuits at L_{1} and L_{2}. A 6. 1 (i7 linear amplifier, operating Class $A B_{1}$, follows the balanced-modulator stage and provides about 5 watts peak envelope output.

The gain eontrol in the speech amplifier sets the gain to the proper level, depending upon the

Fig. 11-5-Schematic of a phasing-type s.s.b. exciter. Capacitance in μ f. unless otherwise noted-resistors are $1 / 2$-watt unless otherwise noted. Chassis grounds marked * should be the same.
$C_{1}-5$ or $10 \mu \mu \mathrm{f}$. if inductive coupling between L_{1} and L_{2} not sufficient.
T_{t}-Single plate to push-pull grid, 1:3 ratio (Stancor A53C).
T_{2}, T_{3}-6-wath universal output transformer, 30 ohms output (UTC R-38A).
$L_{1}, L_{2}-32$ turns No. 22 enam. closewound on $1 / 2$-inch diameter iron-core tuned form (Millen 69046). Link turn is 6 turns hook-up wire wound adjacent to cold end.
$\mathrm{L}_{3}-16$ turns No. 22 enam., spaced to occupy 1 -inch length on $1 / 2$-inch diameter iron-core-funed form (Millen 69046), tapped at center. One-turn link wound at center.
L_{4}-Same as $L_{1 ;}$ no link.
Li-25 turns No. 22 enam. closewound on $1 / 2$-inch iron-core-funed form (Millen 69046). Link of 4 turns al cold end.
S_{1}-D.p.d.t. toggle or rotary.
PSN-Audio phase-shift network (Millen 75012). See Fig. 11.6.
microphone and how the operator uses it. Since the audio phase-shift network, PSN, has unequal gains through its two channels, unequalamplitude audio is required at the input to

Fig. 11.6-Schematic of the phase-shift network marked PSN in Fig. 11-5. Resistors and capacitors should be within 1 per cent of values shown.
obtain equal signals in the output. This is obstained through proper adjustment of the $100-0 \mathrm{hm}$ input audio balance control. To compensate for lack of uniformity in audio-amplifier gains, a 500 -ohm audio balance control is provided in the cathode of a 12 AT 7 section. R.f. carrier balance is obtained by proper setting of the 1000 -ohm carrier balanece controls. The sideband in use (upper or lower) is selected by S_{1}, which reverses the audio signal in one of the channels. The r.f. phasing adjustment is obtained by the tuning of L_{1} and L_{2}.

Construction

There are a few constructional precautions that should be observed in a unit of this type. Transformers T_{2} and T_{3} should preferably be mounted at right angles to each other, to minimize stray coupling. The 1 N5 2 germanium diodes used in the balanced modulator should be checked for forward and back resistance with an ohmmeter, and the forward resistances (the lower readings) should agree within 10 per cent. The leads from the coupling loops at L_{1} and L_{2} should return to the balanced modulator stage in twisted pairs, and the grounding precaution mentioned in Fig. 11-5 should be observed. Coils L_{1} and L_{2} should be mounted parallel to each other and with a separation of alout $11 / 2$ diameters - L_{3} and L_{4} should be mounted to minimize coupling between them and L_{5} and the oscillator coils. This can be accomplished by providing shielding or using the chassis deck to separate them.
Although shig-tuned coils are shown in the schematic, capacitance-tuned circuits can of course be used. Approximately the same L / C ratios should be retained, however. If operation on another amateur band is desired, the tuned circuits can be modified accordingly, retaining the same L / C ratios,
or the output of this unit can be heterodyned to the different band.

Adjustment

If v.f.o. operation is to be used, the v.f.o. signal should furnish at least 10 volts r.m.s. at the terminals. With erystal control, plug in a crystal and tune L_{1} until the eircuit oscillates, as indirated by a signal in a receiver tuned to the proper frequency, and then tune the circuit to a slightly higher frequency. With v.f.o. operation, the circuit is resonated in the usual mimner, as indicated by a plate-current minimum.

The output from the $6 A G 7$ stage can be checked on an oscilloseope or on a receiver. The method of coupling an oscilloseope or receiver to the exciter is shown in Fig. 11-7. When connecting to an oscilloscope, a tuned circuit is required, and the r.f. voltage developed across the tuned circuit is applied directly to the vertical deflection plates. The receiver is connected by roupling loosely through a loop and length of shielded cable; when further attenuation is required it is obtained through the use of resistors at the receiver input terminals.

With the oscillator running, tune the balanced modulator and $6 . \mathrm{AG}^{7}$ circuits for maximum output - this resonates these circuits. Next adjust the carrier balanere potentiometers for minimum output. Then introduce a single audio tone of around 1000 cycles at the microphone terminal. Here again it may be necessary to use a resistance voltage divider to hold the signal down and prevent overload. Advance the gain rontrol and check the voltage at Pins 2 and 7 of the 12AT7 audio amplifier with a v.t.v.m. If they are not

Fig. 11.7-Fundamental arrangement for using an oscilloscope and/or receiver when testing an s.s.b. exciter or transmitter. An audio oscillator is required to furnish the audio signal, and its output is best controlled by the external control R_{1}. The audio volume control in the s.s.b. exciter should not be turned on too far, or it should be set at the normal position if you know that position, and all volume controlling should then be done with R_{1} and the output attenuator of the audio oscillator. This will reduce the chances of overloading the audio and other amplifier stages in the exciter, a common cause of distortion.

The oscilloscope is coupled to the dummy load through a loop, length of coaxial line, and an L.C circuit tuned to the operating frequency. It is necessary to go directly to the vertical deflection plates of the oscilioscope rather than through the vertical amplifier.

The receiver is coupled to the dummy load through a loop and a length of shielded line. If too much signal is obtained this way, an attenuator, $R_{2} R_{3}$, can be added to the input terminals of the receiver. Small values of R_{2} and large values of R_{3} give the most attenuation; in some cases R_{2} might be merely a few inches of solid wire.

Fig. 11-8-Sketches of the oscilioscope face showing different conditions of adjustment of the exciter unit. (A) shows the substantially clean carrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the audio input. (B) shows improper r.f. phase and unbalance between the outputs of the two balanced modulators. (C) shows improper r.f. phasing but outputs of the two balanced modulators equal. (D) shows proper r.f. phasing but unbalance between outpuls of two balanced modulators.
rqual, adjust the 100 -ohm audio balance control until they are. Listening to the signal, from the 6AG7, or looking at it on the seope, should give a modulated signal. Try various settings of L_{2} until the modulation is minimized, as well as touching up the 500 -ohm audio balance control. With the v.t.v.m. check the r.f. voltages at the arms of the 1000 -ohm carrier balance potentiometers - they should be about the same. If not, they can be brought into this condition by readjustment of the tuning conditions which, however, must be kept consistent with minimum modulation on the output signal.

The s.s.b. signal with single-tone audio input is a steady unmodulated signal. While it may not be possible to eliminate the modulation entirely, it will be possible to get it down to a satisfactorily low level. Conditions that will prevent this are improper r.f. phasing, lack of carrier balance (suppression), distortion in the audio signal (at the source or through overload in the speech
amplifier), and lack of audio balance at the 12AT7 audio amplifier. Of these, the r.î. phasing is perhaps the most critical.

A final check on the signal can be made with the receiver in its most selective condition. The spectrum testing described below cannot be done with a broad receiver. Examining the spectrum near the signal, the side signals other than the main one (carrier, unwanted sidebands, and sidebands from audio harmonies) should be at least 30 db . down from the desired signal. This checking can be done with the S-meter and the a.v.c. on - in the earlier tests the a.v.c. shonld be off but the r.f. gain reduced low enough to avoid receiver overload.

Examples of the proper and improper scope patterns are shown in Fig. 11-8.
(For an extensive treatment of the alignment of commercial phasing-type s.s.b. exciters, see Ehrlich, "How to Adjust Phasing-Type S.S.B. Exciters," QST, November, 1956.)

Filter-Type S.S.B. Exciters

The basic configuration of a filter-type s.s.b. exciter was shown earlier in this section (Fig. 11-4). Suitable filters, sharp enough to reject the unwanted sideband above a few hundred cycles, can be built in the range 20 kc . to 5 Mc . The low-frequency filters generally use iron-cored inductors, and the new toroid forms find considerable favor at fiequencies up to 50 or 60 kc . These filters are of normal band-pass constant- k and m-derived configuration. In the range 450 to 500 kc ., either crystal-lattice or electromechanical filters are used. Low-frequency filters are nanufactured by Barker \& Williamson and by Burnell \& Co., and electromechanical filters are made by the Collins Radio Co. Crystallattice filters are available from Hycon Bastern in the megacycle range; homemade filters generally utilize crystals from military surplus.

The frequency of the filter determines how many conversions must be made before the operating frequency is reached. For example, if the filter frequency is 30 kc . or so, it is wise to eonvert
first to 500 or 600 kc . and then convert to the $3.9-\mathrm{Mc}$. band, to avoid the image that would almost surely result if the conversion from 30 to 3900 kc . were made without the intermediate step. When a filter at 500 kc . is used, only one conversion is necessary to operate in the $3.9-\mathrm{Mc}$. bund, but 14-Mc. and higher-frequency operation would require at least two conversions to hold down the images (and local-oscillator signals if balanced mixers aren't used) and make them easy to eliminate.

The choice of converter circuit depends largely on the frequencies involved and the impedance level. At low frequencies (up to 500 ke.) and low impedances, rectifier-type balanced modulators are often used for mixers, because the balanced modulator does not show the local-oscillator frequency in its output and one source of spurious signal is minimized. At frequencies at high impedance levels, and at the higher frequencies, vacuum tubes are generally used, ih straight converter or balanced-modulator circuits, de-
pending upon the need for minimizing the localoscillator frequency in the output.

Low-frequency sidehand filters in the 30 to 50-ke. range are usually low-impedanere deviere, and rectifier-t ype batanced modulators are comnon practice, Sideband filters in the i.f. range
this can be nothing more elaborate than a shielded b,f.o. unit. The signall should be introduced at the balanced modulator, and an output indicator commerted to the plate circuit of the vacuum tube following the filter. With the erystals out of the circuit, the transfomers ean be

Fig. 11.9-One type of balanced-modulator circuit that can be used with a mechanical filter (Collins F455-31 or F500-31 series) in the i.f. range. The filters are furnished in various types of mountings, and the values of C_{1} and C_{2} will depend upon the type of filter selected.
T_{1}-Plate-fo-push-pull grids audio transformer.
are higher-impedane circuits and varumm-tube balanced modulators are the rule in this case. An example of one that can be used with the high-impedance (15,000 ohms) mechanieal filter is shown in Fig. 11-10. The filter can be followed be a converter or amplifier tube, depending upon the signal level. some models of the mechanical filters have a 2 :3-ib). insertion loss, while others have only 10 .

Crystal-lattiee filters are also used to rejert the unwated sideband. These filters can be
brought elose to frequeney by plugging in small capacitors (10 to $25 \mu \mu \mathrm{f}$.) in one arystal sorket in each stage and then tuning the transformers for peak output at one of the two ervistal froquencias. The small capacitors can then be removed and the erystals replared in their sockels.

Tuning the signal soure slowly across thepass band of the filter and watching the output indirator will show the selectivity charareteristixof the filter. The objective is a farly flat respons. for about two ke, and a rapid drophoff outside

Fig. 11.10-A cascaded half-lattice crystal filter that can be used for sideband selection. The crystals are surplus type of FT-243A holders. Y_{1} and Y_{3} should be the same frequency and Y_{2} and Y_{1} should be 1.8 kc . higher. $T_{1}, T_{2}, T_{3}-450$-kc. i.f. transformers.
made from restals in the i.f. range - many of these are still available from stores selling military surplus. A popular configuration is the "cascaded half lattice" shown in Fig. 11-10. The crystals used in this filter can be obtained at frequencies in the i.f. runge, and ones that are within the ranges of the modified i.f. transformers will be satisfictory. Two $100-\mu \mu$ i, capacitors are conneeted across the secondary winding of two of the transformers to give push-pull output. The crystals should be obtained in pairs 1.8 kc , apart. The i.f. transformers can be either capacitortuned as shown, or they can be slug-tuned.

A variable-frequene y signal generator of some kind is required for alignment of the filter, but
this range. It will be found that small changes in the tuning of the transformers will change the shape of the selectivity rhamerteristie, so it is wise to make a small adjust ment of one trimmer, swing the frequencey across the band, and observe the characteristic. After a little experimenting it will be found which way the trimmers must be moved to compensate for the peaks that will rise when the filter is out of adjustment.
The (suppressed) earrier frequency must be adjusted so that it falls properly on the slope of the filter wharateristic. If it is too close to the filter mid-frequeney the sideband rejection will be poor; if it is too far aw: of "lows" in the signal.

Amplification of S.S.B. Signals

AMPLIFICATION OF S.S.B. SIGNALS

When an s.s.b. signal is generated at some frequency other than the operating frequency, it is necessary to change frequency by heterodyne methods. These are exactly the same as those used in receivers, and any of the normal mixer or converter circuits can be used. One exception to this is the case where the heterodyning oscillator frequeney is close to the desired output frequency. In this case, a balaneed mixer should be used, to eliminate the heterodyning oseillator frequency in the output.

To increase the power level of an s.s.b. signal, a linear amplifier must be used. A linear amplifier is one that operates with low distortion, and the low distortion is obtained by the proper choice of tube and operating conditions. Physically there is little or no difference between a linear amplifier and any other type of r.f. amplifier stage. The circuit diagram of a tetrode r.f. amplifier is shown in Fig. 11-11; it is no different basically than the similar ones in Section Six. The practieal differences can be found in the supply voltages for the tube and their special requirements. The proper voltages for a number of suitable tubes ean be found in Table 11-I; filament-type tubes will require the addition of the filament by-pass capaeitors ('9 and C' ${ }_{10}$ and the completion of the filament cirenit by grounding the filament-transformer center tap. The grid bias, E_{1}, is furnished through an r.f. choke, although a resistor can be used if the tube is operated in Class AB_{1} (no grid current). The sereen voltage, E_{2}, must be supplied from a "stiff" souree (little or no voltage change with current change) which eliminates the use of a dropping resistor from the plate supply unless a voltage-regulator tube is used to stabilize the screen voltage.

Any r.f. amplifier eireuit can be adapted to linear operation through the proper choice of operating conditions. For example, the circuit in Fig. 11-11 can be modified by the use of different
input and/or output eoupling eireuits, or by the use of another neutralizing seheme, and the resultant amplifier will still be linear if the proper operating conditions are observed. A triode or pentode amplifier cireuit will differ in detail; typical cireuits can be found in Section Six.
The simplest form of linear amplifier is the Class A amplifier, which is used almost without exception throughout receivers and low-level speech equipment. (See Section Threc for an explanation of the classes of amplifier operation.) While its linearity can be made relatively good, it is inefficient. The theoretical limit of efficiency is 50 per eent, and most praetical amplifiers run 25-35 per cent efficient at full output. At low levels this is not worth worrying about, but when the 2 - to 10 -watt level is exceeded something else must be done to improve this effieiency and reduce tube, power-supply and operating eosts.

Class AB_{1} amplifiers make excellent linear amplifiers if suitable tubes are seleeted. Primary advantages of Class $A B_{1}$ amplifiers are that they give much greater output than straight Class A amplifiers using the same tubes, and they do not require any grid driving power (no grid current drawn at any time). Although triodes ean be used for Class AB_{1} operation, tetrodes or pentodes are usually to be preferred, since Class AB_{1} operation requires high peak plate current without grid eurrent, and this is easier to obtain in tetrodes and pentodes than in most triodes.

To obtain maximum output from tetrodes, pentodes and most triodes, it is necessary to operate them in Class AB_{2}. Although this produces maximum peak output, it inereases the drivingpower requirements and, what is more important, requires that the driver regulation (ability to maintain wave form under varying load) be good or excellent. The usual method to improve the driver regulation is to conneet a fixed resistor, R_{1}, aeross the grid cireuit of the driven stage, to offer a load to the driver that is modified only slightly by the additional load of the tube when

Fig. 11-11-Circuit diagram of a fetrode linear amplifier using link-coupled input tuning and pi network output coupling. The grid, screen and plate voltages (E_{1}, E_{2} and E_{3}) are given in Table $11-1$ for a number of tubes. Although the circuit is shown for an indirectlyheated cathode tube, the only change required when a filament type tube is used is the addition of the filament bypass capacitors C_{9} and C_{10}.

Minimum voltage ratings for the capacitors are given in terms of the power supply voltages.

C_{1}-Grid tuning capacitor, $3 E_{1}$
C_{2}-Neutralizing capacitor, $2 \mathrm{E}_{3}$.
C_{3}-Grid-circuit by-pass capacitor, part of neutralizing circuit, $3 E_{1}$.
C_{4}-Plate funing capacitor, $1.5 \mathrm{E}_{3}$.
C_{3}-Output loading capacitor, see text.
C_{6}-Plate coupling capacitor, $\mathbf{2 E}_{3}$.
C_{7}-Sereen by-pass capacitor, $2 E_{2}$.
$\mathrm{C}_{8}-\mathrm{H} . \mathrm{v}$. by-pass capacilor, $2 \mathrm{E}_{3}$.
$\mathrm{C}_{8}, \mathrm{C}_{10}$-Filament by-pass capacitor.
L_{1}-Grid inductor.
L_{2}-Plate inductor.
R_{1}-Grid circuit swamping resistor, required for $A B_{2}$. See text.
RFC_{1}-Grid-circuit r.f.. choke.
RFC_{2}-Plate r.f. choke.
T_{1}-Filament transformer.

Amplification of S.S.B. Signals

it is driven into the grid-current region. This increases the driver's output-power requirements. Further, it is desirable to make the grid circuit of the Class $A B_{2}$ stage a high- $($ circuit, to improve regulation and simplify coupling to the driver. A "stiff" bias source is also required, since it is important that the hias remain ronstant, whether or not grid current is drawn.

Class 1 Bamplifiers are theoretically capable of 78.5 per cent efficiency at full output, and practical amplifiers run at $60-70$ per cent efficiency at full output. Triodes normally designed for Class I3 audio work can be used in r.f. linear amplifiers and will operate at the same power rating and efficiency provided, of course, that the tube is capable of opration at the radio frequency. The operating conditions for r.f. are substantially the same as for audio work - the only difference is that the input and output transformers are replaced by suitable r.f. tank circuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a neressity in Class B r.f. work. However, the r.f. harmonies may be higher in the case of the single-ended amplifier, and this should be taken into consideration if TVI is a problem.

For proper operation of Class Al_{2} and B amplifiers, and to reduce harmonies and facilitate coupling, the input and output circuits should not have a low ('to- L ratio. A good guide to the proper size of tuming caparitor will be found in Section Six; in case of any doubt, it is well to be on the high-rapacitance side. When zero-bias tubes are used, it may not be necessary to add much "swamping" resistance across the grid rircuit, berause the grids of the tubes load the circuit at all times. However, in AB_{2} operation, the swamping resistor should be such that it dissipates from five to ten times the power required by the grids of the tubes, insuring an almost constant load on the driver stage and good regulation of the r.f. grid voltage. In turn this means that at least five to ten times more driving power will be required than is indicated in Table 11-1. Where an excess of driving power is available, it is generally better to increase the loading (decrease the resistance of the swamping resistor) to the point where the maximum available driver power is utilized on peaks.

Before going into detail on the adjustment and loading of the linear amplifier, a few general considerations should be kept in mind. If proper operation is experted, it is essential that the amplifier be so constructed, wired and neutralized that no trace of regeneration or parasitic instability remains. Needless to say, this also applies to the stages ahead of it.

The bias supply to the Class AB_{2} or B linear amplifier should be quite stiff, such as batteries or some form of voltage regulator. If nonlinearity is noticed when testing the unit, the bias supply may le checked by means of a large elertrolytic capacitor. Simply shunt the supply with $100 \mu \mathrm{f}$. or so of caparity and see if the linearity improves. If so, rebuitd the bias supply for better regula-
tion. Do not rely on a large capacitor alone.
Where tetrodes or pentodes are used, the screen supply should have good regulation and its voltage should remain constant under the varying current demands. If the maximum screen current does not exceed 30 or 35 ma., a string of VR tubes in series can be used to regulate the sereen voltage. If the current demand is higher, it may be necessary to use an electronically-regulated power supply or a heavily-bled power supply with a current capacity of several times the current demand of the screen circuit.

Where VIR tubes are used to regulate the screen supply, they should be selected to give a regulated voltage as close as possible to the tube's rated voltage, but it does not have to be exact. Minor differences in idling plate current can be made un by readjusting the grid bias.

The plate voltage applied to the linear amplifier should be held as constant as possible under the varying current-demand conditions. This condition can be met by using low-resistance transformers and inductors and by using a large value of output rapacitor in the power-supity filter. An output capacitor value three or four times the minimum required for normal filtering (see Section Seven) is reasonable. Although some slight improvement can be obtained by using still higher values of output capacitance, the problem of turning on the supply without blowing fuses (from the initial surge) starts to becomie significant.

One should bear in mind that the same amplifier can be operated in several classes of operation by merely changing the operating conditions (bias, loading, drive, screen voltage, etc.). However, when the power sensitivity of an amplifier is increased, as by changing the operation from Class Al_{2} to Class AB_{1}, the stability requirements for the amplifier become stringent.

From the standpoint of ease of adjustment and availability of proper operating voltages, a linear amplifier with Class $A B_{1}$ tetrodes or pentodes or one with zero-lias Class B triodes would be first choice. The Class B amplifier would require more driving power. (For examples of Class $A B_{1}$ tetrode amplifiers, see Russ, "The 'Little Fire" cracker' Linear Amplifier," QST, Sept., 1953, Hekhardt, "The Single Side-Saddle Linear," QST', Nov., 1953, Wolfe and Romander, "A4X250B Linear," QS7', Nov., 1956, Muir, "GroundedGrid Tetrode Kilowatt," QST, April, 1957, and Rinaudo, "Compact AB_{1} Kilowatt," Qs"I', Nov., 1957.)

Table 11-I lists a few of the more popilar tubes commonly used for s.s.b. linear-amplifier operation. Except where otherwise noted, these ratings are those given by the manufacturer for audio work and as such are based on a sine-wave signal. These ratings are adequate ones for use in s.s.b. amplifier design, but they are conservative for such work and hence do not necessarily represent the maximum powers that can be obtained from the tubes in voice-signal s.s.b. service. In no case should the average plate dissipation be exceeded for any considerable length of time, but
the nature of a s.s.b. signal is such that the average plate dissipation of the tube will run well below the peak plate dissipation,

Getting the most out of a linear amplifier is done by increasing the peak power without excreding the average plate dissipation over any appreciable length of time. This can be done by raising the plate voltage or the peak current (or both), provided the tube can withstand the increase. However, the manufacturers have not released any data on such operation, and any extrapolation of the audio ratings is at the risk of the amateur. A 35- to 50 -per cent increase above plate-voltage ratings should be perfectly safe in
most cases. In a tetrode or pentode, the peak plate current can be boosted some by raising the screen voltage.

When running a linear amplifier at considerably. higher than the audio ratings, the "two-tone test signal" (described later) should never be applied at full amplitude for more than a few seconds at any one time. The above statements about working tubes above ratings apply only when a voice signal is used - a prolonged whistle or two-tone test signal may damage the tube. (For a method of adjusting amplifiers safely at high input, see Goodman, "Linear Amplifiers and Power Ratings," QS'T', August, 1957.)

Grounded-Grid Amplifiers With Filament-Type Tubes

It is not necessary to use indirectly-heated cathode type tobes in grounded-grid rircuits, and filament-t ype tubes can be used just as effectively. However, it is necessary to raise the filament above r.f. ground, and one way is shown in Fig. 11-12. Here filament chokes are used between the filament transformers and the tube socket. The inductance of the r.f. chokes does not have to be very high, and 5 to $10 \mu \mathrm{~h}$. will usually suffice from 80 meters on down. The current-rarying capacities of the r.f. chokes must be adequate for the tube or tubes in use, and if the resistance of the chokes is too high the filament voltage at the tube sorket may be too low and the tube life will be endangered. In such a case, a higher-voltage filament transformer can be used, with its primary voltage cut down until the voltage at the tube soeket is within the proper limits.

Filament chokes can be wound on ceramic or wooden forms, using a wire size large enough to carry the filament current without undue heating. Large cylindrical ceramic antenna insulators can be used for the forms. If enameled wire is used, it should be spaced from half the diameter to the diameter of the wire; heavy string can be used for this purpose. The separate chokes indicated in Fig. 11-12 are not essential; the two windings can be wound in parallel. In this case it is not necessary to space all windings; the two parallel wires can be treated as one wire, winding them together with a single piece of string to space the turns. Enameled wire can be used berause the enamel is sufficient insulation to handle the filament voltage.

When considerable power is available for driving the grounded-grid stage, the matching between driver stage and the amplifier is not too important. However, when the driving power is

Fig. 11-12-When filament-type tubes are used in a grounded-grid circuit, it is necessary to use filament chokes to keep the filament above r.f. ground. In the portion of a typical circuit shown here, the filament chokes. $R F C_{1}$ and $R F C_{2}$, can be a manufactured unit (e.g., B\&W FC1 5 or FC30) or homemade as described in the text. Total plate and grid current can be read on a milliammeter inserted at x.
marginal or when the driver and amplifier are to be connected by a long length of coaxial cable, a pi network matching circuit can be used in the input of the grounded-grid amplifier. The input impedance of a grounded-grid amplifier is in the range of 100 to 400 ohms, depending upon the tube or tubes and their operating conditions. When data for grounded-grid cperation is available (as for two tubes in Table 11-I), the input impedance can be computed from
$Z_{\text {in }}=\frac{(\text { peak r.f. driving voltage })^{2}}{2 \times \text { driving power }}$
From this and the equations for a pi network, a suitable network can be devised.

Adjustment of Amplifiers

One of the more important features of the linear amplifier is that the ordinary plate and grid meters are at best only a poor indicator of what is going on. As the meters bounce back and forth, even a person who is thoroughly familiar with this kind of amplifier would be hard put to
sense whether the input power registered is attributable to (a) overdrive and underioad, which yield distortion, splatter, TVI, etc., or (b) underdrive and too-heavy loading, resulting in ineffieiency and loss of output.

The simplest and best way to get the whole

Adjustment of Amplifiers

story is to make a linearity tust; that is, to send through the amplifier a signal whose amplitude varies from zero up to the peak level in a certain known manner and then observe, by means of an oseilloscope, whether this same waveform comes out of the amplifier at maximum ratings.

Test Equipment

Even the simplest type of rathode-ray oscilloscope can be used for linearity tests, so long as it has the regular intermal sweep eirenit. If this instrument is not already part of the regular station equipment, it might be well to purehane one of the several inexpensive kits now on the market, so that it will be on hand not only to make initial tests but also as a permanent monitor during all operation. Barring a purdase, it is rerommonded at least that at soone be borrowed to make the line-up checks, whereupon the regular plate and grid meters can sorve thereafter to indicate roughly ehanges in operating conditions.

All linearity tests require that the vertieal plates of the seope be supplied with r.f. from the amplifier output. To avoid interantion within the instrument, it is usually best to comned directly to the cathote-ray fube terminals at the batek of the cabinet. A prek-up deviereand its connertions to the oscillosoope are shown in Fig. 11-7. Normally, the piek-up) loop, should be coupled to the dummy load, antemat tuner, or transmission line: i,e., to a point in the system beyond where any tuning adjustments are to the made.

The only other piece of test equipment will be an audio oseillator. Sinee only one frequeney is needed, the simple cirenit of Fig. 11-1:3 works quite well. some equipment has a cirruit similar to this one built right into the exeiter andio system.

Fig. 11-13-Fixed-frequency audio oscillator having good output waveform. The frequency can be varied by changing the values of C_{1} and C_{2}.
L_{1}-Small speaker autput transformer, secandary nat used.

Two-Tone Test

The two-tone test involves sending through the anplifier or the system a pair of r,f. signals of equal amplitude and a thousand cyeles or so apart in frequency. The combined convelope of two such signals looks like two sine waves folded on one another. If this waveform comes out of the final, well and gool: if not, there is work to do.

There are two commonly-used ways to generate
the two-tone signal, and the choice of which to use depends on the partieular exciter.

Method A - for Filter or Phasing Exciters:

1) Turn up the carrier insertion until a earrier is obtained at about half the expeeted output amplitude.
2) Connect an audio oscillator to the microphone input and advance audio gain until (when the (arrier and the one sideband are equal) the scope pattern takes on the appearance of full modulation: i.e., the cusps just meet at the enenter line. See Fig. 11-14, photo No. 1.
3) "To change the drive through the system, inerease or decrease the carrier and andio settings together, maintaining equality of the two signals.

Method B-for I'hasing E'xciters:

Fig. 11-14-Correct Patterns. 1-Desired twa-tone test pattern. 2-Desired double-trapezoid test pattern. 3-Typical voice pattern in a correctly adjusted amplifier, scope set for 30 -cycle sweep. Note that peaks are clean and sharp.

1) Disable the audio input to one balanced modulator, by removing a tube or by temporarily short-circuiting an audio transformer.
2) Connect the audio oscillator and advance audio gain to get the desired drive. Note that with one balanced modulator cut out, the resultant signal will be double-sideband with no carrier, henee two equal r.f. signals.

Double-Trapezoid Test

When Method B can be used with phasing exciters, it is possible to derive a somewhat more informative pattern by making a connection from the exciter audio system to the horizontal signal input of the oscilloscope and using this audio signal, instead of the regular internal sweep, to eause the horizontal deflection. Those who are familiar with the regular trapezoid test for a.m. transmitters will recognize this set-up as being the same, except that instead of one trapezoid, this test produces two triangles pointing toward each other.

Each individual triangle is subject to the same analysis as the regular trapezoid pattern; i.e., the sloping sides of the pattern should be straight lines for proper operation. Since it is much easier to tell whether a line is straight or not than to judge the correctness of a sine curve, the double trapezoid has the advantage of being somewhat more positive and sensitive to slight departures from linearity than is the regular two-tone pattern.

If the audio can be picked off at the plate of the audio modulator tube that is still working, the input signal need not be a pure sine wave: merely whistling or talking into the microphone should produce the appropriate pattern. If, because of the expiter layout, it is necessary to piek up the audio signal ahead of the plase-shift network, it will then be necessary to use a good sine-wave audio oscillator as before. Also, with the latter set-up, the pattern will probably have a loopy appearance at first, and phase correction

Fig. 11-15-'Phaser" cir cuit for the ascilloscope.
will be needed to make the figure close up. This can be done either by varying the audio frequency or by putting a phaser in series with the horizontal input to the scope, as shown in Fig. 11-15.

Ratings

Before proceeding with linearity tests, it is well to have in mind the current and power levels to expect. A suppressed-carrier signal is

Fig. 11-16-When the two-tone test signal is used for checking the linearity of an amplifier, the peak current is higher than the current indicated by the plate meter. The ratio of these values depends upon the ratio of the idling (no-signal) current to the indicated current.
The graph shows the relationship.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{o}}=\text { no-signal (idling) current, } \\
& \mathrm{I}_{\mathrm{dc}}=\text { meter reading with two-tone test signal, } \\
& \mathrm{I}_{\mathrm{pk}}=\text { actual peak current. }
\end{aligned}
$$

exactly like an audio signal, except for its frequency, so the audio ratings for any tube are perfectly applicable for linear r.f. service where no carrier is involved. On the other hand, the ratings sometimes shown for Class B r.f. telephony are not what is wanted, because they are for conventional a.m. transmission with carrier.

If audio ratings are not given for the desired tube type, it will he safe to assume that the maximum-signal input for Class B or AB_{2} service is about 10 per cent less than the key-down Class C c.w. conditions. The input will have to be held somewhat lower in Class AB_{1} operation because the average efficiency is lower and, also, the tube can draw only a limited amount of current at zero grid voltage.

The maximum-signal conditions determined from tube data correspond in s.s.b. work to the very peak of the r.f. envelope; when a two-tone test signal (or voice) is used, the plate milliammeter does not indicate the peak plate current. The relationship between peak current and indicated current is variahle with voice signals, but with the two-tone test signal applied there is a definite relationship between indicated (d.c.) current and peak current. This relationship is plotted in Fig. 11-16. Knowing the ratio of the idling current to the plate current with the twotone test signal, $I_{\mathrm{O}} / I_{\mathrm{Dc}}$, one can find the factor that can be applied to give the peak current. For example, an amplifier draws 50 ma . with no signal and 250 ma. (before flattening) with the two-tone test signal. $I_{\mathrm{o}} / I_{\mathrm{DC}}=0.2$, and $I_{\mathrm{PK}} / I_{\mathrm{DC}}=1.45$, from Fig. 11-16. Thus $I_{\mathrm{PK}}=$ $1.45 \times 250=363 \mathrm{ma}$.

Should the resulting peak input $(0.363 \times$ plate voltage) be different than the design value for the particular amplifier tube, the drive and loading adjustments can be changed in the proper directions (always adjusting the loading so that the peaks of the envelope are on the verge of fattening) and the proper value reached.

Adjustment of Amplifiers

Using the Linearity Tests

The photos (Figs. 11-14, 11-17 and 11-18) have been taken to show many of the typical patterns that may be encountered with either of the test arrangements described previously. They are classified separately as to those representing correct conditions (Fig. 11-14), faulty operation of the r.f. amplifier (Fig. 11-17), and various other patterns that look irregular but which really represent a peculiarity in the test set-up or the exciter but not in the final (Fig. 11-18).

Aside from the problem of parasitics, which may or may not be a difficult one, it should be possible without much diffieulty to achieve the correet linearity pattern by taking action as indicated by the captions aceompanying the photos. It can then be assumed that the amplifier is not contributing any distortion to the signal so long as the peak power level indicated hy the test is not exceeded. It is entirely possible, however, that good linearity will be obtained only by holding the power down to a
level considerably below what is expected, or conversely that there will be signs of excessive plate dissipation at a level that the tubes should handle quite easily. In such eases, some attention should be given to the plate loading, as diseussed below.

The several patterns of Fig. 11-19 show how loading affects the output and efficiency of a linear amplifier. In the first two, loading is relatively light and limiting takes place in the final plate cireuit. Reserve power is still available in the driver, evideneed by the fact that heavier loading on the final allows the peak output to increase up to the optimum level of the third pattern. With still heavier loading the output ceases to inerease but in fact drops somewhat; even though the input power goes up all the time, the efficieney goes down rapidly. In the last two patterns, the driver is the limiting element in the system, and the extra powerhandling capability of the final, due to heavier loading, is wasted by inability of the driver to do it justice.

1) For good efficiency, the final itsolf must he the limiting element in the power-handling eapability of the system.
2) If the final is not being driven to its limit, it should be loaded less heavily ur'il such is the case.
3) If the power level obtained above is less than should be expected, more driving power is needed.

There are several ways to tell whether or not the final is being driven to its limit. One way is to advance the drive until peak limiting is apparent in the output, then move the oscilloscope coupling link over to the driver plate tank and
sce whether or not the same limiting appears there. Another way is to dererease or increase the final loading slightly and note whether the limiting output level increases or decreases corre spondingly. If it does not, the final is not controlling the system. Still another but similar method is to detune the final slightly white limiting is apparent, and if proper drive conditions prevail the pattern will improve when the amplifier plate is detuned.

The intermediate and driver stages will follow the same laws, exeppt that what is called "loading" on a final is often referred to as "imperdance matthing" when going between tubes. More

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Fig. 11.18-Improper Test Set-up 12-Two r.f, signals unequal. in Method A, coused by improper seltings of either carrier or audio control. Method 8, either carrier leakage through disabled modula. tor or unequal sidebands due to selective action of some high-Q circuit off resonance. 13-Same as 12, double-trapezoid test (Method B). 14-Distorted audio. A clue to this defect is that successive waves ore not identical. 15-Same distortion as 14, but switched to double trapezoid test pattern, Note that correct pattern prevails regardless of poor audio signal. 16Corrier leakage through working modulator (Method B only). 17Same as 16, double trapezoid. 18 -(Note tilt to left.) Caused by incomplete suppression of unwanted sideband (Method A) or by r.f. leakage into horizontal circuits of scope. 19-Double trapezoid with oudio phose shift in test set-up.

(20)

Fig. 11-19-Amplifier Loading Charocteristics. Two-tone patterns taken at the output of a Class B linear amplifier with constant drive and successively heavier loading. Measured input power: 20-90 watts; 21-135 watts; 22-250 watts; $23-330$ watts; 24 400 watts.

(21)

(23)

(22)

(24)
often than not, an apparent lack of power transfer from a driver to its surceeding stage is due to a poor match. In Class AB_{2} or 3 serviee, a step-town type of coupling is required betwece power stages, and a person areustoned to the conventional plate-to-grid conpling-eondenser terhnigue will be surprised to find how eftertive it is to tap the driven stage down on its tank or otherwise to decouple the ssatem. Fior example, an sot driving a pair of 81 ls menuires a voltage stepmeme of about 3 or 4 to 1 from plate to cach grid.

Dummy Load

For the sake of everyone concerned, linearity tests should be kept of the air as much as possible. They make quite a racket and spurious signals are plentiful in earticr stages of misadjustnent. Ordinary lamp bulbs make a fine dummy load so bong as it is recognized that thrir impecdance is not exartly the same as the antemat and thal this impodance changes somewhat as the luills light up. These factors can be taken into arome hy making cateful mote of plate aud grial currents alter the transmitter has been adjusted and is operating with a linemrity test
signal at maximum linear output into the lamp load. Then, having reconnerted the regular antenna, the same loading conditions for the final will be reproluced by adjusting its tuning and loading until the identical combination of plate and grid currents can be obtained. This process will require only a few moments of on-the-air opmation.

When the filatl on-the-air checks are meule, it will be convenient to make at few reforence marks on the oseilloserpe sereen to indirate the peak height of the pattern. The scope will then serve as a permanent ontput monitor for all operations. For best resuits the sweep should be set. for about 30 reves, in which case the voice patterns will stand out clearly and can easily be kept just within the reference lines. Incidentally, the pattern is really fascinating to watch.

I on't be a "meter bender." Input power isn't everything. If you have to cut your input in half to avoid overload, the fellow at the other end will hardly notice the difference in level. At the same time, your neighbors hoth those on the ham band and those next door trying to wath TV, will appreciate the difference right aw:ay.

Frequency Conversion

"Ihe proferred s.s.b, tratasmitter is probably one that gornorateo the s.s.t. signat at some stitable frespueney and then leterodyenes the nignal into the desired amateur laninds, although a few designs exist that generate the s.s.b. signal at the operating frequeney and consequently eliminate the ned for heterodyning. When the heterodyning is done at low level (involving an s.s.b. signal of not more than a lew volts). standard receiving terlinigues are satislitetory. The converter tubes operited at manuficturir's rat-
ings leave little to be desired.
When high-level heterorlyning is required, as when an exciter delivering from 5 to 20) watts on a single band is available and multiband operation is desired, a high-level converter is used. since the efficiency of a converter is only about one-fourth that of the same tube or tubes used in Class A132, using a eonverter stage as the output stage is not very eeonomical, and the high-level converter is generally used to drive the output stiuge.

Fig. 11-20-Twa examples af "high-level" mixer circuits. The circuit at A has been used with 6V6, 6L6, 6AQ5 and 6 Y 6 type tubes. With 300 valts on the plate the idling current is abaut 15 ma., kicking as high as 30 ma . with the s.s.b. signal.

The circuit in B aperates with a positive screen valtage and some cathade bias, and is capable of some what mare autput than the circuit shawn in A .

In either case the output circuit, $\mathrm{C}_{1} \mathrm{~L}_{2}$, is tuned ta the sum ar difference frequency of the oscillator and s.s.b. signal. Caupling coils L_{1} and L_{3} will usually be three ar four turns caupled to their respective driving saurces.

Reference to tube manuals will disclose no information of the operation of small transmitting tubes as mixers. However, it has been found that most of the tetrodes in the 15 - to 35 -watt platedissipation class make acceptable mixers, and tubes like the 6V6, 6L6, 807 and 6146 have been used successfully. The usual procedure is to feed one of the signals (oscillator or s.s.h.) to the control grid and the other to the cathode or screen grid. Typical circuits are shown in Fig. 11-20.
(Suggestions for converting to and operating in the 50- and 144-Mc. bands can be found in Tilton, "Single-Sideband Ideas for the V.H.F. Man," QST, May, 1957.)

VOICE-CONTROLLED BREAK-IN

Although it is possible for two s.s.b. stations operating on widely different frequencies to work "duplex" if the carrier suppression is great enough (inadequate carrier suppression would be a violation of the FCC rules), most s.s.b. operators prefer to use voice-controlled break-in and operate on the same frequency. This overcomes any possibility of violating the FCC rules and permits "round table" operation.

Many various sytems of voice-controlled break-in are in use, but they are all basically the same. Some of the audio from the speech amplifier
is amplified and rectified, and the resultant d.c. signal is used to key an oscillator and one or more stages in the s.s.b. transmitter and "blank" the receiver at the time that the transmitter is on. Thus the transmitter is on at any and all times that the operator is speaking but is off during the intervals between sentences. The voice-control circuit must have a small amount of "hold" built into it, so that it will hold in between words, but it should be made to turn on rapidly at the slightest voice signal coming through the speech amplifier. Both tube and relay keyers have been used with good surecss. Some voice-control systems require the use of headphoncs by the operator, but a loudspeaker can be used with the proper circuit. (See Nowak, "Voice-Controlled Break-In , . , and a Loudspeaker," QST, May, 1951, and Hunter, "Simplified Voice Control with a Loudspeaker,' QST, October, 1953.)

If an antenna relay is used to switch the antenna from the receiver to the transmitter and back again, it is often possible to operate the output linear amplifier stage with some idling current and experience no difficulty with the "diode noise" generated by the amplifier plate current. However, when the receiver, transmitter and antenna are always connected together, as when an electronic transmit-receive switch is used (see Section Eight), weak signals will not be heard through the diode noise of the transmitter. To overcome this difficulty, the idling current of the amplifier must be reduced to zero during listening periods. This can be accomplished through the use of the circuit in Fig. 11-21. Here

Fig. 11-21-Bias-switching circuit for use with a Class $A B_{1}$ linear amplifier and an electronic t.r. switch. $\mathrm{R}_{1}-4700$ ahms, 1 watt. $\mathrm{R}_{2}-100,000$ ohms, 2 watts. K_{1}-VOX relay or relay controlled by VOX circuit. V_{1}-OA2 or OB2, depending upan amplifier re. quirements.
K_{1} is a relay controlled by the voice-controlled break-in circuit. When the relay is closed, the operating bias E_{1} for the linear amplifier is determined by the setting of the arm on R_{2}. When the relay is open, the grid bias jumps to the value E, which should be high enough to cut off the amplifier stage. The voltage regulator tube should be one with a nominal voltage drop in excess of the normal bias for the amplifier tube, and the negative supply voltage E should be at least 25 percent higher than the ignition potential of the VR tube. The circuit in Fig. 11-21 is applicable to Class $A B_{1}$ amplifiers; it cannot be used when grid current is drawn during operation.

Receiving Suppressed-Carrier Signals

Restriction of Audio Range

In either type of s.s.b. generator, it is gool practice to restrict the frequency range of the audio amplifier. In the filter-type exeiter, reducing the response below 300 or 400 cycles makes it easier for the filter to eliminate the unwanted side frequencies below this range. In the phasingtype exciter, restricting the range of the audio amplifier to the frequencies at which the network gives its best performance (usually about 300 to 3000 cycles) reduces the possibility of generating unwanted side frequencies ontside this range. High-frequency audio cut-off is not as important in the filter-type exeiter berause the filter takes care of the higher frequencies.

When a restricted audio range is used, it is a
good idea to make a number of checks on the system, in an effort to obtain the best compromise between naturalness and intelligibility. Voice characteristics differ from operator to operator, and it is sometimes preferable to accentuate the "highs" slightly to give better intelligibility. No standards can be given hereit is a subject for experimentation and checking under varied conditions.

The simplest means for reducing the lowfrequency response in the audio amplifier is to reduce the values of the coupling capacitors. High-frequency response can be reduced by adding capacitance across grid resistors. More elaborate means require the use of filters using inductance and capacitance combinations.

Receiving Suppressed-Carrier Signals

The reception of suppresed-atrier signals requires that the carrier be acourately reinserted at the receiver. In aldition, the reception of a double-sideband suppresed-ramier signal requires that one sideland be filterd off in the receiver before demodulation or that a special trpe of converter be used. Becamse little or no carrier is transmitted, the usual a.v.e. in the receiver has nothing that indicates the average signal level, and this fact reguires either manaal variation of the r.f. gain control or the use of a special a.v.c. system. (As, for example, Latick, "Improved A.V.C. for Sideband and C.W.." QS'T, October, 1957.)

A suppressed-carrier signal can be identitied by the absence of a strong carrier and by the severe variation of the is meter at a syllabic rate. When such a signal is encountered, it should first be peaked with the main tuning dial. ('This centers the signal in the i.f. pass band.) After this operation, do not touch the main tuning dial. Then set the r.f. gain control at a very low level and switeh off the a.v.e. Increase the audio volume control to maximum, and bring up the r.f. gain control until the signal can be heard weakly. Switch on the beat oseillator, and carefully adjust the frequency of the beat oscillator mitil proper speech is heard. If there is a slight amoment of carrier present, it is only necessary to zero-beat the beat oscillator with this weak carricr. It will be noticed that with incorrect tuning of an s.s.b. signal, the speech will som high- or low-pitehed or even inverted (very garbled), but no trouble will be had in getting the correct setting once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) occurs in the receiver. It may require a readjustment of your tuming habits to tune the receiver slowly enough during the first few trials.

Once the proper setting of the b.f.o. has been established by the procedure above, all further tuning should be done with the main tuning control. However, it is not unlikely that s.s.b. stations will be encountered that are transmitting the other sideband, and to receive them will re-
quire shifting the b,i,o. setting to the other side of the reediver i.f. passbind. The initial tuming procedure is exactly the same as outlined alove, except that you will end up with a considerably different b.f.o. setting. The two b.f.o. settings should be noted for further reference, and all tuming of s.s.b. signals can then be done with the natin tuning dial. After a little experience, it becomes a simple matter to determine which way to tune the receiver to make the received signal sound lower- or higher-pitched if the receiver (or transmitter) drifts off.
When a double sideband suppressed-carrier signal is received, sufficient selectivity will be required in the receiver to aliminate one sideband and convert the signal into a single-sideband signal before detection, where iv can be received by the method outlined above. Receiver bandwidths of 3 ke . or less will be required for this purpose, or the use of at "Signal slicer," a selectivity device that uses the phasing prinejple. (See GE Ham News, Vol. 6, No. 4, July, 1951.)

Newoomers to single sidehand often wonder if there is any deviec that ean be added to a receiver that will make the tuning of sideband signals less critical. At the present time there is no device that will "lock in" antomatically. However, if the receiver is lacking in selectivity, an apparent improvement can be obtained by using an adapter that adds selectivity to the receiving system. No improvement in ease of tuming will be noticed on good side-band signals (good suppression of unwated sideband), but fair or mediocre signals will be easier to tume. The reason is that the adispter makes a better side-band signal out of the incoming signal by removing the vestiges of the mowanted sidehand, and a good side-liand signal will tune easier than a fair one. The sideband adapters also usually have detectors designed for best detection of side-band signals, a point that was overlooked in some of the older receivers.

WHICH SIDEBAND?

It is sometimes confusing to remember how to
identify, from the way your receiver tunes, which sideband the other station is using. This is especially awkward with those receivers in which the high-frequency oscillator is on the highfrequency side of the signal in some ranges and on the low side in others. With any receiver having sufficient selectivity to give a stronger signal on one side than on the other of zero beat, when the b.f.o. is offset to one side of the i.f., the chart below will help you identify which sideband is being transmitted. Set the b.f.o. to the side of the i.f. that you find is right for receiving singlesideband signals on a particular band. Then with the main dial tune through a steady carrier (or the signal from your 100 -ke. standard). Note which side of zero beat gives little or no signal.

$\begin{array}{c}\text { If tuning through a steady carrier gives } \\ \text { little or no signal on the }\end{array}$	
High Frequency	Low frequency
$\begin{array}{l}\text { side of zero beat, and then if tuning the } \\ \text { receiver to a loicer frequency makes the } \\ \text { voice of a single-sideband signal sound } \\ \text { lower pitched, he is using the }\end{array}$	
Lower	Upper
sideband.	

Specialized Communication Systems

Frequency and Phase Modulation

It is possible to ronvey intelligenee by modulating any property of a cearrier, incluting its froquence and phase. When the frequaner of the (:urficr is varriod in areorelance with the vartiations in a modulating signal, the result is frequency modulation (f.m.). Similarly, varying the phase of the carrier current is called phase modulation (p.m.).
lirequency and phase modulation are not independent, since the frequency rannot be varied without also varying the phase, and vice versa. Phe difference is largely a matter of definition.

The effectiveness of f.m. and p.m. for communication purposes depends almost entirely on the reeciving methods. If the reeciver will respond to frequency and phatse changes but is insensitive to amplitude changes, it will disoriminate against most forms of noise, particularly impulse noise such as is set up by ignition systems and other sparking devices. Special methods of detertion are reguired to accomplish this result.

Mordulation methods for f.m. and p.m. are simple and require practically mo atudio power. There is also the advantage that, since there is no amplitude variation in the signal, interference to broadeast reception resulting from reatification of the transmitted signal in the adio cirenits of the BC : reeceiver is substantially eliminated. These two points represent the principal reasons for the use of f.m. and p.m. in amaterur work.

Frequency Modulation

Fig
$12-1$ is a representation of frequency
(A)

(B)

(C)

Fig. 12-1-Graphical representation of frequency modulation. In the unmodulated carrier at A, each r.f. cycle occupies the same amount of time. When the modulating signal, 8 , is applied, the radio frequency is increased and decreased according to the amplitude and polarity of the modulating signal.
modulation. When a modulating signal in applied, the carrier frequency is indreased during one halfererle of the modulating signal and decreased during the halfereve of opposite polarity. This is indieated in the drawing by the fiet that the ref. eveles oceupy hess time (higher frequency) when the modulating signal is positive, and more time (lower frequeney) when the modulating signal is negative. The change in the carrier frequence (frequency deviation) is proportional to the instantancous amplitude of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its peak, rither positive or negative.

As shown by the drawing, the amplitude of the signal does not change during modulation.

Phase Modulation

If the phase of the current in a circuit is changed there is an instantanoous frepuency change during the time that the phase is being shifted. The amount of frequency change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a propertyoperating p.m. system the amount of phase shift is proportional to the instantancous amplitude of the modulating signal. The rapidity of the phase shift is directly proportional to the frequency of the modulating sighal. Consequently, the frequeney deviation in p.m. is proportional to both the amplitude and frequency of the modulating signal. The latter represents the outstanding differener between f, m, and p.m., since in f.m. the frequence deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

Percentage of modulation in f, m. and $\mathrm{p} . \mathrm{m}$. has to be defined differently than for a.m. Prabetically, " 100 per cent modulation" is rearehed when the transmitted signal occupies a chanmel just equal to the bandwidth for which the receiver is designod. If the frequence deviation is greater than the recciver can abecpt, the receiver distorts the signal. However, on another receiver designed for a different bandwidth the same signal might be equivalent to only 25 per cent modulation.

In amateur work "narrow-hand" f.m. or p.m. (frequently abbreviated n.f.m.) is defined as having the same channel width as a properlymodulated a.m. signal. That is, the effective chammel width does not exeed twice the highest

12 - SPECIALIZED COMMUNICATION SYSTEMS

Fig. 12-2-How the amplitude of the pairs of sidebands varies with the modulation index in on f.m. or p.m. signal. If the curves were extended for greater values of modulation index it would be seen that the carrier amplitude goes through zero at several points. The same statement also applies to the sidebands.
audio frequency in the modulating signal. N.f.m. transmissions based on an upper andio limit of 3000 eycles therefore should oceupy thenmel not significantly wider than 6 kc .

F.M. and P.M. Sidebands

The sidebands set up by f.m. and p.m. differ from those resulting from in.m. in that they orenr at integral multiples of the modulating frequeney on cither side of the carrier rather than, as in am. consisting of a single set of side frequemes for eath modulating freduency. Anf.m. or p.m. sigmal therefore inherently oceupies a wider channel than itm.

The number of "extra" sidebands that oreur in f.m. and p.m. depends on the relationship between the modulating frequency and the frequency deviation. The ratio between the frequency deviation, in eyeles per second, and the modulating frequency, also in cycles per second, is called the modulation index. That is,
Modulation index $=\frac{\text { Currier fiequenc! derintion }}{\text { Mohblutin! frequency }}$
Example: The maximum frequency deviation in an f.m, tramsmiter is 3000 reves rither side of the carrier frequency. The modulation index when the modulating freguency is 1000 eveles is

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

At the same deviation with 3000-cycle modulation the index would be 1 ; at 100 cycles it would be 30, and so on.
In p.m. the modulation index is constant regardless of the modulating frecpurncy; in f.m. it varies with the modulating frequency, as shown in the above example. In an f.m. system the ratio of the maximum carrier-frequeney deviation to the highest modulating frequency used is called the deviation ratio.

Fig. 12-2 shows how the amplitudes of the carrier and the varions sidebands vary with the modulation index. This is for single-tone modulattion; the first sideband (actually a pair, one above and one below the carrier) is displaced from the carrier by an amount equal to the modulating frequency, the second is twice the modulating frequency away from the carrier, and so on. loo example, if the modulating frequency is 2000 cyoles and the carrier frequency is $29,500 \mathrm{kc}$., the first sidehand pair is at $2.9,498 \mathrm{kc}$, and $29,5002 \mathrm{kc} \cdot$, the second pair is at $29,496 \mathrm{kc}$. and $29,50 \pm \mathrm{ke}$, the third at $29,494 \mathrm{ke}$. and 29,506 ke., ete. The amplitudes of these sidebatuds depend on the
modulation index, not on the frequency deviation.
Note that, as shown by Fig. 12-2, the carrier strength varies with the modulation index. (In amplitude modulation the carrier strength is constant: only the sidehand amplitude varies.) At a modulation index of appoximately 2.4 the camier disappeats entirely. It then beromes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In i.m. and p.m. the energy that goes into the sidebands is taken from the carrier, the total power remaining the same regardless of the modulation index.

Frequency Multiplication

Since there is no change in amplitude with madulation, an f.m. or prom, signal (an be amplified without distortion by an ordinary (lass © amplifier. The modulation can take place in a very low-level stage and the signal can then be: amplified by either freguency maltipliors or struight amplifiers.

If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied hy the same factor that the carrier frequency is multiplied. loor example, if modulation is applied on 3.5. Me. and the finad output is on 28 Nr. the total frequeney multiphication is 8 times, so if the frequeney deviation is 500 ercles at 3.5 . Me. it will be 4000 cycdes at 28 Me. I'requence multiplieation offers al means for obtaining pratically any desired amount of froqueney deviation, whether or not the modulator itself is capable of giving that much deviation without distortion.

Narrow-Band F.M. and P.M.

"Narrow-band" f.m. or p.m.. the only type that is :uthorized by l.CC for use on the lower frequencies where the phome bands are crowded, is defined as f.m. or p.m. that does not oceupy a wider chamel than an am. signal having the same audio modulating frequencios.

If the modulation index (with single-tone modulation) doses not exceed 0.6 or 0.7 , the most important extra sideband, the second, will be at least 20 db . below the umodulated carrier level, and this shouhd represent an affortive chamnel width about equivalent to that of an a.m. sigmal. In the case of spereh, a somewhat higher modulation index can be used. This is because the energy distribution in a complex wave is such that the modulation index for any one frequeney eom-

Frequency and Phase Modulation

poncont is roducod, as compared to the index with at sine wave having the same peak amplitude as ther voice wave.

 hites or reduces certain types of interferemeo to broadeast reception. Dlso. the modulating equipment is relatively simple and inexpensive. However, assuming the satre ummodulated carrier power in all (ases, natrow-hand f.m. or p.m. is not as effertive as a.m, with the methods of rereption used by most amateurs. As shown by Fig. 12-2, at an index of 0.f the amplitude of the first sidebund is about 25 per rent of the un-modulated-carrier amplitule; this compares with a sideband amplitado of 50 per eont in the caso ol a $1(x)$ per cent modulated a.m. transmitter. So firr as offoctivenoss is conocornod, a narrowband f.m. or p,m. transmititer is about mpuivalent to : 100 per cent modulailed an, transmitter oproting at one-fourth the earrier power.

Comparison of F.M. and P.M.

Frequency modulation (annot le applied to an amplifier stage, but phase modulation ran: p.m. is therofore readily aldaptable for transmituors emplosing oscillators of high stability such as the crystal-eontrolled type. 'The amount of phase shift that ean le obtaned with good linearity is such that the maximum pracetioable modalation index is about 0.5. Beranse the phase shilt is proportional to the modnlating frequency, this index can be used only at the highest frepuency present in the modulating signal, assuming that all frequencies will at one time or another have
equal anplitudes. Taking 3000 eveles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 eveles. the frequenty response of the spereh-amplifier systom allove 3000 reveles must be sharply attenuaterl, to provent sideband splatter. Also. if the "timny" guality of p.m. as receives on an f.m. recoiver is to be avoided, the p.m. must be changed to f.m., in which the modulation index derereses in inverse proportion to the modulating frequencr. This requires shaping the speechamplitier frequency-response curve in such a way that the output voltage is inversely propertional to frequeney over most of the voire range. When this is done the maximum modnlation index can only be used at some relatively low audio frequency, perhaps : 300 to 100 ryeles in voice trinsmission, and must decrase in proportion to the increase in frepuency. The result is that the maximum linear frequency deviation is only one or two hondrod eveles, when p.m. is changed to f.m. To ineraso the deviation for n.f.m. requiros a frequency multiplication of 8 times or norre.

It is rolatively easy to secure a farirly large frecpueney deviation when a solf-contrilled oscillator is frequeney-modulated directly. (True frequenty modulation of a erystal-rontrolled oscillator results in only very small derviations and so requires a great deal of frequency multiplication.) The chiof problem is to maintain a satisfuctory degree of carriter stability. since the greater the inherent stability of the ascillator the more difficult it is to secure a wide frequeney swing with lineatrity.

Methods of Frequency and Phase Modulation

A simple and satisfictory device for producing f. m . in the amateur transmiter is the reactance modulator. This is a vacuum tube romected to the r.f. tank circuit of an oscillator in such a way as to act as a variable inductance or caparitance.

Fig. 12-3 is a representative rircuit. The control grid of the modulator tube. l_{2}, is comected across the oscillator tank cirruit, $C_{1} L_{1}$, through rewistor R_{1} and blocking eapacitor C', ('s represents the input caparitance of the modulator tube. The resistance of R_{1} is made large com-
 through $R_{0}\left({ }^{\prime} 8\right.$ will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage arross C8 will hag the current by 90 degrees. The r.f. current in the plate circuit of the modulator will be in phase with the grid vollige, and consequently is (9) degrees behind the current through ('s, or (0) degrees behind the r.f. tank voltage. This lagging current is drawn through the oscillator tank, giving the same effert as though an inductance were connerted arross the tank. The frequeney increases in proportion to the amplitude of the lagging plate current of the modulator. The atudio voltage, introduced through a radio-fregueney choke, $R F^{\prime} C_{1}$, varies the transconductance of the
tube and therels varies the r.f. plate current.
The modulated oscillator usually is operated on a relatively low frequency, so that a high order of carrier stalbility can he serured. Frequency multipliers are used to raise the frequency to the final frequence desired.

A reactance modulator can be connerted to a ervstal owillator as well as to the self-controlled trine. However, the resulting signal is more phasemodulated than it is frequencr-modulated, for the reason that the frequeney deviation that can be secured bev varying the tuning of a crystal oscillator is quite small.

Design Considerations

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the transeonductance of the modulator tube. It increases when R_{1} is made smatler in eomparison with ('8. It also increases with an increase in L / C ratio in the oseillator tank eireuit. However, for highest carrier stability it is desimble to use the largest tank capacitance that will permit the desired deviation to be secured while keeping within the linits of lincar operation.

A change in any of the voltages on the modu-

12-SPECIALIZED COMMUNICATION SYSTEMS

lator tube will cause a change in r.f. plate current, and consequently a frequeney change. Therefore it is advisable to use a regulated plate power supply for both modulator and oscillator. At the low voltage used (250) volts or less) the required stabilization can be secured ber means of gaseous regulator tubes.

Speech Amplification

The speech amplifier preceding the modulator follows ordinary design, exept that no power is taken from it and the a.f. voltange reguired be the modulator grid usually is small - mot more than 10 or 15 volts, even with large modulator tubes. Beause of these motest requirements, only : few speerh stages are needed; a two-stage amplifier consisting of a pentode followed by a triode, both resistance-coupled, will more than suffice for erestal microphones.

PHASE MODULATION

The same type of reactance-tube circuit that is used to vary the funing of the oseillator tank in f.m. can lie used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for prim. Hence the modulator eircuit of lig. 12-i3 can be used for p.m. if the reactance tube works on an amplifier tank instead of directly on a self-controlled oseillator.

The phase shift that ocrurs when a cireuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the Q, the smaller the amount of detuning needed to secure a given number of degrees of phase shift. If the Q is at least 10 , the relationship between phase shift and detuning (in kilorecles either side of the resonant freguencer) will be sul-

Fig. 12.3-Reactance modulator using a hightransconductance pentode ($6 B A 6, ~$ OCL6, etc.).
C_{1}-R.f. tank capacitance (see text).
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{f}$. mica,
$C_{1}, C_{5,}, C_{13}-0.0047$ - $\mu \mathrm{f}$. mica.
$\mathrm{C}_{7}-10-\mu \mathrm{f}$. electrolytic.
C_{8}-Tube inpul capacitance.
$\mathrm{R}_{1}-47,000$ ohms.
$\mathrm{R}_{2}-0.47$ megohm.
$R_{\beta}-$ Screen dropping resistor; select to give proper screen voltage on type of modulator tube used.
R_{4}-Cathode bias resistor; select as in case of R_{3}. $L_{1}-$ R.f. tank inductance.
$\mathrm{RFC}_{1}-2.5 \mathrm{mh}$. r.f. choke.
stantially linear over a phase-shift range of about 25 degrees. From the stamdpoint of modulator sensitivity, the () of the tuned circuit on which the modulator operates shoud be as high as possible. On the other hand, the effective ($)$ of the cireuit will not be very high if the amplifier is delivering power to a load since the load resistane reduces the (Q. There must therefore be a compromise between modulator sansitivity and r.f. power output from the modulated :mplitier. An optimum figure for () :appears to be ahout 20 ; this allows reasonable leading of the modulated amplifier and the necessary tuning variation can be serured from a reactance molulator without difliculto. It is advisable to modulate at a vory low power hevel-preferably in a stage where receiving type tubse are used.

Reartance modulation of an amplifier stage usually also results in simultaneous amplitude modulation beouse the modulated stage is detuned from resonance as the phase is shifted. This must be climinated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages - that is, amplifiers that are operated Class Cand driven hard enough so that variations in the amplitude of the gride excitation produce no appreciable vatriations in the final output amplitude.

For the same type of reatane modulator, the speech-amplifier gain required is the same for p.m. as for f.m. However, as printed out carlier, the fact that the actual frequency deviation increases with the modulating adudio frequency in p.m. makes it neressary to cut off the frequenerios above about 3000 a cyeles before modulation takees plater, If this is not done, unnecessary side bands will be generated at frequencios considerably away from the carrier.

Checking F.M. and P.M. Transmitters

Aceurate checking of the operation of an f.m. or p.an. transmitter reguires different methods than the corresponding checks on an atm. set. This is because the common forms of measuing devices cither indieate amplitude variations only (a d.c. milliammeter, for example), or because their indications are most easily interproted in terms of amplitude. There is no simple measuring instrument that indieates frequency deviation directly.

However, there is one favorable feature in f.m. or p.m. rherking. The modulation takes place at a very low leved and the stages following the one that is modulated do not atfecet the linearity of moduation so long as they are properly tumed. Therefore the modulation may be eherked without putting the transmitter on the air, or even on a dummy antema. The power is simply cut off the amplifiers following the modulated stage. 'This not only' avoids unneces-

Frequency and Phase Modulation

sary interferenee to other stations during testing periods, but also keeps the signal at such a low level that it may be observed quite easity on the station reeciver. I good receiver with a erystal filter is an essential part of the checking equipment of an f.m. or p.m. transmitter, partieularly for narrow-band f.m. or p.m.

The quantities to be checked in an f.m. or p.m. transmitter are the linearity and frequency deviation. Because of the essential difference between f.m. and p.m. the methods of ehecking differ in detail.

Reactance-Tube F.M.

It is possible to calibrate a reactance modulator hy applying an adjustable d.e. voltage to the modulator grid and noting the change in oseillafor fregueney as the voltage is varied. A suitable circuit for applying the adjustable voltage is shown in lig. 12-4. The battery should have a

Fig. 12-4-D.c. method of checking frequency deviation of a reactance-tube-modulated oscillator. A 500- or 1000 -ohm potentiometer may be used of R_{1}.
voltage of 3 to 6 volts (two or more dry cells in series). The arrows indicate dip eonnections so that the battery polarity can be reversed.

The oscillator frequencey deviation should be measured by using a receiver in conjunction with an aecurately-eatibrated frequency metar, or by any means that will permit abeurate measurement of frequency differences of a few hundred eycles. One simple method is to tume in the oscillator on the receiver (disconnecting the receiving antenna, if necessary, to keep the signal strength well below the overload point) and then set the receiver b.f.o. to zero beat. Then increase the d.e. voltage applied to the modulator grid from zero in steps of about $1 \underline{2}$ volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be measured by comparison with a calibrated audio-frequency oscillator. Note that with the battery polarity positive with respect to ground the radio frequency will move in one direction when the voltage is incrased, and in the other direction when the battery terminals are reversed. When several readings have been taken a curve may be plotted to demonstrate the relationship between grid voltage and frequency deviation.

A sample curve is shown in Fig. 12-5. The usable portion of the curve is the center part which is essentially a straght line. The bending at the ends indicates that the modulator is no longer linear; this departure from linearity will rause harmonie distortion and will broaden the channel occupied by the signal. In the example, the characteristic is linear 1.5 kc . on

Fig. 12-5-A typical curve of frequency deviation vs. modulator grid voltage.
either side of the ennter or carrier frequency.
I good modulation indicator is a "magic"ye" tube sueh as the 6lit. This should be connected across the grid resistor of the reactanee modulator as shown in Fig. 12-6. Note its deflection (using the d.c. voltage method as in Fig. 12-4) at the maximum deviation to be used. lor narrow-band f.m. the proper deviation is approximately 2000 cycles (this maximum deviation is based on an upper a.f. limit of 3000 (yoles and a deviation ratio of 0.7) at the output frefuency. This deflection represents " 100 per rent modulation' and with speech input the gain should be kept at the point where it is just reached on voice peaks. If the transmitter is used on more than one band, the gain control should be marked at the proper setting for

Fig. 12-6-6E5 modulation indicator for f.m. or p.m. modulators. To insure sufficient grid voltage for a good deflection, it may be necessary to connect the gain control in the modulator grid circuit rather than in an earlier speech-amplifier stage.
cich hand, because the signal amplitude that gives the correct deviation on one band will be either too great or too small on another. For example, if the output freguency is in the 29-Mc. hand and the oscillator is on 7 . Ite., the deviation at the oscillator frequency should not exceed $2000 / 1$, or 500 rycles.

Checking with a Crystal-Filter Receiver

With p.m. the d.c. method of checking just described cannot be used, because the frequency deviation at zero frequency (d.c.) also is zero. For narrow-band p.m. it is necessary to check the actual width of the channel oceupied by the transmission. (The same method also can be used to cherk f.m.) For this purpose it is necessary to have a crystal-filter receiver and

12-SPECIALIZED COMMUNICATION SYSTEMS

ath a.f. oscillator that generates a 3000 -cycle sine wave.

Kepping the signal intensity in the receiver at a mediam level, tune in the carrier at the output frequenc.v. Do not use the a.v.c. switeh on the beat onciliator, and set the erystal filter at its sharpest position. Peak the signal on the erystal and adjust the bif.o. for any eonvenient beat note. Then apply the 3000 -cycle tone to the sperech amplifier (through an attenuator, if meressary, to avoid overloading; soe sortion on atulio amplifiers) and increase the audio gain until there is a small amount of modulation. Tuning the receiver near the carrior fredueney will show the presenere of sidelamds 3 ke . from the carrior on both sides. With low andio input, these two should he the only sidebands detertable.

Now indrease the audio watn and tume the receiver ower a range of about 10 ke . on both sides of the carrier. When the gain beoomes high enough, a serond set of sidehands spaed 6 kr . on either side of the carrier will be deteeted. The signal amplitude at which these sidohands become dotertable is the maximam speroh amplitude that should be used. If the flem moduladion indicator is incorporated in the modulator. its deflertion with the 3000 -revele tone will be the " 100 per cont modulation" deflection for sperech.

When this method of cheeking is used with a reactanco-tubr-modulated fim, (net p.m. 1 transmitter, the linearity of the system can he checked he observing the carrier as the a.f. gatin is slowly increased. The beat-note fregueney will stay comstant so long as the modulator is linear, bat nonlinearity will be areompanied by a shift in the average carrier frequency hat will catec the beat note to change in frequence. If surh a shift oreors at the same time that the $6-\mathrm{ke}$. sidehamds appear, the extrat sidebands may be calased by modulator distortion rather than by an excessive modulation
index. 'This means that the modulator is not eapable of shifting the frequeney over a wideenough range. The ($\mathrm{j}-\mathrm{k}$ e, sidehands should appear before there is any shift in the carrier frequency.

R.F. Amplifiers

The r.f. stages in the tramsmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met exeept that all tank eireuits should be carcfully tuned to resonance (to provent unwanted rif. phase shift: that might interact with the modulation and thereby introduce hum, noise and distortion). In neutralized stages, the neutralization should be as exact as posible, also to minimize mwanted phase shifts, With f.m. and p.m, atl r.f. stages in the transmitter can be operated at the manufacturer's maximum c.w.-telegraphy rating, since the average power input does not vary with modulation as it does in a.m. phone operation.

The output powror of the transmitter should be checked for amplitude modulation. It should not change from the amodulated-carrior value when the transmitter is modulated. If no output indicator is available, a flashlight lamp and loup can be coupled to the final tank roil to serve as a rarrent indicator. If the camier amplitude is constant, the lamp brillianere will not change with modulation.

Implitude modulation areompanying fim. or p.m. is just as much to be avoided as froquency or phase modulation that areompanies a.m. I mixture of a.m. with either of the other two systems results in the generation of spurious sidebands and conseduent widening of the chamel. If the presence of ame is indicated by variation of antenna current with modulation, the canse is ahmost certain to be nonlinearity in the nodulator.

Reception of F.M. and P.M. Signals

Receivers for f.m. and p.m. signats differ lirom those for a.m. and s.s.b. principally in two features - there is no ned for linearity in the amplifior stages preeding detection (in fact, it is advantagenas if the amplitude variations in the signal and batkground noise (ran be "washed out"), and the detector must be capable of converting the frecquency variations in the incoming signal into amplitude variations. These amplitude varliations, combined with rectification, produce atn audio voltage corresponding to the frequeney or phase modulation on the signal.

Frequency- or phase-modulated signals can be received after a fashion on athe ordinary receiver that has a selertivity eorve with sloping sides. As shown in Fig. $12-7 \lambda$, the receiver is tuned so that the earrier frequeney is pared part-way down on one side of the selectivity curve so that the amplitule is less thatn the maximum that would be
possible with normal tuming. When the frequeney of the signal varies with modulation it swings betwern some such limits as arre indieated in lörg. 12-7.1, resulting in an amplitude-modulated output varying hetweon X and S . Ifter this f.mi-to-a, m. conversion the signal gexs to a conventional detector (usually a diode) and is rectifiod in the same way as an a m.m. signal.

With most receivers, particularly those having steep-sided selectivity curves, the method is nor very satisfatory beculuse the distortion is quite severe unless the frequeney deviation is smatl. because the relationship between frequenes deviation and output amplitude is linear over only a smatl part of the selectivity rurve.

A detector designed expressly for f.m. or p.m will have a characteristie similar to that shown in Fig. 12-713. The output is zero when the unmodulated carrier is tuned to the center, 0 , of

Frequency and Phase Modulation

Fig. 12.7-F.m. or p.m. detection characteristics. A"Slope defection," using the sloping side of the receiver's selectivity curve to convert f.m. or p.m. to a.m. for subsequent rectification. B-Typical discriminator characteristic. The straight portion of this curve between the two peaks is the useful region. The peaks should olways lie autside
the pass band of the receiver's selectivity curve.
the chatrateristia. When the frechuency swings higher, the reretifed outpot amplitule inereases in the positive direetion (as chesen in this example), and when the frequener swings lower the output amplitude ineroses in tho nogetive dirertion. Over the ramge in which the ehatracteristive is a straight line the conversion from f.m. to atm. is linear and there is mo distortion. One tope of detector that operates in this way is the fre-
quency discriminator, which conbines the f.m.-(t)-atm. conversion with reetification to give an audio-frequency output from the freguencymodulatod r.f. signal.

Limiter and Discriminator

A pracelimal diseriminator cirenit is shown in Fig. 12-8. The f.m.-fo-it.m. conversion takes plate in transformor T_{1}, which operates at the intermediate frequeney of a superheterodyne reeciver. The voltage indued in the transformer secomalary, $心$, is 90 degrees out of phase with the primary current. The primary voltage is introduced at the center tap on the seeondary through ('1 and combines with the seeondary voltages on earh side of the renter tap in such a way that the resultant voltage on one side of the secondary leads the primary voltage and the voltage on the other side lags by the same phase angle, when the circuits are resomated to the unmodulated carrier frecpueney. When rectifiol, these two voltages are erpal :und of opposite polimity. If the frequency changes, there is a shift in the relative phase of the voltage components that results in an inrease in output amplitude on one side of the secondary and a corresponding decrease in amplitude on the other side. Thus the voltage applied to one diode of 1 I2 increases while the voltage :uplied to the other dionde deerestes. The differconce bot ween these two voltages, after rectification, is the audio-fropucucy output of the detector.

The output amplitude of a simple diseriminator dopends on the amplitude of the input r.f. signal, which is undesirable berause the moise-redueing benefits of f.m. are not sorured if the recejving system is sensitive to amplitude variations. \AA diseriminator is alwaty preeceded by some form of amplitude limiting, therefore. The eonventional type of limiter also is shown in Jig. 12-8. It is simply a pentode i.f. amplifier, V_{1}, with its operating conditions chosen so that it "saturates" on a relatively small signal voltage. The limiting aetion is aided by grid rectification, with grid-leak

Fig. 12-8-Limiter-discriminator circuit. This type of circuit is frequently used at 455 kc . in the form of an "adapter" for communications receivers, for reception of narrow-band f.m. signals.
C_{1}-App. $100 \mu \mu \mathrm{f}$. for 455 kkc . i.f.; $50 \mu \mu$ f. for higher $\mathrm{RFC}_{1}-10 \mathrm{mh}$. r.f. choke for 455 kc . i.f.; 2.5 mh . satis frequencies.
T_{1}-Discriminator transformer for intermediate frequency used. Push-pull diode transformer may be substituted.
factory for frequencies above 3 Mc .
V_{1}-6AU6 or equivalent.
$V_{2}-6 A L 5$ or equivalent.

12 - SPECIALIZED COMMUNICATION SYSTEMS

bias developed in the 50,000 -ohm resistor in the grid circuit. Another contributing factor is low screen voltage, the screen voltage-divider constants being chosen to result in about 50 volts on the soreen.

Receiver Tuning with an F.M. Detector

In tuning a signal with a receiver having a diseriminator or other type of f.m. detector the tuning controls should be adjusted to center the
carrier on the detector characteristic. At this point the noise suppression is most marked, so the proper setting is easily recognized. An am-plitude-modulated signal thed at the same point will have its modulation "washed off" if the signal is completely limited in amplitude and the diseriminator alignment is symmetrical. With either f.m. or a.m. signals, there will be a distorted audio-frequency output if the reepiver is tumed "off center."

Radioteletype

Radioteletype (abbreviated RTTY) is a form of telegraphic communication employing type-writer-like machines for 1) generating a coded set of electrical impulses when a typewriter key corresponding to the desired letter or symbol is prossed, and 2) converting a received set of such impulses into the corresponding printed chararter. The message to be sont is typed out in much the same way that it would be written on a typewriter, but the printing is done at the distint receiving point. The teletypewriter at the sending point also prints the same material, for checking and reference.

The marhines used for RTTY are far too complex merhanically for home construction, and if purchased new would be highly expensive. However, used teletypewriters in good meehanieal eondition are available at quite reasonable prices. These are machines retired from commercial service but capable of entirely satisfactory operation in amateur work. They may be obtained from a number of sources (latest information on this may be obtained from ARRRI, West Hartford, Conn.) on condition that they will be used purely for amateur purposes and will not be resold for commercial use.

Types of Machines

There are two general types of machines, the page printer and the tape printer. The former prints on a paper roll about the same width as a business letterhead. The latter prints on paper tape, usually gummed on the reverse side so it may be cut to letter-size width and pasted on a sheet of paper in a series of lines. The page printer is the more common type in the equipment available to amateurs.

The operating speed of most machines is such that characters are sent at the rate of about 60 words per minute. Ordinary teletypewriters are of the start-stop variety, in which the pulse-forming mechanism (motor driven) is at rest until a typewriter key is depressed. At this time it begins operating, forms the proper pulse sequence, and then comes to rest again before the next key is depressed to form the following character. The receiving meehanism operates in similar fashion, being set into operation by the first pulse of the sequence from the transmitter. Thus, although the actual transmission speed cannot exceed about 60 w.p.m. it can be considerably slower,
depending on the typing speed of the operator.
It is also possible to transmit by using perforated tape. This has the advantage that the complete message may be typed out in advance of actual transmission, at any convenient speed; when transmitted, however, it is sent at the maehine's normal maximum speed. A sperial transmitting head and tape perforator are reduired for this process, I reperforator is a device that may be connected to the conventional teletypewriter for punching tape when the marhine is operated in the regular way. It may thus be used either for an original message or for" "taping" an incoming message for retransmission.

Teletype Code

In the special eode used for teletype every character has five "elements" sent in sequente. Dach clement has two possible states, either "mark" or "space," which are indicated by different types of electrical impulses (i.e., mark might be indicated by a negative voltage and space by a positive voltage). In customary practice earh element oceupies a time of 22 milliseconds. In addition, there is an initial "start" element (spare), also 22 milliseconds long, to set the transmitting and receiving mechanisms in operation, and a terminal "stop" element (mark) 31 milliseconds long, to shut down the operation and ready the marchine for the next character.

This sequence is illustrated in lig. 12-9, which

Fig. 12-9_Pulse sequence in the teletype code. Each character begins with a start pulse, always a "space," and ends with a "stop" pulse, always a "mark." The distribution of marks and spaces in the five elements between start and stop determines the particular chcracter transmitted.
shows the letter G with its start and stop elements. The letter code as it would appear on perforated tape is shown in Fig. 12-10, where the black dots indicate marking pulses. Digures and arbitrary signs - punctuation, ete. - use the

Fig. 12-10-Teletype letter code as it appears on perforated tape. Start and stop elements do not appear on tape. Elements are numbered from top to bottom. and dots indicate marking pulses. Numerols, punctuation signs, and other orbitrory symbols ore secured by carriage shift.
There are no lower-cose letters on a teletypewriter. Where blonks appear in the obove chart in the "FIGS" line, characters may differ on different machines.
same set of code impulses as the alphabet, and are seleeted by shifting the carriage as in the case of an ordinary typewriter. The earriage shift is aceomplished by (ransmitting cither the "LTTRS" or "FICS" code symbol as required. There is also a "earriage retum" code chatacter to bring the carriage back to the starting position after the end of the line is rearhed on a pange printer, and a "line feed" character to advaner the page to the next line after a line is completed.

Additional System Requirements

To be used in radio commmication, the pulses (d.r.) generated by the teletypewriter must be utilized in some way to key a radio transmitter so they maty be sent in proper sequence and usable form to at distant point. At the reeciving end the incoming signal must be eonverted into d.e. pulses suitable for operating the printer. 'These functions, shown in block form in Fig. 12-11, are

Fig. 12-11-Rodioteletype system in block form.
performed be electronic units known respertively as the keyer and receiving converter.

The radio transmitter and receiver are quite conventional in design. Practically ath the special features needed can be incorporated in the kever and converter, so that any ordinary amateme equipment is suitable for R'TV'Y with little modification.

Transmission Methods

It is quite possible to transmit teletype signals by ordinary "on-off" or "make-break" keving such as is used in regular hand-keved e.w. transmission. In praetice, however, frequency-shift keying is preferred beeause it gives definito pulses on both mark and space, which is an advantage in printer operation. Also, since f.s.k. cin be reecived hy methods similar to those used for f.m. reception, there is considerable diserimination against noise, both natural and man-made, distributed uniformly across the receiver's pass band, when the received signal is not too weak. Both factors make for increased reliability in printer operation.

Frequency-Shift Keying

(ieneral practice with f.s.k. is to use a frequeney shilt of 850 cycles per serond, although FCC regulations permit the use of any value of frequener shift up to 900 eveles. The smaller values of shift have been shown to have a signal-to-noiseratio advantage in commercial circuits, and are currently being experimented with by amateurs. At present, however, the major part of amateur RTYTY work is done with the 850 -cycle shift. This figure ahso is used in much commereind work. The nominal transmitter frefueney is the mark andition and the frequence is shifted 850 eyces (or whatever shift may be chosen) lower for space.

On the v.h.f. Bands where A2 transmission is bermitted audio frequency-shift keying (a.f.s.k.) is generally used. In this case the r.f. carrier is fransmitted continuously, the pulses being transmitted by frequency-shifted tone modulation. The atudio frequencies used have been more-orless standardized at 2125 and 2975 eveles per second, the shift being 880 croles as in the case of straight f.s.k. (These frequencies are the 5th and 7th harmonics, respectively, of 425 eveles, which is half the shift frequency, and thus are convenient for calibration and alignment parposes.) With a.f.s.k. the lower audio frequency is customarily used for mark and the higher for space.

The Receiving Converter

In reeeiving an f.s.k. teletype signal, the receiver"s beat-frequeney oscillator is turned on ats for ordinary cow. reception and the receiver funing is then adjusted so that the mark and space sighals produce adio beat tones of 2125 and 2975 cycles. Wither frequency can be used for
either mark or space, but no matter which may be used at the transmitter, the mark and spate frequencies can be reversed at the receiver simply by tuning to the "other side of zero beat." (This cannot le done with itfis.k., of course, but the reversal can be accomplished quite simply, if

12 - SPECIALIZED COMMUNICATION SYSTEMS

Fig. 12-12-Receiving converter for f.s.k. teletype signals (W2PAT). Unless otherwise indicoted, capocitances are in μ f. resistances are in ohms, resistors are $1 / 2$ watt. Capacitors of $0.01 \mu \mathrm{f}$. or less may be mica or ceramic; larger values may be paper. Capacitors with polarities indicated are electrolytic.
C_{1}-0.15- $\mu \mathrm{f}$. paper.
$\mathrm{C}_{2}-0.1-\mu \mathrm{f}$. paper.
$\mathrm{CR}_{1}, \mathrm{CR}_{2}$ - 1 N 34 or equivalent.
K_{1}-Polar relay, to operate on 20 ma .
L_{1} - 36 mh . (TV width control, GE rype RLD-019).
$\mathrm{L}_{2}-29 \mathrm{mh}$. (TV width control, GE type RLD-014).
M_{1}-Zero-center d.c. milliammeter, 20 mo . or more full scale (may be a 100-0-100 microammeter appropriately shunted).
$R_{1}-50,000$-ohm volume control, linear toper.
$\mathrm{R}_{3}-1000$ ohms, 1 watt.
S_{1}-S.p.s.t. toggle.
T_{1}-Power transformer, 500 volts c.t., $30 \mathrm{ma} ; 6.3$ valts 3 amp.
$V_{1}, V_{2}-6 S L 7$ (or 12AX7).
$V_{3}-6 S N 7 G T$ (or $12 A U 7$).
neressary, by interehanging the outputs from the two frequencies as appled to the printer.) The audio-frequency tones are applied to separate rectifiers to convert them into d.e impulses, which maty then be further amplitied to the power level required to operate the printer.

The receiving converter which preforms these functions generally will include means for elipping or limiting the signats so they are held at constant amplitude, and may also include provision for some shaping of the pulses to overome distortion that orcurs in transmission. There are many ways low which these rexults can be aromplished, and the higher the order of performance the more compliated the eirruits become. However, satisfactory results under reasomably good recoiving conditions can be secured with relatively simple equipment, and the "hasic" vircuit shown in Fig. 12-12 has proved to he quite successful in practice. It operates as follows:

When audio output from the recoiver is applied, the two dioder, C'lis and Che, whirh are hiased with approximately 0.3 volt, limit the pat voltage at the grid of the limiter tube, $V_{i A}$, to 0.6 volt or less for sighal voltages up to 30 volts or more Additional limiting in lis further stabilizes the voltage level. Fia is primarily an
amplifier, and delivers approximately $1 \overline{5}$ volts output, constant to within I db. For reseiver output voltages varring between about 0.5 volt and more than 30 volts.

The two tones, thus limited in amplitude, are applied to two simple filter vireuits, $L_{1} C_{1}$
 tivels. The two tones are thus separated, one being applied to the grid of $V_{2 \text { a }}$ and the other
 grid-leak detectors, and when a signal is applied to, suly, loa, the flow of grid current causes the grid to the driven practically to plate-current rutoff. As a result the plate voltage on $V_{2 a}$, normalle: 15 volts with no signal, rives to 50 volts. This is sufficient to ignite the neon lamp connerted between the plate of lias and the grid of V_{3}, and a positive bias of about 25 volts is: applied to the grid of $V_{3 s}$. V' ${ }_{3}$ then takes a plate eurrent of about 20 mat. and a has of 20 volts is developed across the common cathote rewistor, he. This is sufliciont to rut off the phate current of lisa, hence the beft-hand magnet of the polarized relay, R_{1}, is inoperative while the right-hame magnet closes the contacts on its side. A similar action takes place when a sigual is applied to the grid of $\mathrm{V}_{2 \mathrm{~B}}$ but not to $\mathrm{V}_{2 \mathrm{~A}}$; in this

Fig. 12-13-Modification of converter circuit for use with single-mognet printers. Unless otherwise indicated, capacitances ore in μf. , resistances in ohms, resistors are $1 / 2$ watt.
M_{1}-Zero-center d.c. milliammeter, 100 ma. full scale (may be microammeter with appropriate shunt).
$R_{1}-50,000$-ohm volume control.
ease the relay contacts are pulled to the left. The relay thus kers the mark and space voltages applied to the printer.
lotentiometer R_{1} is adjusted so that incoming noise (which will affect both channels equally) is balanced out amd does not cause k_{1} to oporate. The neon lamps improve the operation of the circuit by acting as switches, thus making a sharp demarcation between mark and space pulses.

The zero-center meter, M_{1}, is not a necessity but is a convenience in making adjustments. R_{1} should be adjusted on reeniver noise for zero reading. With a 2125 -eycle tone the pointer will
swing to the left and L_{1} should be adjusted for maximum deflection. With a 2975 -eycle tone the pointer will swing to the right and L_{2} should be adjusted for masimum deflection. Wipal deflections should be ohtained from both chamels.

The keying eircuit shown in Fig. 12-12 is for use with the Mordel 12 mach hine which requires an external power supply. For marhises having a single selector marnet the modifieation shown in Fig. 12-1:3 may be used so the printer may be operated directly. These machines usually require at current of 60 ma., which will be furnished by this cireuit and may be adjusted to the eorreet value by means of R_{1}.

Frequency-Shift Keyers

The kerboard contacts of the teletypewriter actuate a direct-current sircuit that operates the printer magnets, and a pair of terminals is provided at which a keyed d.e. signal of the order of 100 volts is available. (Some machines, such ats the Model 12, reguire an external d.r. power supply for this purpose: others have self-contained power supplies.) In the "resting" or nonoperating condition the contacts are closed (mark) and the voltage at the terminals, which are in parallel with the contacts, is zero. In operation, the eontacts open for "spare" and the full voltage appears across the terminals. As normally commected, the spacing signal is of positive polarity.

This keyed d.e. voltame may be used to operate a kever rireuit for the radio transmitter, provided it is not "loaded" to such an extent that it affects the operation of the printer. Altermatively, the keved current, rather than the voltage may be used for external keving. This can be done by using an auxiliary keying relay with its coil connected in series with the printer magnet or relay rircuit. A fast-acting relay must be used, and the coil must be one that will operate satisfactorily on the current avaliable in the printer circuit. This will usually he either 20 or 60 milliamperes, depending on the type of machine.

F.S.K. with Variable-Frequency Oscillators

Perhaps the simplest satisfactory circuit for frequener-shift keving a v.f.o. is the one shown in lig. i2-1 +1. This operates from the voltage available at the keyboard contact terminals and uses a reactance tube to obtain the required frequency shift.

The frequency shift is obtained by ehanging the plate resistance of the reactance tube, V_{2}, so that in effeet the variable capacitor C_{2} is alternately diseonnected or eonnected in parallel with the tuning eapacitor in the v.f.o. tank eireuit. With no voltage applied to the grid, V_{2} is biased so that the plate current is low and the effect of C_{2} on the oscillator frequeney is small. When a positive voltage from the keyboard contacts is applied to the grid the plate resistance is low and the oseillator frequeney becomes lower because of the greater effect of C_{2}. The amount of frequency shift depends on the capaeitance of C_{2} and the amplitude of the positive voltage applied to the grid of V_{2}. The latter ean be controlled by R_{1}.
(1_{1}, the assoriated 20,000 -ohm resistor, and the neon bulb, V_{1}, constitute a filter for removing clicks generated at the keyboard contaets. The value of C_{1} depends somewhat on the machine,

12-SPECIALIZED COMMUNICATION SYSTEMS

(A)

(B)

Fig. 12-14-Frequency-shift keyer circuits. A-Reactance-fube keyer for use with variable-frequency oscillator (W6OWP). B-Crystal oscillator circuit (W2PAT). Unless otherwise indicated capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt.
C_{1}-Paper (see text).
$\mathrm{C}_{2}-50-\mu \mu \mathrm{f}$. midget variable.
$\mathrm{C}_{3}-100 \cdot \mu \mu \mathrm{f}$. midget variable.
$C R_{1}, R_{2}$ - 1 N34 or equivalent.
K_{1}-Normally closed relay, fast operating, coil current according to printer magnet or relay current R_{1}-Volume control.
$S_{1}-S . p . s . t$ toggle.
$V_{1}-1$-watt neon bulb without base resistor.
$V_{2}-6 C 4$ or equivalent.
$V_{3}-6 A K 5$ or equivalent.
and values up to 0.25μ. can be used, if necessary, without objectionable distortion of the keving pulses. The capacitance should be adjusted for clickless keying.

The frequency-shift cireuit should be initially auljusted at the lowest radio frequener to be used, since the shift will be smallest in this case, If Co is set so a shift of 8.50 reveles is ohtained at this frequency, further adjustment of the shift may be made by means of h_{1}. If the transmitter output is on a higher-frequency band than that on which the v.f.o. operates, the shift at the v.f.o. fundamental frequency must be reducod anemdingly.

F.S.K. With Crystal Oscillators

Fig. 12-1413 is a cirruit which has been found to give a frequency shift of 8 git eroles or more with erystals of the type ordinarily used for freguencies of the order of 3.5 Me. :and higher. This is an osisilator of the "grid-plate" type diseussed in seretion 6 on transmithers, with the addition of a variable capacitor, C_{3}, in sories with the erystal. C'3 raluces the total caparitane aross the erystal and thus rases the oscillation frequency. When it is shorted out the caparitance across the erystal is higher and the resulting frequency is lower.

Although relay contarts could be used for shorting the eaparitor, the diode arrangement shown in Fig. 12-1413 is more reliable in prartice. With the contacts of K_{1} open there is no d.e. path through CRe and it arts simply as a small sapacitance (about I $\mu \mu f_{0}$) in parallel with (${ }_{3}$. When the contacts of K_{1} are closed there is a d.e. circuit through (R_{1}, Che and the 1000 -ohm resistor. Thus there is a path for direct current

How as a result of rectification of the r.f. voltage across ($\%$. Because of the d.e. bias the resistance of CR2 drops to a low value and U_{3} is effectively shorted out.

Adjustment of the circuit consists simply of determining the setting of ('zat which the operating frequency is 850 erdes (or the desired shift) higher with the contarts of K_{1} open than the frequency when the relay contacts are closed. A normally-rlosed relay is used in order to make the mark frequency lower than the space frequence, in accordance with usual practice.

Frequency Adjustment

The frequency shift, whatever the type of circuit, should be made as mearly exaret as avalable equipment will permit, since the shift must match the frequency differonee between the filters in the rembing convertor if the signals are to be usable at the receiving end. An areurately-ralibrated audio oscillator is useful for this purpose. To check, the mark frecureney should be tuned in on the station receiver, with the b,fo. on, and the reveiver set to exat zorobeat (see sertion 21 on measurements for identification of exart zero beat). The spare freduener should then be adjusted to exartly the desired shift. This may he done by adjusting for an auditory zoro beat betwern the beat tone from the receiver and the tone from the audio oscillator. If an oscilloscope is available, the frequeney aljustment may be arcomplished hy feeding the receiver tone to the vertial plates and the adudionsillator tone to the horizontal phates, and then adjusting the spare frequency for the elliptical pattern that indicates the two frequencies are the same.

Transmission Lines

The place where r.f. power is generated is very frequently not the place where it is to be utilized. A transmitter and its antenna are a good example: The antenna, to radiate well, should be high above the ground and should be kept clear of trees, buildings and other objects that might absorb energy; but the transinitter itself is most conveniently installed indoors where it is readily accessible.

The means by which power is transported from point to point is the r.f. transmission line.

At radio frequencies a transmission line exhibits entirely different characteristics than it does at commercial power frequencies. This is berause the speed at whirh electrical energy travels, while tremendously high as compared with mechanical motion, is not infinite. The peculiarities of r.f. transmission lines result from the fact that Ω time interval comparable with an r.f. cycle must elapse before energy leaving one point in the rirruit ran reach another just a short distance away.

Operating Principles

If a source of e.in.f. - a battery, for example - is connereded to the ends of a pair of insulated parallel wires that extend outward for an infinite distance, electric currents will immediately become detectable in the wires near the hattery terminals. "The electric field of the battery" will cause free electrons in the wire commerted to the positive terminal to be attrated to the bat tery, and an equal mumber of free electrons in the wire connected to the negative terminal will be reprolled from the battery. These currents do not flow instantancously fhronghont the length of the wires; the electric field that canses the olectron movement camot travel faster than the speed of light, so a measurable interval of time elapses before the currents become avident even a relatively short distanere away.

For example, the eurrents would not berome detectable 300 moters (nearly 1000 feet) from the battery until at least a microsecond (one millionth of a second) after the commedion wits made. By ordinary standards this is a very short length of time, but in terms of radio frequens it represents the time of one complete cevele of a l(M)-kilocyde eurrent - a frequency considerably lower than those with which imatemes communicate.

The current fows to eharge the caparitance between the two wires. However, the conductors of this "linear" eapacitor also hatve apprectiable indurtance. The line may he thought of as being

Fig. 13-1-Equivalent of a transmission line in lumped circuit constants.
composed of a whole series of small inductances and eapmitances connected as shown in lig. 1:3-1, where each coil is the inductance of a very short section of one wire and each capacitor is the capacitance between two such short sections.

Characteristic Impedance

An infinitely long chain of coils aud capacitors conmeted as in Fig. 13-1, where the small inductaners and caparitances all have the same values, respertively, hats an important property. To an electrical impulse applied at one end, the combination appears to have an impedanceralled the characteristic impedance or surge impedance - ipproximately equal to $\sqrt{L / C}$, where L and C are the inductance and capacitance per unit length. This impedance is purely resistive.

In defining the characteristic impedance as $\sqrt{L / C}$, it is assumed that the conductors have no inherent resistance - that is, there is no $I^{2} R$ loss in them - and that there is no power loss in the dielectric surrounding the condurfors. There is thus no power loss in or from the line no matter how great its length. This may not seem consistent with calling the characteristic impedance a pure resistance, which implies that the power supplied is all dissipated in the line. But in an infinitely long line the effect, so far as the source of power is concerned, is exactly the same as though the power were dissipated in a resistance, because the power leaves the sourer and travels outward forever along the line.

The characteristic impedance determines the amount of current that can flow when a given voltage is applied to an infinitely long line, in exactly the same way that a definite value of actual resistance limits current flow when a voltage is applied.

The inductance and capacitance per unit length of line depend upon the size of the conductors and the spacing between them. The closer the two conductors and the greater their diameter, the higher the capacitance and the lower the inductance. A line with large conductors closely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"Matched" Lines

Actual transmission lines do not extend to infinity but have a definite length arad are connected to, or terminate in, a load at the "output"

13-TRANSMISSION LINES

end, or end to which the power is delivered. If the load is a pure resistance of a valuc equal to the characteristic impedanee of the line, the line is said to be matched. To current traveling along the line such a load just looks like still more transmission line of the same characteristic impedancer.

In other words, a short line terminated in a purely-resistive load equal to the characteristic impedance of the line acts just as though it were infinitely long. In a matehed transmission line, power travels outward along the line from the source until it reaches the load, where it is completely absorbed.

R.F. on Lines

The principles discussed above, although based on direct-current flow from a battery, also hold when an r.f. voltage is applied to the line. The difference is that the alternating voltage causes the amplitude of the current at the input terminals of the line to vary with the voltage, and the direction of current flow also periodically reverses when the polarity of the applied voltage reverses. The current at a given instant at any point along the line is the result of a voltage that was applied at some earlier instant at the input terminals. Since the distance traveled by the electromagnetie fields in the time of one eycle is equal to one wavelength (Seetion 2), the instantaneous amplitude of the current is different at all points in a onewavelength section of line. In fact, the current flows in opposite directions in the same wire in successive half-wavelength sections. IIowrever, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

Thus the current (and voltage) travels along the wire as a series of waves having a lengt hequal to the speed of travel divided by the frequency of the a.c. voltage. On an infinitely-long line, or one properly matched by its load, an ammeter inserted any where in the line will show the same current, because the ammeter averages out the variations in current during a cycle. It is only when the line is not properly matched that the wave motion becomes apparent through observattions made with ordinary instruments.

STANDING WAVES

In the infinitely-long line (or its matched counterpart) the impedance is the same at any point on the line because the ratio of voltage to current is always the same. However, the impedance at the end of the line in Fig. 13-2 is zero - or at least extremely small - because the line is short-cirenited at the end. The outgoing power, on meeting the short-circuit, reverses its direction of flow and goes back along the transmission line toward the input end. There is a large current in the short-circuit, but substantially no voltage across the line at this point. We now have a voltage and current representing the power going outward (incident power) toward the short-circuit,
and a scoond voltage and current representing the reflected power traveling back toward the source.

The reflected current travels at the same speed as the outgoing current, so its instantaneous value will lie different at every point along the line, in the distance represented by the time of one ryele. At some points along the line the phase of the incident and reflected currents will be such that the currents cancel each other while at others the amplitude will be doubled. It inbetween proints the amplitude is belween these two extremes. The prints at which the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the point of reflection.

In the short-circuit at the end of the line the two current components are in phase and the total current is large. At a distance of one-half wavelength back along the line from the shortcircuit the outgoing and reflected eomponents will again be in phase and the resultant current will again have its maximum valuc. This is also
(A)

Fig. 13-2-Standing waves of voltage and current along short-circuited transmission line.
true at any point that is a multrple of a half wavelength from the short-rircuited end of the line.

The outgoing and reflected currents will cancel at a point one-quater wavelongth, along the line, from the short-rircuit. At this point, then, the current will be zero. It will also be zero at all points that are an odd multiple of one-quarter wavelength from the short-cireuit.

If the current along the line is measured at successive points with an ammeter, it will be found to vary about as shown in Fig, 13-213. The same result would he obtained by measuring the current in either wire, since the ammeter cannot measure phase. However, if the phase could be ehecked, it would be found that in each successive half wavelength seetion of the line the eurrents at any given instant are flowing in opposite directions, as indicated by the solid line in Fig. 13-2C. Furthermore, the current in the second wire is flowing in the opposite direction to the current

Standing Waves

in the adjacent section of the first wire. This is indicated by the broken curve in Fig. 1:3-2 (\% The variations in current intensity along the transmission line are referred to as standing waves. The point of maximum line current is called a current loop or current antinode and the point of minimum line current is c:alled it current node.

Voltage Relationships

Since the end of the line is short-circuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing wave is met, at the end of the line, be a reflected voltage of equal amplitude and opposite polarity. In other words, the phase of the voltage wave is reversed when roflection takes place from the short-circuit. This reversal is equivalent to an extra half eyele or half wavelength of travel. As a result, the outgoing and returning voltages are in phase a quater wavelength from the end of the line, and again out of phase a half wavelength from the end. The standing waves of voltage, shown at D in lig. 13-2, are therefore displaced by one-quarter wavelength from the standing waves of current. The drawing at E shows the voltages on both wires when phase is taken into account. The polarity of the voltage on each wire reverses in each half wave length section of transmission line. A voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-rircuited, there can be no current at the end of the line but a large voltage can exist. Again the incident power is reflected back toward the source. The incident and reflected components of current must be equal and opposite in phase at the open cireuit in order for the total eurrent at the end of the line to be zero. The ineident and reflected eomponents of voltage are in phase and add together. The result is again that there are standing waves, but the conditions are reversed as compared with a short-circuited line. Fig. 13-3 shows the open-eirenited line ease.

Fig. 13-3-Standing woves of current and voltoge olong an open-circuited tronsmission line.
(A)
(B)

Fig. 13-4-Standing waves on a fransmission line terminated in a resistive load.

Lines Terminated in Resistive Load

lig. 13-4 shows a line terminated in a resistive lowd. In this cose at least part of the incident power is absorbed in the load, and so is not available to be reflected back toward the source. Becalse only part of the power is reflected, the reflected components of voltage and current do not have the same margnitude as the incident components. Therefore neither voltage nor current cancel completely at any point along the line. Ilowever, the specd at which the incident and reflected components travel is not affected by their ampliturle, so the phase relationships are similar to those in open- or short-rircuited lines.

It was pointed out earlier that if the load resistanee, Z_{R}, is equal to the characteristic impedance, Z_{0}, of the line all the power is absorbed in the load. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is a special case that represents the change-over point between "short-circuited" and "open-circuited" lines. If Z_{12} is less than Z_{0}, the purrent is largest at the load, while if Z_{12} is greater than Z_{0} the voltage is largest at the load. The two conditions are shown at I and C , respectively, in Fig. 13-4.

The resistive termination is an important practical case. The termination is seldom an actual resistor, the most common terminations being resonant circuits or resonant antenna systems, both of which have essentially resistive impedances. If the load is reactive as well as resistive, the operation of the line resembles that shown in liig. 13-1, but the presence of reactance in the load causes two modifications: The loops and nulls are shifted toward or away from the load; and the amount of power reflected back toward the source is increased, as compared with the amount reflectod by a purely resistive lowd of the same total impedance. Both offects become more pronounced as the ratio of reactance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum current along a line, Fig. $13-5$, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a measure of the mismateh between the load and the line, and is equal to 1 when the line is per-

13-TRANSMISSION LINES

fectly matched. (In that case the "maximum" and "mininum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive lead. the standing-wave ratio is

$$
\begin{equation*}
S . W \cdot R .=\frac{Z_{\mathrm{R}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{R}}} \tag{13-A}
\end{equation*}
$$

Where S.W.R. = Standing-wave ratio

$$
\begin{aligned}
& Z_{\mathrm{R}}= \text { Impedance of load (must be } \\
& \text { pure resistance) } \\
& Z_{0}= \text { Characteristic impedanee of } \\
& \text { line }
\end{aligned}
$$

Example: A line having a characteristic impedance of 300 ohnos is terminated in a resistive load of $2 i$ ohms. The s.w.r. is

$$
S . W^{*} . R .=\frac{Z_{0}}{Z_{\mathrm{R}}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{R} or Z_{0}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1.

It is easior to measure the standing-wave ratio than some of the other quantities (such as the

Fig. 13-5-Measurement of standing-wave ratio. In this drowing, $I_{\max }$ is 1.5 ond $I_{\text {mili }}$ is 0.5 , so the s.w.r. $=I_{\text {max }}$ / $t_{\mathrm{min}}=1.5 \quad 0.5=3$ to 1 .
impedance of an antenna) that enter into trans-mission-line compufations. Consequently, the s.w.r. is a convenient basis for work with lines. The higher the s.w.r., the greater the mismateh between line and load. In practical lines, the power loss in the line itself increases with the s.w.r., as shown later.

- INPUT IMPEDANCE

The input impedance of a transmission line is the impedance seen looking into the sending-end or input terminals; it is the impedance into which the source of power must work when the line is connected. If the load is perfectly mat ched to the line the line appears to be intinitely long, as stated earlier, and the input impedance is simply the characteristic impedance of the line itself. However, if there are standing waves this is no longer true; the input impedance may have a wide range of values.

This can be understood by referring to Figs. $13-2,13-3$, or $13-4$. If the line length is such that standing waves cause the voltage at the input. t.erminals to be high and the current low, then the
input impedance is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage to current. Conversely, low voltage and high current at the input terminals mean that the input impedance is lower than the line Z_{0}. Comparison of the three drawings also shows that the range of input impedance values that may be encountered is greater when the far end of the line is open- or short-circuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In addition to the variation in the absolute value of the input impedance wit h line length, the presence of standing waves also causes the input impedance to contain both reactance and resistance, even though the load itself maty be a pure resistance. The only exceptions to this ocrur at the exact current loops or nodes, at whieh points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: At all other distanees along the line the current either loads or lags the voltage and the effect is exartly the same as though a caparitane or inductance were part of the input impedanee.

The input impedance can be represented pither by a resistance and a capacitamee or by a resistance and an inductance, as shown in Fig. 136. Whether the impedance is inductive or capacitive depends on the characteristics of the load and the length of the line. It is possible to represent the input impedance by an equivalent pircuit having resistance and rearetane either in series or parallel, so long as the total impedance and phase angle are the same in either case. For a given impedance and phase angle, different values of resistance and reactance are required in the series rireuit as compared with the parallel equivalent cirruit.

The magnitude and character of the input impedance is quite important, since it determines the method by which the power source must be coupled to the tine. The ealeulation of input impedance is rather complicated and its measurement is not feasible without sperial equipment. Fortunately, in amateur work it is unnecessary (ither to calculate or measure it. The proper coupling ean be achieved by relatively simple methods deseribed later in this seetion.

Lines Without Load

The input impedance of a short-circuited or open-circuited line not an exact multiple of onequarter wavelengt h long is practically a pure reactance. This is berause there is very little power lost in the line. Such lines are frequently used as "linear" inductances and capacitances.

If a shorted line is less tham a quarter wave long, as at X in lig. 13-2, it will have inductive reactance. The ractance increases with the line length up to the quarter-wave point. Beyond that, as at ζ, the reactance is capacitive, high near the quarter-wave point and becoming lower as the half-wave point is approached. It then alternates between inductive and capacitive in successive

Input Impedance

quarter-wave seetions. Just the reverse is true of the open-circuited line.

At exact multiples of a cquarter wavelongth the impedance is purely resistive. It is apparent, from examination of B and D in lig. 13-2, that at points that are a multiple of a half wavelength i.e., $1 / 2,1,11$ wavelengths, ote. - from the short-circuited end of the line the current and

Fig. 13-6-Series and parallel equivalents of a line whose input impedance has bothl reactive and resistive components. The series ond parallel equivalents do not hove the same values; e.g., in A, L does not equal L^{\prime} and R does not equal R^{\prime}.
voltage have the same values that they do at the short cireuit. In other words, if the line wore :m exat multiple of a half wavelength long the gencrator or source of power would "look into" " short eircuit. On the other hamd, at points that are ath odd multiple of a quarter wavelengthi.e., $\frac{1}{4}, 3 / 4,1 \frac{1}{4}$, ete. - from the short circuit the voltage is maximum and the corrent is zero. since $Z=E / I$, the impedanere at these points is theoretically infinite. (Actually it is very high, but hot infinite. This is beause the current does not artuatly go to zero when thore are losses in the line. Losses are always present, but usually are small.)

Impedance Transformation

The fart that the input impelance of a line depends on the s.w.r. and line longth ein be used to advantage when it is neressary to transform a given impedanee into another value.
study of fig. 1:3-1 will show that, just ats in the open- and short-rirented cases, if the line is onehalf wavelength long the woltage and courent are exactly the same at the input terminals as they are at the load. This is also true of lengths that are intereal multiples of a half wavelength. It is also true for all values of s.w.r. Hence the input impedance of any line, no matter what its Z_{0}, that is at multiple of a half wavelength long is examety the same as the load impedance. Such a line can be used to transfer the impedance to a new boation without changing its value.

When the line is a flatrom watelongth long, or ath ord multiple of a quather wavelength, the load impedance is "inverted." That is, if the current is low and the voltage is high at the load, the input impedance will be such as to require high
currentand low voltage. The relationship between the load impedance and input impedance is given by:

$$
\begin{equation*}
Z \mathrm{~S}=\frac{Z_{0}^{2}}{Z_{\mathrm{R}}} \tag{13-B}
\end{equation*}
$$

where $Z_{\mathrm{S}}=$ Impedance looking into line (line length an odd multiple of onequarter wavelongth)
$Z_{\mathrm{R}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Characteristic impedance of line
Example: A quarter-wavelength line having a characteristic mupedance of 500 ohms is terminated in a resistive load of 75 ohns, The impedance looking into the input or sending end of the line is

$$
Z_{s}=\frac{Z 0^{2}}{Z_{1 t}}=\frac{(500)^{2}}{\overline{5}}=\frac{250,000}{75}=3333 \text { ohms }
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{\mathrm{S}} Z_{\mathrm{R}}} \tag{13-C}
\end{equation*}
$$

This muans that if we have two values of impedance that we wish to "match," we can do so if we connect them together by a quarter-wave transmission line having a characteristic impedance equal to the square root of their product. A quarter-wave line, in other words, has the characteristies of a transformer.

Resonant and Nonresonant Lines

The input impedince of a line operating with a high s.w.r. is eritically dependent on the line length, and resistive only when the length is some integral multiple of one-quarter wavelength. Lines cut to such a length and operated with a high s.w.r. are called "tuned" or "resonant" lines. On the other hand, if the sw.r. is low the input impedance is close to the Z_{0} of the line and does not vary a great deal with. the line length. Such lines are called "flat," or "untuned," or "nonresonamt."

There is no sharp line of demarcation between tuned and untuned lines. If the s.w.r. is below 1.5 to 1 the line is essentially flat, and the stme input coupling method will work with all line lengths. If the s.w.r. is above 3 or + to 1 the type of coupling system, and its adjustment, will tepend on the line length and such lines fall into the "tunde" category.

It is usually advantageous to make the s.w.r. as low as possible. A resonant line becomes neecesary only when a considerable mismateh between the load and the line has to be tolerated. The most important practical example of this is when a single antenna is operated on several hatmonically-related frequencies, in which case the antenna impedance will have widely-different values on different hitrmonies.

RADIATION

Whenever a wire carries altornating eurrent the electromagnetic fielals travel away into space with the velocity of light. It power-line frequencies the fied that "grows" when the current is

13-TRANSMISSION LINES

increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the alternations are so slow. Jut at radio frequencies fiolds that travel only a relatively short distanee do not have time to get back to the conductor before the next cercle commences. The eonsequence is that some of the electromagnetie energy is prevented from being restored to the conductor; in other words, energy is radiated into space in the form of cleetromagnetic waves.

The amount of energy radiated depends, among other things, on the longth of the ronductor in relation to the frecquoncy or wavelength of the r.f. current. If the conductor is very short compared to the wavelength the energy radiated (for a given current) will be small. However, a transmission line used to feed powor to an antenna is not short; in fact, it is almost always an apprectiable fraction of a wavelength long and may have a length of several wavelangths.

The lines previously considered have consisted of two parallel conductors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conduret has the same internsity as the eurrent in the other conductor at that point, but the currents flow in opposite directions. This
was shown in Figs. 13-2C and 13-3C. It means that the fields set up ahout the two wires have the same intensity, butopposite direction.s. The consequence is that the total field set up about such a transmission line is zero; the two fields "eancel out." Hence no energy is radiated.

Practically, the fields do not quite eancel out because for them to do so the two ronductors would have to orcupy the same spare, whereas they are actually slightly soparated. However, the cancelation is substantially romplete if the distane between the conductors is very small compared to the wavelength. Transmission line radiation will be negligible if the distance bet ween the conductors is 0.01 wavelength or less. provided the currents in the two wires are balaned.

The amount of radiation also is proportional to the current flowing in the line. Because of the way in which the current varies along the line when there are standing waves, the offertive current, for purposes of radiation, beeomes greater ats the s.w.r. is increased. For this reason the radiation is least when the line is flat. However, if the conduetor spareing is small and the currents are babaned, the radiation from a line with evern a high s.w.r. is inconsequential. it small unbalanee in the line currents is far more serious - and is just ats serious when the line is flat as when the s.w.r. is high.

Practical Line Characteristics

The foregoing discussion of tramsmission lines has been based on a line consisting of two parathel conductos. The parallel-conductor line is but one of two general types, the other being the coaxial or concentric lime. The coaxial lime consists of a conductor placed in the center of a tube. The inside surfice of the tube and the outside surfate of the smatler inner conductor form the two conducting surfaces of the line.

In the eosxial line the fieds are entimely inside the tube, beeause the tube ate ts as a shield to provent them from apmaring outside. This reduces radiation to the vanishing point. So far as the cleretrieal behavior of roasiad lines is conermed, all that has previously been said about the operation of parallel-conductor lines applies. "There are, however, practical differences in the construction and use of parallel and roaxial lines.

PARALLEL-CONDUCTOR LINES

A type of parallel-ronductorlinesometimes used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spacers." The spacings used vary from two to six inches, the smather spacings being necessary at frequencies of the order of 28 Me . and higher so that radiation will be minimized. The construction is shown in Fig. 1:3-7. Such a line is said to be air-insulated. Typical spacers are shown in Fig. 13-8. The characteristic impedance of such "open-wire" lines is letween 400 and 600 ohms, depending on the wire size and spateing.

Parallel-conductor linesalso areorexamonally yeonstructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$ ine h. This reduces the charateristic inpedance

Fig. 13-7-Typicol construction of open-wire line. The line conductor fits in o groove in the end of the spocer, ond is held in ploce by o tie-wire onchored in o hole neor the groove.
of the line. Such lines are mostly used as quarterwate transformers, when different values of impedance are to be matched.

Prefabricated paratlel-conductor line with air insulation, devoloped for temevision recoption, can be used in transmitting applications. This line consists of two conductors separated one-half to one inch bev molded-on spacers. The chatacteristie impedence is 300 to 450 ohms, depending on the wire size and sparing.

A convenient type of manufact ured line is one in which the parallel condurtors atre imbedded in low-loss insulating material (polyothylene). It is commonly used as a Γ V lead-in and has a charac-

Practical Line Characteristics

Fig. 13-8-Typical manufactured transmission lines and spacers.
teristio impedance of about 300 ohms. It is sold under various hames, the most common of which is "Twin-lead." This type of line has the ardvantages of light weight, close and uniform conductor sparing, flexibility and neat appearance. Jlowever, the losses in the solid dielectric are higher than in arr, and ditt or moisture on the line tende to ehange the chatracteristice impedance. Moisture effects can be redued be conting the line with silicone grease. A sperial lorm of 300 -ohm TwinLead for trinsmitting uses a polvothelene fube with the conductors molded diane rically opposite; the longer dielectria path in wach line teduces moisture troubles.

In addition to 300 -ohm line, Twin- dad is obtainable with a characteristice impedance of 75 ohms for transmitt ing purperses. Light-weight $75-$ and $150-$ ohm T win-Jead abso is avalable.

Characteristic Impedance

The characteristic impedance of an atir-insulated parallel-conductor line is given be:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{n}=$ ('hatruteristic impedance
$b=$ Center-ta-center distanco botwem conductors
$a=$ Radins of conductor (in same units a心 \quad)
It does not matter what units are used for a and b su) long in the the the sume units, Both quantities maty be measured in centimeters, inches, dete. since it is necessary to have at table of common logarithms to solve practiabl problems, the solution is given in graphical form in Fig. 13-9 for a number of common ronductor sizes.

In solid-dielectrie parallel-ronductor liness such as 'Twin-lead the chataberistic impedance cannot be calculated readily, beatuse part of the electrie field is in air as well as in the dielectric.

Unbalance in Parallel-Conductor Lines

When installing paralled-omderdor liness care should be taken to avod introducing eledrical unbalanee into the sistem. If for some reason the enrrent in one condurtor is highor than in the other, or if the currents in the two wires are not
exactly out of phase with each other, the electromagnet ic lields will not cancel completely and a eonsiderable amount of power may be radiated by the line.

Mainaining good line balanee requires, first of all, a balaned load at its end. For this reason the antennat should be fed, whenever possible, at a point where each conductor "sees" exactly the same thing. I'sually this means that the antenna system should be fed at its electrical eenter. However, even though the antenat appears to be symmetrical, phesically, it can be umbatamed electrically if the part connected to one of the line conductors is compled to somothius (such as house wiring or a metal pole or roof that is not duplicated on the other part of the antenna. Every offort should be made to keep the antenna as far ats possible from other wiring or sizable

Fig. 13.9-Chart showing the characteristic impedance of spaced-conductor parallel transmission lines with air dielectric. Tubing sizes given are for outside diameters.
metallic objects. The transmission line itself will rause some unbalance if it is not brought away from the antennat at right angles to it for a distame of at least a guarter watvelength.
In installing the line eonductors take care to see that they aro kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The shunt capacitance introduced be close poximity to metallie objects (ain drain off enough current (to ground) to unbabance the line currents, resulting in increased radiat ion. A shunt capacitance of this sort also constitutes a reatetive loid on the line, causing an impedance "bump" that will prevent making the line actually fat.

coaxial lines

The most common form of eomaial line consists of either a solid or stranded-wire immer conductor surrounded bey polyethylene dielertric. Copper brad is woven over the dielectrice to form the

13 - TRANSMISSION LINES

outer conductor, and a wat erproof vinyl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install, Some different types are shown in Fig. 13-8. This solid coaxial cable is commonly available in impedances approximating 50 and 70 ohns.
dir-insulated coaxial lines have lower lossers than the solid-dielectric type, but are rarely used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common type of aif-insulated comsiad hane uses a solid-wire conductor inside a copper tube, with the wire held in the renter of the tabe by means of insulating "beads" phaced at regular intervals.

Characteristic Impedance

The characteristie impedance of an air-insulated coasial line is given by the formula

$$
\begin{equation*}
Z_{0}=1: 38 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

Where $Z_{0}=$ Characteristic impedance
$b=$ Inside diameter of outer conductor
$a=$ Outside diameter of inmer conductor (in same units as b)
Curves for typical eonductor sizes are given in 1ig. 1:3-10.

The formula for coaxial lines is approximately correct for lines in which bead sparers are used, provided the beads are not too closely sparerd. When the line is filled with a solid dielectrie, the characteristie impedanee as given by the chart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the materias.

ELECTRICAL LENGTH

In the discussion of line operation carlier in this chapter it was assumed that currents travcled along the conductors at the spered of light. Aetually, the velority is sommewht less, the reason being that electromagnetic fields travel more

Fig. 13-10-Chart showing characteristic impedance of various air-insulated concentric lines,

TABLE 13.I Transmission-Line Data				
Type	Description or 'Type Number	(Barac- turistic limperd. ance	Velocity Factor	Capacitance per foot; $\mu \mu \mathrm{f}$.
Coaxial	Air-insulated	$50-100$	10.8.\%	
	R(;-8/L	53	0.66	29.5
	R(\%-58	5	0.66	28.5
	R(\%.11/4	7.7	0.66	20.5
	R(\%.5)/L	7.3	0.66	21.0
Parallel. Condue. tor		$2001-600$	$\left.{ }_{10.9} 11.6\right)^{2}$	
	$\begin{gathered} 2 \mid 1-080^{3} \\ -11-(0) 3^{2} \end{gathered}$	7.	10.68	19.0
	-	730	0.71	20.0
	21.4-0.76	1.00 300	0.2\%	10.0 5.8
	$211-676$	300	0.84	3.9
	$211-02^{3}$	300	0.85	3.0

${ }^{1}$. Average figure tor small-diametur lines with erramic beads.
${ }^{2}$ Average figure for lines insulated with ereramic spacers at intervals of a few feet.
${ }^{3}$ Amphenol type numbers and data. Itine similar to 214-0.50 is made by several manufacturers, but rated loss may differ from that given in Fig. 13-11. Types 214-123, 214-076, and 214-022 are tuade for transmitting applications.
slowly in material dielectrics than they do in free space. In air the velocity is pratically the same as in empty spare, but a practionl line always hats to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down; the eurrents travel a shorter distamee in the time of one cyrle than they do in sparer, and so the wavelength along the line is less than the wavelength would be in free space at the same freduency.

Whenever reforence is made to a line as being so many wavelongths (such as a "hall wawelengeth" or "guarter" wavelength") long, it is to be umberstood that the electrical length of the line is mont. Its actual physical length is measured by a taje always will be somewhat less. The physieal length cormesponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Lenyth in feet }=\frac{984}{f} \cdot V \tag{13-F}
\end{equation*}
$$

where $f=$ Freguene in mogacyedes
$V=$ Vilocity factor
The velocity factor is the ratio of the aetual velonity along the line to the velocity in free patere. Values of ly for several common types of linces are given in Table 13-I.

Fxatnple: : 7i-foot lengeth of 300-ohan Twinlabal is used to carry power to an antemmat a
 It this fromency (7.1 .3 Mc .) a watelength is

$$
\begin{gathered}
\text { Lengh }(\text { feet })=\frac{084}{f} \cdot V=\frac{1.8 t}{7.15} \times 0.82 \\
=137.0 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $7.5 / 112.8=0.660$ wavelength.

Banause a quator-watwength line is froquently used as a linear transformer, it is con-

Losses in Transmission Lines

Fig. 13-11-Attenuation data for common types of transmission lines. Curve A is the nominal attenuation of 600-ohm openwire line with No. 12 conductors, not including dielectric loss in spacers nor possible rediation losses. Additional line data are given in Toble 13 -!
veniont to calculate the length of a quarter-wave line directly. The formula is

$$
\begin{equation*}
\text { Lenglh }(\text { feet })=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as alhove.

LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($I^{2} R$ loss), and by heating of the dielectric, if any. Iadiation losses are in general the result of "antenna currents" on the line, resulting from undesired coupling to the radiating antema. They camot readily be estimated or measured, so the following discusssion is based only on eonductor and dielectrie losses.

Heat losses in both the conductor and the dielectric inerease with frequency. Conductor losses also are greater the lower the characteristic impedanee of the line, because a higher current flows in a low-impedance line for a given power input. The converse is true of dielectric losses beause these increase with the voltage, which is greater on high-impodance lines. The dielectric loss in tir-insulated lines is negligible (the only loss is in the insulating spacers) and such lines operate at high efficiency when radiation losses are low.

It is convenient to express the loss in a transmission line in decibels per unit length, since the loss in db. is directly proportional to the line length. Losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the characteristie imped-
ance of the line) are given in graphical form in lig. 13-11. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss inereases as shown in Fig. 13-12. Whether or not the inerease in loss is serious depends on what the original loss would have been if the line were perfeetly matehed. If the loss with perfect matching is very low, a large s.w.r. will not greatly affect the efficienc! of the line - i.e.,

Fig. 13.12-Effect of standing-wave ratio on line loss. The ordinates give the additional loss in decibels for the loss, under perfectly matched conditions, shown on the horizontal scale.

13 -TRANSMISSION LINES

the ratio of the power delivered to the load to the power put into the line.

Example: A lion-foot length of R(i-11 I' rable is operating at 7 Mr, with a Soto-1 s.w.r. If prorfectly matched, the lose from litig. 13-11 womlid
 additional loss berause of the s.w.r. is 0.73 dh . The totalloss is therefore $0.6+11.7 .3=1.33$ dh.
An apprectial) s.w.r. on a solid-dielecerie line may result in exerssive loss of power at the higher frequencies. Such lines, whether of the
paralleleonductor or coaxial type, should be operated as nearly flat as possible, partioularly when the lime length is more than in) feet or so. As shown be lig. 1:3-12, the inerease in line koss is not too sorious so long as the sow.r. is below ? to 1 , but increases rapidly when the s.w.r, rises above 3 to 1 . Tuned transmission lines such as are used with multiband antennas always should be air-insulated, in the interests of highest efficirncy.

Loads and Balancing Devices

The most important practical load for at transmission line is an atennat which, in most canes, will be "balaneed" - that is, symmetrieally construeted with respece to the feed point. Aside from considerations of matching the actual impedance of the antemat the feed point to the characteristie impedance of the line (if such matehing is attempted) a balanced antemat shoukd be fed through a balanced transmission line in order to preserve symmetry with resperet to ground and thas avoid difficultios with unbalaned eurrents on the line. Such currents, as pointed out carlier in this chatpter, will result in undesirable radiat ion from the transmission line itself.

If, as is often the case, the antumat is to be fod through eosxial line (which is inherently unbataneed) some method should loe used for connecting the line to the antemat without upsetting the symmetre of the antemat it self. This requires at eirenit that will isolato the balaned load from the unbalanced line while providing efficient power transier. Deviecs for doing this are called baluns. The trees used between the antemat and transmission line are gemerally "lincar," eonsisting of transmission-line sertions as deseribed in Section 14.
The need for balums also arises in coupling a transmitter to a bataneed tranmission line, since the output cireuits of most transmithers have one side grounded. (This type of output circuit is desirable for a number of reasons, including TVI reduetion.) The most flexible type of bathen for this purpose is the inductively-coupled matching network described in at subsequent section in this chapter. This eombines impedance matehing with balaneed-to-mbabamed operation, Iout has the disalvantage that it uses resonant areants and thus ean work over only a limited band of frequencias without readjust ment. Howewer, il a fixed impedanee ratio in the balun can be tolerated, the coil balun deseribed lebow ean be used without adjust ment over a fregueney range of about 10 to I - 3 to $30 \mathrm{M} \%$, for example. Alternatively, a similarly wide band can be covered by a property designed transformer (with the same impedance limitation) Int the design prineiples and materials used in sueh transformers are quite specialized. Their ronstruction is beyond the seope of this IIandbook.

Coil Baluns

The type of balun known as the "roil balan" is based on the principles of a lincar tranmissionline Dahun as shown in the upper drawing of fig. 1:3-13. Two transmission lines of equal length having a chatacteristie impedance Z_{0} are conneeted in series at one end and in paratlel at the other. It the series-ronnected end the lines are balaneed to ground and will mateh an impedance equal to $2 \%_{0}$. At the parallel-conneeted end the limes will be matched by an impedance equal to $Z_{0} / 2$. One side may be connected to ground at the parallel-eonnested and, provided the two lines have a length such that, considering each line as a single wire, the balaned and is effertively decouphed from the paralled-eonnected end. This requires a lengt h that is an odd multiple of 1/4 wavelength. The impodance dansformation from the series-eonnerted end to the parallelcommertaded end is + to 1 .

A definite line longth is required ouly for decoupling purposes, and so long as there is addequate decoupling the system will act as a 1 -tor-1 impedance transiormer regardless of line length. If each lime is wound into a coil, as in the lower drawing, the inductances so formed will ate as choke coils and will tend to isolate the seriescomerted and from any ground ronmection that may be placed on the parallel-connected end. Badun coils made in this way will oprote over a wide frequency range, since the choke inductance is not eritical. The lower frequency limit is where the roils are no longer effective in isolating one rad from the other: the length of line in wach coil should be about equal to a quarter wavelongth at the lowest frequency to be used.

Fig. 13-13-Baluns for matching between push-pull and single-ended circuits. The impedance ratio is 4 to 1 from the push-full side to the unbalanced side. Coiling the lines as shown in the lower drowing increases the frequency range over which satisfactory operation is obtained.

Loads and Balancing Devices

The principal application of such coils is in going from a 300 -ohm balanoed line to a Fi -ohm roaxial line. This reduires that the \%ar the lines forming the coils be 1.00 ohms. Insign data for winding the roils are mot available: however, E(quation 13-1) (ath be used for determining the approximate wire spacing. Dllowance shoind be made for the fact that the afferetive dieloetrie: constant will he somewhat greater than 1 if the coil is wound on a form. The proximity effert betwen turns can be reduced by making the turn sparing somewhat larger than the conductor spacing. For oporation at $3 . \overline{\text { B Me and higher fre- }}$ queneries the length of cad conduetor should be about 60 feret. The conductor spacing can be adjusted to the proper value by derminating catch line in a monimductive $1: 80$-ohm resistor and adjusting the spariug until an impedaner bridge at the input end shows the line to be matehed to 150 ohms.

A balun of this type is simply a fixerlation transionmer, whon matched. It ramot rompensate for inaterurate matehing asewhere in the system. With a "300-ohm" lime on the halaneed ent, for example, a Fiochan romes cable will not be matched unkess the 300-ohm line athatlly is terminated in a 300 orhm load.

NONRADIATING LOADS

Typical examples of nomradiating loank for a transmission line are the gride eirenit of a power amplifier (eonsidered in the chapter on transmitters), the input riredit of a rereiver, and another transmission line. This last rase includes the "antenna tuner" - a misnomer beranse it is attually a deviec for roupling a transmission line to the transmittor. Beatuse of its importance in amateur installations, the antenna coupler is considered separately in a hater pitt of this Sertion.

Coupling to a Receiver

A good match botween an antenna and its transmission line does not gutarantere a low stand-ing-wave ratio on the line when the antemat sestem is used for rereiving. 'The s.w.r. is determined wholly by what the line "sees" at the reroiver's antenna-imput terminals. For minirnum s.w.r. the reeeiver input circuit must be matehed to the line. The rated input impedanee of a nereriver is a nominal value that varters over a rensiderable range with frequeney. Methods for bringing about a proper mately are discussed in the sertion on reroivers.

It should he noted that if the reereiver is matred to the line, then it is desirable that the antemat and tine also be matehod, siner this results in maximum signal transfor from the ant man to the line. If the reerever is met matelned to the line, the imput imperdance of the line (at the terminals of the antemat itself) in turn (ammot mateh the anternat imperlanere. In such a case the signal intput to the reeciver depronds on the eroppling system used betwern the line and the reerever. 1 or greatest signal strength the coupling instem has to be adjusted to the best eompromise het ween rereiver input impodancerand load apperang at the input (ankenat) (end of the line. The proper adjustments must be dotermined be experiment.

I similar sithation exists when the receiver input impedance inherently matehes the line Zo, but the line and anternat are mismatehed. I nder these conditions perforet mateching at the recoivor does not result in groatest signal strength; a deliberate mismatel has to be int rolued so that the maximum pewer will he taken from the antennat.

The most desirable condition is that in which the reereiver is matehed to the line Z_{0} and the line in turn is matehed to the anteman. This transfers maximum power from the antema to the reeder with the least loss in the transmission line.

Coupling the Transmitter to the Line

The type of coupling system that will be nereded to transfer power adequately from the final r.f. amplifier to the transmission line deperde almost entirely on the imput impedinere of the line. As shown certior in this chapter, the input impedance is determined he the standing-wave ratio and the line length. The simplest case is that where the line is terminated in its chatarteristio impedance so that the s.w.r. is 1 to 1 and the input impedance is equal to the Z_{0} of the line, regarelless of line length.

Coupling sistems that will deliver power into a flat line are readily designed. For all practical purposes the line can be considered to the flat if the s.w.r. is no groater than about 1.5 to 1 . That is, a coupling system designod to work into at pure resistance equall to the line Z_{0} will have enough leeway to take eare of the small variations in input impedanee that will ocur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1 .

Current pratetoe in thansmitter design is to provide an output circuit that will work into such a lince, usuatly a coaxiat line of 50 to 75 ohms charatoristir imperatace. The design of such output circuits is discussed in the chapter on high-frequeney transmitters. If the input imperdance of the tramsmission line that is to be conneeted to the transmitter differs appreciably from the value of impelince into which the transmitter output circoit is designed to operate, an impordance-matching notwork mast be insorted hetween the transmitter and the line input terminals.

IMPEDANCE-MATCHING CIRCUITS FOR PARALLEL CONDUCTOR LINES

As shown carlier in this seetion, the imput impedance of a line that is operating with a high standing-wave ratio can vary over guite wide

13-TRANSMISSION LINES

Fig. 13.14-Matching circuits using a coaxial link, for use with parallel-conductor transmission lines. Adjustment setup using an s.w.r. bridge is shown in the lower drawing. Design considerations and method of adjustment are discussed in the text.
limits. The simplest type of circuit that will match such a range of impedances to 50 to 75 ohms is a parallel-tuned circuit approximately resonant at the operating frequency. In its ordinary form, such a circuit will be connected to a short length of coaxial line or "link" by indurtive coupling as shown in Fig. 13-14, the other and of the cable being attached to the output terminals of the transmitter. The cable may be any convenient length if the impedance that it "sees" at the matehing circuit is equal to its own characteristic impedance. This mothod has the further advantage that the coaxial link oflors an ideal spot for the insertion of a low-pass filter for preventing harmonic interference to television and f.m. reception.

The constants of the tumed circuit $C_{1} L_{1}$ are not particularly critical; the principal requirement is that the circuit must be capable of being tuned to the operating frequency. Constants similar to those used in the plate tank rireuit will he satisfactory. The construction of L_{1} must be such that it can be tapped at least every tum. L_{2} must be tightly coupled to L_{1}, and the inductance of L_{2} should be approximately the value that gives a reactance equal to the Z_{0} of the connecting line at the frequency in use. An average reactance of about 60 ohns will suflice for either 52 - or $\overline{7} 5$-ohm coaxial line.

The most satisfactory way to set up the system initially is to connect a coaxial s.w.r. bridge in the hink as shown in Fig. 13-14. The "Monimatch" type of bridge, which can handle the full transmitter power and may be left in the line for continuous monitoring, is excellent for this purpose. However, a simple resistance bridge such as is described in the section on measurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. To adjust the cireuit, take a trial position of the line taps on L_{1}, keeping them equidistant from the center of the coil, and adjust C_{1} for minimum s.w.r. as indicated by the bridge. If the s.w.r. is not close
to 1 to 1 , try new tap positions and adjust C_{1} again, continuing this procedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future referenee. It this point, check the link s.w.r. over the froqueney range normally used in that band, without changing the setting of C_{1}. No readjustment will be required if the s.w.r. does not exeed 1.5 to 1 over the range, but if it goos higher it is advisable: to note as many settings of C_{1} as may be neeessary to keep the s.w.r. below 1.5 to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequency, and relatively little by the eoupling rireuit itself. I single setting of (is at midfirequener will suffier if the antenna itself is browd-tuning.

If it is impossible to get at 1-to-1 s.w.r. at any settings of the taps or (C_{1}, the s.w.r. on the main transmission line is high and the line length is probably unfavorable. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the line s.w.r. is higher it may not be posiblle to bring the link s.w.r. down except hy using the mothods for reactance compensation deseribed in a subsequent section.
The matching adjastment can be considerably facilitated by using a variable caparitor in serios with the matching-circuit coupling eoil as shown in Fig. 13-15. The additional adjustment thus provided makes the tap settings on L_{1} much less eritical since varying Co has the effect of varying the coupling between the two circuits. For ontimum control of coupling, L_{2} should be somewhat larger thatn when ('2 is not used - perhaps twice the reactance recommended above - -and the reactance of co at maximum capacitance should the the same as that of L_{2} at the operating frequency. L_{1} and (1 are the same as before. The method of adjustment is the same, except that for each trial tap position C_{1} and C_{2} are alternately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In general, the adjustment sought should be the one that keeps ('y at the largest possible capacitance, since this broadens the frequency response. Nso, the taps on L_{1} shouhd be kept as far apart as possible, while still permittiug a match, since this also broadens the frequency response of the circuit.
Once the mateling cireuit is properly adjusted, the s.w.r. bridge may be removed, if necessary, and full power applied to the trammitter. The power input should be adjusted by the coupling or loading control built into the transmitter, not

Fig. 13.15-Using a series capacitor for control of coupling between the link and line circuits with the coaxcoupled matching circuit.

Coupling the Transmitter to the Line

by making any changes in the matehing-circuit adjustments. If an amplifier having a parallele tuned tank circuit will not load properly, tunced coupling should be used into the coax link.

It is possible to use a circuit of this type without initially setting it up with the s.w.r. bridge. In such a case it is a matter of cut-and-try until adequate power transfer betwern the amplifier and main transmission lime is secured. However, this method frequently rosults in a high s.w.r. in the link, with "onserguent power loss, "hot spots" in the coaxial catble, and tuning that is eritieal with frequeney. The bridge method is simple and gives the optimum operating conditions quirkly and with certainty.

Untuned Coupling

A simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the peint where it connerts to the pirk-up roil. The coupling will be maximum, for a given degree of separation between the pirk-up coil and the amplifier tank coil, if the line is pruned to a length such that the imput impedance is just suffiriently rapacitive to rancel the indurtive reactance of the pirk-up coil. This ran be done her rut-and-try. The higher the sw.r. on the line the easier it beromes to load the amplifier with loose coupling between the two eoils. The sharper the antema and the higher the line sw.r. the more difficult it beomes to operate with this system over a band without progressively changing the lime length.

Series and Parallel Tuning

Lines rlassified as "tumed" or "resonman" i.e., cut to bengths approximately equal to integral multiples of onc-puarter wavelength, and operating with a high standing-wave ratio- -are charaterized by having either very high or very low input imperdances. Aso, the input impedanees of such lines are essentially resistive.

Sonder these conditions the circuit arrangemonts shom in Fig. 13-16 will work satisfactorily.

PARALLEL
Fig. 13-16-Link-caupled series and parallel tuning.
Their advantage over the circuit of Fig. 1:3-14 is that it is not neressary to provide for taps on the matching-circuit coil, L_{1}. "scries" tuning
is used when a current loop occurs at or near the input end of the line; i.e., when the input impedance is low, "Parallel" tuning is used when there is a voltage loop at or near the input end; i.e., when the input impedance is high.

In the series case, the cireuit formed by L_{1}, ("1 and r_{2} with the line terminals short-cireuited should tume to the operating frequency. C_{1} and ('2 should be mantaned at equal capacitance. In the parallel case, the rircuit formed by L_{1} and (${ }_{1}$ should tune to resonance with the line disconnected.

The L / C ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be uned if the s.w.r. is relatively low and the line Zo is high. With paralled tuning, a low L / C^{\prime} ratio must be ured if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the L / C ratio becomes less eritical when the s.w.r. is high. Is a first approximation, coil and eapacitor values of the same order as those used in the plate tank cirruit may be tried. 'The coupling coil, L_{2}, should have a reactance about equal to the Z_{0} of the coasial line, just as in the case of the circuit of Figg. 13-14. The coupling between L_{1} and L_{2} should be continuously adjustable.

Two empacitors are used in the series-tuned aircuit in order to keep the line babanced to ground. This is beeause two identical caparitors, both connected with either their stators or rotors to the line, will have the same capabitance to ground. A single capacitor would be perfectly usable so far as the operation of the coupling circuit is concerned, but will slightly unbalanee the eircuit because the frame has more eaparitance to ground than the stator. The unbalance is not esperially serious undess the caparitor is mounted near a large mass of metal, such as a chassis or shield assembly:

A balaneed capacitor is used in the parallel circuit, in preference to a single unit, for the same reason. An alternative seheme to maintain balance is to use two singloended caparitors in parallel, but with the frame of one conneeted to one side of the line and the frame of the other eonnected to the other side of the line. The same two capacitors may be switched in series when series tuning is to be used.

As an alternative to adjustable coupling between L_{1} and L_{2}, fixed coupling may be used and a variable rapacitor conneeted in zeries with L_{2} as shown in F'ig. 13-15.

These cireuits should be set up and adjusted in the same way as the tapped matehing circuit, Fig. 13-1.4. That is, an s.w.r. bridge should be used to indicate the impedance mateh, which is brought about by altemately adjusting (${ }_{1}$ and the coupling between L_{1} and L_{2} until the bridge shows a null.

In the event that there is difliculty in bringing the s.w.r. down to 1 to 1 in the coaxial link, the probable cause is that the input impedance of the transmission line is neither very high nor very low. In such a ease, if series timing does not

13 - TRANSMISSION LINES

work it may pay to try parallel tuming and vice versa. If a mateh cannot be seecured with cither. the circuit should be changed to that of Fig. 13-1t.

Adjustment Without the S.W.R. Bridge

Lise of the s.w.r. bridge with the cirevite daseribed above is the only certain way of arriving at optimum adjustments. However, if a bridge is not available, the transmitter usually can be made to take the proper load be a cut-ind-try method of adjustment. In the ease of Fig, 1:3-14, take a trial position of the taps fairly close to the eenter of L_{1}. With loose coupling betwern L_{1} and L_{2} (this may be controlled either by adjustment of the mutual inductance or bey means of the seriess (:uparitor (${ }_{2}$) and with the amplifier plate tank circuit tuned to resomance as indicated be the plate-rurrent dip, vary ('1 until as setting is found that causes the phate current to rise to a prak. This peak should be less than the experted normal loaded plate current. Then increase the coupling between L_{1} and L_{2}, readjust (${ }_{1}$ for maximum plate current. and readjust the amplifier tank for the plate-rarrent dip. Continue until the amplifier is fully boaded at the plate-current dip, increasing the comphing between the transmiter tank and the eoas line if neressery to obtain full bading. Then spread the tapps on L_{1} a liftle farther apart and go through the same procedure. The objecet is to use the widest spread hetween tapps that will permit proper loading of the tramsmitter.
The procedure with series or paralled tuning is similar exeret that there are no taps to aldjust. If full loading cannot be seeured with either, the rircuit should be changed to Pig. 13-14.

Although this cut-ind-try mothod gencrally will lead to adequate tramsmitter loading, the adjustments seldom are optimum from the standpoint of how s.w.r. in the eoax link. This may leal to excessive power dissipation in the link. with overheating the result. Also, the hoaling may change more rapidly with small frepuchey changes than would be the case with a matelching circuit adjusted for optimum performance with the aid of the s.w.r. bridge.

Lines of Random Length

Saries or parallel thing will always work satisfictorily with lines having a high standingwawe ratio so long as either at current loop or mode oreurs at the input end of the transmission line. This will be the case if the antemna is resomint and the line length is a multiple of one-guarter wavelength. However, it is not :lluays passible to couple satisfactorily when intermediate line hongths are used. This is becouse at some lengths the input impedanee of the line has a considerable reactive component, and hecause the resistive component is ton large to be comeeted in serics with at tuned cireuit and too small to be connected in paralled.

The coupling system shown in lig. 13-14 is capable of handling the resistive component of the input impedance of the transmission lines used in most amateur installations, regardless of
the standing-wave ratio on the line. Consequently, it can gencrally be used wherever cithor series or parallel tuning would normally be callemb for, simply he setting the laps properly on the roil. (A possible exeretion is where the s.w.r. is considerably higher tham 10 to 1 and the line length is such as to bring a current loop at the imput end. In surh a case the resistanee may be only a few ohms, which is difficult to mateh by means of tajps on a roil.)

Within limits, the same cireuit is capable of being adjusted to compensate for the reactive component of the input impedance; this merely means that a $1-\mathrm{to}$-1 s.w.r. in the link will be obtained at a different sotting of ("1 than would be the "ase if the line "looked like" a pure resistance. Sometimes. howerer. (11 does not have enough range available to give eomplete compensation, particulary when (as is the coase with some line longths when the s.w.r. is high) the input impedance is principatly ratetive.

Under such conditions it is neressaryy if the line length exmot be changed to a more satislatory value, to provide additional means for compensiting for or "canceding out" the reative component of the input impedance. As deweriber carlier in this seetion (Fig. $1: 3-6$) the input imperdanere can be considered to be equivalent to a circuit consisting rither of resistance and inductance or resistance and capaceitance. It is generally more convenient to consider these eldements as a parallel combination. so if the line "looks like" $L^{\prime} R^{\prime}$ at A in Fig. I:3-ti, it is apparent that if we comnert as eapacitanue of the right value across L^{\prime} the direuit will herome resontant and will appear to be a pure resistance of the value R^{\prime}. Similarly, comnerting an inductance of the right value across (" in Fig. 13-6B will resonate the cirenit and the impedance will be equat to R '. The resistive imperlaner that remains ean easily be matehed to the coas link by means of the circuit of fig. 1:3-14.

The practical application of this principle is shown in Fig. 13-1 $\overline{7}$, where L and C are the react-

Fig. 13-17-Reactance cancellation on random-length lines having a high standing-wave ratio.
ances required to cancel out the line reactance, L for cases where the line is capacitive, C for lines having inductive reactance. The amount of either

Matching to Coaxial Lines

inductance or caparitance required is easily detormined by trial, using the s.w.r. bridge in the coax link. First disoonnect the main transmission line from L_{1} and connect a noninductive resistor in its place. A 1 -watt carbon resistor of about the same resistane as the line Z_{0} will do, if at low-power bridge of the resistane type is used. With the "Monimateh" bridge, a suitable load may the made hey connecting carbon resistors in parallel: for example, five lino(o)hm 2-watt resistors in parallel will make a 300 (0)ohm load capable of hatndling 10 watts of r.f. Adjust the coil taps and C_{1} for at 1-to-1 standing-wave ratio in the link, as deseribed carlier. This determines the proper setting of ('1 for a purely resistive loatd. Then take of the resistor and connert the line, again adjusting the taps and C_{1} to make the s.w.r. as low as possible, and compare the new setting of C_{1} with the original setting. If the capacitance has inereased, the line reactance is inductive and a capacitor must be connected at (${ }^{\prime}$ in Fig. 1:3-17. The amount of capacitaner needed to bring the proper setting of ('i near the original setting ram be determined be trial. On the other hand, if the caparitanee of (' 1 is less than the original, an inductance must be conneeted at L. Trial values will show when the proper tuning conditions have been reamed.

It is not necossary that ('1 be at exactly the original setting after the compensating roatance. has berna adjusted: it is sufficient that it be in the same vicinity.
['sing this prodedure practically any longth of line can be couphed properly to the transmitter, even when the line s.w.r. is quite high. Cufortunately, no specific values man be suggested for L and $($ ', since they vary widely with Z, line length and sw.w. Their values usually are comparable with the valuse used in the regular courpling cirenits at the same freguence.

MATCHING TO COAXIAL LINES

Coasial transmission lines usually are (or at least should be) operated at a low-enough stand-ing-wave ratio so that no special matching circuits are neded; the line simply may be conneeted to the transmitter output terminals. A properly designed transmitter output eirenit (see seetion on high-frequence transmitters) will be capable of handling variations in s.w.r. that are arceptable from the standpoint of line losses.
llowever, there are cases where it becomes necessary to provide some frequence selectivity. between the transmitter and antema system in order to prevent undesirable radiation of harmonics. A matching circuit of the same general type as those discussed above "an provide a considerable degree of selectivity in addition to matching the inpuat impedance of the transmission line to the Z_{0} of the coaxial link. The difference in the circuit armangement is simply that the secondary or output side need not be balanced with respect to ground.

Fig. 13-18 shows a typical cireuit. Except for

Fig. 13-18-Inductively-coupled matching circuil for coupling between coaxial lines. The principies are the same as in Fig. 13-14; the secondary circuit is simply made single-ended for use with a coaxial transmission line.
the fact that there is only one coil tap, the design considerations and adjustment procedure are the same as desoribed for Fig. 13-14. Also, the series cuparitor, (2, shown in Fig. 13-15 may be used with this circuit for fine variation of the effertive conpling between L_{1} and L_{2}. Constants for the circuit $L_{1} C_{1}$ are not critical; any convenient values that will tune to the operating frequeney may be used. The Q of this rircuit, and hence the selectivity, is controlled principally by the position of the line tap. As the tap is moved firther up the eoil the Q and selectivity derrease.

The pratetical matehing eircuits described in the following section may be used with coaxial line simply by connecting the outer conductor of the line to the enter of the coil and tapping the inner conductor along one side. The batanced cirruit may still be used, although if the coupler is to be used only with coaxial line the circuit may be made single-ended as shown in lig. 13-18.

Fig. 13.19—Half-wave filter for harmonic suppression. The two sections of the filter should be shielced from each other as indicated by the dashed line, and the whole filter should be constructed in a shield enclosure to insure effective operation. A separate filter is required for each amateur band. All capacitors have the same value, as do all inductors, for a given band. Sugaested constants are as follows:

Band	Capacitance	Inductance
3.5 Mc.	$820 \mu \mu \mathrm{f}$.	$2.2 \mu \mathrm{~h}$.
7 Mc.	$390 \mu \mu \mathrm{f}$.	$1.3 \mu \mathrm{~h}$.
14 Mc.	$220 \mu \mu \mathrm{f}$.	$0.57 \mu \mathrm{~h}$.
$21 \mathrm{Mc}$.	$150 \mu \mu \mathrm{f}$.	$0.375 \mu \mathrm{~h}$.
28 Mc.	$100 \mu \mu \mathrm{f}$.	$0.3 \mu \mathrm{~h}$.

Design is based on standard values of fixed mica capacitors. Larger capacitances may be mad up by using smaller-capacitance units in parallel, if necessary. See text for voltage ratings. Inductances may be adjusted to proper value by resonating to center of band with the capacitance value given in the above table.

"Half-wave" Filters for Harmonic Suppression

If impedance matching is not a bonsideration - i.e., the transmission line to the antema is operating at a low s.w.r. - but harmonic sup-
pression is desirable, the circuit of lig. 1:3-19) may be used as an altornative to pig. 13-18. This is a "half-wave" tilter rimenit. so ralled beratuse it has similar properties to a half-wave transmission line. When inserted in a line, the impedance at the input torminals of the filtor is the same impedance that the filter "sees" at its output terminals. Thus if the line input impedance is a pure resistance of 50 ohms. the impedance at the filter input terminals also will be 50 ohms.

Just as in the half-wave line case, the characteristic impedance of the filter cinn be any value without altering its performanee with respect to input and output impedence. However, it is desirable in the interests of broad-band operation to make the filter charatereristic impedance ap)proximately the same as the $\%_{0}$ of the line. The constants given in Fig. 133-1!? will servo for either 50 or $\overline{5} 5$-ohm line. The filter con be used without adjustment at any frepuency within
the amateur band for which it is designed.
The cabacitanoer valucs reguired are fairly large, but moder the assumed ronditions (lon s.w.r. on the line filter Z_{0} : apmoximately equal to line $Z Z_{0}$) the voltages across the cajaritors are low. Dica capacitors having a voltage rating suitable for the power level are satisfictors. The peak rating reguired is equal to $\sqrt{2 P Z_{\text {fin }}}$ where P^{\prime} is the r.f. power and Z_{0} is the chatrateristie imperanere of the line. This value should be doubled for 10 on per erot amplitude modulation, and it is andisable to allow a satedy fartor in addition. A rating of $15(0)$ volts d.e. will be sufficiont for a kilowatt arm. tramsmitter if the line is well matehed by the antenna.

The attennation of a filter of this type is about 30 (ll). at the serond hammonie and greater at higher hammonies, until limited by solfresonanes at high frequencies that oecer in the inductors. These usually are not importinnt at harmonias below the fourth.

Coupler or Matching-Circuit Construction

The design of matrhing or "antennat coupler" cireuits has been covered in the preceding section, and the adjustment procedure also has been outlined. Since circuits of this type are most froquently used for transfurring power from the transmitter to a parallel-conductor trammission line, a principal point requiring attention is that of maintaining good balaner to groumd. If the coupher rircuit is appreciably unbabaneed the currents in the two wires of the transmission line will also be unbalanced, resulting in radiation from the line.

In most cases the matching circuit will be built on a metal chassis, following common pactice in the construction of transmitting units. The chassis, because of its rehatively large area, will tend to establish a "ground" - even though not aetually grounded - particularly if it is assembled with other units of the tramsmitter in a rack or cabinet. The components usad in the eoupler, therefore, should be plated so that they are electrically symmotrical with respert to the

Chassis and to each other.
In general, the const ruction of a coupler circuit should physically resemble the tank lanouts used with push-pull amplifiers. In parallol-tumed circuits a split-stator catparitor should be used. The rapacitor frame shonld be insulated from the chassis because, depending on line length and other factors, harmonie reduction and line batanee may be improved in some cases be gromeding and in others ley not grounding. It is therefore advisalbe to adopt ronstruction that permits cither. I'rovision also should be made for grounding the eenter of the eoil, for the same reason. The coil in a parallel-tuned circuit shonld be monnted so that its hot ends are symmetrically patecol with resperet to the chassis and other components. This equalizes stray capacitanees and helpes maintain good batance.
When the coupler is of the type that ean be shifted to suries or parallel tuning as required. two separate single-ended retparitors will be satisfactory. As deseribed earlier, they should low eonnerted so that both frames go to corresponding parts of the circuit - i.e.. either to the coil or to the line - for series tuning, and when used in paralled for parallel tuning should be eonnected frame-to-stator.

A coupler designed and adjusted so that the connecting link arets as a matched transmission line may be placed in any convenient location. Some amateurs prefur to install the coupler at the point where the main transmission line enters the station. This holps mantain a tidy station lay-

Fig. 13.20-Matching circuit for coupling balanced line to a coaxial link. It may also be used between two coaxial lines as described in the text. The coil at the left is simply "stored" on the chassis as a convenience for changing between two favorite bands. A "Monimatch" bridge is mounted under the $7 \times 11 \times 3$ inch chassis.

Coupler Construction

Fig. 13-21-Circuit of the coax-coupled matching circuit of Fig. 13-20. The s.w.r. bridge, a highly-useful oid in adjustment, moy be omitted if desired, in which case points A and B are simply connected logether. See text for dato on modified line.

$\mathrm{C}_{1}-100 \mu \mu$. per section variable, 0.075 -inch spacing (Johnson 154-505).
$\mathrm{C}_{2}-700$ to $800 \mu \mu \mathrm{f}$.; dual-section 365. to $400 \cdot \mu \mu \mathrm{f}$. broodcast-receiver type copacitor with sections in parallel.
out when an air-insulated parallel-conductor transmission line is used. With solid-dielectric lines, which tend themselves well to neat installation indoors, it is probably more desirable to install the coupter where it can be reached easily for adjustment and band-changing.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in lig. 13-20 is constructed according to the design principles outlined carlior in this chapter. It uses a paralleltuned cireout with taps for matching a paralletconductor line through a link coil to a coasial line to the transmitter. It will handle about 500 watts of r.f. power and will work, without modifieation, into lines of any length if the s.w.r. is bolow 3 or 4 to 1. If the s.w.r. is high, it maty be necessary to compensate for the reactive part of the input impedance of the line, at eertain line longths, by using an additional coil or capareitor as disenssed earlier. The neeressity for such compensation can le avoided, on lines having a high s.w.r., by making the electrical length of the line a multiple of a quarter wavelength.

As shown by the eircuit diagram, Fig. 13-21, the link circuit is adjusted by means of a variable rapacitor, C_{2}, to facilitate matching between the main transmission line from the antenna and the coax line to the transmitter. The coils are construeted from commercially-available coil matorial, and the link (L_{2}) inductanees are chosen to provide adequate coupling for that lines. The link
$C_{3}, C_{4}-0.001-\mu \mathrm{f}$. ceramic disk.
$\mathrm{CR}_{1}, \mathrm{CR}_{2}-1 \mathrm{~N} 34 \mathrm{~A}$ or equivalent.
J_{1}-Coox receplacle, chossis-mounting type.
L_{1}, L_{2}-See coil table.
R_{1}-See text.
roil, of smatler diameter than the tank coil L_{1}, is mounted inside the latter at the center. Duco cement is used to hold the coils together at their bottom tie strips. The coils are mounted on Millen type 40305 plugs and require no other support than the stiffness of the short lengths of wire going into the end prongs of the plug from the tank coil. Short lengths of spaghetti tubing are slipped over the leats to the link eoil where they go between the tank coil turns to reach the plug.

Taps on the tank eoil for eonnection to a paral-fel-conductor transmission line are made by means of Johnson type $235-860 \mathrm{clips}$. If coils are changed frequently it will be convenient, after finding the proper tap points for each band, to bend ordinary soldering lugs around the wire and solder them in place so they projeet radially from the coil. The elips can then be adjusted to fit snugly over the lugs when pushed on sidewise. Lised this way, the elips provide an casy and rapid method of conneeting and disconneeting the line.

Monimatch

The eireuit as shown in Fig. 13-21 includer a bridge or directional coupler of the Monimateh type to assist in adjusting the eireuit to mateh the coax line. It is construeted from a 24 -ineh length of either RG-8/U or RG-11/U (depending on the Z_{0} of the coax line between the transmitter and the matehing eireuit) as deseribed in the section on measurements. The piekup line, to

Coil Data for Fio. 13-z1								
Band, Mc.	Turns	Wire Size	Dia., In.	Turns/ In.	Turns	Wire Size	Dia., In.	Turns/ In.
3.5	44	16	$21 / 2$	10	10	16	2	10
7	18	12	$21 / 2$	6	6	16	2	10
14	10	12	$21 / 2$	6	3	16	2	10
$21-28$	6	12	$21 / 2$	6	2	16	2	10

Fig. 13-22-Below-chassis view of the matching circuit, showing Monimatch made from a section of coax cable. The crystal rectifiers are mounted on dual tie-point strips, with R_{1} between them.
which R_{1} and the erystal rectifiers are comected, is a length of No, 30 enameled wire inserted betweren the insulation and the shield-baid outer conductor of the coax cable, In constructing this line seetion be careful not to serape the enamed from the wire, and after the braid has been smoothed out to its original length check betworn it and the piekup wire with an ohmmeter to make sure the two are not short-circuited. The cable is formod into a double turn so that the center, where R_{1} comects to the piekup wire, is close to the cuds. 'This keeps the ground paths to minimum length and helps in olstaining proper balance in the bridge. The braided outsides of the turns are spot soldered together at several points to reduce the effect of unwanted eurrents on the surface, and also to improve the assembly meehanically.

Bridge Adjustment

Adjusting the bridge is simply a mattor of finding the value of R_{1} that gives a good null reading with the indicating meter conneeted to the "roflected" position when the output end is terminated in a resistive load of either 52 or 75 ohms, depending on whether IR($\mathrm{i}-8 / \mathrm{U}$ or $\mathrm{RR}(\mathrm{i}-11 / \mathrm{U}$ is used. If a suitable dummy load is available (see section on measurements) the wiring to L_{2} should be disconnected at $B 3$ in Fig. 13-2l and the dummy load connerted between B and ground (that is, to the output terminals of the Monimateh). R_{1} may be set to the proper value by trying several values of half-watt carbon resistors, or combinations in parallel, to find the resistance that gives the deepest null. A value of about 35 ohms proved to be optimum with RG-8/U in the bridge shown in the photograph.

Alternatively, a dummy load may be connorted to the balaneed line terminals, and the Monimateh discomected at B. If a suitable bridge can be borrowed, it can be connected at B and r.f. power fed through it to the matehing eircuit, which should then be adjusted to match the coax line. This establishes a load of known value which may then be used for adjustment of the built-in Monimateh as described above, after the ronnection at B has been restored.

A suitable indicator unit, including meter. variable resistor, and forward-reffereted switch, is deseribed in the sertion on measurements.

Matching-Circuit Adjustment

The method of : mjusting a matehing eirenit of this type has been deseribed earlier in this section in connertion with Figs. 13-14 and 13-15. The ronstruction is such that either the conter tap of L_{1} or the rotor of C_{1} may be gromuled to the dhassis, since (${ }_{1}$ is mounted on small stand-off insulators. Insofar as normal balaned-line operation is concerned, it makes no difference which is grounded (or neither). Grombing will, however, affert any parallel or "antenma" eurrents on the line. In general, the effect of such eurrents will be minimized if the ground conneetion showing the least r.f. eurrent is chosen. This test should also be tried with and without an actual earth connection to the matehing-circuit chassis.
The coupler may be used between coaxial lines by grounding the center tap of L_{1} and connecting the outer braid of the coax line to the chassis and the inner conductor to a single tap on the coil. The method of adjustment is otherwise the same as for balanced lines.

The matching eircuit should be adjusted with the aid of an s.w.r. bridge, as deseribed earlier in this section. In general, the tuning will be less eritical, and the eireuit will work over a wider frequency range without readjustment, if the taps are kept as far toward the ends of the coil as possible and C_{2} is set at the largest caparitance that will permit bringing the s.w.r. in the coax link down to 1 to 1 .

MATCHING CIRCUIT WITH MULTIBAND TUNER

The coupling network shown in Fig. 13-2:3 uses a multiband tuner (see section on transmitters for other examples) to eover the $3.5-30 \mathrm{M}$ \% range without coil ehanging or switehing. The matehing eircuit is shown in Fig. 13-24, and eonsists of the multiband circuit $C_{1} L_{1} L_{3}$, the coupling eoils L_{2} and L_{1}, and the series capacitor

Matching Circuit with Multiband Tuner

Fig. 13-23 - Matching cir cuit using multiband tuner principle for covering 3.5-30 Mc. without coil changing. It is assembled on a standard relay-rack panel $31 / 2$ inches high, using a homemade U-shaped support made of sheet aluminum. The components in this unit are suitable for about 500 watts.
C_{2}. The input imperanere of a batianed (parallelconductor) line connectes to the ontput trarminals, A or B, can be matehed to a coaxial line comnered to the transmitter through J_{1}. Proper matching can be achoved over the usual range of imperdane ens encontered with practical inntenna sistoms.

In the average case, the tranmision line will
 Ne., and to the " B " terminals on it through 28 Ae. Ilowever, there may be sperial ceases where a ineter matela cath be whataned. on a given batud. by using the other sot of terminals in proference to the one mentioned above. This must be determined by trial.

The operation of this cireut can be resolved into the equivalent of atn "1," network (sere seretion on rireuit fundamentals). The multiband eirruit is equivalent to a parallel-resomant cireuit having shontod across it a lond resistaneo rofoectod to it through the roupling coil from the actual load. (ty is then the series arm of the "L" notwork and the multiband cireuit is slightly detuned to the induetive side of resolnance to provide the necessary value of shurt reactance for matehing.

Construction

The principal mombers of the supporting framework in the unit slmwn in Fing. 13-2:3 are two sheret-aluminum brackets, $31 \frac{1}{2}$ inches wide. with lips at both ends. The front lipe aro bolted fo the panclatad these at the rear are tiod togother be a third 3^{2}-2inch wide piece of aluminum 11 inches long. The over-all dopth is 8 inches. The top and bottom shachds are made of "do-it-vourself" perforated aluminum availathe. at most hardware stores. These rovers have bentover edges fitting around the support frame and
may be held in place with self-tapping serews, or ($i-3$; machine serews threaded into the supports.
(${ }^{2}$ 2 is monted on small ceramic cone insulators from the lefthand suppret. This capacitor must be insulated from the support, and is turned through an insulated coupling. C_{1} is mounted direstls on the right-hand supporting member. The coaxial connector and output terminalsthe latter are standard dual binding-posh assemblios - are mounted on the rear piece.

The multiband circuit coils are supported by the wiring connecting them to the eapacitors and terminals. This method of support requires the use of heavy conductors (No. 14 or larger) and

Fig. 13-24-Circuit diagram of the multiband matching circuit.
$C_{1}-300 \mu \mu$ f. per section, 0.045 -inch spacing (Johnson 300ED20).
$\mathrm{C}_{2}-350 \mu \mu \mathrm{f}$. variable, 0.045 inch spacing (Johnson 350E20).
J_{1}-Coaxial connector, chassis-mounting type.
$L_{1}-3.2 \mu \mathrm{~h} . ; 11$ turns No. 12, diameter 2 inches, length $231 / 4$ inches (Air Dux 1604).
$\mathrm{L}_{2}-2.1 \mu \mathrm{~h} . ; 6$ turns No. 12, diameter $21 / 2$ inches, length $11 / 2$ inches (Air Dux 2004) concentric with L_{1}.
$\mathrm{L}_{3}-1.1 \mu \mathrm{~h} . ; 5 \frac{1}{2}$ turns No. 12, diameter 2 inches, length $11 / 4$ inches (Air Dux 1604).
L. $-1.6 \mu \mathrm{~h} . ; 5$ turns No. 12, diometer $21 / 2$ inches, length $11 / 4$ inches (Air Dux 2004) concentric with L_{3}.

13-TRANSMISSION LINES

Fig. 13-25-Adjustment setup using the "Monimatch." This setup applies with any type of matching circuit designed to match a coaxial line from the transmitter.
short leads. The coupling coils, which are mounted around the centers of the tuned-circuit coils, may be cemented to the latter. This will stiffen the assembly. The two pairs of coils should be mounted with their axes at right angles in order to minimize coupling between them.

Adjustment

Proper adjustment of the matching eircuit calls for using an s.w.r. indicator such as the "Monimatch" shown in the chapter on measurements. The setup is as given in Fig. 13-25.

Connect the transmission line to one of the two patirs of terminals, apply power from the transmitter, and adjust C_{1} ind C_{2} for minimum re-
flected-voltage indication on the s.w.r. bridge. The two controls will interlock to some extent, but after a few trials a good null should be secured. If the meter reading cannot be brought down to zero, try connecting the balanced line to the other pair of output terminals.

When the null is obtained the system is ratdy for use. With the "Monimatch," the meter switeh can then be thrown to the "forward" position and the trimsmitter tuned for maximum output as shown by the "Monimatch" meter. Output adjustments should be made only at the transmitter, not at the mateching cireuit, after the matching eirenit has once been adjusted for minimum reffected voltage.

Antennas

An antenna system can be considered to inMude the antenna proper (the portion that radiates the r.f. energy), the feed line, and any coupling devices used for transferring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antema proper, and in many cases will show popular types of lines, as well as line-toantenna couplings where they are required. llowever, it should be kept in mind that any antenna proper can be used with any type of feedline if a suitable coupling is used between the antenna and the line. Changing the line does not change the trpe of antenna.

Selecting an Antenna

In selecting the type of antemna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antenna systems, except for v.h.f. operation where the small space requirements make the use of multielement beams readily possible. This section will consider antemas for frequencies as high as 30 Mc. - a hater chapter will describe the popular trpes of v.h.f. antennas. However, even though the available space may be limited, it is well to consider the propagation characteristics of the frequency band or bands to be used, to insure that hest possible use is made of the available facilities. The propagation characteristics of the amateur-band frequencios are described in Section Fifteen. In gencral, antenma construction and location beeome more critical and important on the higher frequencies. On the lower frequencies (3.5 and 7 Me.) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Mc , they may be all-important.

Definitions

The polarization of a straight-wire antenna is determined by its position with respert to the earth. Thus a vertical antenna radiates vertieally-polarized waves, while a horizontal antenna radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles off the ends of the wire. The wave from an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains components
of both horizontal and vertical polarization.
The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the borizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of all antenna is determined by the free-space pattern of the antenna.

The impedance of the antemat at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antenna, since it constitutes the load to the line offered by the antenna. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antenna is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated "V"," have substantially uniform current along their lengths.

The ratio of power required to produce a given field strength with a "comparison" antenna to the power required to produce the same field strength with a speeified type of antema is called the power gain of the latter antenna. The field is measured in the optimum dirertion of the antenna under test. The comparison antenna is generally a half-wave antenna at the same height and having the same polarization as the antema under consideration. Gain usually is expressed in decibels.

In unidirectional beams (antennas with most of the radiation in only one direetion) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-buek ratio is usually expressed in decibels.

The bandwidth of an antenna refers to the frequency range over which a property falls within acceptable limits. The gain bandwidth, the front-to-back-ratio bandwidth and the standing-wave-ratio bandwidth are of prime interest in amateur work.

Ground Effects

The radiation pattern of any antennat that is many wavelengths distant from the gromed and all other objects is ralled the free-space pattern of that antema. The freo-space pattorn of an antenna is almost imposibible to obtain in practice, except in the v.h.f. and u.h.f. ranges. Below 30 Mr., the height of the antematabove ground is a major factor in determining the radiation pattern of the antema.

When any antenna is near the ground the free-spare pattern is modified ly reflection of radiated waves from the ground, so that the actual pattern is the resultant of the frec-space pattern and ground rellections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristic:s of the ground. The effect of a perfectly-reflecting ground is such that the

Fig. 14-1-Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights.

This chart is based on perfectly-conducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. $14-1$ shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas, As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum wilh occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary importance, especially at the higher
frequencies, It is advantageous, therefore, to ereet the antemat at a height that will bake advantage of ground reflection in such a way ats toremfore the pare radiation at the most desirable angle. Since low angles usually are most effective, this generalle means that the antemat should be high - at loast one-half wavelength at It Ma., and proferably three-puaters on one wavelongth, and at least one wavelongth, and preferably higher, at 28 Ne. The physieal height required for at given height in wavelengths decreases as the frequeney is increased, so that good heights are not impracticable; a half wavelength at 11 Me, is omly :3.) feret, ath proximately, while the same height represents a full wavelongth at 28 . Me. . It 7 Mre and hower frequencies the higher radiation angles are effective, so that again a useful antenna height is not difforult of attamment. Ifoights botween 35 and 70 feet are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 14-1 is based on ground hating perfect conductivity, whereas the actual earth is not a perfect conductor'. The primeipal effect of actual ground is to make the curver inaceurate at the lowest angles; apprediable high-frequeney radiation at angles smatler than a few degrees is practicalle imposible to obtain over horizontal ground. Whove 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indieative of the result to be expected at angles betwern 5 and 15 degrees

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflerted clirectly upward from the ground induce a current in the an-

Fig. 14-2-Theoretical curve of variation of radiation resistance for a very thin half-wave harizontal antenna as a function of height in wavelength above perfectlyreflecting ground.

Half-Wave Antenna

tenna in passing, and, depending on the antema height, the phase relationship of this induced current to the original current may be such as rither to increase or decrease the tot al burent in the antenas. fior the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the imperlance of the antenna varies with height. The theoretical rurve of variation of radiation resistance for ar very thin half-wave anternat above pericetlyereflecting ground is shown in Fig. 14-2. The imperlane apporothes the freer-spare value as the height beromes latrge, but at low heights maty diffor considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between
3.5 and 30 Me . However, the question of whether the antenna should be instialled in a horizontal or vertioal position deserves eonsideration for other reasons. I vertieal halfwave or quarter-wave antenna will radiate equally well in all horizontel dirertions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antena will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a rase will be least in the direction toward which the wire points.

The vertiral angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antemna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

A fundamental form of autemat is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many morecomplex forms of :untennas are constricted. It is known as a dipole antenna.

The length of athelforve in spatere is:

$$
\begin{equation*}
\text { Length }(f \mathrm{ect})=\frac{492}{\text { Fidg. }(11 \mathrm{c} \cdot \mathrm{)}} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antemat will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in lig. 14-3, where K is a factor that must bo multiplied by the half-wave length in free space to obtain the resonant anteman length. In additional shortening effect ocrurs with wire antennas supported by insulators at the ends because of the rapacitance added to the system by the insulators (end effect). The following formula is sufliciently arerurate for wire antemas at frequencies up to 30 Mr .:

$$
\begin{align*}
& \text { Length of half-urare antenna (feet) }= \\
& \qquad \frac{492 \times 0.95}{\text { Freq. }(\mathrm{Mc})}=\frac{468}{\text { lireq. }(\overline{\mathrm{Mc} .)}} \tag{14-B}
\end{align*}
$$

Example: A half-wave antenna for $71: 30 \mathrm{kc}$. (7.15 Mc .) is $\frac{46 \mathrm{~s}}{5.15}=6 \overline{\mathrm{j}} .4 \overline{5}$ feet, or $6 \overline{3}$ fret j inches.
Above 30 Mc . the following formulas should be used, particularly for antemas constructed from rod or tubing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-urave antenna (feet) }= \\
\frac{492 \times K}{\text { Freq. }(\mathbf{M r} .)} \tag{14-C}\\
\text { or length (inches) }=\frac{5005 \times K}{\text { Freq. }(\mathrm{Mc})} \tag{14-D}
\end{gather*}
$$

Example: Find the length of a half wavelength antenna at 29 Mc. if the antenna is made of $2-$ inch diameter tobing. At 29 Mc , a half wavelength in space is $\frac{4!92}{29}=16.97$ feet, from Eq. 14-A. IRatio of half wavelemath to conductor diametor (changing wavelength to inches) is $\frac{16.97 \times 12}{2}=101.8$. From Fig. $14-3, \boldsymbol{K}=0.063$ for this ratio. The lenuth of the antenna, from Eq. 14-C, is $\frac{492 \times 0.963}{2!}=16.34$ feet, or 16 feet 4 inches. The answer is obtained directly in inches by substitution in Eq. $14-\mathrm{D}: \frac{5005 \times 0.963}{29}$ $=196$ inches.

Fig. 14-3-Effect of antenna diameter or length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half wavelength (Equation 14-A). The effect of conductor diameter on the center impedance also is shown.

Current and Voltage Distribution

When power is fed to an antenna, the rurront and voltage vary along its longth, The cument is maximum (loop) at the renter and nearly zoro (node) at the emds, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not

Fig. 14-4 - The above scales, based on Eq. 14-8, can be used to determine the length of a half-wave antenna of wire.
uniform in all directions but varies with the fingle with resperet to the axis of the wire. It is most intense in direetions perpendicular to 1.he wire and zoro along the direetion of the

Fig. 14-5 - The free-space radiation pattern of a half. wave antenna. The antenna is shown in the vertical position, and the actual "doughnut" pattern is cut in half to show how the line from the center of the antenna to the surface of the pattern varies. In practice this pattern is modified by the height above ground and if the antenna is vertical or horizontal. Fig. 14.1 shows some of the effects of height on the vertical angle of radiation.
zero at its node because of the resistance of the antema, whieh consists of both the r.f. resistance of the wire (ohmic resistonce) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antenna. The radiation resistance is the equivalent resistance that would dissipate the power the antenna radiates, with a current flowing in it equal to the antenna current at a current loop (inaximum). The ohmic resistance of a hali wavelength antenna is ordinarily small enough, compared with the radiation resistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antemna in free space is about 73 ohms. The value under practical conditions is commonly taken to be in the neightorhood of 60 to 70 ohms, although it varies with height in the manner of Fig. 14-2. It inereases toward the ends. The aetual value at the ends will depend on a mumber of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as indicated in Fig. 14-3. If the diameter of the conductor is increased the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C^{\prime} ratio causes the Q of the antema to decrease, so that the resonance curve hecomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is smatl.

Radiation Characteristics

The radiation from a dipole antemna is not
wire, with intermediate values at intermediate angles. This is shown by the sketeh of Fig. 14-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the thtemat is vertical, as shown, then the field strength will be uniform in all horizontal direetions; if the

Fig. 14-6-lllustrating the importance of vertical angle of radiation in determining antenna directional effects. Off the end, the radiation is greater at higher angles. Ground reflection is neglected in this drawing of the freespace pattern of a horizontal antenna.
antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antemna wire. The variation in radiation at varions vertical angles from a half wavelength horizontal antemat is indieated in Fige. 1 $1-16$ and $1+7$.

feeding a dipole antenna

Direct Feed

If possible, it is advisable to locate the antemna at loast a hatl wavelongth from the transmitter and use a transmission line to carry the power from the transmitter to the antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three examples of direct feed are shown in Fig. 14-8. In the method shown at $.1, C_{1}$ and C_{2} should be about $150 \mu \mu$. each for the $3 . \bar{i}-\mathrm{Me}$. hated, $75 \mu \mu \mathrm{f}$. each at 7 Me , and proportionately smaller at the higher frequencies. The antenna eoil connected between them should resonate to 3.5 Ms. with about (0) or $70 \mu \mu \mathrm{f}$., for the 80 meter hand, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{f}$., and so on. The cireuit is adjusted by using loose coupling between the antema coil and the transmitter tank coil and adjusting C_{1} and C_{2} until resonance is indi-

Fig. 14-7-Horizontal pattern of a horizontal half-wave antenna at three vertical radiation angles. The solid line is relative radiation at 15 degrees. Dotted lines show deviation from the 15 -degree pattern for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the verlical angle considered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will be the same. The arrow ndicates the direction of the horizontal antenna wire.
cated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It maty be neexssary to re-resonate the tratumiter tank circuit as the couphing is increased, but the change should be small.

The rircuits in Fig. 14-813 and C are used when only one end of the antena is accessible. In B , the coupling is adjusted by moving the

Fig. 14-8-Methods of directly exciting the half-wave antenna. A, current feed, series tuning; B, voltage feed, capacitive coupling; C, voltage feed, with in-ductively-coupled ontenna tank. In A, the coupling circuit is not included in the effective electrical length of the antenna system proper. Link coupling can be used in A and C.
tap toward the "hot" or plate end of the tank coil - the series capacitor may be of any convenient value that will stand the voltage, and it doesn't have to be variable, In the circuit at ©, the antenna tumed circuit ($(1$ and the antenna coil) should be similar to the transmitter tank circuit. The antenma tuned circuit is adjusted to resonance with the antemma connected but with loose coupling to the transmitter. Heavier loading of the tube is
then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of B is undesirable because it provides practically no Irotection against the radiation of harmonics, and it should only be used in emergencies.

Transmission-Line Feed for Dipoles

Since the impedance at the center of a dipole is in the vieinity of 70 ohns, it offers a good mateh for $75-0 \mathrm{hm}$ two-wire transmission lines. Several types are available on the market, with different power-hantling capabilities. They can be connerted in the center of the antenna, across a smatl strain insulator to provide a convenient comection point. Coaxial line of 75 ohms impedance can also be used, but it is heavier and thus not as

Fig. 14.9-Construction of a dipole fed with 75 -ohm line. The length of the antenna is calculated from Equation 14-B or Fig. 14-4.
convenient. In either case, the transmission line should be rum away at right angles to the cutemat for at least one-quarter wavolength, if possible, to avoid current unbalance in the line caused by pick-up from the antemna. The antenna length is calculated from Equation 14-B, for a half wavelength antenna. When No. 12 or No. 14 enameled wire is used for the antenna, as is gencrally the case, the length of the wire is the over-all length measared from the loop through the insulator at each end. This is illustrated in Fig. 14-9.

The use of 75 -ohm line results ir a "flat" line over most of any amateur band. However, by making the half-wave antenna in a special minner, called the two-wire or folded dipole, a grod match is offered for a 300 -ohm line. wheh atu sutenna is shown in Fig. 11-10. The open-wire line shown in Fig. 14-10 is made of No. 12 or No. 14 enameled wire, seprrated by

Fig. 14-10-The construction of an open-wire folded dipole fed with 300 -ohm line. The length of the antenna is calculated from Equation 14-B or Fig. 14-4.
lightweight spacers of Lucite or other material (it doesn't have to be a lobr-luss insulating material), and the spacing can be on the order of from 4 to s inches, depending upon what is convenient and what the operating frequency is. It 14 Mc , , tinch separation is satisfactory, and 8 -inch spacing can be used at 3.5 Mc.

The half waveleugth antemna rath also be made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. Ifter the wires have been soldered together, the joint rinn be strengthened by molding some of the exeres insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight elamp of two pieres of lacite can be devised.

Fig. 14.11-The construction of a 3-wire folded dipole is similar to that of the 2 -wire folded dipole. The end spacers may have to be slightly stronger than the others because of the greater compression force on them. The length of the antenna is obtained from Equation 14-B or Fig. 14-4. A suitable line can be made from No. 14 wirespaced 5 inches, or from No. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the threr-wire folded dipole of fig. 1t-11 offors a good mateh for a 600 -ohom line. It is favored by amatcurs who profer to use an open-wire line instead of the 300 -ohm insulated line. The three wires of the antemna proper should all be of the same diameter.

Another method for offering a mateh to a b00-ohm open-wive line with a half wavelongth antemat is shown in Fig. 14-12. The system is called a delta match. The line is "fitmed" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antema impedance at the point of commection. The dimensions are fairly eritical, but carefal measurement before installing the antemat and matching section is generally all that is necessary. The length of the antenna, L, is calcu-

Fig. 14-12-Delta-matched antenna system. The dimensions C, D, and E are found by formulas given in the text. It is important that the matching section, E, come straight away from the antenna without any bends.
lated from Equation 14-B or Fig. 14-4. The length of section C is computed from:

$$
\begin{equation*}
C^{\prime}(\text { leet })=\frac{11 \mathrm{~s}}{\text { Freq. (Me. })} \tag{14-E}
\end{equation*}
$$

The feeder clearanee, l, is found from

$$
\begin{equation*}
E^{\prime}(\text { fect })=\frac{148}{\text { Freq. (Mc.) }} \tag{14-F}
\end{equation*}
$$

Example: for a frequency of 7.1 Mc , the length

$$
\begin{aligned}
& L=\frac{468}{7.1}=60.91 \text { feet, or } 165 \text { feet } 11 \text { inehes. } \\
& C=\frac{118}{7.1}=16.162 \text { feet, or } 16 \text { feet } 7 \text { inches. } \\
& E=\frac{148}{3.1}=2(1.84 \text { feet, or } 20 \text { feet } 10 \text { inehes. }
\end{aligned}
$$

Since the equations hold only for 600-ohm line, it is important that the line be close to this value. 'This requires 5 -inch spared No. 14 wire, 6 -itroh spated No. 12 wire, or $33 / 4$-inch spared N゙o. 16 wire.

If a hall wavelengh antenma is fed at the center with other than 7)-ohm line, or if a two-wire dipole is fed with other than :300-ohm line, standing waves will appear on the line and roupling to the transmitter may beoome awkward for some line lengthe, as deseribed in sertion 13. Howrove, in mally rases it is not eonveniont to ford the half-wave antemat with the corred line (as is the case where multiband operation of the same antemat is desired), and sometimes it is not ronveniont to feed the antenma at the center. Where multiband operattion is desired (to be disenssed later) or when the anteman most be fed at one end loy a trans-

Fig. 14-13-The half-wave antenng can be fed at the center or at the end with an open-wire line. The antenna length is obtained from Equation 14-8 or Fig. 14.4.
mission line, ann onen-wire line of from tiñ to (i)0 ohms impedance is gencrally used. The impedance at the end of a half wavelength antemat is in the vicinity of several thonsand ohms, and henee a standing-wave ratio of 4 or $\overline{5}$ is not unusual when the line is comeneded to the end of the antema. It is advisable, therefore, to keep the losses in the line as low as posible. This requires the use of ceramie or Midalex fereder sparers, if any : 1 ppreciable power is used. For low-power installations in dry rlimates, dry wool spacers boiled in paraffin are satisfactory. Merhamical details of half wavedength antemats ferl with open-wire lines are given in Fig. 14-13. Regardless of the power level, solid-dielectric Twin-Lead is not recommended for this use.

Long-Wire Antennas

An antenna will be resomant so long as an integral mumber of standing waves of current and voltage can exist along its length; in other words, so long ats its length is some integral multiple of a half wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 14-14 shows the current and voltage distribution along a wirc operating at its fundamental frequency (where its length is

Fig. 14-14-Standing-wave current and voltage distribution alang an antenna when it is operated at various harmonics of its fundamental resonant frequency.
equal to a half waveloughth) and at its seroond, third and fourth harmonies. For example, if the fundamental frequency of the antemna is 7 Me., the current and voltage distribution wilh be as shown at A. The same intenna excited at 14 Mc . would have curment and voltage distribution as shown at B . At 21 Mc ., the third harmonic of 7 Mc ., the current and voltage distribution would be as in (': and at 28 Mr., the fourth harmonie, as in D. The number of the harmonic is the number of half waves contained in the antenna at the particular operating frequency:

The polarity of eurrent or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the rurrent and voltage curves sucessively above and bolow the antenna (taken as a zero reference line), to indieate that the polarity reverses when the current or voltage goes through zero. Currents
flowing in the same direction are in phase: in "pposite directions, out of phase.

It is evident that one antenna mary be used for harmonically-related frequencies, such as the various amateur hands. The long-wire or harmonic antenna is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antenna bealuse the end effects operate only on the end sections of the antemat; in other parts of the wire these efforts are absent, and the wire length is approximately that of an equivatent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. (Mc.) }} \quad 14-\mathrm{G}
$$

Where N is the number of half-waves on the antenna.

$$
\begin{aligned}
& \text { Example: An antenna } 4 \text { half-waves long at } 14.2 \\
& \text { Me, would be } \frac{492(4-0.05)}{14.2}=\frac{402 \times 3!5}{14.2} \\
& =136.7 \text { feet, or } 136 \text { feet } 8 \text { inehes. }
\end{aligned}
$$

It is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resoname at exactly twie that frequeney (the second harmonir), because of the dereased influence of the end effects when the antenna is more that one-half wavelength long. The offeret is not very important, excopt for a possible unbalance in the feeder system and consequent

Fig. 14-15-Curve A shows variation in radiation re sistance with antenna length. Curve B shows power in lobes of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna.

Fig. 14-16-Horizontal patterns of radiation from a full-wave antenna. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. All three palterns are drawn to the same relative scale; actual amplitudes will depend upon the height of the antenna.
radiation from the feedline. If the antennt is fed in the exate center, no umbatance will oceur at any frequeney, but end-fed s.rstems will show ath unbatance on all but one frequency in each hamonic range.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes higher as the antenna length is increased. Also, a long-wire antemat radiates more power in its most favorable direction than does a half-ware antenna in its nosos favorable direction. This power gain is secured at the expense of radiation in other

Fig. 14-17-Horizontal patterns of radiation from an antenna three half-waves long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. Minor lobes coincide for all three angles.
directions. Fig. 14-15 shows how the radiation resistance and the power in the lohe of maximum radiation vary with the antenna length.

Directional Characteristics

As the wire is made longer in terms of the number of half wavelengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antema, the direstional characteristir splits up into "lobes" which make various angles with the wire. la general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Directional characteristies for antennas one wavelongth, three half-wavelongths, and two wavelengths long are given in liggs. If-16, 14-17 and 14-18, for three vertical angles of radiation. Note that, as the wire length in-

Fig. 14.18-Horizontal patterns of radiation from an antenna two wavelengths long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. The minor lobes coincide for all three angles.
creases, the radiation along the line of the antenna becomes more pronounced. Sitll longer antennas can be romsidered to have practically "end-on" direttional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antemna, the currents in adjacent half-wave sertions must be out of phase, as shown in Fig. 14-1t. The ferder isten must not upset this phatse relationship. This is satisfied by feeding the antemat at aither end or at any current loop, I two-wire ferder rannot be inserted att a current node, however, becatuse this invariably brings the currents in two adjacent half-wabe sertions in phase. A long wire antemas is usually made a hatl wavelength at the lowest frequency and fed at the end.

Multiband Antennas

As suggested in the preeeding section, the same antenma may be used for several bands oy operating it on harmonics. When this is done it is neressary to use tuned feeders, since the impedance matching for monresonant feeder operation can be arromplished only at one fredueney unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it.

A dipole antemnat that is center-fed by a soliddielectrie line is useless for evorn harmonic operation; on all even harmonies there is a voltage maximum occurring right at the feed point, and the resultant impedtace mismatch catuses a large standing-wave ration and consergently high losses arise in the solid didentric. It is wise not to attempt to use on its even harmonies a half-wave antemma renter-fad with romaial cablo. On odd hamonies, as betwern 7 and 21 Mr... a current (oxy) will appeat in the center of the antematand a fiair mateh can be obtained. High-impedance solid-dichertrice limes such as 300 -ohm 'Twin-head maty be used in an emergenay, provided the power does not rxered a few hundred watts, but it is an ineflicient feed method.

When the same antemat is used for work in several bands, the directional chatrateristies will vary with the band in use.

Simple Systems

The most practical simple multiband antemat is one that is a half wavelergeth long at the lowest frequency and is fed pither at the center or one end with an open-wire line. DIthough the standing wave ratio on the feedline will not approarh 1.0 on any band, if the losses in the line are low the system will be eflicient. From the standpoint of reduced feedline radiation, a center-fed system is superior to one that is end-fod, but the ond-fed arrangement is often more convenient and should not be ignored as a prosibility. The renter-fed antenna will not have the same radiation pattern as an end-fed one of the same length, excent on frequencies where the length of the antennas is a hall wavelength. The cond-fed inntenna acts like a long-wire antemat on all bands (for which it is lomger than a half wavelength), but the center-fed one amts like two antennas of half that length fed in phase. for example, if a hall-wavelongth :untennat is fod at one end, it will have a radiation pattern as shown in Fig. 1.t-16, but if it is fed in the renter the pattern will be somewhat similar to Fig. $14-\overline{7}$, with the maximum radiation broadside to the wire. fither antema is a good radiator, but if the radiation pattern is a factor, the point of feed nust be considered.

Since multiband operation of an antenna does not permit matrhing of the ferdline, some attention should be paid to the length of the feedline if convenient transmitter-coupling ar-
rangements are to be obtained. Table 14-I gives some suggested antennat and feeder lengths foi multiband operation. In general, the length of the feredlime can be other than that indieated, but the type of coupling eircuit maty enange.
(Oxen-wire line feed is recommended for an antenma of this type, simee the losses will run too high in solid-diedectric line. For low-power applifations up to a fow hundred watts, open-wire TV line is eonvemient and satisfactory to use. However. for high-power installations up to the kilowatt limit, an open-wire line with No. 14 or No. 12 conductors should be used. This cun be built from soft-drawn wire and ceramic or other suitable spacers, or it can be bought ready-made.

Antennas for Restricted Space

If the spare available for the antema is not large enough to aceommodate the length neeessaty for a half wave at the lowest frequeney to be used, quite satisfactory operation ean be secured by using a shorter antenna and making up the missing longth in the fereder system. The antoma itself maty be as short as a quarter wavelength and will radiate fairly well, although of eourse it will not be as effertive as one a half watve long. Nevertheless, such a system is useful Where oparation on the desired band otherwise would be impossible.
Thned foeders are a practieal neeessity with surh an antenna system, and a center-fed antemat will give best all-around performanee.

TABLE 14-I Multiband Tuned-Line-Fed Antennas			
Anterna Length ($F t$.)	reeder Length (F l.)	Band	Tupe of Coupling Circuit
With end feed:			
135	45	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Sories Parallel
67	45	$7-21$ 28	Series Parallel
With center feed:			
135	42	$3.5-21$	Parallel Series
135	771/2	3.5-28	Parallel
67	$421 / 2$	$\begin{gathered} 3.5 \\ 7-28 \end{gathered}$	Series Paralled
67	$651 / 2$	$\begin{gathered} 3.5,14,28 \\ 7,21 \end{gathered}$	Paralled Series
Antenna lengths for end-fed antennas are approximate and should be rut to formula length at favorite oforating frequeney. Where parallel tuning is specified, it wild be necessary in some cas('s to tap in from the ents of the coil for proper loasling - see Section 13 for evamples of antenna couplers.			

Fig. 14.19-Practical arrangement of a shortened antenna. When the total length, $A+B+B+A$, is the same as the antenna length plus twice the feeder length of the center-fed antennas of Table 14-1, the same type of coupling circuit will be used. When the feeder length or antenna length, or both, makes the sum different, the type of coupling circuit may be different but the effectiveness of the antenna is not changed, unless $A+A$ is less than a quarter wovelength.
With end feed the feeder currents lecome biadly unthatanced.

With centor ferd, practically any romvenient length of antenna can be used. If the total length of antenna plus twire feedlime is the same as in Table $1+1$, the type of tuning will be the same as stated. This is illustated in Fig. 14-19). If the total length is not the same, different funing conditions can be expereded on some bamds. This should not be interpreted as a fault in the antenna, amd any tuning sustem (sorios or parallol) that works well withont any trace of heating is guite satisfactory. Ileating may result when the taps with parallel tuning are made too chose to the renter of the coil - it can often be corrected by using loss total inductance and more capacitance.

Bent Antennas

Sine the fiold strongth at a distance is proportional to the current in the antemm, the high-eurvent part of at dipole antemat (the center quarter wave, approximately) dows most of the radiating. Advantage can be taken of this fact when the space available dons not permit buideng an antennat a half-wave long. In this aise the ends maty be bent, wither horizontally or vertically, so that the total length equals a hatif wave, "ven though the staightaway horizontal length may be as short as a quarter wave. The operation is illustrated in Fig. 1+20. Such an antenna will tre a some what better radiator tham a quarter wavelength antenna on the lowest fre-

Fig. 14-20-Folded arrangement for shortened antennas. The total length is a half-wave, not including the feeders. The horizontal part is made as long as convenient and the ends dropped down to make up the required length. The ends may be bent back on themselves like feeders to cancel radiation partially. The horizontal section should be at least a quarter wave long.
quency, but is mot so desirable for multiband operation beranse the ends play an increasingly important part as the freguency is rased. The performance of the sustem in such a ease is difficult to prodict, espocially if the ends are vertical (the most convenient arrangement) bexause of the complex combination of horizontal and vortical polarization which results as well as the dissimilar directional characteristics. However, the fact that the radiation pattern is inc:upable of predietion does not detract from the general usefuluess of the antemas. For one-band operation, end-hading with eoils (i) feet or so in from cach end) is practical and efficient.

"Windom" or Off-Center-Fed Antenna

A multiband antomat that anoyed considerable popularity in the $10: 3$) is the "off-e enter foed" or "Windom." named after the amateur who wrote a eomprohonsive artioke about it. Shown in Fig. 1+21. 1 , it consists of a half wavelength antemat on the lowest-frequerere hand to be used, with a simple-uire foreder connereded 1 the off center. The antemna will operate satisiatorily

Fig. 14-21-Two versions of the off-center-fed antenna.
(A) Single-wire feed shows approximately 600 ohms impedance to ground and is most conveniently coupled to the transmitter as shown. The pi-network coupling will require more capacity of C_{1} than at $C_{2} . L_{1}$ is best found by experiment-an inductance of about the same size as that used in the output stage is a good starting point. The parallel-tuned circuit will be a tuned circuit that resonates at the operating frequency with L and C close to those used in the output stage. The tap is found by experiment, and it should be as near the top of L as it can and still give good loading of the transmitter.
(B) Two-wire off-center feed uses 300 -ohm TV line. Although the 300 -ohm line can be coupled directly to some transmitters, it is common practice to step down the impedance level to 75 ohms through a pair of "balun" coils.

Trap Antennas

on the even-hamonic frequencies, and thus a single antenna can be made to serve on the 80-, $40-, 20$-, and 10 -meter bants. The single-wire ferder shows an impedance of approximately 600 ohms to ground, and consequently the antemat coupling sustem must be capable of matehing this value to the transmitter. it tapped parallel-tuned rircuit or a properly-proportioned pi-network coupler is generally used. Where TVI is a problem, the antema coupler is required, so that a low-pass filter can be used in the connecting link of comxial line.

Alhough theoretioully the faed line can be of any length, some length will tend to give trouhe with "too much r.f. in the shatk," with the consequence that r.f. sparks can be drawn from the transmitter's metal cabinet and/or v.f.o. not's will develop serious modulation. If surh is found to be the casc, the feeder length should be changed.

A newer version of the offerenter-ferd antenna uses : 3 (0)-ohm TV T'win-Lead to foed the antenna, as shown in Fig. 14-2113. It is clamed that the antennt offors a good mateh for the 300 -ohm line on four bands and, although this is more wishful thinking than artual truth, the system is widely used and dones work satisfactorily. It is subjert to the same ferd line length and "r.f.-in-the-shace"" troubles that the single-wire version enjoys. However, in this case a patir of "hahun" eoils can be used to step down the impedance level to 7. 5 ohms tund at the stme time alleviate some of the feed line troubles. This antemna system is popular among amateurs using multiband transmitters with pi-network-tuned output stages.

With either of the off-renter-fed antenna systems, the feed line should run away from the antennat at right angles for as great a distance as possible bofore lending. No sharp bends should be allowed anywhere in the line.

Multiband Operation with Coaxial Line Feed

The proper use of eobxial line requires that the standing-wave ratio be held to a low value, preferably below $2: 1$. Sinee the impedane of an ordinary :untenna changes widely from hand to band, it is not possible to feed a simple antema with coaxial line and use it on a number of hands without tricks of some kind. The single exeeption to this is the use of $\overline{\mathrm{j}}$-ohm coaxial line to fred a T-Me. half-wave antenna, as in Fig. 1.f-19: this antenna can also be used on 21 Me. and the s.w.r. in the line will not run too high.

One multiband antenna system that can be used by anyone without much trouble is shown in Fig. 14-22. Here separate dipoles are connected to one ferdine. The T-Mre. dipole also serves on 21 Me. A low s.w.r. will thpear on the ferdine in each bind if the dipoles atre of the proper length. The antennat system can be built by suspending one set of elements from the one above, using insulator-terminated wood spreaders about one foot long. An alternative is to lot one anterna droop) several fert under the other, bring ropes attached to the insulators back to a eommon sup-

Fig. 14-22-An effective "all-band" antenno fed with a single length of coaxial line can be constructed by joining several half wavelength antennas at their centers and feeding them at the common point. In the example above, a low s.w.r. will be obtained on $80,40,20$ and 15 meters. (The 7-Mc. antenna also works at 21 Mc .) If a 28-Mc. antenna were added, 10 -meter operation could also be included.

The antenna lengths can be computed from formula 14-B. The shorter antennas can be suspended a foot or two below the longest one.
port point. It has been found that a separation of only an inch or two between dipoles is satisfactory. By using a length of the Twin-Lead used for folded dipoles (one Copperwedd conductor and one soft-(drawn), the strong wire can he used for the low-frequency dipole. The soft-drawn wire is then used on a higher hand, supported by the solid dielertric.

A vertical antenna can be operated on several bands and fed with a singte length of coaxial line provided the antenna is no longer than 0.6 wavelength at the highest frequency and that a suitable matching network for earh band is used at the base. A good radial or ground system is required. The matehing sections can be housed in weatherproof box and changed manually or hy stepping relays; their form will vary from parallel-tuned cireuits to L seetions. (See IIcCoy, QST, Decemher, 1955, for deseription of L -section eoupler.)

Multiband "Trap' Antenrias

Another approath to the problem of multiband operation with a single untuned feed line is the use of parallel-tuned cireuits installed in the antenna at the right points to "divorce" the remainder of the antenna from the center section (part fed by cotwial lime) as the transmitter is changed to a higher-frequency band. This principle of the divorcing circuits is utilized in a commercial "all-hand" vertical antennt, aud a 5 -band kit for horizontal antennas is also available commercially. The divoreing cireuits are also used in several commercial multiband beams for the $1 \pm$-, 21- and 28-Me. bands.

The moltiband antemat system shown in Fig. 14-23 may be of interest to the ham who wishes to work on several hands but doesn't have sufficient spare for an 80-meter antenna and consequently is limited to 40 meters and below. (Λ five-band antenna requires more than a 100 -foot spam; see (irvenberg, (SNT, Octoher, 1956.)

On to meters the traps serve as inductors to load the system to 7 Me. On 20, the traps (resonant to $1+4.1$ Mc.) divorce the 13 seetions from the

Fig. 14-23-Sketch showing dimensions of a trap dipole covering the 40-, 20 -and 10 -meter bands. The total span is less than 60 feet.
antenna proper. On 28 Mc, the entire antemat becomes approximately a $5 / 2$-radiator.

As shown in Fig. If-2:3, "ach trap is litcrally built around an "cgg" or "strain" insulator. [n this type of insulator, the hole at one end is at right angles to the hole at the other end, and the wires are fastemed as in Fig. 11-25. These insulators have greater comperssive strength than tensile strength and will not permit the antenna to fall should the insulator break, since the two interlooped wires prevent it. There is ample space within the inductor for both the insulator and raparitor. "The plastie covers arre not essential but are considered desirable Inecause they provide merhatnical protection and prevent the aternmulation of ice or soot and tars which may not wash off the traps when it rains.

Whectrically, each trap consists of a $2.5-\mu \mu \mathrm{f}$. caparitor shunted by $1.7 \mu \mathrm{~h}$. of inductance. A Centralab acermie trans:nitting abpucitor 8iat25%, rated at 15,000 volts d.e., is shown and will sately handle a kilowatt. Other eromic caparitors bated at approximately foon volts wrould be satisfactory, as well ats cheaper. The indurtors are made of No. 12 wire, 2 6 inches in diameter, 6

One maty wish to choose a different frequency in the 20-meter bind for which optimum results are desired: for example, 14.05 Mr . for e.w. porattion, 14.25 Mc , for phone operation, or perhatps 14.175 Me, for general coverake. In ante case, the number of inductor turns is adjusted incordingly.

Trap Adjustment

As a preliminary stej, loops of No. 12 wire arre fitted to one of the eger insulators in the nommal manner (see lig. 14-25), exept that after the wraps are made, the end leads are snipped off elose to

the wraps. A matacitor is then plared in position and bridged with short leads ancoss the insudator and soldered sulficiontly to provide demporary: support. The combination is then slipped inside about 10 thens of the imburtor, one cond of which should be soldered to an insulator-eapacitor load. Adjustment to the resonatht frequence can now proeed, using at grid-dip moter.

Compling betwern the g.d.o. and the trap should be very lowse. To insure arearater, the station reaceiver should be used to chark the g.d.o. frequencer The inductence should loe redued 'í turn at at time. If one is careful, the resomat frequenter eath easily low set to within a few kiloravers of the chasen figume.

The reason for suipping the emd latuls chose to the wraps and the inelusion of the boops through the egy insulatore san becomes apparent. The resomant frequency of the ceaparitor and inductor alone is redured ahout 20 ke , per ind of end lead length and about 350 kr . be the insulator loops. The latter add :upproximately $2 \mu \mu \mathrm{f}$. to the fixed caparitor value and arerount for the total of 27 $\mu \mu$. shown in Fig. 14-2:3.

Assembly

Ifaving determined the exact number of inductar turns, the trap is taken aport and reassembled with leads of any ronvenient length. One maty, of course, commert tho antire lengeths of serfions A and B to the trap at this time, if desired. 13nt, if more convenient, a foot or two of wire can be fastented and the remaining lengthes soldered on just lefore the antemat is ratised.

The protertive covers are most readily formed be wrapping two turns (plus an overlap of 1 g inch) of 0.02(1-inch pulystyrene or lucite sheeting anound at 3 -inch plastie disk held at the wonter of the evilinder so formed. The lengeth of the cover should be about 4 inches. I very small amomet of plastic solvent (a cohesive remont that actually softens the plastio surfaces) should then be applied under the edes of the overlap and the joint held firmly for about

Fig. 14-24-The 14-Mc. trop is enclosed in a weatherproof cover made of plastic sheet. The ceramic capacitor and strain insulator are inside the coil.

Fig. 14-25-Method af cannecting the antenna wire to the strain insulatar. The antenna wire is cut aff clase to the wrop before checking the resonant frequency of the trop.
two minutes to insure a strong, tight seal. The disk is pushed out and the inmer seam of the sherting seriled.

The trap is then phaced in the phastice eylinder and the end disks marked where the antemat wires are to pass through. .Ifter drilling thase holes, the disks are slipped over the leads, pressed into the ends of the cerlinder and a smatl amount of solvent applied to the periphery to oltatin a good seat. Some air (ein flow in and out of the trap) through the antennat-wire holes, and this will prevent the acommulation of mondensation.

Length Adjustment

Standing-wave ratios are not uniform throughout the band or bands for which an antemat is designed. In at trap antermat, the choier of frequeneries for last performathere is atompromise. After making the traps resonant at 14.1 Me., sertions A are adjusted for resonamere. sertions

B are then adjusted for resonance at approximately $\overline{7} .2$ Mr. For the dimensions shown, with the antenna alrout 250 ft . above street level and 35 ft . above electrical ground, an s.w.r. of virtually 1 to 1 was obtained at 7.2 Me., with maximums of 1.3 and 1.1 at 7.0 and 7.3 Me., respectively. In the 20 -meter band, the s.w.s. was also 1 to 1 at 14.1 Me ., 1.1 at 14.0 Mr . and 1.3 at 14.3 Me . In the 10 -meter hand. the s.w.r. was 1.3 to 1 at 28.0 Mc ., 1.1 at 28.4 Me ., 1.5 at 29 Mc ., and only 2.4 at the upper extreme of the band. The s.w.r. on 21 Mr. will be high hecause the antenna is not resonant in that band.

R(i-59/U 73 -ohm coixial rable forms the transmission line and is connected to the antenna through a Continentel Pelectronies \mathbb{d} Sound Co. "Dipole Dri-Fit Connector," After connecting the cable and antenna wires, the connereor should be coated with several lavers of insulating vamish to make certain that the jundtion is watertight.

Vertical Antennas

I vertieal guartor-wavelongth antennat is oftom used in the low-frequeney amateur bathes to ohtain low-angle radiation. It is also used when there isn t enough room for the supports for at horizontal antennat. For maximum effectiveness it should be loceted free of mearby objerets and it shoulat be operated in conjunction with a good gronnd system, but it is still worth treing where these ideal eonditions ramot be obtained.

Four typiome examples and suggested medhods for ferding a vertioal thentenat are shown in lig. 11-26. The anternat maty be wire or tubing suppparted he wood or insulated guy wires. When fubing is used for the antemat. or when guy wires (broken up by iusulators) are used to reinfore the structure. the length given ley the formula is likely to lo long bis a few per eront. A elacek of the standing-w:we ratio on the line will indieate the frequency at which the s.w.r. is minimum, and the antenma length ran be adjusted areordingly.

A geod ground connertion is meressary for the most affertive operation of at vertiad antemmat (other than the ground-plane type). In some cases a short connection to the cold-water sustem of the house will be adecpuate. But maximum performane usually demands a separate gromed sustem. A single f- to \mathfrak{i}-foot ground rod driven into the earth at the base of the antennat is usially not sufficient, unless the soil has exerptional condurtivity. A minimum ground system that ean be depended upon is f to 12 quarter wavelength radials laid out as the spokes of a wheed from the base of the antenna. These radials can
be mate of heavy aluminum wire, of the type used for grounding 'TV antennis, buried at least

Fig. 14-26-A quarier-wavelength antenna can be fed directly with 50 -ohm coaxial line (A) with a low standingwave ratio, or a coupling network can be used (B) that will permit a line of any impedance to be used. Ir (B), L_{2} and C_{1} should resonate to the operating frequency, and L_{1} should be larger than is normally used in a plate tank circuit at the same frequency. By using multiwire antennas, the quarter-wave vertical can be fed with (C) 150 - or
(D) 300-ohm line.

6 inches in the ground. This is normally done by slitting the earth with a spade and pushing the wire into the slot, after which the renth ran be timped down.
The examples shown in Fig. 1-1-26 all morgion an antemas insulated from the grouma, to provide for the feed point. A yroumbed tower or pipe cath be used as a radiator ber employing "shumt ferd," which consists of tapping the inner conductor of the coaxial-line ferd up on the tower until the best matrh is ohtainod, in much the stme manner as the "gammat mateh" (deseribed later) is used on a horizontal element. If the antennt is not an clectrical quater wavelength long, it is neressary to tune out the reactame by adding eatpacity or inductance botwen the coaxial line and the shunting conductor. A motal tower supporting :l 'TV antenna or rotary beam can be slumt-fed onlyif all of the wires and leads from the supported antemat run down the erenter of the fower and underground away from the tower.

- THE GROUND-PLANE ANTENNA

A ground-phane antennat is a verticul quarterwavelength antemna using an artificial motallic ground, usually consisting of four rods or wires perpendieular to the antenna and extending radially from its base. linlike the quater-wavelangth vertical antennats without an artificial ground, the ground-plane antenna will give low-ange radiation regardless of the height above actual ground. Ilowever, to be atrue groumd-platur athtemat, the plane of the radials should be at least a quaterer wavelengeth above gromed. Wespite this one limitation, the antemna is useful for 1)N work in any hand below 30 Mr.

The vertical portion of the ground-plane antomar can be made of self-supported alominum tubing, or a top-supportad wire depending upon the neressary length and the available supports The radials are also made of tubing or heavy wire depending upon the available supports and nowsstry tengths. They noed not be exatly symmetrieal about the lase of the vertieal portion.

The radiation resistance of a ground-plane ant temna varies with the diameter of the vertiowl element. Since the ratiation resistince is usually in the vicinity of 30 to 32 ohms the antennat eat be fod with 7 ofohm roasial line if a quarter wayo length matehing sertion of 50 -ohm coaxial line is used between the line and the antennat. (See "(Quarter-Wiave 'Transformers" in this chatpter.)

For multiband operation, a ground-plane antenna can be fed with tuned open-wire line.

Three-Band Ground-Plane Antenna

A three-hand ground-plane antenna using wire
elements and fod with coaxial line is shown in Fig. 11-27. The builder (KiblliJ) elected to mount it on top of a 3 l-foot langth of galvanizend iron pipe, simere a gromed-plane antemata elose to the gromed is not a groumel-plane antemat at all. Four lö-foot "drooping radials" form the ground plane and doublo as guy wires. These four wime are fastened to a pipe flange at the top of the mast. At one point on the mast the pipe sections are joined by it T fitting, which provides a convenient point for bringing out the $12\left(i-8 / 1^{\circ}\right.$ fered line. If it is more convenient to bring out the cons at the hase of the mast, one reun eliminate the " 10 fitting and use an ordinary coupling.

A cane fishing pole supports the three separate vertical elements. These clements, made of No. 12 wire, are taped to the pele avery three inches with Scoteh celectrical tape. The bottomend of the polde is jammed tight into the upper end of the support pipe and the cosxial lime is brought out of the pipe through at small hole just below the botiom of the flange. The inner comeluctor of the cotxial line is soldered to the jumetion of the three vertiaal elements and the brad of the rowsial line is conmeded to the pipe flange. Anyone worrying about the insulating ability of a cane pole ean forget it ; it is heing used at a low-impedance point.

Fig. 14-27-The three-band ground-plane antenna uses wire elements. Vertical elements are taped to a cane pale; the four radials also serve as guy wires. The radials "droop" a little, making a 40-degree angle with the supporting 1 -inch pipe.

Antennas for 160 Meters

Results on 1.8 Me. will depend to a large extent on the antenna system and the time of day or night. Almost any random tong wire that can be
tuned to resonance will work during the night but it will generally be found very ineffertive daring the day. A vertical antenna - or rather an an-

Antennas for 160 Meters

tenna from which the racliation is predominantly vertically polarized - is probably the best for 1.8-Me. operation. A horizontal antomat (hori-zontally-polarizad radiation) will give bettor results during the night than the das. The verti-cally-polarized radiator kives at stome ground wave that is elfartive dety or night, and it is to bo preforred on 1.8 Me.
The low-angle radiation from a horizontal antomea $1 / 8$ or $1 / 4$ wavelongth alowe ground is almost insigniliomat. Any reasomable hoight is smatl in terms of wavelength, so that a horizontal antemna on 180 moters is a poor ratiator at angles useful for long distancos ("long," that is, for this band). Its (hiof usofulness is over relatively short distaners at night.

Bent Antennas

Since ideal vertical antemas are generally out of the question for praction amaterar work, the best compromise is to bend the antemna in such a way that the high-current portions of the antemme rum vortially. It is advisable to phane the anteman so that the highest currents in the antemat oreur at the highest points above amblabl gromal. Two antematsors tems designed along these lines are shown in Fig. 14-28. Tlar anternat of Fig, 14-2xi3 uses a full half wavelength of wire but is bent so that the highterment portion mans vertically. The horizontal portion rumting to $L_{1} \mathrm{C}^{*}$ should rum 8 or 10 fere above ground.

Grounds

A good grommd connertion is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 50 to 100 foed from the contral commertion point. The use of any lass than six or eight radials is intulvisathe.

If the soil is good (not rocky or satndy) and generally moist, a low-resistance eommertion to the cold-water pipe system in the house will often serve as an adeguate ground system. The eonnection should be mate close to where the pipe enters the ground. and the surfare of the pipe should be soraped cloan before tightening the ground elamp around the pipe.

A 6- or 8 -foot length of 1 -inch water pipe, driven into the soil at a point where there is ronsiderable natural moisture, fan be used for the ground connection. Three or four pipes driven into the ground 8 or 10 feet apart and all joined

Fig. 14-28-Bent antenna for the 160 -meter band. In the system at A, the vertical portion (length X) should be made as long as possible. In either antenno system, $L_{1} C_{1}$ should resonate at 1900 kc ., roughly. To adjust L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operatiag frequency, then connect it to the antenna system and adjust L_{2} for maximum loading. Further loading can be obtained by increasing the coupling between I_{1} and the link.
together at the fop with heavy wire are more olforetive that the single pipe.

The use of a eounterpoise is remommended where a buried system is not practicable or where a pipe ground camot bo mate to have low resistathe beretuse of poor soil conditions. A comberpoise consists of a mumber ol wires supported from 6 to 10 feet above the surface of the ground. (ienerally the wires are spaed 10 to 15 feot apart and lowated to form a square or polygomal configuration under the vertical portion of the antema.

Long-Wire Directive Arrays

As the length (in wavelengths) of an antemat is increased. the lohes of maximum rudiation make a more anute angle with the wire. Two long wires can be combined in the form of a horizontal "V", in the form of a horizontal rhombus, or in parallel, to provide a long-wire directive arraty. In the " V " and rhombic antennas the main lohes reinfore along a line hiserting the turnte angle betwern the wires: in the paralled antemat the reinforement is along the line of the lobe. This reinforcement provides troth gain and direetivity along the line, since the lobes in other direetions tend to cancel out. In general, the power gain
depenels upon the length in wavelengths of the wires, assuming that the proper configuration for a given lengt hand hoight above ground is used.

Ikhombic and "V" antennas are normally bidirectional along the bisector line mentioned above. They can be made undirectional by terminating the conds of the wires away from the feed point in the proper value of resistance. When properly terminated, "V" and rhombic antemats of suflicient length work well over a throw-torone or four-to-me frequency range and hence are usoful for multiband operation.

Antemat gains of the order of 10 to 15 dh. can
be obtained with properly-eonstrueted long-wire atrays. However, the patterm is rather sharp with gains of this order, and rhombic and "V" beams are not used hy anateurs as commonly as
they were, having been displaed by the rotatable multi-rbement lagi beam. Further information on these antemnas ran be fomm in the ARRL . 1 ntraill laonk.

Beams with Driven Elements

By eombining individual half-wave antemats into an array with suitable sparing betwen the antennas (ralled elements) and fording powor to them simultaneously, it is possible to make the radiation from the elements add up along at single direction and form a beim. In other direetions the radiation temels to ancel, so a power gatin is al)tained in one direetion at the expense of radiation in other direetions. There are several methods of arranging the clements. If they ate strung end to end, so that all lie on the same straight line, the elements are said to las collinear. If they are paralled and all lying in the same plane, the cldments are said to be broad-side when the phase of the eurrent is the same in all, and end-fire when the currents ture not in phase.

Collinear Arrays

Simple forms of collinum arrays, with the eurrent distribution, are shown in Fig. $1 \cdot 4-2!$.

Collinear artass maty mounted aither horizontally or vertically. Horizontal mounting gives increased horizontal dirertivits, while the vertiend direetivity remains the same as for a single doment at the same height. Vartieal momenting gives the same horizontal pattern as a single element, but conerentrates the radiation at low angles.

Broadside Arrays

Parahled antemna elements with curents in phase may be combined as shown in Fig. 1.t-30 to form a broadside arme, so hamed beratuso the direstion of maximum ratiation is broadside to the plane containing the antennas. Again the gatin and divertivite depend upon the sparing of the elements.

Broadside itribs mat be susproded either with the elements all vertiral or with them horizontal and one atowe the other (stacked). In the former case the horizontal pattern becomes quites shate,

Fig. $14-29$-Collinear antennas in
phase. The system at A is knawn as
"two half waves in phase" and has a
gain af 1.8 db . over a half-wave an-
tenna. By lengthening the antenna
slightly, as in B, the gain can be in-
creased ta 3 db . Maximum radiation
is at right angles to the antenna. The
antenna at A is sametimes called a
"double Zepp" antenna, and that at B
is known as an "extended double
Zepp."
while the vertieal pattern is the same as that of one eloment alome. If the armat is suspernded horizontably, the horizontal pattern is equivalent to that of one edement while the vertiond pattern is shatremed, giving low-ingle radiation.

Broadside arrates may low foed dither by tumed opern-wire lines or through quatrer-wave matehing soretions and flat lines. In ligg. 11-3013, note the "rrossing over" of the phasing seetion, which is neeressatry to bring the elements into proper

Fig. 14-30-Simple broadside array using horizontal elements. By making the spacing S equal to $3 / 8$ wavelength, the antenna af A can be used at the corresponding frequency and up to twice that frequency. Thus when designed for 14 Mc . it can also be used on 21 and 28 Mc . The antenna at B can be used on only the design band. This array is bidirectional, with maximum radiation "broadside" or perpendicular to the antenna plane (perpendicularly through this page). Gain varies with the spacing S, running from $21 / 2$ to almost 5 db . (See Fig. 14-32).

(A)

Fig. 14-31-Top view of o horizontal end-fire array. The system is fed with on open-wire line at x and y; the line can be of.any length. Feed points x and y are equidistant from the two insulotors, and the feed line should drop down verticolly from the antenna. The gain of the system will vary with the spacing, as shown in Fig. 14-32, and is a maximum at $1 / 8$ wovelength. By using a length of 33 feet and a spocing of 8 feet, the ontenna will work on 20,15 and 10 meters.
phase relationship.

End-Fire Arrays

Fig. It-3! shows a pair of paratled half-watve elements with furrents out of phases. Phis is known as an end-fire arrat borause it radiates bust along the plane of the antembas, ats shown.

The cond-fire arraty maty be used ather vertiablly or horizontally (olements at the same hoight), and is well adtupted to amateur work berause it gives maximum gain with relatively dose celement spareing. Fig. $11-32$ shows how the gatin varies with sparing. lind-fire clements may be combined with additional collinear and broadside eloments to give a further increase in gatin and direretivity.
bit her tuned or untuned limes maty be used with this type of array. Intumed limes preterathy are matehad to the antemat throngh a guater-wave

Fig. 14-32 - Gain vs. spocing for two porallel half-wave elements combined os either broodside or end-fire arroys.
matching section or phasing stub.

Combined Arrcys

Broudside, colline:ur and and-fire arreps maty be combined to give both horizontal and vertiest direetivity, as well as additional gatn. The lower anglo of radiation resshting from stakeking elemonts in the wertioal plowe is desirable at the higher frefuencies. Ia getaral doubling the numbor of elcments in :marrey biacking will raise the gatin from 2 to + dth.

Although armass catu be fod at one end as in Fig. 1.f-30h, it is not esperially desirable in the ease of harge arrays. Botter distribution of energy between elements, and heme better over-atl performance will result when the foeders are attamed as nearly as possible to the center of the array.

A four-element arme, known as the "lazy-H" antenna, hats been quite frequently eised. This artangement is shown, with the feed point indicated, in lig. 1-3i3. (Compatre with Fig. 14-3013). For best results, the bottom sertion should be at least a half wavelength above ground.

Fig. 14-33—A four-element combinotion broodsidecollineor orroy, popularly known as the "lozy-H" ontenno. A closed quarter-wave stub may be used of the feed point to match into an untuned tronsmission line, or tuned feeders may be ottoched at the paint indicated. The gain over o holf-wove ontenno is 5 to 6 db .
It will usuatly suffiee to make the length of each eloment that givell b y E (fuations 14-B or 14-C. The phasing lime between the patalled elements should be of oprom-wire construction, and its length setu bo celleulated from:

Lruyth of half-uruw lime (feet) =

$$
\begin{equation*}
\frac{180}{\text { Frey. (11\%) }} \tag{14-H}
\end{equation*}
$$

Dxample: A half-wavelength phasing line for 28.8 Me , would be $\frac{480}{28.8}=16.66$ feet $=16$ feet 8 inchas.
Thes spuing between elements can be made cqual to the length of the phasing line. No sperial adjustmonts of line or clement length or spating are ureded, provided the formulas atre followed closely.

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antennat artus previously deseribed are bidirectional; that is, they will radiate it directions both to the "front" and to the "batrk" of the antema system. If radiation is wanted in
omly one direetion, it is meressary to use difierent element arrangements. In most of the amangements the additional elements reecive power by induetion or radiation from the driven element generally called the "intemat," and reradiate it

Fig. 14-34-Gain vs. element spacing for an antenno and one parasitic element. The reference point, 0 db ., is the field strength from a half-wave antenna alone. The greatest gain is in direction A at spacings of less than 0.14 wavelength, and in direction B at greater spacings. The front-to-back ratio is the difference in db. between curves A and B. Variation in radiation resistance of the driven element also is shown. These curves are for a self resonant parasitic element. At most spacings the gain as a reflector can be increased by slight lengthening of the parasitic element: the gain as a director can be increased by shortening. This also improves the front-to-back ratio.
in the proper phase relationship ta arheve the desired effert. These elements are called provesitio eloments, as contrasted to the driven elements Which receive power directly from the transmitter through the transmission line.

The parasitio clement is called a director when it reinforces radiation on a line printing to it from the antennit, and a reflector when the reverse is the case. Whother the parasitio chement is a divector or reflector depends upon the parit-sitic-olement tuning, which usuatly is adjusted by changing its length.

Gain vs. Spacing

The gain of an :untrona with parasitio elements varios with the spacing and tuning of the cloments and thus for any givern spaceing there is a tuning condition that will give maximum gatn at this spareing. The maximum front-to-hauck ratio soldom if ever, oceurs at the stume eondition that gives maximm forward gatin. The impedance of the driven element also varies with the turing and sparing, and thus the antomat system must be tuned to its final rondition before the mateh betwoen the line and the antemnat cath be comphoted. However, the tuning and matehing may interlock to some extemt, and it is usually neeressatry to run through the adjust ments severab times to insure that the best possible tuning has beon obtatined.

Two-Element Beams

1 2-element bram is useful where spare on other considerations prevent the use of the larger structure required for a 3 -element bam. The general practice is to tune the parasilie clemont as a reflector and space it about 0.15 wave-
lengith from the driven clemont, although some suecessful ammonas have beron built with 0.1-
 clement sparing for a 2 -eloment antemata is given in lig. 1f-3t, for the spereial ease whore the parasitic element is resomant. It is indimative of the performatiee to he experted under maximumgain tuning comditions.

Three-Element Beams

Where room is atvailable for an over-ill length greater than 0.2 waveloligth, a : 3 -rlement beam is proferable to one with only 2 clements. Once the overr-all hengeth hats beroll decided upon, the curves of big. 1--3:3 can be used to determint the proper spacing of director and reflector. If, for example, the distane betwern director and redlector ean be mate 0.t wavelongth. Fige It-35 shows that it spacing of (0.1:5)-0.2518 gives : katin of 7.8 dh., and a spacing of 0.251)-0.1512 givers a gain of 8.2 dh. Onviously the latter is the better choice, allthough the practical difference might be diffient to me:sures, and practical (merdanical) considerat tions might call for using the more batanced $0.2 \mathrm{D}-0.2 \mathrm{R}$ consiruction amd a gain of 8.1 db .

Fig. 14-35-Gain vs. element spacing for 3-element beams using a driven element and a director and a reflector. The $0-\mathrm{db}$. reference level is the field strength from a half-wavelength antenna alone. These curves are for the system funed for maximum forward gain.

The element spacing shown is the fraction of wavelength determined by $\frac{984}{f(\mathrm{Mc} .)}$. Thus a wavelength of 14.2
Mc. $=98414.2=69.3$ feet. A spacing of 0.15 wavelength of 14.2 Mc . would be $0.15 \times 69.3=10.4 \mathrm{feet}=$ 10 feet 5 inches.

When the over-ill length has been decided upon, and the element spating has been determined, the clement lengths can lo found by reforring to Pig. 11-3ki. It must heremombered that the fongthe determined bey these chates will vary slightly in actual practiore with the element diamoter and the methot of supporting the eloments, and the tuning of a beam should always be chereked after installation. However, the lengths obtained by the use of the charts will he

Rotary Beams

close to correct in pratudatly all cases, and they ran he used without checking if the beam is dillicult of ancess.

The preforable method for chorking the be:m is by motus of a field-strengh meter or the

Fig. 14-36-Element lengths for a 3-element beam. These lengths will hold closely for tubirg elements supported at or near the center. The radiation resistance (D) is useful information in planning for a matching system, but it is subject to variation with height above ground and must be considered an approximation.

The driven-element length (C) may require modification for funing out reactance if a T - or gamma-match feed system is used, as mentioned in the text.

A 0.2D-0.2R beam cut for 28.6 Mc . would have a director length of $45228.6=15.8=15$ feet 10 inches, a reflector length of $49028.6=17.1=17$ feet 1 inch, and a driven-element length of $470.5,28.6=16.45=$ 16 feet 5 inches.

S-meter of a communieations receiver, used in conjunction with a dipole antenna located at featis 10 watrolengths away and as high ats or higher than the beam that is being cheoked. A fow watts of power fed into the antenna will give a usoful signal at the observation proint, and the power input to the transmitter (and hence the antemat) should the hedd constant for abll of the readings, Beams tuned on the ground and then lifted into plawe are subject to tuning crrors and camot be depended upon. The impedatuce of the driven eloment will vary with the height above ground, and good pratice dictates that all final matehing botween antennat and line be done with the antenna in place at its normal height above ground.

Simple Systems: the Rotary Beam

l'wo- and 3-element systems are pepular for rotary-heam antenas, where the entire antenna systom is rotated, to permit its gain and direetivity to be utilized for any compass direction. They may be mounted either horizontally (with the plane containing the elements paralled to the earth) or vertically.

A 4 -element beam will give still more gain thith it 3-element one, provided the support is sufficient for about 0.2 wavelength spacing betwern elements. The tuning for maximum gain involves many variables, and complete gain and tuning data are not avaitable.

The elements in close-spaced (less than one(fuarter wavolength element spabing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A conduetor of large diameter not only has less ohmie resistance but also has lower Q; both these factors are important in elose-spaced arrays because the impedance of the driven element usually is quite low compared to that of a simple dipole antemnia. With 3 - and 4 -element closc-spaced arratys the ratiation resistance of the driven element may be so low that olmie losses in the conductor can consume an appreciable fraction of the power.

Feeding the Rotary Beam

Any of the usual methods of feed (described later under "Matching the Antenna to the Line") ean be applied to the driven element of a rotary beam. Fiuned feeders are not recommended for lengths greater than a half wavelength unless open lines of copper-tubing conductors are used. The popaliar choices for feeding a beam are the gammat match with series capacitor and the 'T match with series capacitors and a half-wavelength phatsing sertion, as shown in lig. 14-37. Thase mothods are preferred over any others becanse they permit adjustment of the matehing and the use of coaxial line feed. The variable (apmators can be housed in small plastice cups for watherprofing: recoiving types with chose sparing can be used at powers up to a fow hundred witt s. Maximum caupurity required is usuably $140 \mu \mu \mathrm{f}$, at 14 Me. and proportionately less at the higher frequencies.

Fig. 14-37-The most popular methods of feeding the driven element of a beam antenna are (A) the gamma match and (B) the T match. The aluminum tubing or rod used for the matching section is usually of smaller diameter than the antenna element; its length will vary somewhat with the spacing and number of elements in the beam. The coaxial line in the phasing section can be coiled in a 2- or 3-foot diameter coil instead of hanging as shown.

If physically possible, it is better to adjust the matehing devire after the antema hats been installed at its ultimate height, sinere a match made with the antema near the gromed may not hold for the same antema in the air.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 kc . at 28 Mc . However, the antenna
can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

The use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequence, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to eombine parasitic elements with driven clements to form arrays composed of collinear driven and parasitic dements and combination broadside-collinear-parasitic eloments. Thus two or more collinear elements might te provided with a collinear reflector or director set, one parasitie element to eath driven element. Or both directors and reflectors might. be used. I broudside-collinear array can be treated in the same fashion.

The Quad Antenna

The "roubical quad" antemna shown in Fig. 14-38 uses a square loop driven element and it square loop parasitice reflector. The spateing is usually betweren .ts and .20 wavelength and it is not critical, sinere the reflector element is tumed for maximum gatin after installation,

Quad antennas are popular beeanse they are lightwoight and have low wind resistaner. Their gain has bern measured at 8 dh. or more. A $14-$ Mr. guad will have approximately a 17 -foot "wing span" and aboom length of aibout 12 freet, and it can be built light anough to be turnod by a good ITV rotator. Suggestions for the construction of a quad antematare given in fig. 14-39. The design was intonded to be as light ass possible and while the antemat will whip some in the wind, this should not cause any noticeable change in

Fig. 14-38-Two dif= ferent arrangements of cubical quad antennas.

Quad Antenna

Fig. 14-39 - End and side views of a quad. Upper insert shows method of fastening antenna wire to support arms. Center insert shows construction of support-arm mounting bracket. Lower insert shows method of attaching feed lire and stub to the center insulators. Two small egg insulators are used, fastened to end of lower boom as shown with a small nail.

$$
\text { The length of one side is found from } L \text { (feet })=\frac{251}{f(\mathrm{Mc.})}
$$

loading or on recrived signals. There is nothing reitical in the anstruetion exerpt the length of the wire elements. Onc quad used I $\times 2$-inch pine for the support arms but this beam was murh too heaver and blew down in the first light wind. The support arms shown in the drawing atre ordinary hamboo fishing poles about iff feet long, with the butt ends wrapped with friction tape to prevent the metal monnting bracket and wire from biting into the bamboo. These arms are fastened to the monnting brackets with soveral furns of No. 11 galvanized wire, and the far ends are not trimmed until the antenma wire has lemer fastened in place. 'Two momenting brackets and eight hamboo support arms are required. 'The mounting brackets serve to hold the arms in phate and to fasten them to the end of the boom. These brackets are made by welding two 2t-inch lengths of I-inch angle iron toget her bark to hack to form a large "N" \mathbf{N} ? degrees bet ween legs, and wolding a : e-inch length of l's-inch strap iron betweren two of the lage to fasten the "x"" to the boom ond. The arms are assembled and the antemnat wire is fastened in plare before attarhing the brackets to the boom.

If the fishing poles are wedl trated with a weatherprooting eompound they will last several years. Weatherproofing eomponds are avaibable at all lumber dealers. (iet straight poles with no splits in them. No insulators are neressary, the

Fig. 14-40-A 15, 10-meter quad. Tuning stubs for the reflectors are looped back along the tie bars. Total weight of this assembly, not including the mast, is 13 pounds.
poles themselves arting as long insulators. The casiost way to monnt the antemna wie on the arms is to lay a long length of wite on the ground and mark it at the approximate quarter-wate intervals, and use the me marks to indicute where the wire fistens to the pole.

Dual and triple quads can be built for the bands 20 through 10 maters. One such antemas is shown in Fig. If-40, a dual quad for 15 and 10 meters. The same supporting st ructure is used for the two antemas, making the boom longth equal to 0.15 to 0.2 wavelengths at the lower-frequency hand.

Separate coaxial eable feed lines are brought down from the two driven dements. In a twohand quad (20/15 or $1.5 / 110$) the longth of one side is ohtained from

$$
L\left(\mathrm{fece}_{1}\right)=250 \div(\mathrm{Mc})
$$

In the case of any quat of combination of
quads, caeh quad should be tuned up separately for maximum forward gain by adjusting the stub) length on the reflereor elomont and wherking the field strength with at beothy ham. In the dual antemats that hatve beon construeded, there has been litale on ate evidence of interaterion of tuming.

Matching the Antenna to the Line

The load for a transmission line may be any devier eapable of dissipating r.f. power. When lines are used for transmitting applications the most eommon type of load is an intennt. When a transmission line is conneeted betwern an antenna and a receiver, the receiver input cireuit (not the antenna) is the load, beause the power taken from a passing wave is delivered to the recoiver.

Whatever the application, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristie impodanere of the line, thore will be no standing waves. If the load is not purely resistive, and/or is not equal to the line Z_{0}, there will be standing waves. No adjustments that can be made at the input end of the line can change the s.w.r., nor is it afferted be chamging the line length.
(Only in a few special cases is the load inherently of the proper value to mateh a practicable transmission line. In all other rases it is neressary either to operate with a mismateh and arerept the s.w.r. that results, or else to take steps to bring about a proper match between the line and load by means of transformers or similar devieres. Impedance-matching transformors may take a variety of physieal forms, depending on the cireumstaners.

Note that it is cesontial, if the sw.r. is to be made as low as possible, that the load at the point of connection to the transmission line be purely resistive. In general, this requires that the load be tunced to resonance. If the load itself is not resonant at the operating frequence the tuning sometimes can be accomplished in the matehing system.

- the antenna as a load

Every antenna system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be conneretel. The problem is to transform this antenna input impedance to the proper value to match the line. In this respeet there is no one "best" type of line for a particular antemat system, beeause it is possible to transform impedancos in any desired ratio. ('onsequently, any type of line may be used with any type of antema. There are frequently reasons other than impedance matehing that dictate the use of one type of line in preference to another, such as case of instathation, inherent loss in the line, and so on, but these are not considered in this seetion.

Although the input impedanee of an antenna system is seldom known very accurately, it is often possible to make a reasonably close estimate of its value. The mformation in the chapter on antennas can be used as at guide.

Matching circuits may be constructed using ordinary coils and raparitors, but are not usad very extensively berause they must be supported at the antema and must be weatherproofed. The sustems to be deseribed use linear transformers.

The Quarter-Wave Transformer or " Q " Section

As deseribed carlior in this chapter, a quarterwave transmission line may be used as an impedance transformer. Kinowing the antema impedance and the characteristic impedance of the

Fig. 14-41-" Q " matching section, a quarter-wave impedance transformer.
transmission line to be matehed, the required characteristie imperdance of a matching seetion such as is shown in lig. 13-1:3 is

$$
\begin{equation*}
Z=\sqrt{Z_{1} Z_{0}} \tag{14-I}
\end{equation*}
$$

where Z_{1} is the antenna impedance and Z_{0} is the characteristic imperdance of the line to which it is to be matehed.

Example: To mateh a folo-ohn line to an antenna presenting a 72 -ohnu load, the guarterwave matrhing seetion wonld require a characteristic impedane of $\sqrt{2: \times 600}=\sqrt{43,200}$ $=208$ ohms.

The spacings betwern eonductors of various sizes of tubing and wire for different surge impedances are givern in graphical form in the rhapter on "Transmission Lines." (1 'ith $1 / 2$-imeh tubing, the sparing in the extmple alove should be 1.5 inches for an impedance of 208 ohms.)

The length of the quarter-wave matching seetion may be calculated from

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246 \mathrm{~V}}{f} \tag{14-J}
\end{equation*}
$$

where $V=$ Velocity factor
$f=$ Frequence in Me.
Example: A quarter-wave transformer of RG-1I/U is to be used at 28.7 Mc . From the table in Section

Folded Dipoles

Thirteen, $V=0.66$.
Iength $=\frac{2.16 \times 0.60}{28.7}=5.67$ feet

$$
=5 \text { fect } 8 \text { inches }
$$

The antenna must be resonant at the operating frequener sotting the antenna length by formula is amply aceurate with single-wire antemats, but in other systems, particularly closespaced arrays, the antemathould be adjusted to resoname before the matching sertion is comerted.

When the antenna input impedance is not known are urately, it is advisable to construct the matehing sertion so that the spacing between conductors ran be changed. The spacing then may Ine adjusted to give the lowest possible s.w.r. on the transmission line.

Folded Dipoles

A half-w:ave antenna element can be made to match various line impedances if it is split into two or more parallel rondurtors with the transmission line attached at the center of only one of them. Viations forms of such "folded dipoles" are shown in Fig. 1t-42. Currents in all condurtors are in phase in a folded dipole, and since the ronductor spacing is small the folded dipole is equivalent in maliating properties to an ordinary single-condurtor dipole. Llowever, the rurrent llowing into the input terminals of the antenna from the line is the current in one ronductor only, and the entire power from the line is delivered at this value of earrent. This is equivalent to saving that the input imperdance of the antenna hats bern raised be splitting it up into two or more conduetors.

Fig. 14-42-The folded dipole, a method for using the antenna element itself to provide an impedance transformation.

The ratio by which the input impedanere of the antenna is stepped up depends not only on the number of conductors in the folded dipole but also on their relative diameters, sine the distribution of current betwen conduetors is a function of their diameters. (When one conductor is larger

Fig. 14-43-Impedance transformation ratio, two-conducfor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
than the other, as in Firg. $1+-42 \mathrm{C}$, the larger one carries the greater current.) The ratio also depends, in general, on the spacing between the conductors, as shown by the graphs of Figs. 1.t-4: and 14-4. An important sperial case is the 2-conductor dipole with conductors of equal diameter: as a simple antenna, not a part of a directive array, it has an iuput resistance close enough to 300 ohms to atford a good match to 300-ohm Twin-Lead.

The required ratio of eonductor diameters to give atesired impedance ratio using two conductors maty be oltatined from Fig. 14-43. Similar information for a 3 -conductor dipole is given in Fig. 14-44. This graph applies where all three conductors are in the same phane. The two conductors not connected to the transmission line must be equally spaced from the fed conductor, and must have equal diamoters. The fed contur:tor may have a different diameter, however. The unequal-conductor methol has been found particularly useful in matching to low-impedance antomas such as directive arrays using elosespaced parasitic elements.

The length of the antema element should tre such as to be approximately self-resonant at the modian operating frequencr: The length is usually not lighly critical, because a folded dipole tends to have the characteristics of a "thick" antemat
and thus has a relatively broad frequency-response curve.

Fig. 14-44-Impedance transformation ratio, three-conductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the
radiation resistance of the resonant antenna system.

"'T" and "Gamma'" Matching Sections

The method of matching shown in Fig. $14-45 \mathrm{~A}$ is based on the fact that the impedance between any two points along a resonant antenna is resistive, and has a value which depends on the spacing between the two points. It is therefore possible to choose a pair of points between which the impedance will have the right value to match a transmission line. In practice, the line cannot be connected directly at these points because the distance between them is much greater than the conductor sparing of a practicable tranmission line. The " T " arrangement in l'ig. $14-45.1$ overcomes this difficulty lyy using a second conductor paralleling the antenna to form a matching section

Fig. 14.45-The " T " match and "gamma" match.
to which the line may be connected.
The " T " is particularly suited to use with a parallel-conductor line, in which case the two points along the antema should be equidistant from the center so that electrical balance is maintained.

The operation of this system is somewhat complex. Lach " T " conductor (y in the drawing) forms with the antemat conductor opposite it a short section of transmission line. Wach of these transmission-line sections can be considered to be terminated in the impedance that exists at the point of comection to the antenna. Thus the part of the antenna between the two points carries a transmission-line current in addition to the normal antenna current. The two transmission-line matching sections are in series, as seen by the main transmission line.

If the antema by itsolf is resonant at the operating frequency its impedance will be purely resistive, and in such case the matehing-section lines are terminated in a resistive load. However, since these sections are shorter than a quarter wavelength their input impedance - i.e., the impedance seen by the main transmission line looking into the matching-section terminals - will be reactive as woll as resistive. This prevents a perfect match to the main transmission line, since its load must be a pure resistance for perfect matching. The reactive component of the input impedance must be tuned out before a proper match can be secured.

One way to do this is to detune the antenna just enough, by changing its length, to cause reactance of the opposite kind to be reflected to the input terminals of the matehing section, thus eancelling the reactance introduced by the latter. Another method, which is considerably easier to adjust, is to insert a variable capacitor in sories with the matching section where it connerts to the transmission line, as shown in Fig. 14-37. The capareitor must be protected from the weather.

The method of adjustment conmonly used is to cut the antemma for approximate resonance and then make the spacing x some value that is convenient constructionally. The distance η is then adjusted, while maintaining symmetry with respect to the center, until the s.w.r. on the transmission line is as low as possible. If the s.w.r. is not below 2 to 1 after this adjustment, the antenna length should be changed slightly and the matching-section taps adjusted again. This process may be continued until the s.w.r. is as close to 1 to 1 as possible.

When the series-capacitor method of reactance compensation is used (Fig. 14-37) the antenna should be the proper length to be resonant at the operating frequency. Trial positions of the mateh-ing-section taps are taken, earh time adjusting the capacitor for minimum s.w.r., until the: standing waves on the transmission line are brought down to the lowest possible value.

The unbalanced ("gamma") arrangement in Fig. 14-4513 is similar in prineiple to the " T ," but is adapted for use with single coax line. The method of adjustment is the same.

Balancing Devices

- BALANCING DEVICES

An antronat with open ends, of which the halfwave type is an example, is inherently a balanered radiator. When opened at the center and fed with a parablel-eonductor line this balaner is mantained throughout the system, so long as the causes of umbalane diseussed in the transmissionline chapter are avoided.

If the anternat is fed at the center through a coaxial line, as indicated in Fig. 14-16. 1 , this hatamee is upset becease one side of the radiator is connected to the shield while the other is connected to the inner conductor. On the side connected to the shicld, a current can flow down over the outside of the coaxial line, and the fields thus set up cannot be canceled by the fields from the inner conductor bec:unse the fieds inside the line cannot escape through the shiolding atforded by the outer condurtor. Hence these "antemna" currents flowing on the out side of the line will be responsible for radiation.

Linear Baluns

Line radiation can be prevented by a number of deviees whose purpose is to detune or derouphe the line for "antemna" currents and thus gratly reduce their amplitude. Such devies gromerally are known as baluns (a contraction for "balanced to unbalanced"). l"ig. 14 -46B shows one such arrangement, known as a bazooka, which uses a sleeve over the transmission line to form, with the onteide of the outer line conductor, a shorted quarter-wave line sertion. As described earlier in this chapter, the impedane looking into the open end of sueh a seetion is very high, so that the end of the outer eonductor of the coaxial lime is effertively insulated from the part of the line below the sleceve. The length is an electrical quarter wave, and may be physicatly shorter if the insulation betwen the sleeve and the line is other than air. The bazooka has no effect on the impedance redationships between the antemat and the coaxial line.

Another method that gives an equivalent effeet is shown at C. Since the voltages at the antema terminals are equal and opposite (with reference to ground), equal and opposite currents flow on the surfaces of the line and serond eonductor. Beyond the shorting point, in the direction of the transmit ter, these currents combine to cancel out. The balancing section "looks like" an open cireuit to the antenna, sinee it is a quarterwave paralleb-conductor line shorted at the far end, and thus has no effect on the normal antema operation. However, this is not essential to the line-badancing fumetion of the device, and baluns of this type are sometimes made shorter than a quarter wavelength in order to provide the shunt inductive reactance required in certain types of matching systems.

Fig. 14-tid) shows a third batun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing section. Since the voltages at the balaned end are in series while the voltages at the umbalaneed end are in

Fig. 14-46-Radiator with coaxial feed (A) and methods of preventing unbalance currents from flowing on the outside of the transmission line (B and C). The half-wave phasing section shown at D is used for coupling between an unbalanced and a balanced circuit when a 4-to-1 impedance ratio is desired or can be accepted.
parallel, there is a 1 -to-1 step-down in impedance from the batanced to the unbatanced side. This arrangement is useful for coupling between a hatanced 300 -ohm line and a 75 -ohm coaxial line, for example.

RECEIVING ANTENNAS

Tearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistanee and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antemna of optimum performance based on the same considerations that have been diseussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer and higher the wire, the more energy it abstruets from the wave. Because of the high sensitivity of modern receivers, sometimes only a short length of wire strung around the room is used for areceiving antenna, but such in antenna cannot be expected to give good performance, although it is adequate for loud signals on the $3.5-$ and $7-\mathrm{Me}$, bands. It will serve in emergencies, but a longer wire outdoors is always better.

The use of a tuned antenna improves the operation of the receiver, because the signal strength is greater than with it wire of random length. Where local electrical noise is a problem, as from an electrical appliance, a measure of relief ean often be obtained by locating the antenna as high above and as fir as possible from the noise source and power lines. The lead-in wire, from the eenter of the antenna, should be a roasial line or shielded twin-condurtor cable (IRG-62 C'). If the twin-conductor cable is used, the conductors commed to the antema binding posts and the shichd to the ground binding post of the receiver.

Antenna Switching

Switching of the antenna from receiver to

Fig. 14.47-Antenna changeover for receiving and transmitting in two-wire line (A) and coaxial line (B). The lowpass filter for TVI reduction should be connected between switch or relay and the transmitter.
transmitter is commonly done with a changeover relay, comnected in the antemna leads or the coupling link from the antenna tuner. If the rollay is one with a 115 -volt ace coil, the switeh or relay that controls the transmitter plate power will also control the antenna relay. If the convernience of a relay is not desired, porcelain knife switches ain be used and thrown by hatad.

Typical arrangements are shown in lig. 14-t̄̈. If coaxial line is used, a coaxial relay is recommended, although on the lower-frequences bands a regular switch or changerower relay wili work almost as well. Therelay or switeh contacts should be rated to hamelle at least the maximum power of the transmitter.

In additional refinement is the use of an electronic transit-rowive switch, which permits full break-in operation wen when using the transmitting antemat for recoving. For details and cireuitry on t.r. switehes, see Wection Fight.

Antenna Construction

The use of good materials in the antemna system is important, since the antenna is exposed to wind and weather. To kerep dertrieal losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low dielect ric loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conduetor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-clad steel wire should be used. It is best to make feeders and matching st ubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-clad steel wire is difficult to
hamdle unless it is under considerable tension at all times. The wires should be all in one pieere; where a joint camot be avoided, it should be carefully soldered. open-wire TV line is exedent up to several humdred watts.

In building a fwo-wire open line, the spacer insulation should be of as good quality as in the antoma insulators proper. For this reason, good remmie spacers are atvisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeders.

At points of maximum voltage, insulation is

Antenna Construction

most important, and l'reex ghass or ceramic insulators with long leakage paths are reommomed for the antemas. Insulators should be cheaned one or twice a year, esperially il they are subjereted to much smoke and soot.

In most rabes poles or masts are desirable to lift the antenna clear of surreunding buildings, although in some lowations the antenna will be sufficiently in the elear when strung from one chimney to another or from a honsetop to a tree. Small trees usually are not satisfactory as points of suspension for the anterna because of their movement in windy weather. If the antemna is strung from a point near the center of the trunk of a lange tree, this difficulty is not so sorious. Where the antenna wire must be strung from one of the smatler branches, it is best wio a pulley firmity to the branch and run a rope through the pulley to the antenna, with the other end of the rope attarhed to a rounterweight near the ground. The eounterweight will keep the temsion on the antenma wire reasonably constant even when the branches sway or the rope tightens and strotches with varying climatie conditions.

Telophone polles, if they ein be purehased and installed economically, make excollont supports becamse they do mot ordinarily require guying in heights up to 40 foet or so. Many low-rost television-antenna supports are now avalable, and ther shoubl not be overlooked as possible antemataids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $14-18$ is satisfachory for heights up to 35 or 40 feet. Clear, somal lumber should be selected. The completed mast maty be protereded by lwo or three coats of house paint.

If the mast is to be arected of the ground, a couple of stakes should be driwen to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertieal. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastoning the gns: with the mast vertimal all the while, It is entirely practicable, tharefore, to eroct this tripe of mast on any small. flat area of roof.

By using 2×3 or 2×4. the height may be extended up to alout io fret. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast slown in Fig. 14-4! is relatively strong, easy to construct, readily dismantled, and costs very little. Jike the " A "-frame it is suitable for heighte wit the order af lof feet

The top section is a single 2×3. bulted at the bottom between a pair of 2×3 s with an

Fig. 14-48-Details of a simple 40-foot "A".frame mast suitable for erection in locations where space is limited.
overlap of about two feet. The lower section thus has two legs spated the width of the natrow side of a 2×3. At the bottom the two legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed between the two legs about halfway up

the bottom section, to maintain the spacing.
The two back guys at the top pull against the antemat, while the three lower guys prevont burkling at the renter of the pole.
'Ther 2×4 sertion should be set in the groumd so that it faces the proper direction, and then made vertical by lining it up with a plamb boh. The holes for the holts should be drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in place - through the three pieces of wood and tightemed just enough so that the section can turn freely on the bolt. Then the top sertion may be bolted in place and the mast pushed up, using a ladder or another 20 -foot 2×3 for the joh. Ss the mast goes up, the slack in the guys ran be taken un so that the whole strueture is in some measure continually supported. When the mast is vertical, bolt $i s$ should be slipped in place and both A and $t B$ tightened. The lower guys can then be given a final tightening. leaving those at the top a little slack until the antemma is pulled up, when they should be adjusted to pull the top section into line.

- GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a sat is factory guv-wire material. Ileavier wire or stranded cable may be used for taller poles or poles installod in locations where the wind velocity is likely to be high.

More than three gny wires in any one set usually are unnecessary. If a horizontal antenna is to be supported. two guy wires is the top set will be sufficient in mosi cases. These should run to the rear of the mast about 100 degrees apart to offeet the pull of the antemat. Intermediate guys should be used in sots of three one running in a direction opposite to that of the antenna. while the other two are spaced 120 degrees either side. This leaves a clear space under the antema. The guy wires should be adjusted to pull the pole slightly back from vertical before the antenna is hoisted so that when the anterma is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the a vailable facilities, it is some advantage to know nearly exactly the length of the guys. Those on the side on whieh the pole is lying can then be fastened temporarily to the anchors beforehand, which assumes that when the pole is raised, those holding opposite guys will be able to pull it into nealy-vertical position with mo danger of its getting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. To this should be added the stuare of the pole length to the point where the guy is fastened. The square root of this sum will the the length of the guy.

Guy wires should be broken up by strain
insulators, to avoid the possibility of resonatace at the transmitting frequency. Common practice is to insert an insulator mear the top of eath gey, within a fow fore of the pole, and then rut eath sertion of wire between the insulators to a length which will not be resomant either on the fundamental or harmonies. In insulator avery $2 \overline{5}$ fect will in satisfactory for frequencies up to 30 Me. The insulators should be of the "egg" type with the insulating material under eompression, so that the gay will not part if the insulator breaks.
Twisting ghy" wires onto "egg" insulators may be a tedions jol, if the guy wires are long and of large gange. A simple time- and finger-saving

Fig. 14-50-Using a lever for twisting heavy guy wires.
device (piece of havy iron or sterel) "an le made. by drilling athole about twier the diameter of the guy wire aloout a half ineh from one end of the piere. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in Fig. It-io. By passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly alld neatly twisted.
(ius wires maty be anchored to a tree or buiking when they happen to be in ronvenient spots. For small poles, a b-foot length of 1 -inch pipe driven into the ground at an angle will suffiere.

HALYARDS AND PULLEYS

Halyards or ropes and pulless arre important items in the antematsupporting sestem. P'articular attention should be directed toward the choiore of a pulles and halyavds for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely imposible.
(ialvanized-iron pulleys will have a life of only atyear or so. Foperially for enastal-area installattions, manine-twe pulfers with hardwood blocks and bronze wheds and bearings should be used.

For short antemas and temporary installations, heavy clothesline or wimdow-sash cord may the ased. However, for more permanent johs, $3 / 8$-inch or $1 / 2-2$ inch waterprof hemp rope should be used. liven this should be replaced about once a year to insure agatinst breakage.

Rotary Beam Construction

Fig. 14-51-An antenna lead-in panel may be placed over the top sash or under the lower sash of a window. Substituting a smaller height sash in half the window will simplify the weatherproofing problem where the sash overlaps.

It is advisable to carry the pulley rope batck up to the top in "endless" fashion in the manner of a flay hoist wo that if the antenna breaks close to the pole, there will be a means for pulling the hoisting rope back down.

- BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building, as shown in lig. $14-52$. to remove strain from the lead-in insulators. Holow eut through the walls of the building and fitted with feed-through insulators are unduabtedly the best means of
bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. (cment or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger joh will result. Plate glass may be obtained from automobile junk vards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-lengt sercen, the scheme shown in l"ig. 1f-52l3 may be used.

Is a less permanent method, the window may be raised from the bot tom or lowered from the top to permit insertion of a board which earies the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in lög. 11-51, or by using weatherstrip material where necessary.

Coaxial line can be brought through clearance holes without additional insulation.

Fig. 14-52-A-Anchoring feeders takes the strain from feed-through insulators or window glass. B-Going through a full-length screen, a cleat is fastened to the frame of the screen on the inside. Clearance holes are cut in the cleat and also in the screen.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antema at will, thus securing the benefits of power gain and directivity in any desired compass direction. . favorite method of doing this is to construct the antenna so that it can be rotated in the horizontal plane. The use of surh rotatable antennas is usually limited to the higher freyuencies - I. Mre and above - and to the simpler antentaterlement combinations if the structure size is to be kept within practicable bounds. For the 1.t-, 21- and 28-NIe. bands such antennas usually consist of two to four clements and are of the parasitic-array type described earlier in this chapter. At 50 Mc. and
higher it becomes possible to use more elaborate arrays because of the shorter wavelength and thus obtain still higher gain. Antemnas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mechanical support for the antema clements, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements

The antenna elements usually are made of netal tubing so that they will be at least partially self-supporting, thus simplifying the

Fig. 14-53-Details of telescoping tubing for beam elements.
supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important consideration when close-spated elementrare used.

Aluminum atloy tubes are genematly used for the elements. The elements frequently are constructed of sections of teleseoping tubing making length adjustments for tuning quite cas:. Filectrician's thin-walled eonduit also is suitable for rotary-heam eloments. Regardess of the tubing used, the ends should be plugged up) with eorks sealdod with glyptal varnish.

The element lougths are made aldustable ber sawing a $(\mathrm{i}-\mathrm{to} 12$-inch slot in the emds of the b:rger-diamoter tubing and clamping the smather tubing inside. Homemade rlamps of aluminum can le built, or hose elamps of suitable size can
be used. An example of this const metion is shown in Fig. 1 f-is.3. If stemel (lamps are used, there should be cadminm- or zinc-phated before installition.

Supports

Metal is eommonly used to support the elements of the rotary leam. For $28 . M 6$., a piece of 2-ineh diameter duaduminum tubing makes a good "boom" for supporting the elements. The cloments can be made to slide through suitable holes in the bom, or speeial clamps and brackets can be fashioned to support the chments. littings for 'TV antemats can ofton be used on 21- and 28-Mr. beatms. "Irrigation pipe" is a good sourer of alumimum thbing up to diameters of 6 imehes and lengeths of 20 foret. Mufflor \cdot mams ain be used to hold beom clements to a boom.

Most of the "TV antemat rotators are satisfactory for turning the smallor beams.

Whithall-metal construction, dolta. "gamma" or "P""-match are the only praterieal matehing methods to use to the line, since athething else reguires upering the driven ehement at the eenter, and this complicates the support problem for that element.

"Plumber's-Delight" Construction

The lightest heam to build is the so-athed "phumber's delight", :th arraty construeted andirely of motal, with no insulating members betweon the elomonts and the supporting strueture. some suggestions for the construetional details are given in Figs $1+-\overline{5} 1,1+-\bar{\pi}$ and 11 -ift. Thase show portions of a ferlement lo-metor le:m, lat the same prineiples hold for 1 b- and 20 -metor beams.

Boom material wan be the irrigation pipe suggrested eatlior (available from Saars laoduack). Muffler clamps and homemade brackels (aluminum or cadmium-phated steel) cath be usod to hold the parasitie elements to the boom, as

Fig. 14.54-Muffler clamps can be used to hold beam elements to the boom. The angle can be aluminum angle or angle iron; if iron is used it should be cadmium plated. This example shows a $3 / 4$-inch-diameter element held to a 2 -inch diameter boom.
shown in lige. 1f-i). 'lhe muffor dimps and atl hardw:ure should be cadmimm-plated to forestall rorrosion; the plating rath be done at aplating shop and will not be very expensive if it is abll done at the same time.

Fig. 14-55- The boom can be fied to the mast with muffier clamps and a steel plate. The coaxial line from the driven element is taped to the boom and mast.

Muffer elamps and a slex plater can be used to hold the boom to the supporling mast, as
 mast section should the a lengeth of gatvanized ixon pipe. Tha plate thiokness should mun from

 thickn'ss sure inst cut in at welding shop, where it ewn be done quickly for at mominal fie. After the plate hats heren rut and the mutlerememp holes drilled, the plate, flamps and hardware should the plated.

The photugraph in Fïg. 1-t-jt shows one way

Fig. 14-56-Details of a coaxial-line termination board and T-match support for a 10 -meter beam. The balun of a half-wavelength of coaxial line is coiled and then fastened to the boom with tape.

The speed of rotation should not be too great - one or $11 / 2$ r.p.m. is about right. This requires a considerable gear reduction from the usual $17.50-\mathrm{r}$.p.m. speed of small induction motors; a large reduction is advantageous because the gear train will prevent the beam from turning in weather-vane fashion in a wind. The usual beam does not require a great deal of power for rotation at slow speed, and a $1 / 8-\mathrm{hp}$. motor will be ample. A reversible motor should be used. Wir-surplus "prop pitch" motors have found wide application for rotating $11-\mathrm{Mc}$. beams, while TV rotators can be used with many 28-Mc. lightweight beams.

Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. Even commerciad units will last longer if treated with glyptal varnish. Be sure that the surfaces are clean and free from grease before painting. Grease can be removed by brushing with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

The power and control leads to the rotator should be run in electrical eonduit or in lead covering, and the metal should be grounded.

A Compact 14-Mc. 3-Element Beam

A 20 -meter beam no larger than the usual 10 -meter beam ran be made ly using centerloaded elements and rose spacing. Such an antemna will show good directivity and can be rotated with a TV-antenna rotator.

Conshuctional details of the elements are shown in Figs. $14-5 \overline{7}$ and $14-58$. The loading coils are spare-wound by interwinding plumb line (sometimes known as ehalk line) with the No. 12 wire eoils. The coil ends are secured by drilling small holes through the polystyrene bar, as shown in Fig. $14-60$. The coils should be sprayed or painted with Krylon before installing the protective Lurite tubos.

The beam will require \pm-foot lengths of the
tubings indicated in Fig. 14-57A. For good teleseoping, element wall thickness of 0.058 inch is recommended. The ends of the tuhing seetions should be slotted to permit adjustment, and secured with elamps, so that the joints will not work lonse in the wind. Perforated ground clamps can be used for this purpose. The boom is a 12 -foot length of $11 / 2$-inch o.d. 61ST aluminum tubing, with 0,125 -inch wall.

The line is coupled and matched at the center of the driven element through adjustment of the link wound on the outside of the Lucite tubing. To check the adjustinent of the elements, first resonate the driven element to the desired frequency in the $14-$ Mc, band with a grid-dip oseil-

(A)

Fig. 14-57-Dimensions of a compact 14. Mc. beam. A-Side view of a typical element. TV-antenna "U" clamps hold the support arms to the boom. Birnbach 4176 insulators support the elements. B-Top plan of the beam showing element spacing and loading-coil dimensions. Elements are made of aluminum fubing. Construction of the loading coils and adiustment of the elements are discussed in the text. End-section lengths of 41 inches for the reflector, 40 inches for the driven element, and 10 inches for the director will be close to optimum.
lator. Then resonate the director to approximately 14.8 Me., and the reflector to approximately 13.6 Me. This is not rritical and only serves ats a rough point for the final tuning, which is done by use of a conventional field-strength indicator. Cheek the transmitter loading and roadjust if neerssary. Adjust the director for maximum forward gain, and then adjust the reflector for maximum forward gain. At this point, check the driven element for resonance and readjust if necessary, "Turn the reflector toward the fieldstrength indicator and adjust for back rut-off.

This must be done in small steps. Do not expect the attenuation off the sides of a short beam to be as high as that obtained with full-length elements. The s.w.r, of the line feeding the antenna can be checked with a bridge, and after the elements have been tuned, a final adjustment of the s.w.r. can be made by adjusting the coupling at the antemat loading coil turns and spacing. Is in any beam, the s.w.r. will depend upon this adjustment and not on any that can be made at the trasmitter. Transmitter coupling is the usual for any coaxial line. (Prom (SST, May, 1954.)

Fig. 14.58-Detailed sketch of the loading and coupling coils of the center of the driven element, and its mounting. Similar loading coils (see text) are used at the centers of the director and reflector.

A "One-Element Rotary" for 21 Mc.

The directional properties of a simple halfwavelength antenna become more apparent at higher frequencies, and it is possible to take advantage of this fact to build a "one-element rotary" for 21 or 28 Me. To take advantage of the directional properties of the antenna, it is only necessary to rotate it 180 degrees. It can be
rotated hy hand, as will be deseribed, or by a small TV antenna rotator.

The antenna is made from two pieces of $1 / 2$-ineh diameter electrical thin-wall steel tubing or conduit. This tubing is readily avatibable at any electric supply shop. It comes in 10 -foot lengths and, while 20 feet is short for a half-wave antenna at

Rotary Beam Construction

Fig. 14-59-(A) Diagram of the 21-Mc. antenna ond mounting. The U-bolts that hold the 2 by 2 to the floor flange are standard 2 -inch TV mast type bolts. (B) A more detailed drawing of the coil and coax-fitting mountings. The $1 / 4$-inch spacing between turns is not critical, ond they can vary as much as $1 / 6$ inch without any apparent harm to the match.

21 Me., with loading the length is just about right for 52 -ohm line feed. (A half-wavelength antenna would normally be fed with 72 -ohm cable, since the antenna offers a good match for this inupedance value. In this antenna system, the shorter elements, plus the small coil, offer a good match for 52 -ohm cable.) If aluminum tubing is avaitable, it can be used in place of the conduit, and the antenna will be lighter in weight. As shown in ligs. 14-5! and 1 t-(60 , the two pieces of tubing are supported by four stand-off insulators on a four foot long 2 by 2 . The coas fitting for the feed line is mounted on the end of one ot the lengths of tubing. A mounting point is made by flattening the end of the tubing for a length of about $1 \frac{1}{2}$ inches. The tubing can be flattened by squeezing it in a vise or by laying the end of the tubing on a hard surface and then hammering it flat. This will provide enough spare to accommodate the coax fitting (imphemol type 83-1R). A z-inch hole will be needed in the flat section to elear the shell of the coax fitting.

The coil, L_{1}, is made from $1 / 8$-inch diameter copper tubing. It consists of 5 turns spaced $1 / 4$ inch apart and is 1 inch inside diameter. The coil is connected in series with the inner conductor pin on the coax fitting and the other half of the antenna. To secure a good connection at the coax fitting, the coil lead should be wound around the inner-conductor pin and soldered. The other end of the coil can be connected with a screw and nut.

Mounting

The antenna can be mounted on a 1 -inch floor flange and held in place by two 2-inch bolts, as shown in IFig. 14-61. The floor flange can be connected to a 12 -foot length of 1 -inch pipe which will serve as a mast. Television antenna wall mounts can be used to support the mast.

In the installation shown in Fig. 14-61, 19 -inch wall mounts were used in order to elear the eaves of the house. A 2 -inch long piece of $1 \frac{1}{4}$-inch pipe was used as a sleeve, and it was clamped in the U bolt on the hot tom wall mount. A $\frac{1}{4}$-inch hole

Fig. 14.60-A close-up of the coil and coax fitting mountings. Be sure that the coil doesn't short out to the outer conductor when soldering the coil end to the inner conductor pin on the coax fitting.

Fig. 14-61-Over-all view of the antenna and mounting. The feed line comes out of the bottom of the mast and through the wall into the shack.
was dribled through the mast pipe approximately 6 inches from the bottom. Then a $11 / 2$-inch boit was slipped through the hole and the mast was then mounted in the sleeve on the bottom wall mount. The bolt acted as a bearing point against the top of the sleeve. Another $1 / 4$-inch hole was drilled through the mast about three feet above the bottom wall mount. A piece of $1 / 4$-inch metal rod, six inches long, was forced through the hole
so that the rod projected on earh side of the mast. To turn the mast, a piece of rope was attached to each end of the rod and the rope was brought into the shack, so that the antenna could be rotated by the "irm-strong" method. Obviously, one could spend more money for a "de luxe" version and use a TV antema rotator and mast.

IRG-8 U 52 -ohm coax cable is recommended to feed the antenna. For power inputs up to 100 watts, the smatler and less expensive 1RG-58/U c:un be used. However, when you buy RG-58 [C, be sure that the line is made by a reputable mimufacturer (such as Amphenol or Ibelden). Some of the line made for TV installations is of inferior guality and is likely to have higher losses. The feedline was fed up through the mast pipe and through a $3 / 4$-inch hole in the 2 by 2 . An Amphenol 8:3-1sp fitting on the end of the coax line connerts to the female fitting on the antennas.

Coupling to the Transmitter

It may be found that, when the feed line is coupled to the transmitter, the antema won't take power. Since the line is terminated at the antenna in its characteristic impedance of 52 ohms, the output of the final r.t. amplifier must be adjusted to couple into a 52 -ghm load. Where the output coupling deviee is a variable link, all that may be needed is the correct setting of the link. If the link is fixed, one end of the link can bo grounded to the transmitter chassis and the other end of the link comected in series with a small variable capacitor to the inner conductor of the feed line. The outer conductor of the coas is grounded to the transmitter chassis. The capacitor is tuned to the point where the final amplifier is properly loaded. For tramsmitters having a pi-network output circuit, it is merely a matter of abljusting the notwork to the point where the amplifier is properly lowded.
(From QsT, Jinuary, 1955.)

Wave Propagation

Much of the appeal of amateur communication lies in the fact that the results are not always predictable. Transmission conditions on the same frequency vary with the year, season and with the time of day. Although these variations usually follow certain established patterns, many peculiar effects can be observed from time to time. Every radio amateur should have some understanding of the known facts about radio wave propagation so that he will stand some chance of interpreting the unusual conditions
when they occur. The olservant amateur is in an excollent position to make worthwhile eontributions to the science, provided he has sufficient background to understand his results. He may discover new facts about propagation at the veryhigh frequencies or in the microwave region, as anateurs have in the past. In faet, it is through amateur efforts that most of the extended-range possibilities of various radio frequencies have heen discovered, both by accident and by long and careful investigation.

Characteristics of Radio Waves

Radio waves, like other forms of electromagnetic radiation such as light, travel at a speed of $300,000,000$ meters per second in free space, and ean be reflected, refracted, and diffricted.

An electromagnetic wave is composed of moving fields of electric and magnetic force. The lines of foree in the eleetric and magnotie fields are at right angles, and are mutually perpendicular to

Fig. 15.1-Representation of electric ond magnetic lines of force in a radio wove. Arrows indicate instantaneous directions of the fieids for a wave troveling toward the reoder. Reversing the direction of one set of lines would reverse the direction of trovel.
the direction of travel. A simple representation of a wave is shown in Fig, $15-1$. In this drawing the electric lines are perpendicular to the earth and the magnetic lines are horizontal. They could, however, have any position with respect to carth so long as they remain perpendicular to each other.

The plane containing the continuous lines of electric and magnetic force shown by the grid- or mesh-like drawing in Fig. 15-1 is called the wave front.

The medium in which electromagnetic waves travel has a marked influence on the speed with
which they move. When the medium is empty space the speed, as stated above, is $300,000,000$ meters per second. It is almost, but not quite, that great in air, and is much less in some other substances. In dielectrics, for example, the speed is inversely proportional to the square root of the dielectric constant of the material.

When a wave meets a good conductor it cannot penetrate it to any extent (although it will travel through a dielectrie with ease) because the electric lines of force are practically shortcircuited.

Polarization

The polarization of a radio wave is taken as the direction of the lines of force in the electric field. If the electric lines are perpendicular to the earth, the wave is said to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Spreading

The field intensity of a wave is inversely proportional to the distance from the source. Thus if in a uniform medium one receiving point is twice as far from the transmitter as another, the field strength at the more distant point will be just half the field strength at the neaner point. This results from the fact that the energy in the wave front must be distributed over a greater area as the wave moves away from the source. This inverse-distance law is bused on the assumption that there is nothing in the medium to absorb energy from the wave as it travels. This is not the case in practical communication along the ground and through the atmosphere.

Types of Propagation

According to the altitudes of the paths along which they are propagated, radio waves may

15-WAVE PROPAGATION

be classified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon transmitting wave length, the ionospheric wave may or may not be returned to earth by the effects of refraction and reflection.

The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in regions of abrupt change of dielectric constant in the troposphere, such as may occur at the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radia-

Fig. 15-2-Showing how both direct and reflected waves moy be received simultaneously.
tion that is directly affected by the presence of the earth and its surface features. The ground wave has two components. One is the surface wave, which is an eartloguided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave). The space wave is itself the resultant of two components - the direct wave and the ground-reflected wave, as shown in Fig. 15-2.

Ionospheric Propagation

- properties of the ionosphere

Except for distances of a few miles, nearly all amateur communication on frequencies below 30 Mc . is by means of the sky wave. Upon leaving the transmitting antenna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were its path not bent sufficiently to bring it back to earth. The medium that causes such bending is the ionosphere, a region in the upper atmosphere, above a height of about 60 miles, where free ions and electrons exist in sufficient quantity to have an appreciable effect on wave travel.

The ionization in the upper atmosphere is believed to be caused by ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a series of layers of varying densities of ionization occurring at different heights. Each layer consists of a central region of relatively dense ionization that tapers off in intensity both above and below.

Refraction

The greater the intensity of ionization in a layer, the more the path of the wave is bent. The bending, or refraction (often also called reflection), also depends on the wavelength; the longer the wave, the more the path is bent for a given degree of ionization. Thus low-frequency waves are more readily bent than those of high frequency. For this reason the lower frequencies - 3.5 and 7 Mc. - are more "reliable" than the higher frequencies -14 to 28 Mc.; there are times when the ionization is of such low value that waves of the latter frequency range are not bent enough to return to earth.

Absorption

In traveling through the ionosphere the wave gives up some of its energy by setting the ionized particles into motion. When the moving ionized particles collide with others this energy is lost. The absorption from this cause is greater at lower frequencies. It also increases with the intensity of
ionization, and with the density of the atmosphere in the ionized region.

Virtual Height

Although an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual bend-

Fig. 15-3-Bending in the ionosphere, ond the echo or reflection method of determining virtual height.
ing that actually takes place, as illustrated in Fig. 15-3. The wave traveling upward is bent back over a path having an appreciable radius of turning, and a measurable interval of time is consumed in the turning process. The virtual height is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The air at this height is sufficiently dense so that the ions and electrons set free by the sun's radiation do not travel far before they meet and recombine to form neutral particles, so the layer can maintain its normal intensity of ionization only in the presence of continuing radiation from the sun. Hence the ionization is greatest around local noon and practically disappears after sundown.

In the daytime there is a still lower ionized

Sky-Wave Propagation

area, the D region. D-region ionization is proportional to the height of the sun and is greatest at noon. The lower amateur-band frequencies (1.8 and 3.5 Mc .) are almost completely absorbed by this layer, and only the high-angle radiation is reflected by the E layer. (Lower-angle radiation travels farther through the l region and is al)sorbed.)

The second principal layer is the F layer which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly. The ionization decreases after sumbown, reaching a minimum just before sunrise. In the dattime the F layer splits into two parts, the F_{1} and F_{2} layers, with average virtual heights of, respeectively, 140 miles and 200 miles. These layers are most highly ionized at about local noon, and merge again at sunset into the F layer.

SKY-WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wave leaves the earth, the less the bending required in the ionosphere to bring it back. Also, the smaller the angle the greater the distance between the point where the wave laves the earth and that at which it returns. This is shown in Fig. 15-4. The vertical angle that the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

More bending is required to return the wave to earth when the wave angle is high, and at times the bending will not be sufficient unless the wave angle is smaller than some critical value. This is illustrated in Fig. 15-4, where A and smaller angles give useful signals while waves sent at higher angles penctrate the layer and are not returned. The distance between $' T$ and R_{1} is, therefore, the shortest possible distance, at that partieular frequency, over which communication by ionospheric refraction can be aecomplished.

The area between the end of the useful ground wave and the beginning of ionospheric-wave reception is catled the skip zone, and the distance from the transmitter to the nearest point where the sky wave returns to earth is called the skip distance. The extent of the skip zone depends upon the frequency and the state of the ionosphere, and also upon the height of the layer in which the refraction takes place. The higher layers give longer skip distances for the same wave angle. Wiave angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the iono-
sphere will be reflected back down to the transmitting point. If the frequency is then gradually increased, eventually a frequency will be reached where this vertical reflection just fails to occur. This is the critical frequency for the laver under consideration. When the operating frequency is below the critical value there is no skip zone.

The critical frequency is a useful index to the highest frequency that can be used to transmit over a specified distance - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle A in Fig. $15-4$ is, for example, at a frequeney of 14 Mc ., and if a higher frequency would skip over the receiving point R_{1}, then 14 Mc. is the m.u.f. for the distance from T ' to R_{I}.

The greatest possible distance is covered when the wave leaves along the tangent to the earth; that is, at zero wave angle. Under average conditions this distance is about 4000 kilometers or 2500 miles for the F_{2} layer, and 2000 km . or 1250 miles for the E laver. The distances vary with the layer height. Frequencies above these limiting m.u.f.'s will not be returned to earth at any distance. The $4000-\mathrm{km}$. m.u.f. for the F_{2} layer is approximately 3 times the critical frequency for that layer, and for the E layer the $2000-\mathrm{km}$. m.u.f. is about 5 times the critical frequency.

Alsorption in the ionosphere is least at the maximum usable frequency, and increases very rapidly as the frequency is lowered below the m.u.f. Consequently, best results with low power always are secured when the frequency is as close to the m.u.f. as possible.
It is readily possible for the ionospheric wave to pass through the E layer and be refrated back to earth from the F, F_{1} or F_{2} layers. This is because the critical frequencies are higher in the latter layers, so that a signal too high in frequency to be returned by the E layer can still come back from one of the others, depending upon the time of day and the existing conditions.

Multihop Transmission

On returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it maty once more be refructed, and

Fig. 15-4-Refraction of sky waves, shawing the critical wave angle and the skip zone. Woves leoving the transmitter at angles above the critical (greater than A) are nat bent enough to be returned to earth. As the ongle is decreased, the woves refurn to earth of increasingly greater distances.

15-WAVE PROPAGATION

again bent back to earth. This process may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances because of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the values mentioned in the preceling section. However, ground losses absorb some of the energy: from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water), and there is also absorption in the ionosphere at each reflection. Hence the smaller the number of hops the greater the signal strength at the receiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the rereliving point, in which case the difference in path lengths will cause a phase difference to exist betwern the wave components at the receiving antenna. The total field strength will be the sum of the components and may be larger or smaller than one component alone, sinee the phases may be such as either to aid or oppose. Since the paths change from time to time, this causes a variation in signal strength called fading. Fading can also result from the combination of single-hop and multihop waves, or the combination of a ground wave with an ionospheric or tropospheric wave.

Fading may be either rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere. the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voice-molulated transmission, involving sidebands differing slightly from the carrier in frequency, the carrier and various side-band components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effect, known as selective fading, catises severe distortion of the signal.

Back Scatter

Even though the operating frequency is above the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called back scatter, is caused by reflections from distances beyond the skip zone. Such reflections can occur when the transmitted energy strikes the earth at a distance and some of it is reflected back into the skip zone to the receiver. Such scatter signals are weaker than those normally propagated, and also have a rapid fade or "flutter" that makes them easily recognizable.

A certain amount of scattering of the wave also takes place in the ionosphere because the ionized region is not completely uniform. Scattering in the normal propagation direction is called forward scatter, and is responsible for extending
the range of transmission beyond the distance of a regular hop, and for making communication possible on frequencies greater than the actual m.u.f.

- other features of ionospheric PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher eritical frequencies in the E layer in summer, avcraging about 4 Mc. as against a winter average of 3 Mc . The F layer critical frequency is of the order of 4 to 5 Mc . in the evening. The F_{I} layer, which has a critical frequency near 5 Mc , in summer, usually disappears entirely in winter. The daytime maximum critical frequencies for the F_{2} are highest in winter (10 to 12 Me .) and lowest in summer (around 7 Me.). The virtual height of the f_{2} layer, which is abont 185 miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg . North in the Western hemisphere, and are subject to considerable variation in other parts of the world.

Very marked changes in ionization also occur in step with the 11-year sunspot cycle. Although there is no apparent direct correlation between sunspot activity and eritical frequencies on a given day, there is a definite correlation between average sunspot artivity and critical frequencies. The critical frequencies are highest during sunspot maxima and lowest during sunspot minima. During the period of minimum sunspot activity the lower freduencies - 7 and 3.5 Mc . - frequently are the only usable bands at night. At such times the 28-Mc. band is seldom useful for long-distance work, while the 14 -Mc. band performs well in the daytime but is not ordinarily useful at night.

Ionosphere Storms

Certain types of sunspot activity cause considerable disturbances in the ionosphere (ionosphere storms) and are accompanied by disturbances in the earth's magnetic field (magnetic storms). Ionosphere storms are characterized by a marked increase in absorption, so that radio conditions berome poor. The eritical frequencies also drop to relatively low values during a storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hours to several days. Since the sun rotates on its axis once every 28 days, disturbances tend to recur at such intervals, if the sunspots responsible do not become inactive in the meantime. Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Sporadic-E Ionization

Scattered patches or clouds of relatively dense ionization oceasionally appear at heights approximately the same as that of the E layer, for rea-

Prediction Charts

sons not yet known. This sporadic-E ionization is most prevalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and carly summer, but is present in somo dogree a fair percentage of the time the var 'round. It accounts for a good deal of the night-time short distance work on the lower frequencies (3.5 and 7 Me.) and, when more intense, for similar work on 11 to 28 Mc. Exceptionally intense sporadic- E ' ionization is responsible for work over distances excreding $4(K)$ or $5(0)$ miles on the $5(0-M c$. band.

There are indications of a relationship between sporadic- E ionization and average sunspot activity, but it does not appear to be directly related to daylight and darkness since it may occur at any time of the day. However, there is an apparent tendency for the ionization to peak at mid-morning and in the catly evening.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than normal ground-wave distances on 28 Me and higher freguencies. The effect can be observed on 2s Ma., hut it is gencrally more marked on an and 141 . Mc. The subject is treated in detall laterer.

PREDICTION CHARTS

The Central Radio I'ropagation Laboratory of National ISureau of Standards offers prediction charts three monthe in advance, by means of which it is possible to predict with considerable areurary the maximum usable frequency that will hold over any path on the earth during a monthly predod. The charts can be obtained from the Superintendent of Documents, U. S. Government Printing Office, Washington 2i, D. C. for 10 cents a copy or $\$ 1.00$ per year. They are called "('RI'Ls-I) Basic Rudio Propagation P'redictions." The use of the charts is explained in Cireular $4(i 2$, " Ionospheric Radio Propagation," available for $\$ 1.00$ from the same address. This publication also contains much information of value to those who wish to pursue the subject of ionospheric propagation in more detail.

PROPAGATION IN THE 3.5 TO 30.MC. BANDS

The 1.8-Mc., or " 160 -metor," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges up to several thousand miles are not impossible. Only
small seetions of the band are currently availahle to amateurs, because of the presence of the loran servier in that part of the spertrum.

The $3.5-\mathrm{Me}$., or " 80 -meter," band is a more useful band during the night than during the daylight hours. In the daytime, one can seldom hear signals from a distance of greater than 200 miles or so, but during the darkness hours distances up to several thousand miles are not unusual, and transoceanic contatets are regularly made during the winter months, During the summer. the static level is high.

The 7 -Mc., or " 40 -meter," band has many of the same characteristics as $3 . \overline{\text { a }}$, except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness path. The winter months are somewhat better than the summer ones. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The IH-Me., or "20-meter," band is probably the hest one for long-distance work. Duping the high portion of the sumspot eycle it is open to some part of the world during practically all of the 24 hours. While during as sumspot minimum it is generally useful only during daylight hours and the dawn and dusk periods. There is practically ahways a skip zone on this band.

The 21-Me, or "15-meter," hand shows highly variable characteristice depending on the sunspot cycle. During sunspot maxima it is useful for long-distance work during a large part of the 24 hours, but in sears of low sunspot activity it is almost wholly a daytime band, and sonetimes unusable even in daytime. However, it is often possible to maintain communication over distances up to 1.500 miles or more by sporadic- E ionization which may orcur either day or night at any time in the sunspot cyrle.

The 28-Me. ("10-meter") band is generally eonsidered to be a DX band during the daylight hours (except in summer) and good for local work during the hours of darkness, for about half the sunspot reyle. It the very prak of the sumspot corls, it may be "open" into the late evening hours for DX communication. It the sunspot minimum the band is usually "dead" for longdistance communieation, by means of the F_{2} layer, in the northern latitudes. Nevertheless, sporadio- E^{\prime} propagation is likely to occur at any time, just as in the case of the 21-Mc. band.

Propagation Above 50 Mc .

The importance to the amateur of having some knowledge of wave propagation was stressed at the beginning of this rhapter. An understanding of the means by which his signals reach their destination is an even greater aid to the v.h.f.
worker. Viach of his bands shows different characteristies, and knowledge of their peculiarities is as yet far from complete. The observant user of the amateur v.h.f. assigmments has a good opportunity to contribute to that knowledge, and

15-WAVE PROPAGATION

his enjoyment of his work will be greatly enhanced if he knows when to expect unusual propagation conditions.

CHARACTERISTICS OF THE V.H.F. BANDS

An outstanding feature of our bands from 50 Mc. up is their ability to provide consistent and interference-free communication within a limited range. All lower frequencies are subject to varying conditions that impair their effectiveness for work over distances of 100 miles or less at least part of the time, and the heavy occupancy they support results in severe interference problems in areas of dense population. The v.l.f. bands, being nuch wider, can hindle many times the amateur population without crowding, and their characteristics for local work are more stable. It is thus to the advantage of amateur radio as a whole to make use of 50 Mc. and higher bands for short-range communication wherever possible.

In addition to reliable local coverage, the v.h.f. lands also exhibit several forms of longdistance propagation at times, and use of 50 and 144 Mc. has been taken up in recent years by many isolated amateurs who must depend on these propagation peculiarities for all or most of their contacts. It is partieularly important to these operators that they understand common propagation phenomena. The material to follow supplements information presented earlier in this chapter, but deals with wave propagation only as it affects the occupants of the world above 50 Mc. First let us consider the bands individually.

50 to 54 Mc .: This band is borderline territory between the DX frequencies and those normally employed for local work. Thus just about every form of wave propagation found throughout the radio spectrum appears, on oceasion, in the 50Mc. region. This has contributed greatly to the popularity of the $50-\mathrm{Me}$. band.

During the peak years of a sunspot cycle it is occasionally possible to work $50-\mathrm{Mc}$. DX of world-wide proportions, by reflection of signals from the F_{2} layer. Sporadic- E skip provides eontacts over distances from 400 to 2500 miles or so during the early summer months, regardless of the solar cycle. Reflection from the aurora regions allows 100 - to 1000 -mile work during pronounced ionospheric disturbances. The ever-changing weather pattern offers extension of the normal coverage to as much as 300 to 500 miles. This develops most often during the warmer months, but may occur at any season. In the absence of any favorable propagation, the average wellequipped $50-\mathrm{Mc}$. station should be able to work regularly over a radius of 75 to 100 miles or more, depending on local terrain.
144 to 148 Mc .: Ionospheric effects are greatly reduced at $144 \mathrm{Mc} . F_{2}$-layer reflection is unlikely, and sporadic- E skip is rare. Aurora DX is fairly common, but signals are generally weaker than on 50 Mc. Tropospheric effects are more pro-
nounced than on 50 Mc., and listances eovered during favorable weather conditions are greater than on lower bands. Air-mass boundary bending has been responsible for communication on 144 Mc. over distances in excess of 2500 miles, and 500 -mile work is fairly common in the warmer months. The reliable range under normal conditions is slightly less that on 50 Mc., with comparable equipment.

22O Mc. and Higher: Ionospheric propagation is unlikely at 220 Mc . and up, but tropospheric bending is more prevalent than on lower bands. Amateur experience on 220 and 420 Mc. is showing that they can be as useful as 144 Mc., when comparable equipment is used. Under minimum conditions the range may be slightly shorter, but when signals are good on 144 Mc., they may be better on 220 or 420 . Even above 1000 Mc . there is evidence of tropospheric DX .

PROPAGATION PHENOMENA

The various known means by which v.l.f. signals may be propagated over unusual distances are discussed below.
F_{2}-Layer Reflection: Most contacts made on 28 Mc. and lower frequencies are the result of reflection of the wave by the F_{2} layer, the ionization density of which varies with solar activity, the highest frequencies being reflected at the peak of the 11-year solar cyele. The maximum usable frequency (m.u.f.) for F_{2} reflection also follows other well-defined cycles, daily, monthly, and seasonal, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11 -year cycle, such as in the early ' 50 s, the m.u.f. may reach 28 Mc. only during a short period each spring and fall, whereas it may go to 60 Mc . or higher at the peak of the cycle. The fall of 1946 saw the first authentic instances of long-distance work on 50 Mc. by F_{2}-layer reffection, and as late as 1950 contacts were made in the more favorable areas of the world by this medium. The rising curve of the current solar cycle again made $F_{2} \mathrm{DN}^{-}$ on 50 Mc. possible in the low latitudes in the winter of 1955-6. 10X was worked over much of the earth in 1956-8 and may be expected through 1959. Loss of the $50-\mathrm{Mc}$. band to television in some countries will limit the scope of $50-\mathrm{Mc}$. DX in vears to come.

The F_{2} m.u.f. is readily determined by observation, and it may be estimated quite accurately for any path at any time. It is predictable for months in advance, enabling the v.h.f. worker to arrange test schedules with distant stations at propitious times. As there are numerous commereial signals, both harmonics and fundamental transmissions, on the air in the range between 28 and 50 Mc., it is possible to determine the approximate m.u.f. by careful listening in this range. Daily observations will show if the m.u.f. is rising or falling, and once the peak for a given month is determined it can be assumed that another will occur about 27 days later, this cycle coinciding with the turning of

Miscellaneous Phenomena

Fig. 15-5-The principal means by which v.h.f. signals may be returned to earth, showing the approximate distances over which they are effective. The F_{2} layer, highest of the reflecting layers, may provide $50-\mathrm{Mc}$. DX at the peak of the 11 -year sunspot cycle. Such communication may be world-wide in scope. Sporadic ionization of the E region produces the familiar "short skip" on 28 and 50 Mc . It is most common in early summer and in late December, but may occur at any fime, regardless of the sunspot cycle. Refraction of v.h.f. waves also takes place at air-mass boundaries, making possible communication over disfances of several hundred miles on all v.h.f. bands. Normally it exhibits no skip zone.
the sun on its axis. The working range, via F_{2} skip, is roughly compurable to that on 28 Me., though the minimum distance is sommenat longer. Two-way work on 50 Mc . by reflection from the F_{2} laver hats been aceomplished over distanners from 2200 to 12,000 miles. The maximum freguency for F_{2} reflection is believed to be about 70 Me .

Sporadic-E Skip: P'atchy roncentrations of ionization in the E-layar region are often responsible for reflection of signals on 28 and 50 Mc . This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May. June and July, during morning and carly evening hours, but it may oceur at any time or season. Multiple-hop effects may :upear, when ionizattion develops simultaneonsly over large areas, making possible work over distances of more than 2500 miles.

The upper limit of frequency for sporadic- E skip is not positively known, but scattered instances of 144-Me. propagation over distances in exeess of 1000 miles indieate that E-layer reflection, possibly aided by tropospheric effeets, maty be responsible.

Aurora Effect: Low-frequency communication is oceasionally wiped out by aldsorption in the ionosphere, when ionospheric storms, asociated with variations in the earth's magnetie field, orrur. During such disturlstnces. however, v.h.f. signals may be reflected back to earth, making communication possible over distances not normally workable in the v.h.f. range. Magnotic storms may be accompaniod by an aurora-borealis: display, if the disturbance occurs at night and visibility is good. Aiming a directional array at
the auroral curtain will bring in signats strongest, regardless of the true direction to the transmitting station.

Aurora-reflected signals are eharaeterized by a rapid flutter, whieh lends a "dribbling" sound to 28-Mc. earriers and may render modulation on 50 - and $14+-\mathrm{Me}$. signals eompletely unreadable. The only satisfactory means of communieation then becomes straight e.w. The effect may be noticeable on signals from any distance other than purely loeal, and stations up to about 1 tho miles in any direction may be worked at the peak of the disturbance. Unlike the two methods of propagation previously described, aurora effeet exhibits no skip zone. It is observed frequently on 50 and 144 Me. in northeatstern IV.S. A., usually in the early evening hours or after midnight. The highest frequency for auroral reflection is not ret known, but pronounced disturbances have permitted work by this medium in the 220-MI . band.

Tropospheric Bending: The most common form of v.h.f. I X is the extension of the normal oprating range associated with a asily observed weather phenomena. It is the result of the change in refractive index of the atmosphere at the boundary between air masses of differing temperature and humidity characteristirs. Such airmass boundaries usually lie along the western or southern edges of a stable slow-moving area of high barometric pressure (fair ealm weather) in the period prior to the arrival of a storm.

A typical upper-air sounding showing temperature and water-vapor gradients favorable to v.h.f. J)X is shown in Fig. 15 -(6. An inerease in temperature and a sharp drop in water-vapor

15-WAVE PROPAGATION

gradient are secen at about 4000 feet, in comparison to the U. S. Standard Atmosphere curves at the left.

Such a favorable condition develops most of ten in the late summer or early fall, along the jungtion between air masses that may have come together from such widely-separated points as the Gulf of Mexieo and Northern Canada. Cuder stable woather conditions the two air masses may retain their original charater for several
wave range, and there is good evidence to indicate that our assigmments in the u.h.f. and s.h.f. portions of the frequency spectrum may someday support communication over distances far in exeess of the optical range.

Scatter: Vorward scatter, both ionospheric and tropospherie, may be used for marginal communieation in the v.h.f. bands. Both provide very weak but ronsistent signals over distancers that were once thought impossible on frequencies

Fig. 15-6-Upper-air conditions that produce extended-range communication on the v.h.f. bands. At the left is shown the U. S. Standard Atmosphere temperature curve. The humidity curve (dotted) is that which would result if the relative humidity were 70 per cent from the ground level to 12,000 feet elevation. There is only slight refraction under this standard condition. At the right is shown a sounding that is typical of marked refraction of v.h.f. waves. Figures in parentheses are the "mixing ratio"-grams of water vapor per kilogram of dry air. Note the sharp break in both curves at about 4000 feet. (From Collier, "Upper-Air Conditions for 2-Meter DX," QST, September, 1955.)
days at a time, usually moving slowly castward arross the country. When the path between two v.h.f. stations separated low fifty to several humJred miles lies along such a boundary, signal levels run far aloove the average value.

Many factors other thin air-mass movement of a continental character provide increased v.h.f. operating range. The convertion along coastal arcas in warm weather is a good example. The rapid cooling of the earth after it hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The early-morning hours, when the sun heats the air aloft, before the temperature of the earth's surface begins to rise,, may be the best of the day for extended v.h.f. range, partioularly in clear, calm weather, when the harometer is high and the humidity low.

The v.h.f. authusiast suon learms to corrclate various weathre manifestations with radiopropagation phemomena. By watehing temperatture, barometric pressure, changing cloud formations, wind direetion, visibility, and other easilyobserved woather signs, he can tell with a reasonable degree of acentacy what is in prospect on the v.h.f. binuls.

The responsivencss of radio waves to varying weather conditions increases with frequener. The so-Mc. hand is more sensitive to Woather variations than is the 28-Me, band, and the $14 t-$ Mr. band may show strong signals from far beyond visual distances when lower frequen(ios are relatively inative. It is probable that this temdeney continues on up through the micro-
higher than about 30 Me.
Tropospheric satter is prevalent all through the v.h.f. and microwave regions, and is usable over distaners up to about 400 miles. Ionospheric scatter, augmented by meteor bursts, brings in signtals over 600 to 1300 miles, on frequencies up to about 100 Mc . Wither form of scatter reguires high power, large antemas and c.w. technique to provide efferetive communication.

Bawk seatter, of the type head on lower bands, is also heard oceasionally on 50 Mc , when F_{2} or sporiudic- E skip is present.

Reflections from . Ieteor Trails: Probably the leant-known means of v.h.f. wave propagation is that resulting from the passage of metrors across the signal path. IReflections from the ionized meteor trails may be noted ats it Doppler-effect whisthe on the carrier of a signal already being recoived, or they may cause bursts of reception from stations not normally reedivable. Ordinarily such reflections are of little value in communicition, sinere the inereases in signal strength are of short duration, but meteor showers of considerable magnitude and duration may provide fluttery signals from distances up to 1500 miles or more on both 50 and $1+4 \mathrm{Mc}$.

As meteor-burst signals atre relatively wrak, their detection is greatly aided if high power and high-gain antemats are used. Two-way communication of sorts has been carried on by this medinm on 50 and $1+4$ Me. over distances of (bor to $1: 30 \mathrm{~K}$ miles, through the use of short c.w. transmissions and frequent repetition.

V.H.F. Receivers

Good receiving facilities are all-important in v.h.f. work. High sensitivity, adequate stability and good signal-to-noise ratio, necessary attributes in a receiving system for 50 Mc. and higher frequencies, are most readily attained through the use of a converter working into a communications receiver designed for lower frequencies. Though receivers and converters for the v.h.f. bands are available on the amateur market, the amateur worker can build his own with fully as good results, usually at a considerable saving in cost.

Basically, modern v.h.f. receiving equipment is little different from that employed on lower frequencies. The same order of selectivity may be used on all amateur frequencies up to at least 450 Mc. The greatest practical selectivity should be employed in v.h.f. reception, as it not only allows more stations to operate in a given band, but is an important factor in improving the signal-to-noise ratio. The effective sensitivity of a receiver having "communication" selectivity can be made much better than is possible with broadband systems.

This rules out converted radar-type receivers and others using high intermediate frequencies. The superregenerative receiver, a simple but broadband device that was popular in the carly days of v.h.f. work, is now used principally for portable operation, or for other applications where high sensitivity and selectivity are not of prime importance. It is capable of surprising performance, for a given number of tubes and components, but its lack of selertivity, its poor signal-to-noise ratio, and its tendency to radiate a strong interfering signal have eliminated the superregenerator as a fixed-station receiver in areas where there is appreciable v.l.f. activity.

R. F. AMPLIFIER DESIGN

The noise generated within the receiver itself is an important factor in the effectiveness of v.h.f. receiving gear. At lower frequencies, and to a considerable extent on 50 Mr., external noise is a limiting factor. At 144 Mc. and higher the receiver noise figure, gain and selectivity determine the ability of the system to respond to weak signals. Proper selection of r.f. amplifier tubes and appropriate circuit design aimed at low noise figure are more important in the v.h.f. receiver "front end" than mere gain.

Triode or Pentode?

Certain triode tubes have been developed with this end in view. Their superiority over pentode types is more pronounced as we go
higher in frequency. Because of the limitation on sensitivity imposed by external noise at that frequency, triode or pentode r.f. amplifiers give about the same results at 50 Mc. Thus the pentode types, which offer the advantages of better selertivity and simpler circuitry, are often used for $50-\mathrm{Mc}$. work. But at 144 Mc ., the newer triodes designed for r.f. amplifier service give fully as much gain as the pentodes, and with lower internal noise. With the exception of the simplest unit, the equipment described in the following pages incorporates low-noise r.f. amplifier techniques.

Neutralizing Methods

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capacitance is required. This can be capacitive, as is commonly used in transmitting applications, or inductive. The alternative to neutralization is the use of grounded-grid technique. Circuits for v.h.f. triode r.f. amplifier stages are given in Figs. 16-1 through 16-4.

A dual triode operated as a neutralized push-pull amplifier is shown at $16-1$. This ar-

Fig. 16-1-Schematic diagram of a push-pull r.f. amplifier for v.h.f. applications. This circuit is well-suited to use with antenna systems having balanced lines. Coil and capacitor values not given depend on the frequency at which the amplifier is to be used. Neutralizing capacitance, C_{N}, may be built up by twisting ends of insulated leads together.
rangement is well adapted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a balariced transmission line such as the popular 300 -ohm 'Twin-Lead is used. It is relatively selective and may require resistive loading of the plate circuit, when used as a preamplifier. The loading effect of the following circuit may be sufficient to give the required band width, when the push-pull stage is inductively coupled to the mixer.

A triode amplifier having excellent noise figure and broadband characteristics is shown in Fig.

16 - V.H.F. RECEIVERS

Fig. 16-2-Circuit of the coscode r.f. omplifier. Coupling capocitor, C_{1}, moy be omitted if spurious receiver responses ore not o problem. Neutrolizing winding, $\mathbf{L N}$ should resonote of the signol frequency with the gridplote copocitonce of the first tube. Bose connections ore for 417A and 6AJ4, but other small triodes may be used.

16-2. Commonly called the cascode, it uses a triode or triode-connected pentode followed by a triode grounded-grid stage. This circuit is extremely stable and uncritieal in adjustment. At 50 Mc. and higher its over-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is accomplished by the coil L_{N}, whose value is such that it resonates at the signal frequency with the grid-plate capacitance of the tube. Its inductanee is not critieal; it may be omitted from the circuit without the stage going into oscillation, but neutralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the (ascode circuit. The example shown in Fig. 16-2 uses the 417 A , followed by a GAJt. Two GAJ is would work almost equally well, as would the 6AM4, 6ANt and 6BC4. P'in connections in Fig. $16-2$ should be changed to suit the tubes selected.

A simplified version of the eascode, using a dual triode tube designed especially for this application, is shown in Fig. 16-3. I3y reducing stray eapacitance, through direct coupling between the two triode sections, this circuit makes for improved performance at the frequencies ahove 100 Me. The two sections of the tube are in series, as far as plate voltage is concerned, so

Fig. 16-3-Simplified coscode circuit for use with duol triodes having separate cothodes. Coil and capocitance values not given depend on frequency. Bifilar r.f. chokes ore occosionally used in heoter leods.
it requires higher voltage than the other circuits shown.

The neutralization process for the cascode and neutralized-triode amplifiers is somewhat similar. With the eireuit operating normally the neutralizing adjustments (capacitance of C_{N} in Fig. 16-1; inductance of L_{N} in Figs. 16-2 and $10-3$) can be set for best signal-to-noise ratio. The best results aro obtained using a noise generator, adjusting for lowest noise figure, but careful adjustment on a weak signal provides a fair approximation. Noise generators and their use in v.h.f. receiver adjustment are treated in July, 1953, QST', p. 10, and in this Handbook, Section 21.

Grounded-grid r.f. amplifier technique is illustrated in Figs. 16-4 and 16-14. Ilere the input is in the eathode lead, with the grid of the tube grounded, to act as a shichd between cathode and plate. The grounded-grid eireuit is stable and easily adjusted, and is well adapted to broadband applieations. The gain per stage is low, so that two or more stages may be required.

Tuhes well-suited to grounded-grid amplifier service include the 6.N. GANt, 6AJt, 6AM4, $6 \mathrm{BC} 4,417 \mathrm{~A}$ and 416 B . Disk-seal tubes such as the "lighthouse" and "pencil tube" types are often used as r.f. amplifiers above 500 Me., and the new ceramie tubes show great possibilities for r.f. amplifier servier in the u.h.f. range.

Great care should be used in adjusting the r.f. portion of a v.h.f. receiver, whatever cireuit is used. If it is working properly it will control the noise figure of the entire system.

Reducing Spurious Responses

In areas where there is a high level of v.l.f. activity or extensive use of other frequencies in the v.h.f. range, the ability of the receiver to operate properly in the presence of strong signals may be an important consideration. Special tube types, otherwise similar to older numbers, have been developed for low overload and crossmodulation suserptibility. The 613C8, which maty be used as a replacement for the $613(27 \mathrm{~A}$ or $6 \mathrm{BZ7} 7$, is one of these.

Modifieation of the converter design can also improve performance in these resperts. In general, the gain ahead of the mixer stage should be made no more than is neressary to achicue good noise figure characteristics. The plate voltage on the r.f. amplifier should be kept as high as pravetical, to prevent easy overloading.

Rejoretion of signals outside the desired frequency range can be improved by the use of high- Q tuned circuits ahead of the first r.f. amplifier stage. Tolevision transmitters are particularly troublesome in this respect, and one or more coavial-type circuits inserted in the lead from the antenna to the converter may be necessary to keep such signals from interfering with normal recreption.

A common cause of unwanted signals appearing in the tuning range is the presence of oscillator harmonics in the energy being fed to the miser of a crystal-controlled eonverter. This may be pre-

Fig. 16-4-Grounded-grid amplifier. Position of tap on plate coil should be adjusted for lowest noise figure. Low gain with this circuit makes two stages necessary for most applications. R.f. choke and coil values depend on frequency.
vented by using a high oscillator frequeney, to keep down the number of multiplications, and by shielding the oscillator and multiplier stages from the rest of the converter.

Signals at the intermediate frequency may ride through a converter. This can be prevented by keeping down capacitive interstage coupling in the r.f. eircuitry, and by shielding the converter and the receiver antenna terminals. The problem of receiver responses is dealt with in QST' for April, 1955, p. 56, and February, 1958, p. 27.

MIXER CIRCUITS

The mixer in a v.h.f. converter may be either a pentode or a triode tube. Pentodes give generally higher output, and may require less injection. When used without a preceding r.f. amplifier stage, the triode mixer may provide a better noise figure. With either tube, the grid cireuit is tuned to the signal frequency, and the plate circuit to the intermediate frequency.

A simple triode mixer is shown in Fig. 16-5A, with a pentode mixer at B. A dual-triode version (push-push mixer) is shown at C. The push-push mixer is well adapted to use at 420 Me., and may, of course, be used at any lower frequeney. Dual tubes may be used as both mixer and oseillator, combining the circuits of Figs. 16-5 and 16-6. A 6U8 could use its pentode as a mixer ($16-5 \mathrm{~B}$) and the oseillator portion ($16-6 \mathrm{~A}$) would be a triode. Dual-triode tubes ($6.56,12 \mathrm{~A}^{\prime} \mathrm{T}^{\top}$ and many others) would combine $16-5 \mathrm{~A}$ and 16-6A. In dual triodes having separate cathodes some external coupling may be required, but the common cathode of the GJ6 will provide sufficient injection in most cases. If the injection is more than necessary it ean be reduced by dropping the oscillator plate voltage, either directly or by increasing the value of the dropping resistor.

A pentode mixer is less subject to oseillator pulling than a triode, and it will probably require less injection voltage. In a pentode mixer with no r.f. amplifier, plate current should be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer sereen
voltage. When a good r.f. amplifier is used the mixer plate current may be run higher, for better operation with strong signals.

Occasionally oscillation near the signal frequency may be encountered in v.h.f. mixers. This usually results from stray lead inductance in the mixer plate eireuit, and is most common with triode misers. It may he corrected by connecting a small eapacitance from plate to eathode, directly at the tube socket Ten to 25 $\mu \mu$. will be sufficient, depending on the signal frequeney.

OSCILLATOR STABILITY

When a high-selectivity i.f. system is employed in v.h.f. reception, the stability of the oscillator is extremely important. Slight variations in oscillator frequeney that would not be noticed when a broadband i.f. amplifier is used become intolerable when the passband is reduced to crystal-filter proportions.

One satisfactory solution to this problem is the use of a erystal-controlled oschlator, with frequeney multipliers if needed, to supply the injection voltage. Sueh a converter usually employs one or more broadband r.f. amplifier stages, and tuning is done by tuning the receiver with which the converter is used to cover the desired intermediate frequeney range.

Fig. 16-5-Typical v.h.f. mixer circuits for triode (A), pentode (B) and push-push triode (C). Circuits A and B may be used with one portion of various dual-purpose tubes. Plate current of pentode (B) should be held at lowest usable value if no r.f. stage is used.

Fig. 16-6-Recommended oscillotor circuits for tunable v.h.f. converters. Duol-triode-version (B) is recommended for 220 or 420 Mc. R.f. choke coil ond copocitor volues not given depend on frequency.

When a tunable oscillator and a fixed intermediate frequency are used, special attention must be paid to the oscillator design, to be sure that it is mechanimally and electrically stable. The tuning catpacitor should be solidly built, preferably of the double-bearing type. Splitstator capacitors specifically designed for v.lif. service, usuatly having ball-bearing end plates and special construction to insure short leads, are well worth their extra cost. Leats should be made with stiff wire, to reduce vilmation effects. Mechanical statbility of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.
lecommended oscillator circuits for v.h.f. work are shown in lig. 16-6. The singleoended oscillator may be used for 50 or $1+4$ Me. with good results. The push-pull version is recommended for highor frecpuencies and may ako be used on the two lower bands, as well. Circuit A works well with almost any small trionde, or one half of a 6.J6 or 12AT7. The 6, 56 is well suited to push-pull applications, as shown in gireuit 16-6B.

THE I.F. AMPLIFIER

Superheterodyne receivers for 50 Me. and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 per cent of the signal frequency is commonly used, with 10.7 Me. being sot up as the standard i.f. for commercially-built f.m. recoivers. This particular frequency has a disadvantage for 50- Mte. Work, in that it makes the receiver subject to image response from $28-$ Me. signals, if the oscillator is on the low side of the signal frequency. A spot around 7 Me. is fitvored for amateur converter service, as practically all communications receivers are capable of tuning this range.

For selectivity with a reasonable number of i.f. stages, double conversion is usually employed in complete receivers for the v.h.f. range. A $\bar{i}-$ Mc. intermediate frequency, for instance, is changed to 455 ke ., by the addition of a serond mixer-oscillator, This procedure is, of course, inherent in the use of a v.h.f. converter ahead of a communications receiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-receiver combination may be inadequate. This can be corrected by buidting an i.f. amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to permit operation of the converter with receivers of
widely different performaner. If the receiver has an N -moter, its adjustment maty be loft in the position used for lower frequencios, and the convertor gain sot so as to make the meter read normatly on v.h.f. signals.

Where reeception of wide-band f.m. or unstable signals of modulated oseillators is desired, a converter may be used ahead of an f.m. broadeast receiver. A suphrregencrative detertor onerating at the intermediate frequency, with or without additionall i.f. amplifier stages, also may serve ats an i.f. and detector system for reerption of wideband signals. By using a high i.f. (It to 30 Mr, or so) and by resistive loading of the i.f. transformers, almost any desired degree of bundwidth can le secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the mierowave region, where stabilized transmission is extremely difficult at the eurrent state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. reoriver is the superregencrator. It affords fair sensitivity with few tubes and clementary circuits, but its weaknesees, listed carlier, have relegated it to applieations where small size and low power consumption are important eonsiderations.

Its sensitivity results from the use of aln alternating quenching voltage, usually in the range between 20 and 200 ke ., to interrupt the normal oseillation of a regenerative detector. The regencration can thus be increased far beyond the amount usable in a straight regencrative circuit.

Fig. 16-7-Superregenerotive detector circuit for selfquenched detector. Pentode tube moy be used, vorying screen voltoge by means of the potentiometer to control regeneration.

The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used. Regeneration is usually controlled by varying the plate voltage in triode detectors, or the screen voltage in the case of pentodes. A typical eireuit is shown in Fig. 16-7.

Crystal-Controlled Converters

Crystal-Controlled Converters for 50 , 144 and 220 Mc.

The three converters and their power supply, shown below, were designed to meet the special requirements of eath of the v.h.f. bands, insofiar as possible. They offer high stability and reasonably low noise figure. and special attention was paid to the reduction of spurions responses, particularly in the converters for 50 and 220 Mc . Each unit plags into the power supply, which also includes the i.f. output circuitry. Anyone interested in one or two of the bands can thus build for his own purposes and omit the other bund or bunds. The i.f. tuning range is 7 to 11 Mc. for $50-$ and $14+$ - Mc. coverage, and $\overline{7}-12 \mathrm{Mc}$. for the $220-\mathrm{Mc}$. hand.

THE 50.MC. CONVERTEF

A pentode r.f. :mplifier stage is used in the $50-\mathrm{Mc}$. converter, Figs. $16-9$ and 16-10. With proper design and adjustment such a stage will have a noise figure sufficiently low that it will respond to the weakest signals that can be heard with other and more complex stages. The tube shown is a 6 CB 6 , but other pentodes such as the 6.AK5 may be substituted.

A gain control is included in the cathode eircuit. Normally this is run all-out, for optimum noise figure and gain, but in the presence of strong local signals it can be cut in to reduce overloading. This cuuses some impairment of the noise figure, but may still make possible reception of distant signals through the locals.

Note the double-tuned coupling circuits in the r.f. input and between the r.f. amplifier and the mixer. The capacitors C_{1} and C_{2} are kept as small as possible, and the coils are not coupled together otherwise. A vatue of 1 to $2 \mu \mu \mathrm{f}$. gives suificient coupling at the desired frepuences, but the system responds only very slighty to lower frequencies. This helps to prevent interference from signals on the intermediate frequency.

The mixer is also a 6 CB36. Its operating conditions are set up for resistance to overloading and cross-modulation from strong signals, rather than for optinum noise figure, as the tatter is taken care of by the r.f. amplifier. Note that the plate circuit of the mixer is omitted from the converters. It is built into the power unit, and thus only one coil need be made for all the converters.

The oscillator is a 6 AI'4 triode. Any other small triode could be substituted. Input is held to a low level (note $4 \overline{7},(00)$-orhm resistor in series with L_{7}) in the interest of stahility. The oscillator circuitry is isolated from the rest of the converter, so that injection can be controlled readily. Energy from the oscillator is carried to the mixer grid eircuit through a shielded link.

Mechanical Features

Each converter is built on a flat plate, which screws onto a standard aluminum ehassis. Con-
nection to the power unit is made through a t-pin plug mounted on the side of the case. This cauries the heater voltige, the plate voltuge, the mixer plate lead and the common chassis connection. The plug on the converter is the male type. It may be fastened to the chassis conveniently ly soldering $4-10$ nuts to the back of the flanges used for momenting the plug. Flat-head machine serews in countersumk holes, in both the converter and the power supply unit allow the two to fit snugly together. This is important in preventing pickup of signals in the i.f. range.

In the bottom view, Fig. 16-9, the antenna connector is seen at the lower right. Just to the left, separated by a small shield, are the two r.f. eoils, L_{1} and L_{2}. The coupling capacitor, ${ }_{1}$, made of two wires twisted together, is on the low side of the shiehd, its lead to L_{2} rumning through a hote in the shield.
The lead from L_{2} to the amplifier grid pin runs through the main lengthwise shicld. This lead was made of shielled wire, with the shielding removed from the part of the leal that is in the coil compartment. The portion of the wire in the tube compartment must be shielded to prevent feedback between the phate coil, L_{3}, and the grid cirenit. The coupling capacitor, (${ }_{2}$, the gain control, the plate coil and all other amplifier components are in this seetion. upper right.

Mixer components are at the upper left, with the oscillater section below. The compling link between L_{5} and L_{6} is made of shielded wire, rumning through the main shield partition.
The leads from the mixer to the plug. J_{2}, and all power leads, are made with shielded wire. The common comection for ground and heater lead is the shielding over the other three wires. These leads should be long enough so that the converter can be lifted from the box without removing the plug. A length of vinyl sleeving slipped over the leads will help to prevent shorts. Trimsparent sleeving was used, so it does not show in the

Fig. 16.8-Converters for the three v.h.f. bands, with their power supply and i.f. output unit. The 220-Mc. converter is shown plugged into the power unit. At the left is the $50-\mathrm{Mc}$. converter. The one for 144 Mc . is at the right.

Fig. 16-9-Bottom view of the $50-\mathrm{Mc}$. converter. R.f. input circuit is at the lower right, with the amplifier itself above. Crystal oscillator components at lower left; mixer and output cable above.

photographs.

The main shield is 6 by $115 / 16$ inches in size, with a $1 / 4$-inch lip folded over for mounting to the plate. The two shields perpendicular to it are $17 / 8$ by $115 / 16$ inches, with lips folded over on the bottom and one end. The isolation shield between the r.f. coils is $13 / 4$ by $115 / 16$ inches, and is mounted $3 / 4$ inch in from the lower edge of the cross shield.
The placing of the parts otherwise is not particularly critical, except that by-pass capacitors should be comneeted with the shortest possible leads. Use of the smallest size disk ceramie type is recommended.

Adjustment

Tuning up the converter is a simple matter. Check the wiring to be sure that no errors have been made. Apply a.c. and see if all heaters come on. Then apply plate voltage by closing S_{2} on the power supply unit. If the converter output is

16 - V.H.F. RECEIVERS

connected to a communications reeeiver tuned to the 7 -Me. range there should be a considerable inerease in noise as plate voltage is applied, even with circuits out of tune.
First check the oscillator. This can be done by listening in the $43-\mathrm{Mc}$. range, if a reeeiver is available for that frequeney, or a grid-dip meter may be used as a wavemeter. Output should appear on 43 Mc ., and on that frequeney only. Adjust L_{7} for maximum output indication, with the grid-dip eoil coupled to L_{7}. Check around 14.3 and 28.6 Mc. to be sure that no output is in evidence on these frequencies. should there be energy on these frequencies it means that the crystal is oscillating on its fundamental frequency and showing output on its various harmonics. Oscillation on the fundamental indicates that the plate circuit is not properly tuned.

If the converter is wired correctly it should now be possible to receive strong signals, even before the circuits have been resonated. A calibrated signal generator is helpful, but it is by no means necessary. A test signal should be fed into the antenna connector and the core screws in all coils adjusted for maximum signal strength.
The response of the converter will not be flat across the entire 4000 kc . of the $50-\mathrm{Mc}$. band, but it will work over a wider frequency range than most directive antenna systems. The setting of the cores in L_{3} and L_{4} can be varied to give uniform response aeross the desired pass band. The input cireuit should be adjusted for best signal-to-noise ratio at the middle of the desired frequency range.
The value of the small coupling eapaeitors, C_{1} and C_{2}, will have some effect on the bandwidth of the r.f. portion of the converter. Few directive antennas will work over more than about 1500

Fig. 16-10-Schematic diagram of the 50-Mc. converter. Capacitors are ceramic; values. 001 and up are in $\mu \mathrm{f}$. Resistors $1 / 2$-watt unless specified.

[^6]L_{2}-Same as L_{3}, but 9 turns.
$L_{5}-2$ turns insulated hookup wire at low end of L_{4}.
L_{6}-Same as L_{5}, but af low end of L_{7}.
L_{7}-Same as L_{3}, but 16 turns.
J_{1}-Cooxial connector, female.
$J_{2}-4$-pin power connector, male. Must mount flush with chassis surface.

144-Mc. Converter

kc . of the band, so there is seldom much point in making the front end of the converter broader than this. If optimum performance is needed at the opposite end of the band it is merely necessary to repeak the core studs for best results at the desired frequency. Adjustment of the i.f. coil in the power unit also affects the bandwidth. It can be peaked somewhat above the middle of the tuning range if it is desired to extend the coveruge of the converter-antenna combination.

When the converter is tuned for best results it may be desirable to eheck the oscillator injection. This is best done with the aid of a noise generator, though a signal generator or weak signals may be used if care is taken to observe optimum signal-to-noise ratio, rather than mere gain. The value of the dropping resistor in series with L_{7} can be varied, the idea being to use the highest value that will not affect the signal-to-noise ratio adversely.

A simple check on performance that can be made in a location free of manmade noise is as follows: Connect a $50-0 \mathrm{hm}$ resistor in place of the antenna coax. Ohserve the noise level, either by ear or as indicated on an output meter or the receiver s-meter. Now put the antenna back on. If the r.f. stage is free of regeneration, a rise in noise level when the antenna is connected shows that extermal noise can be heard. This noise is the limiting factor in weak-signal reception, and further reduction in receiver noise figure will serve no useful purpose.

THE 144-MC. CONVERTER

In the converter for $1+4$ Mc., Figs. 16-11 and 16-12, triode r.f. amplifiers are used, as they give better noise figure than pentodes at this frequeney and higher. The tubes shown are 6BC4s, but comparable results cam be achieved with the GAJ4, 6AM4 or 6AN4, with the necessary revision of the pin connections. Noise figure obtainable with any of these tubes is about 5 db ., which is about the level at which external noise begins to limit receiver sensitivity. A noise figure of 3 db . or lower can be had with 417 As , or even one 417 A and one less expensive tube, but there may be no observable difference in weak-signal periormance.

The cascode circuit (see leginning of chapter) is used, with the circuit of Fig. 16-2 in preference to that of $16-3$. The latter, operating at lower plate voltage per stage, may be slightly more susceptible to overloading. The 6 Cl 36 mixer is also operated under conditions designed to keep down overloading and cross-modulation troubles.

The erystal oscillator is operated at the highest frequency that is possible with simple circuitry. This holds down the number of unwanted frequencies appearing in the multiplier output, which could beat in signals from outside the intended frequency range. The erystal oscillates on 45.667 Mc., using the triode portion of a 6 U 8. The pentode portion is a tripler to 137 Mc .

The oscillator-tripler portion is isolated from the rest of the converter by a copper shicld running down the middle of the 5 by 5 -inch plate.

The grid circuit of the first r.f. amplifier stage is adjacent to the tripler, but is as far awar from it as possible, and the coils are positioned for minimum coupling. The lower section of the conveter, as shown in Fig. 16-11, is the portion in question, the antennal connection and grid coil heing at the lower right.

Above the shied may be seen the first r.f. stage, right, the second stage, with a shield down through the middle of its socket, center, and the mixer at the far left. To provide effective isolation and bypassing, feed-through capacitors are mounted in the copper shield to carry power leads from one compartment to the other. Three are used for the B-plus line and two for the heater leads.
R.f. circuits and the tripler plate circuit are tuned by means of smail TV-type trimmers. Four of these are shown in the photograph, but the one that is connected to the first r.f. plate coil, L_{3}, may be omitted, as the circuit tunes very broadly. The r.f. plate coil, L_{4}, and the mixer grid coil, L_{5}, are $3 / 4$ inch apart, center to center. Coupling between the two stages is mainly through the twisted-wire caparitor, C_{10}. The r.f. input coil, L_{1}, is conneeted to the grid 1_{1} in of the V_{1} by a lead that runs through a $1 / 4$-inch hole in the shield.

Both shields are made of flashing conper. The larger is $53 / 4$ by $13 / 4$ inches, with folded-over elges for mounting, and for rigidity. The smaller is $1 \frac{1}{2}$ by $1 \frac{3}{4}$ inches. It is held in place by soldering to lugs under the mounting scress of the 6BCt socket. This shield turned out to be required to prevent oscillation in the grounded-grid stage. It crosses the middle of the tube socket.

Connections for the power are made in the sume manner as for the 50-Mc. converter, and leads should be long enough to permit removal of the converter from the box without unsoldering any leads. The shields are bonded together and anchored to a lug bolted to the main shield, near the left end.

Note that wafer-type sockets are used. This is
Fig. 16-11-Bottom view of the 144-Mc. converter. Crystol oscillotor and tripler occupy lower left side of the assembly. Antenno input circuit is of the right. Above the partition, right to left, ore the cothode trimmer, the first r.f. omplifier socket, the r.f. plote coil, the second omplifier socket, with shield ocross its center, the plote coil, mixer grid coil ond mixer tube sosket.

Fig. 16-12- Wiring diagram and parts information for the 144-Mc. converter. Parts specified as in Fig. 16-10.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-8 \cdot \mu \mu \mathrm{f}$. plastic trimmer (Erie No. 532-10).
$\mathrm{C}_{4}-3-30-\mu \mu \mathrm{f}$. mica trimmer. Set at tight position initially. $\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-500-\mu \mu \mathrm{f}$. feed-through bypass
(Centralab MFT-500).
$L_{1}-41 / 2$ turns No. 18 tinned, $1 / 4$-inch inside diam., $1 / 2$ inch long, tapped at $11 / 2$ turns.
$\mathrm{L}_{2}-14$ turns No. 24 enam., $3 / 16$-inch diam., $1 / 2$ inch long.
$L_{3}-5$ turns No. 18 tinned, $1 / 4$-inch diam., $1 / 4$ inch long.
$L_{4}-5 \frac{1}{2}$ furns like L_{3}.
$L_{5}-31 / 2$ turns like L_{3}.
more than an economy measure; shorter ground leads are possible with this type of socket. Where socket terminals are to be grounded, they are bent down flush with the bottom of the plate. Then a hole is drilled adjacent to the lag and it ean then be secured to the plate under a washor and nut. This method of grounding is superior, at these frequencies, to the more eommonly used lead-and-lug arrangement.

Adjustment

The first step in putting the 144-Mc. eonverter into service is to be sure that the oseillator is working correctly, as described in eonnection with the $50-\mathrm{Mc}$. converter. This may be done with the plate and screen voltages disconnected from the pentode portion of the $6 \mathrm{U8}$, if desired, by lifting tripler plate eoil and the screen resistor from the I3-plus line temporarily. Be sure that the oseillator is on the right frequency, and no other, as described earlier.

Now comnect the tripler plate coil and screen resistor to the B-plus line and check the tuning of the tripler capacitor, C_{3}. Set it for maximum output on 137 Mc., as indicated by a grid-dip meter coupled to L_{7}. The output required from the tripler may be checked after the r.f. seetion is tuned properly. It may be controlled by varying the value of the screen dropping resistor, which is 47,000 ohms in the original. The tripler may be run at the lowest input that will give
$L_{8}-13$ turns No. 24 enam. closewound on $1 / 4$-inch diam. iron-slug form (North Hills F-1000).
$L_{7}-8$ turns like $l_{3}, 3 / 4$ inch long.
$\iota_{s}-1$ furn insulated hookup wire between first two turns of L_{7}.
L_{9}-Same as L_{8}, inserted in L_{5}.
J_{1}-Coaxial connector, female.
$J_{2}-4$-pin power connector, male. Must mount flush with surface of chassis.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-1.8 \mu \mathrm{~h}$. solenoid r.f. chake (Ohmite Z-144).,
satisfactory signal-to-moise ratio. Above that point the injection is not critical.

The r.f. circuits may now be adjusted. Set the trimmer, C4, across the r.f. cathorle resistor, at maximam at first. Then on a test signal tune C_{i} and C_{2} for maximum response. The spacing between the turns of the r.f. plate coils, L_{3} and L_{4}, should also be adjusted for highest signal level.

If a noise generator is available, it should be used to set up the r.f. input circuit. the inductance of the neutralizing eoil, and the value of the cathode bypass, (r4. If signals or a signal generator are used, the aritarion should be greatest rise over noise for a given signal, rather than maximum Si-meter reading or loudest volume. Adjustment of the neutralizing eoil, and setting of the eathode bypass value are all but impossible without a noise generator. Lacking one, it is best to use a fixed bypass of about $1(0) \mu \mu \mathrm{f}$. for C_{4}, and leave the neutralizing winding at the specifieation given in the cut label. Changes in the neutralizing coil affect the tuning of the grid circuit. Reeheck the setting of C_{1} after altering L_{2}.

The eoupling eapacitor, C_{10}, is not critical, but for best rejection of i.f. signals it should be as low as will give satisfactory performanee on 144-Me. signals. Insulated wires twisted together provide a convenient adjustment method.

As the band is nearly three times as high in frequency as the $50-\mathrm{Me}$. band, there will be less

220-Mc. Converter

difficulty in getting uniform response across the entire band. Tuning of the second r.f. and mixer eircuits can be staggered to develop the desired bandwidth, and the value of C_{10} will have some effect on it as well.

THE 220-MC. CONVERTER

In the converter for 220 Me.. Figs. 16-13 and $16-14$, an additional r.f. amplifier stage is used ahead of the cascode-and-mixer combination. This is required because the gain per stage is lower at this frequency. It is also desirable because of the added selectivity it affords. This may be very helpful in areas where interference from other services adjacent to the band may be bothersome.

The additional stage is a grounded-grid amplifier, using a modified coaxial-line plate circuit for high " $($)" and selectivity. It is not a broadband device and must be retuned in eovering the hand. The tube shown is at 6ad-t. Nimilar results were achieved with the 6 BC , and nearly identical performance is possible with other u.h.f. triodes. The 417 A and 416 B should be superior. Noise figure is about (6 db .

A series cascode using a (6BC8 dual triode follows. This type of amplifior is easily adjusted and tends to deliver superior results as the upper limit of frequeney is approached. The mixer is a GAK5. Its output cireuit is, of course, the coil assembly in the power unit.

The r.f. amplifier is simitar to the one deseribed separately later in the chapter, except that the output is taken off through the bottom of the assembly, with a tuned link, instead of through a coaxial fitting on the side. In the diagram, Fig. 16-14, the plate line and coupling loop are shown as if they were eoils, it being eumbersome to express a trough-line circuit selhematically.

Mechanical Details

A somewhat different method of construction is employed in the 220-Mc. converter, in order to insure the most effective grounding and bypassing. A plate of aluminum is used, as in the other converters, hut only for appearanee and rigidity. The plate used for actual eleetrical gromoding is a sheet of flashing copper. Wafer sockets are used, and wherever a terminal is grounded it is bent down flat and soldered directly to the copper plate. This makes for less lead and more effective grounding than where socket mounting serews and lugs are used ground eomnections. It also athows shield partitions of copper to be soldered directly to the base plate.

The 220 -Mc. converter requires more space than the others, so a 7 by 9 -ineh chassis and phate are used. The lengthwise partition $11 / 8 \mathrm{hy}$ 7 inches in size, after folding over $1 / 8$ inca on each side for mounting and rigidity. The smaller is $11 / 8$ by 4 inches. The large shield is centered on the plate $23 / 8$ inches in from the long edge. The smaller is $4 \frac{1}{4}$ inches in from the teft edge.

The oscillator is similar to the $144-$ Mc. unit, except that an air-wound coil and a variable capacitor are used instead of a slug-tuned coil. The pentode section of the 6U8 is a quadrupler to 213 Me . from a crystal frequency of 53.25 Mc . A series-tuned link feeds energy to the mixer grid eireuit through a shieded-wire line. (Iseillatormultiplier components are in the left portion of Fig. 16-13.

At the rightare the mixer (upper soeket) and the series cascode r.f. amplifier, below. Note that power wiring is made with shielded wire, haid close to the shields. Plate voltage is fed into the oscillator-multiplier and r.f.-mixer compartments on feed-through bypasses. Heater voltage for the r.f. amplificr goes through the phate on shielded wire at the lower left, and plate voltage at the

Fig. 16-13-Interior of the $220-\mathrm{Mc}$. converter. Bottom plate and partitions are of flashing copper, for effective grounding. Oscillatormultiplier circuitry is af the left; mixer ond cascode r.f. amplifier at the right. Groundedgrid amplifier is above the chassis.

16 - V.H.F. RECEIVERS

Fig. 16-14-Schematic diagram and parts infarmation for the 220-Mc. converter.
lower right. The mica trimmer at the lower right is C_{2}, in series with the low side of the roupling loop, L_{2}. The other end of the loop comes out on a feed-through bushing, National Typa TP'I3. Its lead to L_{3} is shielded wire, rumbing through the partition.

In working with flashing ropper parts the metal work should be completed, up to the point where the parts are ready to assemble. The copper parts may then be polished with steal wool and given a fine spray coat of cherer havuer. This will help to keep them clean and bright, and it will not affect the soldering operations to be done later.

Adjustment

The oscillator and multiplier stages should be adjusted as outlined for the other converters, making sime that the

《

$\mathrm{C}_{1}-5-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-5).
$\mathrm{C}_{2}-\mathbf{3 - 3 0}-\mu \mu \mathrm{f}$. mica trimmer.
$\mathrm{C}_{3}-20-\mu \mu \mathrm{f}$. miniature variable (Hommarlund MAC-20).
$\mathrm{C}_{4}-10-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-10).
$\mathrm{C}_{5}-7-45-\mu \mu \mathrm{f}$. ceramic trimmer (Centralab 822-BN).
$C_{6}, C_{7}, C_{8}, C_{9}-500-\mu \mu$. feed-thraugh bypass (Centralab MFT 500).
L_{1}-Inner conductar of traugh line- $1 / 4$-inch capper fubing, $61 / 4$ inches lang, $1 / 4$-inch diam. C_{1} cannects $13 / 4$ inches fram plate end. See Fig. 16-22 and text.
L_{2}-Caupling loop-insulated hookup wire 3 inches lang. Loop portion lays clase to cald end of L_{1} for 2 inches. Hat end cames thraugh chassis on National Type TPB feed-through bushing.
L3-3 turns No. 18 tinned, $1 / 4$-inch diam., $1 / 4$ inch long, center-topped.
$L_{4}-4$ turns like $L_{3}, 3 / 8$ inch lang.
$L_{5}-81 / 2$ turns like $L_{3}, 5 / 8$ inch lang, centertopped.
$L_{0}-2$ turns insulated hookup wire at center of t.
$L_{7}-6$ furns Na. 20 finned $1 / 2$-inch diam., $1 / 2$ inch lang. (B \& $W \mathrm{Na} .3003$).
$L_{s}-2$ turns Na. 18 tinned, $3 / 8$-inch diam., spaced $1 / 8$ inch.
$\mathrm{L}_{9}-2$ turns insulated hookup wire between turns of $L s$.
J_{1}-Caaxial fitting, female.
$\mathrm{J}_{2}-4$-pin power connector, male. Must mount flush with surface af chassis.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-18$ turns No. 24 enam., close-wound, $1 / 8$-inch diam.

220-Mc. Converter

correct frequencies are obtained. Next a signal may be fed into the 6I3C8 stage through the shielded line to L_{3}. This may be disconnerted from L_{2} temporarily and coax-fed antenna or a 50 -ohm signal generator termination may be connected across it. Now adjust the spacing of the turns in L_{3} and L_{5} for best performance. Maximum gain will be a groodenough indication here, so a noise generator is not needed.

Now the 6AM4 amplifier may be hooked up and tuned. It will be quite selective and will have to be retuned several times across the band. With the plate tuning capacitor tapped down the line as it is, the tuning range in megaryeles is not great. Be sure, therefore, that it actually docs tune the entire way, and does not hit maximum or minimum capacitance inside the band.
Adjustments may be made all along the line using maximum signal level as the hasis for achieving the optimum setting, but only a noise generator will show if the converter is delivering the best sensitivity of which it is capable. It should be possible to get the noise figure down to about 6 db , using the 6 AM 4 , if everything is working properly.

If any doubt exists that the coils L_{3} and L_{5} are thning properly, small twisted-wire capacitors may be connected from the grid end of L_{3} and the plate end of L_{5} to ground, and gradually increased in value. If the gain drops when the capacitor is connected, the coil is too large. If a small amonnt of added capacitance inereases the gain, squerze the coil turns closer together and try again. The inductance of L_{4} should not be particularly critical. It should be as large as can be used without causing instability.

Injection from the quadrupler may be controlled by varying the position of either link winding, L_{6} or L_{9}, with respect to its coil, and by adjusting C_{5}. Coupling should be increased until

Fig. 16-15-Bottom view of the power supply and i.f. output circuitry for the v.h.f. converters. A.c. switch is above power transformer, right. Next ore the filter capacitor and the rectifier socket. The switch at the lower left cuts off the high voltage. The i.f. plate coil and the output fitting are in the upper left of the picture.
there is no improvement in signal to noise ratio. Injection beyond that point is not critical, though it will affect the overall gain somewhat. Fairly low injection is desirable as ib will keep down the level of spurious responses.

POWER SUPPLY AND I.F. OUTPUT

Though it may be possible to run a v.h.f. converter from the power supply of the receiver with which it is to be used, a supply for the converters is desirable. The one shown in Fig. 16-15 and $16-16$ is inexpensive and convenient. It delivers the heater and plate power requared by the converters, and in addition carries the mixer plate circuit and the provision for coupling into the receiver.

Construction is not critical. Parts are assembled on a 5 by 7 -inch plate and this iastens to a similarly-sized chassis that matche; the converters. The 50 - and $144-\mathrm{Mc}$. units plug in to the

Fig. 16-16-Schematic diagram of the converter power supply and i.f. output unit. Capacitors with polarity marked are electrolytic; others ceramic.

[^7]bower unit through matching fittings on the sides. The larger 220-Mc. converter has the plug mounted on the end wall of the chassis, so that its 7 -inch dimension is aligned with that of the supply.

Arrangement of parts should be elear from the photographs, and parts location is in no way critical. Note that the a.c. connection is bypassed on both sides of the line. The eapacitors c_{1} and (2 are a dual unit designed for this purpose. The bypass on the I3-plus line, (${ }_{3}$. should be at the pling end of the cable, with ass short leads as possible. It is important in preventing pickup of signals in the i.f. tuning range, as are C_{1} and C_{2}.
Switches are provided for tuming on the a.e., and for breaking the flow of plate current. This feature is helpful during :adjustment when it may tre desirable to romove the converter from its case. Plate voltage maty be cut off for safety in handling, and then turned on again without loss of the time needed to warm up the tubes.

Contact between the converter case and the power supply rase maty be important in preventing signal pickup at 7 Inc. If i.f. signals are loothcrsome, try putting at spring clip under one of the serews that holds the power supply plate down. Patee this so that it will make contant with the converter case or top plate when the two units are plugged together. It also may be neressary to bond the eonverter and power supply combinat tion to the frame of the communications recoiver with which they are to be used. This should be
done with at short heavy copper strap or brad.
Connection between the i.f. unit and the receiver should be with conxial line, and it is highly desirable to install a coaxial fitting on the receiver in place of the usual terminal strip. The eonnections should be removed from the back of the strip, or the terminals may still allow some i.f. pickup.

Using Other Intermediate Frequencies

The i.f. tuning range beginning at 7 Mc . was selected as the most desirable for most rece. Other ranges maty be preferred, and the i.f. can be altered easily enough. The injection frequency is lower that the signal frequeney by whatever i.f. you intend to use. For eximple, a 50 -Me. convertur with a $1+$-Mc. i.f. would have at erystal and injertion frequency of $50-14$, or 36 Mc. The $1+4-\mathrm{Mc}$. converter would hatve at $1300-\mathrm{Mc}$. injeetion fremuency, and the erystal would be onethird of this, or 43.33:3 Me.
Generally speaking. singlemenversion communications rereivers (most inexpensive typers, and all older reedivers) work best with low intermediate frecturncies, such as 7 Mc. or lower. Double-conversion receivers will be satisfactory in the $14-\mathrm{Me}$. range in amost every case, and some are stable enough to do well around 30 Me. At kest one communications receiver, the NC-300, hats a range designed asperitally for vi.h.f. converter use, starting at 30.is Me.

A One-Tube Converter for 21, 28, 50, 144 or 220 Mc .

The erystal-controlled converters described on the previous patges are typical of the type of equipment that must be used in v.l.f. reception if optimum rosults are to be expected. It is possible to start in with simpler devices, however, and still do an arceptable job, The one-tube converter shown in Jiigs. 16-17, 16-18 and 16-19 is designed for the beginner or casual v.h.f. operator who wants the simplest thing that will give usable reception.

Provision is made for any anateur band from

21 to $220 \mathrm{Mc} \cdot$, but the converter should not be thought of as a multibund device in the usual sense. To kerep its construction as simple as possible, and to make it work satisfactorily on 144 or 220 Me., the coils are not made plig-in. To change from one band to another the coils must be unsoldered and another pair installed in their place. The 21- and 28-Mr. hands are covered with a single pair of roils by resetting the assoriated trimmer caparitors, but separate sets of coils are needed for 50,144 or 220 Mc .

Fig. 16-17-One-tube converter, with 144-Mc. oscillator funed circuit in place. Selenium rectifier power supply, shown plugged onfo rear of the converter, may be omitted if power is token from the receiver.

One-Tube Converter

Fig. 16-18-Schematic diagram and parts informotion for the simple converter.
$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. variable (Hammarlund MF-15).
$\mathrm{C}_{2}, \mathrm{C}_{7}-100-\mu \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{3}-10-\mu \mu \mathrm{f}$. ceramic (connect close to plate pin).
$\mathrm{C}_{4}-47$ - $\mu \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{3}-45-\mu \mu \mathrm{f}$. ceramic trimmer (Mallory ST-557-N; one for each band required).
C_{6}-Split-stator variable, about $12-\mu \mu \mathrm{f}$. per section (Hammarlund HFD-15X with 2 rotor plates and 1 stator plate removed from each section).
$\mathrm{C}_{8}-0.001-\mu \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{10}-16-\mu \mathrm{f}$. 250-v. electrolytic.
$R_{1}-1$ megohm $1 / 2$ watt.
$R_{2}-10,000$ ohms, $1 / 2$ waft.
$R_{3}-1000$ ohms, $1 / 2$ watt.
$R_{4}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-22$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-21,28 \mathrm{Mc}$. -16 turns No. 20 tinned, $3 / 4$-inch diam., 1 inch long, tapped 4 furns from ground end. (B \& W Miniductor No. 3011 .)
50 Mc. -7 turns No. 20 tinned, $5 / 8$-inch diam., $7 / 16$ inch long, tapped 2 turns from ground end. (B \& W 3007.)
144 Mc.-2 turns $1 / 2$-inch diam. No. 12 tinned wire,
A single 6 J 6 tube serves as mixer and oscillator. The input circuit, $L_{1} C_{1}$, tunes to the signal frequency. Energy from the oscillator, tumed by $L_{2} C_{5} C_{6}$, heats with the signal to produce the intermediate frequency, approximately 7 Mc ., in the plate circuit of the mixer stage. The coil L_{3} is tuned to this frequency, and the output is fed into a communications receiver through L_{4} and a coaxial cable attached to J_{2}. The oscillator tunes 7 Mc. lower than the signal frequency.
The converter power can be taken from the communications receiver in most cases. Receivers usually have an arcessory socket on the rear wall for this purpose. Consult the receiver instruction book for the type of plug and connections needed. An a.c. voltage of 6.3 at 0.45 amp . and 75 to 150 volts d.c. at about 12 ma . will be required. A simple selenium-rectifier supply can be built for the converter, as shown, if the necessary power cannot be taken from the receiver.

Construction

The converter was designed with an absolute minimum of parts. Note that it is shown without a panel, for instance. One can be added if the builder wishes, but it is by no means a necessity. A standard $5 \times 7 \times 2$-inch aluminum chassis (premier $\mathrm{ACH}-426$) is used, and no brackets or other metal parts need be made. Fig. 16-20 shows the locations of all holes. The frontview photograph shows the tuning capacitor, C_{6}, on top of the chassis with the trimmer (C_{5}) and
spaced $1 / 4$ inch, tapped $3 / 4$ furn from ground end.
220 Mc . 1 turn $1 / 4$-inch diam. No. 12 tinned wire, tapped near center.
$\mathrm{L}_{2}-21,28 \mathrm{Mc} .-15$ furns B \& W 3011 c.t. Add C_{5} as in photo.
50 Mc. $\rightarrow 7$ furns B \& W 3007 c.t. Add C_{5} as in photo.
144 Mc.-Hairpin loop of No. 12 tinned wire 1 inch long, 1 inch wide, c.t. Connect C_{5} to C_{6} terminals.
220 Mc.-Hairpin loop of No. 12 finned wire, $3 / 4$ inch long, $3 / 8$ inch wide with $3 / 8$-inch leads, c.t. Connect $\mathrm{C}_{5} 5 / 8$ inch from capacitor terminals; see photo.
$\mathrm{L}_{3}-24$ turns No. 24 enamel on $3 / 8$-inch iron-slug form (National XR-91).
$L_{1}-4$ turns No. 24 d.c.c. or enamel at cold end of L_{3}. $\mathrm{J}_{1}, \mathrm{~J}_{2}$-Phono jacks (Cinch 81 B or two Cinch 81A single jacks).
$\mathrm{J}_{3}-4$-contact male chassis fitting (Amphenol 86RCP4).
$J_{4}-4$-contact female chassis fitting (Amphenol 78RS4).
$P_{1}-115$-volt line plug.
$S_{1}-S . p . s . t$ t toggle switch.
CR_{1} - 20 -ma. selenium rectifier (Federal 1159).
T_{1}-Power transformer, 150 volts at 25 ma.; 6.3 volts at 0.5 amp . (Merit P-3046).

14-Mc. coil soldered in place. The feed-through bushing near the edge of the chassis serves as a tie point for R_{3} and holds the coil rigidly in position. Immediately behind C_{6} the 6 J 6 and the tuning adjustment for L_{3} are visible. The dial is a National type I . Note that a large knob (National type HRT-M) is substituted for the one that comes with the dial to smooth out the tuning. The dial index is mounted below on the front wall of the chassis instead of above, for obvious reasons. The 0 to 100 scale may be used for logging, or a calibration may be drawn on stiff white paper and cemented to the dial surface. The small knob to the left is the mixer grid circuit trimmer, C_{1}.

A power supply is shown plugged into the back of the converter. If the power plugs are positioned so that this is possible, it will save making up a connecting cable. The supply is huilt in a $4 \times 2 \times 2$-inch utility cabinet. The layout is not important, and it can be built in some other form if desired.

The various components visible in the bottom view are labeled for ease in identification. Most of the small parts are grouped around the tube socket near the center of the chassis. There is very little wiring to be done other than soldering in these resistors and capacitors by their leads. Below the tube socket are the slug-tuned L_{3} and a two-terminal tie point supporting R_{4}. L_{3} is held in place by passing its leads through holes in the plastic rings supplied with the XIR-91

16 - V.H.F. RECEIVERS

coil form. L_{4} is wound around the by-passed end of L_{3} and is cemented or doped in place. Its leads are then twisted and run over to the output connector on the back of the chassis. If the dual comeetor shown is not available, two standard phono jacks can be substituted.

The mixer grid cireuit is visible above and to the left of the tube socket. C_{1} is mounted on the front wall of the ehassis and L_{1} is soldered across its terminals, A short picere of coax (RG-58/U or $1 R \mathrm{G}-5!/ \mathrm{U}$) is run from the input connertor to the grid circuit. Here the braid is grounded to the rotor of C_{1} and the inner conductor is tapped onto L_{1} in the proper place. Note the two $3 / 8$-inch holes drilled between the tube soeket and the tuning capacitor. These are for the leads from C_{4} and I'in 1 of the 6 JJ , which pass through the chassis near the eenters of the holes. The tule socket should be mounted as shown with lin 1 adjacent to the large hole near the middle of the chassis.

The third photograph shows the coils for 15 , 10, 6 and $11 / 4$ meters, the 2 -meter coils bring on the converter when the pictures were made. The oscillator eoils with their trimmers (C_{5}) and decoupling resistors $\left(R_{3}\right)$ are in the back row, and the mixer grid coils are in the front row. It is not necessary to use separate trimmers for euch oseillator coil, but doing this eliminates the need for readjustment when changing eoils. The use of separate decoupling resistors does away with repeated soldering to the coil center tap. The coils for 50 Mr . and below are made of sections of IS \& W Miniductor. It will be easier to solder to these if the turns each side of the desired one are bent toward the eenter of the coil. The higher frequency coils are made from

No. 14 wire as described in the parts list.
The oscillator caparitor, C_{6}, was modified slightly to secure more bandspread on the higher ranges. The end stator plate and the last two rotor plates of each section should be removed by twisting carefully with long-nosed pliers. This leaves four stator and three rotor plates in each section. If the converter is to be used on 14. or 220 Ne. only, the bundspreal maty be inereased by removing more plates, but it is advisable to leave them on until the proper frequencies are found.

Adjustment

The mixer has the best noise figure with a plate voltage of about 75 , so R_{4} should be made a suitable value to provide this drop. If a dilferent supply voltage is used it may be advisable to change the value of R_{4} to reduce the mixer voltage to about 75 . This is not aritical, though, and anything 20 volts or so sither side is perfeetly satisfuctory. Even a 90 -volt " 13 " battery will do for a plate supply.
first apply filment voltage and see that the GJd heater lights up. Now apply plate voltage. Check to see that the oscillator is working. If a milliammeter is available (10 to 100 ma . full scale) eonneret it in series with R_{3} to measure oscillator phate current. This should be about 6 mat and should rise when the osrillator coil, L_{2}, is touehed with a pencil lead. If it is much higher, and does not change, the tube is not oscillating. Recheck the oscillator wiring for a mistake, or try inother 6J6.

The frequency of the oseillator may be checked with a calibrated reeeiver, if one is available, or use a grid-dip meter or an absorption-type

Fig. 16-19-Bottom view of the converter, showing the principal parts numbered as they appear on the schematic diagram.

Fig. 16-20-Layout drawing of the converter chassis, showing size and location of all holes.
wavemeter with fairly accurate calibration. The grid-dip meter will show output when coupled to L_{2} and tuned to the frequency of the oscillation. Tuning an absorption wavencter coupled to L_{2} to the oscillator frequeney will cause a flicker in oscillator plate current. At 220 Mc. it is also possible to use a Lecher wire system to measure the frequency as outlined in the measurements ehapter.

The oscillator should be adjusted (by C_{5}) to tune below the desired signal frequeney by the amount chosen as the i.f. For the 2l-Me. band the oseillator tunes at least 14 to 14.45 Me . For 28 Mc . it should cover at least 21 to 22.7 Mc . For the 6-meter band it must tune 43 to 47 Mc .,
and so on. The trimmer capacitor, C_{5}, and, if necessary, the coil, L_{2}, are adjusted to set the oscillator to the proper range. Actually coverage will be somewhat more than the width of the band, and the desired range should be centered on the dial by varying C_{5}. The coverage mentioned above is obtained by rotating C_{6}, of course.

Now connect the converter output the the receiver antema terminals. The eonverter is normally operated on top of the communications receiver, or close alongside it, in a convenient operating position. A coaxial cable is made up with a male phono-type coaxial fitting on one end, with enough cable to reach from the converter to the receiver antenna terminals. Most receivers have a three-terminal antenna conncetion block. One of these terminals is grounded. The middle one and the one at the opposite end from the grounded one are normally used for doublet antenna connections. Conneet the middle one and the grounded terminal together, and make this combination the point of connection for the outer conduetor of the coasial cable. The inner conductor goes on the remsining antenna terminal.

The mixer plate coil, L_{3}, may be tuned to about 7 Mc . with a grid-dip meter, or it ean be peaked on noise with the receiver set at this frequency and the converter rumning. The grid circuit, $L_{1} C_{1}$, may be cheeked with a grid-dip meter. It may also be peaked for maximum response to a signal generator connected to the input, or it can be peaked on noise or signals with the antennar connected to the converter. Some improvement on weak signals may be possible through adjustment of the prosition of the tap on the grid coil, and the mixer plate voltage should be checked to see that it is somewhere near 75 volts. On the higher bands tuning C_{1} will shift the oscillator frequeney, so that retuning the signal as this adjustment is made may be required.

The exact frequency used for the i.f. is not important, so it can be set to suit two requirements. First, it should not be at such a spot that a strong local 7-Me. signal will ride through. Should interference develop at any time on the

Fig. 16-21-Coils for the one-tube converter. Top row are the oscillator coils, with trimmers (C_{5}) attached. Corresponding mixer coils below. Left to righi sets for 21 to $28 \mathrm{Mc}_{\text {., }} 50 \mathrm{Mc}$. and 220 Mc . The 144 -Mc. coils oppear in the converter photographs.

16 - V.H.F. RECEIVERS

intermediate frequency, the setting of the main receiver dial may be changed slightly to clear the trouble. It is also usually easier to shift the i.f. slightly than to reset the oscillator, in order to make the dial calibration come out right. With a signal of known frequency available, the converter dial ean be set for that spot and the main receiver retumed to make the signal come in at the desired spot.

The 15 -and 10 -meter bands are covered by one pair of coils. It is necessury; of course, to reset the oscillator trimmer, C_{5}, for each band to the proper range. An alternative would be to use separate coils and trimmors for each band as is done on the highor ranges. I3andspread obtained with the original converter using a 7 -MIc. i.f. was as follows: 21.0-21.45 Me, - 65 divisions; 28.0-29.7 Mc. - 67 divisions; $50-54 \mathrm{Mr}$. - 75 divisions; 14-148 Me, - (5 (5) divisions: and 220-225 Me. 30 divisions. Nore bandspread can be obtained on the higher ranges by removing more plates from the tuning capacitor, but this will not permit full coverage on the lower bands.

Performance

On 21 and 28 Me., at least, this simple converter will usually provide all the sensitivity that can be used, as external noise is normally the limiting fartor in weak-signal reception on these bands. At 50 Me , and higher the noise generated within the converter tends to limit the overall sensitivity. Thus the addition of a low-noise r.f. amplifier may make a considerable improvement in reception in the v.h.f. ranges.
A ciscode-type preamplifier, such as that shown in Fig. 16-2 or 16-3, is ideal for 144- Mc, use and the same basie cirenit may be used for 50 , and 220 Me. amplifiers th well.

The greatest difficulty with tunable converters is instability in the oscillator. For most v.h.f. operators the only satisfactory solution to this problem is the use of crystalecontrolled converters such as those shown elsewhere in this chapter.
(Originally deseribed in Oetober, 1955, QST, page $2 \overline{7}$.)

Preamplifier for 220 Mc.

The amplifier shown in Figs, 16-22 to 16-24 will improve the gain and noise figure of a $220-\mathrm{Mc}$. converter that is not operating at maximum effeetiveness. It also provides some additional selectivity, which may be helpful in areas where signals from outside the band are troublesome. The plate cireuit has high Q. so it must be retuned in covering the band.

The schematic diagram is the same as the first stage of the 220-Mc, convelter, Fig. 16-14. The signall is fed into the cathode of the grounded-grid amplifier. The plate cireuit is a trough line. Any of the small u.h.f. triodes may be used, though a oAMt is shown. Check pin connections and eathode resistor values for other types.

Construction

The outer conductor of the line, which also serves as the chassis, is made of flashing copper.

If the details of Fig. 16-22 are followed, it may be made from a single piece. A smatl copper shield is placed areross the tube socket to isolate the input and plate circuits. Just whore this shield is located depends on the tube used, as various tubes have different grid pin arrangements. All grid terminals are bent flat against the copper case, and soldered in place.
The left end (bottom view, Fig. 16-21) contains the coaxial fitting for the antemat comection, the r.f. chokes and other components of the input circuit. The plate line, tuning eitpacitor, output coupling loop ind coax fitting. and the B-plus feed-through capacitor mount in the large portion. I bottom cover for the line. similar to the one shown with the amplifier. liig. 16-22, can be made of copper 8 inches long and $21 / 4$ inches wide. IBend over a quarter ineh on eaeh side, and slip the cover over the edges of the case.

Fig. 16-22-220-Mc, trough-line preamplifier. Construction is similar to that used with the 220-Mc. converter, Fig. 16-8, except that provision is made for cable connection to a remote receiver or converter.

Fig. 16-23-Details of the outer conductor and chassis for the 220-Mc. preamplifier.

The inner eonductor is $1 / 4$-inch copper tubing. Start with a piece 7 inches long. Saw the ends lengthwise to depths of $1 / 4$ and $1 / 2 \mathrm{inch}$. Cut off one half at each end. The remaining portions are used to make connections. The half-inch end is bent down to solder to the plate lugs of the socket. The quarter-inch end solders to the feedthrough eapacitor.

The tuming capaeitor, (${ }_{1}$, is mounted with its stator hars toward the tube end of the line. The inner conductor will rest between these bars and they can be soldered to it readily. Plate voltage is fed through Cg. heater voltage through ('9. Output is taken off through the coupling loop, L_{2}, visible in Fig. 16-24. The sorios capacitor, ${ }^{\prime}$ 2, was omitted from the preamplifier, though it might be useful if the amplifier works into a converter with an untuned input cireuit.

Adjustrent

The preamplifier may be connceted to the converter through a coaxial line of any convenient length, but the eonverter input should be a coaxial fitting. To put the preamplifier into service, adjust the plate line for maximum signal strength. Then check the position of the coupling loop, adjusting for maximum response. Readjust the tuning of the line as the eoupling is changed.

The tuning range of C_{1} is not wide, so be sure that it actually tumes the line at both ends of the hand. Some adjustment of tuning range ean be had by rotating the mounting of the eapacitor 180 degrees. If this does not bring the tuning within range, the mounting hole can be elongated and the position of the trimmer adjusted as required.

Fig. 16.24-Bottom view of the pre. amplifier.

Receivers for 420 Mc .

For best signal-to-noise ratio, receivers for any frequency should have the highest degree of selectivity that can be used successfully at the frequency in question. With crystal control or its equivalent in stability accepted as standard praetice on all bands up through 148 Mc ., there is litthe point in using more handwidth in receivers for these frequencies than is neressary for satisfactory voice reception, a maximum of about 10 ke . Such communication selectivity is now being used suecessfully by most workers on 220 and 420 Me., too, but it imposes several problems not encountered on lower bands.

First is the matter of oscillator instability in
the converter. Fiven the best tunable oscillator at 420 Mc . suffers from vibration and hand-capacity effeets sufficiently to make it difficult to hold the signal in a $10-\mathrm{kc}$. i.f. band width.
Then, there are still some unstable tansmitters being used in work on 220 and 420 Me. It is out of the question to copy these on a selective receiver.

Last, searching a band 30 megaeyeles wide is excessively time-consuming when communica-tions-receiver selectivity is used in the i.f. system.
There is no single solution to these problems, but the best approaeh appears to be that of breaking up of the band into segments for different types of operation. This is being done by mu-

Fig. 16.25-A highly effective r.f. amplifier for 420 Mc. The tank circuit is a half-wave line made of flashing copper. Coaxial fittings are for input and output connections. Heater and plate voltages are brought in on feed-through by-pass capacitors iust visible on either side of the 6AJ4 tube.
tual agreement among $420-\mathrm{Mc}$. operators at present, as follows: 420 to $4: 32$ Mc. - modulated oscillators and wide-band f.m., 432 to 430 Mc . -crystal-controlled c.w., a.m. and narrow-band f.m.; 436 to 450 - television.

The first segment can be rovered with a superregenerative receiver, a superheterodyne having a wideband i.f. system, or a converter used ahead of an f.m. broadeast reeciver. The high selectivity required for best use of the middle portion makes a erystal-controlled or otherwise highly stable converter and communications recoiver combination almost mandatory. Amateur TV is usually received with a converter ahead of a standard 'Ti' receiver, tuned to some channel that is not in use locally.

Many of the tubes used on the v.h.f. bands are useless at 420 Mc ., and the performance of even the best u.h.f. tubes is down compared to lower bants. Only the lighthouse or pencil-triode tubes and a few of the miniatures are usable, and these require modifications of conventional circuit terhnique to produce satisfactory results.

Crystal diodes are often used as mixers in 420Mc. receivers, as in this frequeney range they work nearly as well as vacuum tubes. The over-ail gain of a converter having a crystal mixer is alout 10 db . lower than one using a tube, so this difference must be made up in the i.f. amplifier. The noise figure of a receiver having a erystal mixer and no r.f. stage includes the noise figure of the i.f. amplifier following the mixer, so best results require that the i.f. amplifier employ low-noise techniques discussed earlier in this chapter. If the i.f. is 50 Mc. or higher it is partieularly important that a low-noise triode be used for the first i.f. stage.

Crystal diodes of the type used in tadar mixers, such as the 1×21 series, are well suited to 420 .Mc. mixer service, though care must be taken to avoid damage from transmitter r.f. energy. Other trpes of erystal diodes such as the 1×72 and CK710 will stand higher values of crystal current, and their use is recommended.

Few conventional vacuum tubes work well as mixers at 420 Mc . and higher. The GJ6 is useful where a balanced input circuit is desired, as in Fig. 16-5C. For single-ended circuitry the 6.AM4 and GAN4 are recommended. They may be used

16 - V.H.F. RECEIVERS

in grounded-grid or grounded-eathode circuits.
For high-sclectivity coverage of the 432 - to $436-$ Me. segment of the band, a common practiee is to use a crystal-controlled converter working into another converter for either the 50- or 144Me. band, tuning the latter for the four-megacycle tuning range.

A 420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in Figs. 10-25 through 16-27 is capable of a gain or more than 15 dh . and its noise figure can be as low as 6 db . with careful adjustment. It will make a large improvement in the sensitivity of any converter or receiver that has no r.f. stage, or one that is working poorly.

The design shown is for cither the GAJ 4 or 6.AM4, but with suitable socket and pin-connection changes the $47 \mathrm{~A}, \mathrm{GBC} 4$ or $6 \mathrm{AN}+$ will work equally well. It is a grounded-grid amplifier with a half-wave line in the plate circuit. The antenna is connected to the cathode of the tube through a coupling capacitor. As the input impedance of the grounded-grid stage is low, nothing is gained by the use of a tuned circuit in the cathode lead. Output is taken off through a coupling loop at the point of lowest r.f. voltage along the line.

The amplifier is built in a frame of flashing copper that serves as the outer conductor of the tank circuit. The whole assembly is 10 inches long and $11 / 4$ inches square, except for the bottom, which is about $13 / 4$ inches wide. Edges are folded over with lips $\frac{1}{4}$ inch wide which slide into a bottom cover made from copper sheet $21 / 4$ by 10 inches in size, with its edges bent up $1 / 4$ inch wide on each side.

The plate circuit is made of $1 / 4$-inch eopper tubing tumed by a copper-tab capacitor at the far end from the tube. llate voltage is fed in at the point of minimum r.f. voltage, which in this

Fig. 16.26 -Schematic diagram of the 420 -Mc. r.f. amplifier.
$\mathrm{C}_{1}-500-\mu \mu \mathrm{f}$. ceramic.
$C_{2}, C_{3}-1000-\mu \mu$. ceramic feedthrough (Erie style 2404).
C_{4}-Copper tabs, $7 / 3$-inch diam.; see text and photographs. $\mathrm{R}_{1}-150$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-470$ ohms, $1 / 2$ watt.
$L_{1}-1 / 4$-inch copper tubing, $73 / 2$ inches long, tapped $23 / 8$ inches from plote end.
L_{2}-Loop of insulated wire adjacent to L_{1} for $3 / 4$ inch.
J_{1}, J_{2}-Coaxial fitting.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3} \rightarrow 9$ turns No. 22, $3 / \mathbf{\text { -inch diam., spaced }}$ one diam.

420-Mc. R.F. Amplifier

instance is about 5 inches from the open end. The antenna is connected to the cathode through a coupling capacitor. The input impedance of the grounded-grid amplifier is so low that nothing is gained by using a tuned circuit at this point. The eathode and heater are maintained above ground potential by small air-wound r.f. chokes.

The tube socket is two inches in from the end of the trough, and is so oriented that its plate connection, Pin 5, is in the proper position to eonnect to the line with the shortest possible lead. A copper shielding fin is mounted across the interior of the trough $21 / 8$ inches from the end, dividing the socket so that lins $3,4,5$ and 6 are on the plate side of the partition.

Minimum grid-lead inductance is important. This was insured loy bending all the grid prongs down against the ceramic body of the socket, and then making the mounting hole just big enough to pass this part of the socket and the prongs. They were soldered to the wall of the trough.

Input and output comnections are coaxial fittings mounted on the side wall of the trough. B-plus and heater voltage are brought into the assembly on feed-through eapacitors mounted on the same side of the trough as the tube. Connection to the inner conductor of the line is made with a grid clip, so that the point of connection can be adjusted for optimum results.
The copper tubing is slotted at the plate end with a hack saw to a depth of about $1 / 4$ inch, and a strip of flashing copper soldered into this slot to make the plate connection. A copper tababout the size of a one-cent piece is soldered to the other end of the tubing to provide the stationary plate of C_{4}. The line is supported near the low-voltage point by a $1 / 4$-inch-thick block of polystyrene. This is centered at a point $51 / 4$ inches in from the tube end of the trough assembly. The hole for the B-plus feedthrough is $41 / 4$ inehes from the same end.

The movable plate of C_{4} is soldered to a screw running through a nut soldered to the upper surface of the trough at a point $3 / 8$ inch in from the open end. If a fine-thread serew is available for this purpose it will make for easier tuning, though a 6-32 thread was used in this model. This made a wobbly contact, so a coil spring was installed between the top of the trough and the knol) to keep some tension on the adjusting serew.

Adjustment of the $420-\mathrm{Me}$. amplifier is made easier if a noise generator is used, though it is not as important as in the case amplifiers with tuned input circuits. If the amplifier is working properly there will be an apprecialle rise in noise as the plate circuit is tuned through resonance, and it may break into oscillation if operated without load. When connected to a following stage, with a reasonably-matched antenna plugged into J_{1}, the amplifier should not oscillate unless the coupling loop, L_{2}, is much too far from the inner conductor.

When the amplifier is operating stably and tuned to a test signal (or to a peak of response to a noise generator), the next step is to locate the optimum position for feeding the plate volt-

Fig. 16-27-Bottom view of the $\mathbf{4 2 0 - M c}$. r.f. amplifier, with the slip-on cover removed. The inner conductor of the tank circuit is held in place by a block of polystyrene, mounted near the low-voltage point on the line. The platevoltage feedthrough and output coupling loop may be seen at the left of this support. Heater, cathode and antenna-circuit components are in a separate compartment at the tube end of the assembly. The line is tuned at the opposite end by a handmade copper-tab copacilor.
age into the line. This may be done by running a pencil lead slowly up and down the inner conductor, until a spot is found where touching the lead to the line has little or no effect on the operation of the amplifier. The plate voltage elip should be placed at this point and the process repeated, moving the clip slightly until it is at the mirimumvoltage point precisely. This adjustment should be made at the midpoint of the tuning range over which the amplifier is to be used.

The position of the coupling loop should then be adjusted for best signal-to-noise ratio. This will probably turn out to be with the insulated wire lying against the inner conductor for a distance of about $3 / 4$ to 1 inch, starting at the minimum-voltage point just located.

A CRYSTAL-CONTROLLED CONVERTER FOR 432 MC.

The converter shown in Figs. 16-28 through 16-31 is designed to provide high sensitivity and

Fig. 16-28-A crystal-controlled converter for 432 to 436 Mc. R.f. and mixer stages are in copper subassemblies af the right. Oscillator, multiplier and i.f. amplifier are on the left side.

Fig. 16-29-Interior view of the r.f. amplifier and mixer assemblies. The r.f. circuit is a half-wave line. The shorter assembly is the quarter-wave line using a crystal diode mixer.
signal-to-noise ratio in reception of signals in the 433 - to $4: 36$-Me. range. It uses a grounded-grid r.f. amplifier stare similar to the one shown in Fig. 16-25, working into a cervatal-diode mixer. The intermediate frequener, with the design constants given, is 50 to 54 Mc., though lower freguencies could be used by suitable modification of the injection chain.

Crystal-eontrolled injection on 382 Mc. is provided by two 6JJos operating as overtone oseilla-tor-tripler and tripler-doubler, respectively. As only a small amount of r.f. is reguried at 382 Me., this line-up is not difficult to buided or adjust. An inexpensive 7 -Me. crustal is used. An i.f. preamplifier stage follows the crystal mixer. This maty or may not be needed, depending on the performance of the receiver or converter that will serve as the tunable i.f. Low-noise amplification in the i.f. stage is a factor in the over-all performance of the system, so use of the built-in i.f. stage is recommended.

Construction

The converter is built on a $7 \times 11 \times 2$-inch aluminum chassis, with the r.f. and mixer portions in a copper subassembly that mounts on the top of the chassis, at the right side as seen in Fig. 16-28. The oscillator-tripler and triplerdoubler 6JOs are at the left front, with the 613Q7A i.f. amplifier at the rear. The mixer line is the short portion of the copper assembly, with the r.f. amplifier line at the right. In the bottom vien; Fig. 16-30, the injection-chain and i.f. amplifier components are visible.

Fig. $16-29$) is an interior view of the r.f. and miser lines. These are made as two separate assemblies, joined by short length of copper tubing

Fig. 16-30-Bottom view of the $432-\mathrm{Mc}$. converter, showing the oscillator, multiplier and i.f. amplifier circuits.

16 - V.H.F. RECEIVERS

that is visible in the top view. Both tank circuits are $1 \frac{1}{4}$ inches square, with $1 / 4$-inch copper tubing inner conductors. They are mate from sheets of flashing ropper $4 \frac{1}{4}$ inches wide. The mixer compartment is $51 / 2$ inches long and the r.f. portion is 10 inches long.

The r.f. amplifier is similar structurally to the one described previously, except for the method of coupling between it and the crustal miver. This is done with a grid clip on each line and a ceramic coupling caparitor. The lead from the eaparitor, inside the amplifier line, is brought through a half-inch length of copper tuhing that is soldered into the walls of both lines. The lead is insulated with spaghetti slereving.

The B-plus feed to the r.f. stage should be at the point of minimum r.f. voltage, $17 / 8$ inches from the plate end of the copmer tubing. The coupling tap is one inch out from the 13 -plus feedpoint. The coupling point on the mixer line is 1 inch from the ground end. The erystal diode is inserted in a small hole in the mixer imere conductor, $13 / 4$ inches from the ground end. The iuncer conductors of the r.f. and mixer lines are $7: / 16$ and $\overline{5}$ inches long, respectively. Mixer tuning is done with a small plastio triminer, $C_{\text {to }}$, while the r.f, plate cirenit is tuned with a handmade tal, capacitor, C_{9}, similar to C_{4} in Fig. 16-26.

Note the r.f. bypass, C's, on the outside of the mixer line. This is made from a piecr of copper $7 / 8$ inch in diameter, insulated from the line housing by a piece of vinyl plastic. Two thicknesses of the material commonty used for small parts envelopes are satisfactory. The erystab, which may be any of the m.h.f. diodes, is slipped through a close-fit hole and is held in place by the wire soldered to its outside terminal.

Plate and filament voltages are fed into the assembly on feed-through by-pass capacitors, visible in the top-view photograph. Antenna connection is made through a coaxial fitting on the end of the r.f. assembly. A erystal-current jack, a 4 -pin power fitting and two i.f. connectors are on the end wall of the chassis. The serond eoaxial connector was installed so that tests could be made with and without the i.f. amplifier stage.

Wiring in the power circuits is done with shielded wire, in case that TVI might result from the oscillator or multiplier stages. The addition of a bottom plate and power-lead filtering would then be effective. Injection and i.f. coupling leads are also made of shielded wire, this serving in place of coax line that is harder to handle.

The output of the injection chain is roupled into the mixer line by means of a loop, L_{4}, that is not visible in the photographs. This loop is mounted on the copper hase plate that is under the mixer and r.f. assembly. Its size and proximity to the miser inner conductor are not particularly eritical, as there is a surplus of injection under ordinary eonditions of operation.

Adjustment

The first step in putting the converter into operation is to tume up the oscillator and multiplier

Fig. 16-31-Wiring diagram and parts list for the 432-Mc. crystalcontrolled converter. Values given are for an i.f. of 50 to 54 Mc .
$\mathrm{C}_{1}-75-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC.75). $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-20-\mu \mu \mathrm{f}$. miniature trimmer (Johnson 20M11). $\mathrm{C}_{5}-25-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC-25). $C_{0}, C_{7}-500-\mu \mu \mathrm{f}$. feed-through ceramic (Centralab MFT-500).
C_{8} —Handmade copper-fab bypass; see text.
C_{9}-Handmade copper-tab variable; see text.
$\mathrm{C}_{10}-0.5$ - to $5-\mu \mu \mathrm{f}$. plastic trimmer (Erie style 532-08OR5).
$\mathrm{L}_{1}-131 / 2$ turns No. 20 tinned, $5 / 8$-inch diam., $7 / 8$ inch long, tapped at $41 / 2$ furns ($B \&$ W Miniductor No. 3007).
$L_{2}-5$ turns No. 20 tinned, $1 / 2$-inch diam., $3 / 8$ inch long (B \& W Miniductor No. 3003).
$L_{3}-23 / 4$ turns similar to L_{2}.
$L_{1}-2$ turns No. 12 tinned, $1 / 4$-inch diam., $1 / 4$ inch long.
Lis- 1 turn ins. wire between furns of L_{4}. May be inner conductor of shielded wire, with braid removed.
L_{6}-Half-wave line, $1 / 4$-inch copper tubing, $73 / 16$ inches long.
L_{7}-Quarter-wave line, $1 / 4$-inch copper fubing, 5 inches long.
Ls-Loop of insulated wire 1 inch long and $1 / 2$ inch high projecting through base plate on which line assemblies are mounted. May be made from inner conductor of shielded wire, with braid removed from last two inches.
$L_{0}-2$ furns No. 22 enam. around cold end of L_{10}.
$\mathrm{L}_{10}-6$ turns similar to L_{2}.
L_{11} - 11 turns No. 22 enam. close-wound on 3 /w-inch slugtuned form (National XR-91).
$L_{12}-4$ turns No. 28 silk or enamel wound over cold end of L_{11}.
J_{1}, J_{2}-Coaxial fitting.
\jmath_{3}-Closed-circuit jack.
J_{4}-4-pin male chassis fitting.
RFC- 10 turns No. 22 tinned, $1 / 8$-inch diam. Space turns diam. of wire.
stages. This process is similar to the adjustment of a transmitter and will not be detailed here. Check to see that the proper frequencies appear as indieated on the schematie diagram. Only enough power at 382 Me. is needed to develop about 0.5 mat of erystal current. Anything from 0.2 to 1.0 ma . is satisfactory. Aljustments should be made with no plate voltage on the r.f. stage.

Now eomeet the eonverter to a $50-\mathrm{Me}$. receiver or eonverter and peak the i.f. amplifier cireuits at about 52 Mc . on noise. Next apply plate voltage and ferd a signal into the r.f. stage. l'eak the r.f. and mixer capacitors for maximum response at about 434 Me. These adjustments
can be made on noise also, if the eircuits were elose to resonance originally. If a noise generator is not available, the margin of signal over receiver noise that is obtained on a reerived signal is also usable, if adjustments are made with care.

The points of connection for the 13 -plus and the coupling taps on the r.f. and mixer lines are eritieal adjustments, but if the dimensions given above are followed carefully the points shoukd be elose to optimum. Adjustments can be made and checked readily if the r.f.-mixer assembly is mounted in place temporarily with a few selftapping screws. (Originally described in January, 1954, QST', p. 24.)

V.H.F. Transmitters

Transmitter stability regulations for the 50Mc. band are the same as for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Mc., but incorporation of $1+4$ Mc. and higher in the usual multiband transmitter is generally not feasible. Rather, it is usually more satisfactory to combine 50 and 144 Me ., since the two bands are close to a third-harmonic relationship. At least the exciter portion of the transmitter may be made to cover the requirements for both these bands very readily.

Though no stability restrictions are imposed by law on operation at 144 Mc. and higher amateur bands (other than that the entire emission must be kept within the limits of the band in question), experience has demonstrated the value of using erystal control or its equivalent in v.h.f. work. Crystal-controlled transmitters and recoivers having the minimum bandwidth neecssary for voice communication make it possible for hundreds of stations to operate without undue interference in a band that would appear crowded if occupied by a dozen or less stations using broad-band reccivers and unstable transmitters.

The use of narrow-band communications systems also piys off in improved efficiency in both transmitter and receiver. It is this fartor, perhaps more than the interference potentialities of the wide-bund systems, which makes it desirable to employ advanced techniques at 220 and even 420 Mc. Stabilized transmitters for these bands are not too difficult to build, and thoir use is highly recommended.

Choice of tubus suitable for this type of work is quite limited, but the advanced amateur who is
interested in making the most of the interesting possibilities afforded by this developing field will be satisfied with nothing less. The $420-\mathrm{Mc}$. band is much wider than our lower v.h.f. assignments, however, and interferenee is not likely to becone a limiting factor in this band for a long time to come. Thus it may be more important, in some localities, to get activity rolling with any sort of gear, leaving perfection in design to come along as the need devclops.

At 420 Mc . and in the higher amateur assignments most standard tubes cannot be used with any degree of success, and special tubes designed for these frequencies must be employed. These types have extremely close electrode sparing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about $5(1)$ Mc., but best performance is oltained with the "lighthouse," "pencil tube," or coaxialelectrode types built especially for u.h.f. applieations, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission heing permitted above $\quad 2.5$ Mc. and narrow-band f.m. anywhere, Where suitable receivers are available to make best use of such emissions, either wide-band or narrow-band f.m. can provide effective v.h.f. communication. Their use is particularly advantageous in congested areas where the freedom from interference to broadeast and television reception they enjoy may permit operation when an amplitude-modulated tramsmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in Section Six may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some lower frequency, usually around 6,8 or 12 Mc ., multiplying to the operating frequency in one or more additional stages, or he can use a high initial frequency and thus reduce the number of multiplier stages required or eliminate them entirely. The first approach has the virtue of employing low-cost erystals, and it usually results in better stability, but high-frequency crystals may effect a considerable economy in power consumption, an important factor in portable or emer-geney-powered gear.

CRYSTAL OSCILLATORS

Crystal oscillator stages for v.h.f. transmitters may make use of any of the circuits shown in Section 6, when crystals up) to 12 Me , are employed, but certain variations are helpful for higher frequencies. Crystals for 12 Mc . or highor are usually of the overtone variety. Their frequency of oscillation is an approximate multiple of some lower frequency, for which the crystal is actually ground. Thus $24-$ Mc. crystals conmmonly used in 144-Mc. work are 8-Mc. cuts, specially treated for overtone characteristics. Until recent years such crystals were tricky in operation and subject to excessive drift if operated at high crystal current. The overtone erystals now being supplicel are nearly as stable as those

Transmitter Technique

designed for fundamental operation, und they are easy to handle in properly designed cireuits.

Best results are usually obtained with overtone crystals if some regeneration is added. This makes for easy starting under load and greater output than would be obtainable in a simple triode or tetrode circuit. Regenerative circuits, with constants for 8- or 2t-Mc. ervstals, are shown in Figs. 17-20 and 17-24. Triodes are shown, but the same arrangement may be used with tetrode or pentode tubes. The important point in cither case is the amount of regeneration, controlled by the number of turns below the tap, in L_{1} of Fig. 17-20 or 17-24. There should be only cnough feedback to assure casy crystal starting and satisfactory operation under load: too much will result in random oscillation not under the control of the crystal.

Overtone operation is possible with standard fundamental-type erystals, using these rircuits. Practically all will oscillate on their third overtones, and fifth and higher odd overtones may the possible. Adjustment of regeneration is more eritical, however, if the ervistals are not ground for overtone charameristies. It should also be noted that the frequency may not be an exact multiple of that marked on the crystal holder, so care should be used in working with erystals that are near a bind edge.

Crystals ground for overtone service can be made to oscillate on other overtones than the one marked on the holder. A $24-$ Me. erystal, actually an 8 -Mc. cut, may be made to oscillate on 40,56 , 72 Me , or even higher old multiples of its 8-Ne. fundamental frequency. The circuits shown in the constructional material hater in this chatpter may be used in this way, but there are several cireuits that have been developed especially for use with high-order overtones that may serve the purpose better. For a more complete discussion of overtone oscillator techniques, see QS'T for April, 1951 , page 56 , and March, 1955 , page 16.

Crystals are now available for frequencies up to around 100 Mc. They are somewhat more expensive and more critical in operation than those for 30 Me . and lower, however, so the y have not been used widely in amateur work, execpt where a saving in power is important. Use of 50-Mc. cerystals is made occasionatly as a means of preventing radiation of the harmonies of lower frequency erystals that might cause interference to television reception. Circuits for v.h.f. reystal oscillators are shown in Figs. 16-10, 16-12 and 16-14.

FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the principal precaution being arrangement of components for short lead length and minimum stray capacitance. This is particularly important at 144 Mc . and higher. To reduce the possibility of radiation of oscillator harmonies on frequencies that might interfere with television or other services, the lowest satisfactory power level should be used.

Low-powered stages are casier to shield or filter, in case such steps become necessary.

Common practice in v.h.f. exciter design is to make the tuned circuits capable of operation over the whole range from 48 to 54 Mc ., so that the output stage can drive either an amplifier at 50 to 54 Mc. or a 4 ripler from 48 to 144 Me. Tripling is often done with pushopull stages, particularly when the output frequeney is to be 14.4 Mc. or higher. The output capacitances of the .tubes.in such push-pull circuits are in series, permitting a better L / C ratio than is possible with single-cnded circuits.

AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Mc., but for 144 Mc. and higher the tube types are limited to those having low input and output capacitances and compact physical structure. Leads must le as short as possible, and soldered connections should be avoided in high-powered circuits, where heating maty be great enough to reach the melting point of the solder used.

Plug-in coils and their associated sockets or jack bars are generally unsatisfactory for use at 144 Mc. and higher because of the stray inductance and capacitance they introduce. One way around this trouble is the use of a dual tank cirruit in which the inductor for $1+4 \mathrm{Me}$, is a conventional tuned line, with its shorting tar made as a removable plug. When the stage is to be used on another band the short is removed and a coil is phagged into the jark, the line then serving as a pair of plate leads. Such an arrangement will operate as efficiently on $1+4 \mathrm{Mc}$. as if it were designed for that band alone, yet it can be made to work properly on any lower band, as well.
At 220 Mc . and higher it may be necessary to employ half-wave lines as tuned circuits, as shown in Fig. 17-28 (P_{1} in place). Here the tuning capacitance, instead of being connected directly in parallel with the output capacitance of the tube, is at the far end of a half-wave line. Plate voltage is fed into the line near the middle, at the point where the r.f. voltage is lowest. The proper point can be located by first operating the st uge with the voltage fed in near the middle of the line, and then touching a pencil point along the line to lorato the spot whore the least effect on the grid or plate current is noted. This check should be made with the pencil in an insulating mount, if dangerous values of plate voltage are used.

Neutralization of triode amplifiers for 50 and 144 Mc. can follow standard practice, but the stray inductance and capacitance introduced by the neutralizing eireuits may be excessive for 220 Mc. and higher. In such instances groundedgrid amplifiers may be used as shown in Fig. 16-14, modified for transmitting use. Driving power is applied to the cathode circuit, with the grid acting as a shield. Grounded-grid amplifiers are stable, but they require high driving power. Some of the drive appears in the output, so both

17 - V.H.F. TRANSMITTERS

the driver and amplifier must be modulated when :mplitude modulation is used. For this reason the grounded-grid amplifior is used mainly for f.m. applications.

Tetrode and pentode amplifiers may oprate without neutralization, but it is advisable to plan for it in the original laynut. With such tubes as the 5894, 6252, 82! or 8:32 enough neutratizing caparitance can le obtained by running short lengths of stiff wire up through the chassis alongside the tube phates, crossing them over to the opposite grid terminals below the chassis. Neutralization is adjusted by trimming or bending the wires.

Instability shows up freguently in tetrode amplifiers as the result of ineffective sereen bypassing, in which ease eonventional cross-over noutralization will aceomplish little or nothing. The solution lies in series-resonating the sereen cirruits to ground, as shown in Figs. 17-13 and 1-24. The r.f. choke and capacitor values vary with frequency, so sereen nentralization is memitially a one-hand device.

FREQUENCY MODULATION

Though f.m. has not anjoyed great populanity in v.l.f. operation, prohably because of lack of suitable receivers in most v.h.f. stations, its possibilities should not be overlooked, particularly for the higher bands. At 420 Mre, for instance, the efficiency of most amplifiers is so low that it is often diffieult to develops suflicient grid drive for proper atm. serviere. With f.m. any amount of grid drive may be used without affecting the adodio quality of the signal, and the modulation process adds nothing to the plate dissipation, Thus considerably higher power can be run with f.m. than with a.m. before damage to the tubes develops or the signal is of poor quatity.

Frequeney modulation also simplifies transmitter design. The principal obstade to greater use of f.m. in v.h.f. work is the wide variation in selectivity of v.h.f. recoivers, making it difficult for the operator to set up his deviation so that it will be satisfatory for all listemers.

TVI PREVENTION AND CURE

Interference to television reception is not ordinatily so serious a prohlem with v.h.f. gear as with equipment for lower amateur hands, where more harmonics of the operating frequency fall within the television chanmels. The primeipal culuses of TVI from v.h.f. transmitters are as follows:

1) Adjacent-ehannel interforonee in Channel 2 from 50 Mc.
2) Fourth harmonie of 50 Me. in Channels 11 , 12 or 13 , depending on the operating frepuency.
3) Ratation of unused harmonics of the oscillator or multiplier stares. lixamples are 9th harmonic of 6 Me, and 7 th harmonic of 8 Mc. in Chamnel 2; 10th harmonic of 8 Mc . in Chamel 6 ; Th hammonic of 25-Mc. stages in Chamnel 7 ; th hammonic of $48-$ Me. stages in

Chamed 9 or 10; and many other combinations. This may include i.f. pickup, as in the cases of 2-I-Mc. interference in recejvers having 21-Mc. i.f. systems, and 48-Mre. troulle in t5-\Ic. i.f.'s.
4) Fundamental blocking effects, including modulation bars, usually found only in the lower channels, from 50-. It e. equipment.
5) Image interference in Channel 2 from 144 Mre, in receivers having a tio-Mc. i.f.
(i) Sound interference (picture elenr in some cases) resulting from r.f. pickup by the audio circuits of the 'TV receiver.

There are many other possibilities, and u.h.f. TV in general use will add to the list, but nearly all cin be corrected completely, and the rest can be substantially reduced.

Items 1 , f ind 5 are receiver faults, and nothing can loe done at the transmitter to reduce them, except to lower the powor or increase separation between the tramsmitting and TV antenna systems. Item 6 is also a reociver fault, but it ean be alleviated at the transmitter by using f.m, or e.w. insteal of a.m. phone.

Treatmant of the various harmonic troubles, Items 2 and 3, follows the standard methods detailed elsewhere in this IIandlook. It is suggested that the prospertive builder of new v.h.f. equipment fitmiliarize himself with TVI prevenfion terhnifues, and incorporate them in new construction projects.

Use as high a starting frequency as possible, to reduce the mumber of harmonics that might eanse trouble. Select erystal frequencies that do not have harmonice in TV ehammels in use locally. Example: The 10th hammonic of 8-Ale erystals used for operation in the low part of the 50-Ne. band fills in Chamel 6 , but 6 - Me, erystals for the same frequency range have no harmonie in that ehamel.

If TVI is a serious problem, use the lowest transmitter power that will do the joh at hand. Much interesting work e:m be done on the v.h.f. hands with lout a few witts output, particularly if a good antennat system is used.

Keep the power in the multiplier and driver stages at the lowest pratetieal level, and use link coupling in preference to reapacitive roupling, particulamy in the later stalges.

Plan for complete shiedding and filtering of the r.f. sertions of the transmitter, should these steps berome neressury.

Lese coiviall line to feed the antemnat system, and locate the radiating portion ats far as possible from TV rereivers and antemnat systems.

Some v.h.f. 'TV tuncrs have removable strips that ran be replaced with double-conversion inserts for u.h.f, rereption. Fior a number of chamets the first conversion frequency may then fall in or near the $1+-\mathrm{A}-\mathrm{Me}$. h:und. Where this mothod is employed for u.h.f. reception the receiver is very sensitive to $111-$. Ic. interformene. The cure for this receiver fath is to replace the strips with others having a different conversion frequency, or use a conventional u.h.f. converter for reception of the channels from 14 up.

A High-Power Transmitter
 High-Power Transmitter for 50 and 144 Mc.

The gear describerl in the next several pages shows how transmitting equipment for two s.h.t. bands can be coordinated in design so as to work from a single exriter. If the builder so desires, the station may be operated from one set of power supplies and speech equipment, with a single set of meters masuring the important currents in both trinsmitters. Wach item ram be used by itself, or they combine readily to cover both 50 and 144 Mr ., at a power level approaching the legal limit.

In order of their deseription the are atn exriter (apable of delivering up to 40 watts output at 48 too it MI ., at companion amplifier for the so- Me. band, a tripler-driver-amplifier for $1+4 \mathrm{Mc}$., and a daal antemat coupler for feeding of (ond $1+4-$ Me. antennas having balanced lines. Their phesis ablapmanem is surh that there eombine neatly for rack momting, as seen in ligg. 17-1.

THE EXCITER

Though it is shown mounted on the same panel as the if()-Me, amplifior in Fig. 17-2, the exeriter unit might well be used atone, as a versatile $50-$ Mc. transmitter capable of rumning up to about
(hā) Watts imput. Prowision is made for taking off 48-Me. output at two power levels, through J_{3} or J_{2}, the latter bring used for driving the $14+$ Mc, tripler to be described later.

The exiter is completely shielded, and its power loats are filtered to prevent radiation of hammonies by the power cable. In addition, there are built-in traps to athsorb unwanted ascillator harmonies that might otherwise be pased on to the amplifier, or to the antenna. Marmonios of this kind are particularly troublesome when they fall in Channel 2, which is so close to the operating frequency that a filter in the antenna line is reatively indfective against them.

The interstage coupling circuits are of bandpass design. Once they are properly adjusted they require no further tuning, whon the frequeney is changed over a t-Mc. range. Thus only the erystal switeh and the output plate circuit need be adjusted when changing frequency.

Circuit Details

The oscillator is a 50 (ji3, using erystals athove 6 , 8, 12, or 24 Mr. for $144-\mathrm{Mr}$. operation, or 6.25 , $8.34,12.5$ or 25 Me . for 50 Mr . 1 ts plate circuit tumes 24 to 27 Mr ., quadrupling, tripling or doubling the erystal frequeney. (Crystals at 24 to 27 Me , are overtone colts that oscillate at one-third the maked frequenery in this circuit.) A series-tumed trap, $L_{1} C_{1}$, in the oscillator phate circuit absorbs the third harmonic of 6 - Me. (rystals. This 18-Me. energy otherwise would pass on to the next stagr, where it would be tripled to a frequencer in Chamel 2. This harmonic has beme found to be a common raluse of 50-Me. '1VI in Channel 2 areas.

The doubler is also a 5763 . A second trap, $C_{4} L_{4}$, in the grid circuit, is tuned to the 7 th hammonic of 8-Mre prustals. The two traps thus prevent radiation of conergy in Chanmel 2, the most eritical transmitter problem a g-meter man is likely to encounter in correcting TVI. 'lhey ean be modified for other fre-

Fig. 17-1-A high-power r.f. sectian for a 50 - and $144-\mathrm{Mc}$. station. Equipment includes a band-pass exciter for both bands, a 50-Mc. r.f. amplifier built on the same panel, a tripler-driver-amplifier for 144 Mc., and a dual antenna coupler for both frequencies. Units can be operated with a single set of power supplies, and with common speech equipment and meters.

Fig. 17-2-The 50-Mc. r.f. unit. Exciter, left portion on the assembly, also serves on 144 Mc . Amplifier utilizes a 4-125A, 4-250A or 4.400A.

quencies to suit local problems. An example is the 10th harmonic of 8-Mc. crystals, that falls in Channel 6. A trap for the 5 th harmonic of the crystal frequency should take care of this.

The 6146 amplifier stage has a shunt-fed pinetwork plate circuit. For best stability over the entire operating range the stage is nentralized. The choke, $R F_{4}$, is provided to short out the d.c. voltage that would appear on the out put circuit if C_{9} should break down. The choke in the plate lead, $R F^{\prime} C_{5}^{5}$, is for parasitic oscillation suppression. Note that each of the three eathode leads is bypassed separately at the socket. The exciter may be keyed in the 6146 cathode jack, J_{4}.
1)ouble-tuned band-pass eircuits between the oscillator and doubler, and botween the doubler and final, provide essentially flat response from 48 to 52 Mre, or 50 to 54 Mc. A potentiometer in the doubler sereen circuit provides exatation control for the $61+6$, and may be used to comspensate for variations in drive that may appear at some spots in the band.
The link winding on the doubler plate circuit, L_{66}, is for the purpose of taking off low-level 48Me. output to drive the tripler in the 144-Ne. r.f. mit. Note that the keving jark in the 6146 cathode circuit is the open-circuit type. Removing the key thas disables the 6146 stage, when the first two stages are being used in this way. Separate heater and filament switches on all units allow them to be operated separately. IIghvoltage supplies may be left connected to all r.f. units, energizing only the filaments and heaters in the ones being used.

Construction

The exeiter is built on a $5 \times 10 \times 3$-inch aluminum chassis, with a bottom plate and a perforated aluminum cage to complete the shielding. The small knobs at the lower left of the front view are for the errstal switch and the exritation control. The crystal switch has 12 positions. Ten are for the crystals on the multiple crystal socket
(Johnson No. 126-120-1). One more crystal position is provided on the front panel (a convenience if you want to use a frequener not covered by the 10 crystals in the multiple socket), and the 12th switch position is for an extermal v.f.o. It conneets the $576: 3$ grial to the coaxial v.f.o. input fitting, and shorts out $R P C_{1}$ and its parallel capacitor. The stage then functions as a frequency multiplier. The output frequeney of the v.f.o. could thus be in the 6 -, 8 - or $12-\mathrm{Me}$. range. Above the exatation control may be seen the knobs for the 6146 plate and output coupling capacitors.
Three coasial connectors are on the rear wall of the exeiter. The one at the outside edge is for v.f.o. input. The others are the doubler and 6146 output fittings. Two t-terminal steatite strips handle the various pown and metering leads. Adjacent to each terminal exrept the ground connertion is a feed-through bepass raparitor to take the power lead through the chassis.

TVI that might result from radiation of harmonias by the power leads is prevented by filtering of each lead. The feed-through bypasses are connected to the exciter cirruits through r.f. chokes, the imer ends of which are again berpassed with small disk ceramic capacitors. All power leads are made with shiekded wire, bonded at intervals to the chassis.

The side view shows the multiple erystal socket at the front of the chassis. Separate cerystal sockets may be used if desired. The oseillator and doubler tubes are in the foreground. The trap capacitors, C_{1} and ("4, are adjacent to these tubes, while C_{2} and C_{3} are between them, a bit off their center line. To the rear of the 5763 doubler are C_{5} and C_{7}. The grid tuning capacitor for the 6146, C_{6}, is just visible inside the amplifier compart ment.

A separate lead is provided for each power circuit. Fixed bias for the 6146° is brought in from the bias supply that is part of the high-power amplifier assembly. This bias is desirable to prevent the plate current from rising too high when

Exciter Construction

the excitation is backed off. If the exciter is used alone, fixed bias is unnecessary. External meters can be connected in any of the circuits at the terminal strips.

The sides, back and top of the amplifier cage are Reynolds "Do-It-Yourself" perforated aluminum sheet, now available in many hardware stores. The pieces are joined together at the corners with lengths of $3 / 8$-inch aluminum angle which can be bought or bent up from sheet stock. The tuning and loading capacitors are mounted on the front of the cage, so this part should be a piece of solid sheet stock rather than the perforated material. The dimensions of the eage are not eritical. The original is $53 / 4$ inches deep, $25 / 8$ inches areoss, and $41 / 4$ inches high. Make provision for removing the top and outside sheets of perforated stock for convenience in servicing, when the exciter is mounted against the amplifier unit. Extension shafts and rouplings bring out the amplifier controls to the panel.
Inside the cage, the 6146 can be seen with its socket mounted above the chassis on $1 / 2$-inch metal sleeves. The cathode and sereen bypasses should connect to separate ground lugs on the top of the chassis, with the shortest possible leads. This wiring ean be done conveniently before the socket is mounted on the chassis if nuts are used temporarily to hold the ground lugs in place over the socket mounting screws. The neutralizing adjustment, C_{8}, is mounted on the rear wall of the cage, and wired to the 6146 plate clip and the feed-through bushing with $3 / 8$-inch wide strips of thin copper. A ceramic insulator mounted on the wall near the 6146 plate cap supports the junction of $R F C_{5}, R F C_{3}$, and C_{9}.
coils are made from a single length of Miniductor stock with the specified number of turns removed to provide spacing between them. The same applies to L_{5} and L_{7}. These are to the left of the 6146 socket. L_{4} is between the doubler socket and C_{4}. The trap coils are mounted with their axes vertical, to minimize coupling to the band-pass coils. L_{6} is wound around and cemented to the bypassed end of L_{5}.

The power lead r.f. chokes are mounted between single-terminal tie points on the rear lip of the chassis and the fecd-through capacitors. The disk ceramic bypasses are then applied to the tie points. A single-terminal tie point mounted under $R F^{\prime} C_{1}$ holds one end of the 3300 -ohm doubler screen resistor and the lead over to the terminal strip at the rear. A double tie point is mounted between the two 5763 sockets to support the bypassed ends of L_{2} and L_{3}. Another over nearer the rear of the chassis supports the cold end of L_{5} and the bottom of the doubler grid resistor.
Wiring will be simplified by the following procedure. Before mounting the crystal switch, ground one terminal of each crystal socket through a bus wire. Connect short lengths of tinned wire to the other terminal of each socket that will be under the switch. Then when the latter is installed, the wires can be run to the proper contacts and soldered in place. Note that the front wafer of the switch is used for shorting out $R F^{\prime} C_{1}$, while the crystal socket connections are made to the rear wafer, which is more accessible. The v.f.o. input socket is connected to the proper switch contact with a length of RG-58/U coax.

In assembling the power lead filtering eompo- An ordinary tic point supports the other end of $K F^{\prime} C_{3}$ and the shielded power lead. The plate coil, L_{8}, can be seen in batek of the $576 ; 3$ doubler tube, wired between the stators of C_{10} and C_{11}, C_{12} and $R F C_{4}$ are mounted near (11, and hooked between its stator bar and a ground lug. A short length of 12(i-58/U coax runs down through a hole in the chassis from C_{11} over to J_{3}.

Most of the parts visible in the chassis view can be identified from our deseription of the panel, rear, and topside layouts. The oscillator cathode choke, $R F^{\prime} C_{1}$, can be seen mounted upright near the oscillator tube and crystal sockets. Both 57 (i3 sockets should be oriented so that l'ins 4 and 5 are adjacent to the outside chassis wall. L_{1} is visible between C_{1} and the oscillator tube socket. L_{2} and L_{3} run between this socket and that of the doubler. These

Fig. 17-3-Side view of the exciter, with cover removed. Band-pass coupling circuits eliminate front-panel tuning controls except for crystal switch and output stage tuning.

Fig. 17.4-Schematic diagram of 48-54-Mc. exciter. All capacitances less than . $001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All . 001 - $\mu \mathrm{f}$. capacitars are disk ceramic. All resistors are $1 / 2$ watt unless atherwise specified.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-35-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC.35).
$\mathrm{C}_{4}-10-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC.10).
$\mathrm{C}_{6}, \mathrm{C}_{6}-20-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-20). $\mathrm{C}_{7}-50-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC.50).
$\mathrm{C}_{\mathrm{n}}-15 \cdot \mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC.15).
$\mathrm{C}_{6}, \mathrm{C}_{13}-.001-\mu \mathrm{f}$. 3000-valt disk ceramic.
$\mathrm{C}_{10}-35 \cdot \mu \mu \mathrm{f}$. miniature variable (Hammarlund HF-35).
$\mathrm{C}_{11}-100 \cdot \mu \mu \mathrm{f}$. miniature variable (Hammarlund MAPC. 100B).
$\mathrm{C}_{12}-100-\mu \mu \mathrm{f} .1000$-volt mica.
$\mathrm{C}_{14}-\mathrm{C}_{20}-.001-\mu \mu \mathrm{f}$. feed-through-type ceramic (Centralab FT-1000).
$\mathrm{L}_{1}-16$ turns No. 24, 5/8-inch diam., 32 t.p.i. (B \& W Miniductar No. 3008).
$\mathrm{L}_{2}, \mathrm{~L}_{3}-12$ turns each No. 20, 5/8+inch diam., 16 t.p.i (B \& W Miniductor No. 3007). Make from one piece of Miniductar with 5 turns removed between coils. Cald ends are adjacent.
$\mathrm{L}_{4}-10$ turns No. 20, $1 / 2$-inch diam., 16 t.p.i. (B \& W Miniductor No. 3003).
nents at the rear of the chassis, the disk ceramic bypasses can most easily be mounted on the tie points before the latter are fastened inside the chassis. Wiring up the power leads should be done before the r.f. chokes are mounted in place.

- THE 50-MC. AMPLIFIER

Though the eveiter and amplifier are pietured on a single panel, the possibility of using either by itself should not be overlooked. The exciter will make a fine low-powered transmitter, and the final amplifier maty be used with any exciter delivering $1 \overline{5}$ watts or more.

It will take up to the legal limit of power with a $4-400 \mathrm{~A}$ tube, 750 watts with a $4-250 \mathrm{~A}$, or 400 watts with a 4-125.A.
$\mathbf{l}_{5}, l_{7}-6$ turns Na. 20, 1/2-inch diam., 16 t.p.i. (B \& W Miniductor Na. 3003). Make fram ane piece af Miniductar with 3 furns remaved between cails.
$L_{0}-2$ turns haakup wire waund araund cald end af L_{5} and cemented in place.
$\mathrm{L}_{\mathrm{s}}-4$ furns Na. 18, 3/4-inch diam., 8 t.p.i. (B \& W Miniductar Na. 3010).
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$-Caaxial chassis fitting (Amphenal 83-1R).
J_{4}-Open-circuit phane jack.
$\mathrm{R}_{1}-25,000$-ahm 4 -watt pat.
$\mathrm{R}_{2}-33,000$-ahm 3 -watt (3 100,000-ohm 1-watt in parallel).
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. r.f. chake (National R-100S).
RFC $_{2}$, RFC $_{3}$, RFC $_{4}-7-\mu \mathrm{h}$. solenaid v.h.f. choke (Ohmite Z.50).

RFC $_{5}-6$ turns No. 22 tinned wire, $1 / 4$-inch diam., spaced one-wire diam.
RFC $6-$ RFC $_{12}-15$ furns No. 24 enam. close-waund on high value 1 -watt resistor.
S_{1}-2-pole 12-position miniature seramic rotory (Centralab PA-2005).

The plate circuit is a latger version of the one used in the 6146 stage of the exriter, a shunt-fed pi-network. ()preation is completely stable without neutralization, probably because the natural neutralized frequenty of the tumes is close to 50 Mr. Provision was originally made for neutralization, but it was found to be unnere essary. Parasitic suppression devices were not rerguired, but if the layout is varied appreciably from that shown, the builder should wheek for both types of instability with great eare.

The jack in the filament center-tap lead is for keving, or for insertion of a grid-bias modulator. A hias supply that delivers about ato volts negative for the 6146 and 150 for the final amplifier is included in the final stage assembly. Filament transformers for the exciter and final are also part

50-Mc. Amplifier

of this unit. Separate filament switches are included; one for the exeiter and the other for the final tube and the blower motor. Power leats (xecp) the high voltage, are brought in on an 8 . pin plug.

Building the Amplifier

A $12 \times 10 \times 3$-inch aluminum chassis is used for the :mplifier unit. Thus, it may be combined with the exciter on a loterinch ranck panel, if desired. The amplifier controls monnted near the panel bottom are, left to right, the input link reactance calpacitor, ('1; the grid tuning (al) batitor, Ce; and \mathbb{S}_{1} and $\mathrm{S}_{2}, \mathrm{~S}_{1}$ applies a.e. to the transformer for the exejter heaters and to the bias supplies. \mathbb{N}_{2} :upplios ate. to the filament tramsformer of the amplifier and starts the eooling fan. Above the swit h hes on the panel are the amplifier plate tuning and loading controks.
(On the rear of the chassis, roaxial connectors for rif. input and output are mounted at eithor end. Betwern them we the high-voltage conneetor for the plate supply, the eathote cirenit jack, and a fitting for the remaining power and moter leats.

Above the chassis, the $4-250 \mathrm{~A}$ tube is seon neal the front of the chassis. Note that its socket is momed on $1 / 2$-inch sleneves. Holes $3 / 8$ inch in diameter are drilled in the chassis diree tly maderneath these provided in the sorken for the passage of erooling atir. Holes are also drilled :udjacent to the eathode, grid, and somern pins to pass theig leads, bypassing of cathote and sereen is done above the ehassis. The heat radiating plate connertor for the $4-250 \mathrm{~A}$ was cut down to four fins to reduce the over-all height requirement. The filament fransformer, T_{3}, and the sereen morlulation choke, $/ 4$, are also topside.

The amplifier plage cirenit components are to the loft of the tube. The tuning capacior, (${ }^{*}$, originally a noutralizing (apataitor, is mounted on the side wall of the shielding assemblys. 'Two modifieations should be made to the neut ralizing unit before monnting. The circular plates supplied should be replaced with langer ones, 3 inches in diamoter, to increase the available haning tange. The bearing assembly of the rolor disk must be lemporatily removed, and a strap of copper run between the serew holding the bearing in plare and the opposite (grounded) end of the sumare ceramic.

Fig. 17-5-Bottom view of the 50. Mc. exciter, showing band-pass circuits and TVI protective measures.
insulating pillar, grounding the capacitor rotor. Two ropper straps mins be inserted betworn the stator disk and its insulator, to commet the stator with the blocking capacitor, ('s, and with has.

The blorking capacitor, the shont-fied r.f. choke, RPP ${ }_{2}$, and the high-voltage hryass, C_{6}, are assembled into one unit before monting in the amplifier. This is done with the aid of the hardware supplied with the IV-type high voltage eapacitors. The by-pass capacitor, on the bottom of the stark, is equiperd with one threaded terminal and one dapped onc. The latter is on the bottom rend, for fastoning the assem'sly to the chassis. The threaded terminal serews into the 21 - inch ceramic insulator upon which $R P C_{2}$ is wound. The conds of the choke winding are secured by lugs at carch end of the insulator. ('s should be fitted with a threaded forminal at the lower end for serewing into the top of the insulator. This also serves fo fastern the $3 / 4$-inch wide strip of (opper which runs up to the $1-250.1$ plate cap. Finally, the longer of the two copper strips coming from the stator of C^{\prime} ' is serewed to the top of ('s. A 's-inch feredthrough bushing Irings the high-voltage up) to the hot side of ('6. The louding capanitor', © ${ }^{\prime}$, is mounted on the chassis direclly underneath ("F. The plate coil, L_{3}, gets rather wam when the rig is operated at high power level, so both al its ruds must be bolted in place rather than soldered. One end is bent around and fastencd under a

Fig. 17-6-Interior of the 50-Mc. final amplifier. Plate funing capacitor is modified neutralizing unit, left.

nut provided on the stator of C_{8}. The other is bolted to the short length of copper strap previously fastened to the stator of C_{7}. A length of RG-8/U coaxial cable is run between C_{8} and J_{2}. At the capacitor end, this cable is connected to lugs under the stator and frame mounting screws.

Solid sheet aluminum is used for the enclosure of this unit, as it must be reasonably airtight except for holes directly above the tube itself. The side that supports C_{7} must be of fairly heavy stock for rigidity. Home-bent $3 / 4$-inch angle stock was used to hold the assembly together. If the over-all height of the unit is kept to just about that of the $101 / 2$-inch rack panel, there will be enough clearance above the tube plate connector.

Most of the under-chassis components are visible in the bot tom view. The grid circuit is near the front edge of the chassis. Copper strap connects the tube socket grid pin with the stator of $C_{2} . L_{2}$ then is soldered between this strap and a tie point. L_{1} is slid inside the cold end of L_{2}, and cemented lightly in place.

The cooling fan sucks air in from the side of the amplifier near the back corncr. The motor is mounted on an aluminum bracket. The fan as supplied will blow, rather than suck, so the blades must be bent back to reverse their pitch. A small piece of aluminum window screening shields the hole cut in the chassis side for the fan.

Bias supply components occupy the lower left
quarter of the bottom view. Layout and wiring of this portion of the rig is anything but critical. Shielded wire was used for all power leads. Bypassing at the power comector should be done with very short leads, and C_{14} should be mounted as eluse as possible to the high-voltage connector.

Adjustment and Operation

An initial setting of the exciter controls can be made before power is applied, if a grid-dip meter is available. The series traps, $L_{1} C_{1}$ and $L_{4} C_{4}$, introduce varying amounts of reactance across the tuned circuits when they are adjusted, so some further adjustment will be needed after these are set up finally, but the following procedure will result in a close approximation.

I Hisconnect onc end of L_{3}, Fig. 17-4. Couple the grid-dip meter to L_{2} and tune it with C_{2} to about 24.5 Mc. Leaving the setting of C_{2} at that position, lift one end of L_{2}. Reconnect L_{3} and resonate $C_{3} L_{3}$ to about 25.5 Me. Reconnert L_{2}, and the circuits should be set for operation on 48 to 52 Me. For 50 to 54 Mc., the frequencies should be 25.5 and 26.5 Mc .

Procedure for the second band-pass eircuit is similar except for the frequencies involved. For 48 to 52 Me., disconnect L_{7} and tune $C_{5} L_{5}$ to 49 Mc. Reconnect L_{7} and disconnect L_{5}, tuning $L_{7} C_{6}$ to 51 Mc. Recomect L_{5}. For the 50 - to 54-Mc. range these frequencies would be about 51 and 53 Mc .

Fig. 17.7-Schematic diagram and parts list for the 4.250A amplifier. All capacitors marked. $001 \mu \mathrm{f}$. are 600 -volt disk ceramic.
$\mathrm{C}_{1}-50 . \mu \mu \mathrm{f}$. miniature variable (Hammarlund HF-50).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. miniature variable, double-spaced (Hammarlund HF-15X).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{13}-.001-\mu \mathrm{f}, 1000$-volt disk ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{14}-500-\mu \mu \mathrm{f}$. 20,000-volt ceramic (CornellDubilier MMI 20T5).
C_{7}-Disk-type capacitor with 3 -inch diam. plates (made from Millen 15011).
$\mathrm{C}_{8}-250-\mu \mu \mathrm{f}$. variable, double-spaced (Johnson 250-F20). $\mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}-12-\mu \mathrm{f}, 250$-volt electrolytic.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial chassis fitting (Amphenol 83-1R).
J_{3}-Closed-circuit phone jack.
$\mathrm{CR}_{1}-65 \cdot \mathrm{ma}$. selenium rectifier (Federal 1002A).
CR_{2} - 20.ma. selenium rectifier (Federal 1159).
$\mathrm{L}_{1}-5$ turns No. 24, $1 / 2$-inch diam., 32 t.p.i. (B \& W Miniductor No. 3004).
$\mathrm{l}_{2}-4$ turns No. $18,3 / 4$-inch diam., 8 t.p.i. (B \& W Miniductor No. 3010).
Comect a source of 6.3 volts a.e. at 2.5 amperes or more between the ground and heater terminals, and a low-range meter from the donbler grid return terminal to ground. Insert crestals for the desired freguency range. Apply about 200 volts d.e. to the oscillator phate-sereen terminal through a 50- or 100 -ma. meter. Current should be 20 to 30 ma., and grid current in the following stage should be about 0.5 ma ., when the voltage is increased to the normal $3(0)$ volts. Tourh up the tuning of the band-pass cireuit, if necessary, to get uniform response across the desired range.

The trap circuits can be adjusted at this point, tuning for minimum signal at the frequency to be attenuated in each case. A receiver tuning to the harmonie frequencies is helpful. These will be about 18 to 20.25 Mc. for the first trap and 56 to 60 Me . for the second, if they are for Channel 2. A TV receiver on the chammels to be protected maly also be used, merely tuning the traps for minimum 'TVI. Some slight readjustment of the

L3 - 6 turns No. 12 tinned wire, 1 -inch diam., spaced twice wire diam.
L_{4}-Filter choke, about $10-$ hy. $100-\mathrm{ma}$. (Triod C-10X).
B_{1}-Blower motor and fan (Allied cat. No. 72P715).
$\mathrm{R}_{1}-20,000$ ohms 10 watts.
R_{2} - 500 ohms 2 watts (21000 -ohm l-watt resistors in parallel).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{3}-7$ - $\mu \mathrm{h}$. sole noid choke (Ohmite Z.50).
RFC_{2}-Solenoid choke, 42 turns No. 24 d.c.c. closewound on $1 / 2$-inch diam., $21 / 2$-inch long insulator (National GS-2).
$\mathrm{S}_{1}, \mathrm{~S}_{3}$-Single-pole single-throw toggle switch.
T_{1} - Power transformer, 135 volts at 50 ma . (Triad R-30X).
T_{2}-Filcment transformer, 6.3 volts at 3 amp . (Triad F-16X).
T_{3}-Filament transformer, 5.2 volts c.t. at 15 am . (Triad F-IIU).
band-pass circuit may be needed after the final trap tuning is clone.

Now remove the grid current meter and ground the metering terminal in the doubler grid eircuit. Conneet a meter (0 to 5 mal. or more) between the terminals provided for measuring the 6146 grid current. Set the sereen potentioneter, R_{1}, to about the middle of its range and apply about 200 volts to the doubler plate-screen input terminal. Adjust the band-pass circuit, $L_{5} C_{5}, L_{7} C_{6}$ for nearly uniform response across the desired range, using the 6146 grid current as the output indieation. There should te at least 2 ma. across a $4-\mathrm{Mc}$. range when the doubler plate voltage is raised to 300. Note that the screen potentioneter controls the input to the doubler, and through it the excitation to the 6146 .

The 48-Mc. output coupling adjustment, $L_{6} C_{7}$, may be checked at this time. The line to a 144 Me. tripler stage should be connected to J_{2}, and the series capacitor, C_{7}, adjusted for maximum
grid current in the driven stage. Recheck the adjustment of the band-pass circuit after this is done.

The 6146 amplifier stage had to be neutralized for stable operation. Its adjust ment was not critical, however, and C_{8} could be set anywhere near minimum capacitance with good results. Start out with its phates meshed about $1 / 8$ inch. With grid drive applied but no plate or sereen voltage, tume the $61+6$ plate circuit through resonance, treing various settings of C_{8} until there is no grid current dipat resonance.

A load for the $61+6$ output eircuit is now required. This can be a 40 - or (0)-wat hamp, with a $50-\mu \mu l$. capacitor in series to tune out its reactance. Adjust it for minimum reflected power, as indirated on an s.w.r. bridge. With the load conneeted and grid drive on, apply 300 to 400 volts to the amplifier plate and sereen terminal. Tune C_{10} for maximum indicated output. Loading can be adjusted by varving C_{11}, retuning C_{10} after earh movement of C $_{11}$.

Recherk for neutralization at this point, working for a setting of ('8 at which minimum plate current, maximum grid current, and maximum output all ocrour at the same setting of the phate tuning capacitor, C_{10}. The input can be run up to about 65 wat ts with plate modulation and $35-40$ watts output should be obtained. Higher input ean be run on e.w. Plate voltage should not exceed ahout 400 with plate modulation, though it can be somewhat more for e.w.

Now make a final check on the trap eireuits, if necessary. In case TV1 is experienced, adjust the traps while someone watehes the TV soreen, and see whether any improvement is possible. Remember that the traps shown were designed primatrily to reduce Channel 2 interference. Where the trouble is with other channels, the traps can be modified to reduce the offending harmonic as required. A low-pass filter or a 4 th harmonic trap will be needed if there is harmonie interference in Channels 11-13.

The amplifier as shown furnishes heater voltage and protective bias for the exciter. Hook together the 6.3 -volt and ground terminals of the two units, and connect the bias output pin on the amplifier to the 6140 grid return in the exciter.

Apply 115 volts a.c. to the appropriate pins on the amplifier power plug. When S_{1}, Fig. 17-7, is closed. the exciter heaters and the bias supplies are energized. The hias voltages are about 50 and 150 negative for the driver and amplifier, respectively. Closing x_{2} lights the amplifier filament and starts the fan motor.

For the initial testing of the amplifier disconneet its fixed bias supply, by lifting the connection between R_{1} and R_{2}, so that instability will be more evident. Connert the output of the exciter through a length of coaxial rable to J_{1}. I Fook a $0-25$-or 0-50-ma, meter to the terminals provided for measuring grid current. Turn on the exciter and adjust the driver out put and amplifier input for maximum grid current. Set this current between 10 and 15 ma. with the expitation control, R_{1}, in the exriter. To insure proper adjustment of the amplifier grid cireuit, insert an s.w.r. bridge unit such as a Micromateh in the coax connecting the driver and amplifier, and tune C_{1} and C_{2} in the amplifier alternately for minimum refleeted power. Adjust the driver tuning for maximum forwad power.

Never apply screen voltage without having the plate voltage on also, and do not operate the amplifier without load. Either will result in excessive screen dissipation, and almost certain tube failure if continued for any length of time. Λ usable dummy load for testing ean be made by eonnecting two or more 100 -watt lamps in parallel. A variable series capacitor, $50 \mu \mu$ f. or more, will be helpful in making the lamp load something like 50 ohms, resistive, at this frequency,

It is well to st:urt with something less than maximum voltages in testing. If the plate voltage is under 1000 and the sereen voltage about 200 to 300 volts , little harm can result if something is not quite right. With the dummy load connected, apply plate and sereen voltages. Set C_{8} near the middle of its range and tune C_{7} for maximum output. If this oceurs at or close to the end of the tuning range of C_{7}, adjust the spacing of the turns in the plate eoil aecordingly. Aljust C's for maximum output, returning C_{7} as required. If the grid current dropped below 10 ma. under load,

Fig. 17-8-Bottom view of 50-Mc. exciter and amplifier. Note that the two units are built separately, though they mount together on a single panel. Amplifier unit includes bias and filament supplies for both.

144-Mc. Driver-Amplifier

increase the drive with the doubler screen potentiometer in the exeriter.

Cherk now for stability. Briefly eut off the drive and see if the amplifier gride eurent drops to zero. If it doesu't, the amplifier either needs nout ralization, or it has a parasitic ose illation. If no grid eurrent shows with drive removed, note whether, when drive is appliod and the amplifier is tuned properly, maximum output, minimum phate current and maximum grid current all oceur at the same plate tuning. If they do, the amplifier is operating satisfactorily.

If oscillation does show up, cherk its frequence. If it is much higher than the operating frequence (probably ower 150 Me) v.h.f, paritsitic suppression measures are in order. If it is in the $50-\mathrm{Mc}$. region, neutralization will be required. These troubles are most common in multiband designs, and unlikely in a layout of this sort. Neutratization of the capacity-bridge type, like that in the exciter, can be incorporated readily, and parasitic suppression is eovered in detail elsewhere in this Itandbook. Neutralization maty require alditional grid-phate capabitance in some layouts. Provision was made for noutralization in the original layout (explaining the phagged hole in the front manel), but it was found to be umberessary.

When the amplifier is operating stably, the phate and sereen voltages may be increased in aceordance with the tube manufacturer's ratings, for the type of operation intended. Operating conditions are different for the threr tubes which ean be used and they should follow the mamufacturer's recommendations. This is not to say that variations from the published data are unsate or undesirable. Any of the values can be varied over quite a range if the maximum rating for each tube element concerned is not expeoded. In this eonnertion, it is highly desirable to provide eontinuous metering for the grid, sereen, and plate currents. This, with a knowledge of the applied voltages, will help insure proper operation and make corred adjustment a simple matter.

A 144-MC. DRIVER-AMPLIFIER

The unit shown in Figs. 17-9 through 17-14 is a threestage triplor-driver-amplifier that may be used with the exciter just deseribed. Driving power at 48 Me . may be taken from the doubler stage (be connecting to J_{2} in Fig. 17-4) or from the output stage, running at low power. Almost any $50-\mathrm{Me}$. transmitter of 3 to 5 wates output could be used by substituting a suitable erystal and retuning the stages for operation at 48 to 49.3 Me. If a small $14+$ Me, transmitter is available, the tripler stage may be dispense 1 with, in whieh ease about 5 watts drive on 144 Me . is required.

This section of the station is built in two parts. The tripler and driver stages are in the smatl portion at the right of Fig. 17-9, with the final stage at the left. All are push-pull stages, the tripler and driver using dual tetrodes. The tripler is an Amperex (0360), followed by an RCA 6524 straight-through amplifier. This drives a pair of $4-12 \overline{5} . \mathrm{s}$ in the final stage.

Input to the +125 is can be up to 600 watts on a.m. phone, or 800 watts on c.w. or f.m. I3y suitable adjustment of sereen and plate voltages the power can be dropped as low as 150 watts input and still maintain good efficiency. Some means of reducing power is highly desirable, as most operation on 144 Mc . can be carried on satisfactorily with low power.

The Driver Portion

The tripler and driver stages, Figs. 17-11 and 17-12, both operate well below their maximum ratings. Self-tuned gride circuits are usad in each stage. This simplifies construction, and in the case of the driver stage, reduces the possibility of self-oscillation. With a surplus of drive available, the grid cirenit of the 6521 may be resonated as low as $1: 30 \mathrm{Mc}$. There is little tendency to tuned-plate tuned-grid oscillation, therefor, and neutralization is not required.

Tripler and driver are built on a standard $5 \times 10 \times 3$-inch aluminum chas-
 sis, with the tripler at the back. Its plate circuit is tuned from the front panelloyan extension shaft. Omission of the screen bypass on the tripler is intentional as the stage works satisfactorily without screen bypissing.

The 6524 is easily over driven. This may becorrected by squeezing the driver grid coil turns

Fig. 17-9—The high-power 2-meter rig, with shieiding enclosures in place. The small unit at the right houses the tripler and driver stages.

17 -V.H.F. TRANSMITTERS

rloser together, lowering the resonant frequency until the desired 2.5 to 3.5 mat. is oltained arross the band. The farther it ain be resonated below 14 Me . the less liketihood there is of self-oseillattion in the driver stage,

The 652.4 is mounted horizontally, ind holes are drilled in the chassis under the tube to allow for air cireulation. Plate leads are made of thin phosphor bronze or eopper, bent into a semicircle, romeeting the butterfly eapauitor and the heatdissipating comectors. This allows the latter to be removed for changing tubes, without putting undue strain on the plate pins. The conneetors hatve to be sawed or filed down on the insides to fit on the (is2 24 pins. The coupling link at the driver plate cireuit is tumed, to provide efficiont transfer of energy to the amplifior grids.
small feed-through bypasses are used in the driver sereen ritenit. C_{5} is monnted in the allumimum phate that supports the 6524 socket, and C_{6} is in the chassis surfare.

Amplifier Features

Design of the $f-125.1$ grid cireut is important in aehioving efficient transfor of energy from the driver stage. The input capacitance of the large tetrodes is so high that at tuned grid "irenuit of conventional design camot be used at $14 t$ Ite., so a half-wave line is substituted, as shown in Figs. 17-133 and 17-14. The input roupling link is series tumed, permitting adjustment for minimum standing wave ratio on the coasial line romereting it to the driver stage output link. The grid line, $L_{1} L_{2}$, is made of $1 / 4$-inch copper tubing. to reduce hoat losses.

Maintaining the $-12 \overline{0} \mathrm{~A}$ sereons and fitament leads at ground potential for r.f. is meressary for stability. To this end, the fute sockets are mounted above the chassis. rather then below. They are clovated only emough to allow the socket contacts to clear the chassis, and are mounted comer to comer, with the inuer comers almost tourhing. The grid line is brought up through $\frac{1}{2}$-ituch chassis holes and soldered directly to the gride contacts. This determines the line spacing, about $11 / 2$-inches renter to center.

The inner filament terminals on each sorket are gromeded to the chassis. The others connect to feed-through bypasses with the shortest, possible leads. These are joined under the chassis with a shielded wire and tiod to the filament transformer. The r.f. chokes in the sereen leade are under the chassis, their wire leads coming up) through Millen type 32150 feed-through bushings inserted in rhassis lookes under the sereen terminals. The two sercen terminals on each socket are strapped together with a $3 / 8$-inch wide strjp of flashing (opper. The screen nemtralizing rapateitor is mounted as rlose to the sorkets as possible and still leave room for the shaft coupling on its rotor. Latads to its stators are shout ous half imelt long.

Nore compatet and symmetrioal design is possible if a molified single-section capacitor is used for r_{6}. It should be the type having supports at both ends of the rotor shaft. The Millen 19140 and Hammarlund MCl40 are suitable units for the purpose. The stator bars are satwed at eath side of the erenter stator plate. The front rotor plate is removed, making a split-stator vartiahle with + plates on eath stator and 8 on the rotor. This procedure may not be applicable to all 140-mpf. ratpucitors, but auy mothod that results in a balanced unit having about $50 \mu \mu \mathrm{t}$. per seretion should do.

Comstruction of the final plate circuit should be clean from Fig. 1-10. Tuning is done with parts of a disk-type nelut ralizing capacitor (MitLen 15011) mounted on ceramie stand-offs $3!$ 自 inches high. These are made of one 1 -inch and one 2^{1}-2inch stand off earh, fastmed tor gether with a threaded insert. Comenetion to the lines is mate with eopper or silver stritp. the inches from the plate end. Silver plating of all tank circuit parts is a worth-while invest ment, though it should not be eonsidered a neeessity. A shaft coupling designed for high-voltage serviere is attarched to the threaded shaft of the movable plate, and this is rotated with a shaft of insulating material hrought out to the front panel.

A word about the extension shafts is in order at this point. If they are of metal they may have a scrious detuning effect in some circuits, even though they are connected through insulating couplings. Bakelite rod is fine, but since the insulating qualities are of no importance, $1 / 4$-inch wooden doweling will do the job just as well. Lucite or polystyrene rod will

Fig. 17.10-Rear view of the 4-125A final stage. The split-stator capacitor near the middle of the picture is the screen neutralizing adjustment. The plate line is tuned with a capacitor made from parts of a neutralizing unit, mounted on ceramic stand offs.

Fig. 17-11-Schematic diagram of the tripler and driver stages of the high-powered 2-meter transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10.5 \mu \mu \mathrm{f}$.-per-section butterfly variable (Johnson 10LB15).
$\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. screwdriver-adjustment variable (Hammarlund APC-25).
C_{1}-25- $\mu \mu \mathrm{f}$. miniature variable (Bud LC-1642).
$\mathrm{C}_{5}, \mathrm{C}_{6}-500-\mu \mu \mathrm{f}$. feed-through bypass (Centralab FT500).
$\mathrm{R}_{1}-11,000$ ohms 2 watts (two 22,000-ohm 1-watt resistors in parallel.)
R2-50,000 ohms 2 watts (two 100,000-ohm 1-watt resistors in parallel).
$\mathbf{L}_{1}-2$ turn insulated wire around center of \boldsymbol{L}_{2}. Twist leads to J_{1} and C_{3}.
Ls-13 furns No. 20, 5/a-inch diam., $7 / 8$-inch long, center topped (B \& W Miniductor No. 3007).
not stand the heat and should not be used.
The final chassis is aluminum, 10 by 12 by 3 inches, matching up with the driver chassis to fit into a standard $101 / 2$-inch rack pancl. (Complote enclosure is a must for TVI prevention, and it pays dividends in improved stability by providing effective isolation of cireuits that tond to give trouble in open lityouts.

The enclosures were made by mounting $1 / 2$-inch aluminum angle stock around the edges of the chassis of both units and cutting the sides and covers to fit. It was not intended to cool the covers to fit. It wats not intend
driver unit originatly, so the enclosure was made of perforated aluminum. The blower for the final provided plenty of air, however, so three holes are made

Fig. 17-12-Side view of the tripler and driver stages. Coil adjacent to the 6360 tripler tube is the grid coil for the 6524 driver. Plate leads for the driver tube are flexible copper straps, to permit removal of the tube from its socket. Screwdriver adjustment af the lower right is the reactance tuning capacitor for the tripler input link.

17 - V.H.F. TRANSMITTERS

The somewhat random appearane of the front panel is the result of the development of the unit in experimental form. A slight rearrangement of some of the noneriticet components could be made to achieve a symmetrical panel layout readily enough.

Operation

The two units have their own filament transformers. Plate supply requirements are 300 volts at 50 ma . for the tripler, $f(0) \mathrm{volts}$ at $1(0) \mathrm{ma}$. for the driver, 300 to 400 volts at \bar{i} mit. for the final sereens and 1000 to $2 \overline{2}(K)$ volts at $f(0)$ mit. for the final plates. The driver plates and finat sereens maty be run from the same supply, but more flexibility is possible if they are supplied separately. A variable-voltage supply for the finat screons is a fine wity to control the power level.

In putting the rig on the air the stages are fired up soparately, begiming with the tripler. A jack (J_{3}, in Fig. $1 \overline{-11}$) is provided on the front panel for measuring the $\mathbf{b 3} 360 \mathrm{grid}$ enrrent. Whont 1 ma. through the $150,0(0)$-ohm grid resistor is plenty of drive. The series capacitor, ('3, in the link can be used as a drive adjustment, if more than necessary is available.

Next plug the grid meter into the (052t grid current jack, J_{1}, and tume the (iasio plate circuit for maximum grid current. If it is higher than 3 to of mit. incroase the inductane of the grid eoil,
 apply plate and screen voltage to the (6)2.t, and check for sigus of self-oscillation. If the plate circuit is tumed down to the same frequence as that at which the grid coil resonstes with the tube caparitance, the stage maty oscillate. but if it is stable across the intended tuning range there should be wo operating difficulty resulting from a tendency to oscillate lower in frequency, and mo neut ratization should be nerded.
Comeet a coasial line between the driver output and the final grid input preferably with a standing-wave bridge comnerted to indicate the standing-wave ration on this line. Tune the driver plate cirruit and its series-tuned link for maximum grid earrent in the finat amplifier. Adjust the final grid tuning. (b , for maximum grid current. and the series capacitor. C3, in the link for minimam reflerted power on the s.w.r. bridge. Adjust the coupling loop position for maximum transfer of power, using the least coupling that will athieve this and.

Fig. 17-13-Schematic diagram of the 4-125A amplifier for 144 Mc .
$\mathrm{C}_{1}-30-\mu \mu \mathrm{f}$.-per-section split-stator variable (Hammar lund HFD-30X).
C_{2}-Plate tuning capocitor made from Millen 15011 neutralizing unit; see text and photo.
$\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. miniature variable (Bud LC-1642).
$\mathrm{C}_{4}, \mathrm{C}_{5}-500-\mu \mu$ f.feed-through by-pass (Centralab FT-500).
C_{6}-Approx. $50-\mu \mu f .-$ per-section split-stator variable. Make from Millen 19140 or Hammarlund MC140; see text.
$C_{i}-25-\mu \mu \mathrm{f}$. variable (Johnson 25L15).
$\mathrm{C}_{8}-0.25$ - $\mu \mathrm{f}$. tubular.
$\mathrm{R}_{1}-5000$ ohms, 10 watts.
$L_{1}, L_{2}-1 / 4$-inch copper tubing, 12 inches iong, spaced $1 / 2$ inches center to center. Bend around $11 / 2$-inch radius, 1 inch from grid end.
L_{3}-Loop made from 5 inches No. 14 enamel. Portion coupled to line is 1 inch long each side, obout $3 / 8$ inch from line.
$L_{4}, L_{5}-1 / 2$-inch copper tubing 12 inches long, spaced $1 / 2$ inches center to center. Bend around 2 -inch radius to make line 4 inches high. Attach $C_{2} 41 / 2$ inches from plate end.
L_{8}-Loop made from 7 inches No . 14 enamel. Sides spaced $11 / 4$ inches.
$\mathrm{L}_{7}-5-\mathrm{h}$. (min.) $100-\mathrm{ma}$. rating filter choke.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial fitting, female (Amphenol 83-1R).
$M A_{1}, M A_{2}, M A_{3}$-External meters, not shown; 100, 200 and 500 ma .
M—Motor-blower assembly, 17 c.f.m. (Ripley Inc., Middletown, Conn., Type 8433).
RFC-V.h.f. solenoid choke (Ohmite Z-144). Four required S_{1}-Toggle switch.
S_{2}-Rotary jack-type switch (Mallory 720).
T_{1} - Filament transformer, 5 -volt 13 -amp. (Chicago FO.513).

144-Mc. Amplifier

Adjust the screen neutratizing capacitor, C_{6}, for maximum final grid eurrent, with the plate and screen voltages off. Wo not attempt to rim the final stage without lown. With a fixed soreong supply the soreen dissipation gers vory high when the plate load is removed or made too light. It is important to moter the sereen courent at all times. With $4-125 \mathrm{As}$ danger to the plates ean be detected by their color, but the sareen current is the only indiation of possible damage to that element.

There is no suitable inexpensive dummy load for testing a v.h.l. rig of this powor level. The best load is probably an intemath This rath be an indoor gammatmate ched dipole. forl with roak. Its series eapacitor should bo adjusted for a standing-wave ratio dose to $1: 1$. The Mieromatch can be used in this operation, hut adjustmonts should be made at less than full power. Wiateh for any sign of heating in the bridge unt.

The position of the eoupling loop. L6. should be adjusted for maximum tratnsfor of energe to the antenna, kerping the coupling as loose as possible. The serios raparitor, ("\%, cath be usod as a loading adjustment theroafter. If the sareem voltage is contimuously variable it will be found that there is an eptimum value aromed 325 to $3 \overline{0} 0$ volts.

Below are some conditions under which the rig has been operated experimentally:

Stage	$E_{\text {b }}$	I_{1}.	E -	$l_{\text {* }}$	$I_{\text {g }}$
Tripler	300 v .	3.5 ma.	-	-	1.5 ma
briver	4008	92 ma.	-	8 пиа.	3-4 ma
Final	10000 v .	300 ma .	400 v .	60 แи.	22
Final	2000 v .	3 \%0 пия	$350 \sim$	45 ma.	20
Final	2.500 v	400 ma.	320 v .	40 ma	18 n

The first and third conditions given for the final stage represent extremes, both exereding the tubes' ratings in some way, so they are not recommended. At low plate voltages the sereen hats to he run above recommended ratings to make the tubes draw their full rated plate carrent and operate efficiently. At high plate voltages the sercen dissipation drops markedly. The use of $4-125.1 \mathrm{~s}$ at a full kilowatt input exceeds the manufacturer's maximum ratings, and is done at
the user's risk. To operate safely, the maximum plate voltage for voico work at 144 Me. should probathly not go wer 2000 . At this level the tubers will handle fen) watts inpat on voice,

Modulation and Keying

Keving is done in the screen rirenit of the driver stage, and in the sereen and phate circuits of the triplor. Cathode kering of the driver was attempted. but it raused instability troubles, so was abtudoned. The screen method makes the key hot, so an insulated key or a keying relaty must le used in the intorest of safety. The keying jacek must be insulated from the pathel.

Fixed bias for the final amplifier is provided bev the VR-tube mothod. When the tube ignites at the application of drive, the capacitor C8 rharges. Removing exatation stops the flow through the VIR tulo and leaves the negative chatge in the capacitor applied to the amplifier grids. The effertiveness of this sustem requires a low-leakage rapasitor for C_{8}.

Modulation is applied to the plates only. A choke of about 10 hemres is connected in the screen lead, or the modulation can be supplied through a sereen winding on the modulation transformer. The ber-pass value in the screen circuit should be low colough to avoid affecting the higher audio frequencies. Oecotsionally andio resonamee in the sereon choke may cause a singing affect on the modulation. If this develops, the choko may be shuntod with a resistor. Use the highest value that will stop the singing.

In neutralizing the $4-125.1 s$ it maty he found that what appears to be the best setting of the sareen catpacitor will result in a very latge drop in grid current when phate voltage is applied. The setting may be altered slightly, raising the full-load grial curront, without adversely alfecting the stabilite of the amplifier. The final check for neutralization is twofold. There should be no oscillation when drive is removed; and maximum grid current, minimum plate curvent and maximum output should all show at one setting of the plate tuming capatcitor. The latter condition

Fig. 17-14-Under-chassis view of the 2 -meter transmitter. Tripler grid and plate circuits are at the upper left. Only two of the three jocks on the front panel show in the lower left. The halfwave line used in the 4-125A grid circuit is the main item of interest in the amplifier section. Both units are fitted with bottom covers, to provide shielding and confine the flow of cooling air to the desired areas.

Fig. 17-15-Antenna couplers for 50 and 144 Mc . designed for use with the high-power transmitters on the previous pages.
may be observed only when the amplifier is operated without fixed bias.

ANTENNA COUPLERS FOR 50 AND 144 MC.

The antenna couplers shown in Figs. 17-15, and at the top of ligg. 17-1, can be used with 52ohm or 75 -ohm eoaxial line, and with bataneed lines of any impedance from 200 to 600 ohme or more, They were designed for use with the highpower transmitters described previously; but may be used at any power level.

Construction

The two couplers are identical cireuitwise. They are built inside a standard 3 by 4 by $1 \bar{\sigma}$-inch ahuminum chassis, with a bottom plate to complate the shiedding. The pancl is $31 / 2$ inches high. If only one coupler is required, a 3 by +1 by $(6$-inch utility box can be used. Terminals on the back of the chassis include a comxial input fitting and a two-post output fitting for each coupler. The cireuit diagram, Fig. 17-16, serves for both.

The $50-\mathrm{Mc}$. coils are eat from commerciallyavailable stock, though they van be made by hand if desired. The coupling winding, L_{1}, is inserted inside the tuned circuit. The polyethylene strips on which the coils are wound keep the two coils from making electrical contact, so no support other than the wire leads is noeded.

Leuds to L_{1} are brought out between the turns of L_{2}, and are insulated from them by two sleeves of spaghetti, one inside the other. Do not use the soft vinyl type of sleeving, as it will melt too readily if, through an aecident to the antenna system, the coil should run hot. In the $144-$ Ine. coupler the positions of the coils are reversed, with the taned cireuit, L_{2}, at the center, and the coupling coil outside it.

Similar tuning capacitors are used in both couplers, but some of the plates are removed from the one in the $14+\mathrm{Mc}$. cireuit. This provides easier tuning, though it has little effect on the minimum capacitance, and therefor on the size of the coil.

Adjusting the Couplers

An antemna coupler cin be adjusted properly only if some form of standing-wave bridge is ronnerted in the line betwoen the transmitter and the coupler. If it is a power-indieating type, so much the better, as it then can be lised for adjusting the transmitter loading, and the work ean be done at normal transmitter power.

With the bridge set to read forward power, adjust the coupler capacitors and the transmitter tuning roughly for maximum indication. Now set the bridge to read reflected power, and adjust the antemat coupler capacitors, first one and then the other, until minimum reflected power is

Fig. 17-16-Circuit and parts information for the v.h.f antenna couplers.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$. variable for 50 Mc ., $50-\mu \mu \mathrm{f}$. for 144 Mc . (Hammarlund MC-100 and MC.50).
$\mathrm{C}_{2}-35-\mu \mu \mathrm{f}$. per-section split-stator variable, 0.07 -inch spacing (Hammarlund MCD.35SX). Reduce to 4 stator and 4 rotor plates in each section in 144-Mc. coupler for easier tuning; see text.
J_{1}-Coaxial fitting, female.
J_{2}-Two-post terminal assembly (National FWH).
$\mathrm{L}_{1}-50 \mathrm{Mc}$.: 4 turris No. 18 tinned, 1 inch diameter, $1 / 8$-inch spacing (Air-Dux No. 808T).
114 Mc.: 2 furns No. 14 enam., 1 inch diameter, $1 / 8$ inch spacing. Slip over I_{2} before mounting.
L2-50 Mc.: 7 furns No. 14 tinned, $11 / 2$ inch diameter, $1 / 4$ inch spacing (Air Dux No. 1204). Tap $1 / 2$ furns from each end.
144 Mc.: 5 turns No. 12 tinned, $1 / 2$ inch diameter, $1 / 8$ inch long. Tap $11 / 2$ turns from eact end.
achieved. Unless the line input impedance is very highly reative, it should be possible to get the reflected power down to zero, or very close to it. Adjustment of the coupler is now eomplete. Tuning for maximum transfer of power from the transmitter is done entirely at the transmitter.

Simple Transmitters for 50 and 144 Mc.

The two transmittors shown in Fig. $17-17$ are designed to fill several needs. The wan be need as complete r.f. sections for 50 and 144 . $\mathrm{I} \cdot$., or they serve woll as exciters for higher-powered amplifiers. Depending on the final amplifier tubes chosen, the power level can be amything from under 10 to as much as 50 watts imput. It low power thes are well suited to mobile and portable applications. Provision is included for (e.w. operattion. Modulation equipment for the transmitters can be found elsewhere in this Ifambook.

The designs are as similar as possible, merhanically and clectrically, the thbes and many of the parts being interchangeable. They are huilt on standard 5 by 10 by 3 -inch aluminum chatssis, with shield covers of perforated alamimum over their output stages. These shiolds are an aid to TVI prevention, and they provide protection for the tuned circuits mounted topside.

Circuitry

Both transmitters employ thind-overtone erystal oscilhators of simple design. Crustals should be in the range between 8.34 and 9 Me . or 25 and 27 Me . for $50-\mathrm{Mc}$. operation. For $14+\mathrm{Mc}$. work the ervstals are 8 to 8.22 Mc , or $24-$ to 24.6 di Mc. If the feedback in the oseillator cirenit is adjusted to make conventional 8-Me. arstals oscillate on their third overtone, crestals in the 24 -to $27-\mathrm{Mc}$. range will also work. If only the latter (third overtone) type erystals are used, the feedback cian be set at a lower level. This is controlled by the position of the tap on the coil, L_{4}. Crystals in the 8-Me, range that multiply out close to a band edge should be checked carefully under actual operating conditions in the equipment, as the oscillation frequency may not be exactly three times that marked on the holder.

The oscillator is the triode portion of a 6U8 triode-pentode. The pentode section is a frequency multiplier, doubling to 50 Me . in the
(i-moter transmitter and tripling to $\mathbf{7} 2 \mathrm{Mr}$. in the 14.t-Me. one. The doubler section drives the output stage in the 50-Mre rig. An extral stage is
 triode with its comesponding triode elements connerted in parallel, doubling from 72 to 14.4 Me, The output stage is at 21.26 , where the input power is to lo under 25 watts. A 6145 may be used at higher power levels. There is sulstantially no differenere in the driving power repuired bio these tubes, and they can be interehanged with only. slight readjustment of the tuned circuits.

When the exciters are to drive an amplifier using an 8293 or a 5894 , the output tibe should be a 2 list . The plate supply voltage need be no more than 300 volts, and as little as 200 may suffiee. When the units are used alone the final plate voltage should be 300 for a 2 E 26 , or 400 to 500 for the 6146 . If the latter tule is used in ex(iter service the output will be sufficient to drive tetrode amplifiers of up to 1 kilowatt input.

Construction

Arrangement of parts is not partienlarly criti(all, though it would be well for the inexperiened constructor to follow the layouts shown closely in all principal details. Layout drawings, Figs. 17-21 and $17-25$ are provided for those who may wish to make exact duplicates. The dimensions given apply only when identical parts to those of the original are purchased. Check soekets partienlarly, for mounting dimensions before following the layouts in complete detail.

The shield covers of the two transmitters were made in slightly different ways, to illustrate differing terhniques. The method usorl in the 50-Nt. unit may be the easior of the two for amateurs not well equipped with metal working tools. The front and back phates are 5 inches wide and $41 / 2$ inches high. The bottom half ineh of each plate overlaps the main chassis, and is fastened

Fig. 17-17-Transmitters for 50 (right) and 144 Mc . Designs are similar and many parts are interchangeable. Power ratings may be varied from under to more than 50 watts input, depending on tube used in the output stage.

17 - V.H.F. TRANSMITTERS

to it with self-tapping serews. The cover is made of perforated aluminum, available in many hardware stores. This can be cut and bent with simple tools. The box thus made is 4 inches high, 5 inches wide and 5 inches deep. The perforated cover is made larger than these dimensions by about $3 / 8$ inch on all sides. The extra material is bent over so that the front and back plates cam be fastened to it with self-tapping serews.

In the 14-Mre transmitter the edges of the front and back plates are bent over, so that the rover need be only a plate bent into an inverted [\%. The enclosure is 4 by + by 5 inches in size. The bent-over edges of the front and back walls show plainly in the top view, Fig. 17-2.2.

Building the 50-Mc. Transmitter

Looking at the bottom view of the 50-Me. transmitter, Fig. 17-19, we see the oscillator tuming caparitor, C_{1}, and the plate coil, L_{1}, at the right. Next to the left is the 6U8 socket. The doubler plate coil, L_{2}, and the amplifier grid coil, L_{3}. are between the tube sockets. Note that these coils are mounted side by side, with thei axes vertical. Their position with resperet to each other is adjusted for maximum grid drive, with the optimum spacing being about one coil diameter. The amplifier screen-dropping resistor (+1 -watt resistors in parallel) is just above the 2E26 socket. Jacks for cathode keying and gridecurrent measurement oreupy the left side of the front wall, as seen in Fig. 17-19.

Arrangement of parts inside the shield compartment can be seen in Fig. 17-18. The amplifier tube, a 6146 in this instance, is at the loft side of the box. The plate tuming capacitor, ('4, is near the middle of the front wall. The antemna loading eapacitor, ('5, and the coaxial output fitting, J_{1}, are on the rear wall. The power connector strip is centered on the rear wall of the chassis. Note the parasitic choke, L_{4}, between the tube and the plate coil. This is wound on the resistor in parallel with it. The plate coil, L_{45}, is mounted with its axis vertical. The output roupling coil, L_{6}, is close against the bottom of L_{5}, and insulated from it by spaghetti sleeving.

The type of socket used for the amplifier tube is important. Do not use the common moulded socket with an elevated gromoding ring having 4 lugs spaced around its circumference. These lugs may introduce coupling between the eireuits grounded or bypassed thereto, causing instability that camot be neutralized out. A Millen ceramie socket was used in the original. but any type that does not have the separate grounding lugs and ring is suitable. (irounding should be done to lugs under the muts used for moming the socket. It is imperative that by-pass rapacitor connections be made with virtually no leads at all, particularly in the amplifier cireuits. Note that each cathode lead is bypassed separately. This is important where the cathode is keyod, as in this instance.

The neutralizing capacitor, C_{3}, is a type intended for mounting with one side grounded, so another mounting methol must be provided in this application. A small tab of (opper about $3 / 8$ by 1 inch in size supports the eapacitor, the end of the tab being soldered to a lug on the :3-hug tie-point strip nearest the socket. The $150-\mu \mu \mathrm{f}$. bypass at the low end of L_{3} comeects from that point to the ground lug at the middle of the terminal strip. The lead from the sleeve of ('3 is a stiff wire that passes up through a $3 / 8$-inch hole in the chassis to the lower stator terminal of the plate tuning capacitor, (${ }_{4}$. The latter is mounted with its stator terminals one above the other.

Adjustment and Operation

For initial tests a power supply rapable of delivering 200 to 300 volts d.e. at about 100 ma., and 0.3 volts a.ce or d.e. at 1.7 amperes may be used. (Only 1.25 amp) will be needed if a 2 E 26 is used.) The negative side of the plate supply and one side of the heater supply are comerted togother. The oseillator is tested first. This is done by feeding plate power to the $4700-$ ohm resistor in the oscillator plate lead only, disconnecting the doubler plate-sereen lead temporarily.

Apply heater voltage only, and allow the tubes to warm up, for 30 seconds or more. Connert a 100 milliampere meter in the lead to the plate sup)-

Fig. 17-18-Looking down inside the amplifier shield. The plate funing capacitor, C_{4}, is on the front wall, with the loading adjustment, C_{5}, on the rear wall. Parasitic suppressor and plate coil connect to top stator bar of C_{4}. Black lead, lower left, runs through a rubber grommet to the neutralizing capacitor, below the chassis.

Fig. 17-19-Bottom view of the 50Mc. transmitter. Note positions of the various coils, particularly those in the doubler plate and amplifier grid circuits, near the middle of the assembly.

ply, and apply power. Swing the oscillator thang capacitor, (${ }_{1}$, through its range. There will be a sharp dip in current to about 10 man as the erystal starts oscillating.

Cheek the frequency of ow cillator with a griddip meter or wavemeter. If you have a reediver that tumes the 2.5 - or $30-\mathrm{Mr}$ e region, listen for the oseillator to determine if it is crystal controllend. The frequeney will change only slightly, if at all, when the circuit is tumed through resonanere. Listen to the note with the receiver beat oscillator on, and place a serewdriver or other metal object near the tuned cireuit. There should be very little change in frequency. Should the frequeney change more than a fow hundred reves under these tests the oscillator maty not be controlled by the erystal.
self-oseillation is the result of too much feedbaek. This can be corrected by moving the tap)
lower on the coil. Too little feedhark may prevent the oseillator from working at all, or it may drop out of oscillation when loaded appreciably by the following stage. The cure is to raise the tip position on the eoil.

When the oscillator is working corectly, remove the milliammeter from its power lead and rommet it betwern the high-voltage sourer and the junction of the sereen resistor and $1000-1 / \mathrm{hm}$ resistor at the low end of the plate coil. Pling a low-range milliammeter, preferably 5 or 10 mal, into the grid courent jack: J_{2}, of the amplifier. Apply plate voltage to the first two stages and tune the doubler plate circuit for maximum grid current, as read on the meter in J_{2}. This shoukl be at loast 2 ma , with a 250 -volt plate supply. Try varying the scparation between L_{2} and L_{3}, feaving spaceing at the point that vields geatest grid curront. Retune the doubler plate circuit as the

Fig. 17-20-Schematic diagram and parts information for the $50-\mathrm{Mc}$. transmitter. Capacitors are ceramic unless specified. Volues under . 001 are in $\mu \mu \mathrm{f}$. Resistors $1 / 2$ watt unless specified.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable (Johnson 157-4).
$\mathrm{C}_{2}-25-\mu \mu \mathrm{f}$. variable (Johnson 157-3).
$\mathrm{C}_{3}-0.5$ to $3 \mu \mu \mathrm{f}$. ceramic trimmer (Erie 31390).
$\mathrm{C}_{4}-25-\mu \mu \mathrm{f}$. variable (Johnson 167-2).
J_{1}-Coaxial chassis fitting.
$\mathrm{J}_{2}, \mathrm{~J}_{3}$-Closed-circuit jack.
$\mathrm{L}_{1}-14 \mathrm{t}$. No. 20 tinned, $1 / 2$-inch diam., $7 / 8$ inch long, tapped at $41 / 2 \mathrm{t}$. from crystal end (B \& W No. 3003).
$L_{2}-61 / 2 \mathrm{t}$., $7 / 6$ inch long, similar to L_{1}.
$L_{3}-71 / 4 \mathrm{t} ., 1 / 2$-inch long, similar to L_{2}.
L-5 t. No. 20 wound on and spaced to fill 100-ohm 1watt resistor.
Ls- $31 / 2 \mathrm{t}$. No. 14 tinned, $3 / 4$-inch i.d., $1 / 2$-inch long.
$L_{6}-2 \mathrm{t}$. No. 14, similar to and at cold end of L_{5}. Cover with spaghetti sleeving.
$\mathrm{R}_{1}-37,500$ ohms, 4 watts (4150,000 -ohm 1 -watt resistors in parailel).
RFC $_{l}$ —Single-layer v.h.f. choke, 2 to 7μ h. (Ohmite Z- 50 or National R-60).

Fig. 17-21-Layout drawing of the $50-\mathrm{Mc}$. chassis top. Precise duplication is not important, though the general parts layout should be followed. Hole sizes may vary with different types of sockets.
sparing is changed.
Next comes nentralization of the amplifier. With drive on, but no plate or sereen voltage, tune the amplifior phate cireuit through its range, watching the grid current meter. There may be a downward dip in grid current when the plate cirrouit is resonated. Aljust the neutralizing capacitor, C_{3}, a turn or two and check the grid current dip again. If there is loss change than before, the adjustment was in the right direction. Continue in this way until no downward movement can be seen in the grid current as the plate circuit is tuned through resonance.

If neutralization cannot be achieved, a different value of bypass will be required at the low end of L_{3}. If the noutralizing caparitor is at minimum setting when noutralization is approwhed, a larger value of hypass will be needod. Try 220 $\mu \mu \mathrm{f}$. as a next step.
lower may now be applied to the final amplifier. This can be from the same source as has been used for the carlier tests, for the time being. The meter may be removed from the doubler power lead and connected between the junction of the r.f. choke, $R F C_{1}$, and serven rosistor and the terminal on the back of the transmitter. This will measure the combined plate and sereen current drawn by the amplifier. The meter may also be phugged into the rathode jack, where it will read combined plate, sereen and grid current.

A light bulb of about 25 watts or more can be connected to a coaxial fitting and used as a dummer load in place of an antennat. This will not represent a 50 -ohm load, so the tuning of the stage will not be the same as when a matched antenna system is used, but it will do for initial tests, and it will give a rough indication of power output.

Apply plate-serecn power to all stages, and tume the plate circuit of the amplifier to the point where plate current dips the lowest. Now adjust the series capacitor, retuning the plate capacitor, until maximum brilliance is seen in the load lamp, Check carefully for any sign of oscillation in the amplifier. Remove the erystal from its socket briefly, while watching the amplifier grid current. This current and the amplifier output should drop to zero, and remain there regardless of the tuning of any of the transmitter circuits. Should grid current appear with the oscillator inoprative,
recheck neutralization. The grid-eurent dip may be only an approximate indication of neutralization, so the adjustment may have to be tourhed up after power is applied to the amplifier. Turn off power as a safety measure when this is dons. With perfere neutralization, maximum grid current, minimum plate current and maximum output will all occur at the same sotting of the amplifier plate circuit tuning. Perfertion in this resperet may not be possible, but there should be no sign of osedlation (grid eurrent in the amplifier when the drive is removed) at any setting of the tuning controls.

When the rig is operated with a properly dosigned antemna the settings of the amplifier plate and anterna loading adjustments may be somewhat different from those obtained with a lamp, load. Both should be adjusted for maximum power delivered to the antemat. This can be recorded on a field-strength moter, giving a relative indication of the power radiated by the antennat. Botter than this is a power-indieating standingwave bridge, which may be left comected in the line to the antema at all times.
Final operating conditions for the transmitter will depend on the supply voltage and finat tube used. With a 300 -volt supply the oscillator plate current will rum about 10 ma , with the oseillator operating property, and 17 mat. with the crystal out of oscillation. The doubler plate-sureen current is ahout 12 mas. Amplifier grid current will be at least 3 mat. without plate and screen voltage, and around 2.5 ma. with the amplifier operating under load. These values will be slightly lower with a 250 -volt supply: leate-sereen current to the amplifier will depend on the power level and tube. With a $2 \mathrm{E} \mathrm{E}(6$ at 300 volts the current will he about 20 mat. at resonance, with no load, and 95 mat. off resonance. Loaded for maximum efficience the 2 Lizi phate and sereen eurrent will be about 60 ma . With a 6146 at 450 volts the loaded plate and sereen current will be about 120 ma .

The $50-M c$. transmitter was described originally in QST' for October, 1958.

The 144-Mc. Transmitter

Layout and testing of the $1+4-$.Mc. unit are very similar to the $50-$ Me model already described, so only the points of difference will he covered in this part of the text. Looking at the hotton view,

Fig. 17.22-Top view of the 144-Mc, tronsmitter with shield cover removed. A 2E26 is shown in the amplifier socket.

Fig. 17-23, the oscillator tuned circuit is at the far right. The tripler plate capacitor, C_{2}, is next on the front wall. The $6\left[^{-8} 8\right.$ socket is between these two capacitors, on the center line of the chassis. The 12AT7 parallel doubler socket is approximately in the middle of the chassis. The coil mounted vertically at the right and slightly below the 12AT7 socket is the tripler plate coil, L_{2}.

The doubler plate coil, L_{3}, and the amplifier grid coil, L_{4}, are mounted on a common center line and close together, making them appear as one coil in the photograph. The top end of L_{3}, as seen in the schematic diagram, Fig. 17-24, is toward the back of the chassis. The grid end of L_{4} is toward the front. Capacitors C_{3} and C_{4} are cylindrical plastic trimmers. They are at either side of and just above the upper end of L_{3}.

The amplifier socket is at the left. The sereen

Fig. 17-23-Bottom of the $144 . \mathrm{Mc}$. tronsmitter, with oscil-lotor-tripler at the right. Doubler stage is near the middle of the chassis and amplifier at the left.
tuning capacitor, C_{7}, is mounted across the socket. Screen voltage is fed through the r.f. choke just above the socket. The switch for shorting out the grid leak when c.w. is used is in the upper left corner of the photograph. The two jacks on the front wall are for keying (far left) and grid current measurement.

Circuit differences between the two units, aside from the inclusion of the extra multiplier stage in the $1+4-$ Mc. model, arise mainly from the effects of tube and circuit capacitanees at the higher frequency. Tube capacitances load the tuned eircuits heavily, so series-tuned circuits are used in the amplifier stage. It will be seen that the keying jack is connected in the cathode of the doubler stage instead of in the amplifier eathode lead. It is difficult to bypass the amplifier cathode completely at 144 Mc., and the insertion of the keying jack in that position would cause oscilla-

Fig. 17-24-Schematic diagrom ond parts information for the 144 -Mc. Iransmitter.
$C_{1}, C_{6}-50-\mu \mu \mathrm{f}$. vorioble (Johnson 157-4).
$\mathrm{C}_{3}, \mathrm{C}_{5}-15-\mu \mu \mathrm{f}$. voriable (Johnson 157-2).
$\mathrm{C}_{3}, \mathrm{C}_{4}-1-8-\mu \mu \mathrm{f}$. plastic trimmer (Erie 532-10).
J_{1}, J_{2}-Closed-circuit jack.
J_{3}-Coaxial chassis fitting.
$L_{1}-14$ furns No. 20 tinned, $1 / 2$-inch diom., $7 / 8$ inch long tapped at 4 turns from crystal end (B \& W No. 3003).
$L_{2}-53 / 4$ turns No. 18 enom., $7 / 6$-inch diom., $5 / 8$ inch long. $\mathrm{L}_{3}-23 / 4$ furns No. 18 enam., $/ 66$-inch diam., $1 / 4$ inch long.
$L_{4}-6$ turns No. 18 enom., $7 / 6$-inch diom., $5 / 8$ inch long,
$L_{5}-4$ turns No. 14 tinned, $3 / 4$-inch diom., turns spaced 2 diameters. Make extra space at center for L_{6}; see Fig. 17-22.
Lo-1 furn No. 14 enamel, $3 / 4$-inch diom. Cover with insuloting sleeving and insert at center of L_{5}.
$\mathrm{R}_{1}-33,000$ ohms, 3 watts (3100,000 -ohm 1 -wott re. sistors in porollel).
$\mathrm{RFC}_{1}-7-\mu \mathrm{h}$. solenoid choke (Ohmite Z-50).
$\mathrm{RFC}_{2}-1.8$ - $\mu \mathrm{h}$. solenoid choke (Ohmite Z-144).
S_{1}-S.p.s.t. switch, any type.

17 - V.H.F. TRANSMITTERS

Fig. 17-25-Layout drawing of the 144 -Mc. chassis.
tion. Sereen bypassing is a similar problem, as conventional bypassing methods are inoffertive at this and higher frequencios. Bringing the sereen to ground potential requires a critical value of caparitance, so a trimmer $\left(C_{7}\right)$ is connected from screen to ground.

Adjustment Procedure

The power supply for testing the $1+t-M c$. transmitter should deliver 6.3 volts at 1.6 amperes if a 2 biz 6 amplifier tube is used. With a $61+6$ it should be capable of supplying 2 amperes. Initially 250 to : 300 volts at 150 ma. will do for the phate supply. Final plate voltage for a $61+f$ may be as high as 500 volts.

Testing the first two stages is similar to that outlined for the 50-Mre. transmitter, exeept for the frequencies involved. Make sure that the oscillator is betwern $2+$ and 24.66 Mr ., and that the pentode section of the 6 US multiplies this frequence by 3. Tune the tripler plate eireuit, $L_{2}-C_{2}$, for maximum output, as indicated by a 2 -volt 60 -nas. pilot lamp roupled to the cold and of L_{2} with a single-turn loop of insulated wire about the diameter of the coil.

Next apply plate voltage to the 12ATr doubler, and tune it for maximum amplifier grid eurent. Adjustment of C_{3} and C_{4} will interlock to some extent, but be sure that each is tuned for maximum grid current, as read in I_{2}. The switeh S_{1} can be in either position for this adjustment, though the grid current will be much higher if it is in the closed position.

Neutralization is done similarly to the manner outlined for the $50-$ Me , transmitter, except that the setting of the sereen eabacitor, C_{7} is the means by which it is achieved. If stability is appoached as C_{7} reaches maximum raparitance, a larger trimmer will bee needed. Exporimentation with the value of the r.f. choke in the sereen lead may also be helpful. A variation of the neutralization system shown is the use of a eritical value of induetance in the sereen lead, and the elimination of C_{7}. Grid current, when neutralization is completed, should be at least 1.5 ma. with S_{1} in the open position. (io over all adjustments carefully, and experiment with the spacing between L_{3} and L_{4} if the grid drive is low:

The balanee of the testing is similar to the 50-Me. proedure llate curent for the 12.AT7 cloubler will be about 25 ma . Amplifier grid eurrent should be all that can be obtained, but
satisfartory out put and still retain good modulation charateristies.

Amplifier phate current at resonance with mo load will be higher than on 50 Me., and the output will be lower. Efficiency will be lower with a 61 th than with a 2226 , but the highor plate dissipation rating of the $61+6$ may make its use desirable if more output is needed than can be obtained with the 2 lidet . Fither transmitter can be used in mobile serviee. For (i-volt cars the tubes can tre as shown. Twelve-volt equivalents of all the tube types are now available for cats with 12 -volt sustems.

Modulation and Keying

For voice work a modulator is required. This should have a power output of approximately hatif the input to the final amplifier. Several suitable modulators are shown in other sections of this Handbook. The plate and sereen current of the amplifier are run through the serondary of the modulator output transformer. If the tramsmitter is to run at low power, a single 300 -volt supply can be used for all stages, induding the modulator, if it has a sufficiently high current rating.

Keying methods differ for the two r.f. units. The 50 -Mc. transmitter is keved for e.w. by breaking the cathode lead. This would cause instability if applied to the $1+4-\mathrm{Me}$ e transmitter, so the latter is keved in the cathode of the doubler stage. Fixed bias must be applied to the final amplifier grid, to keep the plater current to a safe value. The voltage required will depend on the plate voltage applied to the finad. The plate current need not be cut completely off. but merely hold to less than the plate dissipation rating for the tube used. A $221 / 2$ volt battery is suffieient for plate voltages up to 400 . The simplest way to apply hias, for occasional c.w. use, is to plag it into the grid current jack. The positive terminal of the bias battery should connect to the ground side of the plug.

The switch S_{1} cuts out the 27,000 -ohm grid resistor, so that the grid bias will not be excessive when fixed bias is applied. The rig can be operated in this manmer (fixed bias plus the smaller of the two grid resistors) on voice, if it is desirable or conveniont to do this. The grid current is so low that the bias battery will last amost indefinitely, and a small hearing aid size is suitable. It can be mounted inside the chassis and wired into the cireuit permanently, where more frequent e.w. operation is expected.

A Simple Transmitter

Simple Transmitter for 220 and 420 Mc.

The transmitter in Figs. $17-26-17-29$ is for the neweomer who wants to start with simple gear. going on to something better when he has gatined ronstruction and operating experience. It is built in two units. with the idea that the modulator can be retained when the r.f. portion is disearded.

The r.f. section is a simple oscillator with two (6.1F 4 or 6 A T 4 tubes in push-pull. Its plate
pending on the plate voltage and whether a 6VG or $6 L 6$ tube is used. It may be eonsidered as a long-term investinent that will be suitable for use with any r.f. section of up to 20 watts input that may be constructed at a laper date.

Construction

The two units are built on identical 5 by 7 by 2 -inch aluminum chassis, conneating by

Fig. 17-26 - The simple transmitter for 220 and 420 Mc . is made in two parts. The modulator, left, may be retained for use with more advanced r.f. sections than the simple oscillator shown at the right. The two units may be plugged together or connected by a cable.

rircuit is changed from a gatar-wave line at $2: 0 \mathrm{Me}$. to a half-wave line at 420 Mc. by plugging in suitable terminations at the end of the tuned eircuit.

Because the oscillator is modulated directly it will have considerable frequency modulation, and the signal will not be readable on selective recoivers unless the modulation is kept at a very low level. Where a broader recoiver is in nec at the other end of the path a higher modulation level can be employed.

The modulator is designed for a crystal microphone. It delivers 3 to 10 watts output, de-
metus of a plug on the osciliator and a socket on the modulator. l'ower is fed through a similar plug on the back of the modulator. Arrangement of parts in the modulatbr is not critical, but the oscillator should be exactly as shown.

Sockets for the tubes are one inch apart center to center, 23,16 inch in from the end of the chassis. C_{1} is at the exact center of the chussis, with $J_{2} 11 / 2$ inches to its left, as seen in Fig. 17-27. At the far left is a crystd socket, used for the antema terminal, J_{1}. One-inch ceramic standoffs are mounted on the serews that hold J_{2} in plare. These support the antemat coupling loop, L_{2}.

Testing and Use

A power supply delivering bout 200

Fig. 17-27-Bottom view of the oscillatar unit, showing the two-band tark circuit. The line terminations, with their protecting cops removed, are is the foreground. At the left is the 220-Mc. plug, with the 420 -Mc. one at the right.

17 - V.H.F. TRANSMITTERS

Fig. 17-28-Schematic diagram and parts information for the two-band oscillator and modulator.
$C_{1}-10.5-\mu \mu f_{\text {.-per-section }}$ butterfly variable (Johnson 10LB15).
$L_{1}-231 / 2$ inch pieces No. 12 finned, spaced $1 / 2$ inch. Bend down $3 / 4$ inch at tube end and $1 / 2$ inch of socket end. R.f. chokes connect $5 / 8$ inch from bend at tube end. Connect C_{1} of 1 inch from bend at socket end.
L_{2}-Hairpin loop $21 / 4$ inches long and $1 / 2$ inch wide, No. 16 , covered with insulating sleeving.
J_{1}-Crystal socket used for antenna terminal.
$\mathrm{J}_{2}-5$-contact ceramic socket (Amphenol 49-RSS5).
volts d.c. at 50 ma . or more and 6.3 volts at 1 amp . or more is needed. I'lug the units together or connect them by a cable. With a cable. a milliammeter may be connected between the No. 4 pins to measure the oscillator plate current. Otherwise the meter should be conneeted temporarily between P'in 4 of I_{3} and lin 3 of J_{2}, in place of the wire shown in Fig. 17-28.

Plate current should be about 25 to 30 ma . If the stage is oscillating there will be a fluctuation in current as the plate line is touched with an insulated metal objeet. Do not hold the metal in the hands for this test! The frequeney is best cheeked by means of Lecher wires, a technique that is covered in the chapter on measurements.

With the dimensions given the range with P_{1} plugged in should be about 405 to tho Me. With l_{2} plugged in the frequency should fall within the 220-Mc. band with C_{1} set in the same position

Fig. 17-29-Looking at the underside of the modulator.
$\mathrm{J}_{3}, \mathrm{~J}_{5}-4$-contoct male fitting (Ampheriol 86-RCP4).
$\mathrm{J}_{4}-4$ contact female chassis fitting (Amphenol 78-S4 or RS4).
J_{0}-Microphone connector (Amphenol 75-PC1M).
$\mathrm{P}_{1}-5$-contact male cable connector (Amphenol 86-PM5) with Pins 2, 3 and 4 joined together.
P_{2}-Same as P_{1}, but with Pins 1 and 5 joined. Connect 100-ohm resistor between these and Pin 3.
RFC (6 required) -12 furns No. 28 enamel close-wound on high-value 1 -watt resistor.
$\mathrm{T}_{1}-10$-watt modulation trans. (Merit A-3008).
as it was for the middle of the 420 -Mc. band. Some alteration of the connection point for C_{1} on L_{1} maty be neecsary to achieve this.

In using the transmitter it is well to stay le tween 221 and 224 Mc. to avoid out-of band operation. On 420, keep the transmitter below 432 Mc. to avoid interference with the highselectivity work that is done between 432 and $431 ;$ Mc. (Further details on this transmitter in $Q S T$ for December, 1954.)

A Tripler-Amplifier

A Tripler-Amplifier for 432 Mc .

Only tubes designed especially for u.h.f. servite will work satisfatetorily at 420 Me. and higher. The various small recoiving triodes made for u.h.f. TV use will work well in low-powered frequency multiphiers and r.f. amplifiers for transmitting, but the trend is to tetrodes. Several of the latter are now available.

The tripler-amplifier shown in Figs. 17-30 to 17-32 delivers up to 20 watts output on 4.32 Me.

Fig. 17-30-A tripler-omplifier for 432 Mc. using duol tetrodes. Shielded construction ond forcedoir cooling ore employed.
holes in the top cover. 1loles are drilleal in the chassis unter the amplifier tube, and in the cover over it. With a bottom plate fitted to the chassis there should be enough air flowing through both top vents to lift a puper briskly whon the fan is started.

Half-wave lines are used in all 432- Me. cireuitsThe grid circuit of the amplifier is capsecitively coupled to the tripler plate line, the two over-

lapping about $1 \frac{1}{4}$ inches. The spacing between them must be aljustod carefully for nutximum them must be adjusted carefuly for maximum
grid drive. Plate voltage is fed to the lines through small resistors. These should be connocend at the point of lowest r.f. voltage on the lines. The amplifier grid r.f. chokes are connecterel at the tube soekent.

Note that the plate line capacitors, C_{1} and C_{2}, have their rotors floating. This is important. Grounding the rotors, or use of capacitors having Grounding the rotors, or use of capacitors having
metal end plates, may introduce multiple r.f. pathe and circuit mbalimere. The capacitors have paths and circuit mbalamere. The eapacitors have
small metal mounting brackets that are not connected directly to the rotors, but even so it was necessary to resort to polystyrene mounting was necessiny to resort to polystyrene mounting
plates for best circuit halance and efliciency. Holes $3 / 4$ inch in diamoter are punched in the front wall to pass the rotor shafts.

Testing

The tripler-amplifier is designed to operate in conjunction with a $1+4-$ Mc, trinsmitter such as
when driven on 141 Nc. by any 2 -meter unit dolivering 10 watts output or more. In phatemodulated service the output is 12 watts. Tubers are RCA (6.) 24 dual tetroders, but with slight modifieation Imperex (5252s or 58\% As may he used. With 6252s the output will be about the same as with the 65 21 . The 5804 will deliver up to 40 watts with highor phato voltages. The $8: 32.1$ may also be used, but the output will be no more than 4 or 5 watts. Forced-air cooling and shichling are recommended.

The tripher tube is mounted vertically, at the left, with its socket $11 / 2$ inches below the chassis. There is just room under the socket for the selfresonant input circuit, L_{2}. The amplifier is horizontal, with its socket mounted in back of a plate that is 8 inchess from the left edge of the $3 \times+\times 17$-inch aluminum chatssis. The shiehling enclosure is $31 / 4$ inchess wide by $31 / 2$ inches high. A cooling fan is mounted on the rear wall of the ehassis. Air circulates around the tripher tube through its 2-ineh hole, flowing out through

Fig. 17-31-Looking inte the tripler-omplifier with the top cover ond front plote removed.

Fig. 17-32-Schematic diagram for the 432-Mc. tripler-amplifier.
$C_{1}, C_{2}-10-\mu \mu \mathrm{f}$.-per-section split stator, double spaced (Bud LC-1664). Do not use metal end-plate or grounded-rotor types.
$R_{1}, R_{2}-23,500$ ohms, 2 watts (two 47,000 ohm 1-watt resistors in parallel).
$\mathrm{L}_{1}-2$ turns No. 20 enam., $1 / 2$-inch diam. Insert between turns of L_{2}.
L2-4 turns No. 16 enam., $1 / 2$-inch diam., $1 / 2$-inch leng, center-tapped.
\mathbf{L}_{3}-Copper strap on heat-dissipating connectors, $31 / 2$ inches long. Twist 90 degrees $1 / 2$ inch from plate end. Space $3 / 4$ inch.
L_{4}-Copper strap $21 / 8$ inches long, soldered to grid termi-
the 21226 rig shown in Fig. 17-22. A plate supply of 300 volts at 200 mat . is needed (400 volts maty be used with 589 -4s). Apply power to the 14 - Me. driver stuge and adjust the spaceing of the turns in L_{2} and the degree of roupling between L_{1} and L_{2} for maximum tripler grid rurent. 'This should be ahout 3 mat.

Next apply plate and seren voltage to the tripler and tune C_{1} for maximum grid current in the amplifier, with no plate or screen voltage to the latter. Adjust the position of the grid lines with respeet to the pate circuit, readjusting C_{1} whenever a change is made, until at least 4 ma . grid current is obtained.

Now eonnert a lamp load aross the output terminal, J_{2}. Ordinary house lamps are not suitable. A fair lowd cin be made by connerting 6 or more blue-bead pilot lamps in parallel. This can be done by wripping a $1 / 4$-inch eopper strap
nals. Space about $1 / 2$ inch.
L_{5}-Copper strap $37 / 8$ ir.ches long, fastened to heat-dissipating connectors. Space $3 / 4$ inch. All tank circuits of flashing copper $1 / 2$ inch wide.
L_{6} - Coupling loop, No. 20 enam. U-shaped portion is 1 inch long and $5 / 8$ inch wide. Mount on 3 -inch ceramic stand-offs.
J_{1}-Coaxial input fitting (Amphenol 83-1R).
J_{2}-Crysta! socket used for antenna terminal.
$\mathrm{J}_{3}, \mathrm{~J}_{4}$-Closed-circuit jack.
$\mathrm{J}_{5}-5$-pin male chassis connector (Ampher.ol 86-RCP5).
M—Motor-blower assembly, 17 c.f.m. (Ripley Inc., Middletown, Conn., Type 8433).
around the brass bases and soldering them all togethere. Then another stratp should be soldered to the lead terminals. Apply plate and sereen voltage and tune for formam lamp brillitues. It should be possible to develop) a very bright glow in the 6-lamp lowed with a plate colrent of about 100 mat. at 300 volts.

Cut thive very brielly to check for osembation in the final stage. (ivid (ument should drop) to zero. The screen and grid resistors shown are for operation with phate monlulation. More input can be run if the sereen or mode resistance is derreased, but this should be done only when the rig is to be used for f.m. or e.w. service.

Operating conditions are about as follows: tripler grid current - 2 to 3 mab; amplifier grid current - 3 to 4 mat.; tripler plate and sereen current-90 mas; amplifier phate and sereen eurrent - 110 ma.; output - 12 watts.

An Exciter-Transmitter for 220

Exciter-Transmitter for $\mathbf{2 2 0}$ Mc.

Construction of a stable transmitter for 220 Mc. is not difficult, and while simple oseill:tortype rigs such th the one shown in Fig. 17-26 may suffice for short-range work, it revist ill-oontrolled or otherwise st abilized rig is highly worth while. A low-powered transmitter of stable design meed not be costly, as inexpensive tubes ean be used throughout. A further economy ean be made by solecting is erystal frequencer in the lower part of the bund, so that the same erestal mate be employed for the upper pertion of the 2-meter bund as well.

The trunsmitter shown in Figs. 17-34, 17-35 and 17-36 delivers 5 to 10 watts output. The final stage maty loe modulated for voice work, or the mit mave be used as an exeiter to drive higher-powered stages. Four tubes are reguired. The lirst two are \quad o(D/is. serving as ascillatormultiplier and sitgla-ended tripher. The third stage is a push-pull tripher using on Amperex (i:36t) dual tetrode. This drives a similar tube as at straight-through amplifior on 220 Mr.

Crustal frequandies should lie betwen 8.15 and 8.33 Me, or 12.22 to 12.5 Me. If the sume erystal is to be usoful for 2 -meter work it must be between 8.15 and 8.22 Me. or 12.22 and 12.3.3 Mc.

A balaned plate circuit is used in the multiplier, so that its output ean be ceapowitively couphed to the (i3ste) tripler grids. In case of insufficient grid drive to the (iz3it) tripler, try putting a smatl phastid trimmer betwern the low side of L_{2} and ground. to hatanee up the capacitances on rither side. It was not nerded in the original, but it would be well to remomber the suggestion.

The 6:360 push-pull tripler to 220 Mr. is induetively compled to the push-pull final stage. No neutralization is shown in Fig. 17-35. Should neutralization be meded, a mathod for athioving it is given later. (output from the final fi3 30 plate cirenit is taken of through roas, and provision is mule for tuming out the reartine of the link, with ('4.

Construction

The transmitter is built on a flat plate of sheet aluminum 5 by 10 inches in size. This is screwed to a standard ahominum chassis of the same dimensions, that serves as both case and shielding. If more complete shiclding is recuired a perforated metal rover may be made to go aver the top, as was done with the (j- and 2 -mpter rigs in lig. 17-17. All parts exeept the power and coaxial output commectors are mounted on the top plate. The two commetors mount in holes in the rear wall of the chassis. The mounting screws are held in place on the tittings with muts and other muts on the outside of the chatsis hold the fittings in position.

The fule sockets are along the eenterline of the plate, two inches renter to center, with the oscillator sorket 13 sinch in from the right end, as sern in the photographs. The erestal socket, and the ascillator phate coil, L_{1}, may bee seen at the lower and upper right, respertively, in the bottom view. The tripler plate tuning caparitors are midway between their respertive sockets.

Exrept for the power leads, there is an "wiring" in the usuad sonse, as all r.f. leads should be extremely short. The deroupling resistors and ef. (hokes in the various power circuits are sup)ported on tie points. Three single-lug strips and two doublo-lug enes are needed, All the power wiring is done with shiclded wire, as am aid to TVI provention. The coils $L_{\Delta 2}, L_{23}$ and L_{4} are soldered direetly to the stator support bars of their trimmers, with the shortest possible leads.

Adjustments

The power supply should deliver at least 3 amperes at 6.3 volts, a.c. or d.e., and 200) to $3(300$ volis d.e., at 200 mat. If a 300 -volt suppiy is used for the tosting. the tubes aun be proterted from exerssive drain by comnecting a 5000 ohm 10 watt resistor in series with the power supply lead. The power comertors, J_{1} and P_{1}, make provision for motoring all plate circuits except those of the oscillator and first tripler. The power

Fig. 17.34 - The 220.Mc. tetrade transmitter. At the right are the 6CL6 crystal ascillator and multiplier stages, with the 6360 tripler and amplifier in the center and left, respectively. The rig is built on a sheet of aluminum which is screwed ta an inverted chassis.

17 - V.H.F. TRANSMITTERS

Fig. 17-35-Schematic diagrom and parts information for the 220-Mc. tetrode Iransmitter, Resistors are holf wott unless otherwise specified. Capacitor values below 0.001 ore in $\mu \mu \mathrm{f}$.; oll ceramic.
$\mathrm{C}_{i}-11-\mu \mu \mathrm{f}$. miniolure butterfly varioble (Johnson $L_{1}-2$ turns same as L_{3}, center-tapped. Adjust turns spoc(1MB11).
$\mathrm{C}_{2}, \mathrm{C}_{3}-5-\mu \mu \mathrm{f}$. minioture butterfly varioble (Johnson 5MB1I).
$\mathrm{C}_{4}-15-\mu \mu \mathrm{f}$. miniature (Johnson 15 MII).
$L_{1}-14$ furns No. 28 enam. on $3 / 8$-inch iron-slug form (Notional XR-91).
$\mathrm{L}_{2}-7$ turns No. 20, $1 / 2$-inch diom., $7 / 6$ inch long, centertapped (B \& W Miniductor No. 3003).
$\mathrm{L}_{3}, \mathrm{~L}_{5}-4$ turns No. 18 enom., 5/16-inch diam., center-tapped. Space twice diometer of wire, except for $1 / 8$-inch spoce of center.
ing and degree of coupling to \boldsymbol{L}_{3} for moximum grid current.
$L_{0}-2$ turns some os L_{5}, close-wound. Adjust position at center of L_{5} for maximum output.
$\mathrm{J}_{1}-8$-pin mole chossis fitting (Amphenol 86-RCP8).
J_{2}-Coaxiol fitting, female (Amphenol 83-1 R).
$\mathrm{P}_{1}-8$-contact power coble connector, femole (Amphend 78-RS8).
$R F C_{1}-750-\mu h$. r.f. choke (National R-33).
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}-17$ turns No. 28 enom. on high volue 1 -wott resistor, or use Ohmite Z-235.
leads to these are shown connected together, to I'in 2 of J_{1}, but during testing they should be fed separately through a milliammeter, as described below:

Connect a 0-50 or 0-100 milliammeter between Pin 2 of J_{1} and the oscillator plate-screen eireuit, at the low side of the 22,00 -ohm screen-dropping resistor, point A on the sehematie. Be sure that the tripler plate and screen resistors are disconneeted for the time being, to prevent this stage from drawing current. Apuly 200 to 300 volts d.e. through I'in 2 of P_{1}, and tune the plate cirenit of the oscillator to the third harmonic of the ervstal frequency. Listening on this frequenc. (24.45 to 25 Mc ., depending on choice of crystai) a large inerease in signal strength should be noted as the eoil is tuned through resonanec. A double check on freguency with a calibrated grid-dip or ahsorption wavemeter is recommended. Oscillator phate-sereen current will be about 20 ma.

Now commed the oscillator plate-screcen power load directly to l'in 2 on J_{1}, and insort the meter in the lead to the tripler plate-sereen cireuit, point B on the diagram. Apply voltage and tune the tripler plate circuit for maximum output at 73.35 to 75 Mc . A 2 -volt 60 -ma. pilot lamp with a single-turn loop of insulated wire, about a half inch in diameter, may be coupled to L_{2} to serve as an output indicator. The 6CL6 tripler plate-screen current will be about the same as the oscillator, around 20 ma at 300 volts.

Now wire the power leads to these two stages as shown in the diagram. Leave the 300 -volt lead eonnected to Pin 2 of ρ_{1}, and connect a 100 -mar. meter between Pins 2 and t, to measure the 6360 tipler plate-screen current. A low-range milliam-
meter, about $0-10$ ma., should be connected between Pin 5 and Pin 1 , to measure final grid current. Tume ('y for maximum indication on this meter. With no plate voltage on the final stage, there should be at least 3 mat, grid current. Adjust the spauing between L_{3} and L_{4} carefully, retuning Ca each time, for maximum grid current.

Solder a jumper bet ween lins 2 and 4 on J_{1}, so that voltage will be supplied to the 6:360 tripler. Commect a temporary jumper between Pin 2 and l'in $\overline{7}$, to fred voltage to the final screen, and conned the $0-100$ milliammeter betwern Pins 2 and 8, to measure final plate current. A 10- or 15 -watt light bulb may be used as a temporary dummy load, connected to J_{2}. Apply voltage and tune (3 for minimum plate current, or for maximum output as indieated in the lamp load. Adjust $\left(C_{4}\right.$ for best output. The setting of C_{4} and the degree of coupling between L_{5} and L_{6} will be different for an antemma, however, as the lamp is not a good load at this frequency.
If the stage is completely stable, maximum output, maximum grid current and minimum plate current should all oceur at the same setting of the plate tuning capacitor, ('3. Another cheek for neutralization is to eut the drive for a brief period by removing plate and screen voltage from the tripler. Grid current should drop to zero when this is done. If it does not, the final stage is oseillating, and must be neutralized. In the original model, there was no actual self oscillation, but the stage was not completely stable until a small amomet of neutralization was added.
This is done very simply with the 6360. The leads are so arranged within the tube that all that is required for neutralization is a very

An Exciter-Transmitter for 220

Fig. 17-36-Bottom view of the 220-Mc. transmitter, showing all paris except the tubes and srystal. Note the method of attaching the power and cooxial fittings. Nuts hold their mounting screws in place, so that they can be fastered to the rear wall of the chassis.
small capteitance between lins 3 and 6 , and between lins 1 and 8. A stub of No. 18 wire about $3 / 8$ inch long is soldered to Pin 6 , with its opposite end "looking" at Pin 3. A similar stub is soldered to Pin 8, with its free end adjacent to Pin 1. The emds can then he bent toward or away from the grid pins to give the required eapacitance.

When all stages have been adjusted correctly, the plate voltage may be increased to 300 on all stages, to run the maximum power of which the tubes are capable. Current drains indicated on the schematic diagram are for 300 -volt operation. Staying at 250 volts or less allows more conservative operation, and may be well worth while, in the interest of longer tube life. There is no great advantage to be gained from pushing the tubes excessively, as doubling the power output will net less than one S unit improvement in signal level at the receiving end.

In feeding power to an antenna system using coaxial line, it is merely neeessary to conneet the coax to the output fitting, J_{2}, and adjust the coupling and C_{4} for maximum radiated power. If 300 -ohm Twin-Lead or open-wire line is used to feed the antenna, coupling to the transmitter is done with a coaxial balun. An antenna system designed for 300 -ohm batianced lines maty be fed with 75 -ohm eoux similarly.

If the rig is to be used as a complete trans-
mitter r.f. section, the final plate and screen will probably be modulated. This is done by running the lead to lin 6 on the power plug to the secondary of the output transformer of the modulator. Any modulator unit eapable of supplying about 10 watts of audio power may be used.

One or more amplifier stages may be added to build up the r.f. power level. As interstage coupling efficiency is likely to be poo at this frequency the following stage should not operate at as high a power level as would be accepted practice on lower frequencies. Suitable tubes for $220-$ Mc. amplifier stages following this exciter are the 832 A , the $\mathbf{6} 252$ and the $589+\mathrm{A}$ or 9903 . An amplifier using the 6252 was described in QST for May, 1954, page 18. Other Qs'T referenees that may he of interest to $220-\mathrm{Mc}$. workers are listed below.
"Coaxial Tank Amplifier for 220 and 120 Me ." - May, 1951, page 39.
"220-Me. Station for the Beginner," - October, November and Iecember, 1953.
"Crystal Contiol on 220 Mr." (All-triode transmitter, 10 wats) - February, 1954, page 16.
"High Power on 220 Mc . With the 4 CX 300 A " -April, 1958, page 17.
"Using the $4 \times 250 \mathrm{~N}$ on 144,220 and 432 Mc."-February, 195̄, page 31.

V.H.F. Antennas

While the basie principles of antemat design rematin the same at all frequencies where conventional elements and tranmission lines are used, certain asperts of v.h.f. work call for changes in antennat terhniques above 50 Me. Here the physial size of anders is reduced to the point where some form of antenna having gain over at simple halfwave dipole ran be used in almost any location, and the rotatable high-gain directional array has berome a standard feature of all wellerpuippod v.h.f. stations. The importance of antemat gain in v.h.f. work cannot be over-emphasized. By wo other means can so large a return be obtained from a small investment as results from the erection of a good directional array.

DESIGN CONSIDERATIONS

At 50 Mr , and higher it is usually important to have the antenna work well over all or most of the band in guestion, and as the bands are wider than at lower limegueneres the attention of the designere must be focused on broad frequeney response. This may be attaned in some instanes through sabrifiefing ohloer qualities such as high front-toback ratio.

The loss in a given length of trimsmission line rises with fredurnery. V.h.f. fredlines should be kept as shot as possible, therefor. Matching of the impedanees of the antenna and transmission line should be done with cate, and in open locations a high-gain antemat at relatively low height may he preferable to a dow-gain system at great height. Wherever possible, however, the v.h.f.

Fig. 18-1-Combinotion tuning and matching stub for v.h.f. orrays. Sliding short is used to tune out reactance of the driven element or phasing system. Transmission line, either balanced or coax, is connected at the point of lowest standing-wave ratio. Adjustment procedure is outlined in text.
array should be woll above heavy foliage, buildings. power lines or other olstruetions.

The physical size of a v.h.f. arraty is usually more important than the mumber of elements. A 4-elemont array for $4: 32$ Mre may have ats much gain over a dipole as a similarly-designed array for 14t Me., but it will intererpt only one-third as
much energy in receiving. Thus to be equal in communication, the 432 -Mc. arraty must equal the $1+4-$ Mre, antemat in caplare area, requining three times as many elements, if similar element configurations are used in hoth.

Polarization

Eitrly v.h.f. work wis done with simple antemas, and since the vertiral dipole gave as good results in all directions as its horizontal counterpart offered in only two directions, verfica! polarization beame the areepted standard. Later when high-gain antennas came into use it was only natural that these, too, were put no vertical in areas where v.h.f. artivity was already well established.

When the diseovery of various forms of longdistance pronagation stirred interest in v.h.f. operation in areas where there was no previons experiente, many neweomers started in with horizontal arras, these having been more or lass standard pratetice on frecuencies with which these onerators were familiar. As use of the same polarization at both ends of the path is neeressary for best results, this lack of standardization resulted in a conflict that, even now, has not been completely resolved.

Tests hater shown no large differener in results over long paths though evidene points to a slight superiority for horizontal in certain kinds of terrain, but vertical has other factors in its favor. Horizontal arrays are gencrally easier to build and rotate. Where ignition noise and other forms of man-made interference are present, horizontal systems usually provide better signal-to-noise ratio. Simple 3- or telement aryars are more effertive horizontal than vertical, as their radiation patterns are broad in the plane of the demonts and sharp in a plane perpendientar to them.

Vertucal ststems can provide uniform coveruge in all directions, a feature that is possible only with fiaily complex horizontal arrays. Gain cain be built up without introducing direetivity, an important feature in net operation, or in locations where the installation of rotatable sustems is not possible. Mobile operation is simpler with vertical antennas. Fear of increased TVI has kept v.h.f. men in some densely populated areas from adopting horizontal as a standard.

The factors faworing horizontal have been prodominant on 5t) Ne., and todaty we find it the standard for that hand, exrept for emergency net. operation involving mobile units. The slight advantage it offers in I)N work has acederated the trend to horizontal on 144 . Me. and higher bands, though vertioal polarization is still widely used. The picture on $1+4,22(0$ and 420 . Me. is sill confused, the tendency being to follow the local

Impedance Matching

trend. The newcomer should check with local amateurs to see which polarization is in general use in the area he expects to cover. Eventual standardization should be a major objective, and to this end it is recommended that horizontal polarization be established in areas where activity is developing for the first time.

IMPEDANCE MATCHING

Because line losses increase with frequeney it is important that v.h.f. antenna systems be matched to their transmission lines carefully. Lines commonly used in v.h.f. work include open-wire, usually 300 to 500 ohms impedance, spaced $1 / 2$ to two inches; polyethylene-insulated flexible lines, available in 300,150 and 72 ohms impedance; and coaxial lines of 50 to 90 ohms impedance.

The various methods of matching antenna and line impedance are described in detail in Section 14. Matehing devices commonly used in v.h.f. arrays fed with balanced lines include the folded dipole in its various forms, lig. 14-42, the "T" Match, Fig. 14-45, the "Q" section, Fig. 14-41, and the adjustable stub, Fig. 18-1. The gamma mateh, useful for feeding the driven element of a parasitic array with coaxial line, is shown in schematic form in Fig. 14-45. Balanced loads such as a split dipole or a folded dipole can be fed with coax through a balun, as shown in Fig. 14-46. Fractical examples of the use of these devices are shown in the following pages. The principles upon which their operation depends are explained in Section 14, with the exception of the adjustahle stub of Fig. 18-1.

The Corrective Stub

The adjustable stub shown in Fig. 18-1 provides a means of matching the antenna to the transmission line and also tuning out reactance in the driven element. It is, in effect, a tuning device to which the transmission line may be connected at the point where impedances match. Both the shorting stub and the point of connection are made adjustable, though once the proper points are found the connections may be made permanent.

For antenna experiments the stub may be made of tubing, and the connections made with sliding clips. In a permanent installation a stub of open-wire line, with all connections soldered, may be more satisfactory mechanically. The transmission line may be open-wire or Twin-Lead, connected directly to the stub, or coaxial line of any impedance, which should be connected through a balun.

To adjust the stub start with the short at a point about a half wavelength below the antenna, moving the point of connection of the transmission line up and down the stub until the lowest stand-ing-wave ratio is achieved. Then move the shorting stub a small amount and readjust the line connection for lowest s,w.r. again. If the minimum s.w.r. is lower than at the first point checked the short
was moved in the right direction. Continue in that direction, readjusting the line connection each time, until the s.w.r. is as close to $1: 1$ as possible. When adjustments are completed the portion of the stub below the short can be cut off, if this is desirable mechanically.

- TYPES OF V.H.F. ARRAYS

Directional antenna systems commonly used in amateur v.h.f. work are of three general types, the collinear, the Yagi, and the plane reflector

Fig. 18-2-Inserts for the ends of the elements in a v.h.f. array provide a means of adjustment of length for optimum performance. Short pieces of the element material are sawed lengthwise and compressed to fit inside the element ends.
array. Collinear systems have two or more driven elements end to end, fed in phase, usually backed up by parasitic reflectors. The Yagi has a single driven element, with one or more parasitic elements in front and in back of the driven element, all in the same plane. The planereflector array has a large reflecting surface in back of its driven element or elements. This may be a sheet of metal, a metal screen, or closely-spaced rods or wires. The reflector may be a flat plane, or it can be bent into several forms, such as the corner and the parabola.
Examples of all three types are described, and each has points in its favor. The collinear systems such as the 12-and 16 -element arrays of Figs. 18 14 and $18-15$ require little or no adjustrent and they present few feed problems. They work well over a wide band of frequencies. Yagi, or parasitic arrays, Figs. 18-5 to 18-10, depend on fairly precise tuning of their elements for gein, and thus work over a narrower frequency range. They are simple mechanically, however, and usually offer more gain for a given number of elements than do the collinear systems. Planeand corner-reflector arrays are broadband devices, having broad forward lobes and high front-to-back ratio. They are easily adjusted, but somewhat cumbersome mechanically.

ELEMENT LENGTHS AND SPACINGS

Designing a v.l.f. array presents both mechanical and electrical problems. The electrical problems are basic, and their solution involves choosing the type of performance most desired. Mechanical design, on the other hand, can be subject to almost endless variations, and the form that the array will take can usually be decided by the materials and tools available. One common

18 - V.H.F. ANTENNAS

TABLE 18-I Dimensions for V.H.F. Arrays in Inches				
Freq. (Mc.)	52*	146*	222.5*\|	435*
1riven Element	106.5	38	247/8	123/4
Change per Mc.*	2	0.25	0.12	0.03
Reflector	1111/2	40	261/8	13\%/8
1st 1)irector	1011/2	36	235/8	121/3
2nd Director	901/2	358/4	238/8	12
3rd Director	$971 / 2$	35	23	117\%
1.0 Wavelength	23.4	81	53	27
0.625 Wavelength	147	501/2	331/8	16\%/4
0.5 Wavelength	117	403/2	203/2	13.5
0.25 Wavelength	581/2	201/4	131/4	63/4
0.2 Wavelength	47	16	105/8	58/8
0.15 Wavelength	35	12	8	4
Balun loon (coax)	76	26.5	171/4	83/4

* Dimensions given for element lengths are for the middle of each band. For other frequencies adjust lengths as shown in the third line of table. Example: A dipole for 50.0 Me . would be $106.5+4=110.5$ inches.

Apply change figure to parasitic clements as well.
For phasing lines or matehing sections, and for sparing between elements, the midband figures are sufliciently aceurate. They apply only to open-wire lines.

Parasitic-element lengths are optinum for 0.2 wavelength spacing.
source of materials for amateur arrays is com-mercially-built TV antennas. They can often be revamped for the amateme v.h.f. bands with a mininum of effort and expernse.

Dimensions for lagi or collinear arrass and their matehing deviecs can be taken from Table 18-I. The driven element is usually cut to the formula:

$$
\text { Length (in inches) }=\frac{5510}{\text { Fred. (Mc.) }}
$$

This is the basis of the lengths in Tible 18-1, which are suitable for the tubing or rod sizes commonly used. Arrays for 50 Me usually have $1 / 2$ to 1 -inch elements. For 141 Mc. $1 / 4$ to $1 / 2$-inch stock is common. Rod or tubing $1 / 8$ to $3 / 8$ ind in diameter is suitable for 220 and $\mathbf{4 2 0} \mathbf{~ M c}$. Note that the clement lengths in the table are for the middle of the band conemed. For peaked performane at other frequencies the element lengths
should be altered according to the figures in the third line of the table.

Reflector elements are usually about 5 percent longer than the driven element. The director nearest the driven element is 5 percent shortor, and others are progressively shorter, as shown in the table. Parasitic elements should also be adjusted aceording to Line 3 of the table, if peak performance is desired at some frequency other than midband.
Parasitic element lengths of Table 18-I are based on element spacings of 0.2 wavelength. This is most often used in v.h.f. arrays, and is suitable for up to 4 or 5 elements. ()ther spareings can be used. however. If the element lengthsare adjusted properly there is litte difforence in gain with reflector spacings of 0.15 to 0.25 wavelength. The eloser the reflector is to the driven element,

Fig. 18-3-Omnidirectionol vertical orroy for 144 Mc. Elements of oluminum clothesline wire ore mounted on ceromic standoff insulotors screwed to a wooden pole. Feedline shown is 52 -ohm coax, with o balun of the feedpoint. Twin-Lead or other 300-ohm bolanced line may also be used, but it should be brought away horizon. tolly from the support ing pole ond elements for of leost o quorter wovelength. Coax moy be toped to the support.

the shorter it must be for optimum forward gain, and the greater will be its effeet on the driven element impedance.

Directors may also be spaced over a similar range. Closer spacing than 0.2 wavelength for arrays of two or three elements will require a longer director than shown in Table 18-I. Thus it can be soen that dose-spated arrays tend to work over a namrower frequency range than widespaced ones, when they are tuned for best performance. They also result in lower drivenelement impedance, making them more difficult to feed property. Spacings loss than 0.15 wavelength are not commonly used in v.h.f. arrays for these reasons.

Practical Designs for V.H.F. Arrays

The antemat systems pietured and described herewith are examples of ways in which the information in Table 18-I can be used in arrays of proven performance. Dimensions can be taken from the table, exeept where otherwise noted. If
the buikder wishes to experiment with element adjustment, a simple mathol is shown in Pig. 18-2. With elements l $_{2}$ iuch or lauger diameter a piece of the element material cain be used. It is sawed lengthwise and then compressed to make

Practical Designs for V.H.F. Arrays

Fig. 18-4-Dimensians and supparting methad for the 144-Mc. vertical array.
a tight fit inside the and of the element.
A readily available material often used for olemonts in otratys for $1 / 4$ Ne, and higher is aluminum chotheslinc wire. 'This is a stiff harddrawn wire about $1 / x$ inch in diameter. It should be used in proferonce to a similatr-apperaring wire commonly sold for 'TV grounding purposis. 'The latter is fou soft to make satisfactory dements if the length is more than about two fert.

A Collinear Array for 144 Mc.

Where a vertically-polarized array having some gain over at dipole is needed, yet directivity is undesirable, collinear halfwave elements may be mounted vertically and fied in phase, as shown in Figs. 18-3 and 18-4, surh an arraty may have 3 elements, ats shown, or 5 . The impedane at the center is approximately $3(\%)$ ohms, permitting it to be fed direedly with TV-type line, or through a coaxial balun, as in the model shown. Wither 52- or 72 -ohm line maty be employed without serious mismatch.
The array is made from two pieres of aluminum clothesline wire about 96 inches long overall. These are bent to provide a 38 -inch top section, a folderd-back f(0-inch phasing loop, and a 1 !)-ineh center section. These elements are mounted on ceramic pillars, which are fastened to a round wooden pole. Small clamps of sheet aluminum are wrapped around the elements and serewed to the stand-offs. A cheaper but somewhat less desirable method of mounting is to use TV screweye insulators to hold the elements in place.

Feeding the arras at the center with a coaxial balun makes a neat arraugement. The batun loop may be taped to the vertical support, and the
coaxial line likewise taped at intervals down the mast. The same type of construction can be applied to a $220-$ Mr . vertical collinear array, using the lengths for that band given in Table 18-I.

PARASITIC ARRAYS

Single-baty arrays of 2 to 5 elements are widely used in 50-Mc. work. These may be built in many different ways, using the dimensions given in the tat)le. Probably the strongest and lightest structure results from use of aluminum or dural tubing (usually $1 \frac{1}{4}$ to $11 / 2$ inches in diameler) for the boom, though wood is also usathle. If the elements are mounted at their midpoints there is no need to use insulating supports. Usually the elements are rum through the boom anc elamped in plate in a manner similar to that shown in Fig. 18-12. Where a metal boom is used the joints betwern it and the elements must be tight, as any movement at this point will resule in noisy reception.

2-Element 50-Mc. Array

The 2-element antennat of Fig. 18-5 was designed for portalble use, but it is also suitable for fixed-station work with minor modification. The 2-moter array above it is deseribed later. The elements are made in three sections, for portability, using inserts similar to that shown in Fig. 18-2. The driven element is gamma matched for coax ford, and the parasitic element is at 0.15 -wavelength spaced director. Details of

Fig. 18-5-Two-element 50-Mc. and faur-element 144Mc. arrays designed for partable use. Support is sectional TV masting clamped ta car door handle. Ele.nents of 50 . Mc. arroy are mode in three sections, for stowing in back of car. Antenna far 144 Mc . is cut-dawn TV array. Both use gamma match, as shawn in Fig. 18-6.

18 - V.H.F. ANTENNAS

Fig. 18-6-Details of the gamma match for the $50-\mathrm{Mc}$. portable array. In a permanent installation the variable capacitor should be mounted in an inverted plastic cup or other device to protect it from the weather. The gamma arm is about 12 inches long for 50 Mc ., 5 inches for 144 Mc.
the gamma section, the boom and its supporting rlatm ate shown in lig. 18-6. The arm is about 12 inches long, and the capacitor is a $\overline{5}(0-\mu \mu$. variable. Cle:n, tight conneetions between the arm and element are important. Where the array is to be mounted permanently outdoors the eapacitor may be protected from the weather by mounting it in an inverted plastic cup). More details on this array are given in August, 1955,057 .

3-Element Lightweight Array.

The 3-clement 50-Me array of lig. 18-7 woighs only 5 pounds. It uses the closest spacing that is practieal for v.h.f. applications, in order to make an antenna that could be used individually or stacked in pairs without reguiring a cumbersome support. The elements are half-inch aluminum tubing of $1 / 16$-inch watl thicknoss, attached to the $11 / 4$-inch daral boom with ahminum castings made for the purpose. (Dick's, RRRI. Tiffin. (hio, Type HASL.) By limiting the element sparing to 0.15 wavalength the boom is only 6 feet long. Two boons for a stacked array (IVig. 18-11) (an thus be cut from a single 12 -foot longth of tubing.

The folded-dipole driven dement hats No. 12 wire for the fed portions. These are mounted on $3 / 4$-inch cone standotf insulators and joined to the outer ends of the main portion ly means of metal pillars and 6 -32 screws and muts. When the wirrs are pulled up tightly and wrapped around the serew, solder should be sweated over the nuts and serew ends to saal the whole against wather corrosion. The same treatment should be used at eath standoff. Mount it soldering lag on the caramic cone and wrap the end of the lug around the wire and solder the whole assombly together. These joints and other portions of the array maty be spribed with clear lacquer as an additional protertion.

The inner ends of the folled dipole are $11 / 2$ inches apart. Slip the dipote into its aluminum casting, and then
drill through both element and casting with a No. 30 drill, and tap with (-32 thread. Suitable inserts for mounting the stand-offs can be made by cutting the heads off $6-32$ serews. Taper the cut end of the screw slightly with a file and it will serew into the standoff readily.

Cut the dipole length aecording to Table 18-I, for the middle of the frequeney range you expeet to use most. The reflector and director will be approximately + pereent longer and shorter, respectively. The eloser spacing of the parasitic elements (0.15 wavelength) makes this deviation from the dimensions of the table desirable.

The single 3 -element array has a feed impedance of about 200 ohms at its resomant frequeney. Thus it may be fed with 52 -ohm coax and a halun. A gamma-matched dipole may also be used, ats in the 2 -dement array. If the gamma match and 72 -ohm coax are used, a balun will convert to 300 -ohm balaneed feed, if Twin-Lead or 300 -ohm open-wire TV line feed is desired. If the dimensions are selected for optinum performance at 50.5 Me the array will show good performance and fairly low standing-wave ratio over the range from 50 to 51.5 Mc .

A closeup of a mounting method for this or :my other array using a round boom is shown in Fig. 18-8. Four TV-type U bolts clamp the horizontal and vertical members together. The metal phate is ahout 6 inches square. If $1 / 4-\mathrm{inch}$ sheet aluminum is available it may be used alone, though the photograph shows a sheet of $1 / 16-$ inch stock baeked up by a piece of wood of the same size for stiffening.

High-Performance 4-Element Array

The 4 -element array of Fig. 18 -9 was designed for maximum forward gain, and for direet feed with $30(0-0 h m$ balanced transmission line. The parasitic elements may be any diameter from $1 / 2$ to 1 inch, but the driven element should be mate as shown in the sketeh. The same general arrangement maty be used for a 3 -element array, except that the solid portion of the dipole should

Fig. 18-7-Lightweight 3-element 50 -Mc. array. Feedline is 52 -ohm coax, with a balun for connection to the folded-dipole driven element. salun may be coiled as shown, or taped to supporting pipe.

Parasitic Arrays

be $3 / 4$-ineh tubing instcad of 1 -inch. With the element lengths given the array will give nearly uniform response from 50 to 51.5 Me., and usable gain to ahove 52 Me. It may be peaked for any portion of the band by using the information in Table 18-I.

If a shorter boom is desired, the reflector spaeing can be reduced to 0.15 wavelength and both

Fig. 18-8-Closeup photograph of the boom mounting for the $50-\mathrm{Mc}$. array. A sheet of aluminum 6 inches square is backed up by a piece of wood of the same size. TV-type U clamps hold the boom and vertical support together at right angles. At the left of the mounting assembly is one of the aluminum castings for holding the beam elements.
directors spaced 0.2 or even 0.15 wavelength, with only a slight reduction in forward gain and bandwidth.

5-Element 50-Mc. Array

As aluminum or dural tubing is usually sold in 12-foot lengths this dimension imposes a practical limitation on the construction of a $50-\mathrm{Mc}$. beam. A 5-element array that makes optimum use of a 12 -foot boom maty be built aceording to Table 18-1. If the aluminum casting method of mounting elements shown for the :3-element array is employed the weight of a 5 -element beam can be held to under 10 pounds. The gamma mateh and coaxial line are recommended for feeding such an array, though a balun and 72 -ohm coax ean be used for the rotating portion of the line, converting to balanced feed at the anchor point.
lilements should be spaced 0.15 wavelength, or about 36 inches. With 5 or more elements, good bandwidth can be secured by tapering the element lengths properly: A dipole 110 inches long, with a 116 -inch reflector, and directors of 105,103 and 101 inches respectively will work well over the first two megacyeles of the band, provided that the s.w.r. is adjusted for optimum at 51 Me .

Long Yagis for 50 Mc .

With boom lengths greater than about 12 feet and with more elements than 4 , somewhat

Fig. 18-9-Details of a 4-element 50 -Mc. array designed for 300 -ohm balanced feed. Element lengths and spacings were derived experimentally for optimum performance over the first 1.5 megacycles of the band.
better performance can be obtained by using gradually increasing spacing between the direetors. The 6 -element array in Fig. $18-10$ is an example of this approach. It also enploys a variation of the gamma mateh that has meehanieal advantages. The long boom and wide-spaced elements give a sharpness of horizontal pattern that is not obtainable with the same rumber of elements in a staeked array.

The long Yagi is not a broadband device. This one works well over the first megacyele of the band with the following dimensions. Subtraet 2 inches from each element for each megaeyele

Fig. 18-10-A 6-element long Yagi for 50 Mc and a 16 element collinear array for 144 Mc . Both are all-metal construction. Each has its own vertical member, which is clamped to the rotating vertical pipe that runs down through the fower bearing.

higher. Reflector - 116 inches. Wriven clement - 110.5 . First director - 105.5. second dirertor - 104. Third director - 102.75. Fourth director - 101.5. spacings are, from back forward: 36, $36,42,59$ and 70 inches. If a longer array is to he built each additional director should be 70 inches from the last.

Construction

The long Yagi is built similar to the 3-element array of Fig. 18-9 and 18-8, using those same rastings for mounting the elements. The gusset plate for fastening the boom to the vertical support is made larger, and four U loolts are used on each member instead of two. The array is mounted at its center of gravity, rather than at its physical center. The boom is braced to prevent drooping, at points about 5 feet out from the mounting point. Braces are aluminum tubing, flattened at the ends, and clamped to the boom and the vertical member. Suspension braeing, as shown in Fig. 18-10, provides strength with lightweight supports.

The dimensions given reculire a boom slightly more than 20 feet long. This was made up by splicing, but if a 20 -foot length is available in one piece the spacings of the two forward directors can be made slightly less, in order to avoid splicing, Element spaeing is not particularly critical, but lengths are fairly so.

The Gamma Match

The gamma match is ideal for matching arrivs fed with coax. The arrangement shown in Fig. 18-11 combines the arljustable arm with the series capacitor, and provides a rugged assembly that can be weather-proofed readily. The main arm is cut from the same material as the clements, 15 inches long. It is supported paralled to the driven element by means of two 1 -ineh ceramic standoffs and sheet-aluminum clips. Its imner end is comected to the inner conductor of a coaxial fitting, mounted on a small bracket screwed to the boom.

The series capacitor, for tuning out the reactance of the matching arm and making connection to the driven element, is $1 / 4$-inch rod or tubing 14 inches long. It is maintained coanial with the main arm by two polystyrene bushings. One is force-fitted to the end of the rod and the
other is fitted tightly inside the main arm to are as a bearing. These ran be made from 3 -inch rod stork, or National Type PIZC-1 forms can be adipted readily to the purpose. A elip of sheret aluminum comeneets the rod and the driven element. Be sure that a clean tight contatet is mave at this point.

Adjustment

Matching requires an s.w.r. bridge. It can be done properly in no other way. Mount the beam at least a half wavelength alove ground and clear of trees and wires by at least the same distance. set the transmitter at a frequency in the middle of the range you want to work (50.3 is a good spot for low-end operation) and adjust the position of the clip and the length of the rod outside the main arm for minimum s.w.r. Move first one variable and then the other until zero reflected pewer is indicated. Tighten the clip solidly, tape over the junction between the arm and the rod with waterproof tape, and the arraty is ready for use.

144-MC. PARASITIC ARRAYS

The main features of the arrays described above can be adapted to $144-$ Ne antennas, but the smath physical size of arrays for this frequency makes it possible to use larger numbers of elements with case. Few 2-meter antemmas have less than 4 or 5 clements, and most stations use more, either in a single bay or in stacked systems.
larasitio arrays for 144 Mc. can be made readily from 'TV antemas for Chamels 4,5 or 6 . The relatively chose sparing normally used in TV arrays makes it possible to approximate the recommended 0.2 wavelength at 144 Mc., though the element spacing is not a eritical factor. A 4-dement array for 144 Ne. made from a Chanmel 6 TV Yiagi is shown in Fig. 18-5. It is fed with a gamma match and 52 -ohm coax, and was designed primarily for portable work. As most TV antemats are designed for 300 -ohm feed the same feed system can be employed for the $2-$ meter array that is made from them.

If one wishes to build his own Yagi antemmas from available tubing sizes, the boom of a 2 meter intenna should be $3 / 4$ to 1 inch aluminum

Fig. 18-11-Details of the gamma match used on the 6 element $50-\mathrm{Mc}$. array. Series capacitor is formed by sliding a rod or tube inside the main arm.

144-Mc. Parasitic Arrays

or dural. Elements ean be $1 / 4$ to $1 / 2$-inch stock, fastenced to the boom as shown in Fig. 18-12. Recommended spacing fior up to (\mathbf{j} elements is 0.2 wavelength, thongh this is not too critical. Gamma match feed is reconmended for coax, or a folded dipole and balum may be used. If balanced line is to be used the folded dipole is

Fig. 18-12-Model showing methed of assembling allmetal arrays for 144 Mc . and higher frequencies. Dimensions of clamps are given in Fig. 18-16.
recommended, the 4 to 1 ratio of conductor sizes being about right for most designs.
Vary high gain can be obtained with long Yagitype arrase for 144 Me. and higher frequencies, though the bandwidth of such antennas is considerably natrower than for tlose having up to 1 or 5 elements. The first two dimetors in long Yagis are usually spaced about 0.1 Wavelength. The third is spaced about 0.2 , increasing to 0.4 wavelength or so for the forward directors. lighest gain is obtained when all directors are made the same length, but better front-to-back ratio and lower side lobe cortent results if the director lengths are tapered $\frac{1}{8}$ to $1 / 4$ inch per dircctor. Tipering the element lengths also widens the effective bandwidth. There is more on long Yagis in QST for January and September, 1956.

STACKED YAGI ARRAYS

The gain (in power) obtainable from a single Yagi array can be more than doubled by stacking two or more of them vertically and feeding them in phase. This refers to horizental systems, of course. Vertically-polarized bays are usually stacked side by side. The principles to follow apply in either ease.

The spacing between bays should be at least one half wavelength, and more is desirable. For dipoles or Yagis of up to three elements optimum spacing between bays is about $5 / 8$ wavelength, but with longer Yagis the spacing can be increased to one wavelength or more. Bays of 5 clements or more, spaced one wavelength, are commonly used in antennas for 144 Mc. and higher frequencies. Optimum spacing for long Yagis is about two wavelengths.

Where half-wave stacking is to be employed, the phasing line between bays can be treated as a double " Q " section. If two bays, cach designed for 300 -ohm feed, are to be stacked a half wavelength apart and fed at the midpoint between them, the phasing line should have an impedance of about 380 ohms. No. 12 wire spaced one inch will do for this purpose. The midpoint then can be fed either with 300 -ohm line, or with 72 -ohm coas and a balun.

When a spacing of $5 / 8$ wavelength between bays is employed, the phasing lines can be coax. (The velocity factor of coax makes a full wavelength of line actually about $5 / 8$ wavelength physically.) The impredance at the midpoint between two bays is slightly lass than half the impedance of either bay alonc, due to the coupling between bays. This effect decreases with increased spacing.

When two bays are spaced a full wavelength the coupling is relatively slight. The phasing line can be any open-wire line, and the imperlanere at the midpoint will be approximately half that of the individual bays. Predieting what it will be with a given set of dimensions is difficult, as many factors come into play. It will usually be of a value that can be fed through the combination of a " Q " section and a transmission line of 300 to 450 ohms impedance. An adjustable " Q " section, or an adjustable stub like the one shown in Fig. 18-1, may be used when the antenna impedance is not known.

Fig. 18-13-Stacked array for 50 Mc . using two of the 3 -element bays of Fig. 18-7. Phasing system and flexible section for rotation are of coaxial line. A " Q " section matches this to 450 -ohm open-wire line for run to the station.

The stacked 3-over-3 for 50 Mc., Fig. 18-13, uses a coaxial phasing line and an additional section of coax to provide for the flexible portion of the feedline. Each bay is fed with a balun and halfwave section of $12 \mathrm{G}-8 / \mathrm{U}$ cable. These are joined at the center between bays with a Tee fitting. As each bay has an impedance of 200 ohms, two 50 -ohm leads are paralleted at the center, resulting in an impedance of about 20 ohms, when the coupling effect between bays is included. A flexible section of 50 -ohm coax one wavelength long, with a batun at the end, steps this up to about 80 ohms. A " Q " section of $1 / 4-$ inch tubing $3 / 4$ inch center to center steps this up to the point where it can be fed with 450 -ohm open-wire TV line.

The 'Twin-Five'' for 144 Mc.

A popular stacked array for $14+$ Mc. work is the Twin-Five, originally developed by W21'AU ${ }^{1}$, In this design two 5 -element arrays of standard design are stacked a full wavelength apart. If the folded-dipole driven elements are constructed so that the individual bays have a feed impedance of about 400 ohms the midpoint of the open-wire phasing line can be fed with 52 -ohm coax and a balun. Where open-wire line is desired, the impedances ean be matched through a " Q " section of about 300 ohms impedance. If the constructor is in doubt as to the actual fecd impedance to be matched, the stnh, arrangement of Fig. 18-1 will take care of a wide range of impedances and lines to be matehed. Dimensions can be taken from Table 18-I.

An effective 20 -element array can be made by using two of these arrays side by side, with furlwave sparing horizontally also, The impedance at the midpoint of the horizontal phasing line will then be about 100 ohms , which is still well within the range of " Q " sections of practical dimensions.

LARGE COLLINEAR ARRAYS FOR 144 MC. AND HIGHER

High gain and very broad frequency response are desirable characteristics found in curtains of half-wave elements fed in phase and backed up by reflectors. The reflector can be made up of parasitic elements, or it can be a screen extending approximately a quarter wavelength beyond the ends of the driven elements. There is not a large difference between the two types of reflectors, except that higher front-to-baek ratio and somewhat broader frequency response are achieved with the plane reflector.

12- and 16-Element Arrays

Two collinear systems that may be used on 144,220 or 420 Mc , are shown in Figs. 18-14 and 18-15. Either may be fed directly with 300 -ohm transmission line, or through coavial line and a balun. In the 12 -element array, lig. 18-14, the reflectors are spaced 0.15 wavelength in back of
${ }^{1}$ Brown - "The Wide-Spread Twin-Five" CQ, March, 1950.
the driven elements. while the 16 -element array, Figs. 18-15 and 18-10, uses 0.2 wavelength spacing. Dimensions may be taken from Table 18-I, and figures for the middle of the band will give good performance across either band.

Fig. 18-14-Element arrangement and feed system of the 12 -element array. Reflectors are spaced 0.15 wavelength behind the driven elements.

The supporting frame for either array may be made of wood or metal. Details of a metal support for the 12 -element array are shown in Figs. 18-16 and 18-17. Note that all elements are mounted at their midpoints, and that no insulators are used. The elements are mounted in front of the supporting frame, to keep metal out of the field of the array. This method is preferable to that wherein mechanical balance is maintained

Fig. 18-15-Schematic drawing of a 16-element array. A variable " Q " section may be inserted at the feed point if accurate matching is desired. Reflector spacing is 0.2 wavelength.

Fig. 18-16-Detail drawings of the clamps used to assemble the all-metal 2-meter array. A, B and C are before bending into " U " shape. The right-angle bends should be made first, olong the dotted lines as shown, then the plates may be bent around a piece of pipe of the proper diameter. Sheet stock should be ${ }^{1 / 6}$-inch or heavier aluminum.
through mounting the driven elements in front and the reflectors in back of the supporting structure.

Two 12 -remont armas may be mounted one above the other and fied in phase, to form a $24-$ clement arras. This is clome in the t20-Me. army of Fig. 18-18. The two midpoints are connected

Fig. 18-17-Supporting framework for a 12-element 144-Mc. array of all-metal design. Dimensions are as follows: element supports (1) $3 / 4$ by 16 inches; horizontal members (2) $3 / 4$ by 46 inches; vertical members (3) $3 / 4$ by 86 inches; vertical support (4) $11 / 2$-inch diameter, length as required; reflector-to-driven-element spacing 12 inches. Parts not shown in sketch: driven elements $1 / 4$ by 38 inches; reflectors $1 / 4$ by 40 inches; phasing lines No. 18 spoced 1 inch, 80 inches long, fanned out to $31 / 2$ inches of driven elements (transpose each half-wave section).
through a phasing line one wavelength long, and the eenter of this phasing line fed through a " Q " section. The impedance at the midpoint is about 150 ohms, requiring a 255 -ohm " Q " section for feeding with 450 -ohm open-wire line.

Combination of collinear arrays may be earried further, l'airs of 16 -element systems fed in phase are common, and even 64 -dement arrats (416 chement beams fed in phase) are used in some leading stations on 144. . If . Configurations of :32 to 64 cemments are not difficult to build and support at 220 or 420 Me. Fixamples of 16 - and
 mounter bark to batck in lig. 18-18.

ARRAYS FOR 220 AND 420 MC.

The use of high-gain antennal systems is almost a neressity if work is to be done over any great distance on 220 and 420 Mr. Experimentation with antenna arrays for these frequencies is fascinating inderd, as their size is so small as to promit treing various element arruggements and feed systems with ease. Arrays for 420 . Me., particularly, are convenient for investigation and

Fig. 18-18-A 24-element orray for $\mathbf{4 2 0} \mathrm{Mc}$. and a 16 element for 220 mounted back-to-back on o single support.
demonstration of antenna principles as even high-gain systems may be of table-top proportions.

Anse of the arrases described previously may be used on these bands, but those having large numbers of driven elements in phase are more readily adjusted for maximum offectiveness.

A 16 -element array for 220 Me. and a $24-$

18 - V.H.F. ANTENNAS

element array for 420 Mc . are shown mounted back-to-back in Fig. 18-18. The 220-11c. portion follows the 16 -element design already described. It is fed at the center of the system with 300 -ohm tubular Twin-Lead, matehed to the renter impedance of the array through a " Q " section of 7, $\mathrm{g}_{\text {-inch }}$ tubing, spared about $1 \frac{1}{2}$ inches center to center. This spacing was adjusted for minimum standing-wave ratio on the line.

Elements in the array shown are of $7 / \mathrm{c}_{\mathrm{i}}$-inch aluminum fuel-line tubing, which is very light in weight and easily worked. The supporting structure is dural tubing, using the clamp assembly methods of Fig. 18-16.

The $420-\mathrm{Me}$. array uses two 12 -element assemblies similar to Fig. 18-14, mounted one above the other, about one half wavelength separating the bettom of one from the top of the other. The two sets of phasing lines atre joined by means of one-wavelength sertions of Twin-Lead at the midelle of the array. This junction, which hats an impedance of around 150 ohms, is fed with 300)ohm tubular Twin-Lead through an adjustable "Q" section.

Whements in the $420-\mathrm{Me}$. array are cut from thin-walled $1 / 4$-inch tubing. Their sumports are the 7 f 6 -inch stock used for the $220-$ - 5 e. elements. Slots were cut in the ends of these supports to take the elements, and a $4-40$ serew was run through both pieces and drawn up tightly with a mut. The horizontal supports were fastened in holes drilled in the vertical members, and were atso held in phace with a 6 (-32 serew and nut. The small size and light weight of the $420-$ - He . armat did not roquire the use of clamps to make a strong assembly.

The two one-wavelength sections of $3(0)-$ ohm line are $213 / 4$ inches long, taking the propugation factor into atcount. The " Q " section may be any convenient size tubing, $1 / 4$ to $1 / 2$ inch diameter. It should tre made adjustable, as matching is important at this frequency. Dimensions for both arrays can be taken from Table 18-I.

MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

At v.h.f. the lowest possible radiation angle is cssential, and the conxial antemna shown in Fig. 18-19 was developed to eliminate ferder radiation. The eenter conductor of a 70 -ohm concentrie transmission line is extended ontquarter wave beyond the end of the line, to act as the upper half of a half-wave antemat. The lower hall is provided by the quarter-wave sleeve, the upere end of which is connected to the outer conductor of the concentrie line. The sleneve ats as a shided about the transmission line and very little current is induced on the outside of the line by the antemnat field. The line is non-resonant, since its charateristic impodance is the same ats the eenter impedance of the half-wave antemat. The sleceve maty be made of copper or brass tubing of suitable diameter to clear the transmission line. The coaxial antenna is somewhat diflieult to
construct, but is superior to simpler systems in its performance at low radiation angles.

Fig. 18-19-Coaxial antenna. The insulated inner conductor of the 70 -ohm concentric line is connected to the quarter-wave metal rod which forms the upper half of the antenno.

Broadband Antennas

Certain types of antennas used in television are of interest becaluse ther work arross a wide band of frequencios with matively uniform response. At very-high frepuencios an antenma made of smatl wire is purely resistive only over a very small frequencer range. Its (), and therefore its selectivity, is sufficient to limit is optimum performance to a narow frequency range, and readjustment of the length or tuning is reguired for each narrow slice of the spectrom. With tuned transmission lines, the effective length of the antemat can be shifted by retuning the whole system. However, in the case of antennas fed by matched-impedanee lines, any appreciable frequeney change repuires an athat merehanical adjustment of the system. Otherwise. the resulting mismateh with the line will be sulficient to cause significant rechuction in power input to the antemna.

A properly designed and constructed wideband antenna, on the other hand, will exhibit. very nearly constant input impedance over several megareyeles.

The simplest mothod of obtaining a broadbathd chatacteristic is the use of what is termed a "evlindrical" antenna. This is no more than a conventional doublet in which large-diameter tubing is used for the elements. The use of a rehatively large diameter-to-length ratio lowers the Q of the antenna, thus broadening the resonance thatacteristic.

As the diametor-fo-longth ratio is increased, end effects also inerease, with the result that the antenna must be made shorter than thin-

Miscellaneous Antenna Systems

wire antenna resonating at the same frequency. The reduction factor may be as mueh as 20 per cent with the tubing sizes eommonly used for amateur antennas at v.h.f.

Plane-Reflector Arrays

At 220 Me . and higher, where their dimensions become practicable, phane-reflector arrays are widely used. Excerpt as it atferets the impedance of the system, as shown in Fig. 18-20, the spacing between the driven dements and the reflecting plane is not partienlarly eritical. Maximum gain oreurs around 0.1 to 0.15 wiavelongth, which is also the region of lowest impedance. Highest impedance appears at about 0.3 wavelength. A plane reflector spaced 0.22 watvelength in hack of the driven elements has no effect on their feed impedanes. As the gain of a plane-reflector array is nearly constant at spatings from 0.1 to 0.25 wavelongth, it may be sorn that the spatcing may be varied to ahheve an impedance mateh.

An advantage of the plane reflector is that it maty be used with two driven element sustems, one on each side of the phane, providing for twoband operation, or the incorporation of horizontal and vertical polarization in a single structure. The gain of a plane-reflector array is slightly higher than that of a similar number of driven clements bated up by parasitie reflectors. It also has a broader frequeney response and higher front-to-buck ratio. To arhieve these ends, the reflecting platie must be larger than the area of the driven elemonts, extending at least a quarter wivelength on all sides. Chicken wire on a wood or metal frame makes a good plane reflector. Closely-spated wires or rods maty be substituted, with the spaeing between them running up to 0.1 wavelength without appreciahle reduction in effectiveness.

Cone Antennas

From the eylindrical antenna various specialized forms of broadly-resonant radiators have been evolved, including the ellipsoid, spheroid, cone, diamond and double diamond. Of these, the conical antennat is perhaps the most interesting. With large angles of revolution, the variation in the ehatateristio impedance with changes in frequency ean be redured to a very low value, making such an antenna suitable for extremely wide-band operation. The cone may be made up either of sheet metal or of multiple wire spines. A variation of this form of eonical antenna is widely used in TV reeeption.

Corner Reflectors

In the eorner reflector two plane surfaces are set at an angle, usually betwen 45 and 90 degrees, with the antemna on a line bisereting this angle. Maximum gain is obtaned with the antenna 0.5 witvelength from the vertex, but compromise designs can be built with closer spacings. There is no focid point, as would be the case for a pambolic reflector. Comer angles greater than 90 degrees ean be used at some satcrifice in gatin. At
loss than 90 degrees the gain inereases, but the size of the reflecting sheots must be inereased to realize this gain.

At a sparing of 0.5 wavelength from the vertex, the impedance of the driven element is approximately t wire that of the same dipole in free space. The impedance decreases with smaller spacings and corner angles, as shown in Fig. 18-20. The gan of a eorner-reflector array with a 90 -degre angle, 0.5 wavelength spacing and sides 1 wavelength long is approximately 10 db . Principal advantages of the eorner reflector are broad frequeney response and high front-to-back ratio.

Fig. 18-20 _- Feed impedance of the driven element in - corner-reflector orray for corner ongles of 180 (flof sheet), 90,60 ond 45 degrees. " D " is the dipole-to-vertex spocing.

Parabolic Reflectors

A plane sheet may be formed into the shape of a parabolie eurve and used with a driven radiator situated at its focus, to provide a highlydirective antenna system. If the parabolie reflector is sufficiently large so that the distance to the focal point is a number of wavelengths, optieal conditions are approached and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimensions as the operating wavelength, or less, the driven radiator is appreciably coupled to the reflerting sheet and minor lobes orcur in the pattern. With th aperture of the order of 10 or 20 wavelengths, sizos that may be practical for mierowave work, a beam-width of approximately 5 degrees may be aehieved.

A reffecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antenna must be located at the foral point. The most desirable focal length of the parabola is that which places the radiator along the plane of the mouth; this length is equal to one-half the mouth radius. At other focal distances interference fields may deform the pattern or cancel a sizable portion of the radiation.

Mobile and PortableEmergency Equipment

The amateur who goes in for mobile oper:ttion will find plenty of room for exercising his individuality and developing original ideas in equipment. Each installation has its special problems to be solved.

Most mobile receiving systems are designed around the use of a h.f. converter working into a standard car broadeast receiver tuned to 1500 ke . which serves as the i.f. and audio amplifiers. The car recoiver is modified to take a noise limiter and provide power for the converter.

While a few mobile transmitters may run an input to the final amplifier as high as 100 watts or more, an input of about 30 watts normatly is considered the practical limit unless the ear is equipped with a special battery-charging system. 'The majority of mobile operators use phone.

In contemplating a mobile installation, the ear should be studied rarefully to determine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make best use of that spare. The location of the converter should have first consideration. It should be phaced where the controls can be operated conveniently without distracting attention from the wheel. The following list suggests spots that may be found suitable, depending upon the individual car.

On top of the instrument panel
Attached to the sterring post
Under the instrument panel
In a unit made to fit between the lower lip of the instrument panel and the floor at the center of the ear

The transmitter power control can be placed close to the recriver position, or included in the converter unit. This control normally operates relays, rather than to switch the power circuit directly. This permits a
minimum length of heavy-current battery circuit. Frequeney within any of the phone bands somotimes is changed remotely be means of a stepping-switeh system that switches crystals. In most casers, however, it is necessary to stop the car to make the several changes required in changing bands.

Dopending upon the size of the transmitter unit, one of the following places may be found convenient for mounting the transmitter:

In the glove compartment
Under the instrument panel
In a unit in combination with or without the eonverter, built to fit botween the lowar edge of the instrument panel and the floor at the center
On the ledge ahove the rear seat
In the trunk
Most mobile antemnas consist of a vortical whip, with some system of adjustable loading for the lower frequancios. Power supplies are of the vibrator, motor-genorator, or transistor type operating from the catr storage battery:

Units intended for use in mobile installations should be assembled with greater that ordinary care, siner they will be subjeet to considerable vibration. Soldered joints should be well made and wire wrap-arounds should be used to avoid dependence upon the solder for mechanical strength. Self-tapping sorews should be used wherever feasible, otherwise lock-washers should be provided. Any shafts that are normally operated at a permanent or semi-pormanont setting should be provided with shaft locks so ther cannot jar out of adjustment. Where wires pass through metal, the holes should be fitted with rubber grommets to prevent chafing. Anv rabling or wiring between units should be securely climped in place where it cannot work boose to interfere with the operation of the car.

Noise Elimination

Electrical-noise interference to reception in a ear may arise from several different sourees. As examples, trouble may be experienced with ignition noise, gencrator and voltage-regulator hash, or whed and tire static.
A noise limiter added to the car broadeast recoiver will go far in reducing some types, especially ignition noise from passing cars as wedl ass your own. But for the satisfactory rereption of weaker signals, some investigation and treat-
ment of the ear's electrical system will be necessary.

Ignition Interference

Fig. 19-1 indicates the measures that may be taken to suppress ignition interference. The capacitor at the primary of the ignition coil should be of the coaxial type; ordinary types are not offertive. It should be plared as close to the coil terminal as possible. In stubborn cases, two
of these capacitors with an r.f. choke between them maty provide alditional suppression. The size of the choke must be determined experimentally: The winding should be mate with wire heavy enough to carry the coil primary current. A 10,000 -ohm suppressor resistor should be inserted at the eenter tower of the distributor, a 5000 -ohm suppressor at cach spark-plug tower on the distributor, and a $10,000 \mathrm{ohm}$ suppressor at each spark plug. The latter may be built-in or external. A good suppressor element should be molded of material having low rapacitance. Several concerns manufacture satisfactory suppressors. In extreme cases, it may be necessury to use shielded ignition wire. Suppressor ignition wire kits having the resistance distributed throughout the length of the wire are available from some automobile supply dealers. Distributed resistance of this type is somewhat superior to lumped resistance and may be used if the lead lengths are right to fit your car. They should not be cut, but used as they are sold.

Fig. 19-1-Ignition system with recommended suppression methods.

Generator Noise

Generator hash is caused by sparking at the commutator. The piteh of the noise varies with the speed of the motor. This type of noise may be eliminated by using a 0.1- to $0.25-\mu \mathrm{f}$. coaxial capacitor in the generator armature circuit. This capacitor should be mounted as near the armature terminal as possible and directly on the frame of the generator.

To reduce the noise at 28 . Me., it may be neeessary to insert a parallel trap, tuned to the middle of the band, in series with the generator output lead. The coil should have atout 8 turns of No. 10 wire, space-wound on a 1 -ineh diameter and should be shunted with a $30-\mu \mu$. mica trimmer. It can be protuned by putting it in the antenna lead to the home-station receiver tuned to the middle of the band, and adjusting the trap to the point of minimum noise. The tuning may need to be peaked up after installing in the car, since it is fairly critical.

Voltage-Regulator Interference

In eliminating voltage-regulator noise, the use of two coaxial capacitors, and a resistor-micacapacitor combination, as shown in Fig. 19-2, are effective. A $0.1-$ to $0.25-\mu$ f. eonsial rapacitor should be plated between the battery terminal of the regulator and the battery, with its case well
grounded. Another eapacitor of the same size and type should be placed bet weon the generator terminal of the regulator and the generator. A $0.002-\mu$ i. mic:a raparitor with a tohm carbon resistor in series should be connected betwern the fied terminal of the regulator and ground. Never use a capacitor across the field contate or between fied and ground without the resistor in series, since this greatly reduces the life of the

Fig. 19-2 - The right way to install bypasses to reduce interference from the regulator. A capacitor should never be connected across the generator field lead without the small series resistor indicated.
regulator. In some cases, it may be necessary to pull double-braid shielding over the leads bet ween the generator and ragulator. It will be advisable to run new wires, grounding the shielding well at both ends. If regulator noise persists, it may be necessary to insulate the regulator from the car body. The wire shielling is then commeded to the regulator case at one end and the genmator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about $1 \overline{5} \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on smooth dry streots. Front-wheol static colleetors are available on the market to clime inate this variety of interimence. "They fit inside the dust cap and bear on the end of the axle, effectively grounding the wheel at all times. Those designated particularly for your car are preferable, since the universal type does not always fit well. They are designed to operate without lubrication and the end of the axle and dust cap should be cleaned of grease before the installation is mate. These eollectors require replacement about every 10,000 miles.

IRar-wheel eollectors have a brush that bears against the inside of the brake drum. It may be necessary to order these from the factory through your dealer.

Tire Static

This sometimes sounds like a leaky power line and can be very troublesome even on the broadeast band. It can be remedied byinjeeting an antistatic powder into the inner tubes through the valve stem. The powder is marketed by General Cemont and possibly others. Gencrab Cement dealers can atso supply a convenient injector for inserting the powder.

19-MOBILE EQUIPMENT

Tracing Noise

To determine if the receiving antenna is picking up all of the noise, the shielded lead-in should be disconnerted at the point where it connects to the antenna. The motor should be started with the receiver gain control wide open. If no noise is heard, all noise is being pieked up via the antenna. If the noise is still heard with the antenna disconnected, even though it may be reduced in strength, it indieates that some signal from the ignition system is being pieked up loy the antenna transmission

Fig. 19-3-Diagrams showing addition of noise limiter to car receiver. A-Usual circuit. B-Modification.
$\mathrm{C}_{1}, \mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. mica.
$C_{2}, C_{4}, C_{6}-0.01-\mu \mathrm{f}$. paper.
$\mathrm{C}_{5}-0.1-\mu \mathrm{f}$. paper.
$R_{1}-47,000$ ohms.
$\mathrm{R}_{2}, \mathrm{R}_{10}-1$ megohm.
$R_{3}-1 / 2$ megohm.
$\mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{\mathrm{B}}-0.47$ megohm.
$\mathrm{R}_{4}-10$ megohms.
$R_{5}-1 / 4$ megohm.
$\mathrm{R}_{6}-0.1$ megohm.
T_{1}-I.f. transformer.
V_{1}-Second detector.
line. The lead-in may not be sufficiently-well shielded, or the shield not properly grounded. Noise may also be picked up through the battery cireuit, although this does not normally happen if the receiver is provided with the usual r.f.-choke-and-bypass eapacitor filter.

In case of noise from this source, a direct wire from the "hot" battery terminal to the receiver is recommended.

Ignition noise varies in repetition rate with engine speed and usually can be recognized by that characteristic in the carly stages. Later, however, it may resolve itself into a popping noise that does not always correspond with engine speod. In such a case, it is a good idea to remove all leads from the generator so that the only souree left is the ignition system.

Regulator and generator noise maty be detected by raceing the engine and cutting the ignition switeh. This eliminates the ignition noise. Generator noise is charaterized by its musical whine contrasted with the ragged raspy irregular noise from the regulator.
With the motor rumning at idling speed, or slightly faster, checks should be mide to try to determine what is bringing the noise into the field of the anterna. It should be assumed that any control rod, motill tube, steering post, etce, passing from the motor compartment through an insulated bushing in the firewall will carry noise to a point where it can be radiated to the antenna. All of these should be bonded to the firewall with heavy wire or braid. Insulated wires can be stripped of r.f. by loypassing them to ground with 0. $5-\mu$. metal-ease capacitors, The following should not be overlooked: battery lead at the anmeter, gasoline gruge. ignition switch. headlight, backup and taillight leads and the wiring of any aceressories ruming from the motor compartment to the instrument panel or outside the ear.

The firewall should be bonded to the frame of the car and also to the motor block with heavy braid. If the exhatust pipe and muffier are insulated from the frime by rubber mountings, they slould likewise be grounded to the frame with flexible copper brad.

Noise Limiting

Fig. 19-3 shows the alterations that may be made in the existing car-receiver rireuit to provide for a noise limiter. The usual diodetriode second deteretor is replaced with a type having an extra independent diode. If the ear recoiver uses octal-hase tubes, a (6s8cit may he substituted. The 7×7 is a suitable replacement in rereivers using loktal-type tubes, while the GT8 maty be used with miniatures.

The switch that euts the limiter in and out of the cirenit may be loeated for convenience on or near the converter panol. Regardless of its placement, however, the leads to the switch should be shielded to prevent hum piek-up.

Several other moise limiter arcuits are deseribed in AIRIRL's publication, The . Mohile Manual For Radio Amateurs. The Mobile Manual also deseribes an tudiosqueleh system. The litter is a simple eircuit designed to suppress receiver batekground noise in the absence of a signal. It does not, however. function as a noise limiter when the recoiver is tuned to a signal.

At lewst one manufueturer (Gonset) produces a complete noise limiter unit. The unit is mounted external to the main chassis and takes operating voltages from the receiver.

A Converter

A Mobile Converter for 3.5 through 28 Mc.

Figures 19-4 through 19-7 show a crestal-controlled converter covering 3.5 through 28 Mc. without complex band switching or gang-tunced cireuits. Plug-in coil assemblies provide ratpid bond changing and allow construction for either siugle-band or multiband operation. The converter uses the car broadeast receiver as a tunable i.f. amplifier.

Plate power requirements for the converter are approximately 20 milliamperes at 200 to $2 \overline{20}$ volts. This means that the unit can be supplied from the ar-receiver power pack without overloading it.

The Circuit

The circuit diagram of the converter is shown in Fig. 19-5. A 613Z6 is used in the r.f. amplifier, and a 12 AT operates as a mixer-oscillator. The oseillator is erystal-controlled and works on the low-frequency side of the signal frequency. J_{1}, J_{2}, and J_{3} are the antenna-input, mixer-output and power jauks, respertively. st performs the switching in ehanging over from ham-hand to broadeast input. S $S_{1 A}$ and $S_{1 B}$ shift the antenna from the converter input circuit to the car receiver, and $\mathrm{s}_{1 \mathrm{C}}$ is the heater on-olf switch.
since the tuning of the converter is fixed, the rircuits of the r.f. amplifier and the mixer must he hoatbanded to pass all frequemers in any ham haud. A slug-tuned eoil, L_{3}, is used in the amplifier plate cereuit, and $R P^{\prime} C_{1}$ provides a broad-band pate load for the mixer tube $V_{2 a}$. The grid cirenit of the amplifier also uses at slogfuncil coil and inclades a trimmer capacitor, \mathcal{C}_{1}, that permits peaking the input for the antema in use, or in tming completely aross a band. A slug-cored coil is used at L_{4} to facilitate resonating the cirenit near the erystal frequeney.

The frequency of the oseillator must differ from the frequency of the received signal by the frequency of the tumable i.f. amplifier. With the car broadeast receiver following the converter, the i.f. range will be from approximately 550 to 1550 kc . Since the tumable i.f. range is thus limited to a band 1000 kc . wide, the tuning range of the system with any single crystal will be restricted to 1 Mc . This is suffieient for all except the 28-Mc. band. Two arystals are required to

Fig. 19.4-The aluminum case for the converter measures $3 \times 4 \times 5$ inches (Bud CU- 3005 or Premier AMC. 1005). Amphenol type 86-CP4 male jacks mounted on the front of the box mate with MIP 4-prong sockets mounted on the rear of the coil compartment shown in the foreground. Knobs for C_{1} and S_{1} are to the left and right, respectively, of the pilot lamp. The coil box measures $21 / 4 \times 21 / 4 \times 5$ inches (Bud CU. 3004 or Premier $A M C-1004$). Slug-adjustment screws for L_{2}, L_{3} and L_{4} protrude through rubber grommets mounted on the front wall of the plug-in coil assembly.
cover the entire 10-meter band. The first of these gives a tuning range of 28 to 28.9 Mc . and the second permits tuning 28.8 to 29.7 Mc. An accompanying frequency chart lists the crystal frequencies and the ranges over which the broadcast receiver must be tuned to cover the amateur bands.

Construction

The input-tuning capacitor, C_{1}, the pilot lamp) and the switch are in line across the panel of the converter as shown in Fig. 19-4. Each of these components is centered $3 / 4$ inch down irom the top of the case and each is separated from the other in horizontal plane by $13 / 4$ inches. The male jacks for the grid, plate and oscillator coils are below C_{1}, I_{1} and S_{1} in that order. Wach jack is centerel $11 / 8$ inches up from the bottom of the cabinet.

The chassis, shown in Fig. 19-7, may be made of thin aluminum sheet and should be fastened to the side walls of the cabinet with homemade brackets, or angle stock. The sockets for V_{1} (at the right as seen in the rear view) and V_{2} are centered $15 / 8$ inches in from the right and left edges of the chassis, respectively. J_{3} is centered on the rear wall of the chassis with J_{1} and J_{2} to the right and left.

A bottom view of the converter clearly shows the components mounted below deck.

The exterior and the interior of the coil box are shown in Figs. 19-4 and 19-7. Wind the antenar coupling coils, L_{1} in Fig. 19-5, around the ground ends of the grid coils before the latter are soldered in place. Wind the coupling coils rither sumgly but not so tightly as to prevent adjustment of the coupling to L_{2} during testing of the converter.

Fig. 19-5-Circuit diagram of the crystal-controlled mobile converter. Unless other-
wise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ahms, resistors are $1 / 2$ watt.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAPC 35-B).
$\mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. ceramic tubular.
$C_{4}, C_{n}, C_{h}, C_{i}-1000-\mu \mu f$. disk ceramic.
$\mathrm{C}_{8}-0.01-\mu$ f. disk ceramic.
1_{1}-Pilot-light assembly [Johnson 147-503 with No. 44 (6 -volt) or No. 1815 (12 -volt) lamp].
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Motorola-type shielded jack (ICA 2378).
J_{3}-4-prong male chassis connector (Cinch-Jones P. 304-AB).
$L_{1}, L_{2}, L_{3}, L_{4}-S e e$ coil chart.
An a.e. fransformer may be used for the filaments while testing the eonverter. The plate supply should deliver 20 milliamperes at 200 to 250 volts. I modulated-signal gencrator covering the bands for which the ronverter has been constructed is cextremely helpful. To be most rifective, the gencrator shoull have a 50 -ohm output termination. A grid-alip meter for prediminary adjustment of the slug-tuned coils is useful, but not (essential to aligmment. If at all pessible, the car receiver that is to low used as the tumable i.f. should be used daring the testing.

Using roasial-cable lads, counere the signal generator aml the broadeast reroiver to $/_{1}$ and J_{2}, resperetively. switch S_{1} to the ham-band position, and apply heater power. The receiver need not be turned on at this time, and plate
$R_{1}-180$ ohms, $1 / 2$ watt.
$R_{2}-22,000$ ohms $1 / 2$ watt.
R_{3} - 2200 ohms, $1 / 2$ watt.
$R_{4}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{5}-0.1$ megohm, $1 / 2$ watt.
$R_{f}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{RFC}_{1}-10$-mh. r.f. choke (National R-100S).
S , -3 -pole 3 -position (used as 3 p.d.t.) selector switch (Centralab PA-1007).
Y_{1}-See text and frequency chart (International Crystal type FA-9).
power for the converter does not have to be applied. Now, rotate ('1 to approximately half capacitanere and then adjust L en to resoname (use the grid-dip moter as the indicator) at the low end of the hand. Nove the grid-dipper over to the phate cirenit of the amplifier and peak L_{3} at the center of the beand. Next, couple the meter to L_{4} of the oscillatior and tune the coil to the frequeney of the erystal in use.

Alter these initial adjustments, plate power may be applied to the converter and a fregameyimdicating device used to deteet oseiltation of Ves. If the gridedip meter is the solf-reetifying type it may be used for the check. An absorptiontype wavemeter with indieator or a receiver tumed to the crystal frequency (with the b,fo. on) may also be used for the prrpose. In any

Fig. 19-6-A bottom view of the mobile converter. The amplifier tube socket at the right is mounted with Pin 7 facing toward the rear wall of the chassis. \boldsymbol{R}_{1} and \boldsymbol{R}_{2} are to the right and left of the sacket, respectively. The socket for V_{2} is mounted with Pins 4 and 5 facing toward the rear of the unit. C_{2} is to the lower left of R_{2}, and $R F C_{1}$ is mounted on the front wall of the housing. C_{7} and R_{i} are to the left of the base of the choke. C_{6}, C_{5} and R_{3} are to the right of $R F C_{1}$. The output coupling capacitor C_{3} is supported between Terminal 4 of J_{3} and Pin 6 of the socket for $V_{2} . R_{7}$ and R_{i} are partially visible to the right and left, respectively, of the V_{2} socket.

A Converter

Coil Chart for the Mobile Converter							
	Turns	Ind. Range, μ h.			Type No.		
Mc.	L_{1}	L_{2}	L_{3}	L_{4}	L_{2}	L_{3}	L_{4}
$\begin{aligned} & 3.5-4 \\ & 7-7 \end{aligned}$	14	36-64	64-105	105-200	120-F	120-G	120-H
$7-7.3$ $14-14.35$	7	9-18	18-36	36-64	120-1)	$120-\mathrm{E}$	120-F
14-14.35	4	3-5	5-9	9-18	120-13	120-C	120-D
$21-21.45$	3	2-3	3-5	3-5	120-A	$120-\mathrm{B}$	120-B
$\begin{gathered} 26.96-27.23 \\ 28-28.9 \end{gathered}$	3 3	1-1.6	1.6-2.7	2.7-4.5	1000-A	1000-B	1000-C
$\xrightarrow{28.8-28.9}$	3 3	1-1.6	1.6-2.7	2.7-4.5	1000-A	1000-B	1000-C
28.8-29.7	3	1-1.6	1.6-2.7	2.7-4.5	1000-A	1000-B	1000-C

Note: L_{1} is wound with No. 28 d.e.c. wire at grounded end of L_{2}, L_{2}, L_{3} and L_{4} are slugtuned coils manufactured by North IItls Electric Co., Inc. (Mincola, L.I.)
event, L_{4} should be tuned through resonance to the high-frequency side of the erystal frequency until the crystal oseillates relialbly as indieated by rapid starting when plate power is turned on.

With the converter and the i.f. amplifier both turned on, and with the signal generator tumed to the center of the band, tume the receiver until the test signal is hourd. Pakk L_{3} and L_{4} for best responsa and then pacak L_{2} with ("1 sat at hati capacitance. The coupling betwern L_{1} and L_{2} may now be adjusted for optimum performance.

If the aforementioned test equipment is not avaitable, the eonverter may lo aligned while using a strong local ol known frequeney as the signal souree. of course, the signal frequencey mast be in the band for which the converter is to be alignod. In using this system, first set the broadeast recoiver as elosely as possible to the proper i.f. freguency (see the frequeney chart) and then tume L_{4} until the crystal oseillates. It is advisable to tume the receiver through a narrow range as the oscillator coil is being adjusted to assure that the test signal will be heard as soon as the crystal breaks into oseillation. After the signal is detected, the grid, plate and oseillator circuits may be adjusted for maximum over-all gain.

The mobile antenna should be resonant and tightly coupled to the converter. Traps for suppressing interference cause by strong local broadcast sigmals that feed in through the converter to the tumable i.f. have not been included in the converter because the need for them will be entirely dependent on local broadeast-station power and frequency assignments.
(Originally described in QS'T, Nov. 1957).

Fig. 19.7-Homemode L-shoped chassis, mounted on small brockets fostened to the side wolls of the converter housing, is $4^{15 / 6 s}$ inches long, 2 inches wide and $11 / 2$ inches deep. V_{1} is mounted on the chassis to the right of V_{2} as seen in this rear view. J_{1}, J_{3} ond J_{2} ore in line in that order from right to left ocross the reor wall of the chassis. An interior view of a coil compartment is shown in the foreground. Terminals of the coils ore soldered directly to the socket terminals. Notice that the crystal for the oscillator is mounted odjocent to L_{4}.

Fiequiency Chart for the Mobide Cosverter		
l3and Mc.	(rystal Frey., I/c.	I.F. Range K \mathbf{c}.
$\begin{gathered} 3.5-4 \\ 7-7.3 \\ 14-14.35 \\ 21-21.45 \\ 26.96-27.23 \\ 28-28.9 \\ 28.8-29.7 \end{gathered}$	$\begin{array}{r} 2.9 \\ 6.4 \\ 13.4 \\ 20.4 \\ 26.3 \\ 27.4 \\ 28.2 \end{array}$	$\begin{aligned} & 6.30-1100 \\ & 600-900 \\ & 6100-950 \\ & 6100-1050 \\ & 6030-930 \\ & 600-1500 \\ & 600-1500 \end{aligned}$
Note: I.f. range indicates broadeast receiver tuning range necessary for covering the associated amatour frequenders.		

(For a description of a bandswitching crestabcontrolled converter, sce (SN'I', Jinuary, 1955, or The Mobile Manual for Rartio Amateurs.)

Transistor Mobile Converter

The crystal-controlled converter shown in Fig. 19-8 is a compaet, fixed-tuned converter which exhibits excellent performance when used with the automobile receiver. It is designed for one-band operation but may be constructed for any amateur band between 80 and 10 meters.

All of the components, including the power supply for the eonverter, are housed in a $5 \frac{1}{4} \times$ $3 \times 21 / 8$-inch Minibox that can be momited under the dashboard of the car. The unit is built in one half of the box so that it may be "dropped" for serviring or aljustment while the other half remains monnted to the dash.

Only two external comnections to the ronverter are nocessary. A coax lead from the antema must go to the antemat input of the unit, and an output coax conneretion to the ear radio.

The eircuit for the converter is shown in Fig. 19-9. The oscillator circuit is a transistorized version of the triode Pierre. Injection for the mixer is taken from a small link wound over the cold end of the collector tank roil. The emitter of the mixer transistor is returned to ground through this link. The mixer circuit corresponds to a triode varumm-tube mixer utilizing eathode injertion from the oscillator, the major difference being the low input impedance of the transistor hase as compared with the relatively high input impedane of a vac-uum-tube grid.

The erystal freduency used in the oscillator portion of the converter is given in the tuned circuit data table. (n : 30 and ≥ 1 Mre, the arstal is operated at its third overtone and on the lower bands the fundamental mode is used.

The inductances are wound on slug-tuned forms and shunted with the caparitances shown in the tuned cireuit data table.

The eircuit shows a erystal diode connented from the high impedance end of L_{1} to cell B_{2}. This gives a measure of protection for the mixer transistor in the event that an excessive amount of r.f. energy is introduced into the converter. When a signal greater in voltage than Be appears anross L_{1}, the diode will comduet and short the excess r.f. to ground.

Power Supply

The converter requires about 8 volts d.c. for

Transistor Mobile Converter

Fig. 19-9-Circuit of the transistorized converter.

contained battery it is unnecossary to make any power-supply comextions eithor to the car receiver or car battery. This saves considerable time during installation and makes the unit readily adaptable to portable operation.

Wiring

No. 30 wire is adequate for wiring becanse of the small current and voltage requirements of the converter. Spaghetti should be used over exposed keuds that might come in contact with other parts because of the vibration that oecurs in mobile operation. For the same reason, it is essential that good soldered conmeretions be made.

The information given in the tuned-circuit data table applies to $1 / 2$-inch coil forms. Readywound slug-tuned coils, such as the Miller 4500 series or the CTC LS:3 series, can also be used with the links shown in the chart. L_{1} is tapped alrout $1 / 3 \mathrm{up}$ from the cold end. ('1 and (C_{2} should be chosen to resonate, in a given amatener band, with the inductance of the particular coil used; the L / C ratio is not critical.

Construction

The converter is assembled in one half of a $5 \frac{1}{4} \times 3 \times 21 / 8 \mathrm{inch}$ Minibox. The box-rover (with the lips) is mounted permanently under the automolile dash. The only front-patinel con-
trols are the converter-broadeast switch S_{1} and the output praking control ('4. Monnt S_{1} so that the leads coming from the anuma connectors will line up with the proper switch terminals. Two 5 -terminal tie points are mounted in the center of the chassis for supporting the crystal socket, transistors and other small components. The throe slug-tumed inductances are supported on the rear wall of the chassis, as are the two antenna connectors.

After the major components have been installed, only a fow wiring connections remain. Bo sure to leave long loads on the inductances after winding them so that the loads may be directly eomected to their proper points.

In the circuit, cell B_{2} has its negative terminal grounderl, A hug soldered to the eell case and bolted to the chassis will make a sturdy support for the cell.

Adjustment and Testing

After the unit is wired, the first test should be to make certain that the oscillator is functioning. Turn on the converter. Tune a communications receiver to the erpstal frequency and adjust the slug in L_{3} until the signal is heard. The oscillator will not function unless the collector tank ($\left({ }_{2} L_{3}\right)$ is resonant.

19-MOBILE EQUIPMENT

After the oscillator is operating properly, install the unit in the car and turn it on. With the broadeast radio turned on, adjust the slug in L_{3} for maximum barkground noise. Next, adjust ther slug in L_{4} for maximum noise, or selert a wak signal and peak it up for maximum gain. Then set the car radio at the high end of the i.f. band and adjust the slug in L_{5} for maximum
gain with C_{4} at minimum capacity. The low end of the i.f. band should peak when C_{4} is set near maximum. If only one segment of a particular band is going to be used, additional gain can be had by peaking the roils for that portion of the band. If, for example, 75 -meter phone operation is desired, peak the converter for 3800 to 4000 ke, rather than 3500 to 4000 ke.

Crystal Controlled Converters for 50 and 144 Mc.

The mobile converters shown in Figs. 19-10 through 19-1:3 combine simplicity with goorl v.h.f. design practice. Although only two tubes are used in earh, the converters indude a stage of r.f. amplification phus arystal-controlled os(illators. Ten meters was chosen as the i.f. because when the broadeast recoiver is used as the tumable i.f. for v.h.f. converters images are a problem, and only 1 Mc , at a time could be tuned. The converters deseribed here, therefore, are designed to work into a 10 -meter converter or receiver. This ran b_{x} a tumable converter which in turn works into the broadcast receiver, or a complete self-contained 10 -meter receiver.

The 50 Mc. Unit

The cireuit diagram for the $50-$ Me, unit is shown in Fig. 19-11. A $6 \mathrm{AK5}$ is used as an r.f. amplifier. The same gain with lower noise can be obtained with a cascoatotype dual-trionde amplifier, but the performance of this pentode stage is satisfactory and its iosign is considerably simpler than the triode amplifier.

The erystal oscillator makes use of a se-Me. overtone crestal. A crestal on the reguired injection frequeney climinates the neod for multiplier stages, and makes possible the use of a simple oscillator cireuit. The 10 -meter receiver or converter is tuned from '28 to 30 Me. in rovering 50 to 52 Mc . If a general coverage receiver covering 26 to 30 Mt . is used, a $2+\mathrm{Ml}$. erystal in the oscillator will allow tuning 50 to $5+\mathrm{Mc}$. However, any injertion frequeney may be used to cover a desired portion of the band.

The pentode half of the 6 U 8 tube is used as
a mixer. The oscillator and mixer sections are in the same tube envelope so there is enough stray coupling between the two for adequate oscillator injertion.

The diagram shows the heaters connested for 12 volts. If 6 -volt operation is desired, the heaters are comected in parallel and R_{1} is disregarded.

The converters are luilt in a $51 / 4 \times 3 \times 21 / 8-$ inch Minibox. All of the parts are mounted on the bottom half of the box while the upper hall (the one with lips) is fastened under the car dash. The bottom half containing all the components can be slid in and out for easy sorvieing.

Fig. 19-10 shows the placement of most of the components. The output peaking rontrol ('1 and switch S_{1} are mounter on one side of the chassis to form the front panel. The tubes, shug-tumed indurtanoes, rerstal sorket and antemna comectors are momeded directly opposite on the back wall. Two tie-points are bolted to the base of the box for comnerting and supporting laads and romponents. When wiring, make the rif. leads as short and direct as possible.

The 144-Mc. Unit

The arcuit diagram for the $1+4-\mathrm{Me}$, converter is shown in Fig. 19-1:3. Two 6U8 tubes are used with the pentode sertion of one tube acting as the ref. amplifier followed by the triode-sertion mixer. The other 6 U 8 is used as an overtone crestal oseillator and pentode frequeney multiplior. By combining ath the features of a t-tube erystal-controlled ronverter in a two-tube model spare-saving simplicity is achieved.

The same basic eircuit used in the $50-\mathrm{Mc}$.

Fig. 19-10-View of the 50.Mc. converter. The inductances are from left to right: (bottom) L_{i}, (top) $L_{i} L_{6}, L_{3} L_{1}$, $L_{1} L_{2}$. The top of crystal Y_{1} can be seen between the fubes. The $\mathbf{2 2}$-ohm 2 -watt resistor in the center of the chassis is the heater current compensating resistor, used for 12 volt operation. Input and output antenna connectors are mounted on opposite ends of the back wall. Power is fed to the unit through the twisted power cable running in from the left side of the photograph.

Crystal-Controlled Converters

Fig. 19-11-Schemotic diagram for the $50-\mathrm{Mc}$. mobile converter. All resistors $1 / 2$ wott unless otherwise specified. Capocitor volues below 0.001μ f. ore in $\mu \mu \mathrm{f}$. All $0.001 \mu \mathrm{f}$. copocitors ore disk ceromic.

Other fixed copocitors ore tubulor ceromic.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget varioble copocitor (Hommorlund MAPC-35-B).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Automobile type antenno connectors.
$\mathrm{L}_{1}-3$ furns No. 20 insuloted wire, close-wound over cold end of L_{2}.
$\mathrm{L}_{2}-9$ turns No. 20 enom. wire, close-wound on $1 / 2$ inch slug tuned coil.
L3-16 turns No. 20 enom. wire, close-wound on $1 / 2$ inch slug tuned coil form.
$L_{4}-6$ turns No. 20 insuloted wire, close-wound over cold end of L_{3}.
$L_{5}-14$ turns No. 20 enam. wire, close-wound on $1 / 2$ inch
molel is followed in the $14+$-Mc. unit exeept for the addition of a multiplier stage following the erystal oscillator. The oscillator operates at 38.666 Mc . and is multiplied to 116 Mc . in the tripler stage. As in the 50-Mc. converter, this unit is designed to work into a 10 -meter reeeiver or converter. If the i.f. tunes from 27 to 30 Me ., the converter will tune from 144 to 147 Me . However, any segment of the band may be
slug funed coil form.
L6-2 furns No. 20 insulated wire, close wound over cold end of L_{2}.
L_{7}-28 turns No. 30 enom. wire, close-wound on $1 / 2$ inch slug tuned coil.
R_{1}-22-ohm 2-wott resistor (used for 12-volt heater operation only).
S_{1}-Three-pole two-position rotary switch (Centrolab PA-2007).
$Y_{1}-22$ Mc. overtone crystol. (international Crystal type FA-5 for minioture socket, FA. 9 for standard socket).
tuned by choosing the proper erystal frequency.
Unlike the 50-Mc. converter, the oseillatormultiplier stages of the $144-\mathrm{Mc}$. converter are physically separated from the mixer stage. It is necessary, therefore, to couple the 116 -Me. energy from the multiplier stage to the grid of the mixer. Capacitor (${ }_{2}$ is used for this purpose. It consists of a pair of twisted hock-up wires with one end of one lead connected to the mixer

Fig. 19-12-View of the 144-Mc. converter. The inductonces from left to right are: (top) $L_{1} L_{2}, L_{3} L_{4}, L_{i-1} L_{6}$, (bottom) L_{7} ond L_{8}. All components except S_{1} and C_{1} are mounted on the back wall of the chossis. A single tie point in the bottom of the chonnel supports vorious leods ond provides junctions for sundry connections. The input ond output ontenna connectors are ploced neor the bottom right ond left of the bock ponel. The crystol Y_{1} is between the two tubes. Converter power is fed through the twisted coble which passes through o hole ond grommet in the back wall of the chassis.

19-MOBILE EQUIPMENT

Fig. 19-13-Schemotic diogrom for the 144-Mc. converter. All resistors $1 / 2$ wott unless otherwise specified. Copocitor volues below $0.001 \mu \mathrm{f}$. ore in $\mu \mu \mathrm{f}$. All 1000 $\mu \mu \mathrm{f}$. copocitors ore disk ceromic. Other fixed copocitors ore tubulor ceromic.
$C_{1}-35-\mu \mu$ f. midget vorioble copocitor (Hommorlund MAPC-35-B).
C_{2}-Oscillotor injection copocitor (see text).
J_{1}, J_{2}-Automobile type ontenno connectors.
L1-2 turns No. 18 enom., $3 / 8$ inches long, on $1 / 2$ inch slug funed coil form.
$\mathrm{L}_{2}-2$ turns No. 20 insuloted wire, close wound over cold end of L_{1}.
L3-2 furns No. 18 enam., $3 / 6$ inches long, on $1 / 2$ inch slug tuned coil form.
grid and the end of the other lead connerted to the multiplier plate.

The circuit diagram shows the heaters connected for 12 -volt opration. For 6 volts, the heaters should be comerefed in parallel.

The sume basic outline of construction usod in the $50-\mathrm{Mc}$. convertar is followed in the $1+4-\mathrm{Mc}$. unit. Fig. 19-12 shows how output peaking control ('1 and the control switah S_{1} are mounted on the front wall of the chassis while most of the remaining parts are serured to the rear surface. A single tie point is mounted on the bottom of the chassis for commerting and supporting various leads. The input and output antemat comenetors are mounted at opposite ends of the bark wall of the chassis.

Testing the Converters

The 50-Mc. convertor requires 0.625 ampere at 6 volts (or 0.9 ampere at 12 volts) for the

L-2 turns No. 20 insuloted wire, close wound over cold end of L_{1}.
L, -9 turns No. 24 enom., close wound on $1 / 2$ inch slug funed coil form.
Lo-2 furns No. 20 insuloted wire, close wound over cold end of $L_{\text {r }}$.
L7-10 furns No. 24 enom., close wound on $1 / 2$ inch slug tuned coil form.
L8-5 turns No. 18 enom., $1 / 2$ inches long, on $1 / 2$ inch slug tuned coil form.
S_{1}-Three-pole two-position rotary switch (Centralab PA-2007).
$\mathrm{Y}_{1}-38.666 \mathrm{Mc}$. overtone crystol (Internotionol Crystol Co. type FA-5 for miniature socket, FA-9 for stondord sockel).
heaters, and approximately 17 mat, at 150 volts for the plate suphly. If the car radio delivers in exeress of 180 volts, the plate voltage on the converter should be limited by a dropping resistor.

The $14+\mathrm{Mc}$, convertor requires 0.9 ampere at (f volts (or 0.45 ampere at 12 volts) for the heaters. A plate voltage of 150 volts is required at about 30 ma.

All thened circuits should be chereked for resonance with a grial-dipher. The proper frequency for cach circuit is given in Figs, 19-11 and 19-13. Apply power to the eonverter mader test, and adjust the oscillator aremit until it goes into oseillation. This ean be confirmed by thaing the home remeder to the oscillator fremueney. Tune the oseilator inductane until the maximum oscillator signal is obtained, Now teed a 50 or 14t-Xte. signal into the converter under test. This signal may come from a signal generator

20-Watt Mobile Transmitter

or a grid-dip meter, or may be an actual signal from the antenna. Go through the converter stage by stage, adjusting the inductances for peak output. After the first run of peaking is completed the converter should be spot-cherked
through the entire band to make sure the over-all response is fairly flat. Output capacitor C_{1} is used to peak the output cireuit. L_{6} is adjusted so that C_{1} peaks at mid-capacitance in the eenter of the i.f. tuning range.

A 20-Watt High-Frequency Mobile Transmitter

Figures 1!-11 through 1 ? $9-17$ illustrate a commplote 20-wat transmitter that may he opmated on :mbe hand from 80 to 10 meters. The design abouds the complieation, expense and difieult construedion atsociated with the average multiband tramsmitters, but does not contine its appliration to any one band. Changing from one hand 10 another as oprotating intorest varios is a simple matter of unsoldering a patir of radily-arecessible coils :and replateing them with others for the new beund.

Circuits

The circuit of the transmitter is shown in Fig. 19-15. A 5763 erastal oscillator drives a $21 ; 26$ tinal :mplifier. Quadrupling frepueney in the output of the grid-plate uscillator from a $\mathrm{T}-\mathrm{Ma}$. erestal will provide adecguate drive for the final on 10 meters. sufficiont capmeitanoe is provided in the plate tank of the 2 E 2 a f for a (Q of 10 or more on all bands execpt 80 meters. (On 80 metors, the tank () will (lrop) to about (i, but there is little danger of appreciable harmonic output when feorling a high-() antemai such as the usual loaded whip. Werpatte output coupling on this band is assured bey tuning the output link line. latralled phate ferd is used in both stages.

The andio eirenit is equatly simple. (Wne triode unit of a $12.10^{\prime 7}$ is usod as a grounded-grid amplifier. This provides low-impedance input for at farbon miarophone without the need for in microphone transformer. The second triocle unit of the 12.10^{7} is used in conventional fashion to drive a 10335 Class 13 modulator. This tube operaters at zero bias with an idling current of only 10 ma . b, ev voltage for operating the curbon microphone is ohtained bey connecting the mierophone in series with the two speech-amplifier rathodes and ground.
The 1 -mat. meter H_{1} may be switehed across appropriate multiplier shunts to read amplifier grid or plate current, or modulator phate current. A d.p.d.t. change-over relay, K_{1}, actuated by the
microphone push-to-talk switeh, is also provided. One pole shifts the antenna from rereiver to transmitter, while the other mutes the reeceiver bye shorting the voice eoil of the sineaker. S removes sereen voltage from the 2 li2t and disables the relay so that the oscillator maty be tuned up before the smplitier is put on the air.

Construction

A $5 \times(\mathrm{i} \times$-ineh stel utility box (Middetown Mfg. Co., Middletown, Comn.) is used as the cabinet for the transmitter. The chassis is bent up from aluminum sheet approximately $1 / 16$ inch thick. The chatssis is $8 \frac{3}{4}$ inches wide. 6 inches deep and has 2 -inch lips atong the from and rear edges.

C's and $^{\prime}$ (4 are mounted on the front wall of the partition with their shaft centers $13 / 8$ inches alove the chassis. The shaft of C_{4} is centered $11 / 4$ inches from the open edge of the shield, while
 of these cabacitors are comerted to panel-hearing units ley rigid motal shaft couplers.

The socket for the $21: 26$ is submonnted on 3/4inch spacers, bencath a $11 / 4$-inch dearance hole centered 1 inch from the rear edge of the chassis :und 2 inches in from the side. $R F^{\prime}{ }_{4}$ is mounted horizontally from the front wall of the partition, below and between C $_{3}$ and C_{4}.

The output tank eoil, L_{2}, is cemented to a 1-inch eone insulator and soldered between a rear stator terminal of C_{3} and a grounding lug on the chassis. The bottom end of L_{3} is commected to a rear stator terminal of 0,4 , while the other end goes through a small feed-through perint in the chassis to a relay terminal immediately below. The $576: 3$ is centered between the partition and the front panel, and between the shafts of C_{3} and (${ }_{4}$.

Fig. 19-17 shows the modulation transformer in the upper righthand comer of the chassis. The secondary taps of T_{2} should be set for 7500 olms. The $12: \mathrm{UU}^{-7}$ and $16: 35$ sockets are centered

Fig. 19-14-A panel-illuminating lamp is mounted to the right of the meter, along with the amplifier-tank and antenna-link tuning controls. Along the bottom, from left to right, are the microphone jack, meter switch, filament switch, tune-operate switch, oscillator tuning control and the crystal.

Fig. 19-15-Circuit of the single-band mobile transmitter. All resistors are $1 / 2$ watt unless otherwise specified. All capacitances less than $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All $0.001-\mu \mathrm{f}$. capacitors are disk ceramic. Fixed capacitors of smaller value may be mica or NPO ceramic. Capacitors marked with polarity are electrolytic.

C_{1}-Mica or ceramic trimmer.

C_{2}-Air variable (Hammarlund HF-50).
C_{3} —Air variable (Johnson 167-4).
C_{4}-Air variable (Hammarlund HF-140).
C_{5}-Paper ceramic.
I_{1}-6.3-volt $250-\mathrm{ma}$. dial lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxial connector ($\mathrm{SO}-239$).
J_{3}-Push-to-talk microphone jack.
J_{4}-Power connector (octal tube socket).
K_{1}-D.p.d.t. 6 -volt or 12 -volt d.c. re!ay (Guardian Series 200).
L_{1}, L_{2}, L_{3}-See coil table.
on a line about halfway betwen the rear of the meter and the modulation transformer. The socket for the 12 AU - is centered $7 / 8$ inch from the end of the chassis. Then the socket for the $16: 35$ is spated sufficiently from the $12 \mathrm{AU}^{7}$ socket so that the driver transformer, T_{1}. can be mounted botwen the two sockets, undemeath the chassis.

The two coasial connectors, J_{1} and J_{2}, are mounted on the rear lip of the chassis, spaced to avoid the 21:26 socket. An octal socket serves as the power-supply connector J_{4}, and the changeover relay is centered between this socket and the nearest coaxial connector.

Testing

The unit will operate from iny supply delivering 300 to 400 volts at 125 mat . or more.

While the 2 H 26 might be used as a doubler if necessary, straight-through operation is recommended. Crystals in the 80 -meter band will provide adequate drive for the final on all bands up to and including the 1t-Ale. hand. Crystals in the 7 -Me. band are needed for $21-$ and $28-\mathrm{Mc}$, output. Coils should be selected from the coil
$\mathrm{M}_{1}-0-1$ d.c. milliammeter, $23 / 8$-in. (Triplett 227-T).
R_{1} - 10 -times shunt for M_{1} (6.1 ohms for 55 -ohm meter.)
$\mathbf{R}_{2}, \mathrm{R}_{3}-100$-times shunt for M_{1}. $\mathbf{(0 . 5}$ ohm for 55 -ohm meter.)
S_{1} —D.p.d.t. rotary switch (Centralab PA-1002).
Sz-S.p.s.t. toggle switch.
S_{3}-2-pole 3-position rotary switch (Centralab PA1003).
T_{1} —Driver transformer, 2.5:1 primary to $1 / 2$ secondary (Merit A-2920).
T_{2}-10-watt modulation transformer (Merit A-3008).
table to suit the band desired.
The oscillator is adjusted with S_{1} in the tume position, and the meter switch tumed to read amplifier grid current. With power supplied, Cz

Table of Coil Dimensions							
L_{1}							
Band	$L \mu h$.	Turns	Diam. In.	Length In .	Hire Size	$\begin{gathered} \text { B\&U } \\ \text { No. } \end{gathered}$. iirdur No.
80	29	44	1	13/8	24	3016	832
40	6.3	28	5/8	1/8	24	3008	532
20	2.8	16	5/8	1	20	3007	516
15	0.9	9	5/8	916	20	3007	516
10	0.5	6	5/8	8/8	20	3007	516
L_{2}							
80	32	80	$3 / 4$	$21 / 2$	24	3012	632
40	8	41	${ }^{3}$	23/2	20	3011	616
20	3.5	20	$3 / 4$	11/4	20	3011	616
15	1.6	16	$3 / 4$	2	18	3010	608
10	1.1	12	34	$13 / 2$	18	3010	608
$L_{a}-3$ turns No. 20, 1 -inch diamı, ${ }^{3}$ 伯 ineh long, over ground end of L_{2} (B\&W 3015, Airdux 816) for 80,40 and 20 meters; 2 similar turns for 15 and 10 meters.							

20-Watt Mobile Transmitter

Fig, 19.16-Bottom view af the 20-watt mobile transmitter. The driver transfarmer is placed between the two audio-tube sockets. Alang the frant lip af the chassis, fram left to right, are the micraphane jack, meter switch, filament switch S_{2}, tune-up switch S_{1}, oscillator tank eapacitor C_{2} and the crystal socket. C_{2} is spaced back of the panel, and maunted behind the 5763 sockel. L_{1} is soldered across the terminals of the capacitor. All power and control wiring is done with shielded wire.

should be adjusted for maximum grid current. The tuning should be checked with a wavemeter to make sure that the oscillator output riment is tumed to the desired freegueney. Then eishould be adjusted for maximum grid current. The reading should be at least 3 or 4 mat.

A pair of (i.lis type 1820, 28-volt. 1-imp, miniature lamps commerted in serios makes a good dummy load for testing the final. With sit thewn to the operate position, the meter switched to ratal 2 E26 plate current, and power applied. :ujust C_{3} for a dip in plate current. Cherk the frequency with a watvemeter coupled to the output tank. Then adjust ('4 until the moter reads 50 mat. Retune (${ }^{3}$ for the plate-current dip). It may take a little juggling back and forth betweren ('s and © ${ }_{4}$ before an adjustment is reached where the meter reads 50 mat. at the plate-current dip. Ther load lamps will not light to full I rilliancer, but it should be persible to determine the adjustment that gives maximum output. With the amplifier fully loaded, the grid current should still remain at 3 to 4 mat.

The meter should now be turned to read modulater plate curvent. Without voiee, the moter should read about 10 mat. When speaking into the microphone, a kiek of the meter reading up) to 40 or $\overline{50}$ mat. on peaks should indicate 100 per cont modukation. The r.fi. amplifier phate current should remain essentially steady under modulation, but the lamps in the dummy load should show some increase in brilliance.

Adjustment when an antomat is substituted for the dummy load should be done in a similar manner. The antemat must. of course, be cherked for resonance in advance with a g.d.o. or by other means. (Originally described in (Qs'l', Jan., 195\%). (For a description of a bandswitehing mobile transmitter with v.f.o., see QST, August and Sept., 1957).

Fig. 19-17-Interior view of the single-band mabile transmitter. The output camponents are separated from the ather components by an L-shaped aluminum partition which measures $41 / 2$ inches aleng the frant and 4 inches along the side. It is $21 / 4$ inches high with $1 / 2$-inch lips along the bottam edges far fastening to the chassis.

Figs. 19-18 through 19-2:3 show circuits and constructional details of compact transmitters rovering the f a and 2 -meter bands. The units are only 3 inches deep and therefore are suitable for under-the-dash mounting.

Output on $50-\mathrm{Mc}$. is obtaimed by using erystals in the $50-\mathrm{Mc}$. range. This climinates any necossity for multiplior stages and greatly simplifies the rircuit. In the two-meter unit, at 48-Mr. arvstal is used which is multiplied to 14. Mre by a tripher stage.

Although the r.f. amplifier used in the transmitters will operate at highor voltages, the units are designed primarily to work from a 300 volt, $100-\mathrm{ma}$. supply, A transistor modulator can be used with the units with a saving in total current drain.

The 50-Mc. Unit

The circuit of the $50-\mathrm{Mc}$, transmiter is shown in Fig. 19-20. A 5763 (6illt when using 12-volt heaters) is trioke-romereded in an overtometype ressal oscillator. Foedhark winding Io helps to sustain Brd-overtome oscillation and may require some slight adjustment for optimum output in its placement with resperet to L_{1}. The $50-\mathrm{Me}$. signal from the oseillator is capacitively coupled to the grid of the 21026 ($689: 3$ whon using lo-volt heaters) amplifier. A jack J_{1} on the rear of the transmitter allows the grid current to be measured.

Fig. 19-18-View of the $50-\mathrm{Mc}$. transmitter showing the r.f. amplifier tank circuits and output loading control. C_{3} is on the top right of the panel with C_{2} just below it. Output indicator I_{1} is below C_{2}. This view also shows the two antenna connectors, power plug and grid current jack which are mounted on the rear surface.

Fig. 19-19-The 50 Mc. mobile transmitter is built into a $7 \times 5 \times 3$-inch aluminum Minibox (Bud CU-3008). Oscillator coil $L_{1} l_{2}$ is near the top left. The jack on the right rear panel is the grid-current meter jack. One-inch holes are punched in both halves of the Minibox for ventilation. Perforated hole plugs can be used for neater appearance. In actual use, the transmitter would sit with the tubes horizontal. The half of the box at left is mounted under the car dash so that the transmitter half can be easily pulled in and out of position
for servicing or adjustment.

The amplifier plate tank cirenit, (' ${ }_{2} L_{3}$, is tuned to resonance by variable capacitor ('2.

The 144-Mc. Unit

The 1H-Mr. circuit is shown in Fig. 19-2.3. The oscillator is similar to the one used in the $50-$ Mle transmitter. The $48-\mathrm{Ml}$. signal from the oscillator is capacitively coupled to the pentode multiplier which is operated as a frequeners tripler. From the tripler, the signal is indectively rouphed to the grid of the r.f. amplifier. Since this stage contains a fixed caparitor, it is tumed hy "pinching" or "spurading" the turns of L_{4}. As in the $50-\mathrm{Mc}$, unit, provision is made for measuring grid courent (jark J_{1}).

The amplifior tank cirenit in the 14-Mc. model is serios tumed. Output coupling is through a singlo-turn link, L_{66}. Neptralization is required in this unit: the neutralizing eaparitor consists of a $2 \frac{1}{2}$-inch length of No. 12 wire with one end commerted to pin 5 (eontrol grid) of the amplifier tube, and with the other end rum up, beside the amplifier tube after passing through the chassis (see the photograph in Fig. 10-21), A piere of spaghetti is used to insulate the neutratizing wire from the chassis.

Construction

A $7 \times 5 \times 3$-inch Minibox is used as the

6- and 2-Meter Mobile Transmitters

Fig. 19-20-Schematic diagram of the $50-\mathrm{Mc}$. mobile transmitter. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt unless specified otherwise.
$\mathrm{C}_{1}-35 \cdot \mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-35-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund HF-15).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-50-B).
C_{4}-Coupling capacitor for output indicator (see text).
K_{1}-Midget antenna relay s.p.d.t. (Advance $A M / 2 \mathrm{C} /$ 12 VD . Note: the last four figures in the number indicate the coil voltage. For 6 volts it should read / 6 VD).
$L_{1}-3$ turns No. 20, 5/8-inch dia., 5/16 inches long (B \& W 3006).
$\mathrm{L}_{2}-2$ turn link No. 20 insulated wire, close wound over cold end of L_{1}.
$\mathrm{L}_{3}-4$ turns No. 16, 1 -inch dia., 1 -inch long (B \& W 3013).
L_{4}-2 turn link No. 20 insulated wire, close-wound over cold end of L_{3}.
lit-Neon bulb (NE-2).
J_{1}-Circuit closing jack.
$\mathrm{J}_{2}-3$ conductor mike jack.
$\mathrm{J}_{3}, \mathrm{~J}_{4}$-Automobile type antenna connectors.
RFC 1, RFC $_{2}$-Single-layer v.h.f. choke, 2 to $7 \mu \mathrm{~h}$. (Ohmite Z. 50 or National R-60).
S_{1}-S.p.s.t. slide switch.
$V_{1}-5763$ for 6 volits, 6417 for 12 volts.
$V_{2}-2 E 26$ for 6 volts, 5893 for 12 volts.
$\mathrm{Y}_{1}-50 . \mathrm{Mc}$. 3rd overtone crystal (Internaitional Crystal Co. type FA.9).
chassis for the transmitters. A single bracket supports the tubes and assoriated parts. The bracket has a single bend and is fastened to the Dinibos with machine serews.

The ($\mathbf{6}$ - and 2-moter transmitters are almost identical merhanically. The only real difference between the two is that the 2-meter model has atn additional multiplier tube, mounted in line with the oscillator tube on the bracket.

All parts should be mounted before wiring is begun. Since both ends of the chassis are open, wiring and mounting of parts is a simple jols. The photographs show the relative position of most of the components. Try to keep r.f. leals as short as possible. The relay, antenna connectors, power phag and grid carrent jark are all mounted on the rear pancl.

The output indieator I_{1} is coupled to the final tank circuit through capawitor ('4. This rapace-

Fig. 19-21 - The 144 Mc . transmitter with the r.f. amplifier tube removed to show the neutralizing lead C_{N}. Except for the 6BJ6 multiplier tube in the foreground, the same basic layout is used here as in the $50-\mathrm{Mc}$. unit.
itor is actuatly a few turns of hook-up wire wound over a picee of insulated wire that is

$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable copacitor (Hammarlund MAPC-35-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. midget variable sapacitor (Hammariund HF-15).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-50-B).
C_{4}-Coupling capacitor for output indicator (see text).
C_{n}-Neutralizing capacitor (see text)
K_{1}-Midget antenna relay s.p.d.t. (Advance AM/2C/12 VD . Note: the last four figures in the number indicate the coil voltage. For 6 volts it should read 6VD.)
$L_{1}-4$ turns No. 20, 5/8 inch diam, $5 / 16$ inches long (B \& W 3006).

Le-2 turn link No. 20 insulated wire, close wound over cold end of L_{1}.
$\mathrm{L}_{3}-1$ turn No. 20 insulated wire $1 / 2$-inch diam.
L_{4}-2 turns No. 20 insulated wire $1 / 2$-inch diam.
connerted to the final tank cireuit. If the lamp fails to ignite, a few more turns mity be needed.

Testing Notes

An a.c. power supply delivering 300 volts at 100 ma . can be used diring testing of the transmitter. Ifeater-current requirements for the $50-\mathrm{Me}$, unit are 1.55 ampere for (i-volt operattion and 0.775 ampere for 12 volts. The $144-$ Me. unit requires 1.1 ampere at 6 volts and 0.55 ampere at I2 volts. Do not comect the plate supply to the r.f. amplifier power terminal (marked " 300 mod." in the circuit diagram) at this time. The correct erystal ano a dummy load should be kept on hand for the test.

To test the driver stage, plug a grid-current meter ($0-5 \mathrm{ma}$.) in J_{1}, and apply heater voltage. Plug in the proper erystal and turn on the plate voltage (exeiter stages only). As guickly as possible aljust capacitor ('i until the oscillator goes into oseillation. This will be indiated by a downward kiek in the plate durrent. (irid eurrent should hegin to show when oseillation oceurs.
$L_{5}-3$ turns No. 16, 1 -inch diam., $3 / 4$ inches long, center topped (B \& W 3013).
$L_{\beta}-1$ turn link No. 20 insulated wire wound in the center of L_{5}.
I_{1}-Neon bulb (NE-2).
J_{1}-Circuit closing jack.
$\mathrm{J}_{2}-3$ conductor mike jack.
$\lrcorner_{3}, \jmath_{4}$-Automobile type antenna connector.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}$-Single-layer v.h.f. choke, 2 to $7 \mu \mathrm{~h}$. (Ohmite Z-50 or National R-60).
S_{1}-S.p.s.t. slide switch.
$V_{1}-6 C 4$.
V_{2}-6BJ6.
$\mathrm{V}_{3}-2 E 26$ for 6 volts, 5893 for 12 volts.
$\mathrm{Y}_{1}-48 \mathrm{Mc}$. 3rd overtone crystal. Crystal frequency found by dividing desired output frequency by 3 (International Crystal Co. type FA-9).
In the $14+-M \mathrm{C}$. unit, atljust for maximum grid current bey "pinch-tuning" L_{33}. L_{4} once oscillation has begun. Adjust (1 for maximum grid current. If there is difficulty in obtaining grid drive, try alljusting the pesition of L_{2} with resperet to L_{1}. In the e-meter model, some rearrangement of L_{3} and L_{4} maty be needed in order to achieve maximum grid drive.

Before testing the $144-\mathrm{Me}$. amplifier it will he neeessary to neutralize it. With power applied to the exciter portion, slowly rotate the output tuning control ('2 through its full range. If the amplifier is neutralized, there will be no fluethattion in the grid current. If there is such a fluctuation, adjust the neutralizing wire to a new position with respect to the amplifier tube and swing the plate-tuning control again. Repeat until the grid current remains steady, showing that the amplifier is neutralized.

Connect a dummy load to the output anteman connector, close the antenna relay and apply plate power to the entire transmitter. As quickly as possible, tune (2 for minimum phate eurent.

Fig. 19-23-View of the 144-Mc. transmitter. The coil and link near the fop leff rear are $L_{1} L_{2}$. In the foreground are coils $L_{3} L_{4}$.

It is necessary to perform this operation rapidly berase the amplifier may draw exeessive plate current when not tumed to resonance. When tuned to resonance, the output indicator bulb I_{1} will light. This r.f. indicator is not only a tuning aid in the car but also
 acts is a continuous monitor to show that the transmitter is in operation. Caparitor (${ }_{3}$ is the loading control and should be adjusted for maximum phate current after the amplifier is resonated.

A microphone jack J_{2} is included on the trans-
mitter chassis to simplify the control circuits. Leads from the mirrophone (marked "sw" and "mic" in the diagram) go to the power connector at the rear of the transmitter.

Mobile Modulators

Vacuum-tube modulators for mobile operattion are in general similar to those used in fixedstation installations. liquipment shown in the section on modulators may be modified for use with almost any mobile transmitter. As in fixed
station work, the mobile modulator most be (apable of supplying to the plate modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.c. plate input for 100 percent modulation.

19-MOBILE EQUIPMENT

A 10. WATT MOBILE MODULATOR

Fig. 19-2.t shows a modalator that ran be used with any mobile transmitter whose input does not exeed 20 to 25 watts. A resistaneccoupled amplifier using a single I2AN7 drives a 6.N7 which in turn drives another 6.27 in pushpull.

Also shown in figg. 19-24 are the changes in the spereh-amplifier circuit necessary to adapt it for use with a carbon microphone. 1).e. voltage for the (arbon mierophone is obtained by connerting the mierophone in series with the speechamplifier cathodes.

The modulator requires 300 volts at about 90 ma . for plate power and 6 volts at 1.9 amperes or 12 volts at 0.95 amperes for the heaters.

The main constructional precaution to be observed when buiding the modulator is that the output transformer The should not be mounted too close to the speech amplifier virenits. Separation will reduce the chance of feedback through straty coupling.

In an actual mobile installation, the modulator may be separated from the r.f. assembly ber ang convenient distance. The cable connecting the modulator to the r.f. section should be mate with individually-shielded leads.

A 10.WATT TRANSISTOR MODULATOR

Figs, 19-25 through $19-27$ show a complote transistor modulator which obtains its power directly from the automobile's 12 -volt storage battery. Also included in the unit is a transistor bower supply that will furnish plate power for the transmitter.

The power-supple section furnishes about 300 volts at 100 ma . This vahue of voltage is convenient for use with some of the poputar molite r.f. amplifier tubes such as the 2 E 26 or 5763 . The plate and sereen current reguired for these tepes is 50 or 60 ma , which will leave the remainder of power for the oscillator-multiplier stages of the transmitter. Instant-heating tubes, such as the
$2 \mathrm{~F}, 30$ and $5 \mathrm{y} / 6$, could lx used in the r.f. section so that there will be no current drain on the battery during stand-by periods. The current required by the transistorized modulator is zero during these periods.

One of the features of the unit is that the modulator and control eireuits are combined in the same box with the power supply. This eliminates long runs of interconnecting cables and makes the unit easy to install and convenient to use. Leads to the battery, mike, and transmitter are the only comertions neversary.

The Modulator

As shown in the circuit diagram, Fig. 10-27, the modulator section uses a two-transistor speech amplifier to provide the gain necessaryfor driving the Class 13 push-pull audio power amplifier from a carbon midrophone. Pushtor talk operation is included; when the switch on the mike is closed the control relati, K_{1}, closes and turns on the power supply and modulator. K_{1} is an inexpensive automobile horn relay which ran be purchased at most filling stations or auto parts distributors. (Gurent for the microphone is ohtained from the 12 -volt source through the 220-ohm resistor K_{1}. The mierophone transformer, T_{I}, has the gain control, R_{2}, connected across its secondary winding. The andio voltage is applied to the hase of transistor Q_{1} through a $5-\mu$ f. coupling capacitor. The common-rollector cireuit is used in order to provide a good impedance match to the base input resistance of the driver transistor, (22. The output of the driver is transformer coupled to the bases of the (lass 13 modulator transistors.

Since high ambient temperattures are common in mobile operation, a thermistor, R_{3}, is used to confine the operation of the transistors to a saffe region. The thermistor (atemperature-sensitive resistor) is placed in the base cireut of the transistors.

The Power Supply

The power supply uses a Triad TY-bos trans-

Fig. 19-25-The transistor modulator and r.f. power supply. The power-supply oscillator transformer is located at the bottom right in this view. The two transformers suspended from the top surface are the driver and modulation transformer, T_{2} and T_{3}. Four silicon rectifiers and their mounting clips are at the bottom left, directly below the horn relay, K_{1}. The gain controi, R_{3}, is at the top left with the microphone jack, J_{1}, directly below it. The microphone transformer, T_{1}, is behind J_{1}, and is mounted on the inside chassis surface. Tie points are used for convenience in mounting the various resistors, capacitors, and transistor Q_{1}. Outputs from the power supply, control circuits and modulator connect to the terminal strip.

Fig. 19-26-Another view of the two audio transformers. The fuse, mike jack, gain control and battery terminals are at the right projecting through the chassis. A cover plate, not shown in the photographs, should be made to fil over the open side of the box.
former, T_{4}, with two transistors, Q_{5} and $\left(_{6}\right.$, in a power oscillator cireuit.

A bridge rectifier using silicon diones ronverts
the high-voltage suluare wave to d.ce. Since the rectifier is full wave, the principal ripple component is about 4 kc . This is easily filtered by a

SPEECH AMP.

Fig. 19-27-Schematic diagram of the power supply and modulator. Fixed resistors are $1 / 2$ watt except as indicated below. Capacitances are in $\mu \mathrm{f}$.; capacitors are electrolytic.
$C R_{1}, C R_{2}, C R_{3}, C R_{4}-500-m a$. silicon rectifiers with mount- T_{1}-Driver transformer; 200-ohm primary, 15,000-ohm ing clips (Sarkes Tarzian M500).
secondary (Argonne AR-107, Lafayette Radio,
F_{1} - 10 -amp. fuse.
J_{1}-Open-circuit, 3-conductor jack.
$K_{1}-12$-volt horn relay (Echlin HR 101; see text).
$Q_{3}, Q_{4}-2 N 256$ or 2N301A.
$Q_{5}, Q_{6}-2 N 278$ or 2N627.
$\mathrm{R}_{1}-220$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-20,000$-ohm volume control.
$\mathrm{R}_{3}-100$-ohm thermistor, B value 3300 (Globar $416 \mathrm{H}^{*}$).
$\mathrm{R}_{1}=150$ ohms, $1 / 2$ watt, for 2 N 278 .
100 ohms, $1 / 2$ watt, for 2N627.
$\mathrm{R}_{5}-10$ ohms, 2 wotts, for 2N278. 18 ohms, 2 watts, for 2N627. N. Y.).
T_{2} —Transistor driver transformer; 100 -ma. 100 -ohm primary, 100 -ohm c.I. secondary (Triad TY-61X).
T_{3}-Modulation transformer, transistor type, 10 -watt rating; secondary tapped for 3000, 4000, and 6000 ohms (Triad TY-65Z).
T_{4}-Transistor power transformer, 12-14 volts inpul, 300 volts, $100-\mathrm{ma}$. d.c. output ofter filter (Triad TY.69S).

* Available from Workman TV, Inc., 309 Queen Anne Rood, Teaneck, N. J.

19-MOBILE EQUIPMENT

single $10-\mu \mathrm{f}$. capacitor.

Construction

The modulator, power supply and control circuits are all rontained in a $3 \times 7 \times 5$-inch chassis. All transistors except. Q_{1} are mounted on the outside surfaces of the chassis walls. Fig. 19-25 shows the two power-supply transistors mounted on one edge and the driver and modulators on another.

The transistors are insulated electrically from the chassis. Sheet mica (sometimes called "isinglass") available at most hardware stores can be used for this purpose if split down into sheets a few mils thick. I3e sure to clean and deburr all holes associated with the transistor mounting because any punctures in the insulator will probably result in an electrical breakdown between the transistor and chassis. Insulating washers must be used in places where the transistor mounting bolts pass through the chassis.

13ase and emitter terminals. on the large audio transistors are small pins on the bottom of the case. Soldered ronncetions to these terminals should be avoided because of the danger of overheating the transistor. A convenient way to connect leads is to use sleeve-lug pin contacts from a miniature tube socket. Flexible leads can be soldered to the lugs, which may then be slid over the transistor pin terminals. The powersupply transistors are supplied with solderingtype base and emitter leads. A soldering lug is placed over the mounting stud for the collector connection.

The two Class B audio transformers, T_{2} and T_{3}, are mounted on the inside surface of the box along with the low-level audio transistors.
lower transformer T_{4} is located opposite the audio transformers on the inside of the chassis. Next to it are the four silicon rectifiers, mounted in special elip holders (the holders are furnished with the rectifiers). Dircetly above them on the chassis is the horn relay. Its location was chosen to make the hot 1%-volt lead to the power transformer as short as possible.
A plate is bolted to the edge of the chassis so that the unit can be mounted to the automobile. Rubber grommets are placed between the chassis and the plate to act as shock and vibration absorbers.

For quick assembly and disassembly an octal socket and cable plug could be used to connect
the unit with the transmitter, instead of the terminal strip shown in the photograph.

Preliminary Checks

While checking the modulator, it is a good idea to turn off the power supply to prevent accidental shock. Remove the load from the emitters of Q_{5} and Q_{6} to disable the power supply.

If you wish to observe the waveform of the modulator it will be neressary to connect a scope to the output terminals of T_{3}. Before any measuremonts are made, be sure to connect a dummy loal to the modulator. This can be a 10 -watt resistor of the same resistance as the Class C load. The scope is then connceted across the resistor. Comect the audio oscillator output. across the gain control R_{2}, which should be set at about three quarters of the way on. Increase the output of the audio oscillator and observe the wave shape on the scope. Tips on testing audio equipment are given in the section on speech amplifiers and modulators.

After the modulator is working, connect 12 volts to the emitters of Q_{5} and Q_{6}. The power supply should oscillate (danger, high voltage!). An indication that the power supply is functioning properly will be a 2-kc. audio whine from the power transformer when the circuit oscillates. A voltage measurement across the filter capacitor should show the output d.e. voltage to be in the neighborhood of 300 volts with no load.

Connect 12 volts d.c. to the power terminals, plug in the mike, connect the leads to the transmitter and the unit is ready to use. Important: correct polarity must be observed when connecting the power source; otherwise the transistors will be damaged.

Concerning placement of the unit in the car: Try to find a location away from high-temperature spots and in a well-ventilated area. The trunk is not recommended since there is little ventilation; this area can become quite hot in the summertime and damage to the transistors could result. The engine compartment makes a convenient place to mount the unit but this space is not adequately ventilated except possibly while the car is in motion. The most favorable spot is on the fire wall in the passenger compartment, or under the front seat. These areas are usually well ventilated, or at least cooler than any other enclosed section of the car. (Original description appeared in QST, Oet., 1958.)

The Mobile Antenna

For mobile operation in the range between 1.8 and 30 Mc ., the vertical whip antenna is almost universally used. Since longer whips present mechanical diffieulties, the length is usually limited to a dimension that will resonate as a quarterwave antenna in the 10 -meter band. The car body scrves as the ground connection. This antenna length is approximately 8 feet.
With the whip length adjusted to resonance in the 10 -meter band, the impedance at the feed
point, X, Fig. 19-28, will appear as a pure resistance at the resonant frequency. This resistance will be composed almost entirely of radiation resistance (see index), and the efficiency will be high. However, at frequencies lower than the resonant frequency, the antenna will show an increasingly large capacitive reactance and a decreasingly small radiation resistance.

The equivalent cireuit is shown in Fig. 19-29. For the average $8-\mathrm{ft}$. whip, the reactance of the

Mobile Antenna

Fig. 19-28-The quarterwave whip at resonance will show a pure resistance at the feed point x.
eapacitance, C_{A}, maw range from about 150 ohms at 21 Me. to ats high as $80 \mu 0$ ohms at 1.8 Me., while the ratiation resistance, R_{s}, varies from about 15 ohnse at 21 Mc. to as low as 0.1 ohm at 1.8 Me. Since the resistince is low, considerable current must flow in the circuit if any appreciable power is to be dissipated as radiation in the resistance. Yet it is apparent that little current can be made to flow in the circuit so long as the comparatively high series reactance rematins.

Fig. 19.29-At frequencies below the resonant frequency, the whip antenna will show capacitive reactance as well as resistance. R_{R} is the radiation resistance, and CA represents the capacitive reactance.

Eliminating Reactance

The capucitive reactance ban be canceled out by connerting an equivalent inductive reactance, L_{L}, in series, as shown in Fig. 1!)-30, thus tuning the system to resonance.

$$
\begin{aligned}
& \text { Fig. 19-30-The capacitive } \\
& \text { reactance at frequencies lower } \\
& \text { than the resonant frequency } \\
& \text { of the whip can be canceled } \\
& \text { out by adding an equivalent } \\
& \text { inductive reactance in the form } \\
& \text { of a loading coil in series with } \\
& \text { the antenna. }
\end{aligned}
$$

Unfortunately, all coils have resistance, and this resistance will be added in series, as indicated at lic in Fig. 19-31. While a large coil may radiate some encrgy, thus adding to the radiation resistance, the latter will usually be negligible

Fig. 19-31-Equivalent circuit of a loaded whip antenna. CA represents the capacitive reactance of the antenna, L_{L} an equivalent inductive reactance. R_{C} is the loadingcoil resistance, R_{G} the ground-loss resistance, and $\mathbf{R}_{\mathbf{R}}$ the radiation resistance.
compared to the loss resistance introduce 1 . However, adding the coil makes it possible to feed power to the circuit.

Ground Loss

Another element in the circuit dissipating power is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antenna. little information is avatilahle on the values of resistance to be expected in pratice, but some measurements have shown that it may amount to as much as 10 or 12 ohms at 4 Mc. At the lower frequencics, it may constitute the major resistance in the cirenit.

Fig. 19-31 shows the cireuit including all of the elements mentioned above. Assuming C $C_{\text {a }}$ lossless

Fig. 19-32-Graph showing the approximose capacitance of short vertical antennas for various diameters and lengiths. These values should be approximately halved for a center-loaded antenna.
and the loss resistance of the coil to be represented by $R c$, it is seen that the power output of the transmitter is divided among three resistances R_{C}, the coil resistance; R_{G}, the ground-loss resistance; and R_{11}, the radiation resistance. Only the power dissipated in R_{R} is radiated. The power developed in R_{C} and R_{G} is dissipated in heat. Therefore, it is important that the latter two resistances be minimized.

MINIMIZING LOSSES

There is little that can be done about the nature of the soil. However, poor electrical contact between large surfaces of the car body, and esperially between the point where the feed line is grounded and the rest of the body, can add materially to the ground-loss resistance. For example, the feed line, which should be grounded as close to the base of the antenna as possible, may be connected to the bumper, while the bumper may have poor contact with the rest of the body because of rust or paint.

Loading Coils

The accompanying tables show the approximate loading-coil inductance required for the various bands. The graph of Fig. 19-32 shows the approximate capacitance of whip antennas of

TABLE 19.I

Approximate Values tor 8-ft. Mobile Whip						
Base Loading						
fico.	Loading $L_{\mu \mathrm{hl}}$.	$\begin{gathered} R \mathrm{c}(Q 50) \\ O h m s \end{gathered}$	$\begin{gathered} R_{\mathrm{c}}((9300) \\ \text { Ohms } \end{gathered}$	$\begin{gathered} R_{\mathrm{a}} \\ \text { Ohms } \end{gathered}$	$\begin{gathered} \text { Feed } \mathrm{l}^{*} \\ \text { Ohms } \end{gathered}$	$\begin{gathered} \text { Matching }_{L_{\mu h}} \end{gathered}$
1800	345	77	13	0.1	23	3
8800	77	37	6.1	0.35	16	1.2
7800	20	18	3	1.35	15	0.6
14,200	4.5	7.7	1.3	5.7	12	0.28
21,250	1.25	3.4	0.5	14.8	16	0.28
¢0,000	36	0.23
Center Loading						
1800	700	158	23	0.2	34	3.7
5800	150	72	12	0.8	22	1.4
7200	40	30	6	3	19	0.7
14,200	8.6	15	2.5	11	19	0.35
21,250	2.5	0.6	1.1	27	29	0.29
$R_{\mathrm{c}}=$ Loading-coil resistance; $R_{\mathrm{r}}=$ Radiation resistanee. *.Assuming loading eoil $Q=300$. and including estimated ground-loss resistance. Sughested eoil dimensions for the required loading inductances are shown in a following table.						

various average diametors and lengths. For 1.8, t and 7 Me., the londing-roil indurtance required (when the loading coil is at the hase) will be approximately the inductance required to resonate in the desired band wilh the whip caparitance taken from the graph. For 11 and 21 Me., this rough calculation will give more than the required inductance, but it will serve as a starting point for final expromental adjustment that must always be made.

Also shown in table ly-l are approximate values of radiation resistance to be expected with an 8 -ft. whip, and the resistances of loading coils - one group having a () of 50 , the other a () of 300. A comparison of radiation and coil resistances will show the importance of reducing the coil resistance to a minimum, esperially on the three lower-frequency binds.

To minimize loading-coil loss, the coil should have a high ratio of reactance to resistanee, i.e., high Q. A t-Mc. loading coil wound with small wire on a small-diameter solid form of poor quality, and enclosed in a metal protector, may bave a $(Q$ as low as 50 , with at resistance of 50 ohms or more. High-($($ eoils require a large ronductor, "air-wound" construction, turns spared, the lest insulating material available, a diameter not less than half the length of the coil (not always mechanically feasible), and a minimum of metal in the field. Such a coil for 4 Me . may show a () of 300 or more, with a resistance of 12 ohms or less. This reduction in loading-eoil resistance may be equivalent to increasing the
transmitter power by 3 times or more. Most low-loss transmitter plug-in coils of the $100-$ watt size or larger. commereially produced, show a () of this order. Where larger inductanee values arr required, longths of low-loss space-wound coils are available.

TABLE 19.II

Suggested Loading-Coil Dimensions					
$\begin{gathered} \text { Req.d } \\ L_{\mu h} . \end{gathered}$	Turns	IIire Nize	Diam. In.	Rength In.	Form or B \& W Type
700	190	22	3	10	Polystyrene
345	135	18	3	10	Polystyrene
150	100	16	21/2	10	Polystyrene
77 77	75 29	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$2_{5}^{1 / 2}$	$\begin{aligned} & 10 \\ & 41 / 4 \end{aligned}$	Polystyrene 160T
40	28 34	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & 8013 \text { less } 7 \mathrm{t} . \\ & 80 \mathrm{~T} \end{aligned}$
20	17 22	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 28 / 4 \end{aligned}$	8013 less 18 t. 80T less 12 t .
$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	4013 less 4 t. 40T less 5 t.
4.5	10 12	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$4^{11 / 4}$	$\begin{aligned} & 40 \mathrm{~B} \text { less } 10 \mathrm{t} \text {. } \\ & 40 \mathrm{~T} \end{aligned}$
2.5 2.5	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{array}{r} 12 \\ 6 \end{array}$	2 28	2 412	$\begin{aligned} & 15 \mathrm{~B} \\ & 15 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	6 6	12 6	$\begin{aligned} & 18 / 4 \\ & 28 / 8 \end{aligned}$	41/2	$\begin{aligned} & 10 \mathrm{~B} \\ & 10 \mathrm{~T} \end{aligned}$

Mobile Antennas

Center Loading

The rathiation resistane of the whip sell be approximately doubled by placing the boading coil at the center of the whip, rather than at the base, as shown in Fig. 1:1-33. (The optimum position varies with ground resistance. The center is optimum for average ground resistance.) However, the indurtance of the loating coil must be

Fig. 19-33-Placing the laading coil at the center of the whip antenna, instead of af the base, increases the radiation resistance, although a larger coil must be used.
approximately doublect over the value required at the base to tunc the system to resoname. For a roil of the same Q, the coil resistance will also be doubled. But, even if this is the case, center loading represents a gain in antemat efficience, especially at the lower frequencios. This is because the ground-loss resistance remains the same, and the increased radiation resistance becomes a larger portion of the total circuit resistance, even though the coil resistance also increases. However, as turns are addent to al loading coil (other factors being equal) the indurtane (and therefore the reartance) increases at a greater rate than the resistance, and the larger coil will unatly have a higher Q.

Top Loading Capacitance

Sinee the coil resistance varies with the indurtance of the louling coil, the coil resistance can be reduced by reducing the number of turns. This catn be done, whike still maintaining resoname, by alding caparitance to the portion of the antematabere the roil. This caparitane ean be providen by attaching a capacitive surface as high up on the antema as is merchanioully feasible. Caparitive "hats," :w they are usually called, may ronsist of a light-weight metal bath, cylinder, disk, or wheel structure as shown in Fig. 1!?-34. This should be added to the caparitance of the whip above the loading coil (from Fig. 19-32) in determining the approximate inductance of the loading coil.
When center loading is used, the amount of caparitinne to be added to permit the use of the satue loading indurtane required for base loading is not great. and should be seriously considerent, since the total gain made by moving the coil to the renter of the antemat mas be quite marked.

Tuning the Band

Esperially at the lower frequencies, where the resistance in the circuit is low compared to the coil reactance, the antenna will represent a very

Fig. 19-34 - The top-loaded 4-Mc. antenna designed by W6SCX. The loading coil is a B \& W transmitting coil. The coil can be tuned by the variable link which is connected in series with the two halves of the coil.
high-Q circuit, making it necensary to retune for relatively small changes in frequency. While many methods have been devised for tuning the whip over a band, one of the simplest is shown in Fig. 1! -35. In this case, a standard B \& W plug-in coil is used as the loading coil. A longth of largediameter polystyrene rod is dritled and tapped to fit botwern the upper and lower sertions of the antenm. The assombly also serves to clamp a pair of metal brackets on each side

Fig. 19.35-W8AUN's adjustable capacity hat for tuning the whip antenna over a band. The coil is a B \& W type B 160 -meter coil, with a furn or two removed. Spreading the rods apart increases the capacitance. This simple top loader has sufficient capacitance to permit the use of approximately the same loading-coil inductarce at the center of the antenna as would normally be required for base loading.

of the polystyrene block that serve hoth as support and connections to the loarling-coil jack har.

A $1 / 8$-inch steel rod, ahout 15 inches long, is brazed to earh of two large-diameter washers with holes to pass the threaded end of the upper section. The rods form a loading capacitance that varies as the upper rod is swung away from the lower one, the latter being stationary. Enough variation in tuning can be obtained to cover the 80 -meter band. (Original deseription appeared in QST', September, 1953.)

REMOTE ANTENNA RESONATING

Fig. 19-36 shows circuits of two remote-control resonating systems for mobile antennas. As shown, they make use of surplus d.c. motors driving a loading coil removed from a surplus ARC-5 transmitter. A standard coil and motor may be used in either installation at increased expense.

The control circuit shown in Fig. 19-36-A is a three-wire system (the car frame is the fourth conductor) with a double-pole double-throw switch and a momentary (normally off) singlepole singlo-throw switch. S_{2} is the motor reversing switch. The motor runs so long as S_{1} is closed.

The rirruit shown in Fig. 19-3613 uses a latehing relay, in conjunction with microswitches, to automatically reverse the motor when the roller reaches the end of the coil. S_{3} and S_{5} operate the relay, K_{1}, which reverses the motor. S_{4} is the motor on-off switch. When the tuning coil roller

Fig. 19-36-Circuitscof the remote mobile-whip tuning systems.
K_{1}-D.p.d.t. latching relay.
$\mathrm{S}_{1}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}$-Momentary-contact s.p.s.t., normally open. S_{2}-D.p.d.t. toggle.
Se, $^{2} \mathrm{~S}_{7}$-S.p.s.t. momentary-contact microswitch, normally open.
reaches one end or the other of the coil, it closes S_{6} or S_{7} a as the case may be, operating the relay and reversing the motor.

The procedure in sotting up the system is th prune the centor loading coil to resonate the antenna on the highest frequency used without the base loading coil. ']hen, the base loading coil is used to resonate at the lower frequencies. When the circuit shown in Fig. 19-36it is used for control, S_{1} is used to start and stop the motor, and S_{2}, set at the "up" or "down" position, will determine whether the resonant frequency is raised or lowered. In the circuit shown in Fig. 19-3613. S_{4} is used to control the motor. S_{3} or S_{5} is momentarily closed (to activate the latehing relay) for raising or lowering the resonant frequency. The broadcast antoma is used with a wavemeter to indicate resonanere.
(0riginally described in QST', Dec., 1953.)
several companies offer motor tuning for getting optimum performance over a low-frequency band. (For a complete description of the commercially available remotely-tumed systems, see Goodman, "Frequency Changing and Mobile Antemas," Qs'l', Der., 19:77.)

Automatic Mobile Antenna Tuning

A somewhat more complex antenna tuning system for 75 and 40 meters is one that automatically tumes the antenna as the transmittor frequency is shifted. After initial adjustments, the radiator is kept in resonance without attention from the operator. (For a description of the automatic system, see Hargrave, "Automatic Mobile Antema Tuning, (SN゙T, May, 1955.)

- FEEDING THE ANTENNA

It is usually found most conveniont to fred the whip antenna with roax line. Unless very low-Q loading coils are used, the feed-point impedance will always be appreciably lower than 52 ohms - the characteristic impedance of the commonly-used coax line, RG-8/U or IRG-58/L. Since the length of the transmission line will seldom exceel 10 ft ., the losses involved will be negligitle, even at 2! Mc., with a fairly-high s.w.r. However, unless a line of this length is made reasonably flat, difficulty may be encountered in obtaining sufficient coupling with a link to load the transmitter output stage.

One method of obtaining a mateh is shown in Fig. 19-37. A small inductance, L_{m}, is inserted at the base of the antenna, the loading-coil inductance being reduced correspondingly to maintain resonance. The line is then tapped on the coil at a point where the desired loading is obtained. Table 19-I shows the approximate inductance to be used between the line tap and ground. It is advisable to make the experimental matching coil larger than the value shown, so that there will be provision for varying either side of the proper position. The matching coil can also be of the plug-in type for changing bands.

Adjustment

For operation in the bands from 29 to 1.8 Mc .,

Fig. 19-37-A method of matching the loaded whip to 52 -ohm coox cable. L_{L} is the loading coil and L_{M} the matching coil.

the whip should first be resonated at 29 Mc. with the matching eoil inserted, but the line disconnected, using a grid-rip owillator coupled to the matching coil. Then the line should be attached, and the tatp varied to give proper loading, using a link at the transmitter end of the line whose reactance is approximately 52 ohms at the operating frequency, tightly coupled to the output tank circuit. After the proper position for the tap has been found, it may be necessary to readjust the antemat length slightly for resonance. This can tre cheeked on a field-strength meter several feet atway from the car.

The satme procedure should be followed for each of the other bands, first resonating, with the g.d.o. coupled to the matching eoil, by adjusting the loading coil.

After the position of the matching tap has been found, the size of the matehing coil can be redued to only that portion between the tap and ground, if desired. If turns are removed here, it will be necessary to reresonate with the loading coil.

If an entirely flat line is desired, a s.w.r. indieator should be ased while adjusting the line tap. With a good match, it should not be necessary to readjust for resonance after the line $t: a p$ has been set.

It should be emphasized that the figures shown in the table are only approximate and may he altered considerably depending on the type of car on which the antemat is mounted and the spot at which the antenna is placed.

ANTENNAS FOR 50 AND 144 MC.

A Simple Vertical Antenna

The most convenient type of antenna for mobile v.l.f. work is the quarter-wave vertical radiator, fed with 50 -ohm roaxial line. The antonna, which may be a flexible telescoping "fish pole," ran be mounted in any of several places on the ear. An ideal mounting spot is on top of the car, though rear-leek mounting presents a better spot for esthetic reasons. Tests have shown that with the car in motion there is no observable difference in average performance of the antemnas, regardless of their mounting positions. There may be more in the way of diredtional offects with the rear-deek mount, but the over-all advantage of the roof mount is slight.

A good match may be obtained by feeding
the simple vertical with 50 -ohm line. However, it is well to provicie some means for tuning the system, so that all variables can be taken care of. The simplest tuning arrangement consists of a varialbe capacitor connceted betweer the low side of the transmitter coupling coil and ground, as shown in Fig. 19-38. This capacitor should

Fig. 19-38—Method of feeding quarler-wave mobile antennas with coaxial line. C_{1} should have a maximum capacitance of 75 to $100 \mu \mu \mathrm{f}$. for 28 - and $50-$ Mc. work. L_{1} is an adjustable link.

have a maximum capacitance of 75 to $100 \mu \mu \mathrm{f}$. for 50 Me , and should be adjusted for maximum loading with the least coupling to the transmitter. Some mothod of varying the coupling to the transmitter should be provided.

Horizontal Polarization

Horizontally polarized antennas have a considerable advantage over the vertical whip under usual ronditions of molile operation. This is particularly true when horizontal polarization is used at both ends of a line-of-sight cireuit, or on a longer circuit over reasonably flat terrain. An adational advantage, especially on 6 meters, is a marked reduction in ignition noise from neighboring cars as well as from the station car.

A Horizontally Polarized Two-Band Antenna for V.H.F.

One type of horizontally-polarized antenna, called the "hato," is shown in Fig. 19-39. It is a dipole bent into a circle, with the ends capacitively loaded to reduce the circumference. Since the 50 - and $144-\mathrm{Me}$, bands are almost in third harmonie relationship. it is possible to build a single halo that will work on both bands. The antenna is changed from one band to another by changing the spacing between the end loading plates and adjusting the matching mechanism.

Mechanical Details

The halo is made of $7 / 16$-inch aluminum fuelline tuhing. This material is both strong and very light, but any tubing of about $1 / 2$-inch diameter could be used equally well. The loop is 67 inches in circumference and the capacitor phates are $2 \frac{1}{4}$ inches square, with the corners rounded off.
To fasten the capacitor plates to the ends of the tubing, aluminum rod stork is turned down on a lathe to make a tight fit into the ends. This is tapped for 6-32 thread, and then forced into the tubing ends. Holes are drilled through tabing and inserts, at each end of the halo, and a serew run through each to keep the inserts from turning around or slipping out. The binding-head serews that hold the plates to the inserts are equipped

Fig. 19-39-The 2-band halo as it appears when set up for $50-\mathrm{Mc}$. operation. Changing to 144 Mc . involves decreasing the plate spacing by swapping cone insulators, and resetting the gamma matching efip and series capacitor.
with boek washers. Tha holes for monnting the eramic come spacer are drilled direedy Indow the center, midway betwern the eonter and the edge of the caparitor plates.

The halo is set into a slot cot in the vertieal support. This slot should be just big enough to permit the halo to be foreed into it. The halo has to be stiffened, so eut it at the center and insert about 2 inches of alumimum rol, again turned down on a lathe to fit tightly inside the tubing. The two pieces of tubing are then pushed together, over the insert, and drilled earh side of enenter to pass 6-32 serews. The hato and insert are also drilled at the midpoint, to pass the mounting serew. This is an $8-32$ screw, $1 \frac{1}{4}$ inches long. If lathe facilitios are not available, the mounting of the capacitor plates and the securing of the halo to the vertical support can be handed with angle backets.

Mechanical stability is important so straps of ahminum $1 / 2$ inch wide are wrapped around the halo either side of the mounting post. These are bent at right angles and the ends pulled together with a bolt.

The matching arm is $141 \frac{2}{2}$ inches long, of the same material as the halo itself. It is mounted below the halo on two $3 / 4$-inch cone standofs For convenienee in detaching the feed line a coaxial fitting is monnted on an L L backet bolted to the vertical support. The stator bar of the $25-\mu \mu$. variable rapacitor (Johnson $167-2$) is soldered directly to the coaxial fitting. The rotor of the eapacitor is conne tod to the gamma arm through a piere of stiff wire. For further stiffening an aluminum angle bracket is serewed to the lower mounting stud of the caparitor and the other end mounted under the serew that holds the first cone standoff in place. Contact betwedn the arm and the hato proper is made through a strap of $1 / 2$-inch wide aluminum bent to form a sliding clip. Be sure that a clean tight contact is made betweon the tubing and the clip, as high current flows at this point. A poor or varying contact will ruin the effertiverness of the antema,

Adjustment
The caparity-loaded halo is a high- Q device so
it must le tuned on-the-nose, or it will not work properly. The only reliable methosl for adjusting a halo is to use a standing-wave bridge, making tuming and matching adjustmonts for minimum reflected power. Lising a field-strength meter and attempting to aljust for maximum radiated power ean give confusing indications, and is almost eertain to result in something less then maximum effertiveness.

The aljustment process with this design can be simplified if the halo is first resonated apmoximately to the desired frequency ranges with the aid of a gridedip meter. Set the elip at about one inch in from the end of the arm, and the series raparitor at the middle of its range. Check the resonant frequener of the loop with the grid-dip) meter, with the $3 / 4$-inch spacer betwern the rapacitor plates. It should be close to 50 Me . If the freguener is too low, trimming the corners of the plates or putting shims under the ceramie spacer will raise it somewhat. If the frequener is too high alrouly. make new and slightly larger capacitor plates.

Next, insert an s.w.r. bridge botween the antema and the transmission line. Aply power and swing the capacitor through its range, noting whether there is a dip in rellecten power at any point. If the reflected power will not drop to zero, slide the clip along the gammat arm and retune the caparitor, until the lowest reading possible is obtained. If this is still not gero, the halo is not resonant. If the halo eapacitance is on the low side, moving the hands near the phates will cause the reflected power to drop. Closer spacing of the platess. larger plates or io longer halo loop are possible solutions.

These adjustments should be made on a frequencre near the middle of the range you expeet. to use. Adjusting for optimum at 50.25 Mc ., for example, will result in usable operation over the first 500 ke , of the band, and a grood match (helow 1.5 to 1) from 50.1 to 50.4 . The s.w.r. will rise rapidly either side of this range.

To tune up on $1+4$ Mr., insert the $1 / 2$-inch cone between the caparitor plates, Slide the clip back on the gamma arm about 3 to 4 inches and repuat the adjustment for minimum reflected power,

Field-Strength Meter

using a frequency at the midalle of a "-. Mre. range. Tuning up at 1 t5 Me., for example, will give quite satisfactory operation from the low end to 1tf Me., the hato being murh broader in frequeney response when it is opratated on its third harmonir. In this model the serios raparitor in the gamma arm was at about the middle of its range for 50 Me., and noar minimum for 114 Me. Slight differeneres in merehanieal construction may ehange the value of rapawitance vequired, so these settings should not be taken as important.
The photograph, Fig. 1!-39, shows a method used to avoid running the chance that the sereond ceramid cone would be missing when a hatud change was to be made. The head was cut irom a 6 -32 screw, leaving a threaded stud about $1 / 2$ inch long. This is screwed into one of the ceramic cones. The other cone then serves as a mut, to tighten down the capacitor plate. In changing bands merely swap cones. (Original deseription appotared in (SS'T', Sept., 1!58.)

Bibliography

Swafford, "Improved Coax Feed for Low-Fredmeney Mobile Antennas," (2sTV, Derember, 10.3 .
Roberge MeConnel!, "Let's (io Jigh ILat!," (2ST. January, 19.52,

Belrose, "Short Intennas for Mobile Operation," QST, september, 19.33.
Hinsmore, "The 'Hot-Rod" Mobile Antenma," (\&ST, September, 19.3.
Pioken E Wambsanss, "Romote Mobile-Antenna Resonating," OST, I eecember, lan3.
Webster, "Mobile Loop Antennas," QST, June $19 \% 4$.
"lilton, "Have You 'Iried V.II.F. Mobile?" Q.ST, Septeminer, 19.54.
Hargrave, "Automatie Mobile Antenna Tuning," (SST, May, 195s.
Morgan, "runing the Mobile Antenna from the Driver's seat," (SST', October, 19\%\%).
Braschwitz, "Directional Antenna for the Transmitter Hanter," (2ST, April, 19.30.
Tilton, "Polarization Effects in V.II.F. Mobsle." (SST, 1 lerember, 1950.
13rertz. "A Simple Halo for 2-Meter Mobile l"se," QST, August, 19.57.
Harris, "C'ontinuously Loaded Whip Antennas," QST, May, 1958

A Field-Strength Meter for Portable-Mobile Use

The field-strength meter of Figs. 19- 10 through 19-42 can be used in a mohite station as an antemnatresoname indieator or as a contimuous output indieator showing that the transmitting system is artually radiating. It is designed to be inserted betwern the automobila broadeast rereiving antoma, which a-ts as the r.f. pick-up,

Fig. 19-40-A front view of the field-strength meter. Sensitivity control R_{1} is to the right of the $0-1$ indicating meter. Antenna input and output connectors are mounted on the right end of the box.

Fig. 19-42-Inside view of the meter. The back plate shown in the photograph is used as a cover for the box.
and the broukast reopiver. Small magnets or rubber suction rups on the back plate will hold the meter securely on top of the car dash. Although in this position the meter will be fare up in most casis, it can nevertheless usually be reald from the driver position.

Fig. 19-41-Circuit of the field-strength meter. CR1-Crystal diode (1N34A).
$J_{1}, J_{2}-A u t o m o b i l e ~ t y p e ~ a n t e n n a ~ c o n n e c t o r s . ~$ $R F C_{1}-2.5 \mathrm{mh}$. r.f. choke.
R_{1} - 500 ohm potentiometer (Mallory U-2). S_{1} —s.p.d.t. switch for above potentiometer.

19-MOBILE EQUIPMENT

A handle can be mounted on the meter box so that the meter can be easily be carried about for portable measurements. The same basie layout less the handle an be used if the box is to be mounted under the dash or in the glove compartment.

The circuit for the field-strongth meter is shown in Fig. 19-41. The values shown are not critical. Nearly any type of crystal detector can be used and the meter movement can be anything from $100 \mu \mathrm{a}$. to 2 ma . or more, depenting upon the sizo and plavement of the antemat and the power output of the transmitter. All romponents, including the 3 -inch indicating moter, are housed in a $2 \times 6 \times 4$-inch aluminum chassis.

If a smaller meter is used, the box could be reduced in size acoordingly. However, in mobile operation a large meter is more convenient to road while in motion. An illuminated moter could be substituted for the one shown in the photograph for use at night. A switch, S_{1}, is used in the circuit to switch the antenna to the field-strength moter position or straight through to the broadeast set. For portable or temporary mobile operation, a short pick-up wire can be used instead of the automobile reereiving antemas. The pick-up) antermat lead comes into a commertor mounted on one end of the box. There is a second commertor for atttaching the lead to the browlast receiver.

Conelrad Monitoring

The conelrad ruks disonssed in the soctions on high-frequency receivers and operating a station must be observed by amsteurs who operate mobile, One convenient form of compliance is by means of a separate tunable eonverter covering the brouleast band, and converting to the same i.f. as the i.f. used by the ham-band converter. 'This type of converter maty also be used when the car radio is used as the tumable i.f. for a broad-band converter, providing that the receiver is tuned to the converter i.f. at tenminute intervals. This catn be aceomplished most conveniently by setting one of the push buttons to tune the receiver to the monitor output frequency.

The circuit of a broadeast-band converter is shown in Fig. 19-43. The input rireuit (\%1a L_{2} covers the broadeast band. The oscillator circuit $C_{113} L_{3}$ tuncs the range of 2050 to 3000 ke . to produce ant i.f. of 1500 kc . A type (isiA7 may be used in the circuit and, of course, either a 1213156 or at 12 SA should be used for 12 -volt operation.

Plates must be removed from $C_{1 B}$ to provide the required tuming range. The oscillator section of the dual unit is the one hatving the smaller number of plates. Starting at the rear, all rotion plates except five should be removed. It isn't necessary to remove the unused stators. Be very carcful to make sure that there are no shorted
plates after the modification is complete.
L_{2} is a ferrite-core loopstick. This coil usually conmes with a length of wire attached to the ungrounded end and wound around the loopstick. When unwound. the short length of wire is intended to provide additional piekup if needed. Disconnert this wire from L_{2} and, without unwinding it, use it for L_{1}.
L_{3} is close-wound with (60 turns No. 30 entmcled, and either tapperl at about one third of the way up from the ground ond. or with a sepatrate eathode coil consisting of about one thiral the number of turns on L_{3}. wound over the ground end of L_{3}. and wound in the satue direetion. The bottom end of this winding should be gromeded.

Power for the converter maty be taken from the rar radio supply siner the current reguirement is negligible. With 1.00 volts at the positive 13 terminal of the converter, the converter driws approximately 4 mat and the drop across R_{2} is about 100 volts. The converter will work well at supply voltages up to 3 300 or more without change in the resistance value of R_{2}. The current drain will, of course, be higher at the higher supply voltages. and the wattage rating of the resistor may have to tre increased. If eurrent drain is an important consideration, the resistance value of h_{2} can lo incrased in proportion th the increase in supply voltage.

Fig. 19-43-Circuit of the conelrad converter for mobile use.

Fig. 19.44-Block diagram showing a switching system for the conelrad converter. K_{1} represents a spare set of contacts on the change-over relay. S_{1} is a s.p.d.t. toggle. With K_{1} in the receiving position as shown, power from the broadcast receiver may be applied to either the b.c. converter or the ham-band converter. With K_{1} in the transmitting position, power is applied to the broadcast converter for conelrad monitoring during
transmitting periods.

The oscillator can be checked for proper frequency range by the use of a grid-dip meter before power is applied or, after power has been turned on, by listening on a communications receiver covering the $2-$ to- 3 Mc . range.

Now connect an antenna to the iuput of the converter and comect the converter to the broadcast receiver. Set the hroadcast receiver at 1500 kc . (or to the frequency normally used with the ham-band converter). 'Turn on the pawer and adjust ('4 and the slug of L_{4} for a prak in noise (if you can't find a signal). Then adjust the slug of \dot{L}_{2} for maximum response.

Fig. 19-4t shows how the converter can be connected into a convenient switch system. (Originally described in QST', June, 1954).

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage battery as the source of power. The tube types used in equipment are chosen so that the filaments or heaters may be operated directly from the hattery. High voltage may be obtained from a supply of the vibrator-transformer-rectitier trpe, it smatl motor gencrator or at transistor-fransformer-rectifier system operating from the car battery.

Filaments

Because tubes with directly-heated cathodes (filament-type tubes) have the alvantage that they can be turned off during receiving periods and thereby reduce the average loal on the hattery, they are preferred by some for transmitter applications. However, the choice of types with direct heating is limited and the saving may not always be as great as atieipated, because directly-heated tutes maty require greater filament power thath those of equivalent rating with indirectly-heated cathodes. In most cases, the power required for trinsmitter filaments will be quite small compared to the total power eonsumed.

Plate Power

Under steady rumning conditions, the vi-brator-transiommerectifier system and the motor-generator-type plate supply operate with approximately the same eflicieney. However, for the same power, the motor-generat tor's over-all ofliciency may be some what lower because it draws a heavier starting current. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Transistor-transformer-rectifier plate supplies currently available operate with an efficiency of approximately 80 per cent. These eompact. light-weight supplies use no moving parts (vibrittor or armature) or vacuum tubes, and draw no starting surge current. Most transistorized supplies are designed to operate at 12 volts d.c.
and some units deliver 125 watts or more.
Converter units, both in the vilurator and rotating types, are also available. These operate at 6 or 12 volts d.c. and deliver 115 volts a.c. This permits operating standard a.e.-powered equipment in the car. Although these systems have the advantage of flexibility, they are less eflicient than the previously-mentioned systems because of the additional hosses introluced by the transformers used in the equipment.

Mobile Power Considerations

Since the car storage battery is a low-voltage source, this means that the eurrent drawn from the battery for even a moderate amount of power will the large. Therefore, it is mportant that the resistance of the battery circuit be held to a minimum by the use of heavy eonduetors and good solid eomections. . 1 heavyduty relay should be used in the line between the battory and the plate-power unit. An ordinary toggle switch. located in any convenient position, may then be used for the power control. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trunk, for instance) the 6 - or 12 -volt cable should be of the heavy military type.

A complete mobile installation may draw 30 to 40 amperes or more from the 6 -volt battery or better than 20 amperes from a 12 -volt battery. This requires a considerably increased demand from the car's battery-charging generator. The voltage-regulator systems on cars of recent years will take care of a moderate increase in demand if the car is driven fair distances regularly at a speed great enough to insure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it may be necessary to modify the charging system. Special commu-nications-type generators, such as those used in police-car installations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits by tightening up

19-MOBILE EQUIPMENT

slightly on the voltage-regulator and currentregulator springs. This should be done with caution, however, cherking for exressive generator temperature or abmormal sparking at the commutator. The average f \mathfrak{j}-volt car generator has a rating of 35 amperes, but it maly be possible to adjust the regulator so that the generator will at least hold even with the transmitter, receiver, lights, ete, all operating at the same time.
If higher transmitter power is used, it may be necessary to install an a.c. charging system. In this system, the generator delivers a.e. and works into a rectifier. I charging rate of 7.) amperes is casily obtained. Commutator trouble often experienced with d.c. generators
at high current is avoided, but the cost of such a system is rather high.
Some mobile operators prefer to use a separate battery for the radio equipment. Such a system can be arranged with a switeh that cuts the auxiliary hattery in parallel with the car battery for charging at times when the car battery is lightly loaded. The anxiliary bat tery can also be charged at home when not in use.
A tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with clips to make a connection to the battery of another car in case the operator's battery has been allowed to run too far down for starting.

The Automobile Storage Battery

The suceess of any mobile installation depends to a large extent upon intelligent use and maintenance of the car's battery.

The storage battery is made up of units consisting of a pair of coated lead plates immersed in a solution of sulphuric acid and water. Cells, each of which delivers about 2 volts, can be comected in serids to olstain the desired battery voltage. A i-volt battery therefore has three cells, and a 12 -volt battery has of edls, The average stock car battery has a rated capacity of 600 to 800 watt-hours, regardless of whether it is a 6 -volt or 12 -volt battery.

Specific Gravity and the Hydrometer

As power is drawn from the battery, the acid content of the electrolyte is reduced. The acid content is restored to the electrolvte (meaning that the battery is recharged) by passing a current through the battery in a direction opposite to the direction of the diselarge current.

Since the aded content of the electrolyte varies with the charge and diseharge of the hattery, it is possible to determine the state of charge by measuring the spereific gravity of the electrolyte.

An inexpensive devire for chereking the s.g. is the hydromoter which can be obtained at any automobile supply store. In cherking the s.g., enough electrolyte is drawn out of the cell and into the hidrometer so that the calibrated bulb floats freely without leaning against the wall of the glass tube.

While the readings will vary slightly with batteries of different manufacture, a reading of 1.275 should indicate full charge or nearly full charge, white a reading bolow 1.150 should indicate a battery that is close to the discharge point. More specific values can be obtained from the car or battery dealer.

Readings taken immediately after adding water, or shortly after a heavy diselarge period will not be reliable, because the electrolyte will not be uniform throughout the cell. Charging will speed up the equalizing, and some mixing can be done by using the hydrometer to withdraw and return some of the electrolyte to the cell several times.

A battery should not be left in a discharged condition for any appreciable length of time. This is especially important in low temperatures when there is danger of the electrolyte freezing and ruining the battery. A battery discharged to an s.g. of 1,100 will start to freeze at about 20 degrees F , at about 5 degrees when the s.g. is 1.150 and at $1 t$ below when the s.g. is 1,200 .

If a battery has been run down to the point where it is nearly discharged, it cam usually be fast-charged at a battery station. Fast-charging rates may be as high as 80 to 100 amperes for a 6 -volt battery. Any 6 -volt battery that will accept a charge of 75 amperes at 7.75 volts during the first 3 minutes of charging, or any 12 -volt battery that will accept a charge of 40 to 45 amperes at 15.5 volts, may be saffely fast-charged up to the point where the gassing becomes so excessive that electrolyte is lost or the temperature rises above 125 degrees.

A normal battery showing an s.g. of 1.150 or lass may be fast-charged for 1 hour. One showing an s.g. of 1.150 to 1.175 may be fastcharged for 15 mimutes. If the s.g. is 1.175 to 1.200 , fast-charging should be limited to 30 minutes.

Care of the Battery

The battery terminals and mounting frame should te kept free from corrosion. Any corrosive arcumulation may be removed by the use of water to which some houselold ammonia or baking soda has been addod, and a stiff-bristle brush. Care should be taken to prevent any of the corrosive material from falling into the cells. Cell (aips should be rinsed out in the same solution to kerep the vent holes free from obstructing dirt, Battery terminals and their cable clamps should be polished bright with a wire brush, and coated with mineral grease.

The hold-down clamps and the battery holder should be checked occasionally to make sure that they are tight so the battery will not be damaged by pounding when the car is in motion.

Voltage Checks

Although the readings of s.g. are quite reliable as a measure of the state of charge of a normal
battery, the necessity for frequent use of the hydrometer is an inconvenience and will not always serve as a conclusive check on a defective battery. Cells may show normal or almost normal s.g. and yet have high internal resistance that ruins the usefulness of the battery under load.

When all cells show satisfactory s.g. readings and yet the battery output is low, service stations check each cell by an instrument that measures the voltage of each cell under a heavy load. Under a heavy load the cell voltages should not differ by more than 0.15 volt.

A load-voltage test can also be mate by measuring the voltage of each cell while closing the starter switch with the ignition turned off. In many cars it is necessary to pull the central dis-
tributor wire out to prevent the motor starting.

Electrolyte Level

Water is evaporated from the electrolyte, but the acid is not. Therefore water must be added to each cell from time to time so that the plates are always completcly covered. The level should be checked at least once per week, especially during hot weather and constant operation.

Distilled water is preferred for replenishing, but clear drinking water is an acceptable substitute. Too much water should not be added, since the gassing that accompanies charging may force electrolyte out through the vent holes in the caps of the cells. The clectrolyte expands with temperature. (From QST, August, 1955.)

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.c. lines is a vailable, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

The most practical supply for the average individual amateur is one that operates from a car storage battery. Such a supply may take the form of a small motor generator (often called a dynamotor), a rotary converter, a vibrator-transformer-rectifier combination, or transistor supply.

Dynamotors

A dynamotor cliffers from a motor generator in that it is a single unit having a double armature winding. One winding serves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from 6-, 12-, 28- or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Suceessful operation of dyamotors requires heavy direct loads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked oceasionally to make certain that no looseness has developed.

In mounting the dynamotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the transmission of vibration mechanieally. The frame of the dynamotor should be grounded through a heavy flexible connector. The brushes on the high-voltage end of the shaft should be bypassed with $0.002-\mu \mathrm{f}$. mica capacitors to a common point on the dynamotor frame, preferably to a point inside the end cover close to the brish holders. Short leads are exsential. It may prove sesinable to shieh the contire unit, or even to remove the unit to a distance of three or four feet from the reediver and antema lead.

When the dynamotor is usal for receiving, a filter should be used similar to that described
for vilorator supplies. A $0.01-\mu \mathrm{f}$. ($\mathbf{6 0} 0$-volt (d.e.) paper capacitor should be connected in shunt across the ontput of the dymamotor, followed by a $2.5-\mathrm{mh}$. r.f. choke in the positive high-voltage lead. From this point the output should be run to the receiver power terminals through a smoothing filter using 4- to $8-\mu \mathrm{f}$. capacitors and a 15 - or 30 -henry choke having low d.e. resistance.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resultiug squarewave d.c. pulses in the primary of the transformer cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is rectified, rither by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.c., which may be filtered by ordinary means. The smoothing filter can be a single-section affair, but the output capacitance should be fairly large - 16 to 32μ f.

Fig. 19-15 shows the two types of circuits. At A is shown the nonsynchronous type of vibrator. When the battury is disconnected the reed is midway between the two contacts, touching neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, causing current to flow through the lower half of the fransformer primary winding. Simultaneously, the magnet coil is short-circuited, deennergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

(B)

Fig. 19-45-Basic types of vibrator power-supply circuits. A-Nonsynchronous. B-Synchronous.

The syachronous cireuit of Fig. 19-55B is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connections may be determined by experiment.
The buffer eapacitor, C_{2}, across the transformer secondary, absorbs the surges that occur on breaking the current, when the magnetic field collapses practically instantaneously. and hence causes very high voltages to be indured in the secondary. Without this capacitor execssive sparking oceurs at the vibrator contacts, shortening the vibrator life. Correct values usually lic between 0.005 and 0.033 F ., and for $250-300$-volt supplies the capacitor should be rated at 1500 to 2000 volts d.c. The exact capacitance is critical, and should be deternined experimentally. The optimum value is that which results in least battery current for a given rectified d.c. output from the supply. In practice the value can be determined by ohserving the degrece of vibrator sparking as the capacitanee is changed. When the system is operating properly there should be practically no sparking at the vibrator conlacts. A 5000 -ohm resistor in series with C_{2} will limit the secondary current to a safe value should the capacitor fail.
Vibrator-transformer units are available in at variety of power and voltage ratings. Representative units vary from one delivering 125 to 200 volts at 100 ma. to others that have a 400 -volt output rating at 150 ma. . Most units come supplied with "hash" filters, but not all of them have built-in ripple filters. The requirements for ripple filters are similar to those for a.c. supplies. The usual efficiency of vibrator packs is in the vicinity of 70 per cent, so a 300 -volt $200-\mathrm{ma}$. unit will draw approximately ${ }^{15}$ amperes from a 6 -volt storage batterv. Special vibrator transformers are also a vailable from transformer manufacturers so
that the amateur may build his own supply if he so desires. These have d.c. output ratings varring from 150 volts at 40 ma . to 330 volts at 135 ma .
Vibrator-type supplies are also available for operating standard a.c. equipment from a (;- or 12 -volt storage battery in power ratings up to 100 watts continuous or 125 watts intermittent.

'Hash'' Elimination

Sparking at the vibrator contacts causes r.f. interference ("hash." which can be distinguished from hum by its hawsh, sharper piteh) when used with a receiver. To minimize this, r.f. filters are incorporated. consisting of $R F^{\prime} C_{1}$ and C_{1} in the battery circuit, and $R F C_{2}$ with C_{3} in the d.c. output circuit.

Equally as important as the hash filter is thorough shielding of the power supply and its connerting leads, since even a small piece of wire or metal will radiate chourh r.f. to cause interference in a sensitive imateur receiver.
The power supply should be built on a metal chassis, with all unshielded parts underneath. A Inttom phate to complete the shielding is advisable. The transformer case. vibrator cover and the metal shell of the tube all should be grounded to the chassis. If a glass tule is used it should lse enclosed in a tube shield. The battery leads should be evenly twisted, since these leads are more likely to radiate hash tham any other part of a well-shielded supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to a minimum. Shielding the leads is not often found to be particularly helpful.

UNIVERSAL VIbrator POWER SUPPLY

A vibrator-type power supply may be designed to operate from a storage battery only, or from either a battery or 115 volts a.r. Most late-model cars use 12 -volt batteries, but there are still many caus with 6 -volt systems in opera-tion-a point that should be given due consideration where emergency operation is an oljective.

The circuit of a universal power supply for emergency, mobile, or home-station use is shown in Fig. 19-46. The unit furnishes a d.e. output of 300 volts at 160 ma . and can be operated from any of the alove-mentioned sources. Shifting from one power source to another is acemplished by plugging P_{1} or P_{2}, connected to the selected source, into one of the two chassis connectors J_{1} or J_{2}. The viluator-primary current is 11.6 amperes with 6 -volt input under loaded conditions, and 6.8 amperes with 1%-volt imput.

Heater Connections

To adapt equipment for optional (\mathbf{i} - or 1\%-volt operation, 6 -volt tubes must be used with their heaters in series-parallel. Fig. 19-47 shows a typical example of connections. The tubes in the

Mobile Power

Fig. 19.46-Circuit of the universal power supply. All capacitances are in μ f.
C_{1}-Buffer capacitor, tubular plastic.
$\mathrm{C}_{2}, \mathrm{C}_{3}$-Hash-filter capacitor, poper.
C_{4}-Hash-filter capacitor, disk ceramic.
$\mathrm{C}_{5}, \mathrm{C}_{6}$-Ripple-filter capacitor, $5 \mu \mathrm{f}$. or more, 600 -volt oit-filled or electrolytic.
F_{1}-3-omp. cortridge fuse (Litllefuse type 3AG) in extractor-post mounting (Littlefuse 341001).
F_{2} - 20-amp. cartridge fuse (Littlefuse type SFE) in in-line fuse retoiner (Littlefuse 155020).
I_{1}-Neon pilot lamp.
$J_{1}, J_{2}-12$-contact male chassis connector (Cinch-Jones P-312-AB).
$J_{3}, J_{4}-6$-contoct female chassis connector (Cinch-Jones S-306-AB).
L1-5-h. 200-ma. 80-ohm filter choke (Merit C.1396, Stancor C-1411).
$P_{1}, P_{2}-12$-contact female coble connector (Cinch-Jones S. 31 2-CCT).
P_{3}, P_{4} - 6 -contact mole coble connector (Cinch-Jones P-306-CCT).
\mathbf{P}_{5}-Cigar-lighter plug (Mallory R-675).
equipment should be divided into two groups whose heater-cument ratings total as closely as possible the same value. The heaters in each group should be comocted in parallel, and the two grouns then comnected in series. If it is impossible to arrive at a grouping that will have exactly the same total current, a resistor may be connected in parallel with the group drawing the smaller current as shown. The value of this resistor shouk be sueh that it will dratr enough
\mathbf{R}_{1}-Buffer resistor.
R_{2}-Series voltage-dropping resistor for receiver, slider adjustable.
RFC $_{1}-30$ turns No. 14 enam., $1 / 2$-inch diom., close-wound.
$\mathrm{RFC}_{2}-1$-mh. r.f. choke (National R-300-U, Millen 34106).
$S_{1}-$ S.p.s.t. toggle switch.
S_{2}-S.p.d.t. toggle switch.
S_{3}-S.p.d.t. toggle, or other, of transmitter.
T_{1}-Combination power transformer: 6 -volt d.c. vibrator or 115 v. a.c. input; 300 volts, 160 ma.; 6.3 volts 3 amp ; 6.3 -volt 4.5 -amp. tap on vibrator primary (Merit P-3176). Numbered terminals are color-coded os follows: 1-heavy green; 2-yellow; 3-light green; 4-black; 5-brown; 6-blue; 7-white; 8-red; 9-red-yellow; 10-red; 11 and 12-block.
$X_{1}-4$-prong tube socket for 6 -volt vibrator (Mallory 4501 vibrator).
X_{2} —4-prong tube socket for 12 -volt vibrator (Mollory G4501 vibrator).
eurrent at \mathbf{f} volts to make up the difference betweren the two totals. One side of one group may be grounded to chassis but the other side of this group and both sides of the second group must be insulated.

Switching Circuits

Battery input connections are made through J_{5} which plugs into a eigar-lighter soeket in mobile service, P_{2} is a fuse which is inserted in the

19-MOBILE EQUIPMENT

Fig. 19.47-Circuit showing typical seriesparallel heater connections for 6 -volt and 6 12-volf tubes. Resistor R_{1} is used when necessary to balance the currents in the two branches as described in the text. The dashed line shows how the switching system connects all tubes in parallel for 6-volt opera. tion by grounding.
cord between P_{5} and P_{1}.
For 6 -volt operation I_{1} is plugged into. I_{1}. For 12 -volt opreration I_{1} is plugged into Γ_{2}. For 115 -volt ate operation I_{2}, is phaged into. f_{3}.

P'ositive high-voltage output from the suphly is fed to Pins 3 on output connectors,I_{3} and I_{4}. The three heater rommertions are made through Pins 1, 2 and 6. The cable for transmitter plug I_{3} has provision for comnerting to a transmitreceive switeh $\left(S_{3}\right)$ at the tramsmitter. In the transmit position the plate voltage is fed to the transmitter. In the reereive position the switch fereds the plate voltage, via l'in t, through series voltagedropping resistor R, to Pin 4 on the other output jack and thenere to the receiver. It will be notieced that the same rirevit results with I_{3} and I_{4} in either output jack.

Construction

The unit is constructed on a $7 \times 12 \times 3$-inch chassis, with only the transformer and output comeretors J_{3} and J_{4} above deck. The two reetifier tules and both vibrators are mounted below deck for compartmess and shiclding. This leaves a clear area on top of the chassis for mounting a vereiver or small transmitter. Aderuate ventilation is provided by patterms of $1 / 4$-inch holes in the top of the chassis, directly over the rectificer tubers and along the bottom edge of the chassis on both sides.

The pilot lamp, ate. power switel and filter switeh S_{2} can be mounted on the front and of the chassis, with fuse F_{1} and the iuput jueks at the other end. Shirlding should be completed with a chassis bottom plate.

Operation

Although the circuit is arranged so that no damage will ocrur if a mistake is made, the input connectors should be platinly marked to avoid plugging at cable into the wrong socket.

Original description appeared in (SST', Oct., 1957.)

- TRANSISTOR POWER SUPPLIES

A mobile or portable power supply using transistors hats high over-all efficiency at its
rated power output. Since there are no moving parts there are few mantename problems. (Git pacitors and resistors may oreasionally need replarement. but if the transistors arre oprerated within their celectrical and thermal ratings, their life expectaney is in terms of years rather than hours.

In a transistor power supply, the transistors operate as clectronic switeles to interrupt the d.e. through the primary of the power transformer much like the mechamieal vibrator does in a vilurator suppla.

When voltage is applied to the power supply circuit, current will flow through the transistors: however, since no two transistors are preceisely. alike electricallys, initiatly one will conduct : little more eurrent than the other. This differance current or "starting" carrent will ealuse a small voltage to be indured in the transformer winding connected to the bases of the transistors. The polarity is such that the conducting transistor is biased to conduct even more heavily while the base of the other transistor is biased to cutoff. This process continues until the increasing cument camses magnetie saturation of the transformer core, at which time the induced voltage drops to zero and there is no longer enough hase bias to maintain the colloctor current. When this happens the current derreasos. causing an indureel voltage of opposite polarity. The process then reverses so that the previonsly noneondurting transistor starts to conduct and the previonsly conducting transistor beromes cut off. The result is an alternating current of soquare-wave form through the transformer primary. This in tum induces a stepped-up) voltage in the h.v. seromalary of the transformer.
The transistor supple is self-protecting against overload becanse if a short eirevit or heavy overload orecurs oscillations crase and the input burrent drops to a low value. The output voltage regulation is extremoly good making the transistor supply reperiatly useful as a source of plate or sereen power for a singlo-sideband mobile or portable rig.

Transistor power transformars are available in both conventional and toroidal construction, with outputs ranging up to 150 watts. The circuit shown in Fig. 19-48, a typical transistor power supply, has an output of about 350 volts at 190 mat. It uses eight selonium rectifiers in a bridge (irreuit but four silicon-type power diodes having an inverse peak voltage rating of 800 volts or more could be substituted with a sub)stantial saving in space. The center-tapped serondary of T_{1} provides a half-voltage souree that may be used simultancously with the high volture.

In at transistor power supply cirouit that has not been properly designed. small spikes may appear on the loading edyes of the square wave generated in the tramsistor power oscillator. Bven though the spikes are of short duration they cath caluse pmach-through of the transiston junction if the total voltage exceeds the transistor collector-to-emitter rating. The anphitudes

Fig. 19-48 - Circuit of the transistor power supply. Resistances are in ohms.
C_{1}-2000 $\mu \mathrm{ff}$., 15 volts (2 paralleled $1000 \mu \mathrm{f}$. electrolytics, Sprague TVA 1163).
CR_{1} through $\mathrm{CR}_{8}-150$ ma. selenium rectifier (Radio Receptor 5P1).
$F_{1}-10$ - amp. fuse.
$\mathrm{Q}_{1}, \mathrm{Q}_{2}-2 \mathrm{~N} 278$ transistors.
T_{1}-Transistor power trans-
former (Sunair Electronics type 14-450-1).

of these spikes can be held to a safe value if the primary and secondary coils on the power transformer are tightly coupled (bifilar wound) and a large capacitor (C_{1} in Fig. 19-18) is connected across the low voltage supply.

It is very important to provide good heat transfer from the mounting bases of the transistors to the chassis. The transistor junction temperature must not be allowed to exceed the manufacturer's ratings or thermal runaway will occur and the transistors will become useless. Layout of the parts is not critical. A conventional box type chassis may be used; the larger the surface area the better, since that means more rapid heat transfer from the transistors.
Since heat is the prime limiting factor in transistor power supply operation, placement of the unit in the car should have special consideration. Try to find a location away from hightemperature spots and in a well-ventilated arrea.

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for communications control centers during emergencies, the most practical form of independent power supply is the gasoline-engine driven generator which provides standard 115 -volt 60 -cycle supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to ten kilowatts, or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6 - or 12 -volt battery used in starting. Fitted with self-starters and adequate mufllers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate
continuously at full load.
The output frequency of an engine-driven generator must fall between the relatively narrow limits of 50 to 60 cycles if standard 60 -cycle transformers are to operate efficiently from this source. A 60 -cycle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism.
Output voltage should be checked with a voltmeter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate.

Noise Elimination

Electrical noise which may interfere with receivers operating from engine-driven a.c. generators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the generator and one side of the output. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder locks and slowly shift the position of the brushes while checking for noise with the receiver. Usually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.
From this point on, if necessary, bypass eapacitors from various brush holders to the frame, as shown in Fig. 19-49, will bring the hash down to within 10 to 15 per cent of its

original intensity, if not entirely climinating it. Most of the remaining moise will be redueed still further if the high-power audio stages are eut out and a pair of headphones is conneeted into the second detector.

Fig. 19-49-Connections used for eliminating interference from gas-driven generator plants. C should be 1μ f., 300 volts, paper, while C_{2} may be $1 \mu \mathrm{f}$. with a voltage rating of twice the dic. output voltage delivered by the generator. X indicates an added connection between the slip ring on the grounded side of the
line and the generator frame.

POWER FOR PORTABLES

Dry Cell Batteries

Dry-ecll batterios are a pratetioal souree of power for supplying portables or equipment which must be transported on foot. However, they are costly and have limited courent capat-
bility. The ginerathon cells lose their power even when not in use, if allowed to stand idle for periods of a vear or more. This makes them uneronomieal if not used more or lass rontimuously:
The nereury eell has a much higher ratio of amperehour capacity to volume at higher eurrent densitios than are obtainable from the conventional dry cell. Merrary batteries are well suited for emorgency portable operation even after many months of storage.
Typical service life data for several types of zinc-atrbon cells and hatteries is given in Table 1!-III. The figures show length of service time before the eell terminal voltage drops to 1.0 volt (in [3-batteries. whon fudividual cells reach 1.0 volt).

Mereury batteries and cells are available in several sizes and shapes. Some may be operated at current drains up in the ampere range and others are available in potentials in the hundreds of volts. A typical 1.35 -volt mercury cell measuring only $21 / 4 \times 21 / 4 \times 23 / 4$ inches, has a capacity of 43 ampere hours (maximum current 3 :mperes). Cells of this type would be useful for filament or heater applications. A representative merwury B-hattery has a voltage of 67.5 volts and a capacity of 3.6 ampere hours (maximum current 250 mat). It meisures about $33 / 8 \times 11 / 2 \times 101 / 6$ inches.

Construction Practices

TOOLS AND MATERIALS

While ath eatsier, and perhapes a better, job ean be dome with a greater variety of tooks available, by taking a little thought and rare it is possible to turn out a fine piece of equipment with only a few of the eommon hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

l.ongs-nose flers, fi-inch.

Diagonal cutting pliers, 6-inch.
Wire stripher.
serewdrivar, 6- to 7 -inch, 1/4-inch bhate.
Screwdriver, t-to i-ineh, 3/8-inch blade.
Scrateh awl or suriber for marking lines.
Combinationspuare, 12 -inch. for lasing ont work.
Itand drill, '4-inoh ehuck or larger, e-speed type preferable.
Flectric solderimg iron, 100 watts, $1 / 4-\mathrm{in}$. tip.
Hack saw, 12-incla bades.
Center punch for marking thole centers.
llammer, ball-peen, 1-1b. head.
Heavy knife.
Yardstick or other straightedge.
C'arpenter's brace with adjustable hole cutter or socket-hole purches (sectext).
Targe, coarse, flat file.
Large round or rat-tail file, $1 / 2$-inch diameter.
Three or four small and medium files-fiat, round, hali-round, triangular.
Drills, partieularly Y-inch abd Nos. 18. 28, 33, 42 and 50 .
Combination oil stone for sharpening tools.
Solder and soldering paste (noneorroding).
Mediun-wcight machine oil.

ADDITIONAL TOOLS

Bench vise, 4-inch jaws.
'Tin shears, lo-inch, for cutting thin sheet metal. Taper reamer, $1 / 3$-inch, for enlarging small holes.
inaper reamer, 1 -inch, for enlarging holes.
('ountersink for brace.
('arpenter's plane, 8- to 12-inch, for woodworking.
C'arjenter's saw, crosscut.
Motor-driven ennery wheel for grinding.
Long-shank screwdriver with acrew-holding elip for tight plares.
She of "spintite" socket wrenchem for hex nuts.
Set of suall. flat, open-end wrenches for hex nuts.
Wood rhisel, $1 / 2$-ineh.
Cold chisel, $1 / 2$-inch,
Wing,divilers, 8-ineh, for seribing circles.
Sect of machinc-serew taps and dies.
Dusting hrush.
Socket punches, csp, 5/8", 3/4", $11 / 8^{\prime \prime}$ and $11 / 4^{\prime \prime}$.
panels and metal chassis for assembly and wiring. It is an excrollent idea for the amateur Who does constructional work to add to his supply of tools from time to time as finanees permit.
several of the pieres of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws, and jeiner. Although not essential, they are desirable should you be in a position to arequire them.

Twist Drills

Twist drills are made of either high-speed steel or earbon sterl. The latter type is more common and will wasully be supplied unless specifie request is mado for high-speed drills. The earbon drill will suffiec for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced typrin Table 20-I will be most commonly used in construetion of amateur equipment. It is usually desirable to purchase several of each of the commonly-used sizes rather that a standard set, most of which will he used infreduently if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance which may be aboded by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angles required for best eutting with least wear. Occasional oilstoning of the cutting edges of a drill or reamer will extend the time between grinding:.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long period: when it is not being used. After each period of use. the tip should be removed and cleaned of any seate which may have accumulated. An oxidized tip may he cheaned by dipping it in sal ammoniae while

20-CONSTRUCTION PRACTICES

hot and then wiping it clean with a rag. If the tip becomes pitted it should be filed until smooth and bright, and then tinned immediately by dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materials will be required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative list follows:

Sheet aluminum, solid and perforated, 16 or 18 gatuge, for brackets and shielding.
$1 / 2 \times 1 / 2$-inch aluminum angle stock.
$1 / 4$-inch diameter round brass or aluminum rod for shaft extensions.
Machine screws: Round-head and flat-head, with nuts to fit. Most useful sizes: 4-36, $6-32$ and $8-32$, in lengths from $1 / 4$ inch to $11 / 2$ inches. (Nickel-plated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite, lucite and polystyrene scraps.
Soldering lugs, panel bearings, rubber grommets, terminal-lug wiring strips, var-nished-cambric insulating tubing.
Shielded and unshielded wire.
Tinned bare wire, Nos. 22, 14 and 12.
Machine screws, nuts, washers, soldering lugs, etc., are most reasonably purchased in quantities of a gross.

- CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building radio gear on a metal chassis is no more of a chore than building with wood, and a more satisfactory job results. Aluminum is to be preferred to steel, not only because it is a superior shielding material, but because it is much easier to work and to provide good chassis contacts.

The placing of components on the chassis is shown quite clearly in the photographs in this Ilandbook. Aside from certain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can be saved by spending sufficient time in planning the job. When all details are worked out beforehand

Fig. 20.1-Method of measuring the heights of capacitor shafts, etc. If the square is adjustable, the end of the scale should be set flush with the face of the head.

TABLE 20-1			
Number	$\begin{gathered} \text { Diameter } \\ (\text { mils }) \end{gathered}$	Will Clear Screw	Drilled for Tapping Iron, Steel or Brass*
1	228.0	-	\rightarrow
2	221.0	12-24	-
3	213.0	-	14-24
4	209.0	12-20	1
5	205.0	-	-
6	204.0	-	-
7	201.0	-	-
8	199.0	-	-
9	196.0	-	-
10	193.5	10-32	-
11	191.0	10-24	-
12	189.0	-	-
13	185.0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	
18	169.5	8-32	-
19	166.0	-	12-20
20	161.0	-	-
21	159.0	-	10-32
22	157.0	-	-
23	154.0	-	-
24	152.0	-	-
25	149.5	-	10-24
26	147.0	-	
27	144.0	-	-
28	140.0	6-32	-
29	136.0	-	8-82
30	128.5	-	8
31	120.0	-	-
32	116.0	-	-
33	113.0	4-36, 4-40	-
34	111.0	,	-
35	110.0	-	6-32
36	106.5	-	-
37	104.0	-	-
38	101.5	-	-
39	099.5	3-48	-
40	098.0	-	-
41	096.0	-	-
42	093.5	-	4-36, 4-40
43	089.0	2-56	-
44	086.0	-	-
45	082.0	-	3-48
46	081.0	-	
47	078.5	-	-
48	076.0	-	-
49	073.0	-	2-56
50	070.0	-	-
51	067.0	-	-
52	063.5	-	-
53	059.5	-	-
54	055.0	--	-
*Use one rubber.	ize larger	rtapping buk	elite and hard

the actual construction is greatly simplified. Cover the top of the chassis with a piece of wrapping paper or, preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place capacitors and other parts with shafts extending through the panel first, and arrange them so that the controls will

Metal Work

form the desired pattern on the panel. Be sure to line up the shafts squarely with the chatsis front. Locate any partition shichds and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Wateh out for caparitors whese shafts are off center and do not line up with the mounting holes. bo not forget to mark the centers of socket holes and holes for leads under i.f. transformers. rete, as wall as holes for wiring laals. The smath holes for socket-mounting serews are best located and renter-punched, using the sorket itsolf as a template, after the mata center hole has beren cut.

By means of the square lines indieating an--urately the renters of shafts should be extended to the front of the chassis and marked on the panel at the ehassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling. the parts which require monnting muderneath may be located and the mounting holes drilled, making sure by trial that mo interferences exist with parts mounted on top. Momating holes along the front edge

Fig. 20-2 - To cut rectongular holes in a chassis corner holes may be filed out as shown in the shaded partion of B, making it possible to start the hack-saw blade atong the cutting line. A shows how a single-ended handle may be constructed for a hack-saw blade.
of the chassis should be transferred to the panel, by once argin fastoning the pand to the chassis and marking it from the rear.
Next, mount on the chassis the eaparitors and any other parts with shafts extending to the panel, and measure acrurately the height of the eenter of each shat abowe the rhassis, ats illustrated in Fig. 2()-1, The horizontal displaeement of shafts having already been marked on the chassis line on the manel. the vertical displatement can be measured from this line. The shaft centers may now be marked on the back of the pamel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted. Holes for terminals atc., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the conters first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be usod. Often it is an advantage to shift a two-sped drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may bestarted with a smaller drill and reamed out with the larger drill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the 3 -inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole. placing the holes as close together as possible. The center may then be knocked out with a cold wisel and the edges smoothed up with a file. Taper reamers which fit into the earpenter's brace will make the job easjer. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file. if the file is revolved counterelockwise.

For socket holes and other large round holes, an adjustable couter designed for the purpose may be used in the brace. Ocerasional appliention of machine oil in the cutting groove will help. The cutter first should be tried out on a blork of wood, to make sure that it is set for the eorrect diameter. The most comenient device for cutting socket holes is the socket-hole punch. The best type is that which works by turning a take-up serew with a wrench.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a 1 -inch hole inside each corner, ats illustrated in lig. 20-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punches which are now a vailable also may be of considerable assistance in cutting out large rectangular openings. The burss or rough edges which usually result after drilling or cutting holes mat be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft eoupling with adequate insulation should be used. Satisfactory support for the shaft extension ran be provided by means of a metal panel bearing made for the parpose. Never use panel bearings of the monmetal tepe unless the rapareitor shatt is grounded. The metal bearing should be connectedto the chass is with a wire or grounding strip.

20-CONSTRUCTION PRACTICES

This prevents any posisible danger of shock.
The use of fiber washers between ceramic insulation and metal brackets, serews or nuts will prevent the ceramic parts from breaking.

STANDARD METAL GAUEES			
Gauge N'n.	$\begin{gathered} \text { American } \\ \text { or } B, N, 1 \end{gathered}$	I's. Nitridaril:	Birmingham or Nlubs ${ }^{3}$
1	.2893	.28125	.300
2	.2 .76	$\therefore 65095$.284
3	.2294	.25	.25!
4	$\therefore 043$.23437.5	. 238
i)	. 1819	.2187.)	.200
6	. 1620	.203125	.203
7	. 1443	.187.)	. 180
8	.128i	. 171875	. 165
9	.1144	. 1.762 .5	. 118
10	.1019	. 14040 s	.134
11	.09074	.12\%	. 120
12	.08081	. 10437.)	. 100
13	.07196	.09375	. 04.5
14	.06408	.078125	.083
15	. 05707	.070312.5	.07:
16	.0.08:	.06) 5	. 046
17	. 04526	.056:5	.0.)8
18	. 01030	.0.)	. 049
19	.03384	. 01375	.012
20	. 03196	.0.375	.0.35
21	. $0: 8846$.03437.5	.0332
$2 \cdot 3$. 025535	.03125	.028
23	. $0: 205 \%$.0281:5	, 025
24	. 02010	.025	.02.2
25	.01790	. $0: 21875$. 020
26	. 01594	.01875	. 018
27	. 01420	. 017187.	. 016
28	. 01204	.0150:3	.011
29	. 011126	.01406ie.	. 013
30	. 01003	.012.	.012
31	.0084:8	.01094375	. 010
32	. 0075450	.0101502\%	. 004
3.3	.007080	. 000337.5	.008
31	.0043330	.00851437.5	. 007
35	.00.5615	.007812.7	.00.7
36	.005000	.007031:3	. 004
37	.0044.83	. 00660406506	. . .
38	.003045)	.0062.	
39	.0(03.3)31	
40	.003145	$\cdots \cdots$	* . **

1 Lised for aluminnm, roppor. Drass and nonferruus alloy sheets, wire and rods.

2 Used for iron, steel, nickel amd forrous allos sheets, wire and rouls.

3 Csed for seamless tubes; also by sume namufucturers for copper and bruss.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it may be marked with scratehes as deep as possible along the line of the cut on both sides of the sheet and then clamped in at vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken: otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the joh easier. " (")-clamps may be used to keep the bars from spreading at the
ends. The rough edges may be smoothed up with a file or ly plating a large piece of emery cloth or satudpaper on a flat surface and running the edge of the metal back and forth over the sheet.

Bends may be made similatly. The sheet should be seratelied on both sides, but not so decply as to cause it to break.

Finishing Aluminum

Aluminum chassis, pands and parts may be given a sheen finish by treating them in a caustic bath. An enamelled container, such as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary houschold tye in cold water in a proprotion of $1 / 4$ to $\frac{1}{2}$ ann of lye per gallom of water. The stronger solution will do the joh more rapidly. Stir the solution with a stick of wood until the lye erystals are ermplete dissolved. Be very careful to avoid any skin contact with the solution. It is als, harmful Io clothing. Sufficient solution should be prepared to cover the piece completely. When the aluminum is immersed, a very promounced bubbling takes place and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be suflicient, depronding upon the strength of the solution and the desired surface.
Remove the aluminum from the solution with sticks and rinse thoroughty in cold water while swahning with a ras to remove the blapk deposit. Then wipe off with a rag soaked in vinegar to remove any stubhorn stains or fingerprints. (See May, 1950, QST for a method of coloring and anodizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sulfieient temperature. limough heat should be applied so that the solder will melt when it comes in contact with the wires being joined, without touching the solder to the iron. Always us. rosin-eore solder, mever awid-core. Wexpt where alsolutely necessary, solder should never be depended upon for the mechanical strength of the joint; the wire should be wrapped around the tormitals or clamperl with soldering terminals.
When soldering arsital diodes or carbon re-

DECIMAL	EQUiVA	S OF FRACTIONS		
1 '32.	.0312.5	17	32	. 3125
116	.062:		116	. 30.2
332	.041375	1:	3:2	. 519375
1/8	.12.)		58.	(fiz.)
-) 32	.150%)	21	32	diatize)
316.	.1875		1116.	.1987.)
732	.2187.7	23	32	. 71875
14	. 25		34.	. 75
(3) 32	.2812.)		'32.	. 7812.5
516	. 3125		13/16.	.8125
1132	. 3437.5	27	32.	.8437,
38.	. 375		78	.87.)
1332.	.4062.	29	32.	. 906325
716	.437.		1.510	. 9375
15.32.	. 4687.3	31	32.	. 96875
12	.)		1.	

Soldering

Fig. 20-3-Cable-stripping dimensions far Jones Type P- 101 plugs. Smaller dimensians are for $1 / 4$-inch plugs, the larger dimensions for $1 / 2$-inch plugs. As indicated in C , the remaining capper braid is wound with bare or tinned wire to make a snug fit in the sleeve of the plug.
sistors in phare, esperially if the leads have been cut short and the resistor is of the small $1 / 2$-watt size, the resistor lead should be gripped with a pair of pliers up close to the resistor so that the heat will be conducted away from the resistor. Overheating of the resistor while soldering cim (atuse a permanent resistance change of ats much as 20 per cent. Also, mechanical stress will have a similar effert, so that a small resistor should be mounted so that there is no appreciable merhanical strain on the leads.

Trouble is sometimes experienced in soldering to the pins of coil-forms or male cable plugs. It helps first to tin the inside of the pins by itplying soldering paste to the hole, and then flowing solder into the pin. Then immediately clear the solder from the hot pin by a whipping motion or by blowing through the pin from the inside of the form or plug. Before inserting the wire in the pin, file the nickelphate from the tip. Nfer soldering, round the solder tip off with atike.

When soldering to sockets, it is a good idea to have the tule or coil form inserted to prevent solder running down into the sorket prongs. It

Fig. 20-4-Dimensions for stripping $1 / 2$-inch cable to fit Amphenol Type 83.1 SP (PL-259) plug.

Fig. 20-5-Methad af assembling $1 / 4$-inch cable, Amphenal Type 83-1 SP (PL-259) plug and adapter.
also helpes for condued the heat atway when soldering to polysivene sockets, which often soften under the heat of the iron.

Wiring

The wire used in connecting up amateur equipment should be selected considering both the maximum curvent it will be called upon to handle and the voltage its insulation must stand without breakdown. Also, from the consideration of TVI, the power wiring of all transmitters should be done with wire that has a braided shielding eover. Rereiver and tudio circuits may also require the use of shiedded wire at some points for stahility, or the elimination of hum.

No. 20 stranded wive is commonly used for most receiver wiring (except for the high-

Fig. 20-6-Stripping dimensions for Amphenol $82-830$ and 82.832 plug-in cannectars. The langer expased braid is for the first type.

Fig. 20.7-Methods of locing cobles. The method shown at C is more secure, but takes more time than the method of B . The latter is usually adequate for most amateur requirements.
frequeney circuits) where the current does not exceed 2 or 3 amperes. For higher-current heater circuits, No. 18 is available. Wire with cellubse aretate insulation is good for voltages up to about $5(0)$. For higher voltages, thermoplastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hook-up wire an easy jol are available on the nathet.
In cases where power leads have several branches in the chassis, it is convenient to use fiber-insulated tie points or "lug strips" as anchorages or junction points. Strips of this type are also useful is insulated supports for resistors, r.f. chokes and capacitors. High-voltage wiring should have exposed points held to a minimum, and those which cannot be avoided should be rendered as inarcessible as possible to accidental contact or short-circuit.
Where shielded wire is called for and capacitance to ground is not a factor, Belden type 8885 shielded grid wire may be used. If capacitance must be minimized, it may be necessary to use a piece of arr-radio low-capacitance lead-in wire, or coaxial cable.

For wiring high-frequency circuits, rigid wire is often used. Bare soft-drawn timed wire, sizes 22 to 12 (depending on mechanical requirements), is suitable. Kinks can be removed by stretching a piewe 10 or 15 feet long and then cutting into short lengths that can be handed conveniently. R.f. wiring should be run directly from point to bint with a minimum of sharp bends and the wire kept well spaced from the chassis or other
grounded metal surfaces. Where the wiring must pass through the chassis or a partition, a clearance hole should be cut and lined with a rubber grommet. In case insulation becomes necessary, varnished cambric tubing (spaghetti) can be slipped over the wire.
In transmitters where the peak voltage docs not exceed 2500 volts, the shielded grid wire mentioned above should be satisfactory for power circuits. For higher voltages, Belden type 8656 , Birnbach type 1820, or shielded ignition cable can be used. In the case of filament circuits carrying heavy current, it may be neressary to use No. 10 or 12 bare or enameled wire, slipped through spaghetti, and then covered with copper braid pulled tightly over the spaghetti. The chapter on TVI shows the mamer in which shielded wire should be applied. If the shielding is simply slid back over the insulation and solder flowed into the end of the braid, the braid usually will stay in place without the neeessity for cutting it back or binding it in place. The braid should be burnished with sandpaper or a knife so that solder will take with a minimum of heat to protect the insulation underneath.
R.f. wiring in transmitters usually follows the method described aloove for receivers with due respect to the voltages involved.
Power and control wiring external to the transmitter chassis preferably should be of shielded wire bound into a cable. Fig. 2()-7 shows the correct methods of lacing cables.

Coaxial Plug Connections

Considerable time and trouble can be saved in making cable connections to coaxial plugs by starting out with the correct stripping dimensions. Fig. 2()-3 shows how the end of the cable should be prepared for connecting to Jones Type P-101 plugs. After the exposed hraid has been wound, it should be carofully timed, applying no more heat than is necessary, to avoid melting the inner insulation. A small amount of solder also should be flowed into the sleeve of the plug. Then, when the cable is inserted in the sleeve, the connction can be made secure by holding the iron against the sleeve until the solder inside melts. While joining the two, the plug may be held by inserting it in a hole drilled in a board. Figs. 20-4, 20-5 and 20-6 show details of connections to different types of Amphenol plugs and adiepters. In Fig. 20-4, it is easiest to cut through to the wire with a sharp, knife at a distance of 13/6 inch from the end of the wire and remove the insulation and slielding in one piece. Then slice off a $1 / 16$-inch piece of polyethylene which may be slid back onto the wire.
After the braid in Fig. 20-5 has been frayed back, it will be necessary to file the braid down as much as possible to make it fit the plug.

COMPONENT VALUES

Values of composition resistors and small caparitors (mica and ceramic) are specified throughout this IIandloook in terms of "preferred values." In the preferred-number sys-

TABLE 20-II Standard Component Values		
$20^{\circ} \mathrm{c}$ Toleranre	$\begin{gathered} 10^{\circ} \\ \text { Talprianre } \end{gathered}$	$\begin{gathered} b^{\prime \prime \prime} \\ \text { Toleranire } \\ \hline \end{gathered}$
10	10	10 11
	12	12 13
15	1.5	15 10
	18	18 20
22	\because	22
	97	27 30
33	333	33
		36
	34	39
		43
17	47	47 51
	36	56
		62
68	68	68
		75
	$8:$	82
		91
100	100	100

tem, all values represent (approximately) a constant-perentage increase over the next lower value. The base of the system is the number 10. Only two significant figures are used. 'Table 20-11 shows the preferted values based on tolerance steps of 20,10 and 5 per eent. All other values are expressed by multiplying or dividing the base figures given in the table by the appropriate power of 10. (For eximple, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are obtained by multiplying the base figures by 1000,100 , and 10 , respectively.)
"Tolerance" means that a variation of plus or minus the percentage given is considered satisfactory. For example, the actual resistance of a " 4700 -ohnn" 20 -per-cent resistor can lie anywhere between 3700 and 5000 ohms, approximately. The permissible variation in the same rosistance value with j-per-cent tolerance would be in the range from 4500 to 4900 ohms, approximately.

Only those values shown in the first column of Table 20 - 11 are available in 20 -per-cent tolerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in 5-per-cent tolerance.

In the component specifications in this IIandbook, it is to be understood that when no tolerance is specified the largest tolerance available in that value will be satisfactory.

Values that do not fit into the preferrednumber system (such as $500,25,000$, etc.) easily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the $4700-\mathrm{ohm}$ 20 -per-cent resistor used in the example above.

It would not, however, be usable if the tolerance were specified as 5 per cent.

COLOR CODES

Standardized color codes are used to mark values on small components such as composition resistors and mica capacitors, and to identify leads from transformers, etc. The resistor-capacitor number color code is given in Table 20-111.

Fixed Capacitors

The methods of marking "postage-stamp" miea capacitors, molded paper capacitors, and tubular eeramie capacitors are shown in Fig. 20-8. Caparitors made to American Wiar Standards or Joint Army-Navy specifications

Fig. 20-8-Color coding of fixed mica, molded paper and tubular ceramic capacitors. The color code for mica and molded paper capacitors is given in Table 20-1II. Table 20-1V gives the color code for tubutar ceramic capacitors.
are marked with the 6 -dot code shown at the top. Practically all surplus capacitors are in this category. The 3-dot LIA code is used for rapacitors having a rating of 500 volts and $\pm 20 \%$ tolerance only; other ratings and tolerances are covered by the 6-dot FiA rode.

Examples: A capacitor with a (i -dot code has
the following markings: Top row the following markings: Top row, left to right. black, vellow, violet; bottom row, right to loft. brown, silver, red. Since the first color in the top row is black (sirnifirant figure zero) this is the AWS code and the caparitor has mira diolacetrie. The signifieant firures are 4 and 7 , the decimal maltighier 10 (hrown, at right of second row), so the capacitance is $\mathbf{4 7 0} \mu \mu \mathrm{f}$. The tolerance is $\pm 10 \%$. The finai color, the charatereristic, deals with temprature coefficients and methods of testing, and may be ignored.

A capacitor with a 3 -dot code has the following colors, left to right: browt, black, red. The significant figures are 1,0 (10) and the multijuler is 100 . The capacitance is therefore $1000 \mu \mu \mathrm{f}$.

A camacitor with a fi-dot cote hats the forlowing markings: Top row, left to right, brown, black, black; botton row, right to left, black, pold, blace. Since the first color in the tol, row is neither black nor silver, this is the IOII code. The significant figures are $1,0,0(100)$ and the decimal multiphier is 1 (black). The caparitanec is thorefore $100 \mu \mu$. The gold dot shows that the tolerance is $\pm 5 \%$ and the hlue dot indicates G00-volt rating.

Ceramic Capacitors

Conventional markings for cormic caparitors are shown in the lower drawing of Fig. 20)-8. The colors have the memings indimated in Table 20-IV. In practice, dots may be used instead of the narrow bands indicated in Fig. 20-8.

Example: A ceramic capacitor has the following markings: Broad band. violet: narrow bands or dots, preen, brown, black, green. The significant figures are 5,1 (51) and the decinal multiplier is 1 , so the capaeitance is $51 \mu \mu f$. The temperature coefficient is -7.50 jarts per million per degree C., as piven by the broad band, and the capacitance tolerance is $\pm 5 \%$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the romposition type are color-eoded as shown in Fig. 20-9. Colored bands are used on resistors having axial leads; on riddat-lead resistors the

Colur	TABLE 20-1II Resistor-Capacitor Color Code			
	Significant Figure	t Decimal Multinlier	Tolerance $\text { (} 1 ;$	Voltage Rntiny*
IMack	0	1	-	-
Brown	1	10	1*	100
Rerl	2	100	2*	200
Orange	3	1000	3^{*}	300
Yellow	4	10,(\%)	4*	400
Gireen	5	100,000	5*	510
khre	6	1,000,000	${ }^{\text {f }}$ *	(i)K)
Violet	7	10,000,000	7*	700
Gray	8	100.000,000)	8 *	800
White	91.	1.000.000.006)	! *	(M)
Siold	-	0.1	3	1000
Silver	-	0.01	10	2000
No color	-	-	20	$\overline{\mathrm{a}}(\mathrm{K})$

Fig. 20-9-Color coding of fixed composition resistors The color code is given in Table 20 -III. The colored areas have the following significance:
A-First significant figure of resistance in ohms.
$B-S e c o n d$ significant figure.
C-Decimal multiplier.
D-Resistance tolerance in per cent. If no color is shown the tolerance is $\pm 20 \%$.
colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.

Dixamples: A resistor of the type shown in the lower drawing of lig. 20-9 has the following color bands: A. red; B, red; C, orance: D. no color. I'he significant figures are 2,2 (22) and the decimal multiplier is $\mathbf{1 0 0 0}$. The value of resistanee is therefore 2:.0K0 ohms and the toleraner is $=20^{\prime}$;
A resist or of the type shown in the upper drawing has the following colors: body (A), bhe; cand (13), cras: dot, red; end (1)), gold. The significant figures are 6. 8 (68) and the decimal multiplier is !(0), so the resistance is 6800 ohms. The tolerance is $\pm 5 \%$.

I.F. Transformers

Blue - plate lead.
Red - "B" + kead.
Green - grid (or diode) lead.
Bluck - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

TABLE 20-IV Color Code for Ceramic Capacitors					
			Capacitunce	Tolerance	
Color	Significant Figure	Decimal Malliplier	More than $10 \mu \mu f$. (in "i)	$\begin{aligned} & \text { Lesz than } \\ & \text { so } \mu \mu f \text {. } \\ & \text { (in } \mu \mu \text { f. }) \end{aligned}$	$\begin{gathered} \text { Temp. Coeff. } \\ \text { p.p.m./deg } \\ \text { C. } \end{gathered}$
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		-80
Orange	3	1000			-150
Yellow	4				-2.0
Green	5		± 5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	0.01		0.25	30
White	9	0.1	± 10	1.0	500

$\begin{gathered} \text { Hire } \\ \text { Size } \\ \text { A.H.G. } \\ (B \& S) \end{gathered}$	Diam． in Mils ${ }^{1}$	$\begin{gathered} \text { Circular } \\ \text { Mil } \\ \text { Area } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch？			Feet per Lb．		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carrying Capacily ${ }^{3}$ at 700 C．L． 1. per Amp．	Diam． in $m m$ ．	Nearest British S．W．G． No．
			Enamel	S．S．C．${ }^{4}$	$\begin{gathered} \text { D.S.C. }{ }^{5} \\ \text { or } \\ \text { S.C.C. }{ }^{6} \end{gathered}$	D．C．C．${ }^{7}$	S．C．C．	Enamel S．C．C．	D．C．C．	Bare	D．C．C．				
							－	－	－	3.947	－	． 1264	119.6	7.348	1
1	28.1 .3	83643							－	4.977	－	． 1593	14.8	6.544	3
2	2.57 .6	6， 6,370	－	－	－	－	二	－	二	6.276	－	． 2009	75.2	5.827	4
3	229.4	5， 26	－	－	－				－	7.914	－	．2533	59.6	5.189	
4	204.3	＋1740	－	－	－	－	－	－	－	9.980	－	． 3195	47.3	4.621	7
5	181.4	33100	－	－	－	－	－	－	二	12.58	－	． 4028	37.5	4.115	8
6	102.0	26250	－	－	－	－	－	－		15.87	－	． 3080	29.7	3．66\％	9
7	144.3	20820 16510	7.6	－	7.4	$\overline{7.1}$		－	－	20.01	19.6	． 6405	23.6	3． 264	10
8	128．5	16810 13090	7.6 8.6	－	7.4 8.2	7.1	二	－	－	25.23	24.6	． 8077	18.7	2.906	11
9 10	114.4 101.9	13040 10380	8.6 9.6	二	8.2 9.3	8.8	－87．5	84.8	80.0	31.82	30.9	1.018	14.8	2． 588	12
10	101.9 90.74	10380 8234	9.6 10.7	－	10.3	9.8	110	105	97.5	40． 12	38.8	1.284	11.8	2.305	13
11	30.74 80.81	${ }_{6} 6.330$	12.0	－	11.5	10.9	136	131	121	50.89	48.9	1．619	9.33	2.053	14
13	71.96	5178	13.5		12.8	12.0	170	102	150	83.80	61.3	2.02	5.87	1.628	16
14	64.08	4107	15.0	－	14.2	13.8	211	198	183	80．44	97.3	3.247	4.65	1.450	17
15	57.07	32.57	16.8	18.	15.8	14.7	262	300	271	127.9	119	4.094	3.64	1.291	18
16	50.82	2583	18.9	18.9	17.9	16.4	321	372	329	161.3	150	5． 163	2.93	1．150	18
17	45.26	2048	21.2	21.2	13.9 22.0	18.1 19.8	497	454	399	203.4	188	6.510	2.32	1.024	19
18	40.30	1624	23.6	23.6 26.4	22.0 24.4	19.8 21.8	493 92	4.5 553	479	256.5	237	8.210	1.84	． 9116	20
19	35.89	1288	26.4	26.4 29.4	24.4 27.0	21.8 23.8	［392	725	625	323.4	298	10.35	1.46	8118	21
20	31.96	1022	29.4	29.4 32.7	27.0 29.8	21.8 26.8 $\mathbf{2} .0$	775 940	8895	754	407.8	370	13.05	1.16	．7230	22
21	28.46	810.1	33.1 370	32.7 36.5	29.8 34.1	26.0 30.0	11．00	1070	910	514.2	461	16.46	． 918	． 6438	23
22	25.35	642.4	37.0 41.3	36.5 40.6	34.1 37.6	30.0 31.6	1400	1300	1080	648.4	584	20.76	． 728	． 5733	24
23	22.57 20.10	509.5 404.0	41.3 46.3	40.6 45.3	37.6 41.5	31.6 35.6	1700	1570	1260	817.7	745	26.17	． 577	． 5106	25
24	20.10 17.90	404.0 320.4	46.3 51.7	45.3 50.4	4 4 .6	38.6 38.6	2060	1910	1510	1031	903	33.00	． 458	.4547	26
25	17.90 15.94	320.4 254.1	51.7 58.0	50.4 55.6	45.6 50.2	38.6 41.8	2060 2.500	2300	1750	1300	1118	＋1．62	． 363	． 4049	27
26	15.94 14.20	254.1 201.5	58.0 64.9	55.6 61.5	50.2	4.8 45.0	3030	2780	2020	1639	1422	52.48	． 288	． 3606	29
27	14.20	201.5 159.8	64.9 72.7	$61 . .5$	60.2	48.5	3670	3350	2310	2067	17.59	66.17	． 228	． 3211	30
28	12.64	159.8 126.7	72.7 81.6	68.6 74.8	60.2 65.4	48.8	4300	3900	2700	2407	2207	83.44	． 181	． 28.59	31
29	11.26	126.7 100.5	81.6 90.5	74.8 83.3	6.5 71.5	55	5040	4660	3020	3287	2534	105.2	． 144	． 2546	33
30	10.03	100.5 79.70	${ }^{90.5}$	83.3 92.0	71.5	$5 . .5$ 9.2	5920	5280	3	4145	2768	132.7	． 114	.2268	34
31	8.928	79.70 63.21	101 113	${ }^{92.0} 1018$	77.5 83.6	39.2	7920	62850	－	5227	3137	167.3	． 090	． 2019	36
32	7.950	63.21 50.13	113	101 110	83.6 90.3	62.6	7060 8120	7360	－	6591	4697	211.0	． 072	． 1798	37
33	7.080	50.13 39.75	127	110	90.3 97.0	66.3 70.0	8120 9600	8310	－	8310	6168	266.0	． 0.57	． 1601	38
34	6.305	39.75 31.52	143 158	120	${ }^{97.0} 10$	70.0	9600 10900	8700	－	10480	6737	335.0	． 045	． 1426	38－39
35	5.615	31.52 25.00	158 175	132	10 ± 11	73.5 77.0	12200	10700	－	13210	7877	423.0	． 036	.1270	39－40
36	5.000	25.00 19.83	175	143	118	80.3	－	－	－	16660	9309	533.4	． 028	.1131	41
37	4.453	19.83 15.72	198 224	154	118	88.6	－	－	－	21010	10666	（672．6	． 022	． 1007	42
38	3.965	15.72 12.47	224 248	166	126 133	83.6 86.6	－	－	－	26500	11907	848.1	． 018	． 0897	43
39	3.531	12.47 9.88	248 282	181	133 140	86.6 89.7	－		－	33410	14222	1069	． 014	． 0799	44
40	3.145	9.88	282	194	140	89.7	－								

${ }^{1} \mathrm{~A}$ mil is $1 / 1000$（one－thousandth）of an inch．${ }^{2}$ The figures given are approximate only；since the thickness of the insulation varies with dilferent manufacturers．${ }^{3} 700$ circular

20-CONSTRUCTION PRACTICES

PILOT-LAMP DATA					
$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Bead Color	Base (.1/iniature)	$\begin{aligned} & \text { Bulb } \\ & \text { Type } \end{aligned}$	Rating	
				Volls	Amp.
40	Brown	Screw	T-31/4	6-8	0.1\%
$40 A^{\prime}$	Brown	Bayonet	T-31/4	6-8	0.15
41	White	screw	T-31/4	2.5	0.5)
42	Green	Screw	T-31/4	3.2	**
43	White	Bayonet	T-31/4	2.5	0.5
44	Blue	Bayonet	T-31/4	6-8	0.25
45	*	Bayoriet	T-31/4	3.2	**
482	Blue	screw	T-31/4	fi-8	0.23
47^{1}	Brown	Bayonet	T-31/4	6-9	0.15
48	Pink	sirrew	T-31/4	2.0	0.06
493	Pink	Bayonet	T-31/4	2.0	0.06
-	White	Screw	T-31/4	2.1	0.12
$49{ }^{3}$	White	Bayonet	T-31/4	2.1	0.12
50	White	Screw	C-31/2	f-8	0.2
51^{2}	White	Bayouet	C-31/2	6-8	0.2
-	White	Screw	(i-41/2	6_{6}^{6}	0.4
55	White	Bayonet	G-41/2	6i-8	0.4
$292{ }^{\text {s }}$	White	Strew	T-31/4	2.9	0.17
$292 A^{3}$	White	Bayonet	T-31/4	2.9	0.17
1455	Brown	s.rew	($\mathrm{i}-5$	18.0	0.25
1455A	Brown	Bayonet	G-5	18.0	0.2.5

140 A and 47 are interehangeable.
${ }^{2}$ Have frosted bulb.
349 and 49A are interchangeable.
1 Replace with No. 48.
5 I'se in 2.j-volt sets where regular bulb burns out too frequently:

* White in G.E. and sylvania; green in National Union, Raytheon and Tund-sol.
** 0.3 万 in G. F., and Sytrania; 0, in National Cnion, Raytheon and Tung-Sol.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - " 13 " + lead (this apphes whether the primary is plain or center-tapped).
Broun - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Green - grid (finish) lead to secondary.
Black - grid return (this applies whether the seeondary is phain or (enter-tapped).
Fellow-grid (start) lead on center-tapped secondaries. (Gireen may be used for this lead if polarity is not important.)
Note: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish.
Black - start.

Loudspeaker Field Coils

Black and Red -- start.
Yellow and Red - finish.
Slate and Red - tap) (if any).

Power Transformers

1) Primary Leads. Black

If tapped:
Common. Black Tap. Black and Jellow Striped
Finish. Black and Red Striped
2) High-Voltage Plate Winding. Red Center-Tap). . Red and Yellou Striped
3) Rectifier Filament Winding. Vellow Center-Tap. . Yellow and Blue striped
4) Filament Winding No. 1..........Green

Center-Tap. . Green and Yellow Striped
5) Filament Winding No. 2. Brown Center-Tap. Brown and Y'cllou Striped
(i) Fihament Winding No. 3. Slate Center-Tap. . .Slate and y'ellow Striped

Measurements

It is practically impossible to operate an amateur station without making measurements at one time or another. Although quite crude measurements often will suffire, more refined equipment and methods will rield more and terter information. With adequate information at hand it beomes possible to aljust a piere of equipment for optimum performance quickly and surely, and to design circuits along estab)lished principles rather than depending on cut-and-try.

Measuring and test equipment is valuable during construction, for testing romponents before installation. It is practically indispensable in the initial adjustment of radio gear, not only for establishing oprating values but also for tracing possible errors in wiring. It is likewise needed for locating breakdowns and defective components in existing equipment.

The basic measurements are those of current, voltage, and frequency. Determination of the values of circuit elements - resistance, inductance and capacitance - are almost equally im-
portant. The inspection of waveform in andiofrequeney rircuits is highly useful. For these purposes there is available a wide assortment of instruments, both complete and in kit form; the latter, particularly, compare very favorably in cost with strictly home-built instruments and are frequently more satisfactory both in apperaranere and calibration. The lome-built instruments described in this sortion are ones having features of partieular usofulness in amateur applications, and not ordinarily available commeroially.

In using any instrument it should always be kept in mind that the accuracy depends not only on the inherent acruramy of the instrument itsolf (which, in the case of commercially built units is usually within a few per eent, and in any event should be sperified by the manufacturer) but also the conditions under whirh the measurement is made. Large errors can be introduced by failing to recognize the existence of conditions that affect the instrument readings. This is particularly true in certain types of r.f. measurements, where stray effects are hard to eliminate.

Voltage, Current, and Resistance

D.C. MEASUREMENTS

A direct-current instrument - voltmeter, ammeter, milliammeter or microammeter - is a device using electromagnetice means to deffect a pointer over a calibrated sable in proportion to the current flowing. In the D'Arsonval type a coil of wire, to which the pointer is attarched, is pivoted between the poles of a permanent magnet, and when current flows through the coil it canses a magnetice field that interacts with that of the magnet to cause the coil to turn. The design of the instrument is usually such as to make the pointer deflection directly proportional to the current.

A less expensive type of instrument is the moving-vane type, in which a pivoted soft-iron vane is pulled into a eoil of wire by the magnetic field set up when current flows through the roil. The farther the vane extends into the coil the greater the magnetic pull on it, for a given change in current, so this type of instrument deres not have "linear" deflection - that is, the scale is cramped at the low-eurrent end and spread out at the high-current end.

The same basic instrument is used for measuring either current or voltage. Good-quality instruments are made with fairly high sensitivity -
that is, they give full-seale pointer deflection with very small curronts - when inteaded to be used as voltmeters. The sensitivity of instruments intended for measuring large currents can be lower, but a highly sonsitive instrument can be. and frequently is, used for measurement of currents much greater than needed for full-scale deflertion.
l'anel-mounting instruments of the D'Arsonval type will give a smatler deflection when mounted on iron or stcel panels thatn when mounted on nonmagnetic materiab. Readings may be as much as ten percent low. Specially ealibrated meters should be obtained for mounting on such panels.

VOLTMETERS

Only a fraction of a volt is required for fullscale deflection of a sensitive instrunent (1 milhampere or less full seale) so for moasuring voltage a high resistance is connected in series with it, lig. 21-1. Knowing the current and the resistance. the voltage can easily be calculated from $0 h m$'s Law. The meter is calibrated in terms of the voltage drop across the series resistor or multiplier. Practically any desired full-seale

21 -MEASUREMENTS

Fig. 21-1-How voltmeter multipliers and milliammeter shunts are connected to extend the range of a d.c. meter.
voltage range can be obtained by proper choice of multiplier resistance, and voltmeters frequently have several ranges selected by a switch.

The sensitivity of the voltmeter is usuatly expressed in "ohms per volt." A sensitivity of 1000 ohms per volt means that the resistance of the voltmeter is 1000 times the full-scale voltage, and by Ohm's Law the current required for fullscale deflertion is 1 milliampere. A sensitivity of 20,000 ohms per volt, another commonly used value, means that the instrument is a 50 -mieroampere meter. The higher the resistance of the voltmeter the more accurate the measurements

Fig. 21-2-Effect of voltmeter resistance on accuracy of readings. It is assumed that the d.c. resistance of the screen circuit is constant at 100 kilohms. The actual current and voltage without the voltmeter connected are 1 ma . and 100 volts. The volimeter readings will differ because the different types of meters drow different amounts of current through the 150 -kilohm resistor.
in high-resistance circuits. This is because the eurrent flowing through the voltmeter will cause a change i_{1} the voltage betwem the points across which the meter is connected, compared with the voltage with the meter absent, as shown in Fig. 21-2.

Multipliers

The required multiplier resistance is found by dividing the desired full-scale voltage by the current, in amperes, required for full-scale deflection of the meter alone. Strietly, the internal resistance of the meter should be subtracted from the value so found, but this is seldom necessary (except perhaps for very low ranges) because the meter resistance will be negligibly snall compared with the multiplier resistance. An exerption is when the instrument is already provided with an internal multiplier, in which case the multiplier resistance required to extend the range is

$$
R=R_{\mathrm{m}}(n-1)
$$

where R is the multiplier resistance, R_{m} is the total resistance of the instrument itself, and n is the factor by which the sale is to be multiplied. For example, if a 1000 -ohms-per-volt voltmeter having a calibrated range of $0-10$ volts is to be extended to 1000 volts, $R_{\text {m }}$ is $1000 \times 10=$ 10,000 ohms, n is $1000 / 10=100$, and $~ R=$ $10,000(100-1)=900,000$ ohms.
If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's Law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scale voltage and l the full-scale reading of the instrument in milliamperes.

Accuracy

The accuracy of a voltmeter depends on the calibration aceurary of the instrument itself and the accurary of the multiplier resistors (iood quality instruments are generally rated for an aceurary within plus or nimus 2 percent. This is also the usual areurace rating of the basic meter movement.

When extending the range of a voltmeter or eonverting a low-range milliammeter into a voltmeter the rated areuracy of the instrument is retained only when the multiplier resistance is precise. Preeision wire-wound resistors are used in the multipliers of high-cuality instruments. These are matively expensive, but the home constructor can do quite woll with $1 / \%$ toleranea eomposition resistors. They should be "derated" when used for this purpose - that is, the actual power dissipated in the resistor should not be more than $1 / 4$ to $1 / 2$ the rated disspation - and eare should be used to avoid overhating the body of the resistor when soldering to the leads. These precautions will help prevent permanent change in the resistanee of the unit.

Ordinary composition resistors are generally. furnished in 10% or 5% tolerance ratings. If possible errors of this order can be aceepted, resistors of this type may be used as multipliers. They should be operated below the rated power dissipation figure, in the interests of long-time stability.

MILLIAMMETERS AND AMMETERS

A micronmmeter or milliammeter can be used to measure eurrents larger than its full-seale reading low connecting a resistance shunt across its terminals as shown in Fig. 21-1. Part of the current flows through the shunt and part through the meter. Knowing the meter resistance and the shunt resistame, the relative currents can easily be calculated.
'The value of shunt resistance required for a given full-scale current range is given by

$$
R=\frac{R_{\mathrm{m}}}{n-1}
$$

where R is the shunt, R_{m} is the internal resistance of the meter, and n is the factor by which the

Milliammeters and Ammeters

original meter scale is to be multiplied. The internal resistance of a milliammeter is preferably determined from the manufacturer's catalog, but if this information is not available it can be measured by the method shown in Fig. 21-3. Do not attempt to use an ohmmeter to measure the internal resistance of a milliammeter; the instrument may be ruined by doing so.

Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary copper wire if no resistance wire is available. The (opper Wire Table in this IIandbook gives the resistance per 1000 feet for various sizes of copper wire. After eomputing the resistance required, determine the smallest wire size that will carry the full-scalc current (250 circular mils per ampere is a satisfactory figure for this purpose).

Fig. 21-3-Determining the internal resistance of a miliammeter or microammeter. R_{1} is an adjustable resisfor having a maximum value about twice that necessary for limiting the current to full scale with \boldsymbol{R}_{2} disconnected; adjust it for exactly full-scale reading. Then connect \mathbf{R}_{2} and adjust it for exactly half-scale reading. The resistance of R_{2} is then equal to the internal resistance of the meter, and the resistor may be removed from the circuit and measured separately. Internal resistances vary from a few ohms to several hundred ohms, depending on the sensifivity of the instrument.

Measure off enough wire to provide the required resistance. Aceuracy can be choeked by causing enough current to flow through the meter to make it read full seale without the shunt; connecting the shunt should then give the correct reading on the new range.

Current Measurement with a Voltmeter

A current-measuring instrument should have very low resistance compared with the resistance of the circuit being measured; otherwise, inserting the instrament will cause the current to differ from its value with the instrument out of the circuit. (lhis may not matter if the instrument is left permanently in the circuit.) How('ver, the resistance of many circuits in radio equipment is quite high and the cireuit operation is affeeted little, if at all, by adding as much as a few hundred ohms in series. In such cases the voltmeter method of measuring current, shown in Fig. 21-4, is frequently convenient. A voltmeter - or low-range milliammeter provided with a multiplier and operating as a voltmeter - having a full-scale voltage range of a few volts, is used to measure the voltage drop across a compara-

Fig. 21.4-Voltmeter method of measuring current. This method permits using relatively large values of resistance in the shunt, standard values of fixed resistors frequently being usable. If the multiplier resistonce is 20 (or more) fimes the shunt resistance, the error in assuming that all the current flows through the shunt will not be of consequence in most practical applications.
tively high resistance acting as a shunt. The formula previously given is used for finding the proper value of shunt resistance for a given scale-multiplying factor, R_{m} in this case being the multiplier resistance.

D.C. Power

Power in direct-current cireuits is determined by measuring the current and voltage. When these are known, the power is equal to the voltage in volts multiplied by the current in amperes. If the eurrent is measured with a milliammeter, the reading of the instrument must be divided by 1000 to convert it to amperes.

RESISTANCE MEASUREMENTS

Measurement of d.c. resistance is based on measuring the current through the resistance when a known voltage is applied, then using Ohm's Law. A simple circuit is shown in Fig. 21-5.

Fig. 21-5-Measuring resistance with a voltmeter and milliammeter. If the approximate resistance is known the voltage can be selected to cause the milliammeter, MA, to read about half scale. If not, additional resistance should be first connected in series with R to limit the current to a safe value for the milliammeter. The set-up then measures the total resistance, and the value of R can be found by subtracting the known additional resistance from the total.
The internal resistanee of the ammeter or milliammeter, M / A, should be low compared with the resistance, R, being measured, since the voltage read by the voltmeter, V^{\prime}, is the voltage across $M A$ and R in series. The instruments and the d.c. voltage should be chosen so that the readings are in the upper half of the scale, if possible, since the percentage error is less in this region.

An ohmmeter is an instrument consisting
fundamentally of a voltmeter (or milliammeter, depending on the circuit used) and a small dry battery as a sourer of d.e. voltage. calibrated so the value of an unknown resistance can be read directly from the sale. Typical ohmmeter circuits are shown in Fig. 21-6. In the simplest type, shown in Fig. 21-6.1, the moter and hattery are connectod in series with the unknown resistance. If a given deflection is obtained with terminals $A-B$ shorted, inserting the resistane to be measured will cause the moter rading to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measuremont, e is the voltage applied ($A-/ 3$ shorted), E is the voltmeter reading with R connectend, and
R_{m} is the resistance of the voltmeter.
The circuit of Fig. 21-6. 1 is mot suited to measuring low values of resistance (below a hundred ohms or so) with a high-resistance voltmeter. For such measurements the circuit of Fig. 2I-613 can be used. The milliammeter should the a $0-1$ mat. instrument, and R_{1} should be equal to the battery voltage, e, multiplied by 1000. The unknown resistance is

$$
R=\frac{I_{2} R_{1 \mathrm{n}}}{I_{1}-I_{2}}
$$

where l ' is the unknown,
R_{m} is the internal resistance of the milliammeter,
I_{1} is the current in ma. with R disconnected from terminals $d-B$, and
I_{2} is the current in ma. with R conneeted.
The formula is approximate, but the error will be nogligible if e is at least 3 volts so that R_{1} is at loust 3000 ohms.

A third circuit for measuring resistance is shown in Fig. 21-6C. In this case a high-resistance voltmoter is used to measure the voltane drop across a reference resistor, R_{2}, when the maknown resistor is commeded so that current flows through it, R_{2} and the battery in series. By suitable choice of h_{2} (low values for low resisiance, high values for high-resistance unknowns) this sireuit will give equally grood results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, $h_{\text {m... }}$ is always very bigh (50 times or more) compared with the resistance of R_{2}. A 20,000 -ohms-per-volt instrument (50 (- -amp. movement) is generally used. Assuming that the current through the voltmeter is negligible compared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E}-R_{2}
$$

Fig. 21.6-Ohmmeter circuits. Values are discussed in the text.

Where R and R_{2} are as shown in Fig. 21-6C, e is the voltmeter reading with $A-B$ shorted, and
E is the voltmoter roading with R connected.

The "\%ro adjuster," R_{1}, is used to set the voltmeter reading exactly to full scale when the moter is calibrated in ohms. A 10,000 -ohm variable resistor is suitable with a $20,000-$ ohms-per-volt meter. The battery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

A. C. Measurements

Several types of instruments are available for measurement of low-frequeney alternating currents and voltages. The better-grate panel instruments for power-line frequencies are of the dynamometer type. This compares with the l'Arsonval movement used for d.e. measurements, but instead of a permanent magnot the dynamometer movemont hats at field coil which, together with the moving coil, is comected to the a.e. source. Thus the moving coil is urged to turn in the same direction on both hatves of the a.c. cycle.

Moving-vane type instruments, deseribed carlier, also are used for ace. measurements. This is possible berause the pull exrrted on the vane is in the same direction regardless of the direction of current through the eoil. The cablibration of a moving-vane instrument on a.c. will, in general, differ from its d.e. calibration.

For measurements in the audio-frequency range, and in appliations where high impedance is required, the rectifier-type a.e. instrument is

Resistance Measurements

generally used. This is essentially a sensitive d.c. meter, of the type previously described, provided with a rectifier for converting the a.c. to d.e. A typical rectifier-type voltmeter circuit is shown in Fig. 21-7. The half-wave meter rectifier, $C R_{1}$, is frequently of the copper-oxide type, but erystal diodes can be used. Such a rectifier is not "perfect" - that is, the application of a voltage of reversed polarity will result in a small current flow - and so CK. ${ }_{2}$ is used for eliminating the effect of reverse current in the meter cireuit. It does this by providing a low-resistanee path across $C R_{1}$ and the moter during the a.e. alternations when $C R_{1}$ is not eondueting.

Fig. 21-7-Rectifier-type o.c. voltmeler circuit, with "lineorizing" resistor ond diode for bock-current correction.
Resistor R_{2} shunted across M_{1} is nsed for improving the linearity of the circuit. The offertive resistance of the rectifier decreases with increasing eurrent, leading to a calibration scale with nonuniform divisions. This is overcome to a eonsiderable extent by "hleeding" soveral times as much current through R_{2} as flows through.$/_{1}$ so the rectifier is always carrying a fairly large eurrent.

Because of these expedients and the fact that with half-wave rectification the average rument is only 0.45 times the r.m.s. value of a sime wave producing it, the impedance of a reetifier-typer voltmeter is rather low compared with the resistance of a d.e. voltmeter using the sime meter. Values of 1000 ohms per volt are representative, when the d.e. instrument is a $0-200$ microammeter.

The d.e. instrument responds to the average value of the reetified alternating current. This average current will vary with the shape of the a.e. wave applied to the rectifier, and so the meter reading will not be the same for different wave forms having the same maximum values or
the same r.m.s. values. Hence a "wave-form error" is always present unless the a.c. wave is very elosely simusoidal. The actual calibration of the instrument usually is in terms of the r.m.s. value of a sine wave.

Modern rectifier-type a.c. voltmeters are capable of good aceuracy, within the wave-form limitations mentioned above, throughout the audio-frequency range.

COMBINATION INSTRUMENTS THE V.O.M.

Since the same basic instrument is used for measuring current, voltage and resistance, the three functions can readily be combined in one unit using a single meter. Various models of the "v.o.m." (volt-ohm-milliammeter) are available commereially, both completely assembled and in kit form. The less expensive ones use a $0-1$ milliammeter as the basic instrument, providing voltmeter ranges at 1000 olims per volt. The more elaborate meters of this type use a mieroammeter - 0-50 microamperes, frequently with voltmeter resistances of 20,000 ohms per volt. With the more sensitive instruments it is possible to make resistance measurements in the megohms range. A.c. voltmeter scales also are frequently included.

The v.o.m., even a very simple one, is among the most useful instruments for the amateur. Besides current and voltage measurements, it can be used for checking continuity in circuits, for finding defective components before installation - shorted capacitors, open or otherwise defective resistors, ete. - shorts or opens in wiring, and many other cheeks that, if applied during the construction of a piece of equipment, stave mueh time and trouble. It is equally useful for servieing, when a component fails during operation.

THE VACUUM-TUBE VOLTMETER

The usefulness of the vacuum-tube voltmeter (v.t.v.m.) is based on the fact that a varaum tube ran amplify without taking power from the souree of voltage applied to its grid. It is therefore possible to have a voltmeter of extremely high resist-
$C_{1}-0.002 \cdot 100.005 \cdot \mu \mathrm{f}$. mico.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$., 1000 to 2000 voits, poper or mico.
$R_{1}-1$ megohm, $1 / 2$ wott.
R_{2} to R_{5}, inc.-To give desired voltoge ronges, totoling 10 megohms.
$\mathrm{R}_{6}, \mathrm{R}_{7}-2$ to 3 megohms.
$R_{8}-10,000$-ohm vorioble.
$\mathrm{R}_{3}, \mathrm{R}_{10}-2000$ to 3000 ohms.
$\mathrm{R}_{11}-5000$ - to 10,000 -ohm control.
$\mathrm{R}_{12}-10,000$ to 50,000 ohms.
R_{13}, R14-App. 25,000 ohms. A 50,000-ohm slider-type wire-wound con be used.
$\mathrm{R}_{15}-10$ megohms.
$\mathrm{R}_{16}-3$ megohms.
$\mathrm{R}_{17}-10$-megohm vorioble.
$\mathrm{M}-0.200 \mu \mathrm{mp}$. to $0-1$ mo. ronge.
V_{1}-Duol triode, 6SN7 or 12AU7.
V_{2}-Duol diode, 6H6 or 6AL5.

fig. 21-8-Vocuum-tube volimeter circuil.
ance, and thus take negligible current from the cireuit under measurement, without using a d.c. instrument of exceptional sensitivity.
The v.t.v.m. has the disadvantage that it requires a source of power for its operation, as compared with a regular d.c. instrument. Also, it is suseeptible to r.f. piek-up when working around an operating transmitter, unless well shielded and filtered. The faet that one of its terminats is grounded is also disadvantageous in some eases, since a.c. readings in partieular may be inacenrate if an attempt is made to measure a cireuit having both sides "hot" with respect to ground. Nevertheless, the high resistance of the v.t.v.m. more than compensates for these disadvantages, espectally since in the majority of measurements they do not apply.

While there are several possible circuits, the one commonly used is shown in Fig. 21-8. A dual triode, V_{1}, is arranged so that, with no voltage applied to the left-hand grid, equal currents flow through both sections. Under this condition the two cathodes are at the same potential and no current flows through M. The currents can be adjusted to balance by potentiometer R_{11}, which takes care of variations in the tube sections and in the values of eathode resistors R_{9} and R_{10}. When a positive d.e. voltage is applied to the left-hand grid the current through that tule seetion increases, so the current balance is upset and the meter indieates. The sensitivity of the meter is regulated by R_{s}, which servies to adjust the calibration. R_{12}, common to the cathodes of both tule sections, is a feed-back resistor that stabilizes the system and makes the readings linear. R_{6} and C_{1} form a filter for any a.e. component that may be present, and R_{6} is balanced by R_{7} conneeted to the grid of the second tube section.
To stay well within the linear range of operation the scale is limited to 3 volts or less in the average commercial inst rument. Higher ranges are obtained by means of the voltage divider formed by R_{1} to R_{5}, inclusive. As many ranges as desired can be used. Common pratice is to use 1 mag ohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive, 10 megohms, thus giviug a total resistance of 11 megohms, constant for all voltage ranges. R_{1} should be at the probe end of the d.c. lead to minimize capacitive loading effects when measuring de. voltages in r.f. circuits.
Values to be used in the circuit depend considcrably on the supply voltare and the sensitivity of the meter, $M . R_{12}$, and $R_{13}-R_{14}$, slould be adjusted by trial so that the voltmeter cirenit can be brought to balance, and to give full-scale deflection on M with about 3 volts applied to the left-hand grid. The meter connections can be reversed to read voltages that are negative with respect to ground.

A.C. Voltage

For measuring a.c. voltages the rectifier circuit shown at the lower left of Fig. 21-8 is used. One section of the double diode, V_{2}, is a half-wave
rectifier and the second half acts as a balancing device, adjustable by R_{17}, to eliminate contart potential efferts that would cause a residual d.e. voltage to appear at the v.t.v.m. grid.
The reetifier output voltage is proportional to the poak amplitude of the a.c. wave, rather than to the average or r.m.s. values. Since the positive and negative peaks of a complex wave may not have equal amplitudes, a different reading may be obtained on such wave forms when the voltmeter probe terminals are reversed. This "turnover" effect is inherent in any peak-indicating device, but is not necessarily a disadvantage. The fact that the readings are not the same when the voltmeter comuections are reversed is an indication that the wave form under measurement is unsymmetrical, in some measurements. as in audio amplifiers, a pacak measurement is more useful than an r.m.s. or average-value measurement because amplifier capabilities are based on the peak amplitudes.
The scale calibration usually is based on the r.m.s. value of a sine wave, R_{8}^{8} treing set so that the sume scale can be used either for a.c. or d.c. The r.m.s. reading can casily be converted to : peak reading by multiplying by 1.41 .

INSTRUMENT CALIBRATION

When extending the range of a d.c. instrument, calibration usually is neecessary-although resistors for voltmeter multipliers often can be purchased to elose-mough tolerances so that the new range will be aceurately known. However, in calibrating an instrument such as a v.t.v.m. a known voltage must be available to provide a starting point. Fresh dry eells have an open-cireuit terminal voltage of approximately 1.6 volts, and one or more of them may be connected in series to provide several catibration points on the low range. Gas regulator tubes in a power supply, such as the $0 \mathrm{CO}_{3}, 013$, ete., also provide a stable source of voltage whose value is known within a few per cent. Onee a few such points are determined the voltmeter ranges may be extended readily by adding multiphiers or a voltage divider as appropriate.
Shunts for a milliammeter may be adjusted by first using the meter alone in series with a source of voltage and a resistor selected to limit the eurrent to full scale. For example, a $0-1$ milliammeter may be connected in series with a dry cell and a 2000 -ohm variable resistor, the latter being adjusted to allow exactly 1 milliampere to flow. Then the shunt is added across the meter and its resistance adjusted to reduce the meter reading by exactly the scale factor, n. If n is 5 , the shunt would be adjusted to make the meter read 0.2 milliampere, so the full-scale current will be 5 ma. Using the new scale, the second shunt is added to give the next range, the same proeedure being followed. This can be carried on for several ranges, but it is advisable to check the meter on the highest range against a separate meter used as a standard, since the errors in this process tend to be cumulative.

Measurement of Frequency

ABSORPTION FREQUENCY METERS

The simplest possible frequency-measuring device is a resonant circuit, tunable over the desired frequency runge and having its tuning diad calibrated in terms of frequener. It operates be extracting a small amount of energy from the oscillating eireuit to be measured, the frequency being determined by the tuning setting at which the energy absorption is maximum (Fig. 21-9).

Such in instrument is not caphale of very high

Fig. 21-9-Absorption frequency meter and a typical application. The meter consists simply of a calibrated resonant circuit LC. When coupled to an amplifier or oscillator the tube plate current will rise when the frequency meter is tuned to resonance. A flashlight lamp may be connected in series af X to give a visual indicafion, but it decreases the selectivity of the instrument and makes it necessary to use rather close coupling to the circuit being measured.
aceuraty, because the Q of the tumed rircuit cannot be high enough to avoid uncertainty as to the exate dial setting and because any two coupled rircuits interact to some extent and change each others' tuning. Nevertholass, the absorption frequency meter or "wavemeter" is a highly useful instrument. It is companct, inexpensive, and requires no power supply. "here is no ambiguity in its indications, as is frequently the case with the heterodyne-type instruments described latere.

When an absorption meter is used for cherking a transmitier, the plate current of the tube comerted to the cirenit being cheoked ann provide the necessary resonance indication. When the freguency meter is bosely coupled to the tank cireuit the plate current will give a slight upward flicker as the meter is tuned through resonance. The accuracy is greatest when the boosest possible coupling is ased.

A reereiver oscillator may be checked by tuning in a steady signal and hoterodyning it to give a beat note as in ordinary cow. recoption. When the frequency meter is coupled to the osciltator coil and tuned through resonance the beat note will rhange. Again, the eoupling should be made loose enough so that a justperceptible change in beat note is observed.

In approximate calibration for the meter, adequate for most purposes, may be obtained by comparison with a calibrated recoiver. The usual receiver dial calibration is sufficiently
accurate. A simple oscillator circuit covering the same range as the frequency meter will be useful in ealibration. Sot the receiver to a given frequency, tume the oscillator to zero beat at the same frequency, and adjust the frequency meter to resonance with the oscillator as described above. This gives one cablbation point. When a sufficient number of such points has been obtained a graph may be drawn to show frecuency $v s$, dial settings on the frequency meter.

INDICATING FREQUENCY METERS

The plain absorption meter requires fairly close eoupling to the oscillating circuit in order to affect the plate current of a tube sufficiently to give a visual indication. However, by adding a rectifier and d.c. microammeter or milliammeter, the sensitivity of the inst rument can be increased to the point where very loose coupling will suffice for a good reading. A typical eireuit for this purpose is given in lig. 21-10, and Figs. 21-11 and 21-12 show how such an instrument can be constructed.
The rectifier, a crystal diode, is couphed to the funed circuit $L_{1} \mathrm{C}_{1}$ through a coupling coil, L_{2}, having a relatively small number of turns. The step-down transformer action from L_{1} to L_{2} provides for efficient energy transfer from the highimpedance tuned circuit to the bw-impedance rectifier circuit. The number of turns on L_{2} can be adjusted for maximum reading on the d.c.

Fig. 21-10-Circuit diagram of indicating frequency, $\mathrm{C}_{\mathrm{I}}-50-\mu \mu \mathrm{f}$, variable (Johnson 50R12).
$\mathrm{C}_{2}-0.002-\mu \mathrm{f}$. disk ceramic.
CR1—General purpose germanium diode (IN34, etc.)
J_{1}-Phono jack.
J_{2}-Closed-circuit phone jack.
M_{1}-D.C. microammeter or $0-1$ milliammeter.

	Coil Data		Coil
Freg. Range	Turns, L_{1}	Turns, L_{2}	Length, In . $3-6 ~ M c$.
$6-12 \mathrm{Mc}$.	29	5	close-wound
$12-25 \mathrm{Mc}$.	13	5	$11 / 4$
$23-50 \mathrm{Mc}$.	$51 / 4$	2	1
$50-100 \mathrm{Mc}$.	$11 / 2$	1	$1 / 2$
$90-225 \mathrm{Mc}$.	See below		$1 / 2$

All except $90-225-\mathrm{Mc}$. coil wound with No. 24 enam. wire on 1 -inch diameter 4 -prong forms (Millen 45004). L_{2} interwound at bottom of L_{1}, using smaller wire where necessary. The 90-225-Mc. coil consists of a hairpin loop of No. 14 tinned wire just clearing the bottom of the coil form, which is cut to $5 / 8$-inch length. L_{2} is a similar hairpin of No. 16 wire bent over so it almost touches L_{1}.

Fig. 21-11-The indicating frequency meter, plug-in coils, and pick-up cables. The meter is built in a bakelite meter case measuring $61 / 4 \times 33 / 4 \times 2$ inches. The 3 -inch dial is cut from a piece of aluminum and has a paper handcalibrated scale cemented on. Hairline indicators are clear plastic mounted on small metal pillars. A 2 -inch d.c. instru. ment is used. Pick-up loops are one turn of No. 14, spaghetti coverea, soldered to the ends of the cables. The longer cable (5 feet) is useful to 30 Mc.; the shorter (13 inches) can be used for the full frequency range. Both are RG-58/U.
milliammeter; when doing this, use a fixed value of eoupling between L_{1} and the souree of encrgy. The proper number of turns for this purpose will depend on the sensitivite of V_{1}. The roil dimensions given in Fig. 21-10 are for a 0-500 mirroammeter but will also be satisfactory for a $0-1$ millitmmeter. Lass than optimum coupling is preferable, in most cases, since heavy loading lowers the $\left(Q\right.$ of the tuned cireuit $L_{1} C_{1}$ and make's it loss selective. The couphing is redued by reducing the number of turns on L_{2-}.

The meter can be used with a pick-up loop, and coaxial line connected to I_{1}. Energy pieked up by the loop, is fed through the rable to L_{2} and thence coupled to $L_{1} \mathrm{C}_{1}$. This is a convenient method of coupling to circuits where it would be phesically diffirult to secure inductive coupling to L_{1}. The pick-up catble should not be self-resonant, as a transmission-line section, at any frequency within the range in which it is to be used, so two cable lengths are provided. The longer one is useful up to 30 Mr . and the shorter at all frequencios up to the maximum useful frequency of the instrument (225 Mr .).

By plugging a headset into the output jatek (phones having 2000 ohms or greater resistance should be used for greatest sensitivity) the fre-
quency meter can be used as a monitor for modulated transmissions.

The bakelite couse is a desimble feature sinere the instrument can be brought close to cireuits boing cherked without the danger of shortcircuiting any of their wiring. This could oceur with a motal-rased unit.

In addition to the uses mentioned earlier, a meter of this type may be used for finat adjustment of nentralization in r.f. :mplifiers. For this purpose the piek-up loop maty be loosely coupled to the plate tank roil. In this rase L_{1} maty be removed from its socket and the meter used as an ontuned reertifier. This reduces the sensitivity and insures that the r.f. piekup is only from the tink coil to which the loop is closely coupled.

THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highlystable low-power oscillator generating a fixed frequemery, usually 100 ke . It is nearly always reystal-ontrolled, and inexpensive 100-ke. arstals are available for the purpose. Sine the harmonics are multiphes of 100 ke , throughout the speetrum, some of them can be compared di-

Fig. 21-12-Inside the wavemeter. Only the miliammeter and phone jack are mounted on the removable panel. The funing capacitor is mounfed vertically on an aluminum bracket fastened to the bottom of the case. The crystal diode is mounted between a coil-socket prong and a tie point. The phono jack for the pick-up cables is at the lower right.

Frequency Standards

rectly with the standard frequencies transmitted by WWV.

The edges of most amateur bands also are exact multiples of 100 ke ., so it becomes possible to determine the band edges very accurately. This is an important consideration in amateur frequency measurement, since the only regulatory requirement is that an amateur transmission be inside the assigned band, not on a specific frequency.

Manufacturers of loo-ke. ervstals usually supply eircuit information for their particular erystals. The circuit given in Fig. 21-13 is representative, and will generate usable harmonics up to 30 Me . or so. The variable capacitor, C_{1}, provides a means for adjusting the frequency to exactly 100 kc . Harmonie output is taken from the circuit through a small capacitor, C_{5}. There are no special constructional points to be observed in building such a unit.

Fig. 21-13-Circuit for crystal-controlled frequency standard. Tubes such as the 6SK7, 6SH7, GAU6, etc., are suitable.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable.
$\mathrm{C}_{2}-150-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.01-\mu \mathrm{f}$. ceramic.
$\mathrm{C}_{5}-22-\mu \mu \mathrm{f}$. mica.
$R_{1}-0.47$ megohm, $1 / 2$ watt.
$R_{2}-1000$ ohms, $1 / 2$ watt.
$R_{3}-0.1$ megohm, $1 / 2$ watt.
$R_{4}=0.15$ megohm, $1 / 2$ watt.
Power for the tube heater and plate may be taken from the supply in the receiver with which the unit is to be used. The plate voltage is not eritical, but it is recommended that it be taken from a $\mathrm{VR}-150$ regulator if the reeciver is equipped with one.

Sufficient sigual strength from the standard usually will be serured if a wire is run between the output terminal connected to C_{5} and the antenna post on the receiver. At the lower froquencies a metallie connection may not be necessary.

Adjusting to Frequency

The frequency can be adjusted exartly to 100 ke . by making use of the WWY transmissions tabulated in this chapter. Select the WWT frequency that gives a good signal at your location at the time of day most convenient. Tune it in with the receiver b.f.o. of and wait for the period during which the modulation is absent. Then switeh on the $100-\mathrm{kr}$. oscillator and adjust its frequeney, by means of (' 1 , until its harmonic is in zero brat with WWV. The exart setting is casily found by observing the slow pulsation in
background noise as the harmonie comes close to zero beat, and adjusting to where the pulsation disappears or oceurs at a very slow rate. The pulsation can be observed even more readily by switching on the receiver's b.f.o., after approximate zero beat has been secured, and observing the rise and fall in intensity (not frequency) of the beat tone. For best results the WWV signal and the signal from the $100-\mathrm{ke}$. oscillator should be about the same strength. It is advisable not to try to set the 100 kc . oscillator during the periods when the WWV signal is tone-modulated, since it is difficult to tell whether the harmonie is being adjusted to zero beat with the carrier or with a sideband.

Using the Standard

Basically, the 100 -ke. standard provides a means for indicating the exact receiver dial settings at which frequeneies that are multiples of 100 kc . are to be found. The harmonies of the standard can thus be used to check the dial calibration of a receiver, and many of the bettergrade communications receivers either include a $100-\mathrm{ke}$, oscillator for this purpose or have provision for installing one as an accessory. The actual frequency of at least one $100-\mathrm{ke}$. point in a given amateur hand must be known, of course, hut this is generally an casy matter since the artivity in amateur bands usually makes identification of the band-edge " marker signal" quite simple. After one frequency is known, the consecutive 100 -ke. harmonic signals are simply counted off from it.

Although the $100-\mathrm{ke}$. standard does not make possible the exact measurement of a frequency, it is readily possible to determine whether or not the signal is in a particular $100-\mathrm{ke}$. segment. If the unknown signal tunes in between, say, 21,200 and $21,300 \mathrm{kc}$., as indicated by the marker signals in the receiver, its frequency obviously lies between those two figures. For purposes of romplying with the amateur regulations it is usually sufficient to know that the signal is above, or below, some speeified $100-\mathrm{kc}$. point, since the edges of the amateur bands or subbands usually are at such points. If a eloser measurement is desired a fairly good estimate usually can be made by counting the number of dial divisions between two 100 -ke. points and dividing the number into 100 to find how many kilor yoles there are per dial division.

In using the receiver to check one's own transmitting frequency it is necessary to take special precautions to reduce the strength of the signal from the transmitter to the point where it doos not overload the receiver nor create spurious responses that rould be taken for the actual signal. This invariably means that the receiving antenna must be disconnected from the receiver, and it may be necessary, in addition, to shortcircuit the receiver's antenna input terminals. Try to reduce stray piekup to such an extent that the transmitter's signal is no stronger than normal ineoming signals at the regular gaincontrol settings. With some receivers this may

Fig. 21-14-A 100-kc. frequency standard and harmonic amplifier. The crystal in this unit is in the metal-tube type envelope. Power and r.f. output connections are taken through the rear chossis lip.
require additional shiclding around the signalfrequency circuits, and parhatps filtoring of the ate and speaker loads where they loave the (hassis. to prevent margy pieked in on these laads from getting into the front rad of the recoiver.

Frequency Standard with Harmonic Amplifier

The frequency standadel shown in Figs. 21-14 through 21-16 includes a tumed amplifier to inrease the strength of the higher hamonies, and
 make the harmonice strength reasonably miform throughout the usable fixequener spertrum of the
instrument. It will produce useful catibration sigmals at loo-ke. intervals 10 to about tio Na. The strength of a partionlan harmonia maty be peaked up beve selecting the proper amplition toming rango with siz and adjusting fis for maximum output. A gain control, R_{2}, is included for adjusting the output signal to the desired level.

The 100-ke, oweillator uses the triode section of a ${ }^{\text {bidNs, whe the amplifier uses the pentorte }}$ seretion of the same tabe. Power required for the unit is 1.50 volts at 10 mat and 6,3 volts at 0.45 ampl. This may bre taken from the areessory socket of a recoiver. or a sperial supply easily "am be made using a TV' "hooster" transformer (such as the Merit l'-30tio or ergivalent).

Fig. 21-15-Circuit of the $100-\mathrm{kc}$. crystal calibrator. Unless otherwise indicated, capacitances are in $\mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAPC-50).
$\mathrm{C}_{4}-100-\mu \mu \mathrm{f}$, variable tHammarlund HF -100).
$\mathrm{CR}_{1}, \mathrm{CR}_{2}-\mathrm{IN} 34 \mathrm{~A}$.
J_{1} - Phono jack.
Li-3.5-7 Mc., 10μ h. (Nertional R-33 r.f. chake).
L2-6.5-14 Mc., $4.7 \mu h$. (IRC type CL-I r.f. choke).
$\mathrm{L}_{3}-15-30 \mathrm{MC}$., $1.0 \mu \mathrm{~h}$. ($\mathrm{R}_{\mathrm{R}} \mathrm{C}$ type $\mathrm{CL}-1$ r.f. choke).
$\mathrm{L}_{\mathrm{i}}-30-60 \mathrm{Mc},. 0.22 \mu \mathrm{~h} . ; 4$ turns No. 20 plastic-insulated wire, $3 / 8$-inch diam.
Rz-5000-ohm potentiometer (Mallory U-14).
S_{1}-S.p.s.s.t, mounted on R_{2} (Mallory US-26).
$S_{2}-1$-section, 1-pole, 4 -position miniature phenolic rotary switch (Centralab PA-1000).
Y_{1} - 100 -kc. crystal.

A Frequency Meter

The standard is built in a $+\times 5 \times 6$ inch Chassis-type hox. he and S_{2} are monnted on the pand, with the amplifier tank roils monnted on Š. The remaning components ate mounted on Whe chassis, ('s bring insulated from it beranse its phates are abowe gromed for dic. For the same reason, ant insulated shaft extension is used for front-panch control of C'4.

Connection betwoen the standard and the receriver can be made through a wire from the hot terminal of I_{1} to the antenna input post on the receiver. 1 epending on how woll the reediver is shiolded, such a wire may not be noreded at the lower-fregueney end of the range.

The Heterodyne Frequency Meter

The heterodyne frequeney moter is a variablefrequeney oscillator designed to be as stable as possible and to be capable of being aceurately ralibrated. Solid merhanioal construction and a good dial are particularly important. In gencral, the design of such an instrument will be similar to that of the vefos's deseribed in seretion 6 on transmitters. [sually, the oscillator will cover a frepuency rathge of approximately 1750 to 2000 kre. so that its harmonies will fall in the various amateur bands. It is used with the receriver in mueh the same way as the loo-ke, standard, exerent that in making a moasurement the fro-quencer-meter tuming is andjested until the signal from it is in zero beat with the signal to be measured. The two signats are then on exactly the same frecureney, which can be read from the catibration of the frequeney meter.

The bost mothod of ralibrating a heterodyne fregueney meter is to note the dial points at which its signal is in zero beat with conserntive
$100-\mathrm{kr}$. points from a secondary standard. These points may then be plotted on graph paper and a smooth curve drawn through them to give the calibation at frequeneies inside the $100-\mathrm{ke}$. intervals. The calibration preferahly should be matio on a high range, Points at loo-ke. intervals on 28 Me., for example, are eguivalent to $50-\mathrm{ke}$, intervals on 14 Mc., 25-ke. intervals on 7 Mce, and so on, sinee the meter is operating on lower-order hammonies on the lower bands.

More Precise Methods

The methods desoribed above are quite adequate for the primary purpose of amateur frequeney measurements - that is, determining whether or not a tramsmitter is operating inside the limits of an amateur band, and the approximate fregueney inside the band. For measurement of an unknown frequeney to a high degree of aceuracy more advanced methods ean be used. Accurate signals at closer intervals can be obtatined by using a multivibrator in eonjunction with the $100-\mathrm{ke}$. standard, and thus obtaining signals at intervals of, say, 10 ke or some other integral divisor of 100 . Temperature control is frequently used on the 100 -ke oscillator to give at high order of stabhility (Collier, "What lrice 1'recision?"', QS'I', September and (Otoler, 1052). Also, the serondary standard ean be used in conjunction with a variahle-frequency interpolation oscillator to fill in the standard intervals (Woodward,"A Linear Beat-Frequeney Oseillator for Frequency Me'asurement," (SST', May, 1951). An interpolation oscillator and standard can be combined in one instrument. One applieation of this type was deseribed in (SS' for May, 1949 ((irammer, "The Idditive Frequeney Meter").

Fig. 21-16-Underneath the frequencystandard chassis. The saw-taath harmanicgenerating netwark is on the strip at the upper right. The small trimmer-type capacitar at the left is C_{1}. Other campanents are maunted where canvenient.

STANDARD FREQUENCIES AND TIME SIGNALS

The Central Radio Propagation Laboratory of the National Burean of Standards maintains two radio transmitting stations, WWV near Washington, J. C., and W'WVII at P'amene, 'T.II., for broadeasting standard radio frecquencies of high areurary, Why broadeasts are on $2.5, \overline{5}, 10,15,20$ and 25 megaryeles per serond, and those from IVWVII are on 5,10 , and 15 M e. The radiofrequency signals are modulated by pulsers at 1 erele per second, and also by standard andio frequencies alternating between $4+0$ and 600 redes per second as shown by the aterompanying chart.

Transmissions are contimmos, with the following execptions: "The WWV tranmissions are interrupted for a 4 -minute poriod beginning at approximately to minutes after the

hour; the WWVII transmissions are interrupted for a 3 -minute period beginning approximateley 10 seconds after the hour and cach 15 mintute interval thereafter. WWVII is also silent each day for a $3+$-mimute period leginning at 1:00 Čniversal Time.

Accuracy

Transmitted frequencies are accurate within 1 part in 100 million. The WWY transmissions are generally stable to 1 part in a billion in any given day, although this is not guaranteed. Frequencies are based on an atomic standard, and daily corrections to the transmitted frequencios are subseduently published each month in the Procerdings of the Institute of Radio Eingineers.

Time Signals

The $1-\mathrm{e}, \mathrm{p} . \mathrm{s}$, modulation is a j -millisecond pulse at intervals of precisely one second, and is heard as a tick. The mase transmitted by WWW eonsists of $\overline{5}$ eyeles of $10(k)$ (yyle tone: that transmitted by wwvll consists of 6 cycles of 1200 -rycle tone. On the WWV transmissions, the 440 - or 600 -eycle tone is blanked out beginning 10 milliseconds before and ending 2.5 milliseconds after the pulse. On the WWVW trammissions, the pulse is superimposed on the tone. The pulse on the both second is omitted, and for additional identification the zero-sceond pulse is followed by another 100 milliseconds later.

Propagation Notices

During the announcement intervals at $191 / 2$ and $401 / 2$ minutes after the hour, propagation notices applying to transmission paths over the North Atlantic are transmitted from WWV on $2 . \overline{5}, 5,10,15,20$, and 2.5 M . Similar forecasts for the North Pacifie are transmitted from WWVII during the announeement intervals at 9 and 39 minutes after the hour.

These notices, in telegraphic colle, consist of the letter N, W, or l^{\prime} followed by a number. 'The letter desianations apply to propuqation conditions as of the time of the hroadeast, and have the following significance:

W-Ionospheric disturbance in progress or experted.
U - I'nstable eomditions, but communication possible with high power.
N - No warning.
The number designations apply to expected propagation conditions during the sulsecuent 12 hours and have the following significance:

Dipit	Forciozst
1	Impossible
2	Very Poor
3	Poor
4	Fair to Poor
5	Fair
6	Fair to Good
7	Ciood
8	Very Ciood
9	Excollent

Special Transmissions During the International Geophysical Year

The special broadcasts instituted charing the International (icophysical Year may be contimued through part or all of 1954, These broadeasts include information on IGX "Alerts" and "Special World Intervals." The broadcasts from WWV are at $4 \frac{1}{2}$ and $343 / 2$ minutes past the hour and these from Wivill are at it and 44 minutes past the hour. Fach surh transmission is prereded by the letters "A(iI" in International Morse

Corle. "Wre code used for the information is as follows: 5 A's - State of alert.
5 li's - No state of alert.
5 S s - Special World Interval begins at 0001% the following day.
5 T's - Special World Interval terminates at 23597. 3 long dashes - Special Wortd Interval in progress.

Test Oscillators and Signal Generators

THE GRID-DIP METER

The grid-dip meter is a simple vacuum-tule oscillator to which a microanmeter or low-range milliammeter has been added for reading the ossillator grid eurrent. A 0-1 milliammeter is sensitive enough in most cases. The grid-dip meter is so called because if the oseilator is coupled to a tuned eircuit the grid current will show a decrease or "dip" when the oscillator is tumed through resonance with the unknown circuit. The reason for this is that the external eircuit will alsorb energy from the oscillator when both are tuned to the same frequency; the loss of energy from the oscillator circuit causes the feedback to derease and this in turn is accompanied by a decrease in grid current. The dip in grid current is quite sharp when the eireuit to which the oseillator is coupled has reasonably high (Q.

The grid-dip meter is most useful when it covers a wide frequency range and is compactly constructed so that it can be coupled to eireuits in hard-to-reach places such as in a transmitter or receiver chassis. It can thus be used to cherk tuning ranges and to find unwanted resonances of the type described in the chapter on TVI. Since it is its own source of r.f. energy it does not require the circuit being checked to be energized. In addition to resonamee checks, the grid-dip meter also can be used as a signal soure for reeciver alignment and, as deseribed later in this

Fig. 21-17-Circuit diagram of the grid-dip meter. $\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-50). $\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{1}, \mathrm{C}_{6}-0.001-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{5}-0.01-\mu \mathrm{f}$, disk ceramic.
$\mathrm{R}_{1}-22,000$ ohms, $1 / 2$ watt.
Coil Data, L_{1}
Freq. Range Turns Wire Diameter Turne/inch Tuj*
$1.59-3.5 \mathrm{Mc} .13932$ enam. $3 / \frac{\mathrm{in} \text {. Close-wound } 32}{} \mathbf{3 2}$
$3.45-7.8 \mathrm{Mc}, \quad 40 \quad 32$ enlam, $\quad 3 / 8 \mathrm{in}$. Close-wound 12
$\begin{array}{llllll}7.55-17.5 \mathrm{Mc} & 40 & 21 \text { timned } & 1 / 2 \mathrm{in} . \ddagger & 32 & 14 \\ 17.2-40 \mathrm{Mc} . & 15 & 20 \text { tinnell } & 1 / 2 \mathrm{in} . \ddagger & 16 & 5\end{array}$
$\begin{array}{cccccc}17.2-40 \mathrm{Mc} . & 15 & 20 \text { tinned } & 1 / 2 \mathrm{inl} . \ddagger & 16 & 5 \\ 37-85 \mathrm{Mc} . & 1 & 20 \text { timacd } & 1 / 2 \mathrm{in.} \ddagger & 16 & 11 / 3\end{array}$
$78-160 \mathrm{Mc}$. Itairpin of No. H wire, $3 / \mathrm{min}$, spacing, 2 inches long including coilform pius. Tapped $11 / 2 \mathrm{in}$. from ground end.
Coil forms are 3 3-in, diameter.

* Turns from ground end.
$\ddagger \mathrm{B}$. \& W. Miniductor or equivalent mounted inside coil form.
section, is useful in measurement of inductance and caparitance in the range of values used in r.f. circuits.

The circuit of Fig. 21-17 is representative, although practically any oscillator eireuit that will operate over the desired frequency range may be used. An instrument to cover both low and very high frequeneies must be constructed with short, direet r.f. koads. With ordinary care in this respect there should be little difficulty in getting satisfactory operation up to 1.50 Me.
The power supply for the grid-dip meter may be includerl with the oseillator, but since this in(remes the bulk and weight a separate supply is often desirable. The power supply shown in Fig. 21-18 uses a miniature power transformer with a selenium rectifier and a simple filter to give approximately 120 volts for the oscillator plate. The potentiometer R_{2} is for adjustment of plate voltage. This is dosirable berause in any griddip moter the grid current may vary over wide limits in different parts of the frequency range, with fixed plate voltage.

Fig. 21.18-Circuit diagram of the power supply for the grid-dip meter.
$C_{1}, C_{2}-16-\mu \mathrm{f}$. electrolytic, 150 volts.
$\mathrm{R}_{1}-1000$ ohms, $1 / 2 \mathrm{watt}$.
$\mathrm{R}_{2}-0.1$-megohm potentiometer.
T_{1}-Power transformer, 6.3 volts and 125 to 150 volts. (Merit P-3046 or equivalent.)
$\mathrm{CR}_{1}-20$-ma. selenium rectifier.
$\mathrm{M}_{1}-0-1$ d.c. milliammeter.
The instrument may be calibrated by listening to its output with a calibrated receiver. The calibration should be as accurate as possible, although "frequency-meter accurary" is not required in the applications for which a grid-dip) meter is useful.

The grid-dip) meter may be used as an indicat-ing-type absorption wavemeter by shutting off the plate voltage and using the grid and cathode of the tube as a diode. However, this tyje of cireuit is not as sensitive as the erystal-detector type shown earlier in this section, because of the highresistanee grid leak in series with the meter.

In using the grid-dip meter for checking the resonant frecuency of a circuit the coupling should be set to the point where the dip in grid current is just percoptible. This reduces interaction between the two circuits to a minimum and gives the highest accuraey. With too-elose

21 - MEASUREMENTS

venient in the appliations for which the griddip moter is usoful, since it lends itself to very rompart construction with frecdom from dependenee on the a.e. line for power. The principal drawback at the present time is that there are no low-rost transistors that will owillate well in the v.h.f. range. However, it is possible to buid an oscillator that will oprorate at least through the ordinary communiation frequencies, as shown by Figs. 2l-19 to $21-21$, inclusive.

The oscillator circuit in Fig. $21-20$ is basically of the Colpitts type. Since there is no due corrrent in the transistor aseilator that compares with grid comrent in the tube oscillator, an equivalent refert is obtained by using (' h_{1} to reetify some of the ref. chergy, and then measuring the reatifiod current. To emable the use of a relatively inexpensive d.e. instrument, a seroond transistor is used as a d.e amplifier following the rectifies. Omitting (s) would rectuire M_{1} to be a sensitive microammeter, sine the power in the r.f. oseillator is extremoly low, Re provides a means for sotting the meter reading to the desired point on the serale.

The optimum value of bias resistor, R_{1}, varies with frequency, so the proper resistor is mounted in the roil form for carh range. Any ronveniont pin arrangement (an be used for the coil and resistor termimals. Mount the coils near the opern rends of the forms so they cath be tightly compled to the circuit being whecked. The resistors should be pated near the lottom so they will be as far as possible from the roils.
The instrument is used in the same way as a tube grid-dip) meter in cherking unknown eirenits, and may be calibrated by the same method.

AUDIO-FREQUENCY OSCILLATORS

A useful arcessory for tristing atudio-frequency

Fig. 21-20-Circuit of the transistorized grid-dip meter. Capacitances are in $\mu \mu \mathrm{f}$. except where specified otherwise; fixed resistors are $1 / 2$ watt. Fixed capacitors are ceramic.
BT_{1}-8.4-volt mercury fransistor battery (RCA No. VS31 2).
$B T_{2}-1.5$-volt pen light cell (ASA size AA).
$\mathrm{C}_{\mathrm{I}}-100-\mu \mu \mathrm{f}$. midget variable (Hammerlund MAPC-100-B).
$\mathrm{L}_{1}-3.5 \mathrm{Mc}$.: 72 lurns No. 28 enam., $1 / 2$-inch diam., 1 inch long, close-wound.
5-10 Mc.: 43 turns*
10-17 Mc.: 17 furns*
$17.30 \mathrm{Mc.:} 7$ turns*
28-40 Mc.: 3 turns*
$\mathrm{M}_{1}-0-1$ milliammeter.
$Q_{I}-2 N 247$.

Q:-2N107, CK722, or 2N222.
R_{1}-3-5 Mc.: 39,000 ohms**.
5-10 Mc.: 10,000 ohms ${ }^{* *}$.
10.17 Mc.: 4700 ohms ${ }^{* *}$.
17.30 Mc.: 4700 ohms**,

28-40 Mc.: 10,000 ohms**.
$\mathrm{R}_{1}-0.5$-megohm control.
$S_{1}-$ D.p.s.t. toggle mounted on R_{2}.

* No. 24 wire, $1 / 2$-inch diameter, 32 turns per inch ($B \& W$ 3004 Miniductor), mounted inside $3 / 4$-inch diameter polystyrene coil form (Amphenal 24-5H).
** Mounted in coil form with coil of same range.

Audio-Frequency Oscillators

Fig. 21-21-Inside the cose of the tronsistor oscillator. All components are mounted on the flanged section of the two-piece box. The oscillator is at the right in this view, with connections anchored to tie points placed on either side of the coil socket. Q_{1} is visible just below the tuning capocitor. $C R_{1}$ is mounted on the tie-point strip above the coil socket. The d.c. amplifier circuit, to the left of the mercury battery, has its penlight cell power supply mounted beside the variable resistor, using a lug soldered to the zinc case as a support.
amplifiers and modulators is an atherefrequenev signal gromerator or oscillator. (hereks for distortion, gain. and the troubles that oceur in such amplifiers do not requive claborate "alument: the primepal requirement is a sourere of one or more andio tones having a good sime wave form, at a voltage level adjustable from a bew volts down to a liew millivolts so the oscillator can be substituted for the type of microphone to be used.

An rasily-ronstructed oscillator of this tape is shown in Figs, 21-2.2 to $21-2.4$, inchusive. There abdio frequenciss are avabiable, approximately 200 . 900 and 2500 eveles. There there freguencies ate sufficient for lesting the frequency response of an amplifier over the ratuge needed for voiceremmmonication.

The rircuit uses a double triode as at cat hodecoupled osefliator, the second sedion of the tube providing the feedback neressury for oscillation through the common rathode eomeretion. 'The 3-wiot lamp in this feod-hack loop ate as at variable resistame to control the oscillation amplitude and thus mantain the operating conditions at the point whre the lest wave form is generated. This operating point is sot by the "oscillation control," R_{1}. The frequencer is determined by the resistance and capacitance in

Fig. 21-22-Bottom view of the audio oscillator, showing the power-supply components and amplifude-control lamp, h_{1}. The lamp is mounted by wires soldered to its bose. The selenium rectifier is supporled by a tie-point strip. Placement of resistors, which are hidden by the other components, is not criticol. The unit fits in o $4 \times 5 \times 6$ inch box.
$C R_{1}$-20.ma. selenium rectifier.
li-3-watt, 115-volt lomp (G.E. 3S6).
L-8 henrys, 40 ma . (Thordarson 20(52).
R_{1}, R_{2}-Volume controls. S_{1}-2-pole 5 -position (3 used) rotary switch.
$S_{2}-$ D.p.d.t. toggle.
$S_{3}-$ S.p.s.t. loggle (mounted on R_{1}).
T_{1}-Power transformer, 150 volts, 25 mo .; 6.3 volts 0.5 omp . (Merit P-3046).

Fig. 21-23-Circuit diagram of the audio oscillator. Copocitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Fixed resistors are $1 / 2$ watt unless otherwise indicated.

21 - MEASUREMENTS

Fig. 21-24-Inside view of the audio oscillotor. The o.c. switch. S_{3}, is mounted on the output control at the left on the panel. The ceramic copocitors in the freauencydetermining circuits are mounted on the ratary switch, S_{1}, at the right. S_{2} is above the tube, and T_{1} is on the near edge of the chassis, which is a U-shaped piece of oluminum $31 / 2$ inches deep with $I 1 / 2$ inch lips. R_{1} is mounted on the neor lip ot the left.
the coupling cirenit between the first-section plate and serond-section grid. Vimions values of rapacitance can be selected by treans of S_{1} to set the frequeney. The admal frequemed measured in the unit shoron in the photographs are given on the diagram. They maty be either increased or decreased by using smaller or batger capacitances, respeotively.

Output is taken from the rathode of the second triode section. Fither the full output, 1.5 volis, or approximately one-tenth of it ean be solected by S_{2}. On either of theso two ranges smooth control of output is provided $\mathrm{y}_{\mathrm{y}} R_{2}$.

The built-in power sumply nsos a small transformer and a solenium rectifier to develop approximately 150 volis. Hum is reduced to a negligible level by the filter romsisting of the 8-henry choke and $20-\mu$, cabameitors.

An oscilloseope is riseful for preliminary cherking of the oscillator since it will show wave form. R_{1} should be sot at the point that will ensure oscillation on all three frequencins when switohing from one to the other.

NOISE GENERATORS

A noise generator is a devier for ereating a controltable amount of rudio-frespuener noise ("hiss"-type noise) (verty distributen throughout the frequency speetrum of interest. The simplest type of moise generatere is a divele, either vaceumb-tule or crystat, with dirert carrent flowing through it. The curment is also made to
flow through a load resistance which in general is chosen to equal the chatacteristie impedane of the tramsmission line to be connereted to the receiver's input terminals. The resistanere then substitutes for the line, and the amount of r.f. noise fed to the input terminals of the reesiver is controlled by controlling the d.e. through the diode.

The usefuthess of the noise generator in amateur work lies in the fadt that it provides a means for adjusting the "front-cond" circuits of a receiver for optimum signat-to-noise ratio (sero seections on rereiver design). Although it ran be built at little expernse, it is artually more effertive for this purpose than costly laboratory-type signal generators. A simple eipenit using a crysal dione is shown in Fig. 21-25. Fig. $21-26$ illus-

Fig. 21-25-Circuit of a simple crystal-diode noise generator.
$8 \mathrm{~T}_{1}$-Dry-cell battery, any convenient type.
$\mathrm{C}_{1}-500-\mu \mu \mathrm{f}$. ceramic, disk or tubulor.
$C R_{1}$-Silicon diode, IN21 or 1 N 23 (do not use ordinary germanium diades).
P_{1}-Coaxial fitting, cable type.
$R_{1}-50,000$-ohm control, counterclockwise logarithmic taper.
Rg-51 or 75 ohms, $1 / 2$-watt composition.
S_{1}-S.p.s.t. toggle (may be mounted on R_{1}).
trates the construction, the principal requirement boing that R_{2} should be mounted right on the forminals of the coaxial fitting and that lead longths should be as short as possible in the aircuit formed by C_{1}. (h_{1} and R_{2}. If these lead longths are negligible the instrument shoubl give uniform performance up to at least 150 Mr . R_{2} should mateh the particular line and input impedanes for which the receriver is designed.

To use the generator, sorew the coaxial fitting on the receiver's input fitting, open S_{1}, and motasure the noise output of the receiver using all a, varcumetube voltmeter or similar a.f. voltage indieator. Make sure that the reediver's r.f. and audio gain controls are set well within the lincar range, and do not use ade.e. Then turn on the noise gemerator and wet h_{1} for an appreciable increase in output, say twine the original noise voltage, and note the dial setting. Reroiver front-ond adjustmonts maty then be male with the object of attaining the same noise increase with the lowest pessible dived current through the diode - that is, with the largest possible resistance at R_{1}.

The instrument may be used for comparing different recerivers or different fronternd arrangements, sine this type of measurement is independent of reoriver bandwidth (which has a marked affert on the antual signal-to-noise

R.F. Measurements

Fig. 21-26-Crystal-diode naise generatar mounted in a $15 / 8 \times 21 / 8 \times 4$-inch box. Most of the space is occupied by the miniature 6-volt dry-cell battery. The caoxial fitting (PL-259) can be mounted to the box by cutting a hole in a small square sheet-copper plate to make a snug fit over the end of the body of the connector and then saldering it in place. Holes can be drilled in the plate for mounting screws. The diode can be mounted in impravised clips, the larger being a small-size grid-grip and the smaller a miniature socket contact.
ratio). For consistent measurements the battery voltage shoukd le checked to make sure that it does not rhangre with the sedting of R_{1}.
(Further information on moise generatars, with additional reformers, may be form in ONT for July, 1953.)

R.F. Measurements

R.F. CURRENT

R.f. curventmansuring deviecs use a thermocouple in conjunction with an ordinary a.e. instrument. The thermocouple is made of two dissimilar motals which. When hated. gemerate a small dere voltage. The thermoeouple is heated by a resistance wire through which time r.f. current flows, and since the d.e. voltage devoloped is proportional to the heating. which in turn is proportional to the power used by the heating element, the deflections of the d.e instrument are proportional to power rather than to current. This causes the calibrated seale to be compresed at the low-current cond and spread out at the higheurrent end. The useful range of such an inserumont is about 3 or + to 1 ; that is. an rif. ammeter having a full-sale reading of 1 ampere can be read with satisitactory arcuracy down to about 0.3 ampere one having a full sealo of at ampares can be read down to about 1. bamperes. amil so on. No singhe instrument cato be made 1.0 hamble at wide range of currents. Neither catn the r.f. :mmmeter be shunted satisfactorily, as cian ixe done with d.e. instruments, because even a very small amount of reactance in the shunt will conter the readings to be highly dopement on frequence:

Fig, 21-E shows a convenient wat of using an lif. ammeter for mesanting current in at coaxial line. The instrument is simply mounted in at metal box with a short lead from cath terminal

Fig. 21-27-R.f. ammeter mounted for connecting into a coaxial line for measuring power. A "2-inch" instrument will fit into a $2 \times 4 \times 4$ metal box.
to a conxial fitting. The shment capacitance of an ammeter mounted in this way has only a Hegligible efferet on ace-uracey at frectuencies as Ligh as 30 Mre, if the instrument has a bakelite rise. Matal-rased meters should be mounted on at bakelite patal which in furn cat be mounted behind a cut-out that clears the meter case by l/4 inch or so.

R.F. VOLTAGE

Ar r.f. voltmeter is aretifier-type instrument in which the r.f. is comported to d.e., which is then mestaured with a de. instrument. The best tupe of redtion for mos applications is a erystal diode. such as the 1×34 and similat types, because its capacitare is so low as to have
little effect on the behavior of the r.f. eircuit to which it is connected. The principal limitation of these rectifiers is their rather low value of safe inverse peak voltage. Vacuum-tube diodes are considerably better in this respeet, but their size, shunt caparitance, and the fact that power is required for heating the cathode constitute serious disadvantages in many applications.

One of the principal uses for sueh voltmeters is as null indieators in r.f. bridges, as deseribed later in this section. Another useful application is in measurement of the voltage between the eonductors of a coaxial line, to show when a transmitter is adjusted for optimum output. In either ease the voltmeter impedance should be high compared with that of the cireuit under measuremont, to avoid taking appreciable power, and the relationship between r.f. voltage and the reading of the d.e. instrument should be as linear as possible - that is, the d.e. indieation should be directly proportional to the r.f. voltage at all points of the seale.

All reetifiers show a variation in resistance with applied voltage, the resistance being highest when the applied voltage is small. These variations can be fairly well "swamped out" by using a high value of resistanee in the d.e. cireuit of the rectifier. A resistance of at least 10,000 ohms is necessary for reasonably good linearity with a D-I milliammeter. High resistame in the de. circuit also raises the impedance of the r.f. voltmeter and reduces its power consumption.
The hasic voltmeter circuit is shown in lig. 21-28. It is simply a half-wave rectifier with a meter and a resistor, R_{1}, for improving the linearity. The time constant of $C_{1} R_{1}$ should be large compared with the period of the lowest ratio freguency to be measured - a condition that can easily be met if R_{1} is at least 10,000 ohms and ('1 is 0.001μ. or more - so C_{1} will stay charged near the peak value of the r.f. voltage. The radiofrequency choke may be onitted if there is a low-resistance a.c. path through the eircuit being measured. ("2 provides additional r.f. filtering for the d.e cireuit.

Fig. 21-28-R.f. voltmeter circuit using a crystal rectifier and d.c. microommeter or $0-1$ milliommeter.

The simple cireuit of Fig. 21-28 is useful for voltages up to about 20 volts, a limitation imposed by the inverse-peat voltage ratings of erystal diodes. A dual range voltmeter circuit, $(0-20$ and $0-100$ volts, is shown in Figg. 21-2!), A voltage divider, $R_{1} R_{2}$, is used for the higher range. An instrument using this circuit is shown in Fig. 21-30. It is designed for comeretion into a roasial line. The principal constructional precatutions are to keep, leads short, and to mount

Fig. 21-29-Duol-ronge r.f. voltmeter circuit. Copocitonces ore in $\mu \mu \mathrm{f}$.; copacitors ore disk ceromic.
$C R_{1}-1 N 34$ or equivolent.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxiol connectors, chossis-mounting type.
$R_{1}-1000$ ohms, 1 wott.
$R_{2}-3300$ ohms, 2 wotts.
R_{3}-App. 22,000 ohms (see text), $1 / 2$ watt.
S_{1}-S.p.d.t. rotary switch (Centralob 1460).
the components in such a way as to minimize stray coupling between them and to keep them fairly well separated from metal surfaces.

For accurate calibration (the power method deseribed below may be used) R_{3} should be adjusted. by selection of resistors or using two in series to obtain the desired value, so that the meter reads full scale, with S_{1} set for the low range, with 20 volts r.m.s, on the linc. A frequeney in the vicinity of 14 Mc . should he used. Then, with S_{1} sot for the high range, various resistors shoukd be tried at R_{1} or R_{2} until with the stme voltage the meter reads 20 per cent of full seale. The resistance variations usually will be within the range of $10-$ per cent tolerance resistors of the values specified. The reardings at various other voltages should be olserved in order to eheck the linearity of the seale.

Calibration

Calibration is not necessary for purely comparative measurements. A ealibration in actual voltage requires a known resistive load and an r.f. ammeter. The setup is the same as for r.f. power measurement as described later, and the

Fig. 21.30—Dual-range r.f. voltmeter for use in cooxial line, using a $0-1$ d.c. milliommeter. The voltage-divider resistors, R_{1} and R_{2} (Fig. 21-29) are at the center in the lower compartment. The by-pass copacitors and R_{3} are mounted on a tie-point strip at the right. The unit is built in a $4 \times 6 \times 2$ inch aluminum chassis, with an aluminum portition connecting the two sides of the box to form o shielded space. A bottom plate, not shown, is used to complete the shielding.

Measuring Inductance and Capacity

voltage calibration is obtained by calculation from the known power and known load resistance, using Ohm's Law: $E=\sqrt{\bar{P}} \bar{R}$. As many points as possible should be obtained, by varying the power output of the transmitter, so that the linearity of the voltmeter can be cheeked.

R.F. POWER

Measurement of r.f. power requires a resistive load of known value and either an r.f. ammeter or a calibrated r.f. voltmeter. The power is then cither $I^{2} R$ or E^{2} / R, where R is the load resistance in ohms.

The simplest method of ohtaining a load of known resistance is to use an antenna system with coax-coupled matching circuit of the type described in the rhapter on transmission lines. When the cirenit is adjusted, by means of an s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the lnidge was designed (52 or 75 ohms).
The r.f. ammeter should the inserted in the line in place of the s.w.r. bridge after the matching has been completed, and the transmitter then adiusted - without tourhing the matehing circuit - for maximum current. i $0-1$ ammetor is useful for measuring the approximate range $5-50$ watts in 52 -ohm line, or $7.5-75$ watts in 75 -ohm line; a 0-3 instrument ran be used for 1:3-450) watts in 52 -ohm line and $20-675$ watts in 75 -ohm line. The accuracy is usually greatest in the upper half of the scale.

An r.f. voltmeter of the type deseribed in the preceding section also can the used for power measurement in a similar setup. It has the advantage that, because its scale is substantially linear, a much wider reunge of powers can be measured with a single instrument.

INDUCTANCE AND CAPACITANCE

The ability to measure inductance and captcitance saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscillator, deseribed carlier in this section.

For measuring inductance, use is made of a capacitance of known value as shown at A in Fig. 21-31. With the unknown coil connected to the standard (apacitor, couple the grid-dip) meter to the roil and idjust the oscillator frequemey for the grid-enment dip, using the loosest coupling that gives at detectable indication. The inductance is then given be the formula

$$
L_{\mu \mathrm{lv}}=\frac{2 \overline{5}, 330}{C_{\mu \mu \mathrm{f} .} \int_{\mathrm{Mc} .}^{2}}
$$

The reverse procedure is used for measuring caparitance - that is, a coil of known inductance is used as a standard as shown at I3. The unknown camacitance is

$$
C_{\mu \mu \mathrm{I} .}=\frac{25,330}{L_{\mu \mu \mathrm{l} .} f_{\mathrm{Mc.}}^{2}}
$$

Fig. 21.31-Setups for measuring inductance and capacitance with the grid-dip meter.

The accuracy of this method depends on the accuracy of the grid-dip meter calibration and the accuracy with which the standard values of L and C are known. Postage-stamp silver-mica caparitors make satisfactory capacitance standards, since their rated tolerance is ± 5 per cent. Fqually good inductance standards can be made from commercial marhine-wound coil material.

A single pair of standards will serve for measuring the L and C values commonly used in amateur equipment. A good choice is $100 \mu \mu \mathrm{f}$. for the caparcitor and $5 \mu \mathrm{~h}$. for the coil. Based on these values the chart of Fig. 21-33 will give the unknown directly in terms of the resonant frequency registered by the grid-dij) meter. In measuring the frequency the colpling between the grid-dip meter and resonant circuit should be kept at the smallest value that gives a definite indication.

A correction should be applied to measurements of very small values of L and C to include the efferts of the shunt eaparitance of the mounting for the coil, and for the indurtance of the leads to the capacitor. These amount to approximately $1 \mu \mu \mathrm{f}$. and $0.0 ; 3 \mu \mathrm{~h}$., respectively, with the method of mounting shown in Fig. 21-32.

Coefficient of Coupling

The same equipment can be used for measurement of the coefficient of coupling between two

Fig. 21-32-A convenient mounting, using binding-post plates, for L and C standards made from commerciallyavailable parts. The capacitor is a $100-\mu \mu \mathrm{f}$. silver mica unit, mounted so the lead length is as nearly zero as possible. The inductance sfandard, $5 \mu \mathrm{~h}$., is 17 furns of No. $3015 \mathrm{~B} \& \mathrm{~W}$ Miniductor, 1 -inch diameter, 16 turns per inch.

Fig. 21.33-Chart for determining unknown values of L and C in the range 0.1 to $100 \mu \mathrm{~h}$. and 2 to $1000 \mu \mu \mathrm{f}$., using standards of $100 \mu \mu \mathrm{f}$. and $5 \mu \mathrm{~h}$.
coils. This simply rerfuires two mexturements of inductance (of one of the coils) with the coupled coil first open-rireuited and then short-rimeuited. Connect the $100-\mu \mu f$. standardecaparitor to one coil and measure the inductance with the terminals of the serond roil open. Then short the terminals of the serond coil and again moasure the inductance of the first. The coefficient of coupling is given by

$$
k=\sqrt{1-\frac{L_{2}}{L_{1}}}
$$

where $k=$ rocflicient of roupling
$L_{1}=$ inductancre of first coil with terminals of serond coil open
$L_{2}=$ inductance of first coil with terminals of second coil shorterl.

R.F. RESISTANCE

Aside from the bridge methods used in trans-mission-line work, deseribed later, there is relattively little need for measurement of r.f. resistance in amateur practice. Also, measurement of resistance by fundamental methods is not practieable with simple equipment. Whare such mosisurements are made, they are usually hased
on known characteristics of available resistors used as standards.

Most types of resistors have so murh inherent remetanereand skin effert that they do not act like "pure" resistance at radio frecpurncios, but instead their coffective resistance and imperdance vary with frefucom. This is esperially true of wire-wound resistors. Composition (carbon) resistors of 25 ohms or more as a rule have negligible inductance for frequencies up to 100 Ne. or so. The skin effect also is small, but the shunt caparitance camnot he neglected in the higher values of these resistors, since it reduces their imperlance and makes it reartive. However, for most purposes the caparitive efferts can be ronsidered to be negligible in composition resistors of values up to 1000 ohms, for frequencies up to 30 to 100 Mr ., and the r.f. resistance of such units is practically the same as their d.re resistance. Hence they can le ronsidered to be practically: pure resistance in such applications as r.f. bridges, etc., provided they are mounted in such it way as to avoid magnetic coupling to other circuit components, and are not so close to grounded metal parts as to give an appreciable increase in shant capacitance.

Antenna and Transmission-Line Measurements

Two principal types of measurements are made on antenna systrons: (1) the standing-wave ratio on the transmission line, as a mane for determining whether or toot the antema is properly matched to the line (alternatively, the input rosistance of the line or antenna may be measured);
(2) the comparative radiation field strength in the vicinity of the antenna, as a means for cherking the directivity of a beam antenna and as an aid in adjustment of element tuning and phasing. Both types of measurements cat be made with rather simple equipment.

Field Strength Meters

FIELD-STRENGTH MEASUREMENTS

The radiation intensity from an antenna is measured with a devier that is esentiatly a very simple receiver equipped with an indicator to give a visual representation of the comparative signal strenrth. Such a field-strength meter is used with a "pick-up antemat" which should always have the same polarization as the antema being chereked - (e.g., the pick-up) antenna should be horizontal if the transmitting antemna is horizontal. Care should be taken to prevent stray pickup by the field-strength meter itself or by any transmission line that may comert it to the pick-up antenna.

Field-strength measurements preferably should be made at a distance of several wavelengths from the transmitting antenna being tested. Measurements made within a wavelength of the antenma may be misleading, because of the possibility that the measuring equipment may be responding to the combined induction and radiation fields of the antennat, rather than to the radiation field alone. Ako, if the piek-up antemat has dimensions comparatble with those of the antenna under test it is likely that the coupling between the two antennas will be great enough to cause the pirk-up antennat to tend to berome part of the radiating system and thus result in misleading field-strength readings.

A desirable form of pick-up antemat is a dipole installed at the same height as the antemal heing tested, with low-impedanee line such as 75 -ohm Twin-Lead connected at the center to transfer the r.f. signal to the field-strength meter. The length of the dipole need only be great enough to give adequate meter readings. A half-wave dipole will give high sensitivity, but such length wilh not be needed unless the distance is several wavelengthe and a relatively insensitive meter is used.

Field-Strength Meters

The ervistal-detector wavemeter deseribed carlior in this section may be used as a fichdstrength metor. It may be coupled to the transmission line from the pick-up antenna through the cotxial-rable jack, J_{1}.

The indications with a erystal wavemeter connected as shown in lig. 21-10 will tend to be "square law" - that is, the meter reading will be proportional to the square of the r.f. voltage. This exaggerates the effeet of relatively small addjustments to the antenna system and gives a false impression of the improvement secured. The metor reading can be made more linear by connecting a fairly large resistance in selies with the milliammeter (or microammeter). About 10,000 ohms is required for good limearity. This considerably redures the sensitivity of the meter, but the lower sensitivity can be eompensated for by making the pick-up anteman sufficiently large.

Transistorized Wavemeter and Field-Strength Meter

A sensitive field-strengt meter can le mate by using a transistor as a d.e. amplifier following

Fig. 21-34-Transistor d.c. amplifier applied to the wavemeter of Fig. 21-10 to increase sensitivity. Components not listed below are the same as in Fig. 21-10.
$\mathrm{B}_{1}-$ Small flashlight cell.
$M_{1}-0-1$ d.c. milliammeter (see text).
Q_{1}-2N107, CK722, etc.
$\mathrm{R}_{1}-10,000$-ohm control.
$\mathrm{R}_{2}, \mathrm{R}_{3}-1500$ ohms, $1 / 2$ watt.
S_{1}-S.p.s.t. toggle (on-off switch).
the erystal rectifier of a wavemeter. A circuit of this type is shown in Fig. 21-34. Depending on the characteristics of the particular transistor used, the amplification of current may be 10 or nore times, so that a $0-1$ milliampere d.c. instrument becomes the equivalent of a sensitive microammeter.

The eircuit to the left of the dashed line in lig. $21-34$ is the same as the wavemeter circuit of Fig. 21-10, and the transistor amplifier can easily be accommodated in the case shown in ligs. 21-11 and 21-12.

The transistor is connected in the commonemitter circuit with the rectified d.c. from the crystal diode flowing in the base-emitter circuit. Since there is a smatl residual current in the eollector cireuit with no eurrent flowing in the baseenitter circuit, the d.c. meter is connected in a bridge arrangement so the residual current can be balanced out. This is accomplished, in the absener of any signal input to the transistor base, by adjusting R_{1} so that the voltage drop across it is equal to the voltage drop from collector to enitter in the transistor. R_{2} and R_{3}, being of the same resistance, have equal voltage drops across them and so there is no difference of potential across the meter terminals until the collector current increases because of current flow in the base-emitter cireuit.

The collector current in a circuit of this type is not strictly proportional to the base current, particulaty for low values of base current. The meter readings are not directly pioportional to the field strength, therefore, but tend toward "square law" response just as in the case of a simple diode with little or no resistance in its d.e. circuit. For this reason the d.e. meter, M_{1}, should not have too-high sensitivity if reasonably linear response is desired. A $0-1$ milliammeter will be satisfactory:

The zero balance should be chacked at intervals while the instrument is in use, since the residual current of the transistor is sensitive to temperature changes.

IMPEDANCE AND STANDING-WAVE RATIO

Adjustment of antemat matehing systems reguires some means aither of measuring the input impedance of the antenna or transmission line, or measuring the standing-wave ratio. "Bridge" methods are suitable for either measurement.

There are many varieties of bridge circuits, the two shown in Fig. 21-35 being among the most popular for amateur purposes. The simple
(A)

(B)

Fig. 21.35-Basic bridge circuits. (A) Resistance bridge; (B) resistance-capacitance bridge. The latter circuit is used in the "Micromatch," with R_{s} a very low resistance (1 ohm or less) and the ratio $\mathrm{C}_{1} / \mathrm{C}_{2}$ adjusted accordingly for a desired line impedance.
resistance bridge of Fig. 21-35.A consists essentially of two voltage dividers in parallel across a source of voltage. When the voltage drop across R_{1} equals that arross $R_{\text {s }}$ the drops across R_{2} and R_{L} are likewise equal and there is no difference of potential between points A and B. Hence the voltmeter reading is zero and the bridge is said to be "loalanced." If the drops aeross R_{1} and R_{s} are not equal, points A and B are at different potentials and the voltmeter will read the difference. The opration of the cirenit of Fig. $21-3513$ is similar, execpt that one of the voltage dividers is caparitive instead of resistive.
Because of the characteristies of practical components at radio frequencies, the cirenit of Fig. $21-35 \mathrm{~A}$ is best suited to applications where the ratio R_{1} / R_{2} is fixed; this type of bridge is partieularly well suited to measurement of standingwave ratio. The rireuit of Fig, $21-3513$ is well adapted to applications where a variable voltage divider is essential (since C_{1} and C_{2} may readily be made variable) as in measurement of unknown values of R_{L}.

S. W. R. Bridge

In the eireuit of Fig. 21-35A, if R_{1} and R_{2} are made equal, the bridge will be batanced when $R_{\mathrm{L}}=R_{\mathrm{s} \text {. }}$. This is true whether R_{L} is ann actuat resistor or the input resistance of a perfectly matched transmission line, provided R s is chosen to equal the characteristic impedance of the line. Even if the line is not properly matched, the bridge will still be balanced for power traveling outward on the line, since outward-going power sees only the Z_{0} of the line until it reaches the
load. However, power refleeted baek from the load docs not "sce" a bridge cireuit and the reffeeted voltage registers on the voltmeter. From the known relationship between the outgoing or "forward" voltage and the reffected voltage, the s.w.r. is consily ralculated:

$$
S . W . R .=\frac{V_{0}^{\prime}+V_{r}^{r}}{V_{0}-V_{r}^{\prime}}
$$

where V_{0} is the forward voltage :und V_{r} is the reflected voltage. The forward voltage is equal to $E / 2$ since R_{s} and R_{L} (the Z_{0} of the line) are equal. It may be measured either by disconnecting $R_{\text {L }}$ or shorting it.

Measuring Voltages

For the s.w.r. formula alove to apply with reasonable acerracy (particularly at high stand-ing-wave ratios) the current taken be the voltmeter must be inappreciable compared with the "urrents through the bridge "arms." The voltmeter used in bridge circuits employs a crystal diode rectifier (sce discussion earlier in this section) and in order to meet the above requirement - as well as to have linear response, which is equatly neressary for calibration purposes should use at resistance of at least 10,0000 ohms in series with the milliammeter or microammeter.
Sine the voltage applied to the line is measured hy shorting or disconnerting $R_{\text {L }}$ (that is, the line input terminals), while the reflected voltage is measured with R_{L} romeeted, the load on the source of voltage E ' is different in the two measurements. If the regulation of the voltage source is not perfect, the voltage E will not remain the same under these two conditions. This can lead to large errors. Such errors can be avoided by using a scrond voltmeter to maintain a check on the voltage applied to the bridge, readjusting the

Fig. 21.36-Bridge circuit for s.w.r. measurements. This circuit is intended for use with a d.c. voltmeter, range

5 to 10 velts, having a resistance of 10,000 ohms per volt or greater.
$C_{1}, C_{2}, C_{3}, C_{4}-0.005 \cdot$ or $0.01-\mu f$. disk ceramic.
$\mathbf{R}_{1}, \mathrm{R}_{2}-47$-ohm composition, $1 / 2$ or 1 watt.
$R_{3}-52$. or 75 -ohm (depending on line impedance) composition, $1 / 2$ or 1 watt; precision type pre. ferred.
$R_{1}, R_{s}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxial connectors.
Meter connects to either "input" or "bridge" position as required.

Fig. 21-37-A simple bridge circuit useful for impedancematching in cooxial lines.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.005$ - or $0.01-\mu \mathrm{f}$. disk ceramic.
$R_{1}, R_{2}-47$-ohm composition, $1 / 2$ watt.
$\mathrm{R}_{3}-52$ - or 75 -ohm (depending on line impedance) composition, $1 / 2$ watt; precision type preferred.
$\mathrm{R}_{\mathbf{t}}-1000$-ohm composition, $1 / 2 \mathrm{watt}$.
$\mathrm{J}_{1}, \mathrm{~s}_{2}$-Cooxial connector.
The meter may be a 0.1 milliammeter or d.c. voltmeter of any type having a sensitivity of 1000 ohm per volt or greater, and a full-scale range of 5 to 10 volts. Negative side of meter connects to ground.
coupling to the voltage source to maintain constant applied voltage during the two measurements. Since the "input" voltmeter is simply used as a reforence, its linearity is not important, nor does its reading have to bear any definite relationship, to that of the "bridge" voltmeter, except that its range has to be at loast twice that of the latter.

A pratetical cireuit incorporating these features is given in Fig. 21-36.

If the bridge is to be used merely for antenna adjustment, where the objert is to secure the bwest possible s.w.r. rather than to moasure the s.w.r. arcurately, the voltmeter requirements are not stringent. In this case the object is to gret as rlose to a "mull" or balance (that is, zero reading) as possible. It or near exart halance the voltmeter impedance is not important. Neither is it neerssary to maintain constant input voltage to the bridge. This simplifies the bridge circuit ronsiderably, Fig. 21-37 being apractical example. The construction of a bridge of this type suitable for antemat and transmission line adjustments is shown in Fig. 21-38.

Bridge Construction

A principal proint in the construction of an s.w.r. bridge is to avoid coupling between the resistors forming the bridge arms, and betwen the arms and the voltmeter circuit. This an be done by keeping the resistance arms separated and at right angles to each other, and hy plabeing the crystal and its connecting leads so that the toon so formad is not in indurtive relationship wath any loops formed by the bridge arms. Shielding betwern the bridge arms and the crestal circuit is helpful in reducing sueh couplings, although it is not always necessiary. The two resistors forming the "ratio arms," R_{1} and R_{2}, should have identiral relationships with metal parts, to keep the shunt capacitances
equal, and also should have the same lead lengths so the inductances will balanee. Leads should be kept as short as possible.

Testing and Calibration

In a bridge intended for s.w.r. measurement (Fig. 21-36) rather than simple matehing, the first cherk is to apply just enough r.f. voltage, at the highost frequency to be used, so that the bridge voltmeter reads full soale with the load terminals opern. Olsorve the input voltage, then short-cirenit the lowd terminals and raadjust the input to the same voltage. The bridge voltmeter should again register full scale. If it does not, the ratio arms, R_{1} and R_{2}, probsbly are not exabetly equat. These two resistors should he earefully matched, although their actual value is not critical. If a similar test ate a low frequency shows better balanere, the probable cause is stray inductance or caparitance in one arma not baianced by equal streys in the other.

Ifter the "short" and "open" readings have been equalized, the bridge should be checked for null babance with as "dummy" resistance, equal to the line imperdance, connerted to the load terminals. It is convenient to mount a half- or 1-wat resistor of the proper value in a coax connector, keeping it centered in the connector and using the minimum lead length. The bridge voltmeter should read zero at all frequencies. A reading above zoro that remains constant at all frequencies indicates that the "dummy" resistor is

Fig. 21.38-An inexpensive bridge for matching adjustments using the circuit of Fig. 21-37. It is built in a $15 / 8 \times 21 / 8 \times 4$-inch "Channel-lock" box. The standard resistor, R_{3}, bridges the two coax conneclors. A pin jack is provided for connection to the d.c. meter, 0.1 ma . or $0.500 \mu \mathrm{a}$.; the meter negative can be connected to the case or ta ane of the coax fittings.
not matched to R_{3}, while readings that vary with frequency indieate straty reactive efferts or stray coupling between parts of the bridge.

When the opration is satislactory on the two points just dese riberd, the null should be chereked with the dummy resistor connerted to the bridge through several different lengths of transmission line, to ensure that R_{3} artuall! matehes the line impedance. If the null is not complete in this test both the dummer resistor and R_{3} will have to be adjusted until a grod mitch is obtained. With (are, composition resistors can be filed down to raise the resistance, so it is best to start with rosistors somewhat low in value. With each change in R_{3}, adjust the dummy resistor to give a good null when connected directly to the bridge, then try it at the end of several different lengths of line, continuing until the null is satisfactory under all eonditions of line length and frequence.

With a high-impedane voltmeter, the s.w.r. readings will closely approximate the theoretical curve of Fig 21-39. The calibration can be chereked beve using eomposition resistors as loads.

Fig. 21-39-Standing-wave ratia in terms of meter reading (relative to full scale) after setting forward voltage to full scale.
Adjust the transmitter coupling so that the bridge voltmeter reads full scale with the output terminals open, and then check the input voltage. Connert various values of resistance arross the output terminals, making sure that the input voltage is readjusted to be the same in cach case, and note the reading with the meter in the bridge position. This check should be made at a low frequeney such as 3.5 Mc. in order to minimize the effect of reactance in the resistors. The s.w.r. is given by

$$
\text { S. W'.R. }=\frac{R_{\mathrm{L}}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{L}}}
$$

Where R_{0} is the line impedance for which the bridge has been adjusted to null, and R_{L} is the resistane used as a load. Use the formula that places the larger of the two resistances in the numerator. If the readings do not correspond exactly for the same s.w.r. when appropriate
resistors above and below the line impedance for which the bridge is designed are used, a possible reason is that the current taken by the voltmoter is affereting the mansurements.

Using the Bridge

The oprerating procedure is the same whether the bridge is used for matching or for s.w.r. measurement. Apply power with the load terminaly either open or shorted, and adjust the imput until the bridge voltmetar reads full scable. Beeatuse the bridge operates a very low power level it may be necessary to eouple it to a low-power driver stage rather than to the final amplifier. Alternatively, the plate voltage and exritation for the final amplifior may be reduced to the point where the power output is of the order of a fow watts. Then eonnect the load and observe the voltmeter reading. For matching, adjust the matching not work until the best possible mull is obtained. For s.w.r. measurement, note the r.f. input voltage to the bridge after adjusting for full-scalle with the load termmals open or shorted, then connert the hoad and readjust the transmitter for the same input voltage. The bridge voltmeter then indieates the standing-wave ratio as given be Fig. 21-3!.

Antenna systems are in generab resonant systems and thus cxhibit a purcly-rosistive impedance at only one frequency or over a small band of frequencias. In making bridge measurements, this will cause crrors if the r.f. energ. used to operate the bridge is not free from hamonice and other spurions components, such as frequencies lower than the desired opreating frequence that maty be fed through the final amplifier from a frequenco-doubler stiug. When a good null cannot be secured in, for example, the course of adjusting a matching section for 1-to-l s.w.r., a cherk should be made to ensure that only the desired measurement frequency is present. An indicating-type ahsorption frequence meter coupled to the load usually will show whether energy on undesired frequencies is present in significant amounts. If so, additional selectivity must be used between the source of power and the measwing circuit.

Bridge for Monitoring S.W.R.

The low power level at which resistance-type bridges must operate is a disadvantage when the bridge is used ats an operating adjunct - e.g., for the adjustment of matching circuits when changing loands, or for readjustment of such circuits within a hand. For this purpose a bridge is nerded that will carry the full power output of the transmitter without absorbing an appreciable fraction of it.

The "Monimateh" shown in Figs, 21-10 to $21-43$, inclusive, is such a dovice. It makes use of the combined effects of inductive and capacitive coupling betwen the renter condurtor of a coaxial line and a length of wire parallel to it. When the coupled wire is properly terminated in a resistance, the voltage induced in it by powor traveling atong the line in one direction will be balineed out in the erystal-rectifier r.f. voltmeter

Monimatch

Fig. 21-40-Monimatch and indicator unit. The bridge is contained in the $2 \times 4 \times 4$-inch aluminum box af the left. The indicator unit, made separate from the bridge in case the latter has to be installed in a spot where the meter would not be readily visible, is in a $3 \times 4 \times 5$-inch box. Any convenientlength of three-conductor cable (preferably shielded) can be used to connect the two.

circuit, but power travelling along the line in the opposite direretion will cause a voltmeter indication. If the bridge is atjusted to mateh the Z_{0} of the roaxial line being used, the voltmeter will respond only to the reflected voltage, just as in the case of the resistance-type bridges. The power consumed in the bridge is below ole watt, even at the maxinum power permitted amatenr transmitters.

The rircuit of Fig. 21-11 has two such bridge (incuits so either the incident or reflected voltage can be measured.

The sensitivity of this tape of bridge is proportional to frequence, so higher power is required for a given voltmoter deflection at low than at high frequencies. Typical values of "forwad" rectified current (with h_{1}, ligg. 21-42, at zero resistance) are as follows, with a bridge adjusted for a eharacteristic impedance of 52 ohms:

Bamd	10 IVatts R R.F.	$50 \mathrm{I}^{\top}$ ntls R.F.
3.5 Mc.	$70 \mu \mathrm{a}$.	$250 \mu \mathrm{il}$.
7 Mc	$200 \mu \mathrm{ta}$.	1 ma .
$1+\mathrm{Mc}$.	$750 \mu \mathrm{il}$.	Over 1 ma.
21-28 Mc.	Over 1 ma.	Over 1 mat.

A current of 1 ma. on 3.5. Me, can be obtained

Fig. 21-41-Circuit of the Monimatch. The bridge element is a 24 -inch length of coaxial cable modified as described in the text. Capacitors are disk ceramic; capacitances in $\mu \mu$ f.
$C R_{1}, C R_{2}$-General-purpose germanium diodes (IN34A, etc.)
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial fittings, chassis-mounting type.
\mathbf{R}_{1}-Approximately 35 ohms for 52 -ohm line; see text.
with a power level of somewhat over 200 watts. These currents depend somewhat on the internal resistance of the d.c. instrument.

Fig. 21-42—Indicafor-unit circuit. For low power and low frequencies, M_{1} should be a $0-100$ microammeter. A 0-1 milliammeter will suffice in other cases.
R_{1}-25,000-ohm control.
$S_{1}-S . p . d . t$. toggle.
The sensitivity also increases with an increase in rable length, but the cable should not be much longer than about $1 / 20$ wavelength, to avoid standing-wave effects in the pick-up (ilalit. The length given in Fig. 21-41 is suitable for frequencies up to about 50 Mc . For higher frequencies the length should be decreased in proportion to the wavelongth. This reduces the sensitivity considerably at the lower frequencies, so it is alvisable to make separate units for v.h.f. and the frequencies below 30 Mr.

The additional ronductor in the bridge shown in the photographs is a length of No. 30 enameled wire. To insert it under the cable shied, first loosen the braid by bunching it from the ends toward the conter. Pumeh a small hole about $1 / 2$ inch from each end of the braid and insert the end of the wire through one hole, then work it under the braid until it can be pulled out through the other hole. Next, smooth out the braid to its original length, being careful not to apply so much pressure that the enamel on the wire is seratehed. Then open a small hole in the braid at the exact eenter of the length and fish cough oi the No. 30 wire through to make the commection for R_{1}, again being careful about scraping the enamel off. Check with an ohmmeter to make sure the wire and baid are not short rireuited. Then wrap the ends of the braid with

21-MEASUREMENTS

Fig. 21-43-Constructional details of the Monimatch. This unit uses RG-58/U (52-ohm) cable, formed into several circular turns so the center where the tap for R_{1} is taken off will be close to the input and output connectors. The crystal diodes are mounted on tie points alongside the coax fittings so leads are kept as short as possible. The terminating resistor R_{1} consists of two resistors (47 and 150 ohms) in parallel to give a resistance of approximately 35 ohms. The socket for d.c. connections to the indicator unit is an Amphenol 71-4S 171-3S can be substituted). Outside braid of the coble is spot soldered between adjacent turns in several places for mechanical support and to ensure good grounding.
a turn or two of bare wire to prevent fraving and apply at drop or two of solder. The compheted assembly maty then be wound in a cirede or other form that will bring the center connere tion near the two ends. and finally installed as shown in lig. 21-4.3.

With heavior cable than the R(i-58/U used in the anit shown it will probably be neeresary to Hese al latger box. $\mathrm{K}(\mathrm{i}-\mathrm{j} 8 / \mathrm{L}$ is rated for 430 Watts of r.f. up to 30 Mc . aud, R(i-59/U for (is0 watts. For higher powors R(i-8/E or R(i$11 / \mathrm{U}$ should be used. An axample of construction esing heavier rable is shown in the seretion on transmission lines, Aside from power, the type of cable should be chosen to match the chatacteristio impedanere of the lime with which the Monimateh is to be used.

A dummy antemat of the sime resistance as the $\%$ of the line should be used to adjust h_{1}. A suitable dummy may be made by connede ing four $2: 20$-ohm 1 -watt composition resistors in pertallel for 5 to ohm line (or form 300 -ohm resistors for \bar{i}-ohm line , kerping the comereting leads as shont as possibla. The transmitter mey be used ats a source of power providing its output cau be reduced to about 1 watts, or a 10 -wiat lamp maty be romereted in soriss in the line from the transmitter to the hridge if the transmittor power camot be reduced below in) watts. With
 J_{1} and the dummy connered to J_{2}. andust h_{1} until the moter reading is mero with s_{1} in the "refloreded" position. It is lxest to start with the resistamere a little high (at fow trials will show
which way to go) and then try various values of resistance in parallel motil a good mull reading is serured. The final vahe should bie betwern the limits of 25 and 100 ohms. Finally, reverse the transmitter and load connertions, when it good mull should be ohtained with the switeh in the "forward" position. The "forward" and "reflected" readings should be substantially identical both ways if the construction is symmetrical.

With S_{1} in the "forward" position the meter gives a relative indieation of power output, and thus is useful for transmittor tuning. With S_{1} in the "refferted" position the meter reading will be zero when the line is properly matched.

Impedance Bridge

The bridge shown in Fige. 21-41 to 21-46, inclusive, uses the basic circuit of Fig. 21-3513: and incorporates at "differential" c:thenetor to obtath an adjustable ratio. When a resistive load of unknown value is conneded in place of R_{L}, the G_{1} / C_{2} ratio may be varied to attain a balame as indicated by a mall reading. The caparotor set timges can loe calibrated in terms of resistance at $h_{\text {L }}$, so the unknown value can be reald olf the calibration.

The differentiald catpatitor consists of two identical catpacitors on the same shati, arranged so that when the shaft is rotated to increase the
 other dereresses. The pretetigal aremit of the bridge is given in Fig. 21-bin. Sitisfimeory operattion hinges on ohserving the stme constructional prectutions as in the ease of the s.w.r. bridge. Although it high-impedince voltmeter is not

Fig. 21-44-An RC bridge for measuring unknown values of impedance. The bridge operates at an r.f. input voltage level of about 5 volts. The aluminum box is

4 by 5 by 6 inches.

Fig. 21-45-Circuit of the impedance bridge. Resistors are composition, $1 / 2$ watt except as noted. Fixed capacitors are ceramic.
C_{1}-Differential capacitor, 11-161 $\mu \mu \mathrm{f}$. per section (Millen 28801).
$C R_{1}$-Germanium diode (1N34, 1N48, etc.).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial connectors, chassis type.
$M_{1}-0.500$ microammeter.
essential, since the bridge is always adjusted for a null, the use of sueh a voltmeter is advisable because its better linearity makes the actual null settings more aceurately observable.

With the circuit arrangement and eapacitor shown, the useful range of the bridge is from about 5 ohms to 400 ohms. The cablibration is such that the percentage accuracy of reading is approximately constant at all parts of the scale. The midscale value is in the range $50-75$ ohms, to correspond to the Z_{0} of convial cable. The reliable frequency range of the bridge includes all amateur bands from 3.5 to 54 Mc.

Checking and Calibration

A bridge constructed as shown in the photographs should show a complete null at all frequencies within the range inentioned above when a 50 -ohm "dummy" load of the type described earlier in eomection with the s.w.r. bridge is connected to the load terminals. The bridge maty be catibrated by using a mumber of $1 / 2$-watt $\overline{5} \%$ tolerance composition resistors of different values in the $5-400 \mathrm{ohm}$ range as loads, in eath case balaneing the bridge by adjusting (is for a null reading on the moter. The beads between the test resistor and I_{2} should be as short as possible, and the calibration preferably should be done in the $3.5-$ Me. band where stray inductance and capacitance will have the least rffect.

Using the Bridge

Strictly spabing. a simple bridge can measure only purcly resistive impedances. When the load is a pure resistance. the bridge can be balaneed to a good mull (meter reading zoro). If the lowd hats at reactance component the null will not be complete; the higher the ratio of reactance to resistance in the lowd the poorer the null reading. The operation of the brilge is such that when an exawt null cannot be secured, the roadings approximate the resistive component of the load for very low values of impedance and approximate the total impedance at very high values of impedance. In the mid-range the approximation to either is poor, for lowls having considerable reactance.

In using the bridge for :adjustment of matching networks (1 is set to the desired value (usually the Z_{0} of the coaxial line) and the matching network is then adjusted for the best possible null.

PARALLEL-CONDUCTOR LINES

Bridge measurements made directly on paral-lel-conductor lines are frequently subject to considerable error because of "antenna" currents flowing on such lines. These currents, which are either induced on the line by the field around the antenna or coupled into the line from the transmitter by stray capacitance, are in the same phase in both line wires and hence do not balance out like the true transmission-line currents. They will nevertheless actuate the bridge voltmeter, causing an indication that has no redationship to the standing-wave ratio.

S.W.R. Measurements

The effect of "antenna" currents on s.w.r.

Fig. 21.46-All components except the meter are mounted on one of the removable sides of the box. The variable capacitor is mounted on an L-shaped piece of aluminum (with half-inch lips on the inner edge for bolting to the box side) 2 inches wide, $21 / 4$ inches high and $23 / 4$ inches deep, to shield the capacitor from the other components. The terminals project through holes as shown, with associated components mounted directly on them and the load connector, J_{2}. Since the rotor of C_{1} must not be grounded, the capacitor is operated by an extension shaft and insulated coupling.

The lead from J_{1} to $C_{1 A}$ should go directly from the input connector to the capacitor terminol (lower right) to which the 68 -ohm resistor is attached. The 4700-ohm resistor is soldered across J_{1}.

21 - MEASUREMENTS

measurements can be largely overeome by using at coaxial brilge and compling it to the parallol(romdactor lina through a properly-designod impedancomatehing circuit. A suitable rircuit is given in Fig. 21-17. An antemba conpler can be used for the purpose. In the bataneed tank cireuit the "antemas" or parallel components on the line tend to balance out and so are not passed on to the s.w.r. bridge. It is essentiat that L_{1} be coupled to at "cold" point on L_{2} to minimize ratparitive coupling. and also desirable that the renter of L_{0} e be grounded to the chassis on which the rireuit is monented. Vabues should be sueh that Leresem be tuned to the operating frequency and that L_{1} provides sufficient coupling. as deseribed in the trans-mission-line seetion. The measurement proeredure is as follows:
('onnect a monindurtive (1/2-or 1-watt carbon) resistor, having the same vahe as the charateteristic impedane of the parallel-emoluctor line, to the "line" terminals. Apply. r.f. to the bridge, adjust the taps on L_{2} (keeping them equidistant

Fig. 21-47-Circuit for using coaxial s.w.r. bridge for measurements on parallel-conductor lines. Values of cir. cuit components are idential with those used for the similar "antenna-coupler" circuit discussed in the section on transmission lines.
from the erentere), while varying the capareitane of C_{1} and C_{2}, until the bridge shows a null. Difer the null is obtained, do not tourh anyo of the circuit adjustments. Next, short-cireuit the "line" terminals and adjust the r.f. input until the bridge voltmeter reads full scale. Ikemow the shortcireuit and test resistor, and conneret the regular transmission line. The bridge will then indicate the standing-wave ratio on the line.
The circuit requires rematching, with the test resistor, whenever the frepuency is changed appreciably. It can, however. be usod over a portion of an amateur band without readjustment, with negligible error.

Impedance Measurements

Measurements on parallel-ronductor lines and other balanced loads cat be mate with the impedanee bridge previously described by using a batun of the type shown sehematioullis in Fig. 21-48. This is ath antantransformer hatving a $2-t(0)-1$ turns ratio and thens provides at toto-l stco-down in impedane from a bataned load to the output circuit of the bridere, one sith of which is gromended. L_{1} and L_{2} must be as tightly coupled as passible. and so shoud the constructed ats a bifilar winding. The rireuit is resonated to the operating froquency by (y_{1}, and ('2 serves to thme out any residual rratatace that may be present beranse the coupling between the two coils is not quite perfeet.

Fig. 21-48-Tuned balun for coupling between balanced and unbalanced lines. L_{1} and l_{2} should be built as a bifilar winding to get as tight coupling as possible between them. Typical constants are as follows:

Freq., Mc.	L_{1}, l_{2}	C_{1}	C_{3}
28	3 turns each on 2 -inch form, equally spaced over $7 / 16$ inch, total.	$4 \mu \mu \mathrm{f}$.	$420 \mu \mu \mathrm{f}$.
14	Same as 28 Mc .	$39 \mu \mu \mathrm{f}$.	$0.0015 \mu \mathrm{f}$.
7	8 turns of 150 -ohm Twin-lead, no spacing between turns, on $23 / 4$-inch dia. form.	None	$0.001 \mu \mathrm{f}$.
3.5	Same as 7 Mc .	$62 \mu \mu \mathrm{f}$.	$0.0045 \mu \mathrm{~F}$.

Capacitors in unit shown in Fig. 21-49 are NPO disk ceramic. Units may be paralleled to obtain proper ca pacitance.

Fig. 21-4! shows ome method of construeting such ab balun. The two interwound coils are madeats nearly identical as pessible. the "finish" and of the first boing "omnerted to the "start" end of the second through athort lead ruming under the winding inside the form. The eonter of this lead is tapped to give the eomeretion to the shell side of the coax commector. f_{1} should be chosen to resonato the rirenit at the center of the band for which the bahm is designed with J_{1} open, and Cis should resonate the rircuit to the same frequency with both J_{1} and the "load" terminals shorted. The frequency checks maty be made with a grid-dip meter. (For further dotails, see (ONT

With the halum in use the bridge is operated in the sume way as previously described, exerept that atl impedance readings must be multiplied by 4. The balun also mat be used for swar. measurements on 3 Botohm line in conjunction with a

The "Twin-Lamp"

A simple and inexpensive standing-wave indicator for 300-ohm line is shown in Jig. 21-50. It consists only of two flashlight lamps and a short piere of 3 (3)-ohm line. When laid flat against the line to be cheeked, the coupling is surh that outgoing power on the line couses the lamp nearest to the tramsmitter to light, while reflecued penser lights the lamp nearest the load. The power input to the line should be adjusted to make the tamp) mearest the trathomitter light to full brilliance. If the line is property matehed athd the reflected power is very low, the lamp toward the anmenta will the dark. If the s.w.r. is high, the fwo lamps will glow with practically
equal brilliance.

Fig. 21.49-Balun construction (W2ZE). 150-ohm Twin-Lead may be used for the bifilar winding in place of the ordinary wire shown. Symmetrical construction with tight coupling between the two coils is essential to good performance.

The length of the piece of 300 -ohm line needed in the twinhamp will depend on the transmitter power and the operating
 frepuenery: A ferw inches will suffice with high power at high fremucneles, while a foot or two maty be needed with low power and at low frepuencies.

In eonstructing the twin-limp, cut one wire in the exanet renter of the piece and peel the ends back on either side just far enough to provide leads to the flashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the main transmission line at some convenient point. I'se the lowest-current flashlight bulbs or dial lamps available. Solder the tips of the bults together and connect them to the bare point in the trans-
mission line, then solder the ends of the cut portion of the short piece to the shells of the bulbs. Figs. 21-50 and -i5 1 should make the construction clear.

The twin-lamp will respond to "antemas" currents on the transmission line in much the same way as the bridge circuits discussed carlier. There is therefore always a possibility of cror in its indications, unless it has been determined by other means that "intenna" currents are inconsequential compared with the true transmission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a vistal representation of signals at both audio and radio frequencies and ean therefore be used for many lypes of measurements that are not possible with instruments of the types diselased earlier in this chapter. In amateur work, one of the principal uses of the scope is for displatying an amplitudemodulated signal so a phone transmitter can be adjusted for proper modulation and contimuousty monitored to keep the modulation percentage within proper limits. For this purpose a very simple circuit will suffice, and at typical circuit is derrribed later in this section.

The versatility of the scope can be greatly inereased by adding amplifiers and linear deflection circuits, but the design and adjustment of such

Fig. 21.50-The "twin-lamp" standing-wave indicator mounted on 300 -ohm Twin-Lead. Scotch tape is used for fastening.

Fig. 21-51-Wiring diagram of the "twin-lamp" stand-ing-wave indicator.
circuits tends to be complicated if optimum performance is to be secured, and is somewhat outside the field of this section. Specish components: are generally required. Oseilloscope kits for home assembly are available from a number of suppliers, and since their cost compares very favorably with that of a home-built instrument of comparable design, they are recommended for serious consideration by those who have need for or are interested in the wide range of measurements that is possible with a fully-equipped scope.

CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, a vacuum tube in which the electrons emitted from thot eathode are first aceclerated to give them considerable velocity, then formed into a beam, and finally allowed to strike a special translucent sereen which fuuresces, or gives off light at the point where the beam strikes. A beam of moving electrons can be moved laterally, or deflected, by electric or magnetic fields, and since its weight and inertia are negligibly small, it can be made to follow instantly the variations in periodically-changing fields at both audio and radio frequencies.

The electrode arrangement that forms the electrons into it beam is called the electron gun.

21-MEASUREMENTS

Fig. 21-52-Typical construction for a cathode-ray tube of the electrostatic-deflection type.

In the simple tube structure shown in l"ig. 21-52, the gun consists of the cothmode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube. Inode No. 1 is operated at a positive potential with reapect to the cathode, thus accelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practically parallel straight-line paths. The electrostatic fields set up by the pootentials on anode No. 1 and anode No. 2 form an electron lens system which makes the electron paths converge or forens to a point at the fluorescent sereen. The potential on imole No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into focus. Anode No. 1 is, therefore, called the focusing electrode.

Ehertrostatic deflection, the type generally used in the smaller tubes, is produced by deflecting plates. Two sets of phates are placed at right angles to each other, as indicated in lig. $21-52$. The fields are created by applying suitable voltages between the two phates of eath pair. ['sually one plate of catch pair is comerted to anode No, 2, to establish the polarities of the vertical and horizontal fields with respert to the beam and to each other.

Formation of Patterns

When periodically-varving voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms a pattern that is stationary so long as the amptitude and phase relationships of the voltages remain unchanged. F"ig. 21-i5; shows how such patierns are formed. The horizontal sweep, voltage is assumed to have the "santooth" waveshape indicated. With no voltage applied to the vertieal plates the trace simply sweeps from left to right across the sereen along the horizontal axis $X-X^{\prime}$ until the instant H is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertical phates similary would trace a line along the axis $Y^{\prime}-Y^{\prime \prime}$ in the absence of any deflecting voltage on the horizontal plates. However, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of
plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the verical voltage has similatly moved it upwird, so that it reaches the actual position b^{\prime} on the soreen. The resulting trace is casily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth swepp-voltage wate shapre, such as is shown in lijg. 21-ij3, is called a linear sweep, becanse the deflection in the horizontal direction is diectly proportional to time. If the sweep were perfect the fly-back time, or time taken for the spot to return from the end (I) to the beginning (I or A) of the horizontal trace, would be zero, so that the line $H /$ would be perpendicular to the axis $Y-\gamma^{\prime \prime}$. Nlthough the fly-hack time camot be made zero in prateticable swrep-voltage generators it ran be made quite small in comparison to the time of the desired trace $A I I$, at least at mow frequencies within the audio range. The line $I I^{\prime} I$ is called the return trace; with a linear sweep it is less brilliant than the patiem, berause the spot is moving much more rapidly during the dy-hack time than daring the time of the mand trace.

The linear sweep shows the shape of the wave

Oscilloscopes

in the same why that it is usually represented graphically. If the period of the atce. volate applied to the vertionl plates is considerably less than the time taken to sweep horizontally arross the sereen, several ercles of the vertical on "signal" volatae will appear in the pattern.
lor many amateur purposes a sat isfactory horizontal sweep is simply a bo-evele voltage of adjustable amplitude. In modulation monitoring (described in the seetion on amplitude modulation) audio-frequences voltinge cion be taken from the modulator to supply the horizontal sweep. loor exmmination of audio-frequency wave forms, the lineur swepp is assontial. Its froqueney should be adjustable over the entire runge of :undio frequencies to be inspected on the oseillosempe.

Lissajous Figures

When simusuidal a.c. voltages are appliod to the two set,s of deflecting plates in the oscilloseope the resultant pattern depemds on the relative amplitudes, frequencios and phase of the two voltages. If the rallo betwern the two frequencies is eonstant and can be expressed in integers a stationary pattern will be produced. This makes it possible to use the ascilloseope for determining an unknown frequency, provided a variable frequency standard is available, or for determining calibration points for a variablefrequency oseillator if a few known frequencies are twailable for comparison.

The stationary patterns obtained in this way are cabled Lissajous figures. Dxamples of some of the simpler lissajous figures are given in lig. "21-51. The frequency ratio is found by counting the mamber of loops along two abljarent edges. Thus in the third figure from the top there are three loops along a horizontal edge and only one along the verical, so the ration of the vertical frequency to the horizontal frequency is 3 to 1 . Similarly, in the fifth figure from the top there are fout loops abong the horizontal edge and three atong the vertical edge, griving a ration of 4 10 3 . Aveuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequeney applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertialal platers,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ numher of loops along a horizontal elge.

An important application of Lissajous figures is in the catibation of atudio-frequency signal generators. for wery low frequencies the 60-cycle power-line frequency is held aceurately enough to be used as astandard in most locabities. The medium audio-frequence range con be covered by comparison with the 440 - and 1600 -cycle modulation on the WWV transmissions. An oscilloscope having both horizontal and vertical

Fig. 21-54-Lissajous figures and corresponding frequency ratios for a 90 -degree phase relationship between the voltages applied to the two sets of deflecting plates.
amplifiers is desiralsle, since it is convenient to have a monns for adjust ing the voluages atplied to the deflection plates to secure a suitable pattern size. It is possible to eablibrate over a 10 -to-1 range, both upwatds and downwards, from each of the latter frequencies and thus cover the audio range useful for voice communication.

Basic Oscilloscope Circuit

The essential oscilloscope circuit is shown in

Fig. 21-55-Oscilloscope circuit for modulation monitoring. Constants are for 1500 - to 2500 -volt h.v. supply. For 1000.1500 volts, omit R_{R} and connect the bottom end of R_{7} to the top end of R_{9}.
$C_{1}-C_{5}$, inc. -3000 -volt disk ceramic.
$R_{1}, R_{2}, R_{9}, R_{11}$-Volume-control type, linear taper.
$R_{3}, R_{4}, R_{5} R_{6}, R_{10}-1 / 2$ watt.
$R_{7}, R_{5}-1$ watt.
V_{1}-Electrostatic-deflection cathode-ray tube, 2- to 5. inch. See tube tables for base connections and heater ratings of type chosen.

21 - MEASUREMENTS

Fig. 21-55. The minimum requirements are supplying the various electrode potentials, phus controls for focusing and eentering the spot on the face of the tube and adjusting the spot intensity. The circuit of Fig. 21-55 can be used with electro-static-deflection tubes from two to five inches in face diameter, with voltages up to 2500 . This includes practically all the trpes popular for small oscilloscopes.
The circuit has provision for introduring signal voltages to the two sets of deflecting phates. Fither set of deflecting electrodes $\left(D_{1} I_{2}\right.$. or I_{3} / D_{4}) may be used for either horizontal or vertial deflection, depending on how the tube is mounted.

The high voltage may be taken from a transmitter power supply if desired. The current is only a milliampere or so. The voltage preferablyshould be constant, such as is oltaned from :a supply having a constant load - e.g., the supply for the Class C amplifier in an am. transmitter.

In the circuit of Fig. 21-55 the centering controls are at the full supply voltage above ground and therefore should be carefully insulated by being mounted on bakelite or similar material rather than directly on a metal panel or chassis. Insulated couplings or extension shafts should be used. The focussing control is also several hundred volts ahove ground and should be similarly insulated.

The tube should be protected from stray mangnetic fields, either by enclosing it in an iron or steel box or by using one of the special c.r. tube shields available. If the heater transformer (or other transformer) is mounted in the same cahinet, care must be used to place it so the stray field around it does not defleet the spot. The spot cannot be focussed to a fine point when influenced by a transformer field.

Modulation Monitoring

The addition of Fig, 21-56 to the basic circuit of Fig. $21-5 \overline{5}$ provides all that is necessary for modulation checking. The r.f. from the transmitter is applied to the vertical plates through a tuned circuit $L_{1} \mathrm{C}_{1}$ and link L_{2}. When adjusted to the transmitter operating frequeney the tumed circuit furnishes ample deflection voltage even

Fig. 21.56-Circuils for supplying r.f., audio, and a.c voltages to oscilloscope deflection plates for modulation monitoring.
C_{1} - 100- $\mu \mu \mathrm{f}$. variable, receiving type.
$L_{1}-1.75 \mathrm{Mc}$.: 30 enam. close-wound on 1 -inch form, coil length $3 / 4$ inch.
3.5.8 Mc.: 30 turns No. 22 enam., close-wound on 1 -inch form.
13.30 Mc.; 7 furns No. 22, spread to $3 / 4$ inch length on 1 -inch form.
\mathbf{L}_{2}-2 or more turns, as required for sufficient coupling, af cold end of L_{1}.
R_{1}-Volume control, 0.25 megohm or more.
S_{1}-D.p.d.t. switch.
T_{1} —Interstage audio transformer, any type. Use second-ary-to-primary turns ratio of 1-to-1 to 2-to-1.
from a low-power trinsmitter, and C_{1} can be used to control the pattern height.

Deflection voltage for the horizontal plates can be taken from the modulation transformer secondary of an a.m. transmitter, or (0)-erele deflection can be used to give a wave-envelope type pattern. In either case a maximum of about 200 volts r.m.s, will give full-width deflection. This voltage is almost independent of the size of e.r. tube used. Methods of using such a scope for modulation cherking are deseribed in the section on amplitude modulation.

Assembling a Station

The artual bocation inside the house of the "shack" - the room where the transmitter and receiver are located - depends, of comse, on the free space arailable for amatem antivities. Fortunate indend is the amateur with a separate room that he can reserve for his holby, or the few who can hatve a sperial small buideling separate from the main honsc. However, most amateurs must share a room with other domestie activities, and amateur stations will be foumd tucked away in a corner of the living room, a bedroom, a large closet, or even under the kitchen stove! A spot in the cellar or the attie can almost be classed as a soparate room, althongh it may lack the "finish" of a normal room.

Regardless of the location of the station, however, it should be designed for maximum operating convenience and safoty. It is foolish to have the station arranged so that the throwing of several switches is required to go from "receive" to "tramsmit," just ats it is silly to have the equipment arranged so that the operator is in an uncomfortable and cramped position during his operating homrs. The reason for buidding the station as safe as possible is obvious, if you are interested in spernding a number of years with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position. Which inclades the operator's table and chair and the pieces of equipment that are in constant use
(the receiver, send-receive switch, and key or murophone). The table should be as large as possible, to allow sufficient room for the receiver or recoivers, frequency-measuring equipment, monitoring aquipment, control swit ches, and keys and microphones, with enough space left over for the loghook, a pad and pencil, and perhaps it large ash tray. Suitable space should be included for radiogram blanks and a call book, if these arcessories are in frequent use. If the table is small. or the number of pieces of equipment is large it is often necessary to build a shelf or rack for the auxiliary equipment, or to mount it in some less convenient location in or under the table. If one has the facilities, a semicircular "console" can be built of wood, or a simpler solution is to use two small wooden cabinets to support a table top of wood or Masonite. A flush-type door will make an exerellent table top. Home-built tables or consoles can be finished in any of the available oil stains, varnishes, paints or lacquers. Many operators use a large piece of plate glass over part of their table, since it furnishes a good writing surface and can cover miscellancous charts and tables, prefix lists, operating aids, calendar, and similar accessories.

If the major interests never require frequent band changing, or frequency changing within a band, the transmitter can be located some distance from the operator, in a location where the meters can be observed from time to time (and the color of the tube plates noted!). If frequent band or frequency changes are a part

Here's one way to build a console. Use a 4 -foot $\times 4$-foot $\times 1 / 2$-inch piece of plywood for a center section, and a couple of 3 -drawer chests for the end sections. This gives plenty of operating space in o small areo. (W5KSE, El Paso, Texos)

22-ASSEMBLING A STATION

of the usual operating procedure, the transmitter should be mounted close to the operator, either along one sile or above the receiver, so that the controls are easily accessible without the need for leaving the operating position.

A compromise arrangement would place the v.f.o. or crustal-switched oscillator at the op)erating position and the transmitter in some convenient loeation not adjacent to the operator. Since it is usually possible to operate over a portion of a band without retming the transmitter stages, an operating position of this type is an advantage over one in which the operator must leave his position to make a change in frequency.

Controls

The operator has an excellent chance to exercise his ingenuity in the location of the operating controls. The most important controls in the station are the receiver tuning dial and the send-receive switch. The receiver tuning dial should be located four to eight inches above the operating table, and if this requires mounting the receiver off the table, a small shelf or bracket will do the trick. With the single exception of the amateur whose work is almost entirely in traffic or ragrechew nets, which require little or no attention to the receiver, it will be found that the operator's hand is on the receiver tuning dial most of the time. If the tuning knob is too high or too low. the hand gets cramped after an extended period of operating, hence the importance of a properly-located receiver. The majority of c. N: operators tune with the left hamd, preferring to leave the right hand free for copying messages and handling the key, and so the receiver should be mounted where the knob, ean be reached by the left hand. Phone op-
erators aren't tied down this way, and tune the communications receiver with the hand that is more convenient.

The hand key should be fastened securely to the table, in a line just outside the right shoulder and far enough back from the front edge of the table so that the elbow can rest on the table. A good location for the semiantomatie or "bug" key is right next to the handkey, although some operators prefer to mount the antomatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The best location for the mierophone is directly in front of the operator, so that he doesn't have to shout arross the table into it. or run up the speech-amplifier rain so high that all mamer of external sounds are picked up. If the microphone is supported by a boom or by a flexible "goose neek," it can be plated in front of the operator without its base taking up valuable table spare.

In any amateur station Worthy of the name. it should be nedessary to throw mo more than one switch to go from the "recejve" to the "transmit" condition. In phone stations, this switeh should be loonted where it an be easily reached by the hand that isn't on the receiver. In the case of e.w. operation, this switrh is most conveniently lorated to the right or left of the key, although some omerators prefer to have it monnted on the left-hand side of the operating position and work it with the left hand while the right hamd is on the key. Either location is satisfactory, of course, amb the choive depends upon personal preferenoe. Some operators use a foot-controlled switch. which is a convonience but doesn't allow tow much fredom of position daning long operating periods.

If the microphone is hand-held during

Here's an operating console that was designed with operating convenience in mind. WTEBG built it almost entirely out of $3 / 4^{\prime \prime}$ plywood, with strips of 2×2 along the bottom edges for caster supperts. It is assembled with bolts so that it can be readily dismantled for shipping. Over-all dimensions are $48^{\prime \prime}$ wide, $401 / 2^{\prime \prime}$ high, with the horizontal desk top $16^{\prime \prime}$ wide and
the sloping portion $15^{\prime \prime}$ wide.

Controls

phone operation, a "push-to-talk" switch on the microphone is convenient, but hand-held microphones tie up the use of one hand and are not too desimble, although they are widely used in mobile and portable work.

The location of other switehes, such as those used to control power supplies, filaments, phone/c.w. change-over and the like, is of no particular importance, and they can be located on the mit with which they are associated. This is not strictly true in the case of the phone/c.w. DX man, who sometimes has need to change in a hurry from c.w. to phone. In this case, the change-over switch should be at the operating table, although the actual change-over should be done by a relay controlled by the switeh.

Fig. 22-1 - In a station assembled for maximum ease in trequency or band changing, the transmitter should be located next to the operating position, as shown above. On the operating table, the receiver is in front of the operator and v.f.o. or crystal-switching oscillator on the left. (The v.f.o. or crystal oscillator could be part of the transmitter proper, but most operators seem to prefer a separate v.f.o.)

The frequency standard and other auxiliary equipment can be mounted on a shelf above the receiver. The operating table can be an old desk, or a top supported by two small wooden cabinets. The "send-receive" switch is to the right of the telegraph keys-other switches are on the transmitter or the individual units.

The above arrangements can be made to look cleaner by arranging all of the equipment on the table behind a single panel or a set of panels. In this case, provision must be made for getting behind the panel for servicing the units.

If a rotary beam is used the control of the beam should be convenient to the operator. 'Thedirection indicator, however, can the lonated any where within sight of the operator, and does not have to be located on the operating table unless it is included with the control.

Frequency Spotting

In a station where a v.f.o. is used, or where a number of crystals are available, the operator should be able to turn on only the oscillator of his transmitter, so that he can spot acourately his location in the band with respert to other stations. 'This allows him to see if he has anything like a clear chatumel, or to see what his frequency is with respert to another station. Such a provision can be part of the "send-receive"
switch. Switches are available with a center "off" position, a "hold" position on one side, for turning on the oscillator only, and a "lock" position on the other side for turning on the transmitter and antemna relays. If oscillator keying is used, the key serves the same purpose, provided a "send-receive" switch is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oseillator frequency

For phone operation, the telegraph key or an auxiliary switch can control the transmitter oscillator, and the "sencl-receive" switeh can then be wired into the control system so as to control the oscillator as well as the other circuits.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating, examine your station to find what canses the fatigue. It may be that the chair is too soft or hasn't a straight back or is the wrong height for your. The key or receiver may be located st that you assume an uncomfortable position while using them. If you get slcepy fast, the ventilation may be at fault. (Or you may need sleep!)

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control circuits will make it an easy job to change units in the station. If the station is planned in this way from the start, or if the rules are recalled when you are rebuilding. you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a single pair of wires from the outlet over to the operating table or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in Fig. 22-3. The -ircuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an ineonspicuous point on the operating table, where it terminates in a multiple outlet large enongh to handle the required number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything else that is not switched on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit. The power for this circuit can come from a wall outlet or from the transmitter line, if a special one is used.

The third circuit is the one that furnishes

power to the plate-supply transformers for the r.f. stages and for the modulator. (See section on Power Supplies for high-power considerations.) When it is opened, the transmitter is disabled except for the filaments, and the transmitter should be safe to work on. However, one always feels safer when working on the transmitter if he has turned off every power sourer.

With these three circuits established, it becomes a simple matter to arrange the station for different conditions and with new units. Anything on the operating table that runs all the time ties into the first circuit. Any new power supply or r.f. unit gets its filament power from the second circuit. Since the thind circuit is controlled by the send-receive switeh (or relay), any power-supply primary that is to be switched on and off for send and receive connects to circuit C .

Fig. 22-2- When little space is available for the amateur station, the equipment has to be spotted where it will fit, In the above arrangement, the transmitter, modulator and power supplies (separate units) are sandwiched in alongside the operating table and on a shelf above the table. The anterna tuning unit is mounted over the feedthrough insulators that bring the antenna line into the "shack," and loudspeaker and small power supplies are mounted under the table. The operating pasition is clean, however, with the v.f.o., receiver and keys ot table level. The tuning knob of this receiver would be uncomfortably low if the receiver weren't raised by the wooden arch, and the "send-receive" switch is mounted on the right-hond side of this arch, next to the hand key. Interconnecting leads should be cabled olong the back of the table and table legs, to keep them inconspicuous.

This neat "built-in" installation features separate finals and exciters for each band, along with room for receiver, frequency meter, oscilloscope, Q multiplier and v.h.f. converter. All units are mounted on the three large panels; the panels are hinged at the bottom so that they can be lowered for service work on the individual units. A common power supply is used, and band-changing consists of furning on the filaments in the desired r.f. section. (W9OVO, Sturgeon Bay, Wisc.)

Break-In and Push-To-Talk

In c.w. operation, "break-in" is any system that allows the transmitting operator to hear the other station's signal during the "key-up", periods between characters and letters. This allows the sending station to be "broken" by the receiving station at any time, to shorten calls, ask for "fills" in messages, and speed up operation in general. With present techniques, it requires the use of a separate receiving antenna or a "t.r. box" and, with high power, some means for protecting the receiver from the tramsmitter when the ker is "down." Several methods, applieable to high-power stations, are deseribed in Chapter Wight. If the transmitter is low-powered (50 watts or so), no special equipment is required except the separate receiving antenna and a receiver that "recovers" fast. Where break-in operation is used, there should be a switch on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, although during all break-in work this switch will be closed.
"Push-to-talk" is an expression derived from the "push" switch on some microphones, and it means a phone station with a single control for all change-over functions. Strictly speaking, it should apply only to a station where this single send-receive switch must be held in place during transmission periods, but any fast-acting switch will give practically the same effect. A control switch with a center "off" position, and one "hold" and one "lock" position, will give more flexibility than a straight "push" switch. The one switch must control the transmitter power supplies, the receiver "on-off" circuit and, if one is used, the antenna change-over relay. The receiver control is necessary to disable its output during transmit periods, to avoid acoustic feedhark.

Switches and Relays

It is dangerous to use an overhaded switch in the power circuits. After it has been used for some time, it may fail, leaving the power on the circuit even after the switch is thrown to the "off" position. For this reason, large switches, or relays with adequate ratings, should be used to control the plate power. Relays are rated by coil voltages (for their control cireuits) and by their contact current and voltage ratings. Any switeh or relay for the power-control circuits of an amateur station should be conservatively rated; overloading a switch or relay is very poor economy. switches rated at 20 amperes at 125 volts will handle the switehing of circuits at the kilowatt level, but the small toggle switches rated 3 amperes at 125 volts should be used only in circuits up to about 150 watts.

When relays are used, the send-receive switeh

Safety

closes the circuit to their coils, thas closing the relay contacts. The relay contate are in the power circuit being controlled, and thus the switch handles only the relay-coil current. As a consequence, this switch can have a low current rating.

SAFETY

Of prime importance in the layout of the station is the personal saffety of the oprator and of visitors, invited or otherwise, during normal opratang practice. If there are smatl chiddren in the house every step must be taken to prevent their aceidental contact with power leads of any voltage. A locked room is a fine idea, if it is possible, otherwise housing the transmitter and power supplies in metal cabinets is an exeellent, although expensive, solution. Lacking a metal cabinet, a wooden cabinet or a wooden framework covered with wire sereen is the nextbest solution. Many stations have the power supplies housed in motal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept locked - with the key out of reach of everyone bat the operator. The power leads are run through conduit to the transmitter, using ignition eable for the high-voltage leads. If the power supplies and transmitter are in the simme cabinet, a lock-type main switeh for the incoming line power is a good preatution.

A simple substitute for a lock-type main switeh is an ordinary line plug with a short connecting wire between the two pins. By wiring a female receptacle in series with the main power line in the transmitter, the shorting phug will act as the matin satety lock. When the phag is removed and hidden, it will be impossible to energize the transmitter, and a stranger or child isn't likely to spot or suspect the open receptacle.

In essential adjunct to any station is a shorting stick for discharging any high voltage to ground before any work is done in the transmitter. liven if interlocks and power-supply bleeders are used, the failure of one or more of these components may leave the transmitter in a dingerous condition. The shorting stick is made by mounting a
small metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the transmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the tramsmitter to permit work on the rig, the shorting stick is first used to tonch the several high-voltage leads (plate r.f. choke, filter capacitor, tube plate connection, etc.) to insure that there is no high voltage at any of these points. This simple deviee has saved many a life. Use it!

Fusing

A minor hatard in the amateur station is the possibility of fire through the failure of a component. If the failure is complete and the component is large, the house fuses will generally blow. However, it is unwise and inconvenient to depend upon the house fuses to protect the lines rumning to the radio equipment, and every power supply should have its primary circuit individually fused, at about 150 to 200 per cent of the maximum rating of the supply. Circuit breakers can be used instead of fuses if desired.

Wiring

Control-cireuit wires running between the operating position and a transmitter in another part of the room should be hidden, if possible. This can be done by rumning the wires under the floor or behind the base molding, bringing the wires out to terminal boxes or regular wall fixtures. Such construction, however, is generally only possible in elahorate installations, and the average amateur must content himself with trying to make the wires as inconspienous as possible. If several pairs of leads must be rum from the operating table to the transmifter, as is generally the case, a single piece of rubber- or viny-covered multiconductor cable will always look neater than several pieces of rubber-covered lamp cord, and it is much easier to sweep around or dust.

The antenna wires ahways present a problem, unless conxial-line feed is used. Open-wire line

A neat operating bench can be built from wood and covered with linoleum. There is enough room on the fable shown here to house the fransmitter, receiver, and numerous adjuncts and accessories. Interconnecting wiring is run behind the units or underneath the table. (W3AQN, York, Pa.)

22 - ASSEMBLING A STATION

from the point of entry of the antema line should alwios be arranged neatly, and it is generally best to support it at several points. Many operators profor to mome any antema-tuning asomblies right at the point of entry of the feedline. together with an antemat changeover relay (if one is used), and then the link from the tuning assembly to the transmitter can be made of inconspicuous rotxial line. If the tranmitter is moment near the point of entry of the line, it simplifies the problem of "What to do with the feeders:"

Lightning Protection

The antemat sistem usually assoriated with amatedur radio apupment is most vulureable to lightning due to its height and length. To validate ones insuranere, the antemat installation must comply with the Satienal Board of Fire UnderWriters Electrical Code which suts:
Lightning Arrester's - Transmitting Niations.
Except where protected by̧ a continnous metallice
shield (coax) which is promanemty and affor-
tively prounded, or the antenna is permanently
and effectively \&rounded, (ach conductor of a
lead-in for ontdoor antenna shatl be provided
with a lightning arrester or other suitable means
which will drain static charges from the antenna
system.

If eotxiat line is used, compliance with the alonve is readily achieved ber grounding the shicha of the coas at the point where it is nemest to the ground outside the house. Lase at heare wire the aluminum wire sold for grounding TV intennas is good. If the cable ean be run underground, agrounding stake should be located at the point where the cable entors the ground. The grounding stake, to be effertive in soils of averatge conductivity, should be not leses than 10 feret long and, if possible, plated with a metal that will not eor-
rode in the local soil. Making connection to the outside of the outer conductor of the coasial line will normally have no effeet on the s.w.r. in the line, and eonsequently it can be done at any point or points.

Open-wire or Twin-Lead tramsmission lines can be protected be instahling apark gatp such as the one sketehed in Fig. 22-t. The center contacet should be grounded with it No. f or larger wire. The gilss cin be made from $1 / 8 \times 1$, -inch flat brass rod shatped as shown. and the gips should be set suthiciontly far :ubart to prevent Hashonver during nomal operation of the tranmitter. Depending upen the power of the transmitter and the sew.r. pattern on the line the gap mave rom ansthing from $1 / 32$ to $3 / 16$ inch. It will spark intermittently when thunderstorm is building up or is in the generat areab.

Rotary beams using a ' T or gammat matel and with each clement connereded to the boom will usually Io gromeded through the supporting metal tower. If the entemna is mounted on a wooden pole or on the top of the house. at No. t or larger wire should be comereted from the beam to the ground bee the shortest and most direet route possible using insulators where the wire comes close to the building. From a lightningproteretion standpoint, it is desirable to run the coaxial and control lines from at bem down a metal tower and underground to the shatel. If the tower is well grounded and the antennat is higher than any surrounding objocts, the combination will serve well as at lightning rod.

Underwriters' Code

The National Eleretrical Natety Codre l'amphlet 70 , Standarel of the Sialional Boand of Fire Linderwiters, deals with chectrie wiring and

Although the operating console pictured below is a pretty large item as it stands, the method af construction is such that it can be broken down into three easily-movable sections. W1RIL built this from 2×2 stack for the frames, $1 / 2$-inch plywood for the desk top, and masonite for the sides and tops. Careful finishing (plenty of elbow grease with sandpaper and a good paint job), together with a formica top and some chrome trim, produces a very striking console. Setups such as this can make your ham operating a real pleasure.

544

Lightning Protection

Fig. 22-3-Power circuits for a high-power station. A shows the outlets far the receiver, manitaring equipment, speech amplifier and the like. The outlets should be mounted inconspicuously on the operating table. B shows the transmitter filament circuits and control-relay circuits, if the latter are used. C shows the plate-transformer primary circuits, controlled by the power relay. Where 230 - and 115 -volt primaries are controlled simultaneously, point " X " should connect to the "neutral" or common. A heavy-duty switch can be used instead of the relay, in which case the antenna relay would be connected in circuit C . If 115 -volt pilot lamps are used, they can be connected as shown. Lower-voltage lamps must be connected across suitable windings on transformers. With "push-to-talk" operation, the "send-receive" switch can be a d.p.d.t. affair, with the second pole controlling the "on-off" circuit of the receiver.
apparatus. The Code was set up to protect persons and buildings from the electrical hazards arising from the use of electricity, radio, ete. Article 810 is entitled "Radio Equipment." The seope of this article, section 8101 , says, "The article applies to radio and television recciving equipment and to amateur radio transmitting equipment, but not to the equipment used in carvier-current operation."

The Board of Fire Underwriters sets up the code as a minimum standard for good practice. Most cities adopt the code, or parts of it, either entirely or with certain amendments which may apply to that particular city. It is up to the city to enforce these rules. When a violation is reported, periodic checks are made by an inspector until a correction is made and to insure against future recurrence. The National Electric Code is only a minimum standard, and compliance with its rules will assure less operating failures and hazards, and greater safety.

The pamphlet is available by writing the National Board of Fire Underwriters at 85 John Street, New York 38, N. Y. Ask for No. 70.

Parts of the Underwriters' Code deal with power wiring and, in addition to the requirement of the use of Underwriters Laboratory approved materials and fittings, have the following to say of direct interest to amateurs:
"All switehes shall indicate clearly whether they are open or closed.
"All (switeh) handles throughout a system . . shall have uniform open and closed positions.
". . . supply cireuits shall not be designed to use the grounds normally as the sole conductor for any part of the circuit."
The latter means that wire conductor should be used for all parts of the power circuit. Dependence should not be placed on water pipes, etc., as one side of a circuit.

Fig. 22-4-A simple lightning arrester made from three stand-off or feed-through insulators and sections of brass or copper strap. It shauld be installed in the open-wire or Twin-Lead line at the point where it is nearest the ground outside the house. The heavy ground lead should be as short and direct as possible.

BCI and TVI

Every amateur has the olligation to make sure that the operation of his station does not, because of any shortcomings in equipment, cause interference with other radio sorvices. It is unfortunately true that much of the interference that amateurs cause to broadrast and television reception is directly the fault of BC and TV receiver construction. Nevertheless, the amateur can and should help to alleviate interferencer even though the responsibility for it does not lie with him.
Successful handling of interference cases requires winning the listener's cooperation. Here are a few pointers on how to go about it.

Clean House First

The first step obviously is to make sure that the transmitter has no radiations outside the bands assigned for amateur use. The hest cherk on this is your own a.m. or TV rereriver. It is always convineing if you can demonstrate that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be expected to change the interference situation, cherk with your neighbors. If no one is experiencing interference. so much the better; it dows no harm to keep the neighborhood aware of the fact that you are operating without bothering anyone.

Should you rhange location, announce four presence and ronduct occasional tests on the air, requesting anyone whose reception is being spoiled to let you know about it so steps may be taken to eliminate the trouble.

Act Promptly

The average person will tolerate a limited
amount of interference. but the sooner you take steps to eliminate it, the more agreeable the listener will be; the longer he has to wat for you, the less willing he will be to conperate.

Present Your Story Tactfully

When you interfere, it is natural for the complainant to assume that your transmitter is at fitult. If you are cortain that the trouble is not in your transmitter. explain to the listener that the reason lies in the receiver design, and that some modifications may have to be made in the recoiver if he is to expect interference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the help of another amateur and have him operate rour transmit ter while you see for yourself what happens at the affected recciver.

In General

In this "public relations" phase of the problem a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good impression. lour personal appearance is important. So is what you say about the recoiver - no one takes kindly to hearing his possessions derided. If you discuss your interference problems on the air, do it in a constructive way one calculated to increase listener cooperation, not destroy it.

Interference With Standard Broadcasting

Interference with a,m. broadeasting usuallyfalls into one or more rather well-defined rategories. An understanding of the general types of interference will avoid much cut-and-try in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitic oscillations are a frequently unsusperted source of such radiations, and no tramsmitter can be considered satisfactory unt il it has beon thoroughly checked for both low- and highfreduency parasities. Very often parasitics show up only as transients, causing key clicks in c.w. transmitters and "sphashes" or "burps" on modulation peaks in a.m. transmitters. Mothods for detecting and eliminating para-
sities are disedused in the transmitter chapter.
In c.w. transmitters the sharp make and break that oceurs with unfiltered keying causes transients that, in theory, contain frequency components through the entire radiospect rum. Practically, they are often strong enough in the immediate vicinity of the transmitter to cause serious interferener to broadeast reveption. Këy alicks can be climinated by the methods detailed in the chapter on keving.

I distinction must be made between clicks gencrated in the transmitter itself and those vet up be the mere opening and closing of the key contacts whon current is flowing. The lat ter are of the same nat ure as the dieks heard in a recelver when a wall switel is thrown to turn a light on or ofit, and may be more troublasome nearby than the clicks that actually go

Causes of BCI

out on the signal. A filter for eliminating them usually has to be installed as close as possible to the key contacts.

Overmolulation in a.m. phone transmitters generates tramsionts similar to key clicks. It can be provented cither by using automatic systems for limiting the modulation to 100 per cent, or by continuously monitoring the modulation. Methods for both are described in the chapter on amplitude modulation.

13C'I is frequently made worse be radiation from the power wiring or the r.f. transmission line. This is beatuse the signal catusing the interfremee, in such cases, is radiated from wiring that is nemer the broadast receiver than the antenna itself. Murh depends on the method used to contple the tramsmiter to the antenna, a subject that is diseussed in the chapters on transmission lines and antemmis. If it is at all possible the antemat itself should be placed so that it is not in close proximity to hous wiring, telephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Most present-day broadenst recoivers use a built-in loop antenna as the grid cireuit for the mixer stage. The selertivity is not espereiatly high at the sigual frequence. Furthermore, an approciable amount of signal pick-up usually oreurs on the a.c. line to which the receiver is connected, the signal so pieked up being fed to the mixer grid by stray means.

As a result, strong signals from nearly tramsmitters, even though the transmitting fregueney is far removed from the broadeast band. can fore themselves to the mixer grid. They will normally be eliminated by the i.f. selectivity, exeret in cases where the transmitter fropuency is the inage of the broadeast signal to which the reediver is tumed, or when the transmitter frequeney is so related to a harmonic of the broadeast reeciver's local oscillator as to produce a beat at the intermediate frerguencre.

These image and oscillator-harmonic responses tune in and out on the broadeast receiver dial just like a broadeast signal, exeept that in the case of harmonic response the tuning rate is more rapid. Since most receivers use an intermediate frequency in the neighborhood of 455 kr ., the interference is a true image only when the amateur transmiting frequency is in the 1800-ke. band. (scillator-harmonic responses oreur from 3.5-and 7-NC. transmissions, and sometimes even from higher frequencies.

Since images and harmonic responses oceur at definite frequencies on the recoiver dial, it is possible to choose operating frequencies that will avoid putting such a responser on top of the broadenst stations that are favored in the vicinity.

- While your signal may still be heard when the receiver is tuned off the lomal stations, it will at least not interfere with program reception.

There is little that can be done to most receivers to cure interference of this twpe exept to reduce the amount of signal getting into the set
through the a.ce line. A line filter such as is shown in Fig. 23-1 often will help accomplish this. The values used for the coils and capacitors are in general not critical. The effectiveness of the filter may depend considerably on the ground connection used, and it is advisable to use a short ground lead to a cold-water pipe if at all possible. The line cord from the set should be bumehed up, to minimize the possibility of pick-up on the cord. It may be necessary to install the filter inside the receiver, so that the filter is connected between the line cord and the set wiring, in order to get satisfactory operation.

Cross-Modulation

With phone transmitters, there are occasionally cases where the voice is heard whemever the broadeast receiver is tumed to a $B C$; station, but there is no interference when tuning letween stations. This is cross-modulation, a result of rectification in one of the early stages of the rereiver. Receivers that are susceptible to this trouble usually abso get a similar type ol interference from regular broadcasting if there is a strong local BC station and the receiver is tuned to some other station.

The remedy for cross-modulation in the receiver is the same as for images and oseillatorharmonic response-reduce the strength of the amateur signal at the recoiver by means of a line filter.

The trouble is not ahwas in the receiver, since roses modulation can oceur in any mearhy recttifying eircuit - such as a poor contact in water or stam piping, guttor pipes, and other conductors in the strong field of the transmitting antenna - external to both receiver and transmitter. Locating the catlse may be difficult, and is best attempted with a battery-operated portable broadeast recoiver used as at "prohe" to find the spot where the interference is most intense. When such a spot is located, inspection of the metal struetures in the vieinity should indicate the catuse. The remedy is to make a good. electrical bond between the two conductors hatving the poor contact.

Audio-Circuit Rectification

The most frequent cause of interference from operation at "1 Mc, and higher frequencies is rectification of a signal that by some means gets into the audio system of the receiver. In the milder cases an amplitude-moduhated signal will be heard with reasomaly good guatity, but is not tunable - that is, it is present no matter What the frequency to which the receiver dial is set. An ummolulated carricr may have no observable effect in such cases bevond causing a little hum. However, if the signal is very strong there will be a reduction of the audio output level of the receiver whenever the carrier is thrown on. This callses an annoving "jumping" of the program when the interfering signal is keyed. With phone transmission the change in audio level is not so objectionable because it occurs at less frequent intervals. Rectifieation ordinarily gives no
audio output from a frecuency-modulated signal, so the interference can be made almost umoticeable if f.m. or p.m. is used instead of atm.

Fig. 23.1 -"Brute-force" o.c. line filter for receivers. The values of C_{1}, C_{2} and C_{3} are not generally critical; capacitances from 0.001 to 0.01μ. can be used. L_{1} and L_{2} can be a 2 -inch winding of No. 18 enameled wire on a half-inch diameter form. In making up such a unit for use external to the receiver, make sure that there are no exposed conductors to offer a shock hazard.
Interference of this type usually results from a signal on the power line being roupled beme means into the audio circuits, although the piekup) also may occur on the set wiring itself, A "brute-foree" line filter as described above may or may not be completely ceffective, but in any event is the simplest thing to try. If it does not do the joh, some modifiation of the receiver will be necessary. This usually takes the form of a simple filter connered in the grid eircuit of the tube in which the rectification is oceurring. Usually it will be the first audio amplifier, which in most receivers is a diode-triode type tube.

Filter circuits that have proved to be effective are shown in Fig. 2:3-2. In A, the value of the grid loak in the combined detector/first andio tube is redued to 2 to 3 megolums and the grid is bypassed to chassis by a $250-\mu \mu$ f. mica or cramie capacitor. A somewhat similar method that does not require changing the grid resistor is shown at 13. Jn C , a $\overline{\mathrm{a}}, 000$-ohm (vahue not aritinal) resistor is connerted between the grid pin on the tube sorket and all other grid commections. In combination with the input rapacitaner of the tube this forms a low-pass filter to prevent r,f, from reaching the grid. In some cases, simply bypassing the heater of the detector/first andio tube to chassis with a $0.001-\mu$ f. or larger capareitor will suffire, In all cases, chock to see that the a.c. line is bypassed to chassis; if it is not, install bypass (apacitors (0.00) to $0.01 \mu \mathrm{f}$.).

Handling $B C I$ Cases

Assuming that your transmitter has been chereked and found to be free from spurious radiations. get another amateur to operate your station, if possible, while you make the artual cheek on the interference yourself. The following procechure should be used.

Tune the receiver through the broadeast band, to see whether the interferenere tunes like a regular IBC station. If so, image or oscillator-harmonic response is the cause. If there is interference only when a BC station is tuned in, hut not between stations, the cause is cross modulation. If the interference is heard at all sottings of the tuning dial, the trouble is piekup in the audio circuits. In the latter case, the receiver's volume control may or may not affert the strength of the interference, depending on the means by which your signal is lowing rectified.

Having identified the cause, explain it to the set owner. It is a good idea to have a line filter with you, equipped with enough cord to replare the set's line cord, so it can be tried then and there, If it dors not eliminate the interference, explain to the set owner that there is nothing further that can be done without modlifying the receiver. Recommend that the work be done by a compertent service technician, and offer to advise the service man on the cause and remedy. Don't olfer to work on the set yourself, but if you are asked to do so use your own judgment about complying; set owners sometimes eomplain about the over-all proformance of the receiver afterward, often without justification. If you work on it, take it to your station so the effect of the changes you make can be observed, and return the receiver promptly when you have finished.

MISCELLANEOUS TYPES OF INTERFERENCE

The operation of amateur phone transmitters oceasionatly results in interference on telephone lines and in andio amplifiers used in public-athdress work and for home music reproduction. The catuse is rectilication of the signal in an audio circuit.

Telephone Interference

Telephone interference can be cured by connecting a by-pass capacitor (about 0.(o) $\mu \mathrm{f}$.) across the mierophone unit in the telephone handset. The telephone rompanies have eapacitors for this purpose. When surch a case oceurs, get in touch with the repair department of the phone company, giving all the particulars, I) o not attempt to work on the telephone yourself.

Hi-Fi and P. A. Systems

In interference to public-address and "hi-fi" installations the prineipal sources of signal pick-up are the a.c. line or a line from the power amplifier to a speaker. All amplifier units should be bonded together and comereted to a good ground such ats a cold-water pipe. Make sure that the a.ce tine is DETECTOR-Ist, AUDIO

(c)

Fig. 23-2-Methods of eliminating r.f. from the grid of a combined detector/first-audio stage. At A, the value of the grid leak is reduced to 2 or 3 megohms, and a by-pass capocitor is added. At B, both grid and cathode are bypassed.
bypassed to chassis in each unit with caparitors of about $0.01 \mu \mathrm{f}$. at the point where the line enters the chassis. The speaker tine similarly shonld be hypassed to the amplifier chassis with about $0.001 \mu \mathrm{f}$.

If these measures do not suffice, the shiclding on the amplifiers may be inadequate. A shield
cover and bottom pan should be installed in such casos.

The spot in the system where the rectification is occurring of ten can be localized by seeing if the interference is affected by the volume control setting; if not, the cause is in a stage following the volume control.

Television Interference

Interference with the reception of television signals usually presents a more difficult problem than interference with am. broadeasting. In BCI cases the interference almost always can be attributed to deficient selectivity or spurious responses in the BC receiver. While similat deficiencies exist in many television recoivers, it is also true that amateur transmitters generate harmonics that fall inside many or all television
channels. These sparious radiations cause interference that ordinarily cannot be eliminated by anything that may be done at the receiver, so must be prevented at the transmitter itself.

The over-all situation is further complicated by the fact that television brouleasting is in three distinct bands, two in the v.h.f. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his tramsmitting on frequencies below :30 Me. the TV band of principal interest is the low v.h.f. band between 54 and 88 Me. If harmonic radiation can be redued to the point where no interferener is cansed to Channels 2 to 6 , inclusive, it is almost certain that any harmonic troubles with channels above $17+\mathrm{Me}$, will disappear also.

The relationship between the v.h.f. television channels and harmonies of amateur bands from 14 through 28 Mr . is shown in Fig. 23-3. 1larmonies of the 7 - and $3.5-$ Mhe bands are not shown because they fall in every television channel. However, the harmonies above $5+\mathrm{Mr}$. from these hands are of such high order that they are usually rather low in amplitude, although they may be strong enough to interfere if the television receiver is quite close to the amateur transmitter.
receiver is quite close to the amato
Low-order harmonies - up) to about the sixth - are usual the most difficult to eliminate.

Of the amateur v.h.f. bands, only 50 Me. will have harmonis falling in a v.h.f, television channel (chanmels 11, 12 and 13). However, a transmitter for any amateur v.h.f. band may eause interference if it has multiplier stages eithor operating in or having harmonics in one or more of the v.h.f. TV' chamels. The r.f, energy on such frequencies can be radiated directly from the transmitting cireuits or coupled by stray means to the transmitting antenna.

Frequency Effects

The degree to which transmitter harmonies or other undesired radiation actually in the TV channel must be suppressed depents principally on two factors, the strength of the TV sig-
nal on the chamel or channels affected. and the relationship bet ween the frequency of the spurious rudiation and the frequencies of the TV picture and sound carriers within the channel. If the TV signal is very strong, interference can be eliminated by comparatively simple methods. However, if the TV signal is very weak, as in "fringe" areas where the received picture is visibly degraded by the appearance of set noise or "sinow" on the sercen, it may be necessary to go to extreme measures.

In either case the intensity of the interference depends very greatly on the exact frequency of the interfering signal, lig. 2:3-4 shows the placement of the picture and sound carriers in the standard TV channel. In Channel 2, for example, the picture carrier frequency is $54+1.25=$ 55.25 Mc . and the sound carrier frequency is

Fig. 23-4-Location of picture and sound carriers in a monochrome television channel, and relative intensity of interference as the location of the interfering signal within the channel is varied without changing its strength. The three regions are not actually sharply defined as shown in this drawing, but merge into one another gradually.
$60-0.25=59.75$ Me. The second hammonic of
 $5 t=2.02 \mathrm{Me}$. above the low edge of the ehatumed and is in the region marked "severe" in Fig. 2:3-4. On the other hated, the seromd hammonic of $29,500 \mathrm{ke}$. (59,000 ke. or 59 Mc . $) \mathrm{is} 59-5 t=5$ Mr. from the low edge of the channel and falls in the region marked " Mild." Interferenere at this frecpuence hav to be about 100 times as strong as at $50,020 \mathrm{kc}$. to catuse efferts of chuad intensity Thus an operating frefuency that puts a harmonis near the pieture carrior requires about 10 dhs. more harmonic suppression in order to avoid interference, as compared with an operating frequeney that puts the harmonic near the upper edge of the chamel.

For at region of 100 kc . or so mither side of the sound earried thare is another "sovere" rearion where as sparious ratiation will interfere with receplion of the sound program, and this region atso should be awoided. In gemeral, a signal of intensity equal to that of the pieture carrier will not catase moticeable interference if its frequene is in the "Mild" region shown in Fig. 2:3-t, but the same intensit! in the "sievere" region will utterly destroy the picture.

Interference Patterns

The visible afferets of interference vary with the type and intensity of the interference. Complete "hhackout," where the pieture and sound disappear completely, leaving the sereon dark, orecurs only when the transmitter and receiver are quite chese together. strong interference ordinarily eatuses the pieture to be broken up, leaving a jumble of light and dark lines, or turns the picture "uegative" - the normally white parts of the picture turn black and the normally black

Fig. 23-5-"Cross-hatching," coused by the beat between the picture carrier and an interfering signal inside the TV channel.
parts turn white. "(ross-hatehing" - diagonal bats or linas in the pioture - arrompanies the latter, usually and also represente the most eomsmon type of lessevere interference. The hars are the result of the beat between the harmonic freguency and the pioture carrior freguences They are broad and relatively few in number it the beat frequency is comparatively low - moar the pieture carrier - and are numerous and very tine if the beat frequencer is very high - toward the upper end of the chamel. Trpieal erosshatching is shown in Fig. 2;-5. If the frequeney falls in the "Mild" region in lrig. 2:3-4 the cros:hatching may be so fine as to be visible only on close inspertion of the picture, in which case it may simply catuse the apparent brightness of the screen to change when the transmitter carrier is thrown on and off.

Whether or not cross-hatching is visible, an amplitude-modulated transmitter may cause

Fig. 23-6-"Sound bars" or "modulation bars" accompanying amplitude modulation of an interfering signal. in this case the interfering carrier is strong enough to destroy the picture, but in mild cases the picture is visible through the horizontal bars. Sound bars may accompany modulation even though the unmodulated corrier gives no visible cross-hatching.
"sound hars" in the picture. These look about as shown in Fig. 2:3-fi. They result from the variations in the intensity of the interfering signal when modulated. Under most rimomstanees modulation bats will not oredr if the amateur transmitter is frecquenery- or phase-modulated. With these types of modulation the reross-hatelaing will "wiggle" from side to side with the moclulation.

Fxept in the more severe cases, there is seddom any effect on the sound reception when interfremer shows in the picture, unless the frequency is quite close to the sound carrior. In the latter

Reducing Harmonic Generation

event the sound may be interfered with even though the picture is clean.

Reference to Fig. 2:3-3 will show whether or not harmonies of the frequency in use will fall in any television chamels that can be reedived in the loreality. It should be kept in mind that not only harmonies of the final frecquency may interfere, but also harmonies of any frecuencies that may be present in buffer or frequency-multiplier stages. In the case of $1+4-\mathrm{Mr}$. transmitters. fre-quener-multiplying combinations that require a cloubler or tripler stage to operate on a frequenery artually in a low-band v.h.f. channel in use in the locality should be avoided.

Harmonic Suppression

Effective harmonic suppression has three separate phases:

1) Reducing the amplitude of harmonics generated in the transmitter. This is a matter of eireuit design and operating conditions.
2) Preventing stray radiation from the transmitter and from associated wiring. This requires adequate shielding and filtering of all circuits and leads from which radiation can lake place.
3) Preventing harmonics from being fed into the antenna.

It is impossible to build a transmitter that will not generate some harmonics, but it is obviously advantageous to reduce their strength, by circuit design and choiece of operating eonditions, by as large a factor as possible before attempting to prevent them from being radiated. Harmonic radiation from the transmitter itsolf or from its associated wiring obviously will cause interference just as readily as radiation from the antenna, so measures taken to prevent harmonirs from reaching the antenna will not reduce TVl if the transmitter itself is radiating harmonires. But once it has bern found that the transmitter itself is free from harmonic radiation, devices for preventing harmonies from reaching the antenna can be expected to produce results.

REDUCING HARMONIC GENERATION

Since reasonably-efficient operation of r.f. power amplifiers always is accompanied by harmonic generation, good judgment calls for operating all frequency-multipher stages at a very low power level-plate voltages not exceeding 250 or 300 . When the final output frequency is reached, it is desirable to use as few stages as possible in buidding up to the final output power level, and to use tubes that require a minimum of driving power.

Circuit Design and Layout

Ilarmonic currents of considerable amplitude flow in both the grid and plate circuits of r.f. power amplifiers, but they will do relatively little harm if they ean be effectively bypassed to the eathode of the tube. Fig. 2:3-7 shows the paths followed by harmonic currents in an amplifier
eircuit; because of the high reactance of the tank coil there is little harmonic current in it, so the hamonie currents simply flow through the tank cunaritor, the plate (or grid) blocking capacitor, and the tube caparitancos. The lengtha of the leads forming these paths is of great importance, since the inductance in this cireuit will resonate with the tube capacitance at some frequency in the v.h.f. range (the tank and blocking capacitances usually are so large compared with the tube capacitance that they have little effect on the resonant frequency). If such a resonance happens to ocrur at or near the same frequency as one of the transmitter harmonies, the effert is just the same as though a harmonic tank eircuit hat been deliberately introluced; the harmonic at that frequency will be tremendously increased in amplitude.

Fig. 23-7-A v.h.f. resonant circuil is formed by the tube capacitance and the leads through the tank and blocking capacitors. Regular tank coils are not shown, since they have little effect on such resonances. C_{1} is the grid tuning capacitor and C_{2} is the plate tuning capacitor. C_{3} and C_{4} are the grid and plate blocking or by-pass capacitors, respectively.

Such resonances are unavoidable, but by keeping the path from plate to cathode and from grid to cathorle as short as is physically possible, the resonant frequency usually can be raised above 100 Mc . in amplifiers of modium power. This puts it bet ween the two groups of television channels.

It is easier to place grid-circuit v.h.f. resonances where they will do no harm when the amplifier is link-coupled to the driver stage, since this generally permits shorter leads and more favorable conditions for bypassing the harmonics than is the case with capacitive coupling. Link coupling also reduces the coupling between the driver and amplifier at harmonic frefuencies, thus preventing driver harmonics from being amplified.

The inductance of leads from the tube to the tank capacitor can be reduced not only by shortening but by using flat strip instead of wire conductors. It is also better to use the chassis as the return from the blocking capacitor or tuned cireuit to cathode, since a chassis path will have less inductance than almost any other form of connection.

The $v, h . f$. resonance points in amplifier tank circuits can be found by coupling a grid-dip meter covering the $50-250 \mathrm{Me}$. range to the grid and plate leads. If a resonance is found in or near a 'T'V channel, methods such as those described above should be used to move it well out of the 'TV range. The grich-dip meter also should be used to chock for v.h.f. resonances in the tank coils, because coils made for 14 Mc. and below usually will show such resontures. In making the eheck, discomect the coil entirely from the transmitter
and move the grid-dip meter coil alone it while exploring for a dip in the 54-88 Mr. band. If a resonance falls in a T V chammel that is in use in the locality, changing the number of turns will move it to a less-troublesome frepuency.

Operating Conditions

(irid bias and grid eurrent have in important efferet on the hammonic content of the r.f. currents in both the grid and plate cireuits. In general. harmonic output increases as the grid bias and grid eurrent are indreased, but this is not necessarily true of a particular harmonie. The third and higher harmonics, especially, will go through fluctuations in amplitude as the grid current is increased, and sometimes a rather high value of grid current will minimize one harmonic as compared with a low value. This charaderistio can tre used to advantage whore a particular harmonicis causing interference, remembering that the operating conditions that minimize one harmonimay greatly increase another.

For equal operating conditions, there is little or no difference betweren single-ended and pushpull amplificers in respect to harmonic generation. Push-pull amplifiers are frequently trouble-makers on even harmonics beeause with such amplifiers the even-harmonic voltages are in phase at the ends of the tank circuit and hence appear with equal amplitude across the whold tank coil, if the center of the coil is not grounded. Ender such cirounstances the even harmonies can be coupled to the output cirenit through stray capacitance between the tank and coupling coils. This does not oreur in a singla-rended amplifier having an induetively-coupled tank, if the coupling coil is placed at the cold end, or with a pi-metwork tank.

Harmonic Traps

If a harmonie in only one TV chamel is patticularly bothersome - freduently the case when the transmitter operates on 28 Me - a trap tuned to the hamonic frequency may be installed in the plate lead as shown in Fig. 2:3-s. At the harmonie frequeney the trap represents a very high impedance and hence reduces the amplitude of the harmonic current flowing through the tank eireuit. In the push-puil cirenit both traps have the same eonstants. The L C ratio is mot critical but a high-(circuit usually will have least effect on the performance of the plate circuit at the nomal operating freguenes.

Sime there is a eonsiderable hamonie voltage across the trap, radiation maty oecur from the trap unless the tranmitter is woll shidelded. Traps should be phaced so that there is no coupling between them and the amplifier tank eirenit.

A trap is a highly-selective theree and so is useful only ovor a small range of freguencis. A gerond- or third-harmonie trap on a 28 - Ma. tank circuit usually will not be effective over more thatn 50 ke . or so at the fundamental frecturner, depending on how serions the interferenee is without the trap. Berause they are eritical of adjustment it is better to prevent TVI by other means, if possible, and use traps only as a last resort.

Fig. 23-8-Harmonic trops in an amplifier plate circuit. L and C should resonate at the frequency of the harmonic to be suppressed. C may be a 25 - to $50-\mu \mu \mathrm{f}$, midget, and L usually consists of 3 to 6 turns about $1 / 2$ inch in diameter for Chonnels 2 through 6 . The inductance should be adjusted so that the trap resonates at about half capacitance of C before being installed in the transmitter. The frequency may be checked with a grid-dip meter. When in place, the trap should be adjusted for minimum interference to the TV picture.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interforence will be cansed bey direct radiation of spurions signals depends on the operating frequency, the transmitter power level, the strength of the telocision signat, and the distance betweren the tramsmitter and TV rereiver. Transmitter radiation can be a very serious problem if the TV signal is weak, if the TV receriver and amatour transmittor are close togother, and if the tramsmitter is operated with high power.

Shielding

Direct radiation from the transmitter circuits and components ran be prevented by proper shideling. To be effective, a shield must completely enclose the circuits and parts and must have no openings that will permit r.f. cnergy to escape. Unfortunately, ordinary metal boxes and Gabinets do not provide good shielding, since such openings as louvers, lids, and holes for running in commertions allow far too much leakage.
A primary requisite for good shiclding is that all joints must make a good electrical commeetion along their entire kength. A sunall wit or crack will let out a surprising amount of r.f. energy; so will ventilating louvers and large holes surh as those used for mounting meters. Sn the other hand, small holes do not impair the shielding very greatly, and a limited number of ventilating

Preventing Radiation

holes may be used if they are small - not over $1 / 4$ inch in diameter. Also, wire sereen makes quite effective shielding if the wires make good electrical commetion at each crossover. Parforated aluminum such as the "do-it-yourself" sold at hardware stores also is good, although not very strong mechanically. If perforated material is used, choose the variety with the smallest openings. The leakage through large openings can he very much reduced by covering such openings with sereening or perforated ahminum, well bonded to all edges of the opening.

The intensity of r.f. fiekds about coils, capacitors, tubes and wiring decreases very rapidly with distance, so shielding is more effertive, from a practical standpoint, if the eomponents and wiring are not too close to it. It is advisable to have a separation of several inches, if possible, between "hot" points in the rireuit and the nearest shideding.

For a given thickness of metal, the greater the condurtivity the better the shielding. Copper is best, with aluminum, brass and steel following in that order. Howover, if the thickness is adequate for struetural purposes (over (0.02 inch) and the shield and a "hot" point in the circuit are not in close proximity, any of these metals will be satisfactory. (ireater soparation should be used with steel shiodding than with the other materials not only because it is considerably poorer as a shickd but also because it will cause greater losses in near-by circuits than would eopper or alaminum at the same distance. Wire sereen or perforated motal used as a shiclel should also be kept at some distance from high-voltage or high-current r.f. points, since there is considerahly more leakage through the mesh than through solid metal.

Where two pieces of metal join, as in forming a corner, they should overlap at least a half ineh and be fastoned together firmly with serows or bolts spaced at elose-cough intervals to maintain firm contart all along the joint. The contant surfaces should be clean before joining, and should be checked occasionally - especially steel, which is almost certain to rust after a period of time.

The leakage through in given size of aperture in shielding increnses with freguency, so such points as good continuous eontact, screconing of large holes, and so on, become even more important when the radiation to be suppressed is in the high band - 17t-216 Mr. Hence 50- and 14tMe. transmitters, which in general will have frequener-multiplier harmonics of rehatively high intensity in this region. require special attention in this resperet if the possibility of interfering with a channel received locally exists.

Lead Treatment

Even very good shiolding can be made completely useless when connertions are run to external power supplies and other equipment from the cirenits inside the shield. Bvery sueh conductor leaving the shielding forms a path for the escape of r.f., which is then radiated by the con-
neeting wires. Hence a step that is esential in every case is to prevent harmonie currents from flowing on the leads leaving the shielded enclosure.

Harmonic currents always flow on the d.c. or a.c. leards comerting to the tube circuits. A very offective means of preventing such currents from being coupled into other wiring, and one that provides desirable bypassing as well, is to use shielded wire for all such leads, maintaining the shiedding from the point where the lead connects to the tube or r.f. circuit right through to the point where it laves the chassis. The shield braid should be grounded to the chassis at both ends and at frequent intervals along the path.

Good bypassing of shieded leads also is essential. Bearing in mind that the shied braid about the conduetor confines the harmonie currents to the inside of the shielded wire, the object of bypassing is to prevent their escape. Figs. 23-9 and 2:3-10 show the proper wity to bypass. The smalltype $0 .(0) 1-\mu \mathrm{f}$. ceramic disk capacitor, when mounted on the end of the shielded wire as shown in lig. 2:3-9, aetually forms a series-resonant circuit in the $5 t-88$-Mc. range and thus represents practically a short-eireuit for low-band TV harmonirs. The exposed wire to the connection terminal should be kept as short as is physically possible, to prevent :my possible harmonic pickup exterior to the shiedded wiring. Disk eapacitors of this capacitane are available in several voltage ratings up to 3000 volts. For higher voltages, the maximum capacitance available is approximately $500 \mu \mu \mathrm{f}$, which is large enough for good bypassing of harmonics. Alternatively, mica capacitors may he used as shown in fig. 23-10, nounting the capacitor flat against the chassis and grounding the end of the shield braid directly to chassis, keeping the exposed part as short as possible. Either $0.001-\mu \mathrm{f}$. or $4 \overline{7}(0-\mu \mu \mathrm{f}$. ($\%$ (0) $\mu \mu \mathrm{f}$.) capacitors should be used. The larger capacitance is series-resonant in Channel 2 and the smaller in Channel 6.

Fig. 23-9-Proper method of bypassing the end of a shielded lead using disk ceramic capacitor. The 0.001 μf. size should be used for 1600 volts or less; $500 \mu \mu \mathrm{f}$. at higher voltages. The leads are wrapped around the inner and outer conductors and soldered, so that the leod length is negligible. This photograph is about four times actual size.

Fig. 23-10-Bypassing with a mica capacitor the end of a high-voltage lead. The end of the shield braid is soldered to a lug fastened to the chassis directly underneath. The other terminal of the capacitor is similarly bolted directly to the chossis. When the bypass is used at a terminal connection block the "hot" lead should be soldered directly to the terminal, if possible, but in any event connected to it by a very short lead.
These bypasses are essential at the connectionbook terminals, and desirable at the tube ends of the leads also. Installed as shown with shiehded wiring, they have bewn found to be so effertive that there is usuahy mo need for furt her harmonic. filtering. llowerer, if a test shows that additional filtering is recuired, the arrangement shown in Figg. 2:3-1 1 may le used. Such all r.f. iilter should be installed at the tube end of the shifleded lead, and if more than one circuit is filtererl care should be taken to keep the ref, chokes separated from (arh other and so oriented as to minimize coupling betwern them. This is necessary for prevonting harmonies present in one rivenit from leing coupled into amother.

In difficult cases involving Channels $\overline{7}$ to $1: 3$ i.e., "lose proximity betwern the transmitter and receiver, and a weak TV signal - additionad leate filtering measures mav to needed to prevent radiation of interfering siguals ley 5 (o- and $1+H-\lambda I$. transmitters. A recommended method is shown in Fig. 2:3-12. It uses a shiclded head bypased with a ceramice disk as aleseribed atove, with the addition of a low-induetance feed-through type eapacitor and it small r.f. choke, the cilparditor Incing used as at terminal for the extermal comecetion. For voltages above $4(x)$, a capacitor of rompart construction (as indicated in the cap)tion) should be usect, mounted so that there is a very minimum of exposed lead, insiule the chassis, from the capacitor to the connection termimal.
As an alternative to the series-resonant bypassing described above, ferd-through type capacitors such as the Sprague "Ilypass" type may
be used as terminals for external connections. The ideal methot of installation is to mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in which the eapacitor is mounted. The primeiple is illustrated in Fig. 2:3-1:3.

Meters that are mounted in an r.f. unit should be enclosed in shiclding covers, the connections being madre with shielded wire with earh lead bypassed as deseribed above. The shield braid should le grounded to the pandel or chassis immediately outside the moter shindd, as indieated in Fig. 2:3-14. A bypess maty also be connected across the moter torminals, principally to prevent any fundamental current that may be present from flowing through the moteritself. Is an alternative to individual moter shiclding the moters may be mounted entircly behind the panel, and the panel holes needed for observation may be covered with wire scren that is carefully bonded to the panel all around the hole.

Care should he used in the selection of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the d.c. volt-

Fig. 23-12-Additional lead filtering for harmonics or other spurious frequencies in the high v.h.f. TV band (174-216 Mc.).

$C_{1}-0.001-\mu$ f. disk ceramic.

$\mathrm{C}_{2}-0.001-\mu \mathrm{f}$. feed-through bypass (Erie Style 326).
(For 500-2000-volt lead, substitute Plasticon Glass mike, LSG-251, for C $_{2}$.)
RFC-14 inches No. 26 enamel close-wound on $3 / 16$-inch diam. form or resistor.
age in use, but the insulation should be of material that will not easily deteriorate in soldering. The r.f. characteristics of the wire are not especially important, except that the attenuation of harmonics in the wire itself will be greater if the

Fig. 23-11-Additional r.f. filtering of supply leads may be required in regions where the TV signal is very weak. The r.f. choke should be physically small, and may consist of a 1 -inch winding of No. 26 enameled wire on a $1 / 4$-inch form, close-wound. Manufactured single-layer chokes having an inductance of a few microhenrys also may be used.

Preventing Radiation

Fig. 23-13-The best method of using the "Hyposs" type feed-through capacitor. Capacitances of 0.01 to $0.1 \mu \mathrm{f}$. are satisfactory. Capacitors of this type are useful for high-current circuits, such as filament ond 115 -volt leads, as a substitute for the r.f. choke shown in Fig. 23-11, in cases where additional lead filtering is needed.
insulating material has high losses at radio frequencies: in other words, wire intended for use at d.e. and low frequencies is preferable to cables designed expresely for carrying r.f. The attenuation alse will increase with the length of the wire; III general, it is better to make the leats as long as circumstanes permit rather than to follow the more usual pratetice of using no more tead than is actually necossary. Where wires cross or run parallel, the shields should be spot-soldered together and connerted to the chassis. For high voltages, automobite ignition calle covered with shiedding braid is recommended.

Proper shichling of the transmittor requires that the r.f. cireuits be shideded entirely from the external eomeeting leads. I situation such as is shown in Fig. 23-15, where the leads in the r.f. chassis have been shiodded and properly filtered but the ehassis is mounted in a large shield, simply invites the hamonic currents to travel over the chassis and on out over the leads outside the chassis. The shobling about the r.f. eirenits should make complete contact with the chassis

Fig. 23-14-Meter shielding and bypassing. It is essential to shield the meter mounting hole since the meter will carry r.f. through it to be radioted. Suitable shields can be made from $21 / 2$ - or 3 -inch diameter metal cans or small metal chassis boxes.
on which the parts are mounted.

Checking Transmitter Radiation

A check for transmitter radiation always should be made before attempting to use low-pass filters or other devices for preventing harmonies from reaching the antenna system. The only really satisfactory indicating instrument is a television receiver. In regions where the 'TV signal is strong an indicating wavemeter such as one having a arsatal or tube detector maty be useful; if it is possible to get any indication at all from harmonies either on supply leads or aromed the transmitter itself, the harmonies are probably strong enough to enuse interference, However, the absence of any such indieation does not mean that harmonic interference will not be masel, If the techniques of shielding and lead filtering described in the

Fig. 23-15-A metal cabinet can be an adequate shield, but there will still be radiation if the leads inside can pick up r.f. from the tronsmitting circuits.
preceding section are followed, the harmonie intensity on any external leads should be far below What any such instruments cin detect.
laudiation checks should be made with the transmitter delivering full power into a dummy antenna, such as an incandescent lamp of suitable power rating, preferably installed inside the shielded enclosure. If the dummy must be external, it is desirable to connect it through a coaxmatehing eireuit such as is shown in Fig. 23-16. Shielding the dummy antenna eircuit is also desirable, although it is not always neressary.

Dake the radiation test on all frepuencies that are to be used in triusmitting, and note whether or not interference patterns show in the reaved picture. (These tests must be mate while a TV signal is being rereived, since the beat patterns will not be formed if the TV pieture carrier is not present.) If interference exists, its source cim be deterted by grasping the various external leads (bye the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might escape

Fig. 23-16-Dummy-antenna circuit for checking harmonic radiation from the transmitter and leads. The matching circuit helps prevent harmonics in the output of the transmitter from flowing back over the transmitter itself, which may occur if the lamp load is simply connected to the output coil of the final amplifier. See trans-mission-line chapter for details of the matching circuit. Tuning must be odjusted by cut-and-try, as the bridge method described in the transmission-line chapter will not work with lamp loads because of the change in re. sistance when the lamps are hot.
from the transmitter. If any of these tests cause a change - not necessarily an increase - in the intensity of the interference, the presence of harmonics at that point is indicated. The location of such "hot" spots usually will point the way to the remedy. If the TV receiver and the transmitter can be operated side-ix-side, a longth of wire connectal to one antenna terminal on the receiver can be used ats a probe to go over the transmitter enclosure and external leads. This device will very quickly expose the spots from which serious leakage is taking place.

As a final test, comere the transmitting antenna or its trammission line terminals to the outside of the transmitter shidding. Interference created when this test is applied indieates that weak currents are on the outside of the shied and can be conducted to the antemat when the normal antemna conmeetions are used. Curents of this nature represent intorference that can be conducted over low-pass filters, etc., and which therefore cannot be eliminated by surh filters.

- PREVENTING HARMONICS FROM REACHING THE ANTENNA

The third and last step in reducing harmonic TVI is to keep the spurious energy generated in or passed through the final stage from traveling over the transmission line to the antenna. It is seddom worthwhile even to attempt this until the radiation from the tramsmittor and its connecting leads has been reduced to the point where, with the transmitter delivering full power into a dummy antenna, it has been dotermined loy actual testing with a television receiver that the radiation is below the lovel that can cause interference. If the dummy antenna test shows enough radiation to be seen in a TV pieture, it is a pratieal certainty that hamoniss will be coupled to the antomat system no matter what preventive monsures are taken.

In inductively-coupled output systems, some hamonie curgy. will be transferred from the final amplifier through the mutual inductance lnotwern the tank enil and the output eoupling eoil. Hatmonies of the output frequenere transerred in this way can be greatly reduced by providing
sufficiont solectivity between the final tank and the transmission lime. I good deal of selectivity, amounting to 20 to 30 d d. reduction of the second harmonic and mueh higher reduetion of higher-order harmonies, is furnished be a matehing circuit of the trepe shown in Fig. 23-16 and described in the chapter on transmission lines. An "antenna coupler" is therefore a worthwhik addlition to the transmitter.
 harmonies not direetly ascoriated with the output frequency - such as those generated in low-frequance carly stages of the transmitter - may get coupled to the antemat by slay means. For example, a $1+4-$ Ne transiniter might have an oscillator or freciuency multiplier at 48 Me., followed be a tripler to $1+4$ Ne. Some of the 48-M (e. cherge will appar in the plate circuit of the tripler, and if passed on to the grid of the final amplifier will appear as a 48 - Mc. modulation on the IHf-Mc. signal. This will (atuse a spurious signal at 192 Me., which is in the high TV band, and the seleetivity of the tank circuits may not be sufficient to provent its being coupled to the antemnat. Spurious signals of this type can be reduced by using link coupling betweon the driver stage and final amplifier (and botween earlier stages as wedl) in addition to the suppression afforded by using an antenna conpler.

Capacitive Coupling

The upper drawing in foig. 2:3-17 shows a parallel-ronductor link as it might be used to couple into a parallet-rondurtor line through a matching rireuit. Inasmuch as a coil is a sizable metallic objeret, there is eapaceitance between the final tank roil and its assoriated link coil, and between the matching-cibeuit coil and its link. Encrey coupled through these eaparitances travels over the link cirenit and the transmission line as though these wore morely single conduetors. The tuned rireuits simply a at as masses of motal and olfor no solectivity at all for capaci-tively-roupled energy. Although the actual caparitanes are small, they offer a good coupling medium for frecuencies in the v.h.f. range.

Capacitive coupling can be reduced by coupling

Fig. 23-17-The stray capacitive coupling between coils in the upper circuit leads to the equivalent circuit shown below, for v.h.f. harmonics.

Keeping Harmonics From the Antenna

Fig. 23-18-Methods af coupling and graunding link circuits to reduce capacitive coupling between the tonk and link coils. Where the link is wound aver ane end af the tank cail the side toward the hot end of the tank should be grounded, as shown at B.

(A)

(B)

(C)
to a "cold" point on the tank coil - the cod connected to ground or cathode in a singlo-rinded stage. In push-pull cireuits having a split-stator capacitor with the rotor grounded for r.f., all parts of the tank coil are "hot" at even harmonics, but the center of the coil is "cold" at the fundamental and odd harmonies. If the center of the tank coil, rather than the rotor of the tank eapacitor, is grounded through a by-pass capacitor the center of the coil is "cold" at all frequemeios, but this arrangement is not very desirable because it causes the harmonic eurrents to flow through the coil rather than the tank raparitor and this inereases the harmonie transfer by pure inductive coupling

With either single-onded or ballaneed tank circuits the coupling coil should be grounded to the chassis by a short, direet connection as shown in Fig. 23-18. If the eoil feeds a batanced line or link, it is proferable to ground its eenter, but if it foeds a eonx line or link one side may be grounded. Coasiat output is much preforable to balanced output, because the harmonics have to stay inside a properly installed coax system and tend to lo attenuated by the cable hefore reaching the antemia coupler.

At high frequencies - and possibly as low as 14 Me. - (atpat it ive coupling can be greatly reduced by using a shiclded coupling coil as shown in Fig. 23-19. The inner conductor of a length of consial cable is used to form atone-turn coupling eoil. The outer conductor serves as an open-cireuited shield around the turn, the shiold boing grounded to the chassis. The shied ling has no effeet on the inductive coupling. Because this construction is suitable only for one turn, the coil is not well adapted for use on the lower froguencies where many turns are reguired for good coupling. Shiclded coupling coils having a larger number of turns are available commercially. A shiolded coil is particularly useful with push-pull amplifiers when the suppression of even harmonics is important.

A shielded coupling eoil or coaxial output will not prevent stray eapacitive eouphing to the antema if harmonic currents can flow over the outside of the coax line, In Fig. 23-20, the arrangement at either A or C will allow r.f. to flow over the outside of the cable to the antemat system. The proper way to use coaxial cable is to shied the transmitter completely, as shown at 13, and make sure that the outer condurtor of the cable is a continuation of the transmitter shielding. This prevents r.f. inside the transmitter from getting out by any path except the inside of the cable. Harmonics flowing through a coax line can be stopped from reaching the antenna system by an

Fig. 23-19-Shielded coupling coil constructed from coaxial cable. The smaller sizes of cable such as RG-59/U are most convenient when the coil diameter is 3 inches or less, because of greater flexibility. For larger coils RG-8/U or RG-1 $1 / U$ can be used.
(A)

(B)

(C)

Fig. 23-20-Right (B) and wrong (A and C) ways to connect a coaxial line to the transmitter. In A or C , harmonic energy coupled by stray capacitance to the outside of the cable will flow without hindrance to the antenna system. In B the energy connot leave the shield and can flow out only through, not over, the cable.
antemma coupler or by a iow-pass filter installed in the line.

Low-Pass Filters

A low-pass filter properly installed in a coavial line, feeding cither a matching cireuit (antenna coupler) or feeding the antemata direetly, will provide very great aftentation of harmonies. When the main transmission line is of the paralled-entductor type, the eoas-coupled matching-virevit arrangemont is highly recommended as a means for using a coan low-pass filter.

A properly-designed low-pass filter will not introduce appreciable power loss at the fundamental frequency if the coaxial line in whieh it is insorted is temmated so that the s.w.r. is low. (The swr. can easily be measured by means of a simple britge as desoribed in the chapters on measurements and tranmussion lines.) Such a filter has the property of passing without loss all frepucncios bolow its "cut-off" frequency, but simultameousty has large attentation for all fre quencies above the cut-off frequeney.
bow-pass filters of simple and inexpensive construction for use with tramimitters operating helow 30 Mc. are shown in $\mathrm{Figs} .2: 3-21$ and 2:3-2:3. The former is designed to use mical capmators of readily-available capacitance values, for eompactness and low cost. Both we the sime cibcuit, Fig. 2:3-22, the only difference boing in the Land ${ }^{\prime}$ values. Teohnically, they are three-seretion filters having two full constant-k sections and two m-derived terminating half-sedtions, and their attemation in the 51-88-Nc. range varies from over 50 to nearly 70 db., depending on the frequency and the particular sot of values used. Above 17 . Ne, the theoretieal at menation is better than 85 db ., but will depend somewhat

Fig. 23-21-An inexpensive low-pass filter using silvermica postage-stamp capocitors. The box is a 2 by 4 by 6 aluminum chassis. Aluminum shields, bent and folded at the sides and bottom for fastening to the chassis, form shields between the filter secticns. The diagonal arrangement of the shields provides extra room for the coils and makes it easier to fit the shields in the box, since bending to exact dimensions is not essential. The bottom plate, mode from sheet aluminum, extends a half inch beyond the ends of the chossis and is provided with mounting holes in the extensions. It is held on the chassis with sheetmetal screws.

Fig. 23-22-Low-pass filter circuit for attenuating harmonics in the TV bands. J_{1} and J_{2} are chassis-type coaxial connectors. In the table below the letters refer to the following:
A-Using 100 - and $70-\mu \mu \mathrm{f}$. 500 -valt silver mica capaci. tors in parallel for C_{2} and C_{3}.
$\mathrm{B}-$ Using 70 . and $50-\mu \mu \mathrm{f}$, silver mica capacitors ir parallel for C_{2} and C_{3}.
C -Using 100. and $50-\mu \mu \mathrm{f}$, mica capacitors, 1200 -voli (case-style CM-45) in parallel for C_{2} and C_{3}.
D and E-Using variable air capacitors, 500- to 1000 volt rating, adjusted to values given (see measurements chapter for data on measuring capacitance).

	A	B	C	D	E	
Z_{0}	52	75	52	52	75	ohms
$f_{\text {c }}$	36	35.5	41	40	40	Mc.
f_{∞}	44.4	47	54	50	50	Mc.
f_{1}	25.5	25.2	29	28.3	28.3	Mc.
f_{2}	32.5	31.8	37.5	36.1	36.1	Mc.
$\mathrm{C}_{1}, \mathrm{C}_{4}$	50	40	50	46	32	$\mu \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}$	170	120	150	154	106	$\mu \mu \mathrm{f}$.
L_{1}, L_{3}	$51 / 2$	6	4	5	$61 / 2$	turns*
$L_{2,}, L_{4}$	8	11^{1}	7	7	91/2	furns*
L_{3}	9	13	8	81/2	$111 / 2$	turns*

*No. 12 or No. 14 wire, $1 / 2$-inch inside diameter, 8 turns per inch.
${ }^{1}$ A 9 -turn coil with closer furn spacing to give the same inductance is shown in fig. 23-21.
on internal resonant conditions associated prineipally with the load lengths to the cuphacitors. There loads should be kept as short as is physically possible.

The power that filters using mica caparitors can handle safoly is dotormined by the voltage and current limitations of the capacitors. The power eaparity is loast at the highest frecpuenery. The unit using post therestamp) silver miara raprerifors is capablo of hatudling approximately 50 watts in the 2s- Me band. When working into a prop-arly-mat cherl line. hut is good for about 150 watts at 21 We , and 300 watts at $1+$ Mr, and lower fre-
 type (XM-4is) will (arry about 250 wat ts sallely at O8 No., this rating increasing to 500 wat ts at 21 Mr. and a kilowatt at It Me. and lower, If there is an appurereiable mismatch hotween tho filtor and the line into which it works, these ratings will he considerably dereased, soin order to avoid capaceitor fatilure it is highly asential that the line on the output side of the filter be catrotally mateliod by its load. This can be done with an s.w.r. bridge,

Low-Pass Filters

Fig, 23-23-Low-pass filter using variable air capacitors. The box is a 2 by 5 by 7 aluminum chassis, fitted with a bottom plate of similar construction to the one used in Fig. 23-21.
and the matching is easy to control if the line from the fiter terminates in at matching cireuit of the type described in the chapter on tramemission times.

The power eapacity of these filters con le incoeased comsiderably by substituting r.f. tepe fixed capatedors (such :ts the Comtralah siol series) or variable air rapabiturs, in which event the power capability will tre such ats to hatndle the maximum :mateur power on any hand. The construction can be modified to areommodate variable air capardors ats shown in Fig. 23-23.
['sing fixed (:apatcitors of stamdart toleraneres, there should be little difficulty it getting proper filter operation. A rrid-tip metor with :m ace urate (ablibration shoulal he uated for adjustment of the coils. Finst, wire up) the filter without L_{2} and L_{4}. short-aidenit J_{1} at its inside cond with a sorewdriver or similar condurtor, comple the grid-dip meter to L_{1} :hal :uljust the inductance of L_{1}, by varying the furn sparing, until the cirenit resonates at foo ats given in the tatble. 1) o The same thing at the other end of the filter with L_{5}. Then ronple the moter to the ©ireuit formed by $L_{\text {a }}$, C"2 and ('3, and arljust L_{3} to monanate at the frequency f_{1} at given hy the tanda. Than semove Ia
fig. 23-24 - Low-pass filter for use with $50-\mathrm{Mc}$. transmitters and 52-ohm line. It uses variable air capacitors adjusted to the proper capacitance values and is suited to powers up to a kilowatt.
install L_{2} and L_{4} and adjust L_{2} to make the cincuit formed hy L_{1}, L_{2}, C_{1} and C_{2} (without the shont aroos, \dot{f}_{3}) resonate at f_{2} as givem in the table, Do the same with L_{1} for the cirent formed
 with the grid-dip meter at any coil in the filter; a distinct resonatuec should be found at or very close to the cut-off fremueney, for The filter is then re:udy for use.

The filter constants suggested at I) and f : in Fig. 23-22 aro based on the optimum design for good impediane chatacteristics - that is, with $m=0.6$ in the end sertions - and at cut-off fregueney below the standard i.f. for television reerivers (sound carrior at 11.25 Mre.: pieture carrier at 45.75 Ma .). This is to avoid possibhe harmonie interferenere from 21 Ma, and below to the reerevers intermediate amplifier. The other designs similatly cut off at Hl Me . or below, bat m in these cases is neressarily based on the capaceitaners available in standard fixed caparitors.

Filters for 50- and 144-Mc. Transmitters

Nince a low-pass filter must have a cut-off froqueney above the frequeney on which the tramsmitter operates, a tilter for a v.h.f. tramsmitter cannot be designed for attemation in all television chanmels. This is no handicap for vihf. work but means that the filter will not be offortive when used with lower-frepueney transmitters, maless it happens that no 'TV chamets in use in the locelity fall inside the pass hand of the filter.
Fig. 2:3-24 shows a filter for 52-ohm coax suit-
 the atathorized limit. The eireuit diagram is given in lrig. 2:3-25. . If the values of inductane and capactitane can be mosaured (see rhapter on measuremonts) the eomponents can be preset and assembled without further adjustmont. Altermatively, the grid-dip meter method described carlior may be used. The resonant freguencios are:

23 - BCI AND TVI

$$
\begin{aligned}
& L_{1} C_{1} \text { (} J_{1} \text { shorted, } L_{3} \text { disconnected) } \\
& L_{5} C_{4} \text { (. } I_{3} \text { shorted, } L_{4} \text { disconnerterd) } \\
& L_{3} C^{\prime}{ }_{2} C_{3} \text { (} L_{2} \text { and } L_{4} \text { disconnerted) } \\
& L_{1} L_{2} C_{1} C_{2}\left(L_{23}\right. \text { diseonneeted) } \\
& L_{4} L_{5} C_{3} C_{4}^{\prime \prime}\left(L_{3}\right. \text { disconnerted) }
\end{aligned}
$$

81.5 Mc.

46 Mr.
58.5 Mc

The eut-off frequency is :uproximately (bī) Me.

Fig. 23-25-Circuit diagram of the low-pass filters for 50- and 144-Mc. transmitters. Values on the drawing are for the $50-\mathrm{Mc}$. filter. Partitions are not used in the 144-Mc. unit.
$\mathrm{C}_{1}, \mathrm{C}_{4}-50 \mathrm{Mc}$.; $50-\mu \mu \mathrm{f}$. variable, shaft-mounted, set to middle of funing range (Johnson 50L15). 144 Mc.: $11-\mu \mu \mathrm{fd}$. ceramic ($10-\mu \mu \mathrm{f}$. usable).
$\mathrm{C}_{2}, \mathrm{C}_{3}-50 \mathrm{Mc.:} 100-\mu \mu \mathrm{f}$. variable, shaft-mounted set with rotor $1 / 4$ inch out of stator (Bud MC-905). 144 Mc.: $38-\mu \mu \mathrm{f}$. stand-off bypass (Erie Style 721A).

$50-\mathrm{Mc}$. coil data:

$L_{1}, L_{5}-31 / 2$ turns $3 / 8$ inch long. Top leads $3 / 4$ inch, bottom leads $1 / 4$ inch long.
$L_{2}, L_{1}-41 / 2$ turns $5 / 8$ inch long. Leads $1 / 2$ inch long each end. $L_{3}-51 / 2$ turns $7 / 8$ inch long. Leads 1 inch long each. All $50-\mathrm{Mc}$. coils No. 12 tinned, $1 / 2$-inch diam., coil length measured between right-angle bends where leads begin.
144-Mc. coil data:
$L_{1}, L_{5}-3$ furns $1 / 4$ inch long. Leads $1 / 4$ inch long each end. $L_{2}, L_{1}-2$ furns $1 / 8$ inch long. Leads 1 inch long each end. $L_{3}-5$ turns $3 / 4$ inch long. Leads $5 / 8$ inch long each end. All 144 -Mc. coils No. 18 tinned, $1 / 4$-inch diam., lengths measured as for $50-\mathrm{Mc}$. coils.
$\mathrm{J}_{1}, \mathrm{~J}_{2} —$ Coaxial fitting.
The case for the $50-$ Mc. filter is a standard aluminum slip-covar type bos metwaring $31 / 8$ by $1: 3$ by $2 \frac{5}{8}$ inches. The two ond (appacilors, C_{1} and Ci, are mounted with their wo shator posts toward the conds of the filter. The two larger units are mounted in the conter compurtment with their rotor shafts toward the middle. The top leads from coils L_{1} and L_{5} are wrapped around the stator terminals of C_{1} and C_{4}, and the bottom leads fit direetly into the coaxial input and output
fittings. The outer ends of coils L_{2} and L_{4} arm soldered to the conxial fitting terminals, and their inner onds are soldered to lugs supported on oneinch ceramice stand-ofl insulators. Leads from the stand-offs go through holes in the partitions to the bottom stator luge on ('2 and C_{3}. L_{3} is soldered to the two upper luge on these two rapacitors. thus completing the filter circuit. Lead lengths for the roils given in the parts list are the totat lengths to be left when the winding is completed, including the portions that will be used in soldering operations.

This filter will give high attenuation in Chatrmels $4-6$ and all the high-land chamels, and thus will take cerre of most of the spurions signals generated in a 50 - Me transmitter.

A filter for low-power 1ft-Mr, tramsmitters is shown in Fig. 23-26. It is designed for maximum attenuation in the 19(-21i) Me. region to suppress the spurious radiations in that range that frequently ocreur with 11t-Mes, transmitters, but also hats goorlat tenuation for atl frequenciossabove 170 Mr. Optimum rapacitanere values are given in fige 2:3-25. If possible, several units of the mearest standard values available should be measured and those having values closest to the optimum used. The indurtanee values atre too smatl to be measured with suffie ient acenarey, so the filter should be adinsted as follows:
First, mount L_{1} and (" ${ }_{1}$, short I_{1} temporarily at its inner terminals, and adjusi L_{1} until the combination resomates at 200 . Mre ats shown by a griddip metar. Next, remove the short from I_{1} :und connedt L_{2} and ($\%$, adjusting I_{2} until the eircuit formed by $L_{1} L_{2} \mathrm{C}^{4} \mathrm{c}_{2}$ resonaters at 111 Me . Then disconneret L_{2} and mount L_{a} between ${ }^{\prime}$ 'a and (${ }_{3}$. Adjust L_{3} until the cireuit $L_{32} \mathrm{C}_{3} \mathrm{C}_{3}$ resonates at 112 Me . Next, diseomere L_{23} and follow at similat prodedure starting from the other end with J_{5} and C_{4}^{*}. Finally, recomneet all coils and at chock at any point in the filter should show resonance at llio) Me., the approximate cut-off frequence.

The case for the 14t-Ne. filter is mate from flashing copper and is $1 \frac{1}{4}$ inehes squatre by $71 / 8$ inches long. The main portion of the case is cut from a single piece with the end tabs folded down and soldered to the sides. Fituges are folded over at the bottom, amd a cover is made to slip over these.

Filter Installation

In order to give the harmonie attemation of

Fig. 23-26-A 52-ohm low-pass
filter for $144-\mathrm{Mc}$. transmitters.

Low-Pass Filters

which it is capable, a low-pass filter must be installed in such a way that all the output of the transmitter flows through it. If harmonie currents are permitted to flow on the outside of the connerting eonsial cables, they will simply fow over the filter and on up to the antenna, and the filter dees not have an opportunity to stop them. That is why it is somportant ta reduce the radiation from the transmitter and its learls to mgligible proportions.

Fig. 23-27 shows the proper way to install a filter between a shiched transmitter and a matehing circuit. Note that the coax, together with the shiolds about the transmitter and filter, forms a eontinuous shield to keep all the r.f. inside. It is thus fored to flow through the filter and the hamonics are attentated. If there is no harmonic energy left after passing through the filter, shiohing from that point on is mut neressary; consoquently, the matching eireuit or antemat coupler does not need to be shiedded. However, the antenna-coupler chassis arrangement shown in Fig. 23-27 is desirable because it will tend to prevent fundamental-frequency anergy from flowing from the matching circuit back over the transmitter; this helpsiminate feed-hack troubles in atudio sustems.

If the antenta is driven through coasial line the matehing circuit shown in Fig. 2:3-2- may be omitted. In that case the line goes directly from the filter to the antenna.

When a filter does not seem to give the harmonir attemation of which it should be capable, the probable reason is that hamonies are bepassing it becanse of improper installation and inadequate transmittor shielding, inchoding lead filtering. Ilowever, oronsionally there are rases where the cirenits formed by the cables and the apparatus to which there connece berome resonant at a harmonir frecpucincy. This greatly increases the hamonic output at that frequence. Such troubles can be completely overcome be substituting :a slightly different cable length. The most critioal length is that conneeting the tratnsmitter to the filter. (Doceking with a grid-dip) moter at the final amplifier output roil usually will show whether an unfavorable resonathe of this type cxists.

- summary

The mothods of harmonie elimination outlined in this chapter have been proved beyond doubt to be effertive even under highly mifarable conditions. It must be emphasized once more, however, that the problem must be solved one step at a time, and the procedure must be in logical order. It camot be done properly without two items of simple equipment: a grid-dip meter and wavemeter covering the TV bands, and a dummy antenna.
" The proper procedure may be summarized as follows:

1) Take a critical look at the transmitter on
the basis of the design considerations outlined under "Reducing Itarmonic Generation".
2) Cheok all circuits, particularly those connected with the final amplifier, with the grid-dip meter to determine whether there are any resonances in the TV bands, If so, rearrange the circuits so the resonaners are moved out of the eritical frequence region.
3) Connect the transmitter to the dummy antennat and check with the wavemeter for the presence of harmonies on leads and around the transmitter enclosure. Seal off the weak spots in the shiehling and filter the leads until the wavemeter shows no indication at any harmonic fregueney.
4) At this stage, check for interference with a TV receiver. If there is interference, determine the adue by the methods deseribed previonsly and apply the reommended remedies until the interference disappears.
5) When the transmitter is eompletely clean on the chmmy antema, connere it to the regular antema and chere for interferemee on the TV receiver. If the interferonee is not bad, an antemat coupler or matching circuit installed as previously deseribed should clear it up, Atternatively, a howpass filter may be used. If neither the antenna coupler nor filter makes any difference in the interference, the avidence is strong that the interference, at least in part, is being catsed by receiver overlonding because of the strong funda-mental-frequency field about the TV antennat and reeciver. (bie later seetion for identification of fundamental-freguence interference.) A coupler and/or filter, installed as doseribed above, will invariably make a difference in the intensity of the interference if the interference is caused by transmitter harmonics alone.
(i) If there is still interference after instatling

Fig. 23-27 - The proper methad of installing a low-pass filter between the transmitter and antenna coupler or matching circuit. If the antenno is fed through coax the matching circuit may be omitted but the same construction should be used between the transmitter and filter. The filter should be thoroughly shielded.
the coupler and/or filter, and the evidence shows that it is probably catused by a hamonic, more attenuation is needed. A more elaborate filter may be necessaly. I Iowror, it is well at this stage to assume that part of the interference may be caused by receiver overloading, and take steps to alleviate such a condition before trying highlyelaborate filters, traps, ete., on the transmitter.

HARMONICS BY RECTIFICATION

liven though the tramsmitter is completely free from hamonic output it is stil! possible for interference to orcur because of harmonics generated outside the transmitter. These result from rectification of fundamental-frequency currents
induced in ronductors in the vicinity of the transmitting atmonal. Rectification can take place at ane point where wo conductors are in poor elactrial ambath a rondition that frequendy exists in plumbing, downspouting, 13. rables arossing eath other. and numerous other phaces in the ordinary residenee. It also can oceur in :my exposed viacuum tubes in the station, in power supplies, sperech equipment, ete., that maty not be collowed in the shiedling about the rif. diruits. Poor joints anviwhere in the antemnas switem are experially bail, and rectification also may take plawe in the eontads of antemat changeover relays. Anotiou common catuse is overloading the front end of the communications receiver when it is used with a spatate autenna (which will radiate the harmonies generated in the first tubre) for brak-in.

Reretilication of this sort will not only cause harmonic interference but abo is frequently responsible for cross-modulation efferets. It cam be detered in greater or less degree in most locations, but fortunately the harmonics thas genarated are not usually of high amplitude. SIow(ever, thes com canse considerable interference in the immediate vicinity in fringe areats, esperially when operation is in the 28 -ale bend. The :mplitude derreases rapidly with the order of the harmonie, the serond and third being the worst. It is ordinarily found that even in coses where dest ructive interference results from 28-Me. operation the interference is comparatively midd from I I Mr., and is negligille at still lowor frequencies,

Nothing can be done at either the transmitter or reediver when reetitication orens. The remedy is to find the sourer and eliminate the poor contact either by separating the reonductors or bonding them together. A ervatal wavemeter (tumed to the fundemental frequerney) is usefal for lunting the somer, bey showing which ronductors are carrying r.f. and, comparatively, how much.

Interforence of this kind is frequently intermittent since the rectification efficiency will vary with vibration, the wather, and so on. The possibility of eorroded contacts in the TV recoiving antenna should not be overtooked, esperially if it has been up a year or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When a television recoiver is quite close to the transmit ter, the intense r.f. signal from the transmitter's fundamental may overload one or more of the weceriser circuits to produce spurious responses that caluse intorference.

If the overford is moderate, the interference is of the stme nature as harmonie interference ; it is culused by harmonics generated in the eaty stages of the reociver and, since it ocours only on channols harmonicully related to the transmitting frepuence, is difficult to distinguish from harmonies actually radiated by the tramsmitter. In such cases additional harmonier suppression at the transmitter will do no good, hat any means taken
at the receiver to reduee the strength of the amaterer signal reaching the first tuloe will offeret an improvement. With very severe overloading. interferemere atso will orecur on chamels mot harmonically related to the transmitting frequeney, so surh cases are casily identified.

Cross-Modulation

Under some dirrumstances overlowding will result in cross-modulation or mixing ol the amateur signal with that from a loral f.m. or TV station. For example, a 1 - Me, sighat ean mix with a !2-Mc. f.m. station to produce a beat at 78 Mc. sund catuse interferemer in (hammed j , or with a 'TV station on (hammel is to cause interference in (Chamel 3. Neither of the chammels interfored with is in hammonie relationship to It Me. Both signals have to be on the air for the interference to occur, and eliminating either at the TV reeeiver will eliminate the interference.

There are many combinations of this type, depending on the band in use and the local frequence insigmments to f.m. and TV' stations. The interfering frequency is equal to the amateur fundamental frequence either added to or subtranted from the frequency of some local station, and when interference occurs in a ' Γ v channel that is not harmonipally related to the amateur transmitting frecpucney the possibilities in such frequency combinations should be investigated.

I. F. Interference

Some TV receivers do not have sufficient selectivity to prevent strong signals in the intermedi-ate-freguency range from forcing their way through the front end and getting into the i.f. amplifier. The once-standard intermediate frequeney of, roughly, 21 to 27 . Me., is subjeet to interference from the fundimental-frequency: output of transmitters operating in the $21-\mathrm{M} \cdot$. band. Transmitters on 28 Me. sometimes will rause this type of interference as well.

A form of i.f. interference peruliar to 50-Me. operation near the low edge of the band orcurs with some recocivers having the standard "H1-Me." i.f., which has the somad carrier at 41.25 Mc . and the picture eariar at 45.75 Mc . A $50-$ - Me, signal that forces its way into the i.f. system of the receiver will beat with the i.f. picture carrier to give a spurious signal on or near the i,f. sound carrier, even though the interforing signal is not actually in the nominal passhand of the i.f. amplifier.

There is a type of i.f. interfarence unique to the 1tt-Me. band in localities where certain u.h.f. TV channels are in operation, affecting only those TV receivers in which doubleronversion type plug-in u.h.f. tuning strips are used. The design of these strips involves a first intermediate frequency that varies with the 'r' ehamnel to be received and, depending on the particular strip denign, this first i.f. may be in or chose to the 14-Me amateur band. Since there is comparatively little selectivity in the 'TV signadfreguence cireuits aheal of the first i.f., a signal from a $1+4-$ Me. trinsmitter will "ride into" the

TV Receiver Deficiencies

i.f., even when the receiver is at a considerable distance from the transmitter. The channels that can be affected by this type of i.f. interferenceare:

> Receivers with
> 21-M/c.
> secont i.f.

Channels 14-18, ine.
Channels 11-18, inc. Channels 6!-7- inc.

Receivers with 41-1/c. seconl i.f.

 Channels 20-25, inc. Channels $51-58$, inc. Chamels 82 and 83.If the reeciver is not close to the transmitter, a trup of the type shown in Fig. 2:3-30 will be difertive. However, il the separation is small the lit-Me, signal will be pieked up directly on the receiver eirenits and the hest solution is to readjust the strip oscillator so that the lirst i.f. is moved to a frequency not in the vicinity of the $14-\mathrm{Mc}$. band. This has to be done by a compotent technician.
I.f. interference is easily identified since it oceurs on all channels - although sometimes the intensity varies from channel to channel - and the cross-hatch pattern it catuses will rotate when the receiver's fine-tuning control is varied. When the interference is cunsed be a hamonic, overloading, or cross modulation, the structure of the interference pattern does not change (its internsity may change) as the fine-tuning control is varied.

High-Pass Filters

In all the above canes the interference can be oliminated if the fundamental signal strength can be reduced to a level that the receiver can thamble. To accomplish this with siguals on bands below :30 Mre, the most satisfactory device is a highpass filter having a cut-off frequency between 30 and 54 Mc., installed at the tuner input terminals of the receiver. (ircuits that have proved effective are shown in liggs. 2:3-28 and 2:3-24. Fig. 2:-2.) has one more section than the filters of Fig. 2:3-28 and as a consequence has somewhat better cut-off characteristics. All the circuits given are designed to have little or no effect on

Fig. 23-28-High-pass filters for installation at the TV receiver antenna terminals. A-balanced filter for 300 ohm line, B-for 75 -ohm coaxial line. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a 0.001- $\mu \mathrm{f}$. mica capacitor.
the TV signals but will attenuate all signals lower in frequency thin ibout 40 Mc . These filters preferably should be constructed in some sort of shielding container, although shiekting is not always noressary. The dashed linas in Fig. 2:3-2!) show how individual filter eoils can be shielded from eath other. The capacitors cat be tubular ceramic units rentered in holes in the partitions that separrate the coils.
Simple high-pass filters cannot always be applied suceessfully in the cense of $50-\mathrm{Mc}$. tranmissions, becouse they do not have sufficiently-sharp, eutolf chatrueteristies to give both good attenuation at 50-54 Me and no attenuation above 54 Me. A more elaborate design capable of giving the required sharp cut-off hats been deseribed (Ladd, "50-NL", TVI - Its Causes and Cures," (QN゙T, June and July, lobt). This article also contains

Fig. 23-29-Another type of high-pass filter for 300 ohm line. The coils may be wound on $1 / 8$-inch diameter plastic knitting needles. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a 0.001- μ f. mica capocitor.
other information useful in coping with the TVI problems peculiar to 50-Mc. operation. Is an alternative to such a filter, a high- () wave trap tuned to the tranmitting frequency may be used, suffering only the disadvantage that it is quite selective and therefore will protect a receiver from overloading over only a small range of transmitting frequencies in the 50-Mc. band. A trap of this type using quarter-wave sections of Twin-Lend is shown in Fig. 2:-30. These "suck-out" traps, while absorbing emergy at the frequency to which they are tuned, do not affert the receiver oparation otherwise. The assembly should be slid along the TV antema lead-in unt il the most effective position is found, and then fistened securely in pace with Seoteh Tape. In insulated tuning tool should be used for adjustment of the trimmer capacitor, since it is at a "loot" point and will show considerable body-ciapacitance effect.

High-pass filters are available comenercially at moderate pricos. In this connertion, it should be understood by all parties concerned that while in amateur is responsible for harmonic radiation from his tranmitter, it is no part of his responsibility to pay for or install filters, wave traps, ate. that may be required at the recoiver to prevent interference catused be his funtamentol frequency. The set owner should be advised to get in touch with the orgmization from which lee purchased the receiver or which serviers it, to make arrangements for proper installation. Proper in-

Fig. 23-30-Absorption-type wove trop using sections of 300 ohm line tuned to have an electrical length of $1 / 4$ wavelength at the transmitter frequency. Approximate physical lengths (dimension A) are 40 inches for 50 Mc . and 11 inches for 144 Mc ., allowing for the loading effect of the copacitance of the open end. Two traps are used in parallel, one on eoch side of the line to the receiver.
stallation usually requires that the filter be installed right at the input terminals of the r.f. thener of the 'TV' set and not merely at the external antennat tominals, which may be at a considerable distance from the tumer. The question of cost is one to be settled between the set owner and the organization with which he deals.
Some of the larger manufacturess of TV receivers have instituted arrangements for cooperating with the set doaler in installing high-pass filters at no cost to the recoiver owner. FCC sponsored TVI Committees, now operating in many cities, have all the information necessary for effectuating such arrangements. To find out whether surh a rommitter is functioning in vour community, write to the FCC fichl office having jurisdietion over your location. A list of the fied offices is contained in The Redio Amateur's Lirense . Iramal., published by ARRL,

If the fundamental signal is gotting into the receriver by way of the line eord a line filter such as that shown in Fig. 2:3-1 may help. To be most effective it shombl be installed inside the receriver ehassis at the point where the cord enters, making the ground connertions directly to chasess at this point. It mas, not be so helpful if phated betweren the line plug and the wall socket unless the r.f. is actually picked up on the house wiring rather than on the line eord itself.

Antenna Installation

Usually, the transmission line betweren the TV recoiver and the acthal TV antemat will pick up a great deal more energy from a nearbe framsmitter than the television receiving antenna itself. The currents induced on the TV transmission line in this case are of the "paratle" tope, where the phase of the current is the same in looth conductors. The line simply acts like two wires connected together to operate as one. If the receiver's antenma imput circuit were pertertly batanered it would reject these "parallel" or "umbatance" signals and respond only to the true transmissionline ("push-pull") currents: that is, only signals pieked up on the actual antemna would cause a receiver response. However, no redeiver is perfect in this respert, and many TV recoivers will respond strongly to such parallel aurents. The result is that the signals from anember amateur tramsmitter are much more intense at the first stage in the TV recerver' than they would be if the receriver response were confined entirely to enorgy picked up on the TV antemat alone. This situation can be improved by using shiolded transmission line - coax or. in the balaneed
form, "twinax" - for the receiving installation, For best results the line should terminate in a roan fitting on the receiver ehassis, but if this is not possible the shield should be grounded to the chassis right at the antenma terminals.
The use of shiclded transmission line for the receiver also will be holpfal in reducing response to harmonices actually being radiated from the transmitter or transmitting antenna. In most reediving installations the transmission line is very much longer than the antenna itself, and is consegucntly far more exposed to the harmonie fields from the transmitter. Wuch of the harmonic pickup, therefore, is on the receiving transmission line when the transmitter and reeoiver are quite close together. Shiclded line, plus relocation of aither the transmitting or reeciving anteman to take advantage of direetive effecte, often will result in reducing overloading, as woll at harmonic pickup, to a level that does not interfere with reception.

U.H.F. TELEVISION

Harmonic TVI in the u.h.f. TV band is far less troublesome than in the v.h.f. hathel. Ifarmonics from transmitters operating below 30 Me. are of such high order that they would normally be experted to be quite weak: in addition, the components, circuit conditions and construction of low-frequency transmitters are such as to tend to prevent very strong harmonic: from being grenerated in this region. However, this is not true of amateur v.h.f. tramsmitters, particularly those working in the 1+t-Me, and higher bands. Here the problem is quite similar to that of the low v.h.f. TV band with respeet to transmitters operating below: 30 Mc .

There is one highly favorable fartor in u.h.f. TV that does not exist in the most of the v.h.f. TV band: If hamonies are radiated, it is possible to move the transmitter frequence sufficiently (within the amateur band being used) to avoid interfering with a channel that maty be in use in the loestity. By restricting operation to a portion of the amateur band that will not result in hamonic interference, it is possible to avoid the necessity for taking extraordinary precautions to prevent hamonic radiation.

The frequener assignment for u.h.f. television consists of seventy (i-megineorele chamnels (Nos. If to 8:3. inchasive) Degimning at 470 Ne. and ending at 890 Ne. The hammons from amateur bands above jo Me. span the u.h.f. chamels ats shown in Table 23-I. Since the assigmment phan

Amateur Band 144 Mc.	Harmo	Relationship	$\begin{array}{r} \text { TAE } \\ \text { p-Amateur } \end{array}$	$33-1$ F. Bands	d U.H.F.	Channels	
	Harmonic	Fundrmental Freq. Range	U, H,F.TV Channel Affected	A mateur Band	Harmonic	Fundamental Freq. Range	U.II.F.TV Channel Aflected
	4th	$144.0-144.5$ $144.5-146.0$ $146.0-147.5$ $147.5-148.0$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	2FO Mc.	3rd	$\begin{aligned} & 220-220.67 \\ & 220.67-222.67 \\ & 222.67-224.67 \\ & 224.67-225 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \end{aligned}$
					4th	220-221	82
	5th	$144.0-144.4$ $144.4-145.6$	55 56			221-222.5	83
		$145.6-146.8$	57	420 Mc	2nd	420-421	75
		146.8-148	58			421-424	76
						424-427	77
						427-4:30	78
	6th					-430-433	79
		144.33-145.33	80			433-436	80
		145.33-147.33	81			430-439	81
		147.33-148	82			439-442	82
						442-448	83

calls for a minimum separation of six channels between any two stations in one locality, timere is ample opportunity to choose a fundamental frequency that will move a harmonic out of range of a local TV frequency.

COLOR TELEVISION

The color TV sigmal includes a subcarrier spaced 3.58 megacereles from the regular picture carrier (or $4.8 ; 3$ Mic. from the low edge of the ehamel) for transmitting the color information. llamonies which fall in the color subcarrier region can be expected to cause break-up of color in the received pioture. This modifies the chart of Fig, 23-3 to introtuce another "severe" region rentering around 4.8 Mc , measured from the low-frequency edge of the chamel. Inence with color television reception there is less opportunity to avoid harmonic interference by choice of operating frequency. In other respeets the problem of eliminating interference is the same as with black-and-white television.

INTERFERENCE FROM TV RECEIVERS

The TV picture tube is swept horizontally by the electron beam 15, 750 times per second, using a wave shape that has very high harmonic content. The harmonies are of appreciable amplitude even at frequencies as high as 30 Mc ., and when radiated from the receiver can cause considerable interference to reception in the amateur bands. While measures to suppress ratiation of this hature are required by FCC in currently manufactured receivers, many older sets have had no surh treatment. The interference takes the form of rather unstable, atc.-modulated signals spaced at intervals of 15.75 ke .

Studies have shown that the radiation takes mace principally in three watys, in order of their importance: (1) from the ace. line, through stray roupling to the sweep circuits; (2) from the antenna system, through similar coupling; (3) directly from the picture tube and sweep-circuit
wiring. Line radiation often can be reduced by bypassing the a.c. line ford to the chassis at the point of entry, although this is not completely effective in all cases since the roupling may take place outside the chassis beyond the point where the by-passing is done. Radiation from the antenma is usually suppressed be installing a high-pass filter on the receiver. The direct radiation requires shiclding of high-potential leads and, in some receivers, additional bypassing in the swop circuit; in severe cases, it may be neeessary to line the cabinet with screening or similar shielding material.

Incidental radiation of this type from TV and broadeast receivers, when of suffieient intensity to cause serious interference to other radio servires (such as amateur), is covered by I'art 15 of the FCC rules. When such interference is caused, the user of the receiver is obligated to take steps to eliminate it. The owner of an offenting receiver should be advised to contact the source from which the receiver was purchased for appropriate modification of the receiving installation. TV receiver dealers can obtain the necessary information from the set manufacturer.

It is usuatly possible to reduce interference very considerably, without modifying the TV receiver, simply by having a good amateur-band receiving installation. The principles are the same as those used in reducing "hash" and other noise - use a good antennat, such as the transmitting antenna, for reception; install it as far as possible from anc. circuits; use a good feeder system such as a properly balanced two-wire line or coax with the outer condurtor grounded; use coax input to the receiver, with a matching circuit if nesessary; and rherk the receiver to make sure that it dons not pick up signals or noise with the antenna discomected. These measures not only reduce interference from swerp ratiation and a, e, line noise, but also build up the strength of the desired signal, so that the overall improvement in signal-to-interference ratio is very much worth-while.

Operating a Station

The enjoyment of our hohby usually comes from the opration of our wation once we have tinished its construction．L＇pon the station and its operation depend the communication records that are made．The standing of inelividuals as amateurs and resperet for the capabilities of the Whole institution of amatemr radio depend to at considerable extent on the prate ifal communicat fions established by amateurs，the aggregate of all our station efforts．

An operator with a slow，steady，dean－cut method of sending has a hig advantage over the poor operator．The terhmigue of speaking in combeded thoughts and phrases is equally im－ portant for the voire operator．（iood sending is partly a matter of practioce but pationere and judgment atre just as important gualitios of ath opreator as a grood＂fist．＂

Operating knowledge embracing stabdard pro－ codures，development of skill in moploying e．w． 10expathed the station range at operating effertive ness the minimum power levels and some not know－how are all essontials in arhieving at trimm－ phat amateur experience with top station reco ords，personal results，aud demonstrations of what our stations（＂an do in pratetical communi－ cations．

－operating courtesy and tolerance

Normal operating interests in amateur radio vary considerably．Some prefer to ratechew， others handle traffie，others work 1）X，others concentrate on working certain arras，countries or states and still others get on for an oreasional contact only to rheck a new tramsmitter or an－ ternat．

Interference is one of the things we amateurs have to live with．However，we can conduct our operating in at way designed to alleviate it as much as possible．Before putting the transmitter on the air，listen on your oun frequency．If you hear stations engaged in communication on that

frecuency，stand by until you are sure no inter－ ference will be caused by your operations，or shift to another frequency．No amsteur or any group of amateurs has any exclusive elaim to athe freguence in ath band．We must work together， each respecting the rights of others．Remember， those other chaps can canse you as much inter－ ference as you ratue them，sometimes more＂

In this chapter well recount some fundamert－ tals of operating surecess，eover matjor procedures for successful gemeral work and include proper forms to use in message hatuding and other fields．Note also the sections on sperial artivitios， awards and organization．These permit us all to develop through our organization more suceess together than we could ever attan by soparate uncoordinated efforts that owerlook the precepts established through operating experience．

－C．W．PROCEDURE

The best operators，beth those using woire and c．w．，observe cortain oprating procedures re－ gitrded as＂standard practice．＂

1）Calls，（alling stations maty call afficiontly by transmitting the call signat of the station ralled three times，the letters Df：，followed hy one＇s own station call sent three times．（Short calls with frequent＂braks＂to liston have proved to be the loest method．）Repeating the eall of the station called four or five times and signing not more than two or three times has proved excellent pratice，thus：WgBY Wø日S Wø日Y Wø日Y WøBY DR：W1AW WI．IW AR
（Q．The general－inquiry call（C（）shouk be sent not ginore than five times without intervers－ ing one＇s station identilication．The length of repeated calls is carrfully limited in intelligent amateur operating．（ CQ ）is not to be used when testing or when the sender is not expecting or looking for ath answerv，Never send a CQ＂blimd．＂ Alwats be sure to listen on the tranmitting fre－ quency first．）

The directional CQ：＇To reduce the number of useloss answres and lessen（QRM，every C（Q eall should be made informative when possible．
Examples：I United states station looking for
any lawaian amatour calls：（＇Q KIIt（＇Q
Western station with traffio for the Eant（oast
When looking for an intermediate relay station
calls：（Q E．ANT（＇Q W．AN＇T CQ F．is＇r DE
WSICW WJIGW WJIGW K．A station with
messages for points in Muswhehserts calls：（ Q
MASA（：Q MASS CQ MASS DE WZCZY＊
W7CZY W7CZY K

Ilams who do not raise stations rablily may find that their semding is poor，thoir calls ill－timed or juigment in error．When conditions are right

C.W. Procedure

to bring in signals from the desired locality, you can call them. Reasonably short calls, with appropriate and brief breaks to listen, will rate stations with minimum time and trouble.
2) Ansuering a Call: Call three times (or less); send DE; sign threr times (or less); after contart is established decrease the use of the call signals of both stations to once or twice. When a station reeceives a call hut does not receive the call letters of the station ealling, Qle\%? may he used. It means "By whom am I being callod"." QR\% should not he used in plate of CQ.
3) Ending Signals and Sign-Off: The proper use of $\overline{A R}, K, \overline{K N}, \overline{S K}$ and Cl , enting signals is as follows:

AR - End of transmission. Recommended after call to a specific station hefore contact has been establishool.

Example: WGABC WGABC WGABC WGABC WG.ABC DE WGLAN W9LMN AR. Also at the end of transmission of a radiogram, immediatels. following the signature, preceding identification.
K - (io ahead (any station). Recommended after CQ and at the end of ach tranmission during (Qs) when there is no objection to others breaking in.

Example: CQ CO CQ DE WIABC WIABC K or W9XYZ DE WIABCK.
$\overline{K N}$ - (io ahead (epecifie station), all others kecep out. Rerommended at the end of each 1ransmission during a (est), or after ac call, when calls from other stations are not desired and will not be answered.

Example: WHFGH DE XloGRL $\overline{\mathrm{KN}}$.

SK - End of (2NO. Recommended before signing lest transmission at end of a Qso.

> Example: SK W8LMN DE W:BCD.

CL, - I am elosing station. IRecommended when a station is going off the air, to indicate that it will not lister for any further calls.

Example: . . . SK W7HHJ IE W2JKL. CL.

4) Test signals to permit another station to adjust recciving equipment may consist of a sorice of Vs with the eall signal of the tramsmitting station at frequent intervals. IRemember that a test signal cam be a totally unwarranted cause of QRM, and aluays listen first to find a clear spot if possible.
5) Receipting for conversation or traflic: Never receipt for at transmission until it has been entirely received. " 12 " means "tramsmission reerived as sent." Use R only when all is received correctly.
(i) Repeats. When most of a trinsmission is lost, a call should be followed by correct ahbreviations to ask for repeats. When a few words on the end of a transmission are lost, the last word received correctly is given after ?AA, meaning "all after." When a few words at the beginning of a transmission are lost, ?AB for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the last word received correetly, a ques-
tion mark, then the next word received correctly. Another way is to send "?BN [word] and [word]."

Do not send words twice (QSZ) imless it is requested. Send single. Do not fall into the bad hahit of sending double without a request from follows you work. Don't say "QRM" or "QRN" when you mean "QIRS." Don't CQ unkess there is definite reason for so doing. When sending CQ, use judgment.

General Practices

When a station has receiving trouble, the operator asks the tramsmitting station to "Qsiv." The fotter "I?" is often used in place of a clecimal point (e.g., " $3 R 5$ Me.") or the colon in time designation (e.g., "2R30 PM"). A lorg dash is sometimes sont for "zero."

The law eoncerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antema. Send your call frequently whon operating. liek a time for adjusting the station ipparatus when few stations will be bothered.

The up-to-date amateur station uses "breakin." For hest results send at a medium speed. Send evenly with proper spacing. The standardtrpe telegraph key is best for all-round use. Regular daily practice periods, two or three periods a day, are best to aequire real familiarity and proficioney with code.

No exeuse can he made for "gabbled" copy. Operators should copy what is sent and refuse to acknowledge a whole transmission until every word has been recoived correctly. Good operators do not guess. "Swing" in a fist is not the mark of a good operator. Vmusual words are sent twice, the word repeated following the trimsmission of """. If not sure, a good operator systematically asks for at fill or repeat. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with it precision "fist" - not fast, but claan, steady, making wellformed rhythmical characters and spacing beautiful to listen to - he then beeomes subject to ontside pressures to his own possible detriment in everyday operating. Ile will want to "speed it up" because the operator at the other end is going faster, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the easiest wiys to get into bad hahits is to do too much playing around with speeial keys. Too many operators spend only enough time with a straight key to acquire "passable" sending, then subject their newlydeveloped "fists" to the entirely different movements of bugs, side-swipers, electronie kevs, or what-have-you. All too often, this results in the ruination of what may have become a very good "fist."

Think ahout your sending a little. Are you satisfied with it? You should not be - ever. Nobody's sending is perfect, and therefore every
operator should continually strive for improvement. Do you ever run letters together - like Q for MA, or I' for AN - especially when you are in a hurry? Iractically everybody does at one time or another. Do you have a "swing""? Any recognizable "swing" is a deviation from perfrection. Strive to send like tape sending; copy a I' 1 AW I Bulletin and try to send it with the same spacing using a local oscillator on a subsequent tramsmission.

Check your spacing in characters, between characters and between words oceasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents QRRM, gives more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (but not equal) break-in efficiener.

A scparate recoiving antemna facilitates breakin operation. It is only necessary with break-in to pause just a moment with the key up (or to cut the carrier momentarily and pause in a phone conversation) to listen for the other station. The elick when the carrier is cut off is as cffective as the word "break."
C.w. telegraphy break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted cam be pulled right through the holes in the QRMI. Snapps, efficient amateur work with break-in usually requires a separate receiving antenna and arrangement of the transmitter and receiver to eliminate the necessity for throwing switches between transmissions.

In calling, the transmitting operator sends the letters "BK"" at intervals during his call so that stations hearing the call may know that break-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call can be continued.

With a tap of the key, the man on the receiving end can interrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not nocessary that you have perfect facilities to take advantage of break-in when the stations you work are break-inequipped. After any invitation to break is given (and at each pause) press your key-and contact can start immediately.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using colle. In telegriaphy words must be spelled out letter be letter. It is therefore but natural that abbreviations and shorteuts should have come into widespread use. In voice work, however, abbreviations are not nccessary, and should have less importance in our operating procedure.

Abstract

\section*{Voice-Operating Hints} 1) Listen before calling. 2) Make short calls with breaks to listen. Avoid long CQs ; do not answer any. 3) पise push-to-talk or voice control. (iive essential data concisely in first transmission. 4) Make reports honest. I'se definitions of strength and readability for reference. Make wour reports informative and useful. Honest reports and full word description of signals save amateur operators from FCC tronble. 5) Limit transmission length. Two minutes or less will convey much infornation. When three or more stations converse in round tables, brevity is essential. 6) Display sportsmanship and courtesy. Bands are congested.... make transmissions meaningful - 7) Cive others a break. 7) Cheek transmitter adjustment . . . avoid a.m. overmodulation and sidatter. On s.s.b. check carrier balance carefully. Do not radiate when nowsing v.f.o. frequency or cherking n.f.m. swing. Ise receiver b.f.o. to cheek stability of signal. Complete testing before busy hours!

The letter "K" has been agreed to in telegraphic practice so that the operator will not have to pound out the separate letters that spell the words "go ahead." The voice operator can say the words "go ahead" or "over," or "come
in please."

One laughs on c.w. by spelling out III. On phone use a laugh when one is called for l3e natural as you would with your family and friends.

The matter of reporting readability and strength is as important to phone operators as to those using code. With telegraph nomenclature, it is necessary to spell out words to describe signals or use abbreviated signal reports. But on voice, we have the ability to "saly it with words." "Readability four, Strength eight" is the best way to give a quantitative report. Reporting can be done so mueh more meaningfully with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahead," or "Your signal is strong but you are buied under loeal interference." Why not say it with words?

Voice Equivalents to Code Procedure

Voice
Go ahead; over
Wait; stand by
Received

Meaning
Self-explanatory
Self-explanatory
Self-explanatory
Receipt for a rectly-transeribed message or for "solid" transmission with no missing portions

Phone-Operating Practice

Efficient voice communication, like good c.w. communieation, demands good operating. Adherence to certain points "on getting results" will go a long way toward improving our phoncband operating eonditions.

Use push-to-talk technique. Where possible arrange on-off switches, controls or voice-controlled break-in for fast back-and-forth exchanges that emulate the practicality of the wire telephone.

Voice Operating

This will help reduce the length of transmissions and keep brother amateurs from calling you a ＂monologuist＂－a guy who likes to hear him－ self talk！

Listen with care．Keep noise and＂hack－ grounds＂out of your operating room to facilitate good listening．It is natural to answer the strong－ est sigual，but take time to listen and give some consideration to the hest signals，regardless of strength．Every amateur camoot run a kikwatt， but there is no reason why every amatur cannot have a signal of good quatity，and utilize uniform operating practices to aid in the understanda－ bility and case of his own eommunications．

Interpose your call regularly and at frequent intervals．Three short calls are better than one long one．In calling（＇Q ，one＇s call should eortainly appear at least once for every five or six C（es． （Galls with frequent breaks to listen will save time and be most productive of results．In iden－ tiiying，always transmit your oun call last．Don＇t say＂This is WhABC standing by for W2IDEF＂； say＂W＇2DEF，this is WIABC ，over．＂FCC regu－ lations show the call of the tramsmitting station sent last．

Include country prefix before call．It is not cor－ rect to sity＂OR1RX，this is HBIII．＂Correct and legal use is＂WoRRS，this is WUBBI．＂FCC regulations require proper use of ealls；stations have been cited for failure to comply with this requirement．

Monitor your oun frequency．This helps in tim－ ing calls and transmissions．Transmit when thore is a chance of being eoppied suceressfully－not when you are merely＂more QRSI．＂Timing transmissions is an art to cultivate．
Keep modulation constant．By turning the gain ＂wide open＂you are suljeeting anyone listening to the diversion of whatever moises are present in or near your operating room，to say nothing of the possibility of feedback，echo due to poor aroustics，and modulation excesses due to sudden loud noises．Sprak near the microphone，and don＇t let your gaze wander all over the station causing sharply－varying input to your speech amplifier；at the same time，keep far enough from the mierophone so your sigual is not modulated by your breathing．（hange distance or gain only as necessary to insure uniform transmitter por－ formance without overmodulation，splatter or distortion．

Make connerted thonghts and phrases．Don＇t mix diseonnereded subjerets．Ask questions consistently． Pause and get answers．

Ilave a pad of paper handy．It is convemient and desirable to jot down questions as they come in the conuse of disenssion in order not to miss any．It will help you to make intelligent to－the－ point replies．
Steer clear of inamities and soap－opera viluff．Our amateur radio and also our personal reputation as serious communications workers depend on us． A void repetition．Don＇t repral back what the other fellow has just satid．Too often we hear a conversation like this：＂Okay on your new an－ tenna there，okay on the trouble you＇re having
with your receiver，okay on the company who just came in with some ice cream，okay ．．．「ete．l．＂Just say you recoived everything（）．K． 1）on＇t try to prove it．
I＇se phonctics only as required．When ctarifying gemuincly doubtful expressions and in getting your call identified positively we suggest use of the AlRIRL Phonetic List．Limit such use to really－neecssary clarification．
The speed of radiotelephone transmission（with perfect aceurary）depends almost entirely upon the skill of the two operators involved．One must learn to speak at a rate allowing perfeet under－ standing as well as pormitting the recriving opreator to eopy down the message text，if that is neressary．Because of the similarity of many English speech sounds，the use of alphabetical word lists has been found neeessary．All voice－ oprorated stations should use a standard list as needed to identify call signals or unfamiliar expressions．

ARRL Word List for Radiotelephony

ADAM	JOILN	SUSAN
BALEER	KING	TlIOMAS
CHARLIE	LEWIS	LNION
1）AVII	MARY	VIC＇rok
EIOWARD	NANCY	WILLIAM
FRANK゙	OT＂「O	X－RAY
（ibORCIE	IWTER	YOUNG
HFNRY	QUELS	ZEBRA
IWA	ROBER＇I＇	

Erample：WHAW ．．W I ADAM WILLIAM ．．WIAW．
Round Tables．The round table has many ad－ vantages if run properly．It clears frequencies of interference，especially if all stations involved are on the same frequency，while the enjoyment value remains the same，if not greater．lyy use of push－to－talk，the conversation can be kept lively and interesting，giving each station operator ample opportunity to participate without wait－ ing overlong for his turn．

Round tables can become very unpopular if ther are not condueted properly．The monologu－ ist，off on a long spiel about nothing in particular， cannot be interrupted；make your transmissions short and to the point．＂Butting in＂is discourteous and unsportsmanlike；don＇t enter a round table，or an！contart betucen two other amateurs，unless you are ineiterl．It is bad enough trying to copy through prevailing interference without the added difficulty of poor voice quality；cherk your trans－ mitter auljustments frequently．In general，follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone commualcation．

WORKING DX

Most amateurs at one time or another make ＂working INX＂a major aim．As in every other phase of amateur work，there are right and wrong ways to go about getting best results in working forcign stations，and it is the intention of this section to outline a few of them．

The ham who has trouble raising DX stations
readily may find that poor transmitter efficiency is not the reason. He may find that his sending is poor, or his calls ill-timed, or his judgment in error. When conditions are right to bring in the 1)X, and the receiver sensition enough to bring in several stations from the chsired locality, the way to work DN is to use the appropriate frequency and timing and call these stations, as against the common practie of calling " CQ DX."

The eall (Q IDX means slightly different things to amateurs in different hamds:
a) On v.h.f., CQ DN is a general call ordinarily used only when the band is open, under favorable "skip" conditions. For v.h.f. work such a call is used for looking for new states and countries, also for distanees beyond the customary "lineoof-sight" range on most v.h.f. bauds.
b) CQINX on our 7-, 11-, 21-and 28-Mc. bands may be taken to mean "General call to any foreign station." The term "forcign station" usually. refers to any station in a foreign continent. ($\boldsymbol{H} \dot{x}$ perienred amateurs in the U.S. A. and Canada do not use this call, but ansuer sueh calls made by foreign stations.)

DX OPERATING CODE (For W/VE Amateurs)

Some amatomrs interested in IVN work have caused considerable confusion and QIRM in their efforts to work INX stations. Tho brints below, if observed by all W/N amateurs, will go a long way toward making IS. more enjogable for everyluely.

1. ('all JX only after he calls C'Q. QLZZ?, signs $\overline{\mathrm{SK}}$, or phone equivalents thereof.
2. Io not call a IDX station:
a. On the frequeney of the station he is working until yon are sure the (2sO) is over. This is indicated by the ending signal SKi on e.w. and any indication that the operator
is listening on whone is listerning, on phone
b. Berause you hear someone clse calling him.
c. When he signs $\overline{K N}, \overline{A H}, C_{L}$ or phone eruivalents.
d. Wxactly on his freguency.
e. After he calls a directional C Q, unless of course youl are in the right direction or areat.
3. Neep within freduency-band limits. Some IDX stations operate outside. Perhaps they can get away with it. but you eannot.
4. Ohserve calling instructions of IIX stations. "10U" means call ten ke. up from his frequeney,
" 15 D " menns 15 ke down, ete "15D " means 15 ke. down, ete.
5. Give honest reports. Many foreign stations depend on W' and VE reports for adjustment of station and erguipment.
6. Kiepp your signal elean. Ney clicks, chirps, hum or splatter give you a bad reputation and may get you a citation from FCC.
7. Listen for and call station you want. Calling CQIDX is not the best assurance that the rare DX
will reply:
8. When there are soveral W or V'bistations waiting to work a BX station, avoid asking him to
"listen for a friend." T.et your friend take his
chances with theres. chances with therest - Also avoid engaging IJX stas tions in rag-chews against their wishes.
c) CQ INX used on 3.5 Mc . under winter-night conditions may be used in this same manner. At other times, under average 3.5 -Me. propagation conditions, the call may be used in domestic work when looking for new states or countries in one's own continent, unsually apply ing to stations located over 1000 milds distant from you.
The way to work DN is not to use a CQ call at all (in our continent). Instead, use your besest tuning skill-and liston-and listen-and listen. You have to hear them hefore you can work them. Hear the desired stations first; time your ealls well. Use your utmost skill. A sensitive receiver is often more important than the power input in working forcign stations. If you can hear stations in a particular country or area, chanese are that you will be able to work someone there.

One of the most effective ways to work DX is to know the operating halits of the DX stations sought. Doing too much transmitting on the DX bands is not the way to do this. Again, listening is effertive. Once you know the operating hathits
of the I)X station you are after wou will how of the IX station you are after sou will know when and whrere to call, and when to remain silent waiting your chance.
Some DX stations indicate where they will tune for replies by use of "10U" or "15I)." (She point t of the DN (operating Code.) In voice work the overseas operator may say "listening on , 14,225 ke." or "tuning upward from 28,500 kc." Many a IDX station will not reply to ac call on his exact fregucney.

ARLRI, has recommended some operating procedures to DN stations aimed at controlling some of the thoughthess operating practices sometimes used by W / VF anatrous. A copy of these recommendations (Operating Aid No. 5) can be obtained free of charge from ARILL Head-
quarters. quarters.
In any band, particularly at lino-of-sight frequencies, when directional antemas are used, the directional CQ such as ($(Q W$ W, CQ north, ete., is the preferable type of call. Mature amateurs agree that CQ DX is a wishful rather than a practical type of call for most stations in the North Americas looking for foreign contarts. Ordinarily, it is at catuse of unnereessiry QRISI.
Conditions in the transmission medium make atl field strongths from a given region more noarly equal at a distance, irrespecetive of power used. In general, the higher the frequency band, the less important power considerations become, This accounts in part for the relative popularity of the $14-21-$ and $28-\mathrm{Mc}$. batids among amateurs who like to work DN.

\%	\%usion	צ\%		-	\cdots	\cdots	\%	\% ${ }^{\text {a }}$	\%		ormenata
	Wetad	\times	3.65	589	956	3.5	A	125	50	: 43	Te- recds, sent 10
	${ }_{\text {NQTED }}$	x	3.6	58	析	7		,			forer
	${ }_{\text {a }} \times$	4 TWI	7.16 3.83	$\frac{369}{}$	$4{ }^{57}$	${ }^{9} 3$		A3 10		$1: 32$ 0.05	$V_{\text {y }}$ ham cary ORM on
25	Wruks		3.8	5				,		0.05	
	VKLEL	${ }^{\times}$	14.03	339	$5{ }^{5}$	14	${ }^{\text {A }}$	A1 25	50	7:20	Answered a Wb
1:921	-	KA2KW	14.07	7469	9×349					1:33	Firat KA
7736 17	${ }^{+} \times$	W6T1	14.01	1589	958					$8: 12$	

KEEP AN ACCURATE AND COMPIETE STATION LOG AT ALL TIMES: F.C.C. REQUIRES TT.
A page from the official ARRL log is shown above, answering every Government requirement in respect to station records. Bound logs made up in accord with the above form can be obtained from Headquarters for a nominal sum or you can prepare your own, in which case we offer this form as a suggestion. The ARRL log has a special wire binding and lies perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station oproting record. It may also contain records of experimental tests and adjustment datia. A stenographer's notebook ran be ruled with vertical lines in any form to suit the user. The bederal Communications Commission requirements are that a \log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the froquency band used, (5) the time of ending each QSO and the oprerator's identifying signature for responsilility for each session of operating. Messages may be written in the log or separate records kept - but record must le retained for one yoar as required by the FCC. For the convenience of amateur station operators ARRL stocks both loghooks and message blanks, and if one uses the official log he is sure to eomply fully with the Government requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countries conjoy a privilege not availablo to amatears in most countries - that of handling third-party mosage traffic. In the earty history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive rolay organization which beame known as the American Radio Rolay Lague.

Thus, amateur message-handling has had a long and honorable history and, like most services, has gone through many periods of developmont and change. Those amateurs who handled traflice in 1914 wouk hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and new methods have been developed in step with advancement in communication techniques of all kinds. Amateurs who handled a lot of traffic found that onganized operating schedules were more offective than random relays, and as technigues atvanced and mossages increased in number, trunk lines were organized, spot frequencies began to be used, and there sprang into existence a number of traffic nets in which many stations operated on the same frequency to effect wider cov-
erage in less time with fewer relays; but the old methods are still available to the amateur who handles only an oceasional mossage.

Although mossuge hatulling is as ofd an art as is amateur radio itself, there are many amateurs who do not know how to handle a message and have never done so. As each amateur grows older and gains experience in the amateur service, there is bound to come a time when he will be called upon to handle a written message, during a communications emergeney, in casual contact with one of his many aequaintances on the air, or as a result of a request from anonamateur friend. Ragardless of the oceasion, if it comes to you, you will want to rise to it! Considerable embarrasment is likely to be experienced ly the amateur who finds he not only does not know the form in which the mossage should he prepared, hut does not know what to do with the message once it has been filed or received in hisstation.

Tradfie work need not be a complicated or time-consuming activity for the casaal or oceasional message-hander. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the sulbject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first consider that in doing so they are accepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Fortyeight hours alter filing or receipt is the generallyaccepted rule among traffic-handling amateurs, but it is olvious that if every amateur who rolayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and accepted, handling the message becomes a matter of following generally-acecepted standards of form and transmission. For this purpose, each message is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actually transmitting it to know not only what cach part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sent by c.w. If you are going to send a message, you may as well send it right.
Standardization is important! There is a great deal of roon for expressing originality and individuality in amatrur radio, but there are also times and places where sueh expression can only cause confusion and ineffieiency, Recognizing the need for standardization in message form and message transmitting procedures, ARRL has long since recommended such standards, and most traffic-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to year, have been at the request of ama-

Here is an example of a plain-language message in correct ARRL form. The preamble is always sent as shown: number, station of origin, check, place of origin, time filed, date.
teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Radio Station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

Amateurs not experienced in message handling should depend on the experienced messagehandler to get a message through, if it is important ; but the average amateur can chioy operating with a message to l_{c} handled cither through a loeal traffic net or by frec-lancing. The latter may be accomplished by careful listening for an amateur station at desired points. dirretional CQs, use of the National Catling and Emergency frequencies, or by making and keeping a schedule with another amateur for regular work between speecified points. He may well aim at learning and enjosing through doing. The joy and aceomplishment in thus developing one's operating skill to top perfection has a reward all its own.
The best way to clear a message is to put it into one of the many organized traffic networks, or to give it to a station who ean do so. There are many amateurs who make the handling of traffic their principal operating activity, and many more still who participate in this activity to a greater or lesser extent. The result is a system of traffie nets which spreads to all corners of the Cnited States and covers most C . S. possessions and Canada. Once a message gets into one of these nets, regardless of the net's size or coverage, it is systematieally routed toward its destination in the shortest possible time.
If you decide to "take the bull by the horns" and put the message into a traffic net yoursclf (and more power to you if you do!), you will need to know something about how traffic nets oprate, and the special Q signals and procedure they use to dispatch all traffic with a maximum of efficiency. Reference to net lists in $Q S^{G}$ (usually in the November and January issues) will give sou the frequency and operating time of the net in your section, or of other nets into which your message can go. Listening for a few minutes at the time and frequeney indieated should arquaint you with enough fundamentals to enable you to report into the net and indicate your traffic. From that time on you follow the instructions of the net control station, who will tell you when and to whom (and on what frequency, if different from the net frequency) to semd your message. Since most nets use the special "QN" signals, it is usually very helpful to have a list of these before you (list available from ARRL Hq., Operating Aid No. 9).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more ahout it and incrase sour pro-
ficieney Many amateurs ficieney. Many amateurs are happily "addicted" to trafie handling after only one or two brief exposures to it. Mueh traffie is at present being conducted by c.w., since this mode of com-

Emergency Communication

munication seems to be popular for reeord purposes - but this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are many mets organized specifically for the slow-speed amateur. and most of the so-celled "fast" nets are nsually plad to slow down to accommodate slower operators, esperially those nets at state or section level,
The siguifeant faret of net operation, however, is that cole speed alone does not make for efficiency - sometimes quite the contrary! A high-speed operator who does not know net proedure can "foul up" a net much more completely and more quickly than can a show operator. It is a proven fact that a bunch of high-speed operators who are not "savvy" in net operation camot accomplish as much during a specified period as an equat number of slow operators who know net procedure. Don't let low code speed deter you from getting into traffic work. Given a little time, your speed will reach the point where you can compute with the best of them. Coneentrate first on learning net procelure, for most traffic nowadays is handled on nets.
Much traffic is also handled on phome. This mode is exceptionally well suited to short-range traffic work and reguires knowledge of phonetits and procedure pectliar to voied operation. Proeddure is of paramount impontance on phone, since the publice may be listening. The major prohem, of course, is (QRA.
Teamuork is the theme of net opreation. The net which functions most efficiontly is the net in which all participants are thoroughly familiar with the procedure used, and in which operators refrain from tramsmitting exeept at the direetion of the net control station, and do not oreups time with extraneons comments, even the exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until afl traffic is deared. Before or after the uet is the time for rag-ehewing and diselission, some details of net operation are induded in operating an Amatenr Radio Station, mentioned carlier, but the whole story camot le told. There is no substitute for actual participation.

The Natio.2al Traffic System

To facilitate and spreed the movement of message traffic, there is in existence an integrated national system by means of which ariginated traffic will normally reach its destination arra the same day the message is originated. This systom uses the local section net as a basis. Each scetion net sendsa representative to a "regional" ant (uormally covering a call area) and each "regromal" net sends a representative to an "area" net (ummally covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear tratlic to the various section net representatives. By mears of conneeting schedules between the area nets, traffic can flow both ways so that tratlic originated on the West Coast raches the Rast Coast with a maximum of dispatch, and vice versa. In general lowal sertion nets function at $19(0)$, regional nets at 1945, area nets at $20: 30$ and the same or different regional persomel again at 2130. Some section nets conduct a late session at 2200 to efter traffic delivery the same night. Local standard time is referred to in each case.
The JTS plan somewhat epreads traffic opportunity so that casual traflic may be reported into nets for efficient handling one or two nights per week, early or late; or the ardent traffic man can operate in both carly and late groups and in between to roll up impressive totals and speed traffic reliahly to its destination. Ohd-time traflic men who prefer a high degree of organization and teamwork have returned to the traffic game as a result of the new syatem. Begimers have shown more interest in becoming part of a system nationwide in scope, in which anyone can participate. The National Traffic System has vast and intriguing possibilities as an amateur serviee. It is open to any amateur who wishes to participate.
The alove is but the briefest résume of what is of necessity a rather complicated arrangement of nets and selhedules. Complete details of the System and its operation are available to anyone interested. Just drop a line to ARRL Ileadquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a national asset, is by his preparation for and his participation in connmunirations energencies. Every amateur, regartless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his community be eut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready".

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergency power (i.e., either a.c. or d.c.), and equip-

ment which can radily be transported to the scene of disaster. Mobile equipment is especially desirable in most emergency situations.
Sueh equipment, regardless of how elaborate or how modern, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for cmergencies, by no means less important than the first, is to learn to operate efficiently. There are many amateurs who feel that they know how to oprate efficiently but who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable, due to years of casuab amateur operation, to adapt themselves to snappy, ab)breviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous to overrate your ability in this respect; it is far better to assume that you have much to learn.
In general it can be said that there is more emergency equipment available than there are operators who know properly how to operate during emorgency conditions, for such conditions require elipped, terse proedure with complete break-in on cow. and fast push-to-talk on phone. The casual rag-chewing aspect of amateur radio, however enjoyable and worth-while in its plare, must be forgotten at such times in favor of the business at hand. There is only one way to gain experience in this type of operation, and that is by practicing it. During an emergeney is no time for practice; it should tee done beforehand, as often as possible, on a regular basis.
This leads up to the necessity for emergency organization and preparedness. ARRL, has long recognized this necessity and has provided for it. The Section Communications Manager (whose
address appears on page 6 of every issue of QST') is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency communication organization and preparedness in specified areas or communities. This appointee is known as an Emergency Coordinator for the city or town. One is specified for each community. For coordination and promotion at section level a Section Emergency Coordinator arranges for and recomConds the appointments of various Bmergency Coordinators at activity points throughout the section. Dimergency Coordinators organize amateurs in their eommunities according to local noeds for emergency communication facilitios.
The community amateurs taking part in the local organization are members of the Amateur Radio Emergency Corps (ALLCC). All amateurs are invited to register in the ARLC', whether they are able to play an active part in their local organization or only a supporting role. Application blanks are available from your EC, SEC, SCAI or direct from AIRIRL, Ileadquarters. In the event that inguiry reveals no Dmergene. Coordinator appointed for your community, your SCM would weleome a recommendation either from yourself or from a rartio club of which you are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the League's publications is a booklet entitled Emergency Communications. This booklet, while small in size, contains a wealth of information on AREC organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to AREC members and should be in every ama-

Before Emergency

PREPARE yourself by providing a transmitter-receiver setup together with an emergeney power source upon
which you can depend.
TEST hoth the dependability of your emergeney equipment and your own operating ability in the annual ARRL Simulated Emergeney Tost and the several ammal on-the-air contests, expecially Field bay.
RLGCISLER your facilitios and your availability with your local ARRL Emergeney Coordinator. If your comthe community in time of disaster.

In Emergency

LISTEN before you transuit. Never violate this principle.
REPORT at once to your Emergeney Coordinator so that he will have up-to-the-minute data on the facilities availahle to lin. Work with local civie and relief agencies as the EC suggests, offer these agencies your services the ahsence of an ECC.
RLSTRIC 'T all on-the-air work in accordance with FCC regulations, See. 12.156, whenever FCC " declares" a state of communications emergency.
QRRR is the oflicial ARRL. "land SOS," a distress call for emergency" only. It is for use only by a station seek-
ing assistance.
LESPECT the fact that the success of the amateur effort in emergency depends largely on cireuit diseipline. The established Net Control station shombl be the sumene authority fur priority and trafic routing.
COOPERATE with those we scrve. Be ready to help, hut stay
that you ean handle more efficiently the ready to help, but stay off the air unless there is a speeifie job to be done COl'y all bultetins from Wila W Duan any other station.
developments.

After Emergency

REPORT to ARRL IIcadeuarters as soon as possible and as fully as possible so that the Amateur Service can record.

ARRL Operating Organization

teur's shark. Drop a line to the ARIRL, Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any eventuality, FCC and the Office of Civil and Defense Mobilization (OCDM), in collaboration with ARRL, have promulgated the Radio Amateur Civil Emergency Service. IRACES is a temporary amateur service, intented primarily to serve civil defense and to continue operation during any extreme national emergency, such as war. It shares certain segments of frequencies with the regular Amateur Service on a nonexclusive basis. Its regulations have been made a sub-part of the familiar amateur regulations; that is, the present regulations have become sub-part A, the new IRACES regulations being added as sub-part 13 . Copies of looth parts are included in the latest edition of the AIRIRL License Manual.

If every amateur participated, we would still be far short of the total operating personnel required properly to implement RACES. As the service which bears the responsibility for the sucerssful implementation of this important function, we face not only the task of installing (and in some cases building) the necessary equipment, but also of the training of thousands of additional people. This can and should be a function
of the local unit of the Amateur Radio Emergency Corps under its EC and his assistants, working in close collaboration with the local civil defense organization.

The first step in organizing RACES locally is the appointment of a Radio Officer by the local civil defense director, possibly on the recommendation of his communieations officer. A complete and detailed communications plan must be approved successively by local, state and OCDM regional directors, by the OCDM National offiee, and by FCC. Once this has been accomplished, applications for station authorizations under this plan can be submitted direet to FCC. QS'T will carry further information from time to time, and ARLRL, will keep its field officials fully informed by bulletins as the situation requires. A complete bibliography of $2,5 T$ articles dealing with the subject of civil defense and RACLSS is available upon request from the ARIRL Communications Department.

In the event of war, civil defense will place great reliance on RACDS for ratio communications. RACES is an Amateur Service. Its implementation is logically a function of the Amateur Radio Emergency Corps - an additional function in peacetime, but probably an exclusive function in wartime. Therefore, your hest opportunity to be of service will be to register with your local EC, and to participate actively in the local AREC/LAClis program.

ARRL Operating Organization

Amateur operation must have point and oonstructive purpose to win public respect. Each individual amateur is the ambassador of the entire fraternity in his public relations and attitude toward his hobby. ARIRL, field organization adds point and purpose to amateur operating.

The ('ommunications Department of the League is eoncerned with the practical operafion of stations in all branches of amateur activity. Appointments or awards are available for rag-chewer, traffic enthusiast, phone operator, DX man and experimenter.

There are seventy-three ARRL. Sections in the League's field organization, which embraers the United States, Canada and certain other territory. Operating affairs in each Section are supervised by a Section Communications Manager elected by members in that section for a twoyear term of office. Organization appointments are made by the sertion managers, cleeted as provided in the Rules and Regulations of the Communications Department, which accompany the League's By-I was and Articles of Assoriation. Suction communications managers' addresses for atl sections are given in full in "ach issue of QST'. SCMIs weleome monthly artivity rom ports from all amateur stations in their jurisdiction.

Whether your activity embraces phone or telegraphy, or both, there is a place for you in League organization.

LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to develop practical communications plans with the greatest success, appointments of leaders and organizers in particular single-interest fields are mate by SC'Ms. Each leadership post is important. Each provides activitios and assistance for appointee groups and individual members along the lines of natural interest. Some posts further the general ability of amateurs to communicate efficiently at all times, hy pointing activity toward networks and round tables, others are aimed sperifically at estahlishment of provisions for organizing the amateur service as a stand-hy communications group to serve the public in disaster, civil defense need or emergeney of any sort. The SCDI appoints the following in accordance with section needs and individual qualifications:
PAM Phone Activities Manager. Organizes activities for OP'Ss and voire operators in his scetion. Promotes phone nets and recruits Ol'Ss.
RM I\}oute Manager. Organizes and coordinates ew. traffic activities. Supervises and promotes nets and reeruits ORSs.
SEC Section Emergency ('oordimator. I'romotes and administers section emergency radio organization.
EC Bmergency Coordinator. Organizes amateurs of a commmity or other local area for emergency radio service; maintainsliaison with officials and agencies servel; also with other local communication facilities.

STATION APPOINTMENTS

AlRIRL's field organization has a place for every active amateur who has a station. The Communications Department organization exists to increase individual enjoyment and station effectiveness in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities and to apply to the SCAI for one of the following station appointments. AIRIRL mombership and the General Class license or VE equivalent is prerequisite to appointments, except ()LS is available to Novice/ Technician grades.

OPS Official Phone Station. Sets high voice operating standards and procedures, furthers phone nets and tradfic.
ORS
OBS
OES

00
Offrial Rellay Station. Traffe service, operates e.w. nets: noted for 15 w.p.m. and procedure ability, Official Bulletin Station. Transmits ARRL and FCC bulletin information to amateurs. Oflicial Experimental Station. Experimental operating, collects and reports v.h.f.-u.h.f.-s,h.f. propagation data, may engage in facsimile, TT, TV, etr., experiments working on 50 Mr . and/or above. Official Observer. Sends cooperative notices to amateurs to assist in frequency observance, insures high-cuality signals, and prevents FCC trouble.

Emblem Colors

Members wear the A IRIRL emblem with blackenamel barkground. A red background for an emblem will indieate that the wearer is SCM. SLCCs, ECs, IRMs, and PAMs may wear the emblem with green background. Olservers and all station appointees are entitled to wear blue emblems.

SECTION NETS

Amateurs can add much experience and pleasure to their own amateur lives, and substance and accomplishment to the credit of all of amateur radio, when organized into effective interconnection of cities and towns.
The successful operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforee each and every net rule and set the example in his own operation.
A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the members regarding
general net activity, to keep tab, on net procedure, make suggestions for improvement, keep, track of active members and weed out inactive ones.

A National Traffic System is sponsored by AIRIRL, to facilitate the over-all expeditious relay and delivery of message traffie. The system recognizes the need for handling traffic beyond the section-level networks that have the popular support of both phone and c.w. groups (ols and (IRS) throughout the Le'ague's ficld organization. Area and regional provisions for N'TS are furthered by IIeadquarters correspondence. The AIRIRL. Net Directory, revised in December each year, inclucles the frequencies and times of operation of the humdreds of different nets operating on amateur band frequencies.

Radio Club Affiliation

ARRL is pleased to grant affiliation to any amateur socicty having (1) at least 51% of the voting club membership as full members of the League, and (2) at least 51% of members govern-ment-licensed radio amateurs. In high school radio clubs loaring the school name, the first above requirement is modified to require one full member of ARRLL in the cluls. Where a society has common aims and wishes to add strength to that of other club groups and strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for affiliation. Such clubs receive field-organization bulletins and special information at intervals for posting on club bulletin boards or for relay to their memberships. A travel plan providing communications, technical and secretarial contact from the Ileadquarters is worked out seasonally to give maximum benefits to as many as possible of the several hundred active affiliated radio clubs. P'apers on club work, suggestions for organizing, for constitutions, for radio courses of study, etc., are available on request.

Club Training Aids

One section of the ARRL Communications Department handles the 'Training Aids Program. This program is a service to AIRIRL affiliated clulss. Material is aimed at education, trainingandentertainment of club members. Interesting quiz material is available.
Training Aids include such items as motionpicture films, film strips, slides, and lecture outlines. Also, code-proficiency training equipment such as recorders, tape transmitters and tapes will be loaned when such items are available.

All Training Aids materials are loaned free (except for shipping charges) to ARLRL affiliated clubs. Numerous groups use this ARRRI, service to good advantage. If your cluls is affiliated but has not yed taken advantage of this service, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST or write the ARIRL Communications Department for full details.

Operating Activities and Awards

- wiaw

The Maxim Memorial Station, W'AW, is dedicated to fraternity and serviere. Operated by the League headquarters, W1AW is located atmout four miles sonth of the Ileadeluarters offires on at seven-arre site. The station is on the air daily, except holidays, and atvaibable time is divided between different bands and modes.
 Telegraph and phone transmitters are provided for all bunds from 1.8 to 144 Mc . The normal frequencies in each band for c.w. and voice transmiswons are as follows: 18:0, 3555, $3045,7080,525 \overline{5}, 11,100,11,280,21,075,21,3330$, $28,080,2!, 000,5(0,900$ and 11 tis, 600 ke. Oporatingvisiting hours and the station sohedule are listed every other month in Ost

Oreration is roughly propertional to amateur interest in different bands and modes, with one kw. except on 160 and w.h.f. hatuds. WIAW's daty bulletins and code prowetice aim to give operational help, th the largest number.

All amateurs are invited to visit W1AW, as well as to work the station from their own sharlis. 'The station was established to be a living memorial to Hiram Perey Maximand to carry on the work and tratitions of amatemr radio.

OPERATING ACTIVITIES

Within the ARIRL field organization there are several special activities. The first Saturday and Sunday of each month is set aside for all ARRL1، officials, officers and directors to get together over the air from their own stations. This activity is known to the gang as the lo party. For all appointers, guartorly CD parties are sehechuled to develop operating ability and a spirit of fraternatism.

In addition to those for appointees and oflicials, AlRRL, sponsors various other aretivities open to all amateurs. The 1)X-minded amateme may partirepate in the Ammal ARRRL International IDS Competition during February and March. This popular contest may bring you the thrill of working new countries and building up your I)XCC totals: certificate awards are offered to top scorers in cach country and ARRL section (see page o of :my (ST) and to chub leaders. Then there is the ever-popular Sweopstakes in November, Of domestic seope, the SS affords the opportunity to work new states for that 11 As a ward. A Novice artivity is planned anmally. The interests of v.h.f. enthusiasts are also provided for in contests hold in January, June and September of each your.

As in all our operating, the idea of having a good time is combined in the Ammal Field Day with the more serious thought of preparing our-
selves to render public service in times of emergency. A premium is placed on the use of equipment without connection to commercial power sources. Clubs and individual groups always enjoy themselves in the "FI)," and learn much about the reguirements for operating under knockabout conditions afield.

ARRL contest artivities are diversified to appeal to all operating interests, and will be found annomed in detail in issues of QST preceding the different events.

awards

The League-sponsored operating activities feretofore mentioned have useful objectives and provide much enjoyment for members of the fraternity. Achievement in amatear radio is recognized by various certificates offered through the League and detailed below.

WAS Award

WAS memes "Worked All States." This award is available regardless of affiliation or monatfiliation with any organization. I Here are the simple rules to follow in going after your WAS:

1) Two-way communication must be established on the amateur bands with each of the states; any and all amateur

bunds may be used. A card from the Distriet of Columbia may be submitted in lieu of one from Maryland.
2) Contacts with all states must be made from the same location. Within a given community one location may be defined as from places no two of whieh are more than 25 miles apart.
3) Contacts may be made over any period of years, and may have been made any number of years ago, provided only that all contacts are from the same location.
4) (2sla cards, or other writton commmations from stations worked contirming the neensary two-way contacts, must be submitted by the applicant to Aldil L headguarters.
5) Sufficient postage must be sent with the confirmations to finance their return. No correspondence will be returned unless sufficient postage is furnished.
6) The WAS award is a vailable to all anaterers.
7) Address all ibplications and confirmations to the Comsmatations Jepartment, ARKL, 38 La Salle Road, West llartford, Conn.

DX Century Club Award

Here are the rules under which the DX Century Club, Award will be issued to amateurs who have worked and confirmed contact with 100 countries in the postwar period.

1) The DX Century Club Award Certificate for confirmed contacts with 100 or more countries is available to all anateurs everywhere in the world.
2) Confirmations must be submitted direct to ARRL headquatters for all countries clamed. Claims for a total of

100 countries must be ineluded with first application. Confirmation from foreign contest lozs may be requested in the ease of the ARRL International DX Competition only, subject to the following conditions:
a) Sufficient confirmations of other types must be submitted so that these. plus the DX Contest confirmations, will total 100. In every case, Contest confirmations must not be reruested for any countries from which the applicant has regular confirmations. That is, contest confirmations will be granted only in the case of countries from which applicants have no regular confirmations.
b) Look ap the contest results as published in $Q . S T$ to see if your man is listed in the forcign seores. If he isn't, he did not send in a log and no confirmation is possible.
e) Give vear of contest, date and time of QSO.
d) In future DX Contests do not reruest confiruations until after the final results have been published, usually in one of the carly fall issues. Requests before this time must be ixnored.
3) The ARLRL Countries List, printed periodically in QsT', will be used in determining what constitutes a "eountry." "This chapter contains the Postwar countries List.
4) Confirmations most be accompanied by a list of claimed comntries and stations to aid in checking and for fiture reference.
5) Confirmations from additional countries may be submitted for eredit each time ten additiotial confirmations are available. Dintorsements for affixing to certificates and showing the new confirmed total ($110,120,130$, ete.) will be awarded as additional credits are granted. ARBL. INX Competition loges from foreign stations may be utilized for these embermements, subject to conditions stated under (2).
(i) All combacts must be made with amatem stations working in the anthorized amateur bands or with other stations liemsed to work amateurs.
7) In cases of countries where amatents are licensed in the normal manner, credit may be clamed only for stations using regular powermment-assigned call letters. No credit may be claimed for contacts with stations in any countries in which anateas have been tomprarily elosed down by special gosermment edict where amateur lieenses were formerly issmed in the normal manmer.
8) All stations contacted mast be "land stations" contacts with ships, anchored or otherwise, and aircraft, cannot tee connted.
9) All stations must be contacted from the sanate call area, where such areas exist, or from the same country in cases where there are wo call areas. One exception is allowed to this rule: where a station is moved from one call area to another, or from one country to another, alt contacts must be made from within a radius of 150 miles of the initial location.
10) Contacts may be made over any period of years from November 15,3945 , provided only that all contacts be made under the provisions of Rute ! 9 , and by the same station licensere; contacts may have been made mader different eall Ietters in the same area (or country), if the licensee for all was the same.
11) All confirmations must be submitted exactly as reerived from the stations worked. Any altered or forged confirmations submitted for CC credit will result in disgualification of the amplicant. The elisibility of any 1) XCC applicant Who was ever barred from WXCC to reaply, and the conditions for such apptication, shall be determined by the Awards ('ommittee. Ans holder of the Century Clab, Award submittiny forged or altered confimations must forfeit his right to be considered for further endorsements.
12) Operating ethies: Fair play and goot sportsmanship in operating are required of all amateurs working toward the 1)X ('entury Club Award. In the event of speritic objections relative to continued poor operating ethics an individual may be dissuralified from the DNCC by action of the ARIRL Awards Committee.
13) Sufficient postage for the return of confirmations must be forwarded with the application. In order to insure the safe return of large batehes of confirmations, it is suggested that enough postage be sent to make possible their return by firxt-class mail, registored.
14) Decisions of the ARIRL, Awards Committee reqarding interpretation of the rules as here printed or later amented shall be final.
15) Address all applications and confirmations to the Communications Department, ARRL, 38 La Salle Road,
West Ifartford 7. Conn.

WAC Award

The WAC award, Worked All Continents, is issued by the International Amateur Radio Union (IARU) upon proof of contact with cach of the six continconts. Amateurs in the U.S.A., Possessions and Canada should apply for the award through MRRL, headquarters society of the IARU. Those elsewhere must submit direet to their own IARU member-society. Residents of countries not represented in the Union may apply directly to ARIRL for the award. Two basio types of WIC cortificates are issued. One contains no endorsements and is atwarded for e.w., or a combination of cew. and phone contacts: the other is awarded when all work is done on phone. There is a special rndorsement to the phone W. AC when all of the confirmations sul)mitted clearly indicate that the work was done on two-way s.s.l. The ouly special band endorsements are for 3.5 and 50 Me .

Code Proficiency Award

Many hams can follow the general idea of a contact "hy ear" but when pressed to "write it down" thry "mulf" the copy. The Code Proficiency Award invites every amateur to prove himself as a proficient operator, and sets up a system of awards for step-by-step gains in copying proficiency. It enables every amateur to cheek his code proficiency, to better that proficiency, and to receive a certification of his receiving speed.

This program is a whale of a lot of fun. The League will give a cortificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plain-language Continental code at $10,15,20,25,30$ or 35

words per minuto, as transmitted during special monthly transmissions from W I AW and W6()Wl'.

As part of the ARRRL Code I'roficieney program 101 IIV framsmits plain-language practice material carh evening at speeds from of to 35 w.p.m. All amatours are invited to use these tramsmissions to incrense their code-copsing
abilits. Son-amateurs are invited to utilion the ability. Don-smateurs are invited to utilizo the lower sperds, $\bar{\sigma}, 76$, and 10 w.p.m., which are tramsmitted for the benefit of persons studying the code in preparation for the amatene liconse

Awards

examination. Refer to any issue of QST for details of the practice schedule.

Rag Chewers Club

The Ray Chewers Club is designed to encourage friendly contacts and discourage the "hello-good-hy" type of (2SO). It furthers fraternalism through amateur radio. Membership certificates are awarded.

How To Get in: (1) Chew the rag with a nember of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QRM or QRN, but a solid half hour of conversation or message handling. (2) Report the conversation by caril to The Rag Chewers Club, ARRL, Commmnications Department. West Hartford, Conn., and ask the member station you talk with to do the same. When both reports are received you will be sent a membership certificate entitling you to all the privileces of a Rag Chewer.

How To Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words except "cuagn" or "cull," or "QRU" or "nil." Talk to the fellows yon work with and get to know them. (2) Operate your station in aceordance with the radio laws and AKRL practice. (3) Observe rules of conrtesy on the air. (4) Sign " IRC'C" after each call so that others may know you can talk as well as call.

A-1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operators who already belong, General keving or voice technique, procedure, copying ability, judgment and courtesy all count in rating candidates under the club rules detailed at length in Operating an Amateur Ralio Station. . Iim to make sourself a fine operator, and one of these days you may be plearantly surprised be an invitation to belong to the A-1 Operator Club, which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a specified ninimum in official monthly traffic totals is given an honor place in the QS'T' listing known as the Brass Pounders League and a certificate
to recognize his performance is furnished by the SCMI. In addition, a BP'L Traffic Award (medallion) is given to individual amateurs working at their own stations after the third time they "make BPPL" provided it is duly reported to the sC. Cl and recorded in Qs'T.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general public, make message-haudling work of prime importance to the fraternity. Fun, enjorment, and the feeling of having done something really worth while for one's fellows is arcentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20 -or-more reats ago. Lapses in artivity during the intervening vears are permitted.

If you can qualify" is an "Old Timer," send an outline of your ham cureer. Indicate the date of your first amateur license and your present call. If eligible for the O'TC, you will be added to the roster and will receive a mombership certificate.

INVITATION

Amateur radio is capable of giving enjoyment, self-taining, sorith and organization benefits in proportion to what the individual amateur puts into his hobs. All amateurs are invited to berome . IRRL members, to work toward awards, and to areept the chatlenge and invitation offered in field-organization appointments. Drop a line to ARRL Headquarters for the tooklet Operating an Amateur Radio Siation, which has detailed information on the fich-organization appointments and awards. Accept today the invitation to take full part in all Lague activities and organization work.

CONELRAD COMPLIANCE

The FCC rules for the Amateur Service concerned with requirements in the event of enemy attack are contained in the ARRRL, License. Wanual as part of the amateur regulations, Sections 12.190 through 12.190. These are the rules for control of electromagnetic rauliation, condrad, to minimize radio navigational aids to an enemy. Read and follow these rules. They concern you.

Antatenrs are required to shat doun when a Conelrad Radio. Alert is indieated. FCC requires monitoring, by some means, of a broadeast station while you operate. By use of proper equipment, each amateur can make his conehad compliance routine and almost automatic. You will find descriptions of surch devices, most of them quite simple, in this Mandbook and in Qs'l',

Operating Abbreviations and Prefixes

Q SIGNALS

Given below are a number of Q signals whose meanings most often need to be expressed with brevity and clearness in amateur work. ($(Q$ ab)breviations take the form of questions only when (ach is sent followed bes a question mark.)

QRG Will you toll me my exact frefuency (or that of......)? Your exade frequeney for that of.) is. k.
QRIL Does my frequency vary? Vour frequeney varies.
QRI Ilow is the tone of my transmiswion? 'The tone of your transmission is. (1. Cood; 2. Variable; 3. Bad).

QRLi What is tho readability of my signats (or those of)? 'Ther readability of your sigmals: (or those of) is (1. ('nreadable; e. JRaiable now and then; 3. Ratadale but with diffirulty: 4. Remdable: is. I'mfertly readatad.
Q1RL Are wou bus? I aun busy (or 1 am busy with). Ilase do not interfere.
QRM Areyoubeing interfered with? I am interfered with.
QRN Are you tronhled by statie? I anm beity troubled by static.
QRO Dhst I incrave power? Incrase power.
QRP Must I derpase power". Derrease jowor.
QItQ Shall! send faster? Send farter (. words per min.).
QIRS Shall I send more slowly? Send more slowly (. . . . w.jp.tn.).

QL'I' Shal! 1 stou) sobuling? Stop, sending.
QRC Have you anything for me? I have nothing for yous. QRV Are you ready? I ann realy.
QRE Shall I toil.....that sou are calling him on
 hin on.... .ke.
QRX When will you catl me again? I will call you again at...... .hours (on.ke.).
QRZZ Who is cealling tue? you are being dalled by..... (on.ke.).
QSA What is the strength of my signals (or those of)? The strengeth of your sighats (or thane of.....) is....... (1. suarerly jermptithe; 2. Weak: 3. Foirly good: 4. (iood: - V. Very good).
QSB Are my signals fading? Your ignals are fading.
QSiD Is my keying defeetive? Your krying is defertive.
QSG shall I sond..... messarm at a titur? send. monsazes at a time.
 receipt.
QSMI Shall I reprat the last message whieh J sent you, or some previons message? Reporat the last minsange which sou sent me for messugen(s) ntunber(s).].
QSO ('an you eonmmanate with... . direct or by relay? 1 ran rommanicate with. . . . direct (or bey relay through.).
Q:p Will you relay to.....? I will relay to....
Qsi Shall I sond asories of tis on this freduency (orke.)? sind a sorics of V s on this freguency (or.ke.).
QSW Will you send on this frequency (or onke.l? 1 am woing to send on this frequeney (or onke.).
QSX Will yon listen to..... on..... ke. $?$ I am listening to.......on.kc.

Q.Y	Shall 1 change to transmission on another ire queney? Change to transmission on another frequency (or on.ke.).
QSZ	Shall ! send wach word or group more than once? Send rach word or group twice (or. . . . times).
QTA	shall I cancel mossage number. . . as if it liad not been sent? ('ancel message number. as if is had not been sent.
QTI3	Do you auree with my counting of words? I do not agree with your eomiting of words: I will repeat the first l-tter or digit of each word or kroup.
QTC	How many messages have you tosend? I have. . . . messages for you (or for.).
QTII	What is your location? My location is.
QTIR	What is the exact time? The time is
Sp	(i)
Qs.T	(ioneral call proeding a mossake addressed to alf amatours and A LKRL, members. This is in effect "(Q. MRIRL."
QRIRIR	Otlicial AlRRJ. "land SOS:" A (listress call for emorgeney use only by a station in an emergency sithation.

THE R-S-T SYSTEM

 READABILITYI - Unreadable.
2 - Barely readable, oceasional words distinguishable.
3- Readable with considerable difficulty.
4-Readable with practimally no dilfiealty.

- - lerfertly reandathe.

SIGNAL STRENGTH

1 - I゚ilut siptals, barely perceptible.
2 - Very weak signals.
3-Wrak simnals.
\pm - Vour signals.
5- Vrairly good siphals.
(3) Ciond vimats.

7 - Momerately stromy signals.
8 - Strong sightats.
9- IExtrenuly strong signals.
TONE
1 - Extrammy rough hissing note.
2 - lery rough afe. note, no trace of musicality.
3 - Ronsh low-pitched s.ce note, slighty musical.
4 - Rather roush ade. mote, moderately musical.
i- Musicalty-modnated note.
if - Modulated note, slight trace of whist!e.
7 - Ne:tr di.e. notm, smoutls ripple.
8 - Gool die. note, just a trace of ripule.
9 - Purest d.e. note.
If the signal has the characteristie steadiness of "W.stal control, add the letter \boldsymbol{X} to the KN"I report. If there is a chirp. the letter C may be adfed to so indicate. similarly for a click, add K. The above reporting system is used on both r.w. and voiec. leating out the "tone" report on roice.

24－OPERATING A STATION
 INTERNATIONAL PREFIXES

AAA－ALZ
AMA－AOZ
APA－AS\％
A＇TA－AW\％
AXA－AXZ
AlA－AZZ
BAA－BZ\％
CAA－CE\％
CF゙A－Cl゙\％
CLA－CM\％
CNA－CN\％
COA－COZ
CPA－CP＇／
CQA－C＇RK l＇ortuguese Overseas Provinces
Csiscce portumal
CVA－CXZ Liruguay
CYA－CZZ Canada
DAA－I）MK Germany
1）NA－1）Q\％Belgian Congo
blRA－ITY Bielorussian Soviet Socialist Republic
1）でA－1）\％\％
EAA－EH\％
ELA－EJZ
にだA－EだZ
ELA－EL\％
EMA－EO\％
EPA－EQZ
ERA－I：K\％
ESA－ES\％
E゙リA－E＂T\％
ELA－b：\％
FAA－ $\mathrm{F} \%$
GAA－（i\％\％
IIAA－11AZ
11BA－11B\％
ICA－11D\％
114A－111：\％
11FA－HF\％
114A－116Z
1111A－H11\％
111A－111\％
II．JA－Hに゙\％
H1LA－11M\％
IINA－IINZ
IIOA－H1／\％
11QA－111\％
IISA－INZ
11＇T＇A－H＇1＇\％
IIUA－HUZ
INA－HV\％
IIWA－H1\％Franee und Colonics and Protectorates
11\％A－HZZ
IAA－IZZ
JAA－JN\％
JTA－JVZ
JWA－JXZ
JYA－JYZ
1\％A．J\％\％
に゙AA－に\％\％
LAA－LN\％
LOA－LW\％
LXA－LX／
LIA－1．I\％
L．Z．A－L．XZ
MAA－1 1%
Creat Britain Americo
OAA－OC\％
O1）
OEA－OE\％
OFA－OJ\％
Olis－ONI\％（＇zerhoslovakia
ONA－OT\％Belgham and Colonies
OLA－OYZ benmark
PAA－PI\％Netherlands
P．JA－P．JZ Netherlands Antilles
PKA－POK Repmblic of Indonesia
PDA－1＇Y／Brazil
D／A－P\％Nurinam
QAA－CZZ（service abbreviations）
RAA－RKZ Inion of Sovict Socialist Lepublics
SAA－SM\％Sweden
SNA－sRZ Jeople＇s Republic of Poland
SSA－SsM Egypt

SSN－ST\％Sudan
SC゙A－SCZ Egypt
SVA－SKZ Greece
TAA－TC $\%$ rurke
TIDA－TD\％（inatemata
TEA－T＇EK Costa lica
TFA－TFK Ireland
TGA－TG\％（inatemala
THA－TH\％France and Colonies and Protectorates
TIA－TI\％Costa lica
TJA－TZZ France and Colonies and I＇rotectorates
UAA－LG\％L＇nion of Soviet Socialist Republics
URA－U＇TZ I＇krainian soviet Socialist Republio
UUA－L゙ZZ Union of Soviet socialist Republics
VAA－VG\％Canada
VHA－VN\％Commonwealth of Australia
VOA－VO\％（ianada
YPA－I＇SK British Colonies and I＇rotectorates
VTA－VWZ India
VXA－VI\％Canada
VZA－V\％\％Commonwealth of Australia
WAA－W\％\％l＇nited states of America
XAA－XIZ Mexico
XJA－NOZ Canada
XPA－XP\％Denmark
XQA－XiKZ Chile
XsA－XNZ China
XTA－XT\％France and Colonies and Protectorates
XCA－XCZ Cambodia
XVA－XVZ Viet－Nam
XW． $1-\mathbf{X W \%}$ Laws
XX．1－XXZ Portuguese Overscas Provinces
XYA－XZZ Bитияа
VAA－VAZ Afghanistan
YBA－I＇HZ Republic of Indonesia
ITA－Y＇I／Iram
Y．JA－Y．J\％New llebrides
VK゙A－YK\％Syrian Republic
YLA－YLI\％Latvia
YMA－YMZ Turkey
YN．I－INZ Ni＂arugua
YOA－YR\％Rounanian Pcople＇s Republic
Y＇sA－Tン\％Republic of EL Salvador
YTA－Y゙＂\％「＇ugosalvia
YVA－YI\％Vineztela
YZA－YZZ Y＇uguslavia
ZAA－Z．1Z Albania
ZBA－Z．J\％British（olonics and Protectorates
\％K゙A－ZM\％New Zealand
ZNA－ZOZ British（olonies and I＇rotectorates
ZPA－KP／P＇aragray
KQA－\％QZ British（＇olonies and Protectorates
ZIRA－Z1\％Inion of south Africa
ZVA－ZठZ Brazil
2AA－2\％\％（ireat Britain
3AA－3A\％Monaco
3BA－3F\％Conada
3GA－3G：C＇hile
3HA－31＂\％（lhina
3VA－ $3 \mathrm{~V} \%$ Thuisia
3WA－sW\％Viet－Num
3YA－3）\％Norway．
3K．A－3K\％People＇s Republic of Poland
4AA－H＇\％Mexi＇o
4DA－15 Repoblic of the Philippines
4．J．A－4．\quad Union of sovict Socialist IRepublics
4NA－4．I\％V＇enezucla
4NA－IO\％Vugoslavia
HPA－N゙Z（erton
＋TA－4T\％I＇ern
4CA－41\％Cnited Nations
＋VA－H゙\％lepublic of Haiti
＋WA－4W\％Yemen
$4 \mathrm{XA}-4 \mathrm{~N} \%$ state of Israel
4YA－4\％International Civil Aviation Organization
5AA－j．1\％Libra
5（＇A－inC $\%$ Morocco
5LA－B\％liberia
ibl＇A－ic\％Donmark
9A．A－9．$\%$ sian Marino
9 KA－！К\％Kuwait
9NA－9N／Nepal
9SA－9SZ Suar

Ābbreviations

ABBREVIATIONS FOR C．W．WORK

Abbreviatio when working	to cut down unnecessary trans rator of unknown experience．		it a rine not to abbreviate unnecess
AA	All after	OB	Old boy
AB	All before	O．M	Old man
ABT^{\prime}	About	O1－OPR	Operator
ADR	Address	OSC	Oscillator
AGN	Again	OT	Old timer；old top
ANT	Antenus	PBL	Preamble
BCI	Broadeast interference	P＇SE－PLS	Please
BCL	Broadrast listener	PWR	1＇ower
ВK゙	Break；break me；break in	${ }^{1} \mathbf{X}$	Press
13 N	All between；been	R	Received us transmitted；are
134	Before	RAC	Rectified alternating current
C	les	R（＊）	Received
CFM	（＇onfirm； 1 confirm	REF	Refer to；referring to；reference
（に）	（＇herk	1R1＇T	Repcat； 1 repeat
（1）	1 anm closing my station；call	Sll）	Said
（ 1 L）－CLG	Called；calling	S1：\％	Says
（ Ul ）	Could	SIC	Signature；signal
CUL	See you later	$\therefore 1 \mathrm{NE}$	Operator＇s personal initials or nickname
（CMI	Come	SK゙ED	schedule
（ ${ }^{\circ}$	Continuous wave	SRI	Sorry
111）－DLVD	I Melivered	SVC	Service；prefix to service message
I）X	D istance	TFC	Trallic
HCO	Flectron－coupled oscillator	＇lMW	＇Tomorrow
l－${ }^{\text {c }}$	Fine business；excellent	1NX－TKS	＇l＇hanks
（i，A	（io ahead（or resume sending）	T＇1	${ }^{\text {That }}$
（iB	（iood－by	＇1＇U	＇Thank you
（：BA	（ iive better address	＇191	Television interfarence
CiE	（iood evening	TVL	T＇elevision listener
（i）	（ioing	TXT	Text
（iM	（ iood morning	Uh－U1RS	Your；you＇re；yours
GN	（iood night	VFO	Variable－frequeney oseillator
（iNJ）	（iround	VY	Very
GLD	（ iood	WA	Word after
111	The telegraphie laugh；high	W ${ }^{\text {b }}$	Word before
HR	Here；liear	W1b－WISS	Word；words
IIV	Have	Wどう－Wに゙G	Worked；working
HW	llow	WL	Well；will
LII）	A poor operator	WUD	Whonld
M1LS	Milliamperes	WX	Weather
MSG	Messuge＇；prefix to radiogram	XATR	Transmitter
N	No	XTAL	Crystal
NI）	Nothing doing	YF（XIL）	Wife
NIL	Nothing：I lave nothing for you	Y14	Young laty
Nir	Number	73	Best regards
N W	Now；1 resume transmission	88	Love and kisses

W／K CALL AREAS BY STATES

Alabrama 4 Montana 7
Alaska KL7 Nelruska 0
Arizona 7 Nevada 7
Arkansas 5 New Hampshire 1
California 6 New Jersey 2
Colorado 1 New Mexico 5
Connecticut 1 New York ． 2
Delaware 3 North Carolina 4
District of Columbia 3 North I）akota 0
Florida 4 Ohio 8
Georgia Oklahoma 5
Idaho 7 Oregon 7
Illinois （）Penusylvania 3
Indiana 9 Rhode Island 1
Iowa 4
（1）South Carolina
Kimbas ．\emptyset
0 South Dakota
Kentucky 4
Lontisiana 5 Texas5
Maine I Utah 7
Maryland 3 Vermont 1
Massachusetts 1 Virginia． 4
Michigan 8 Washington 7
Minnesota g）West Virginia 8
Mississippi .5 Wiseonsin 9
Missouri .0 Wyoming 7

24-OPERATING A STATION

- Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization. Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulotions, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.
- Emergency Communications is the "bible" of the Amateur Radio Emergency Corps. Within its eight pages are contained the fundamentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a table of RACES frequencies on the front cover.

The two publications described above
may be obtained without charge by
any Handbook reader. Either or
both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE 38 La Salle Road West Hartford 2, Comecticut, U. S. A.

Please send me, without charge, the following:
OPERATING AN AMATEUR RADIO STATION EMERGENCY COMMUNICATIONS

Name
(Please Print)

Address

Vacuum Tubes and Semiconductors

For the convenience of the designer, the re-ceiving-type tubes listed in this chapter are grouped by filament voltages and construction types (glass, metal, miniature, etc.). For example, all miniature tubes are listed in Table I, all metal tubes are in Table II, and so on.

Transmitting tubes are divided into triodes and tetrodes-pentodes, then listed according to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power classification.

For quick reference, all tubes are listed in numerical-alphabetical order in the index. Types having no table reference are either obsolete or of little use in amateur equipment. Base diagrams for these tubes are listed, however.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the electrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in electrodes.

In the transmitting-tube tables, maximum ratings for electrode voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receiving-tube tables, hecause of space limitations, ratings and operating data are combined. Where only one set of operating conditions appears, the positive electrode voltages shown (plate, screen, etc.) are, in general, also the maximum rated voltages.

For certain air-cooled transmitting tubes, there are two sets of maximum values, one designated as CCS (Continuous Commercial Service) ratings, the other ICAS (Intermittent Commercial and Amateur Service) ratings. Continuous Commereial Service is defined as that type of service in which long tube life and reliability of performance under continuous operating
conditions are the prime consideration. Intermittent Commerrial and Amateur Service is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. ICAS ratings are considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifice in tube life, the period over which tubes give satisfactory performance in intermittent service can be extremely long.

The plate dissipation values given for transmitting tubes should not be exceeded during normal operation. In plate modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is approximately 66 percent of the value listed and will rise to the maximum value under 100 -percent sinusoidal modulation.

Typical Operating Conditions

The typical operating conditions given for transmitting tubes represent, in general, maximum ICAS ratings where such ratings have been given by the manufacturer. They do not represent the only possible method of operation of a particular tube type. Other values of plate voltage, plate current, grid bias, etc., may be used so long as the maximum ratings for a particular voltage or current are not exceeded.

Equivalent Tubes

The equivalent tubes listed in Table VIII are used occasionally in amateur service. In addition to the types listed, other equivalents are available for special purposes such as series-heater string operation in TV receivers. These types require unusual values of heater voltage (3.15, 4.2 , ete.), and have controlled warm-up time eharacteristics to minimize voltage unbalance during starting. Exeept for heater design, these types correspond electrically and mechanically to 6 -volt prototypes.

INDEX TO TUBE TABLES
I - Miniature Receiving Tubes V15
II - 6.3-Volt Metal Receiving Tubes V19
IX - Control and Regulator Tubes V23
X - Rectifiers V24
III - 6.3-Volt Glass Tubes with ()ctal Bases V20
IV - 6.3-Volt Loek-In Base Tubes V20
V - 1.5- Volt Battery Tubes V21
VI - High-Voltage Heater Tubes V21
VII - Special Receiving Tubes V21
VIII - Equivalent Tubes V22
XI - Triode Transmitting Tulees. V25
XII - Tetrode and Pentode Transmitting Tubes. V28
XIII - Electrostatic Cathode-Ray Tubes V30
XIV - Transistors V31
XV - Crystal Diodes. V32

INDEX TO VACUUM－TUBE TYPES
Base－diagram section pages $\mathbf{~} 5-114$ ．Classified data pages V15－V32．

	4am			
${ }^{3}$ G．．．．．．：v23 ${ }^{23} \frac{4 \mathrm{4}}{}{ }^{\mathrm{J}}$				${ }^{\text {G }}$
			${ }_{15}{ }_{15}{ }^{\text {g }}$ 7DA	，
V23 4AJ V 23 BJO	${ }_{2037}$	－	V15 7132	－
V23 4AJ			V15 7BT	
${ }^{-1}$				
二 ${ }_{4 \mathrm{4R}}^{4 \mathrm{Cl}}$	2			
	\％ 6 R	5AP1－4．．．．：${ }^{\text {y }}$ 30		
	24．．．．．．：v2			$\begin{array}{r}\text { V16 } \\ \mathrm{V} 16 \mathrm{CLM} \\ \hline 18 \mathrm{~K}\end{array}$
V21 ${ }^{\text {6x }}$		${ }_{\text {SATPI－11．．．}}^{5 \times 30}$		${ }_{6 C G 7}^{6 C ~ V 16 ~}{ }^{16} 9$ 9JJ
$\overline{\mathrm{v} 21} 7$	V15 ${ }^{15}$			${ }_{6}^{6 \mathrm{CH}}$
${ }_{1 / 4 \leq 66}$	二 ${ }_{\text {¢ }}^{\text {SN }}$		$\overline{\text { v} 20}$	${ }_{6}^{6 \mathrm{CH}} \mathrm{CH7}$
1AE4．．．．．．．vis ${ }^{\text {dar }}$	${ }_{4 \mathrm{Pr}}^{4 \mathrm{~V}}$			
${ }^{1} 1568$	－${ }_{44}$			${ }_{6}^{6 \mathrm{CK}} \mathbf{6}$
				6
		${ }_{\text {SCP11A }}^{5 C .}$		
二 ${ }_{6 \mathrm{~m}}$				
，				17 9EN
1 l	V30 V30 IAN			v17 968
	${ }^{\text {vo }} 7$			$6_{6 C R}$ ．．．．．．．．v17 9aj
			16 ${ }^{\text {cti }}$	
				He
${ }^{\text {V15 }}{ }_{5}^{\text {88JW }}$	${ }^{31226} \ldots \ldots . .$.			${ }_{6} 6 \mathrm{CU} 6$
		V30 14K		${ }_{6} \mathrm{Cx} 7$
－ 5 Y		Sutai．i．${ }_{5}$	$6{ }_{63484}$	${ }_{6} 6$
v30				${ }_{6} 6$
二 ${ }_{6 \times}{ }^{5 N}$			${ }_{6}^{613}$	（eD6．
$={ }_{\text {7AD }}^{6 N}$	${ }_{\text {21］}}$	${ }_{5}{ }^{5177}$		${ }_{6}^{6 D}$
3			${ }_{613}{ }_{6} 13$	
		5XP1．．．．．V30 ${ }^{\text {V30 }}$		${ }^{60}{ }^{\text {60 }}$
	， 3	－GGT		${ }^{\text {CDIEG6 }}$
v21 52				
	$\mathrm{V}_{15} \mathrm{~F}$ fild		633 Gb 63 H	
${ }_{\text {A }}^{\text {B }}$		${ }_{\text {®A3 }}$ ．．．．．．．．$={ }^{41}$	${ }_{6 B 156}$	${ }_{6} 6$
	${ }^{288} 7818$			
${ }^{\text {V21 }}$ 7 7 AK		${ }_{\text {GAP }}$		${ }_{685.0}^{60.7 .}$
${ }^{\text {V2 }} 17 \mathrm{fak}$				
		6A188 ．．．．．． 15	${ }_{631578}^{63} . . .: \bar{v}_{16}$	
${ }^{\text {V2I }} 780$		gacge．．．：	${ }_{683} 6$	${ }_{6 \times 6}^{615}$ ．．．．．．．：v19
${ }^{\text {V21 }} 1740$	311P1．．．．．．：v30 12 F	GADSC	${ }_{63 \text { SV6．．．．．}}^{6316}$	${ }_{6}^{6 \mathrm{Frga}}$
－${ }_{\text {TAM }}$	${ }^{3285697}$	${ }_{6 A}{ }^{\text {A }}$		
				6 H 4
			6AM	${ }_{6}^{6 H 5}$
		v22 81	${ }_{63660}$	
$V_{15} 6$ 6at	3－100AA11．：V26 ${ }^{36}$			${ }_{6}^{6 J 6 .}$
			${ }_{68128}$	19 7R
V15 ${ }^{\text {LTSC }}$	${ }_{3}^{3-5}$		${ }_{6835}$ ．．．．．．．V16	6 K 5 C
		${ }_{6} 6$	66^{388} ．．．．．．．：v16 9AJ	$6 \mathrm{K7}$ ．．．．．．：v19
${ }^{2} 413$		${ }_{6} 6$		
112A．．．．．．：＝9\％	${ }^{3-10004+\cdots . . .}$ ，v2	6 6A		V19 ${ }_{7 \mathrm{CaC}}^{\text {c }}$
	${ }_{\text {coser }}$			${ }_{6}^{6 L 6 G G A}$ ．．．．．：${ }^{\text {V22 }}$
			${ }_{68 \times 6} 6 . . .0$ v16	
			6Bws．．．．．v16 9HK	6M7G：．．．．：v20
	4			
	${ }_{4}^{4}$		${ }^{16}$	
	－99			，
			v16 9AC	${ }^{\text {B }}$
3P1－1i：．．：v30 12E	$\begin{array}{rl\|l\|} \\ 51 B K \end{array}$			ORSGT：O．：${ }^{\text {－}}$

VACUUM-TUBE DATA

Tupe	Page	${ }_{7}^{\text {Ba }}$	7 Type	Page	Base	Type	Page	Base	$33^{\text {Tupe }}$	Page	Base	Tupe	Pape	Base
P7G		${ }_{8}{ }^{\text {¢ }}$	$7 \times 6 .$		$\begin{aligned} & \text { 7AJ } \\ & \text { 8BZ } \end{aligned}$	12L6GT	$V 21$	$\begin{aligned} & 78 \\ & 8 \mathrm{BU} \end{aligned}$	$\begin{aligned} & 33 . . . \\ & \hline \end{aligned}$		${ }^{5} \mathrm{~K}$	$\begin{aligned} & 284-1) . \\ & 295-\mathrm{A} . \end{aligned}$		
${ }_{6} 8$	$V 17$	${ }_{98}$	7 Y 4		${ }_{5}{ }^{\text {AB }}$	12 C 7 C		${ }_{7 \mathrm{~V}}$			${ }_{5}{ }^{\text {E }}$	300 T		${ }_{2}{ }^{\text {N }}$
6 C		69	724		5 AB	12 R 5	V18	7CV		V2	6AA	303-A		
		6 Y	$8 \mathrm{BP4}$		14G	1288		8 CB			7182	304		Flg. 39
	V1	7 V	9BM5		7 BZ	12 SA 7	V22	8 R		V22	7 CV	30		2D
	V17	9R	$9 \mathrm{BW6}$		9 AM	12 SC 7	V22	$8 \mathrm{8S}$	35 L	${ }^{2} 2$	7 S	304 T	V27	4 BC
$6_{6 R 7}$		6AW	9 NP		${ }^{6 B N}$	12 SF	V22	${ }^{64}{ }^{\text {A }}$			3 C	304 TL	V27	
		7 V			411	12818	V22	${ }^{7 A Z}$		V25	2 D			Fig. 59
$8 \mathrm{8R8}$	V17	9 CL	$10 \mathrm{CP}^{4}$		14 G	12 SG 9	$\mathbf{V} 22$	8 BBK	35 W 4	v24	5 BCl	306-A		Fig. 63
	V22	9AC	1011 P 4		14G	12 SH	${ }^{2}$	$8 \mathrm{8BK}$	35 Y 4		5AL	307		Fig. 61
${ }_{6}^{6 S 4 A}$	V17	${ }^{9 \mathrm{ACK}}$	10 Y	V25	4 F	$12 \mathrm{SJ7} 7$	V_{22}	8 N		V24	${ }_{5 A}^{42}$	308 310		$\mathrm{Flg}_{4 \mathrm{D}} 43$
$8 \mathrm{S7}$	V19	7 R	12 A 4	V17	9 AG	1281.76	V22	8 BD	352	v24	6A1)	311	V26	
$6 \mathrm{S8}$	V20	8 Cl 3	12 A 5		7 F	12SN7id	v22	8317	35260		7 C	311 Ci		F1g. 32
6SA7	V19	812	12 AB	V21	7 S	12SN7GTA.	$\checkmark 22$	8131	36		5 E	312-A.		Fig. 68
68137	$V 19$	8 R			7 K	12 Sc 27	V22	88	37		${ }_{5} 5$	312 -E		Flg. 44
$\begin{aligned} & 8 \mathrm{SC7} \\ & 8 \mathrm{SDD} \\ & \hline \end{aligned}$	V19	$8 \mathrm{8N}$	12 A 86	V17	8 EA -	12 Slif	V22	88			${ }_{5}^{5 \mathrm{~F}}$	$316-$ $327-$	V25	
117		8 N	$12 \mathrm{~A} \cdot 6$	V17	7 BK	12 sx		8 Br			41	327-13.		Flg. 50
8 BFF 5	V19	8A13	$12 \mathrm{AD}{ }^{\text {d }}$	V17	7 CHI	$128{ }^{2} 7$	V12	812			${ }_{6 A 1}$	$3{ }^{32-13}$		
G7	V19	813 K	12 Al :	V17	715 T	$12 \mathrm{V6a}$		7S	42	V22	613	356-A		${ }_{4 \mathrm{Elg}} \mathrm{Fl}^{55}$
6S117	V19	8 BK	12 AFB	V17	713 K	12W6:'	V2	7 S	43		6 B	376-A		4E
6S117		8 BK	$12 \mathrm{AG6}$		7 Cl	12×4	124	513 S	45		${ }^{41}$	417-A	V22	9 V
6 SJ 7		8 N	12A1778	V21	$8 \mathrm{8BE}$	$12 \mathrm{C3}$		${ }_{4}^{4}$	45		5 AM	48		4 D
8SK7	V19	8 N	12AJt	V17	713 T	14 A 4		5 AC	46		5 C			${ }_{5}{ }^{\text {a }}$
6SL7C'T		8BD	$12 \mathrm{AL}, 5$	V22	${ }^{813} 5$	14 A 5		6 Aa	47		5 B			Fig. 53
68 NTGI	V20	$8 \mathrm{8B1}$	12A1.8	V17	9GS	14 A 7	V22	8 V	48		6A	559		Flg. 10
6SN7CT	V22	8BD	12 A (25	V17	${ }_{7112}$	14 Al 17	v22	8 AC	49		5C	575		
$\begin{aligned} & \text { 6SNigTB } \\ & \text { BSQ7..... } \end{aligned}$	V19	$8{ }^{813}$	$12 \mathrm{AT} \mathrm{l}^{12}$	V17	${ }_{9 A}^{713}$	1413 AP1-	V22	8W		V'22	${ }_{6}^{4 \mathrm{Da}}$		V27	Flg. 28
6 6R7	V19	8 C	$12 \mathrm{Al}{ }^{\circ} 6$	V22	7BK	14188		8 N	50 AX		7 C	717-A	V20	8 BK
6SS7	$V 19$	8 N	12AU7A	V25	9A	14 C 5		6AA	50135	V18	7 BZ	758.		
6ST7 ${ }^{685}$	$\overline{\mathrm{V} 22}$	8Q ${ }_{\text {8D }}$	12AI' 7 A ${ }^{\text {a }}$	V17	${ }_{6}^{9 \mathrm{~A}}$	14.7		$8 \mathrm{8V}$	5013 L	V22	${ }^{980}$	800		2D
$6 \mathrm{SV7}$	V19	7AZ	12 Av6...	V22	${ }_{713}$	141.7		8 AE				80		
6SZ7		8 C	12 A 7 ?	V17	9A	14 F 7	22	8 AC	$50 \mathrm{C6GA}$	V22	78	803	V29	
6 6T4	V17	7 FK	$12 \mathrm{AW6}$	V17	7CM	141		8BW	501.6 GT	V22	78			Fig. 61
		618	12AW7.		7 CM	1417		8 V	$50 \mathrm{~T} \cdot \ldots$		2 D			
$T 7$	-	${ }_{7}^{62}$	12A 12 A 4 (\%T		4 CG	1437		813 L	$50 \times$		7AJ	806	V27	2 N
	V17	9 E	$12 \mathrm{~A} \times 7$	V18	9 A	1407	V22	8AL	50 Y 7 Gr	,	8AN	807	V28	5AW
618 A	V22	9 F	12 A ¢ 7	V18	9A	$14 \mathrm{R7}$		8AE	$50 \mathrm{Z6t}$.	V24	7Q			2 D
6 U 3		913 M	12AZ7	V18	9 A	14 S7		813 L	5027		8AN	809		3G
BU^{6}	V24	4CG	12134	V18	9AG;	14 V7		8 V	51		5 E	810	V27	2 N
6 CL	v20	${ }_{78}^{68}$	12344	V22	${ }^{9 A}$	14.15	-	813 J	52		5 C	811	V26	3 G
6 C 7		7 R	12137	V21	${ }_{88}^{6 \mathrm{~V}}$	14 X 7		${ }^{813 \mathrm{Z}}$			7B1g. 53	811	V28	${ }_{3 G}$
6 Cb	V17	9AE	12137 ± 1		8 V	1473		4 G				812	V28	3 G
${ }_{6 V}^{6 L 8}$	V22	${ }_{981}$	121386		$8 \mathrm{8T}$	15		5 F			5A	81211		3 G
3 A		9131	12 BAG	V22	${ }^{713 \mathrm{CT}}$	15		${ }_{\text {9AR }}^{\text {9AR }} 51$			5 A	813	V29	${ }_{\text {5BA }}$
	V24	9 M	$12131>6$		713 K	16 A		${ }_{913}{ }^{\text {L }}$			${ }_{6}{ }^{6}$			${ }_{8 B \mathbf{X}}$
6 V 5	V20	8AC	1213 E6	V22	7C11	17		3G			6 F	816	V24	4 P
	119	7AC	1213 F 6	V22	7BT	1723		9 CB			6 F			3 N
6 V 8 C	V22	7 V	1213117		9_{9}^{98}	18		${ }_{6}^{63}$			${ }_{8}{ }^{\text {A }}$	822.		2 N
$6 \mathrm{V8}$	V17	9 A 11	1213 र5	V22	${ }_{9 B}{ }^{\text {a }}$	$19 \times$		${ }_{98 \mathrm{CM}}^{68}$			8 8A	826	V28	${ }^{713}$
${ }^{6} \mathbf{W} 4 \mathrm{C}$		+CG	1213 k 6	V22	7BT	19 Y	-	9BM	71-A		4 D	829		7 BP
6W5	v20	${ }_{78}^{68}$	12 BL 6	V18	7115			4 D			4 P	829.		${ }_{7} 7 \mathrm{BP}$
6W7		7 R	$12 \mathrm{BP68}$	V22	6AM	20 APPGM		12 A 8			${ }_{6 G}^{4 Y}$	8291	V28	${ }^{78 \mathrm{DP}}$
$8 \times 4 / 60$		7 CF	121366 G	V22	6AM	21 AB .		9As	751 il		2 D		V26	
${ }_{6 \times 5 G}$	${ }^{2}$	${ }_{7 A}$	12 Bl 26	V22	6AM	21.4		8AR	75 Tl	$\checkmark 26$	2 D	831	-	Fig. 40
6×8		9 AK			${ }^{9 \mathrm{CHT}}$	22.		${ }_{5}^{4 \mathrm{~K}}$	76		5A			
${ }^{6 \times 84}$	$V 17$	9 AK	$12 \mathrm{BU6}$		7BT	24		${ }_{2 \mathrm{~L}}$	78	122	${ }_{6}^{6 F}$		V27	
$\begin{aligned} & 6 Y 3 \\ & 6 Y 5 \end{aligned}$	-	${ }_{6}^{4 A C}$	12 BW 4	V22	9DJ	$24 \times 1 \mathrm{I}$	V30	Fig 1			6H	834		2 D
	V20	${ }_{7}$	1213.7	V18	${ }_{9}^{9 \mathrm{HF}}$	2546		${ }_{8 F}^{78}$	80	V24	4 C			4 E
6 Y 6 GA	${ }^{2}$	7 s	1234		${ }_{98 \mathrm{HF}}$	$2 \mathrm{2aC5GT}$	V21	${ }_{60}$	81		${ }_{4}^{4 \mathrm{C}}$	836	V24	${ }_{68 \mathrm{~B}}$
6 Y 6 GT	V22	78	121327	V18	9 A	$25 A V 5 C A$		6 CK		V24	4 C			
${ }_{6 Z 3}$	V24	${ }_{46}^{813}$	12 C		${ }^{7 C V}$	$25 \mathrm{AV5GT}$		6CK		V24	4 AD	840		5 J
$8 \mathrm{Z4}$	v24	$51)$	12 C	V22	${ }_{7}^{8 \mathrm{CH}}$	$25 \mathrm{~A} \times 5$		${ }_{61}{ }^{\text {d }}$	$84 / 6$	V24	50			4 C
		${ }^{6 K}$	12 CN16		9 CK	25136		${ }_{78}$	85.		${ }_{6} 6$	$8+1$		${ }_{3 G}$
8275		${ }_{6 S}^{813}$	12 CN 5	V18	7 CV	25138 C	-	8 T			6 F	843.		5 A
7 A 4.	V22	5AS	12CR8		${ }^{714}$	2513 K 5		9132	90	V23	5130	844		
7A5		6AA	12 Ls 6	V22	7CII	$2513860 \mathrm{~F}^{\text {a }}$	$V 2$	6Ail	100711		${ }^{41}$			Fig. 37
		7 ${ }^{\text {AJ }}$	12 CT 8		919	2513666 TB	V22	6AM	100 T 1.	V26	2 D	852		$2{ }^{\text {D }}$
7 78		8 8	12 CL		${ }_{6} \mathrm{CV}$	2505	V 22	$7{ }^{7} \mathrm{~V}$	1111		21	860		Flg. 58
$7 \mathrm{Ali7}$		${ }_{8130}$	12 CX	V18	${ }^{643 \mathrm{~K}}$	${ }_{25060}^{250} 8$		${ }_{7} 7 \mathrm{AC}$			${ }_{81}^{41}$	88		${ }_{4}^{\text {Flg }}$. 42
$7 \mathrm{AFF7}$		$8 \mathrm{8VC}$	121115		9G12	$25 \mathrm{CA5}$		7 Cy	117 M 7 gr		8 A O			Fig. 57
			12111.8	V18	${ }_{\text {Flig. }} 81$	$25(1) 69$		513	$117 \times 7 \mathrm{Cl}$	$\checkmark 21$	8 AV	886		${ }_{4}{ }^{\text {P }}$
$7 \mathrm{AH7}$	$v 20$	8 V	121)F\%	$\stackrel{1}{24}$	$9{ }_{9}{ }^{\text {a }}$	${ }_{25 C 166}{ }^{25 C 13}$		${ }^{5131}$	117N7G1	V^{24}	$8 \mathrm{8AV}$	86	V24	${ }_{4}^{4 \mathrm{P}}$
7 7 7\%		8	121)K7	$V 18$	${ }_{91}{ }^{\text {d }}$	250 U6...	V22	6AM	11783	V24	8		V24	${ }_{4 \mathrm{P}}$
7134.		5 AC	1211.8	V18	9111	2518861		8AF	11784 Cl		5 AA	871		4 P
7135		6at:	$121)(26 \mathrm{~A}$	$V^{2} 2$	8AM	251	122	5BM	117286 T	-	7 C	$872 \mathrm{~A} / 872$	V24	4AT
7138		8 C	$12 \mathrm{DT8}$	$\checkmark 22$	9DE	$25 \mathrm{EC6}$		513\%	1507		-			${ }_{4}^{4 \mathrm{~A}}$
7138		8 C	12158	V18	911R	2515.	V18	7 CV	152 T 11	V26	4 BC	878		4 P
		4 AH	12DW5		${ }^{9} 13 \mathrm{~K}$	${ }^{25 \mathrm{LGG}} \mathbf{7}$	V22	7 N	152 TL	V27	4 BC	879		${ }^{4 \mathrm{AB}}$
$7 \mathrm{C5}$	$\cdots 2$	6AA	${ }_{12 \mathrm{E} 5 \mathrm{GT}}$		${ }_{80} 713 \mathrm{~K}$	${ }_{25} 25 \mathrm{~N} 60$		7W	183		$4 \mathrm{4D}$	884	23	${ }_{5}^{6 Q}$
$7 \mathrm{7C7}$		$8 \mathrm{8V}$	12EA6.	V18	71 K	25 T	V25	3G	$203-\mathrm{A}$		4 E	902 A	V30	8CD
7 D	V2	8 AR	12 EC 8		9FA	2514 GT	,	4 CG	$203-11$		3 N	905.	V30	5BP
7 EL	V21	813 N	12LP5		${ }^{75}$	$25 \mathrm{W6GT}$	V22	$7{ }_{70}^{7 S}$	204		Fig. 39	${ }_{908 \mathrm{P}}^{905} \mathrm{i}-1$	V30	5BR
		8 8W:	12 EK 6	V18	7 HK	25 Y 4 GT	-	5AA	211	V26	4 E	907.	V30	5BP
7 FP	$\checkmark 30$	11 N	12EL6	V18	${ }^{7113}$	2515		6 E	212 E		Flg 43	908 A	v30	${ }_{\text {FPE }}$
717	Y22	$8 \mathrm{8AC}$	12 EM 8	$V 18$	911 V	2583	V24	${ }_{5}{ }^{\text {G }}$	$217-\mathrm{A}$		4 AT	909.		5 BP
$7 \mathrm{F8}$	V20	${ }_{81}^{813 W}$	$12{ }^{1 / 5} \mathrm{C}^{\prime} \mathrm{T}$		5 M	2585	V24	${ }_{6}{ }^{\text {E }}$ A	${ }_{227}^{217-A}$			910		7 AN
		$8 \mathrm{813V}$	12 F	V18	9 Fr	2586	V24	7 C	241 -		Fly 4	912.	V30	912
7 GP		14 G	$12 \mathrm{FP7}$		14 E			41	242-A		4 E	913	V30	${ }^{913}$
7 H 7		$8 \mathrm{8V}$	12 Cl	V21	${ }_{7}^{6 B}$	${ }_{26 A 7}$		713 K 813 U	${ }_{242-\mathrm{C}}^{242-13}$	-	4E	914.4		${ }_{3 \mathrm{G}}^{6 \mathrm{BF}}$
$7 \mathrm{7JP1}$		${ }_{14 R}^{813}$	12 G 8		9 Cz	${ }_{2613 \mathrm{k}}$		${ }^{7131}$	${ }_{249-13}$		Fig. 29	938.	V26	4 E
7 K 7	v20	813 F	$12 \mathrm{GP7}$		148	$26 \mathrm{C6}$		713 T	250 TH		2N	950		5 K
717		8 V	12114	V18	70W	26 CG 6		713 K	25011		2 N	951.		4
7×7	V22	8 AC	1216	V22	${ }^{717}$	26106		${ }_{7}^{7 \mathrm{CH}}$	254	V26	2N			5BB
7 7 47	V22	8AL	12 J 5 G		6C	${ }_{2}^{26}$		${ }_{5} 98$	$254-A$		F1g 57			
$7 \mathrm{7R7}$	二	88 Bla	12 J (\%'1		7 R	2885		5 Al 3	$261-\mathrm{A}$			956	V21	513
7 T		8 V	1258		960	30		413	270-A		Flg. 39	957		5BD
7 V		8 V	12 K 5.	18	712K	31.		41	276-A		4 F	958.		5BD
7VP1.		1412	12 K 8.			32	-	4 K	282	-	${ }_{3 N}^{\text {Flp. }} 5$	958A		${ }_{5 B D}^{5 B D}$

SEMICONDUCTORS

(2)

5F

$5 J$

5K

$5 L$

5M
(3) (3)

(4) (3)

7AB

(2) (3)

(3) (3)

70

(3) (4) (2)
(1):

(3) (5)

800

8 E

8EL

8F
(3) (4)
8FP
(3) (4)
(2)

860
(4) (4) (3)
(2) (4)

84
(2):
8 V

8W

8 X

$8 Y$
(2) (4) (5)
82

9AA

948

9AC

9AJ

(3)

$9 Z$

$11 A$

11B

IIL

11 M

	11 T	IIV			
	$12 T$	 14A	148		14E
14 F	146				
	14R	145			
FIG. 2	FIG. 3	Fig. 4	 FIG. 5	Fig. 6	FIG. 7
EIG. 8	FIG. 9	FIG.IO	FIG. II	FIG. 12	FIG. 13
FIG. 14					FIG. 19
	 FIG. 21		FIG. 23	FIG. 24	FIG. 25
 FIG. 26	 FIG. 27		FIG. 29	FIG. 30	FIG. 31

(3) (3)

Typ＊	Name		Base	Fil，or Heater		Capacitances ${ }_{\mu} \mu$ ．				퐁			言苋定			送串		$\begin{aligned} & \frac{5}{5} \\ & \frac{3}{5} \\ & \frac{2}{5} \\ & \hline \end{aligned}$	
			v．	Amp．	$c_{\text {c }}$	cos	C_{0}												
1 A3 H	H．f．Diade			5AP	1.4	0.15	－	－	－		Max．o．c．voltage per plate -117 ．Max．output current－0．5 ma．								
$1 \mathrm{AB6}$ Pe	Pentagrid Conv．		7DH	1.4	0.025	7.6	8.4	0.36	64	0	64	0.16	0.6	900 K	275	－	－	－	
TAC6 Pe	Pentagrid Conv．		7DH	1.4	0.05	7.5	8.4	0.36	63.5	0	63.5	0.15	0.7	900K	－	－	－	－	
IAEA St	Sharp Cut．off Pent．		6AR	1.25	0.1	3.6	4.4	0.008	90	0	90	1.2	3.5	500 K	1550	二	－	－	
MAF4 St	Sharo Cut．oll Pent．		6AR	1.4	0.025	3.8	7.6	0.009	90	0	90	0.55	1.8	1.8 meg．	1050	－	－	－	
IAF5 D	Diode．Pentode		6AU	1.4	0.025	2.3	28	0.17	90	0	90	0.4	1.1	2 meg ．	600	－	－	－	
IAH5 D	Diode A．I．Pent．		6AU	1.4	0.025	2.1	2.9	0.3	85	10 meg ．？	35	0.015	0.05	1 meg ．	－	62	－	－	
1AJ4	R．I．Pentode		6AR	1.4	0.025	3.3	7.8	0.01	64	0	64	0.55	1.65	1 meg ．	750	－	－	二	
IC3 T	Triode		SCF	1.4	0.05	0.9	4.2	1.8	90	－3	－	－ 0	1.4	19K	760	14.5	－	－	
1DN5 D	Diode－Remote Cut．all Pent．		68 W	1.4	0.05	－	－	－	67.5	0	67.5	0.55	2.1	600 K	630 3500	－	－	－	
1E3 U	U．h．I．Triode		986	1.25	0.22	1.25	0.75	1.5	150	－3．5	－	－	20	－	3500	14	－	－	
144	Sharp Cut．off Pent．		6AR	1.4	0.05	3.6	7.5	0.008	90	0	90	2.0	4.5	${ }^{350 K}$	1025	－	－	－	
$\overline{116}$	Pentagrid Conv．		7DC	1.4	0.05	7.5	12	0.3	90	0	45	0.6	0.5	650K	300	Grid	No． 1100	，	
1R5 P	Pentogrid Conv．		7AT	1.4	0.05	7.0	12	0.3	90	0	67.5	3.5	1.5	400k	280	Grid	No． 8 K		
154 P			7AV	1.4	0.1	－	－	－	90	-7.0	67.5	1.4	7.4	100K	1575	－	8K	0.270	
155	Diode－Pentode	$\frac{A_{1} \text { Amp．}}{\text { R．t．Amp．}}$	6AU	1.4	0.05	－	－	－	67.5 90	0	67.5 90	${ }^{0.4}$	1.6	600 K	grid 10 n	－	1 meg ．	0.050	
$1 T 4$	Variable μ Pent．		6AR	1.4	0.05	3.6	7.5	001	90	0	67.5	1.4	3.5	500k	900	－	－	－	
104	Sharo Cut－oft Pent．		6AR	1.4	0.05	3.6	7.5	0.01	90	0	90	0.5	1.6	1 meg．	900	－	－	－	
1U5 D	Diode Pentode		6BW	1.4	0.05	－		－	67.5	0	67.5	0.4	1.6	600 K	625	二	－	－	
1 L	Pentagrid Conv．		7DC	1.4	0.025	7	12	0.5	90	0	45	0.6	0.6	500 K	300	－	－	－	
$\underline{\text { 2C51 }}$	Medium μ 就 ${ }^{\text {al }}$ Triode ${ }^{10}$		700	6.3	0.3	2.2	1.0	1.3	150	45	250	33／74	8． $8^{44^{2}}$	6.6 K	5500	35	4．5K	4.5	
2 E 30	Beam Pwr， Pent．	Al Amp．		6.0	0.65	9.5	6.6	0.2	250	450＊＊	250	3．3／7．4	$4{ }^{42} 8$	63K	3700	80^{3}	$9{ }^{4.6}$	9	
		$\frac{A_{1} A m p \cdot{ }^{3}}{A B_{1} A m p .3}$							250	－25	250	3／13．5	82^{2}	－	－	48^{5}	$8 \mathrm{~K}^{6}$	12.5	
		AB_{2} Amp．${ }^{\text {a }}$							250	－30	250	4／20	1202	－	－	40^{3}	$3.8{ }^{6}$	17	
$3 \mathrm{A4}$	Pwr．Amp．Pent．		788	1.4	0.2	4.8	4.2	0.34	135	－7．5	90	2.6	14.92	90K	1900	－	8K	0.6	
			2.8	0.1	150				－8．4	90	2.2	14.12	100 K	0.7					
3 A5	H．f．Dual Triodelo			7BC	1.4	0.22	0.9	1.0	3.2	90	－2．5	－	－	3.7	8．3K	1800	15	－	－
	Power Pentode		68 X	1.4	0.05	4.9	4.4	0.3	85	－5．2	85	1.1	5	125K	1350	－	13 K	0.2	
$3 \mathrm{C4}$			6BX	1.4	0.05		－	－	90	－7	90	1.6	8.0	100k	1550	－	8 K	0.25	
$3 E 5$	Pwr．Amp．Pent．			2.8	0.025				9	－7	90	1.4	8.8	120 K	1450	－	9 K	0.225	
	Pwr．Amp．Pent．			1.4	0.1					－4．5		2.1	9.5	100 K	2150	－	10k	0.27	
304			7BA	2.8	0.05	5.5	3.8	0.2	9	－4．5	9	17	7.7	120k	2000	－	10K	0.24	
	Pwr．Amp．Pent．			1.4	0.1	－	－	－	90	－7	67.5	1.4	7.4	100K	1575	－	8K	0.27	
354			7BA	2.8	0.05			－				1.1	6.1		1425			0.235	
6AB4	U．h．l．Triode		5CE	6.3	0.15	2.2	0.5	1.5	250	200^{*}	－	－	10	10．9K	5500	60	－	－	
	Triode－Pentode				03	4.6	4.7	0.2	100	－2	\rightarrow	－	4	－	135 C	18	－	－	
6AB8			9 AT	6.3	0.3				200	－7．7	200	3.3	17.5	150 K	340 C	－	IIK	1.4	
6AD8	Dual Diode－Pent．		$9{ }^{9}$	6.3	0.3	40	46	0.002	250	－2	85	2.3	6.7	1 meg．	1100	－	－	二	
6AF4A	U．h．I．－	A Amp．	7DK	6.3	0.225	2.2	0.45	1.9	80	150 ＊	－	－	16	2.27 K	6600	15	－	－	
	Triode	Osc． 950 Mc ．							100	$180{ }^{\circ}$	－ 150	2.0	${ }^{22} 6$	800k	5000	－	－	－	
6AG5	Sharp Cut－off Pent．		7BD	6.3	0.3	6.5	1.8	0.03	100	180°	100	1.4	4.5	600 K	455C	－	－	－	
6AH6	Sharp Cut．off Pent．		7BK	6.3	0.45	10	2.0	0.03	300	160°	150	2.5	10	500k	9600	－	－	－	
		Priode Amp．							150	160^{*}	－	－	12.5	3．6K	11 K	40	－	－	
6AJ4	U．h．t．Triode		9BX	6.3	0.225	4.4	0.18	2.4	125	68°	－	二	16	4．2K	10 K	42	－	－	
6AJd	Triode		9 CA	6.3	0.3	－	－	－	100	－2	－	3.8	6.5	700K	2400	－	－	－	
	Heptode								250	0	102	－	13.5	5．9K	370）	22	－	－	
	Shorp Cut．off Pent．								180	200°	120	2.4	7.7	690 K	5109	－	－	－	
6AKS			7BD	6.3	0.175	4.0	2.8	0.02	150	$330 *$	140	2.2		420 K	430）	－	－	－	
			120						200^{*}	120	2.5	7.5	340 K	5000	－	－	－		
6AK6	Pwr．Amp．Pent．			78K	6.3	0.15	3.6	4.2	0.12	180	－9	180	2.5	15	200 K	2300	－	10K	1.1
6AKE			9 PE	6.3	0.45	1.9	16	2.2	250	－3	－	－	1	58K	1203	70	－	－	
6AL5	Dual Diode ${ }^{10}$		6BT	6.3	0.3	－	－	－	Max．P．m．s．vologe－117．Mox．d．c．Output current－9 ma．1										
6AMA	U．h．f．Triode		98 X	6.3	0.225	4.4	0.16	2.4	150	100＊	－	－	7.5	10K	9000	90	－	－	
6AM5	Pwr．Amp．Pent．		6CH	6.3	0.2	－	－	－	250	－13．5	250	2.4	16	130 K	2640	－	16 K	1.4	
6AM6	Shoro Cut－off Pent．		7D8	6.3	0.3	7.5	3.25	0.01	250	－2	250	2.5	10	1 meg ．	$75($（ ）	－	－	－	
6AM8	Díode－Sharp Cut－off Pent．		9 CY	6.3	0.45	6.0	26	0.015	200	$120{ }^{\circ}$	150	2.7	11.5	600 K	700	－	－	－	
6ANA	U．h．f．Triode		70K	6.3	0.225	2.8	0.28	1.7	200	$100 *$	－	－	13	－	L． W	70	－	－	
GAN5	Beam Pwr．Pent．		78D	6.3	0.45	9.0	4.8	0.075	120	$120 *$	120	12	35	12．5K	8000	－	2.5 K	1.3	
6AN7	Triode－Hexode	Conv．	90	6.3	0.23	Osc． 22 k ！			250	－2	85	3	3	1 meg ．	750	Osc．	Ebt -250		
	Medium $-\mu$ Triode		90 A	6.3	0.45	20	27	1.5	200	－6	－		13	5.75 K	3300	－	－	－	
	Sharp Cut off Pent．					7.0	2.3	0.04	200	180＊	150	2.8	9.5	30K	6200	－	－	－	
6 AO4	High μ Triode		70t	6.3	0.3	8.5	0.2	2.5	250	－1．5	－	－	10	12K	8500	100	－	－	
									180	－8．5	180	3／4	30^{2}	58K	3700	299	5.5 K	2.0	
6 AQ5	Beom Pwr．Pent．		782	6.3	0.45	8.3	8.2	0.35	250	－12．5	250	4．5／7	472	52K	4100	453	SK	4.5	
	Duol Diode－ High－μ Triode								100	－1	－	－	0.8	61 K	1120	70	－	－	
6 606			7BT	6.3	0.15	1.7	1.5	1.8	250	－3	－	－	1	58K	1200	70	－	－	
	Pwr．Amp．Pent．								250	－16．5	250	5．7／10	$35{ }^{2}$	65 K	24：0	34^{5}	7K	3.2	
GAR5			6CC	6.3	0.4	－	－	－	250	－18	250	5．5／10	33^{2}	68K	2300	32^{5}	7.6 K	3.4	
6AR8	Sheet Beam		9 DP	6.3	0.3	－	－	－		TV Color Ckts．－Synchronous Detactor－Burst Gate									
6AS5	Beam Pwf．Amp．		7 CV	6.3	0.8	12	6.2	0.6	150	－8．5	110	2／6．5	36^{2}	二	5600	35^{5}	4．5K	2.2	
6AS6	Sharp Cur－off Pent．		7 CM	6.3	0.175	4	3	0.2	120	－2．	120	3.5	5.2	110 K	3200	－	－	－	
6A58	Diode－Shard Cut－oll Pert．		905	6.3	0.45	［7	2.2	0.04	200	180^{*}	150	3	9.5	300 K	6200	－	－	－	
6AT6	Duplex Diode－High μ Triode		2 7BT	6.3	0.3	2.3	1.1	2.1	250	－3．	－	－	1	58K	120	70	二	－	
6AT8	Medium－μ Triode		90w	6.3	0.45	2	0.5	1.5	100	100^{*}	－	－	8.5	6.9 K	5 E 00	40	－	－	
	Sharp Cur．off Pent．					4.5	0.9	0.025	250	200^{*}	150	1.6	7.7	750 K	$4 E 20$	－	－	－	
6AU6	Sharp Cutoff Pent．		7BK	6.3	03	5.5	5	0.0035	250	$68{ }^{*}$	150	4.3	10.6	1 meg ．	5200	－	－	－	
6AUBA！	$\begin{array}{\|l\|} \hline \text { Medium- } \mu \text { Triode } \\ \hline \text { Sharp Cut-ofl Pent. } \\ \hline \end{array}$		90x	6.3	0.6	2.6	0.34	2.2	150	$150{ }^{\circ}$	－	－	9	8.2 K	4500	40	－	－	
			7.5			3.4	0.06	200	82＊	125	3.4	15	150 K	7×10	－	－	－		

TABLE I-MINIATURE RECEIVING TUBES-Continued

TABLE II-mETAL RECEIVING TUBES For "G" metal fubes, glass tubes with "G" suffix, and bantam fubes with GTis III, V, Vi and VIII.

See also Table VII for Special $\mathbf{I . 4 - v a l l}$ Tubes

TABLE VI－HIGH－VOLTAGE HEATER TUBES
See also Table VIII．

Tуp＊	Name	Basa	Fil．op Heater		Capacitances $\mu \mu$ ．				㤩荌			$\text { 흘 } \frac{0}{2}$			送		$\begin{aligned} & \frac{\pi}{0} \frac{3}{3} \\ & 3 \\ & 3 \end{aligned}$
			V．	Amp．	C_{6}	Cot	C_{8}										
					2.3	0.75	2.7	250	－2	－	－	1.3	－	1903	100	－	－
$2 \mathrm{C52}$	High．μ Twin Triode ${ }^{\text {I }}$	${ }^{885}$	12.6	0.3	2.3	0.75	0.3	250	－12．5	250	3．5／5．5	30／32	70K	3000	－	7.5 K	3.4
12A6	Beam Pwr．Amp．	75	12.6	0.15	3.2	3	0.3	180	－6．5	－	－	7.6	8.4 K	1900	16	－	－
12AH7GT	Medium－μ Dual Triode ${ }^{1}$	88 E	12.6	0.15	3.2	3	3	250	－-2	－	－	0.9	91 K	1100	100	－	－
1286 M	Diode－Triode	6Y	$\frac{12.6}{126}$	0.15	55	7	0.005	250	－2	100	2.4	9.2	800k	2000	－	－	－
$\overline{1287}$	Remote Cut－off Pent．	8V	12.6	0.15	$\frac{5.5}{14}$	8	0.005	200	－9．5	110	2.2	50	28 K	8000	－	－	－
12EN6：	Beam Pwr．Amp．	75	126	0.6	14	8	0.65	250	－3．	，	2.		58K	1200	70	－	－
12G7G	Dual Diode－Triode	7 V	12.6	0.15		－	－	110	－7．5	110	4／10	49／50	13K	80Cd	－	2 K	2.1
1266GT	Beam Pwr．Pent．	75	12.6	0.6	15	10	0.6	200	180^{*}	125	2．2／8． 5	46／47	28K	8000	－	4 K	3.8
$\overline{125 Y 7}$	Heplode Conv．	BR	12.6	0.15	Osc．	rid le	20K．	250	－2	8.5	3.5	－	1 meg ．	450	－	二	－
25AC5GT	High．μ Triode	60	25	0.3		mic Co		110	＋15	－	－	45	15.2	3800	58	2 K	2
35A5	Beam Pwr．Amp．	GAA	35	0.15	－	－	－	110	－7．5	110	3／7	$40 / 41$	183 K	7100	－	2.5 K	1.5
50C6G	Beam Pwr．Amp．	75	50	0.15	－	－－	－	200	－14	135	$\frac{2.2 / 9}{5}$	51	16 K	7000	－	3K	1.2
117N7GT	Rect．－Beam Pwr．Amp．	8 BV	117	0.09	Reet．	me as	717G1	250	－6	100	2.5	． 9	800 K	2000	－	－	－
1284	U．h．1．Pentode	${ }^{8 V}$	12.6	015	5	6	0.01	135		135	2．5／14．5	61／69	15K	5000	－	1.7 K	4.3
5824	Beam Pwr．Pent．	75	25	0.3	6	2.2	8	135	－250＊	－	－	125	0.28 K	7000	2	－	－
6082	Iow－μ Dual Triode＇	880	26.5	0.6	6	2.2	8										

table vil－special receiving tubes

Туре	Name	Bas＊	fil．or Heater		Capacilances $\mu \mu$ ．			$\begin{aligned} & > \\ & \frac{2}{n} \\ & \frac{2}{a} \\ & \frac{0}{2} \end{aligned}$	픙	$\begin{aligned} & \text { E } 0 \\ & \text { 患落 } \\ & \text { in } \end{aligned}$	曷	蓸莫					$\begin{aligned} & \overline{3} \\ & \frac{5}{0} \frac{\square}{\overline{3}} \\ & 30 \end{aligned}$
			V．	Amp．	C．	Cout	C_{gp}										
			282	0.05		－	－	90	0	－	－	4.5	11．2K	1309	14.5	－	－
3C6	Medium．μ Dual Triode	7BW	28^{28}	0.05	8	6.5	0.6	90	-4.5	90	1.3	9.5	90 K	2204	－	8 K	0.27
305GT	Beam Pwr．Amp．	7 AP	288	0.05	${ }_{-}$	6.5	－	90	-1.5	－	－	1.2	28 K	900	25	－	－
4 A 6 G	Dual Triode＇	818	63	0.06	2	0.6	1.9	80	150°	－	－	13	2.9 K	5801	17	－	－
6F4	Acorn Triode	78R	63	0.225	1.8	0.6	1.6	80	150°	－	－	9.5	4．4K	6400	28	－	－
614	Acorn Triode	78R	63	0.225	3.8	2.8	1.5	180	－3	－	－	5.5	12K	3000	36	－	－
7ES／1201	H．I．Triode	8BN	6.3	0.15	36	2.8	1.5	250	－3	100	0.7	2	1 meg ．	140	－	－	－
954	Delector Amp．－Al Amp． Pentode（Acorn）Detector	5 BB	6.3	0.15	3.4	3	0.007	250	－6	100	16 a	diusted	0.1 ma ．	th no	gnal．	250K	－
954	Pentode（Acornl Detector							250	－7	－	，	6.3	11．4K	2205	25	－	－
955	Medium－μ Triode（Acorn！	5 BC	6.3	0.15	1	0.6	1.4	90	-2.5	－	－	2.5	14．7K	1700	25	－	－
								250	－3	100	2.7	6.7	700K	1800	－	－	－
956	Remote Cut－off As Amp．	588	6.3	0.15	3.4	3	0.007	250	－10	100		Sseillat	peak vo	－7 m		－	－
956	Pent．（Acorn）Mixer				06	0.8	2.6	135	-7.5	－	－	3	10K	1200	12	－	－
958－A	Medium－μ Triode（Acorn）	58D	1.25	0.1	18	2.5	0.015	135	－3	67.5	0.4	1.7	800K	600	－	－	－
959	Sharp Cut－ofl Pent．（Acorn）	SBE	1.25	0.05	1.8	7	1	135	-1.5	67.5	0.65	2.5	400K	725	－	－	－
1609	Amplifier Pentode	$\frac{5 B}{5 B C}$	4.1	0.25	7	0.4	1.3	250	－7	－	－	6.3	11.4 K	2260	25	－	－
5731	Pwr．Amp．Triode（Acorn）	SBC	6.3	0.15	1	0．4	1.1	250	ak invers	－375	olts．Pe	ak lo	Ma．Mox	d．c．ou	tput－	ma．	－
6173	U．h．1．＂Pencil＂Diode	Fig． 34	6.3	0.135		e 0.01	$\frac{1.1}{1.7}$	175	200－oh	var．ca	h．res．	10	Oper	on a^{-1}	200 Mc	－	－
6299	Low Noise U．h．l．Triode	二	6.3	0.24	1.9	0.01	1.0	250	－5	－	－	6.4	8．9K	9040	－	－	－
7077	Ceramic U．h．I．Triode	48.		0.24	1.9	e 10	1.3			ax．a．e．	oliage	－117．1	x．d．c．	put curt	ent－		
9004	U．h．l．Diode｜Acorml	$\frac{481}{58 G}$	6.3	0.15		le 10	0.8			x．a．c．	olloge	－117．	x．d．c．	put cup	ent－1		
9005	U．h．f．Diode（Acom）	58 G	3.6	0.165		do											

TABLE VIII-EQUIVALENT TUBES
The equivalent tubes listed in this table ore, in general, designed fop industrial, military ond other speciol-purpose applications. These tubes are generally not directly interchangeable with their prototypes because of mechonicat and/or electrical differences involving basing, heater

Type	Prolotype and Toble		Bose	$E_{1} 1$	$1{ }^{2}$	Typ*	Prototype	Toble	Base	$E_{1} 1$	14^{2}
1 K 3	113	\times	3 C	1.25	0.2	12C55:	6 CSS			126	0.6
ILH4	1H5GT	V	5AG	1.4	0.05	$12 \mathrm{CS6}$	${ }_{6} 6$ CSS 6	!	9 CK	126	0.6
2C39WA	2 C 39	XI	-	5.8	1.03	12Cus:	6 Cus	1	7 CV	126	0.15
31F4]	305GT	VII	6 BB	28	005	12 CU 6	6CU6	III	6 6M	126	0.6
$3 \mathrm{~V}^{3}$	304	1	$68 \times$	28	0.05	12085:	6 685	1	9GM	126	0.6
5V46	5V4GA	X	51	5.0	3.0	120F7 ${ }^{1}$	$12 \mathrm{~A} \times 7$	1	9 A	126	0.6
6 646	6 N 7	11	78	6.3	0.8	12D06A:	6DQ6A	III	6AM	12.6	0.15
6A7	6 68	11	7 C	6.3	0.3	120T5	GDI5	1	9 HN	126	0.6
GAEE	6 K 8	II	8 DU	63	0.3	12078	6 D 98	1	9DE	12.6	0.6
6AMBA!	6AM8	1	9 CY	6.3	0.45	120ws:	60WS	1	9 CK	126	0.15
GANBA	6ANB	1	9 DA	63	045	12EF6*	${ }^{6}$ EFF	III	75	126	0.6
6AOSA!	6AQ5	1	782	63	0.45	12G4	615	11	68 G	126	045
6AS7GA	6AS7G	III	88D	6.3	2.5	$12 \mathrm{H6}$	$6 \mathrm{H}_{6}$	11	70	126	0.15
6ATEA:	6AT8	1	90w	6.3	18	12 JSGT	615	11	60	126	0.15
6AU6A!	6 6U6	1	78k	63	03	12 JJGT	617	II	7 R	126	0.15
6AU7 \ddagger	12AU7	1	9 A	3.15	0.6	12K7GT	6 K 7	11	7 R	12.6	0.15
6AX7\% ${ }^{\text {a }}$	12AX7	1	9 A	6.3	0.3	12K8	6×8	1	8K	126	.0.15
6BESA!	6BE8	1	9EG	6.3	0.45	1258GT	658GT	III	${ }^{8} \mathrm{CB}$	126	0.15
6BOEGTA	6BQ6GA	III	GAM	63	1.2	12547	$65 A 7$	11	8R	126	0.15
6BQ6GTB/6CU6	68Q6GA	111	GAM	6.3	1.2	$125 C 7$	$65 C 7$	11	85	126	0.15
GBREA	6888	1	9FA	63	045	125F5	6 SF5	11	6AB	126	0.15
6C6 ${ }_{\text {SCBA }}$	617	11	6 F	6.3	03	12587	65F7	11	TAZ	126	0.15
6CDBGA	${ }^{6 C D 66}$	III	${ }_{58 \mathrm{C}}$	6.3	23	125G7	65G7	11	8BK	126	0.15
6CGBA!	6 CG8	1	9GF	6.3	045	$125 \mathrm{JJ7}$	65177 6517	1	${ }^{\text {8 B K }}$	126	0.15
6Clisat	6 Cl 8	1	9 FX	63	045	125 K 7	65K7	II	-	126	0.15
6C5E:	$6{ }_{6} \mathrm{R}^{8}$	1	9 FZ	6.3	0.45	$12 S L 7 \overline{G T}^{\text {a }}$	6SL7GT	III	88 BD	126	0.15
6CUS	6AN8	1	9 GM	63	04.5	12SN7GT	-SNTGT	III	88 D	126	0.15
6J6A!	6 J 6	1	78F	63	045	I2SNTGTA	6SN7GT	III	${ }_{8 B D}$	126	03
6L6GA	616	II	75	63	0.9	12507	6507	-	80	126	0.3
6L6GB	616	11	75	63	09	125R7	6587	1	80	126	0.15
6S4A	654	1	9 AC	63	06	12W6GT!	6W6GT	III	75	126	0.6
6SN7 GTA	6SN7GT	111	8BD	63	06	14A7	$6 \mathrm{Sk7}$	II	8 V	126	0.15
${ }^{\text {6SN7GTBt }}$	6SN7GTA	VIII	$\frac{88 D}{88 D}$	63	0.6	14AF7	7 AF7	IV	8AC	126	0.15
GTEA:	${ }_{6}{ }^{\text {TB }}$	1	${ }_{9}{ }^{\text {e }}$	63	03	1486	6507	II	8w	126	0.15
SUBAT	$6 \cup 8$	1	9AE	63	0.45	14F7	$6 \mathrm{SI7GT}$	III	${ }^{\text {BAC }}$	126	0.15
6VGGTA	6 V 6	"	75	63	045	1497	6SN/G	III	8AC	126	0.6
6Y6GA	6Y6G	III	75	63	125	258Q6GA	6B06GA	III	6AM	126	0.15
6Y6GT	6Y6G	III	75	63	1.25	25806GT	${ }^{6} \mathrm{BO} 6^{\circ} \mathrm{C}$ A	111	6AM	25	0.3
7A4	615	11	5AS	63	0.3	25806GT8:	6B06GA	III	6AM	25	03
746	${ }_{6} \mathrm{H}_{6}$	11	7AJ	63	015	$25 C 5$	50 Cs	VIII	7 CV	25	0.3
747	65k7	11	8 V	63	03	2566 GA	50 C 6 GA	VIII	75	25	0.3
784	6 6FS	II	5AC	63	03	$25 C A S$	6CAS	1	7 CV	25	0.3
785	6K6GI	III	6AE	63	04	25CD6G	${ }^{6} \mathrm{CD} 6 \mathrm{G}$	III	SBT	25	9.6
786	6SQ7	11	8W	63	03	$25 C D 6 G A$	${ }^{6 C D 6 G}$	III	SBT	25	0.6
788	6 A8	1	$8 \times$	63	03	25CD6GB	${ }^{6 C D 6 G}$	III	581	25	0.6
7F7	6517GT	III	BAC	63	045	$25 \mathrm{Cu6}$	${ }^{6}$ CUS	IIt	6AM	25	0.3
7H7	65G7	11	8V	63	0.3	25DN6 ${ }^{\text {2 }}$	250N6	III	5BT	25	*. 6
7N7	6SN7GT	III	BAC	63	06	2516GT	1216 GT	vi	$\frac{75}{75}$	25	0.6
707	6SA7	1	8 Al	63	0.3	25 Wb GT	6W6GT	III	75	25	0.3
12ABGT	6AB	11	8A	126	0.15	35C5	3585	\%	${ }_{7} \mathrm{CV}$	25	0.3
12 ALS	6Als	1	681	126	0.15	3516GT	3585	1	75	3	0.15
12AT6	6AT6	1	787	126	0.15	41	6K6GT	III	68	6.3	C. 4.1
12AU6	6AU6	1	78 K	126	0.15	42	6 F 6	11	68	6.3	6.7
12AVSGA:	6AVSGT	III	${ }^{6} \mathrm{CK}$	126	06	5045	1216 GT	VI	6AA	50	0.15
12AV6	GAV6	1	787	126	0.15	508k 5	6 BK 5	-	9 Ba	50	C. 15
1284A ${ }^{\text {d }}$	1284	1	9 AG	126	03	Socs	5085	1	7CV	50	C15
128A6	6BA6	1	78K	126	015	Soc6GA	50C6G	VI	75	50	015
128A7	6BA7	1	${ }^{8 C 1}$	12.6	0.15	50l6GT	1216GT	VI	TAC	50	015
28D6	6BD6	1	78 C	12.6	015	75	65 ¢7	11	6G	6.3	0.3
28F6	6BF6	1	7 CH	126	0.15	78	6K7	1	6 F	6.3	03
28k5 \ddagger	6BK5	1	980	126	06	417 A	5842	1	9 V	6.3	03
$128 \mathrm{K6}$	6BK6	1	7BT	126	0.15	1223	617	11	$\frac{6 F}{7 R}$	6.3	0.3
28NS	6BN6	1	7DE	126	015	1631	616	11	TAC	126	0.3
2806GA!	6BQ6GA	III	GAM	126	0.6	1632	126GT	VI	75	12.6	0.5
2BO6GT!	6BQ6GA	III	6AM	126	06	1634	${ }^{65 C 7}$,	85	126	0.15
2806G78:	6BQ6GA	III	6AM	126	06	5591	baks	1	$78 \overline{0}$	63	0.15
2816	6BT6	1	789	126	0.15	5654	6AK5	1	7BD	33	0.175
$288{ }^{284}$	6 BU6	1	789	126	015	5670	2 C 51	1	8く」	63	0.35
2BY7At?	128Y7	x	$9 \mathrm{9F}$	126	045	5679	6 H 6	11	7 CX	63	0.15
2C5	SOBS	1	7CV	126	03	5691	6SI7GT	III	8BD	63	0.6
2 Cl	688	11	8 E	126	06	5692 5725	6SN7GT	III	88 D	63	0.6
2CA5:	6 CAS	1	7CV	126	06	5726	${ }_{6 A S 6}$ BA15	1	7 CiM 6 BT	63	0.75
$2 \mathrm{CM6}$	${ }_{6}{ }^{\text {c }} 16$	1	9 CK	126	0.225	5749	6BA6	1	7 BK	63	03
2CR6	6CR6	1	7EA	12.6	015	5750	6BE6	I	7CH	63	0.3

TABLE VIII-EQUIVALENT TUBES-Continued

Type	Prolotype	ble	Base	E1 ${ }^{1}$	11^{2}	Type	Protolyp	Table	Bose	E4 ${ }_{1}$	$14{ }^{2}$
$5751{ }^{3}$	12 AX 7	1	9 9	12.6	0.175	6265	68H6	1	7 CM	6.3	0.175
$5814 A^{3}$	125 N7GT	VIII	9 A	12.6	0.175	$6350{ }^{3}$	128H7A	1	9 CZ	12.6	0.3
$5{ }^{\text {¢ }} 71$	6 V 6	$1!$	7AC	6.3	09	6485	6AH6	1	7BK	6.3	0.45
5881	616	1	7AC	63	09	6660	6BA6	1	7CC	6.3	0.3
5910	1 14	1	6AR	1.4	005	6661	68H6	1	7 CM	6.3	0.15
5915	6BY6	1	7 CH	63	03	6662	6816	1	7 CM	6.3	0.15
$5963{ }^{3}$	12AU7A	1	9A	126	015	6663	6 Al5	1	6 BT	6.3	0.3
5964	6 J 6	1	7BF	63	045	6669	6AQ5	1	782	6.3	0.45
59653	12AV7	I	9 A	126	0225	6677	6 Cl 6	1	98 V	63	0.65
6046	1216GT	VI	7AC	25	03	6678	$6 \cup 8$	1	9AE	6.3	0.45
60573	$12 \mathrm{~A} \times 7$	1	9A	126	015	$6679{ }^{3}$	12AT7	1	9 A	12.6	0.15
6058	6ALS	1	68T	63	03	6680^{3}	12AU7A	1	9A	12.6	0.15
6059	6.17	II	9 BC	6.3	0.15	6681^{3}	$12 \mathrm{~A} \times 7$	1	9 A	12.6	0.15
60603	$12 \mathrm{AT7}$	1	9 A	12.6	015	68293	5965	VIII	9 A	12.6	0.225
8061	6V6	II	9AM	6.3	0.45	6897	2C39	XI	-	6.3	1.05
6064	GAM6	1	7DB	63	03	7000	617	11	7 R	6.3	0.3
$\overline{6065}$	6 $\mathrm{B}^{4} 6$	1	708	63	02	70253	124×7	VII	9 A	12.6	0.15
6068	6AT6	1	781	6.3	03	7137	614	1	7 BC	6.3	04
60673	12AU7A	1	9A	126	015	7700	6.7	11	6F	6.3	0.3
6080	6 AS7G	111	88D	63	25	EEC81 ${ }^{3}$	12 AT 7	1	9 A	12.6	0.15
6101	616		$78 F$	63	045	EEC823	12AU7	1	9 A	12.6	0.15
66132	6 CH 6	,	9 BA	63	075	EEC83 ${ }^{3}$	$12 \mathrm{~A} \times 7$	1	9 A	12.6	0.15
6136	6AU6	,	78 K	6.3	0.3	KT-664	616	11	7AC	6.3	1.27
$6201{ }^{3}$	12 A97	1	9A	12.6	015	XXD	7AF7	IV	BAC	12.6	0.15
\ddagger Controlled heater warm-up charocleristics, i Filament or heater voltage. 2 Filoment or heoter current.						${ }_{3}$ Heater center-topped for operotion at half voltage shown. 4 British version of 6 L6.					

TABLE IX-CONTROL AND REGULATOR TUBES

TABLE X-RECTIFIERS-RECEIVING AND TRANSMITTING
See Also Table IX-Control and Regulator Tubes

Type	Name	Base	Cathode	Fil. or Heater		Max. A.C. Voltage Per Plate	D.C. Output Current Mo.	Max. Inverse Peak Volfage	Peak Plate Current Me.	Type			
				Volfs	Amp.								
$\begin{aligned} & 1 G 3-G T / \\ & 1 \mathrm{B3} . \mathrm{GT} \end{aligned}$	Holf. Wove Rectifier	3 C	Fil.	1.25	0.2	-	1.0	33000	30	HV			
1K3/1J3	Hall-Wave Rechiter	3C	F.l.	125	02	-	05	26000	50	HV			
TV2	Hait-Wave Recticer	90	Fit.	0625	03	-	05	7500	10	HV			
2B25	Hall. Wave Rechiter	31	Fi,	14	011	1000	15	三-	9	HV			
2×2-A	halthovm Rection	4AB	Hir	25	175	4500	7.5	-	-	HV			
2 Y 2	Hall-Vave kec' i er	$4 A B$	$F 1$.	25	175	4400	50	-	-	HV			
2Z2/G84	Half. Wave Racufier	48	Fil.	25	15	350	50	-	-	HV			
$3 \mathrm{B24}$	Holi. Wove Rechifer	Fig. 49	FII.	$-\begin{aligned} & 50 \\ & 255 \end{aligned}$	$\begin{array}{r} 30 \\ 30 \\ \hline \end{array}$		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	HV			
3828	Half. Wave Rectifuer	4P	Fit:	2.5	50	---	250	10000	1000	HV			
SAU4	Full. Wove Recrifiep	$5 T$	Fil.	5.0	4.5	3003	350^{3}	1400	1075	HV			
						4003	3253						
						5004	3254						
SAW4	Full-Wave Rectifier	$5 T$	fil.	5.0	4.0	4503	2503	1550	750	HV			
						5504	2504						
$\begin{aligned} & \text { SR4GY } \\ & \text { SR4GYA } \end{aligned}$	Full Wave Rectifer	$5 T$	Fil.	5.0	2.0	9003	150^{3}	2800	650	HV			
ST4	Full- Wave Rectilier	$5 T$	Fil.	30		9504	1754						
5U4G	full \% ave pochter	51	Fil.	50	30	Same as ${ }^{\text {Type }}$ 5z3				HV			
SU4GA	Full.Wove Rectifier	51	Fil.	5.0	3.0	3003	275^{3}2503	1550	900	HV			
						4503							
						5504	2504						
$\begin{aligned} & \text { SU4GB } \\ & 5 A S 4 A \end{aligned}$	Full- Wave Recriter	5 T	Fil.	5.0	3.0	3003	300327532754	1550	1000	HV			
						4503							
						5504							
5 V 3	Full.Whave Rectitier	57	Htr.	50	3.8	$\begin{aligned} & 4253 \\ & 5004 \end{aligned}$	350	1400	1200	HV			
5V4GA	Full. Wave Rect fier	51	H:	50	20	3753	175	14.0	525	HV			
5 W4GT	Futl-Viara Rectior	5 T	\ddagger	50	15	350	110	1600	525				
5×46	Full-Wave Racel ${ }^{\text {ar }}$	50	F	50	30	Same os Typa SZ3				hV			
5Y3.G.GT	Full Ma, Ractifer	5 T	11	50	20								
5Y4-G.GT	full Wave Roctifior	50	1	50	20					HV			
573	Pullixava werser	4 C	F	40	30	Same os Type 80							
524		51	\cdots	50	20	200	250	1200 1100	-	HV			
6 GV4	full-Víase kortifer	585	trir.	63	195		125 90	1100	-	HV			
6AX5GT	Full. Miova Racifer	65	\cdots	c 3	12	-	125	1250	250	HV			
68W4	Full- Ara.a bacher Full.V. ova Racr ier	9 DJ	+-*	63	12	250	100	$\begin{aligned} & 1250 \\ & \hline 1275 \end{aligned}$	375	HV			
68×4		SBS	+1+	63	06	\cdots	90	1350	350 HV				
$68 \mathrm{Y5G}$	$\begin{aligned} & \text { Full.V.ave Raci lier } \\ & \text { full. Wave R+c! !er } \end{aligned}$	6CN 4.6	rel	63	16			1400	270	HV			
$6 \mathrm{DA4}$	halt.V.ave D aoe		\cdots	63	12	\cdots	155		525	HV			
6U4GT	matira, mect er	4CG	H\%	c 3	12	-	155	44.00	900	HV			
6 6 4	Full-Nave Rerritier	9 M	Hits.	63	06	$\overline{350}$	138	1375	660	HV			
$6 \times 4 / 6063$		7 CF	Her	${ }^{3}$	0	32.53	90		-	HV			
6×5GT	Full-Wave Rect fier	65	Hir.	63	06	4504	70	1250	210	HV			
623	tolf. Wave knct ${ }^{\text {e }}$ er	4 G	Fil.	63	03	350	50	-	-	HV			
12DF5	Full.Wave Rectifier	985	Htr .	63	09								
	full		Hr.	126	045	450	100	1275	350	HV			
12×4	Full-Wove kecifies	SBS	Htr.	126	0.3	6.503	70	1250	210				
2573	Molf. Wave KpCt ${ }^{\text {a }}$ -	4 G				9004	70	1250	210	HV			
2575	Gect ter.Do blat	6E	+*\%	25	03	250	50	-	-	HV			
2576	Kectiter.Doubler	70	Hor	23	03	125	100	-	500	HV			
35W4	Hal? Wova Recrier	5BO	$\mathrm{HP} \mathrm{\%}$	35^{1}	015	125	100	- 330	500	HV			
3574GT	Half. Wove Rec. ${ }^{\text {e }}$ er	5AA	$\cdots \mathrm{m}$	35	015	250	100	330	600	HV			
35256	Holf. Wove keclit er	6AD	Fir	351	015	125	60	700	600	HV			
50Y6GT	Full.Wave Rectifier	70	Hir.	50	015	125	85	-	-	HV			
S0Z6G	Vo'roge Doubler	70	Hir.	50	03	125	150	-	-	HV			
80	Full. Wave Rectifier	4 C	fit.	5.0	20	3503	125			HV			
			fr.	5.0	2.0	5004	125	1400	375	HV			
83	Full-Wove Rectiler	4 C	Fil	50	30	5.0	250	1:00	800	MV			
83.V	Full. Wave Rectifer	4AD	rorr.	50	20	200	200	1100	850	HV			
84/674	Fulh. Wove Rechiter	5D	Fir.	63	0.5	350	60	1000	-	HV			
$\begin{aligned} & 11717 \mathrm{GT} / \mathrm{*} \\ & 117 \mathrm{M} 7 \mathrm{GF} \end{aligned}$	Rectifier-Terrade	8 AO	Hir.	117	009	117	75	-	-	HV			
117N7GT	Rectifier-Tetrode	BAV	Hir	117	009	117	75	350	450	HV			
$117 P 7 \mathrm{GT}$ ¢	Rectifier-Tetrode	BAV	Her.	117	009	117	75	350	450	HV			
11723	Hall. Wave Rectifer	4 CB	Hir	117	704	117	90	330	$\underline{ }$	HV			
816	Holl-Wave Recrifep	4 P	F1	25	20	2200	125	7500	500	MV			
836	Half-Wave Rectifier	4 P	Hite.	25	50	-	-	5000	1000	HV			
866-A.AX	Hall-Wave Rectiter	4P	Fr,	25	50	3500	250	10000	1000	HV			
8668	Half. Wave Rectifier	4 P	FI	50	50	-	-	8500	1000	MV			
866 Jr.	Half-Wave Rectifier	48	$F 1$	25	25	1250	2502	-	0	MV			
872A/872	Half-Wove Rechifer	4AT	Fil.	50	7.5	-	1250	10000	5000	MV			
1 Tappe ${ }_{2}$ Per po	lot lomps. choke input.			Capacito - Choke in				${ }^{5}$ Using - Obsol	one-half				

1 See poge V27 for Key to Closs-ol-Service obbreviotions.
table XI-triode transmitting tubes-Cominued

- Grid-resistor

${ }_{2}$ Doubler to 175 Mc .
Dual tube. Values for both sections, in push-pull. Interelectrode capacitonces, however, are for each section.
Tripler to 175 Mc .
s Filoment limited to intermitrent operation.

- Volues are for two tubes in push-pull.

Max.-signal value.
Mox.-signal value. a,f, volts.

- Peok grid-to-grid a.l. volis.

11 Tripler to 200 Mc .

12 Typical Operation at 175 Mc
is linear-amplifier tube-operation data for single-sideband in
Table II.1.
14 KEY TO CIASS-OF-SERVICE ABBREVIATIONS
$A B_{1}=$ Class $\cdot A B_{1}$ push-pull o.f. modulator.
$A B_{2}=A B_{2}$ push-pull a.f. modulator.
$B=$ Class $-B$ push-pull o.f. modulator
$8=M=$ Crequancy multiplier.
$C \cdot M=$ Frequancy mulinplier.
$C \cdot P=$ Class $-C$ plate-modulared telephone
$C \cdot P=$ Closs $-C$ plate-mod,$~$
$C \cdot T=$ Class- telegraph,$~$
$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}=$ Closs-C omplifier-os
is No Class B dota available.
15HK1578 120 Mc . full rating.

TABLE XIII-ELECTROSTATIC CATHODE-RAY TUBES

V30

TABLE XIV-TRANSISTORS

Code for identifying typiral juntion transisturs. The leadm are marhed C-collector, B-hase, E.emitter amt S.interleal shieht and metal case.

Jhe

Catalog Section

ξ H
In the following pages is a catalog file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

36th EDITION 1959

INDEX OF ADVERTISERS

* CATALOG SECTION
 The Radia Amateuri Handlook

Page
Alco Electronics 102
Allied Radio Corp 55
American Radio Relay League, Inc. 71-74
Amperex Electronic Corp. 62, 63
Amphenol Corp. 106
Arrow Electronics, Inc 89
Barker \& Williamson, Inc 64, 65
Belden Manufacturing Co. 80, 81
Birtcher Corp., The 94
Bliley Electric Co. 76
Burstein-Applebee Co. 103
Comerodio Co., Inc. 109
Collins Radio Co. 28-31
Communications Co., Inc. 90
Cosmos Industries, Inc. 93
Editors \& Engineers, LTd. 108
Eico 95
Eitel-McCuHough, Inc. 50, 51
Eldico Electronics Div. 69
Electro-Voice, Inc 70
Electronic Technical Institute 91
Elmar Electronics 107
Erie Resistor Corp. 88
E-Z Way Towers, Inc 52-54
Ft. Orange Radio Distributing Co., Inc..... 99
General Electric Co 82
Gonsef Div. 57
Hallicrafters Co., The 3-9
Hammarlund Mfg. Co., Inc 85
Harrison Radio Corp. 110
Harvey Radio Co 58,59
Heath Co., The. 44-48
Henry Radio Stores 83
Hy-Gain Antenna Products Co 27
Page
Illumitronic Engineering 32
Instructograph Co. 100
International Crystal Mfg. Co., Ine 66, 67
International Rectifier Corp. 104
Johnson Co., E. F. 20-25
Lampkin Laboratories, Inc. 41
Master Mobile Mounts, Inc. 68
Measurements Corp. 84
Millen Mfg. Co., Inc., James 10-18
Mosley Electronics, Inc. 49
National Co., Inc. 33-40
Newark Electric Co. 105
Ohmite Mfg. Co. 26
Radio Shack Corp. 97
RCA Electron Tube Div. 42, 43
Shurite Meters 96
Sylvania Electric Products, Inc. 78,79
Technical Materiel Corp. 60.61
Telcolab Corp 98
Telrex, Inc 77
Terminal Radio Corp. 86
Tri-Ex Tower Corp. 101
United Transformer Corp 19
Universal Distributors, Inc. 56
Vibroplex Co., Inc., The 87
Wile, Eugene G 92
World Radio Labs, Inc. 75

The new ideas in amateur radio are born at . . .

hallimeflers

$s=\frac{6}{6}$
94 5

Sr-34

HT-33A • HT-32 • SX-101
MARK-III•A

The

Chicago 24, Illinois

Heavyweight champion in stability, performance!

SX-101 MARK IIIA is selting new standards for dependability and ruggedness throughout the amateur world. It's all amateur; provides complete coverage. and every technical feature desired for years to come.
FREQUENCY COVERAGE: Band 1-30.5-34.5 Mc. Band 2-3.48-4.02 Mc. Band 3-6.99-7.31 Mc. Band 4-13.9814.415 Mc. Band 5-20.99-21.52 Mc. Band 6-26.9-29.8 Mc. Band 7-10 Mc. WWV.
FEATURES: Complete coverage of five ham bands plus a 2 and 6 meter conv. band-80, 40, 20. 15, 10 meters. Large slide rule dial. Band-in-use scales individually illuminated. 1lluminated S -

HT-32A
Transmitter

effortless performance!

Beautifully engineered with extra-heavy-duty components, the HT-33A is conservatively rated at the maximum legal limit. You are guaranteed one of the big signals on the band, plus the effortless performance that means so much to efficiency and long life. (Conforms to F.C.D.A. specifications.)
FREQUENCY COVERAGE: Complete coverage of amateur bands; $80,40,20,15,10$ meters.
FEATURES: Rated conservatively at the maximum legal input. Third and fifth order distortion products down in excess of 30 db . Built-in r.f. output meter greatly simplifies tune-up. All important circuits metered. Maximum harmonic suppression obtained through pi-network. Variable output loading. Protection of power supply assured by circuit breaker. HT-33A is a perfect match to Hallicrafters' famous HT-32 in size, appearance and drive requirements. CIRCUIT DETAILS: This power amplifier utilizes a PL-172 high efficiency pentode operating in class AB 1 or AB2. The tube is grid-driven across a non-
meter. Dual scale S-meter. S-meter zero point independent of sensitivity control. S-meter functions with AVC off. Special 10 Mc . position for WWV. Dual conversion. Exclusive Hallicrafters' upperlower sideband selection. Second conversion oscillators quartz crystal controlled. Tee-notch filter. Full gear drive from tuning knob to gang condens-ers-absolute reliability. $40: 1$ tuning knob ratio. Built-in precision 100 kc . evacuated marker crystal. Vernier pointer adjustment. Five steps of selectivity from 500 cycles to 5000 cycles. Precision temperature compensation plus Hallicrafters' exclusive production heat cycling for lowest drift. Direct coupled series noise limiter for improved noise reduction. Sensitivity - one microvolt or less on all amateur bands. 52 ohm antenna input. Antenna trimmer. Relay rack panel. Heaviest chassis in the industry.089 cold rolled steel. Double spaced gang condenser. 13 tubes plus voltage regulator and rectifier. Powerline fuse.
inductive resistor, thus assuring the maximum stability under all possible conditions. Band switching is accomplished by one knob which selects the proper inductance value for each band. The output circuit is a pi-network with an adjustable output capacitor, so loads from 40 to 80 ohms may be accommodated. A d.c. milliameter may be switched to various circuits to measure the following: Cathode current, grid current, screen current, plate voltage, and r.f. voltage across the output line for tune-up. TUBES: (1) PL-172 high power pentode; (2) 3B28 rectifiers; (4) OA2 screen regulators.
FRONT PANEL CONTROLS: Meter selector; Filament switch; High Voltage switch; Bias adjustment; Band switch; Plate tuning; Plate loading.
PHYSICAL DATA: Gray and black steel cabinet (matches HT-32) with brushed chrome knob trim. Size: $83 / \mathbf{4}^{\prime \prime} \times 19^{\prime \prime}$ (relay rack panel). Shipping wt. approx. 130 lbs .
REAR CHASSIS: Co-ax input; co-ax output; filament and bias fuse; cutoff bias relay terminals; screen fuse; ground terminal.

FRONT PANEL CONTROLS: Main tuning knob with $0-100$ logging dial. Pointer reset, antenna trimmer, tee-notch frequency, tee-notch depth, sensitivity, band selector, volume, selectivity, pitch (BFO), re-sponse-(upper-lower-sideband). AVC on/off, BFO on/off, ANL on/off, Cal. on/off, Rec./standby.
TUBES AND FUNCTIONS: 6CB6, R.F. amplifier6BY6, 1st converter-12 BY7A, high frequency os-cillator-6BA6, 1650 kc . i.f. amplifier-12AT7, dual crystal controlled 2 nd conversion oscillator-6BA6, 2 nd converter-6C4, 1st 51 kc . i.f. amplifier-6BA6, 2nd 51 kc . i.f. amplifier-6BJ7, detector, A.N.L., A.V.C. -6 SC 7 , 1st audio amplifier \& B.F.O. -6 K 6 , audio power output - 6BA6, S-meter amplifier 6AU6, 100 kc . crystal oscillator-OA2, voltage reg-ulator-5Y3, rectifier.
PHYSICAL DATA: $20^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high and $16^{\prime \prime}$ deep-Panel size $83 / 4^{\prime \prime} \times 19^{\prime \prime}$-weight approximately 74 lbs . (Conforms to F.C.D.A. specifications.)
rier level adjustment. Ideal CW keying and breakin operation, Push To Talk and full voice control system built in. Phone patch input provided. Keying circuit brought out for teletype keyer.
FRONT PANEL CONTROLS, FUNCTIONS AND CON. NECTIONS: Operation-power off, standby, Mox., Cal., Vox.-P.T.T. Audio level 0-10 R.F. level 0-10. Final tuning 80, 40. 20, 15, 10 meters. FunctionUpper sideband, lower sideband, DSB, CW. Meter compression. Calibration level 0-10. Driver tuning $0-5$. Band selector $-80,40,20,15,10$ meters. High stability, gear driven V.F.O. with cial drag. Microphone con. Key jack. Headphone monitor jack.
TUBES AND FUNCTIONS: 2-6146 Power output amplifier. 6CB6 Variable frequency oscillator. 12BY7 R. F. driver. 6AH6 2nd Mixer. 6AH6 3rd Mixer. 6AB4 Crystal oscillator. 12AX7 Voice control. 12AT7 Voice control. 6AL5 Voice control. 12AX7 Audio Amp. 12AU7 Audio amp. and carrier Oscillator. 12AU7 Diode Modulator. 12AT7 Sideband selecting oscillator. 6AH6 1st Mixer. 6AH6 4.95 Mc. Amp. 6AU6 9.00 Mc. Amp. 5R4GY HV Rectifier. 5V4G LV Rectifier. OA2 Voltage Regulator. REAR CHASSIS: Co-ax antenna connector. FSK jack A.C. accessory outlet. Line fuse. Control connector. AC power line cord. Cabinet $20^{\prime \prime}$ wide, $10^{1 / 2 \prime \prime}$ high, and 17" deep. Approximate shipping weight 86 lbs. (Conforms to F.C.D.A. specifications.)

World's first " 2 and 6"... transistorized power supply!

General description: The SR-34 is designed for either AM or CW and combines, for the first time in one compact package, the complete functions of a two and six meter radio station. It operates on $115-$ V. A.C., $6-$ V. D.C., or 12 V. D.C. and features a highly efficient transistorized power supply for the 6 and 12 volt operation.

Exclusive features: The perfect unit for shortrange portable, fixed or mobile communication, the SR- 34 meets-and exceeds-F.C.D.A. matchingfund specifications. The crystal sockets and transmitter tuning controls are concealed behind a panel which may be sealed to prevent tampering. Instantaneous selection of desired voltage possible and also "crossbanding" between the two and six meter bands. The specially designed cover has mounting clips for two-band antenna, owner's microphone, and cords.

Both receiver and transmitter may be used for C.W.; key jack and adjustable B.F.O. are provided. Drip-proof case is specially designed for safe outdoor use.

The transmitter is crystal-controlled; up to four crystals may be switch-selected. A fifth position on this switch permits external V.F.O. operation. Band selection also is front-panel controlled.

The receiver is a double conversion superheterodyne, having a quartz crystal controlled second oscillator. This offers outstanding selectivity and high image rejection. Highest stability is obtained through separate oscillator and R.F. sections for each band.
All receiver functions provided-S-meter B.F.O., ANL, etc. Sensitivities average 1 microvolt on both bands. Transistorized power supply eliminates noisy, erratic operation encountered with vibrator-type power supplies. Conforms to F.C.D.A. specifications.

Front Panel Controls: Receiver: Band Selector ($48.9-54.1 \mathrm{mc} ., 143.9$ to 148.1 mc .) : Main Tuning; Sensitivity; Audio Volume; B.F.O. Pitch; Squelch Level; Headphone Jack; AVC On/Off: ANL On/Off; B.F.O. On/Off. Transmitter: Function Switch (P.A., Rec., Cal., AM, CW); Power On/Off; Band Switch; Crystal Selector and V.F.O.; Oscillator Tuning; Doubler Tuning; Tripler Tuning; Final Tuning; Final Loading; Meter Switch.

Power output: 6 to $7 \frac{1}{2}$ watts on 2 meters, and 7 to 10 watts on 6 meters AM or CW. 100% mod. negative peak clipping. Rear Apron: Speech input level control; key jack; P.A. speaker terminals; mic. selector (high Z or carbon); mic. input; A.C. and D.C. fuses; power plug.

Also available in A.C. only model.

More quality features at moderate price!
FREQUENCY COVERAGE: Broadcast Band $540-1680 \mathrm{kc}$ plus three short-wave bands covers $1680 \mathrm{kc}-34 \mathrm{mc}$.
FEATURES: Over 1000° of calibrated electrical bandspread over the $10,15,20$, 40 and 80 meter amateur bands. Separate bandspread tuning condenser, crystal filter, antenna trimmer, " S " Meter, one r-f, two i-f stages. (U.L. approved)
INTERMEDIATE FREQUENCY: 455 kc .
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Ganged, 3 section tuning capacitor assembly with electrical bandspread. Circular main tuning dial is calibrated in megacycles and has 0-100 logging scale.
AUDIO OUTPUT IMPEDANCE: 3.2 and 500 ohms. Headphone jack on front panel disables both.
CONTROLS: Antenna tuning, sensitivity, band selector, main tuning, bandspread tuning, volume, tone, standby, selectivity, crystal phasing, noise limiter.
BAND CHANGE MECHANISM: Ganged rotary wafer switch.
ANTENNA INPUT IMPEDANCE: Balanced/ unbalanced. 50-300 ohms.

HEADPHONE OUTPUT IMPEDANCE:

Universal.
EXTERNAL CONNECTIONS: Terminals for doublet or single wire antenna plus terminals for 3.2 and 500 ohm speakers on rear.
TUBE COMPLEMENT: Seven tubes plus one rectifier: 6SG7, r-f amplifier-6SA7, con-verter-6SG7, 1st i-f amplifier-6SK7, 2nd i-f amplifier-6SC7, BFO and audio ampli-fier-6K6GT, Audio output-6H6, ANL-AVC-detector-5Y3GT, rectifier.
AUDIO POWER OUTPUT: 2 watts.
POWER SUPPLY: $105 / 125$ V. 50/60 cycle AC.
PHYSICAL DATA: Gray steel cabinet with brushed chrome trim and piano hinged top. Size $181 / 2^{\prime \prime}$ wide $\times 87 / 8^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep. Shipping weight approximately 36 lbs .

Most versatile receiver of all!

FREQUENCY COVERAGE: $540 \mathrm{kc}-34$ Mc. Band 1: $538 \mathrm{kc}-1580 \mathrm{kc}-$ Band 2: 1720 $\mathrm{kc}-4.9 \mathrm{Mc}-$ Band 3: $4.6 \mathrm{Mc}-13 \mathrm{Mc}-$ Band 4 : $12 \mathrm{Mc}-34 \mathrm{Mc}$. Bandspread dial is calibrated for the $80.40 .20,15$ and 10 meter amateur bands.

TYPE OF SIGNALS: AM-CW-SSB.

FEATURES: Selectable side band operation.
"Tee-Notch" Filter-provides a stable nonregenerative system for the rejection of unwanted heterodyne. Also produces an effective steepening of the already excellent 500 Cycles i-f pass band and further increases the effectiveness of the advanced exalted carrier type reception. Notch depth control for maximum null adjustment. Antenna trimmer. Plug-in laboratory type evacuated 100 kc quartz crystal calibrator-included in price. Logging dials for both tuning controls. Full precision gear drive dial system. Second conversion oscillator crystal con-trolled-provides greater stability and additional temperature compensation of high frequency oscillator circuits. Phono jack. Socket for D.C. and remote control.

CONTROLS: Pitch control, reception, standby, phone jack, response control (upper and lower side band selector), antenna trimmer, notch depth, calibrator on/off, sensitivity, band selector, volume, tuning, AVC on/off noise limiter on/off, bandspread, selectivity.

INTERMEDIATE FREQUENCY: 1650 kc and 51 kc .

AUDIO OUTPUT IMPEDANCE: $3.2 / 500$ ohms: AUDIO POWER OUTPUT: 1.5 watts with 10% or less distortion. POWER SUPPLY: 105/125 V., 50/60 cycle AC.

TUBE COMPLEMENT: 6CB6 R.F. amplifier; 6BY6, 1 stconvertor;6AH6,H.F.oscillator; 6BA6, 2nd converter: 12AT7, Dual crystal second converters; (2) 6BA6, 51 kc and 1650 kc i-f amplifiers: 6BJ7, AVCnoise limiter; 6 SC 7 , 1st audio and BFO; 6 K6, Power output; 5Y3, Rectifier; OA2, Voltage regulator; 6C4, i-f amplifier- (51 $\mathrm{kc}) ; 6 A U 6,100 \mathrm{kc}$ XTAL marker.

PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red pointers. Piano hinge top. Size $18^{3} 8^{\prime \prime}$ wide $\times 81^{\prime \prime 2}$ high x $10^{5}{ }_{8}^{\prime \prime}$ deep. Shipping weight approximately 42 lbs. (U.L. approved) amateur radio are born at

Way ahead of its class in sheer value!

MODEL S-85, S-86
FREQUENCY COVERAGE: Broadcast band $540-1680 \mathrm{kc}$ plus three S / W bands $1680 \mathrm{kc}-34 \mathrm{mc}$.
FEATURES: Bandspread calibrated in over 1000 on 10. 15. 20. 40 and 80 meter amateur bands. One r-f, two i-f and separate bandspread tuning condenser. Temperature compensated oscillator, audio response to 10,000 cycles and built-in speaker.
CONTROLS: Sensitivity, band selector, luning, bandspread, volume, AVC, noise limiter, AM/CW, on/ott/tone, pitch control, standby/receive.
INTERMEDIATE FREQUENCY: 455 kc .
AUDIO OUTPUT IMPED ANCE: Voice coil impedance 3.2 ohms. High impedance headset output.
TUBE COMPLEMENT: S-85: Seven tubes plus rectifier: 6SG7, r-f amplifier-6SA7, converter-6SK7, Ist i-f amplifier-6SK7, 2nd i-f amplitier-6SC7, $11 . \mathrm{O}$ and audio amplifier- 6 K 6 GT , audio output-6 6 , ANL, AVC, and detector-5Y3GT, Rectifier. S-86 substitutes 25L6 for 6K6 and 25 Z 6 for 5 Y 3 and add ballast.
EXTERNAL CONNECTIONS: Terminals for single or doublet antenna on rear. External antenna provided. Headphone jack on front.

Features that speak

 for themselves!MODEL R-46B. Precision-built communications speaker. This $10^{\prime \prime} \mathrm{PM}$ speaker is the matching unit for any Hallicrafters or other receiver having a 3.2 ohm output. Featuring an 80 to 5000 cycle range and 3.2 ohm speaker woice coil impedance. Gray black steel cabinet measuring $15^{\prime \prime}$ wide $x 10^{7} 8^{\prime \prime}$ high $\times 10^{7} x^{\prime \prime}$ deep. Shipping weight approximately 15 lbs .

MODEL R-47. Brand new, and especially designed for superior SSB and other voice applications. This compact, handsomely styled speaker has essentially flat response from 300 to 2850 c.p.s., drops off rapidly in output beyond cut off points. Perfect match for SX-99. SX-100 and SX-101 receivers. Input impedance: ? ? 2 ohns. Dimensions: $51 / 2^{\prime \prime} \times 5^{1} 4 " \times 3{ }^{1} 2^{\prime \prime}$-ideal for mobile installations, too. Shipping weight: approximately $21 / 2 \mathrm{ib}$.

AUDIO POWER OUTPUT: 2 watts.

POWER SUPPLY: Model S-85: 105/125 V.,
50/60 cycle AC. Model S-86: 105-125 V., AC/DC.
PHYSICAL DATA: Gray-black steel cabinet with brushed chrome trim and red pointers. Piano hinge top. Size $18^{12^{\prime \prime}}$ wide $\times 8^{7 / 8^{\prime \prime}}$ high $\times 10^{\prime \prime}$ deep. Shipping weight approximately 32 lbs. (U.L. approved)

World's most popular short wave receiver!

MODEL S-38E

Latest model of Hallicrafters' most popular of all short wave receivers! Beautiful new, modern cabinet styling, improved circuitry for superior performance and utmost dependability.
FREQUENCY COVERAGE: Standard broadcast from $540-1650 \mathrm{kc}$., plus three short wave bands from 1650 kc . through 32 mc . Intermediate freq.: 455 kc .
FEATURES: Two-section tuning gang with electrical bandspread; easy-to-read, sliderule overseas dial; oscillator for code reception; built-in $5^{\prime \prime}$ speaker, universal output for headset; rear switch for speaker or headset selection.(U.L. approved)
CONTROLS: Tuning dial. Separate electrical bandspread dial with $0-100$ scale. Receive/standby switch. On/off/volume. AM. CW switch. Band selector.
POWER SUPPLY: 1 watt audio power output. $105 / 125$ volts. $50-60$ cycle AC/DC. Line cord (S7D 1566) for 220 volt AC/DC available.
TUBE COMPLEMENT. Four tubes plus one rectifier: 35 W 4 rectifier; 50 C 5 audio output; 12AU6 amplifier; 12BA6 IF amplifier and B.F.O.; 12BE6 converter.
AUDIO OUTPUT: Five inch PM speaker and universal output for headset.
EXTERNAL CONNECTIONS: Phone tip jacks and terminals for single wire or doublet antenna, switch for speaker or headphones on rear. External antenna provided.
PHYSICAL DATA: Available in gray steel cabinet with silver trim, or blond or mahogany finish with gold trim. Size $127 /$ " $^{\prime \prime}$ wide $x 7^{\prime \prime}$ high $x 9^{1 / 4 "}$ deep. Shipping weight approximately 14 lbs.

New beauty ... new standards of performance!

MODEL 5-107

COVERAGE: Standard Broadcast from 540-1630 kc plus four short wave bands over 2.5-31 and 48-54.5 mc. Intermediate frequency; 455 kc . CONTROLS: Main tuning in mc. Separate electrical bandspread with $0-100$ logging scale plus calibration for 48-54.5 mc band, receive/standby switch, band selector 540 $1630 \mathrm{kc}, 2.5-6.3 \mathrm{mc}, 6.3-16 \mathrm{mc}, 14-31 \mathrm{mc}$, and $48-$ 54.5 mc, AM / CW switch, sensitivity/phono control, noise limiter switch, on/off/volume, two-position tore switch. BAND CHANGE MECHANISM: Five position rotary wafer switch. TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Separate 2-section tuning capacitator assemblies for main tuning and band spread tuning. Slide rule dial. Phonograph jack, headphone tip jacks. Bandspread tuning calibrated for $48-54.5 \mathrm{mc}$. ANTENNA 1 N PUT IMPEDANCE: Balanced/unbalanced. 50-300 ohms. HEADPHONE OUTPUT IMPEDANCE: Universal impedance. AUDIO OUTPUT: Five inch PM speaker and universal impedance output for
headset. TUBE COMPLEMENT: Seven tubes plus one rectifier: 6C4. Osc.-6BA6 Mixer-(2) 6BA6, i-f amplifier-6H6, Det., AVC and ANL-6SC7, BFO and AF amp.-6K6GT, Output-5Y3GT, rectifier. EXTERNAL CONNECTIONS: speaker/ phones switch and terminals for doublet or single wire antenna on rear. AUDIO POWER OUTPUT: One watt. POWER SUPPLY: 105/125 V., 50/60 cycle. AC. PHYSICAL DATA: Sturdy gray hammertone steel cabinet with brushed chrome trim. Size $133 / s^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 87 / 8^{\prime \prime}$ deep. Shipping weight approximately $181 / 2 \mathrm{lbs}$.(U.L. approved)
hallicraffers Company

ONE INCH

INSTRUMENTATION OSCILLOSCOPE

Miniafurized, packaged panel mounting cathode ray oscilloscope designed for use in instrumentation in place of the conventional "pointer type" moving coil meters uses the ${ }^{\prime \prime}$ pube. Panel bezel matches in size ond type the standord 2" square meters. Magnitude, phase displacement, wave shape, etc. are constontly visible on scope screen. No. 90901, ICPI, less tube
No. 90911 IEP1, less tube

POWER SUPPLY FOR OSCILLOSCOPE

750 volis d.c. of 3 ma. and 6.3 volts o.c. at 600 ma. 117 volts $50-60$ cycle inpus. Designed espe cially for use with No. 90901 and No. 90911 one inch instrumentation oseilloscopes. 5 in. high $\times 2^{13 / 12} \times$ 2 in . Octol plug for input and output. Entire assem bly including rectifier is encapsuloted
No. 90202 Power Supply (complete)

GRID DIP METER

The No. 90651 MILLEN GRID DIP METER is compact ond completely self contained. The $A C$ power supply is of the "tronsformer" type. The drum dial hos seven calibrated uniform length scales from 1.7 MC to 300 MC with generous over laps plus an orbitrory scole for use with special opplicotion inductors. Internal terminal strip permits battery operation for antenno measurement No. 90651, with tube

Additional Inductors for Lower Frequencies No. 46702-925 to 2000 KC
No. 46703- 500 to 1050 KC
No. 46704-325 to 600 KC
No. 46705-220 10 350 KC

LAB ORATORY SYNCHROSCOPES

The 5" loborotory synchroscopes ore ovoiloble with ond without defector-video strios.
Model P-4-2, with tubes.
Model P-4E-2, with fubes

MINIATURE SYNCHROSCOPE

The compoct design of the No. 90952, measuring only $71 / 2^{\prime \prime} \times 55 / 6^{\prime \prime} \times 13^{\prime \prime}$, ond weighing only 17 os., mokes avoilable for the first time o truly DESIGNED FOR APPLICATION "field service" Synchroscope

No. 90952 with tubes

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 and No. 90905 Rock Panel Oscilloscopes, for two, three ond five inch pubes, respectively, ore inexpensive bosic units comprising power supply, brilliancy ond centering controls, safety features, magnetic shielding, switches, etc. As a pransmitter monitor, no additionol equipment or occessories ore required. The well-known trapezoidal monitoring polterns ore secured by feeding modulated carrier voltage from a pickup loop directly to vertical plates of the cathode ray fube and audio modulating voltoge to horizontal plotes. By the oddition of such units as sweeps, pulse generators, amplifiers, servo sweeps, atc., oll of which can be conveniently and neatly constructed on companion rock panels, the original bosic scope unit moy be expanded to serve any conceivable industrial or laboratory application.
No. 90902 , less Pubes.
No. 90903 , less tubes.
No. 90905 , less tubes.

'SCOPE AMPLIFIER-SWEEP UNIT

Vertical and horizontol omplifiers along with hordfube, saw tooth sweep generalor. Complete with power supply mounted on a standard $51 / 4^{\prime \prime}$ rack ponel.
No. 90921 , with iubes.

FLAT FACE OSCILLOSCOPE

90905.8 S-inch Rack Mounting Bosic Oscilloscope feotures include: balanced deflection, front ponel input terminals, reor panel input terminals, ostigmotism contral, blanking input terminols, flat foce precision tolerance Dumont SADP1 fube, 1800 or 2500 volis accelerating, good sensifivity, shorp focus, horizontal selector switch, 60 cyclesine wovesweep available, power supply avoiloble to operote external equipment, minimum control inferaction rugged construction, light filter. $7 \times 19 \mathrm{in}$. panel. No. 90905. B Oscilloscope, less tubes

90952

JA
 M
 S
 㗊
 M』山【茞
 \mathbb{N} MALDEN•MASSACHUSETTS

711

81

STANDING WAVE RATIO BRIDGE

The Millen S．W．R．bridge provides easy and in－ expensive measurement of standing wave rotio an antennas using co－ox cable．As assembled the bridge is set up for 52 ahm line．A calibrated 75 ohm resistor is mounted inside the case for sub． stitution in the circuit when 75 ohm line is used． No． 90671

BALUNS

The No． 46672 （1 for each omateur band） wound Balun is an accurate 2 to 1 turns ratio， high Q auto transformer with the residual re－ actances tuned out and with very tight coupling between the two halves of the total winding．The points of series and parallel resanance are selected so that each Balun provides an accurate 4 to 1 impedance ratio over the entire band of frequencies for which it was designed．Suitable for use with the No． 90672 Antenna Bridge or medium power transmitters．
No．46672－80／40／20／15／10

ANTENNA BRIDGE

The Millen 90672 Antenna Bridge is an occurote and sensitive bridge for measuring impedances in the range of 5 to 500 ohms for 20 to 2000 ohms with balun）at radio frequencies up to 200 mc ．The voriable element is an especially designed differential variable capacitor capa ble of high accuracy and permanency of colibra－ tion．Readily driven by No． 90651 Grid Dipper No． 90672

50 WATT EXCITER－TRANSMITTER

Modern design includes features and shielding fo TVI reduction，bandswitching for 4－7－14－21－28 megacycle bands，circuit metering．Canservatively rated for use either as a transmitter or exciter for high power PA stoges． 5783 oscillator－buffer•mul－ tiplier and 6146 power amplifier．Rack mounted． No． 90801 ，less fubes

VARIABLE FREQUENCY OSCILLATOR

The No． 80711 is a complete transmitter contro unit with 6SK7 temperature－compensated，elec－ tron coupled ascillator of exceptional stability and low drift，a 6 SK 7 broad－band buffer or frequency doubler a 6AG7 tuned amplifier which tracks with the oscillator tuning and regulated power supply．Output sufficient to drive a 6146 is available on 160,80 and 40 meters and reduced output is available on 20 meters．Since the oulput is isalated from the oscillator by two stages，zero frequency shift occurs when the output load is varied from open circuit to short circuit．The entire unit is unusually solidly built so that no frequency shift occurs due to vibration．The keying is clean ond free from annoying chirp，quick drift，iump，and similar difficulties often encountered in keying variable frequency oscillators．
No． 90711 ，with Pubes．

HIGH VOLTAGE POWER SUPPLY

The No． 90281 high vollage power supply hos a d．c．output of 700 volts，with maximum current of 235 ma ．In additian，a．c．filament power of 6.3 volts at 4 amperes is olso available so that this power supply is an ideal unit for use with trans－ mitters，such as the Millen No． 90801 ，as well os general loborotory purposes．The power supply uses two No． 816 rectifiers．The panel is standard $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack mounting．

No． 90281 ，less tubes．．．．．．．．．．．．．．．．．．．

A physicolly small unit copable of o power outpu
A physicolly smoll unit copable of o power output of 70 to 85 watts on＇Phone or 87 to 110 wotts on $\mathrm{C} . \mathrm{W}$ on $20,15,11,10,6$ or 2 meter amoteur bands．Provision is mode for quick band shift by means of the No． 48000 series VHF plug－in coils The No． 90811 unit uses either on 829.8 or $3 E 29$.
No． 90811 with 10 meter band coils，
less tube

RF POWER AMPLIFIER

This 500 woll amplifier moy be used os the basis of a high power amateur transmitter．The No． 90881 RF power omplifier is wired for use with the popular＂812A type tubes．Other popular tubes may be used．The amplifier is of unusually sturdy mechanical construction，on a $101 / 2^{\prime \prime}$ relay rack panel．Plug－in inductors are furnished for operation on $10,20,40$ or 80 meter amateur bands．The standard＇Millen No． 90801 exciter unit is on ideal driver for the No． 90881 RF power amplifier．
No． 90881 ，with one set of coils，but less tubes．．．．．．．Worid Redio histiony

JAMESEMILLEN

REGULATED POWER SUPPLY

A compact, uncased, regulated power supply, either for table use in the laboratory or for incorporation as an integral part of larger equipment. 250 v.d.c unregulated of 115 mo .105 v.d.e. reguloted at 35 mo. Minus 105 v.d.c. reguloted bias of 4 mo 0.3 v. a.e. of 4.2 omps.

No. 90201 , with fubes

INSTRUMENT DIAL

The No. 10030 is an extremely sfurdy instrument type indicotor. Control shoft has 1 to 1 rotio. Veeder type counter is direct reoding in 99 revolutions and vernier scole permits reodings to 1 port in 100 of a single revolution. Hos built-in dial lock and $1 / 4$ " drive shofl coupling. Moy be used with multi-revalution tronsmitter controls, etc., or through geor reduction mechanism for contral of froctional revolution capacitors, etc., in receivers or loboratory No 10030

PHASE-SHIFT NETWORK
A complete and loborotory aligned poir of phose shift networks in o single compoct $2^{\prime \prime} \times 17 / 6^{\prime \prime} \times 4^{\prime \prime}$ case with chorocteristics so as to provide o phose shift between the two networks of $90^{\circ} \pm 1.3^{\circ}$ over - frequency ronge of 225 cycles to 2750 cycles. Well adopied for use in either single sidebond transmitter or receiver. Possible to obsoin o 40 db suppression of the unwonted sidebond. The No, 75012 precision odjusted phose-shift network eliminotes the necessity of complicated loborotory equidment for network odiustment. No. 75012 .

DELAY LINES

No. 34751 -Seoled flexible distributed constonts line. Excellent rise time. 1350 ohms, 22 inches per microsecond or 550 ohms, 50 inches per mu.-sec. Delay cut to specificotions
No. 34700-Hermeticolly seoled encosed line. Good rise time. $0=0-45 \mathrm{mu} . \mathrm{sec} .1350$ ohm line or 0.22 mu.-sec. 500 ohm line in $1^{\prime \prime} \times 1^{\prime \prime} \times 51 / 2^{\prime \prime}$ in case. Also lorger stondord coses and coses mode to order. Speciol impedonces 400 to 2200 ohms. No. 34600 -Lumped deloy line buils to specifico tions. Deloys 0.05 mu.sec. 10250 mu.-sec. Im pedance 50 ohms to 2000 ohms.

PHOTO MULTIPLIER SHIELDS MU-METAL

The photo multiplier fube operotes most effectively when perfectly shielded. Coreful study hos proven that mu-metal provides superior shielding. Millen Mu-Metol shields are ovoiloble from stock for the most popular tubes.
No. 808018 for the 1P21
No. 808028 for the $5819,6217,6292$ 6343.

No. 80802C for the $6199,6291,6497$
No. 80802 E for the 6860
No. 80803J for the 6363
No. 80805 M for the 6364
BEZELS FOR

CATHODE RAY TUBES

Stondord types ore of sotin finish block plastic. 5 size hos neoprene support cushion ond green lucite filler. $3^{\prime \prime}$ ond $2^{\prime \prime}$ sizes hove inlegrol cushioning. No. 80075-5
No. 80073-3
No. 80072- ${ }^{\prime \prime}$

CATHODE RAY

 TUBE SHIELDSFor many years we have specialized in the design and manufocture of magnetic metol shields of nicoloi and mumetol for cathode ray tubes in our own complete equipment, os well as for opplico. tions of oll other principal complete equipment monufocturers. Stock types os well as special designs to customers' specifications promptly ovailoble signs to customers specification
No, 80045 - Nicoloi for 58P1 No. 80045 -Nicoloi for 58P1
No. 80055 -Nicoloi for 5CP1
No. 80043-Nie oloi for $3^{\prime \prime}$ 'fube
No. 80042-Nicoloifor $2^{\prime \prime}$ Iube

SHIELD CASES

ALUMINUM
Effective RF shielding for coils ond tronsformers con be provided by Millen Aluminum cons. Avoiloble in severol sizes from stock
No. $80003-13 / 8^{\prime \prime} \times 13 / 8^{\prime \prime} \times 4$
No. $80004-17 / 1^{\prime \prime} \times 1 \frac{1 / 16^{\prime \prime}}{} \times 4 \frac{4}{1 / 2}$
No. $80005-2^{\prime \prime} \times 2^{\prime \prime} \times 47 / 8$
No. $80006-21 /{ }^{\prime \prime}$ ' round $\times 4$
No. $80007-21 / 4^{\prime \prime}$ round $\times 23 /$
No. $80007-21 /^{\prime \prime}$ round $\times 23 h^{\prime \prime}$ open ends

No. 10050 . . . Wordidadolibioiy

MALDEN •MASSSACHUSETXS

TUBE SOCKETS
 DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBES! long Floshover poth to chossis permits use with tronsmitting tubes, 866 rectifiers, etc. Long leokoge poth between contocts. Contocts ore type proven by hundreds of millions already in government, commercial and broadcast service, to be extremely dependoble. Sockets moy be mounted either with or without metol flonge. Mounts in stondord size chossis hole. All types hove borrier between contocts and chossis. All but actol and crystol sockets olso hove borriers between individual contocts in oddition.

The No. 33888 shield is for use with the 33008 octol socket. By its use, the elestrostotic isolotion of the grid and plote circuits of single-ended metol tubes con be increosed to secure greoter stobility and goin

The 33087 rube clomp is eosy to use, eosy to instoll, effective in function. Avoiloble in speciol sizes for oll types of tubes. Single hole mounting. Spring steel, codmium ploted.

Covity Socket Confoct Discs, 33446 ore for use with the "Lighthouse" ultro high frequency fube. This sel consists of three different size unhordened beryllium copper multifinger contoct discs. Heot treating instructions forworded with eoch kit for hordening ofter spinning or forming to frequency requirements.

Volfoge regulator duol contoct boyonet sockep, 33991 block phenolic insulation ond 33992 with low loss high leokoge mico filled phenolic insulation,

No. 33004-4 Pin Tube Socket
No. 33005-5 Pin Tube Socke:
No. 33006 - 6 Pin Tube Socket
No. 33008-8 Fin Tube Socket
No. 33888-Shield for 33008.

No. 33087 -Tube Clamp
No. 33002-Crystol Socket $3 /$ " $^{\prime \prime} \mathrm{x} .125^{\prime \prime}$.
No. 33102-Crystol Socket . 487" $\times .095$
No. 33202 -Crystol Socket $1 / 2^{\prime \prime} \times .125^{\prime \prime}$.
No. 33302-Crystol Socket . $487^{\prime \prime} \times .050^{\prime \prime}$
No. 33446 -Contoct Discs.
No. 33991 -Socket for 991
No. 33992 -Socket for 991
No. 33207-829 Socket.
No. 33305 -Acorn Socket
No. 33307-Minioture Socket ond Shield ceromic
No. 33309-Noval Socket ond Shield, ceromic.
No. 33405-5 Pin Socket Eimoc
No. 33407-Minioture Socket only, seromic
No. 33408 -Novol Socket only, ceromic.

STAND-OFF INSULATORS

Steatite insulotors ore ovoiloble in o voriety of sizes-listed below ore some of the most populor.
No. 31001 -Stond-off $1 / 2^{\prime \prime} \times 1^{\prime \prime}$
No. 31002 -Stond-off $1 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$
No. 31003 -Stand-off $14^{\prime \prime} \times 2^{\prime \prime}$
No. 31004 -Stond-off $1 / 4^{\prime \prime} \times 31 / 2$
No. 31006-Stond-off $\% 2^{\prime \prime} \times 1 / 3^{\prime \prime}$
No. 31007 -Stond-off $1 / /^{\prime \prime} \times 1^{\prime \prime}$
No. 31011 -Cone $3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}($ box of 5)
No. 31012-Cone $1^{\prime \prime} \times 1^{\prime \prime}$.
No.31013-Cone $1^{112^{\prime \prime} \times 1^{\prime \prime} ~}$
No. 31014 -Cone $2^{\prime \prime} \times 1^{\prime \prime}$.

Worldradio History

JAM匿S MA LIEN
 M $\left\{\begin{array}{l}5 \rightarrow 2 \\ 5 \rightarrow 5\end{array}\right.$

04000 and 11000 SERIES TRANSMITTING CONDENSERS

Another member of the "Designed for Applico. ion" series of transmitting variable air copocitors is the 04000 series with peak voltage ratings of 3000,6000 , and 9000 volts. Right angle drive, 1-1 ratio. Adjustable drive shot angle for either vertical or sloping panels. Sturdy construction, thick, round-edged, polished oluminum plates with $13 / 4$ radius. Constant impedance, heovy current, multiple finger rotor contactor of new design. Available in all normal copocities.

The 11000 series hos $16 / 1$ ratio center drive and fixed angle drive shaft

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heavy channeled aluminum end plates. Isolontite insulation, polished or plain edges. One piece rotor contact spring and connection lug. Comport easy to mount with connector lugs in Convenient locations. Same plate sizes os 11000 series obove.
The 16000 series hos some plate sizes as 04000 series. Also has constant impedance, heovy current, multiple finger rotor contactor of new design, Both 12000 and 16000 series ovoiloble in single and double sections and many capacilies and plote spacing.

THE 28000-29000 SERIES VARIABLE AIR CAPACITORS
"Designed for Application," double bearings, steatite end plates, cadmium or silver plated brass plates. Single or double section $022^{\prime \prime}$ or $.066^{\prime \prime}$ oi gop. End plate size: $19 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$. Rotor plate radius: $1 / 4 /$ ". Shaft lock, rear shaft extension, special mounting brockets, etc., to meet your requirements. The 28000 series hos memi-circulor rotor plate stope. The 29000 semi-circulor rotor plate stope. The series hos opproximotely straight frequency line series hos opproximotely straight frequency line
rotor plot shope. Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR

Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 disc neutralizing copocitor hos such unique features os rigid channel frame, horizontal or vertical mounting, fine thread oversize lead screw with stop to prevent shorting and rotor lock. Heavy rounded-edged polished oluminum plates ore $2^{\prime \prime}$ diameter. Glazed Steatite insulation.

No. 15011.

PERMEABILITY TUNED CERAMIC FORMS

In oddition to the popular shielded plug-in permeobility tuned forms, 74000 series, the 69040 series of ceramic permeability, tuned unshielded forms ore ovoilable os standard stock items Winding diameters ovailoble from $3 /$ st $^{\prime \prime}$ to $1 / 2^{2}$ and winding space from ${ }^{11} 33^{\prime \prime}$ to $11 / 2^{\prime \prime}$

No. 69041-(Copper Slug).
No. 69042- (Iron Core)
No.89043-(CopperSlug)
No. 69044 -(Iron Core).
No. 89045 -(Copper Slug)
No. 89046 -(Iron Core).
No. 69047-(CopperSlug)
No.69048-(Iron Core).
No. 69051 -(CopperSlug)
No. 69052 -(Iron Core).
No. 69054 -(Iron Core).
No. 69055-(CopperSlug).
No. 69056- (Iron Core).
No.69057-Copper Slug).
No. 89058 -(Iron Core).
No.69061-(CopperSlug).
No. 69062- (Iron Core).

JAMESEMILLEN MALDEN•MASSACHUSETTS

TRANSMITTING TANK COILS

A full line-all populor wattoges for oll bonds Send for speciol cotalog sheet.

TUNABLE COIL FORM

Standord actal base of low lass miko.filled bakelite, polystyrene $11^{\prime \prime}$ diometer coil form, heovy oluminum shield, iran funing slug af high frequency type, suitoble for use up to 35 mc . Adjusting screw protrudes through center hole of standard actal socket.
Na. 74001, with iran core
$\mathrm{Na}, 74002$, less iron core

RF CHOKES

Mony hove copied, fow have equalled, and none hove surpassed the genuine original design Millen Designed for Application series of midget RF Chakes. The more papular styles now in canstant production are illustrated herewith. Speciol styles and variations ta meet unusual requirements quickiy furnished.
Figures 1 and 4 illustrote special types of RF chakes available an arder. The papular 34300 and 34200 series are shown in figures 2 and 3 respectively. General Specifications: $2.5 \mathrm{mH}, 250 \mathrm{~mA}$ far types $34100,34101,34102,34103,34104$ and 1 mH , 300 mA for types $34105,34106,34107,34108$, 34109.

No. 34100.
No. 34101
No. 34102
No. 34103
No, 34104.

MIDGET COIL FORMS

Mode of low lass mico filled brown bokelite. Guide funnel mokes for easy threoding of leods through pins.
No. 45000
Na. 45004.
No. 45005

OCTAL BASE ANO SHIELD
Law lass phenalic base with octol socket plug and aluminum shield con $17 / 6 \times 17 / 0 \times 3^{15 / 64}$. Na .74400 .

MINIATURE POWDERED IRON CORE RF INDUCTANCES

The Na. J300-Miniature powdered iran care inductances. 0.107 in dio. $\times 1 / 3$ in. lang. Inductances from 25 microhenries to 2.5 millihenries $\pm 5 \%$. RETMA standard values plus $25,50,150,250$. 350, 500 , and 2500 micrahenries. Three layer solenoids from 25 to 350 microhenries. $1 / 4 \mathrm{in}$. wide single pi from 360 to 2500 microhenries. Current roting 50 milliamperes. Special cails on order.

PHENOLIC FORM RF INDUCTANCES

The No. 34300 Inductonces-Phenalic coil form with oxiol leads. Inductonces from 1 microhenry to 2.5 millihenries $\pm 5 \%$. RETMA stondard values plus $25,50,150,250,350,500$, and 2500 microhenries. Solenaids fram I 1016 microhenries. Single pi fram 18 to 300 micrahenries. Multiple pi for higher inductonces. Forms "/s2", dia. x 7h in. long, $3 / 44^{\prime \prime} \times 5 / 2^{\prime \prime}, 1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$, ond $1 / 4^{\prime \prime} \times 11^{\prime \prime}$. Current roting 250 milliamperes. Special cails on arder.

MINIATURE IF TRANSFORMERS

Extremely high Q-approximately 200 Voriable Coupling-(under, critical, and over) with all adiustments on top. Small size $11 / s^{\prime \prime} \times 1 \% w^{\prime \prime} \times 1 \%{ }^{\prime \prime}$ Malded terminal base. Air capacitar funed. Coils completely enclosed in cup cares. Tapped primary ond secondary. Rugged construction. High electricol stability.
No. $61455,455 \mathrm{kc}$. Universal Trans.
Na. 61453, 455 kc . BFO
Na. $61160,1600 \mathrm{kc}$. Universal Trans
No. $61163,1600 \mathrm{kc}$. BFO.

74400

JAM仺 \mathbb{S}
 M I] ITE \mathbb{N} MALDEN D M ASSSACHUSETTS

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Application" flexible coupling units include, in addition to improved versions of the conventional types, also such exclusive original designs as the No. 39001 insulated universal jaint and the No. 39006 "slideaction" coupling (in both steatite and bokelite insulation)
The No. 39006 "slide-action" caupling permits The No. 10 gifudinal shaft motian, eccentric shaft mation and longitudinal shatratian, eccellic as angular drive aut-of-line oper
without backlosh.
Whout backlosh.
The No. 39005 and 39005-8 (high tarque) are similar to the No. 39001 , but are not insulated The stearite insulated Na. 39001 has a special antibacklash pivot and sacket grip feature. All af the above illustrated units are for $1 / 4^{\text {" }}$ shaft and are standard production type units. The Na. 39016 in corporates features which have long been desired crestin No Back Lash-Higher Flexi-bility-Higher Breakdown Voltoge-Smaller Diam-bility-Higher Breakdown Voltoge-Smaller Diam-- Higher Resistance to Mechanical Shock-Solid Insuloting Borrier Diophragm-Molded as a Single Unit.

CERAMIC PLATE OR GRID CAPS

Soldering lug ond contact one-piece. Lug eors annealed and solder dipped to focilitate eoch combination "mechonical plus soldered" connection of cable.
No. 36001 - \%"
No. $36002-1 / 2$
No. 36004 - $1 / 4$

SNAP LOCK PLATE CAP

For Mabile, Industrial and other applications where lighter than normal grip with multiple finger 360° law resistance contoct is required. Confact self locking when cop is pressed into position. Insulated snap button at top releases contact grip for easy removal without damage to tube
No. 36011 - $96^{\prime \prime}$
No. 36011 - ${ }^{1 / 2}{ }^{\prime \prime}$

SAFETY TERMINAL

Combination high voltage terminol and thru-bushing Topered contoct pin fits firmly into conical socket providing lorge area, low resistonce connection. Pin is iwivel mounted in cop to prevent twisting of lead wire.
No. 37001 , Black or Red
No. 37501 , Law loss.

THRU-BUSHING

Efficient, compact, easyto use and neat appearing. Fits $1 / 4^{\text {" }}$ hole in chassis. Held in place with a drop of solder or a "nick" from a crimping tool.
No. 32150

POSTS, PLATES, AND PLUGS

The No. 37200 series, including both insulated and non-insulated binding posts with associated plates ond plugs, provide various combinations to meet most requirements. The posts have captive heads and keyed mounting.
The No. 37291 and No. 37223 are standard in black or red with other colors on special arder. No. 37201 , No. 37202 , and No. 37204 and No. 37222 are availoble in black, red, or low loss. The No. 37202 is also available in steatite.
No. 37201 -Single plotes, pr .
No. 37291 - Single plates (1apered), pr No. 37202 -Dual plotes, pr
No. 37204 -Double dual plates, pr No. 37212-Dual plug.
No. 37222 -Non-insulated binding post, ea. No. 37223-insulated binding posts, ea...

STEATITE TERMINAL STRIPS

Terminal and lug are one piece. Lugs are Navy turret type and are free floafing so as not to strain steatite during wide femperature variations. Easy to mount with series of round holes for integral chassis bushinas. Wortarado History

MINIATUIEITEID

DESIGVED for APPIJCATIOV miniatarized emmonen developed for use in our own equipment such as the 0) (0)Ol ()acilloscope, are now available for separate sale. Nany of thest parts are similar. in most details except wize, to their equivalents in our standard component parts kroup. In certain devices where cam plete miniaturization is not paranonnt, a combination of standard and miniature components may possibly be used to adtantage. For convenience, we have also linted on this paze the evtrmaly small sized eoil forms from our standard catalos.

CODE

DESCRIPTION

A002 Bor knob for $1 / 1^{\prime \prime}$ shoft. $1 / 2^{\prime \prime}$ high by $3 / 4^{\prime \prime}$ long
A006 Fluted block plostic knob with bross insert for $1 / 6^{\prime \prime}$ shoft
$1 / 2^{\prime \prime}$ high by $1 / 4$ " diometer.
5/9", diameter dial. dial knob with brass insert fo $1 / 1^{\prime \prime}$ shaff.
1/," diamerer dia.
A012 Right ongle drive for $1 /$ " "ome as nofts. Single hole except for spyle. 2.
Right ongle drive for shafts. Single hole mounsino.
AO14 "bor diol for $11^{\prime \prime}$ shoft. $1 / 2^{\prime \prime}$ high. 180° or 280° diols for
A015 clockwise or counter-clockwise rototion.
as no. AO 14. dial
A017 $11 / s^{\prime \prime}$ diometer fluted black slostic knob for $1 / \mathbf{n}^{\prime \prime}$ shoft.
A018 Knob, some os no. A007 except with $1 /{ }^{\prime \prime}$ diometer sairt
A019 Knos, same as no. A007, but without diol
A021 Miniofure metal index for miniature diols.
AOSO Minoture diol lock.
A061 Shoft lock for $1 / 4^{\prime \prime}$ diometer shoft. $1 / 4^{\prime \prime}-32$ bushing. Nickel ploted bross.
A062 Shaft lock with knurled locking nut.
A086 Shoft beoring for $1 / "^{\prime \prime}$ diometer shofts. Nickel ploted brass. Fits 17/64" diometer hole.

CDMPDNENTS

CODE

EOO1 Steatite ceramic seandaff or tie-point. Integral mounting eyelet. $0.205^{\prime \prime}$ overall diameter.
E201 Black or red plastic binding post plates for No. E222.
E202 Black or red plastic plates for two binding posts spaced $1 / 2^{\prime}$
E212 Black or red plastic plug for two binding posts spaced $1 / 2^{\prime \prime}$
E222 Metal bincing post with jack top.
E302A to E306A Stea-ite ceramic terminal strips. 5/4" wide. Ter minols spaced "\%" on certers. Screw type or solder type thru-terminols
1300-350 to 1300-2500 Complete line of miniature inductonces 3.3 to 2500 microhenries. $3 / /^{\prime \prime}$ long. Diometer $0.115^{\prime \prime}$ to $0.297^{\prime \prime}$
MCO1 Insuloted universal ioint style flexible coupling for $1 / \mathbf{1 月 ~}^{\prime \prime}$ dio shafis.
M003 Solid coupling for $1 / 1^{\prime \prime}$ dic. shofts. Nickel ploted brass.
M004 Universol ioint soyle flexible coupling for $1 / /^{\prime \prime}$ diameter shofts.
MC05 Universal jaint siyle flexitle coupling for $1 / s^{\prime \prime}$ diameter shafts,
M006 External hub for maximum flexibility. Not insulated.
M006 Universol joirt style Flexible coupling for $1 / \mathbf{y}^{\prime \prime}$ diometer shofts.
Spring finger. S-eatie ceromic insulotion
M008 Plastic insuloted coupling with nickel ploted bross inserts for
MO' 7 Plostic insus

M023 Insulated shoff extension for $1 / 4^{\prime \prime}-32$ bushing and $1 /{ }^{\prime \prime}$ shoff.
m024 For mounting sub-minioturs potentiameter.
69043 locking insulcted shaft extension similar to no. MO23.
steotite ceramic coil form. Adjustoble core. Winding spoce
69044 (4 diameter by $13 / 2$ " long. Mounting $4-40$ hole. Steotite ceramic coil form. Adjustable core. Winding spoce $0.187^{\prime \prime}$ diameter by ${ }^{3} / \mathrm{m}^{\prime \prime}$ long. No. $10-32$ mounting.

FOR YOUR APPLICATION FROM STOCK...

700 STOCK ITEMS to cover every electronic application.
300 HERMETIC ITEMS . . oroved to MIL-T- 27A, eliminates test delays. All with the UTC plus value HIGHEST RELIABILITY IN THE FIELD.

HERMETIC AUDIOS

LOW PaSS high pass band pass 60 to 12000 GTCLES

TELEMETERING 400 to 30000 CYCLES

I

TELEGMAPM
425 t 2975 EVCIES

HIGH Q INDUCTORS

HERMETIC POWER COMPONENTS Military, Industrial

FOR TUBE, TRANSISTOR, CHOPPER, ANO MATCH. ING St RVICE. \& to 1202.

TRANSISTOR AUDIO

MICHEST POWER

TRANSISTOR POWER

INVERTERS TO 550Y 28 FROM GATTERY

POWER TO 1200 VCT

reacturs to 1.2'5

HIGHEST PIDELITY

COMMERCIAL GRADE
 FOR COMMERCIAL EQUIPMENT.

 MIPERMALLOY
 LIMEAR STANOARO avorifes

VOLTAGE ADSUSTORS . . STEPOOWN ISOLA. TION UNITS TO 2500 W

PULSE

miniature, wouno cgre. 05 10 25 usec

MACN. AMPS.

FOM SERVO MCTORS 2 TO 18 WATtS

AMATEUR SERIES

COMPLETE LINE OF AUDIE AND POWER FOR HAM. MARIME. EfC: COMMUMEATION.
REPLACEMENT TYPES

addio, powert filament and reacturs to 200 kA

And Special Units to Your Specifications

UNITED TRANSFORMER CORPORATION
150 Varick Sireet, New York 13, N. Y.
PACIFIC MFG. DIVISION: 4008 W . JEFFERSON BLVE., LOS ANGELES 16, 'CALIF export division: 13 east ath street, New york le, N. Y.

Your best buy!
 Johnson Amateur Equipment
 ... For Full Communication POWER!

VIKING "ADVENTURER" 50 WATT TRANSMITTER -Used ta earn first Novice WAC! (Worked All Continents.) Self-contained, effectively TVI suppressed, instant bandswitching 80, 40, 20, 15, and 10 meters. Operates by crystal ar external VFO. An octal power receptacle located on the rear apron provides full 450 VDC at 150 ma. and 6.3 VAC af 2 amp. output af supply to power auxiliary equipment such as a VFO, signal monitor, or modulator for phone operation. This receptacle also permits using the full output of the supply to power other equipment when the transmitter is nat operating. Wide range pi-network output handles virtually any antenna without separate antenna tuner sreak-in keying is clean and crisp. Designed far easy assembly. With tubes, less crystals and key. Dimensions: $103{ }^{\prime \prime} \times 810^{*} \times 7 \%^{*}$. Shipping Weight: 19 lbs.
Cat. No. 240-181-1. . Kit
Amateur Net $\$ \mathbf{5 4 . 9 5}$
SPEECH AMPLIFIER/SCREEN MODULATOR-Designed ta provide phone operation for the "Adventurer". High gain-use with either crystal or dynamic microphones. Simple installatian-only minor wiring changes necessary in "Adventurer". With tubes.
Cat. No. 250-40. . Kif. Amateur Net
$\$ 12.25$

VIKING "NAVIGATOR" TRANSMITTER/EXCITER -This compact, flexible CW transmitter has enough RF power to excite most high powered final amplifiers on CW and AM 40 watts-bondswitching 160 through 10 meters. Highly stable, builtin VFO is temperainure compensated and voltage regulated - may also be operated crystal cantral. Timed sequence keying-effectively TVI suppressed. Pi-network antenna load matching from 40 ta 600 ohms. With tubes, less crystals and key. Dimensions: $131 / 4 \times 910^{*} \times 101 / 16^{\prime \prime}$. Shipping Weight: 27 lbs .
Cat. No. 240-126-1. . Kit. Amateur Net $\$ 149.50$
Cat. No. 240-126-2. . Wired and tested..................... Amateur Net $\$ 199.50$

VIKING "CHALLENGER" TRANSMITTER-Ideal far fixed station, emergency, portable or field day use, the "Challenger" is a full size transmitter with three' RF stoges-designed for fast, easy tuning, excellent stability and plenty of reserve drive. 70 watts phone input 80 through 6 meters, 120 watts CW inst 80 through 10 meters... 85 watts CW input on 6 meters! A single $\delta D Q 6 A$ buffer drives two husky $O D Q 6 A$ bridge neutralized tetrodes in the final amplifier. hi " Q " wide range pi-network output-effectively TV suppressed and filtered. For crystal or external VFO control. Excellent keying system. With tubes and builtin power supply.
Cal. No. 240-182-1 . Kit.
Amateur Net \$114.75
Cal. Na. 240-182-2 . . Wired and tested.
Amateur Net $\$ 154.75$

VIKING "RANGER" TRANSMITTER -This outstanding amateur transmitter will also serve as an RF and audio exciter tor high power equipment. As an exciter, it will drive any of the popular kilowatt level tubes. Na internal changes necessary to switch from transmitter to exciter operation. Self-contained, 75 watts CW or 65 watts phone input ... instant bandswitching $160,80,40,20,15$, and 10 meters. Extremely stable, builtin VFO or crystal contral-effectively TVI suppressed -high gain oudio-timed sequence (break-in) keying-adiustable wave shaping. Pi-network antenna load matching from 50 o 500 ohms. Easily assembled - with tubes, less crystals, key and microphone. $151 / 2^{*} \times$ $95 / 3^{*} \times 14^{\circ}$. Shipping Weight: 54 lbs .
Cat. No. 240-161-1 . . Kit.
Cat. No. 240-161-2. . Wired and tested. Amateur Net $\$ 329.50$
Amateur Net
\$229.50

VIKING "VALIANT" TRANSMITTER -Designed for outstanding flexibility and performance. 275 watts input on CW and SSB (P.E.P. with auxiliary SSB exciter), 200 watts AM. Instant bandswitching 160 through 10 meters-operates by built sin VFÓ or crystal control. Pi-network tank circuit will match antenna loads from 50 ta 600 ohms -final tank coil is silver-plated. Other features: TVI suppressed-timed sequence (bret kin) keying-high gain push-ta-talk audio system-low level audio clipping-buith-in low pass audio filter-self-contained power supplies. With tubes, less crystals, key, and microphone. Dimensions: $21 \times 115 /^{\prime \prime} \times 161 / 4^{\prime \prime}$. Shipping Weight: 83 lbs
Cat. No. 240-104-1 . . Kit
Amateur Net^{2}
$\$ 349.50$
Cat. No. 240-104-2 . Wired and tested.
. Amateur Net

VIKING "P ACEMAKER" TRANSMITTER - This exciting transmitter offers you the ultimate in single sideband . . . 90 watts SSB P.E.P. and CW input. .35 watts AM. Self contained-effectively TVI suppressed. Instont bandswitching on 80,40,20,15, ond 10
 meters. Exclet and bOX and anti-trip circuits provide eparate rice controlled operotion Pi-network output matches antenna loads trom 50 excellent voice controlled operolion. Pi-neld drive the Viking Kilowatt or grounded-grid to 600 ohms. More han enough pow . 250.34 Power Divider when used with kilowatt amplifiers. (Requires use of Cat. No. 2S0.34 Power Dicide. Dimensions $21^{\circ} \times$ Viking Kilowott.) With tubes and crystals, less key and microphone. Dimensions: $21 x$ $115 / 0^{\circ} \times 165 / "^{\circ}$. Shipping Weight: 74 lbs .
Cat. No. 240-301-2 . . Wired and tested.
. Amateur Net \$495.00

TER-Rated a full 600 watts CW .. . 500 watts VIKING "FIVE HUNDRED" TRANSM SSB exciter.) All exciter stages ganged to VFO phone ond SSB. (P.E.P. with auxiliary SSB excit place on your operating desk beside uning. Two compact units: RF unit small ag be ploced in any convenient location. receiver-power supply/modviator unt and Crystol or built-in VFO control-instant bandswitching 80 through 10 meters-TVosup-pressed-high goin push-totolk oudio system-low level audio clipping. Pinnetwork output circuit with silver-ploted finol tonk coil will lood virtuolly ony antenno system. With tubes, less erystols, key, and microphone. Dimensions: RF Unit- $21^{\prime \prime} \times 115 / 3^{\prime \prime} \times 161 / 2^{\prime \prime}$. Power Supply- $203 \%^{\prime \prime} \times 153 / 4^{\prime \prime} \times 10 \frac{1 / s^{\prime \prime}}{}$. Totol Shipping Weight: 200 lbs.
Cat. No. 240-500-1 . . Kit...
$\$ 749.50$ Cot. No. 240-500-2 . Wired and tested. Amateur Net $\$ 949.50$

VIKING "THUNDERBOLT" AMPLIFIER - The hottest linear omplifier on the markethondles over 2000 wotts P.E.P." input SSB; 1000 wotts CW; 800 wotts AM lineor; in a completely self-contoined desk-top pockage. Continuous coveroge 3.5 to 30 mcs .instont bondswitching. Moy be driven by the Viking "Novigotor", "Ronger", "Pocemoker", or orther in Class AB: linear, 20 wotts Closs C continuous wove. With tubes ond built-in power in Class AB: Dimensions: $21^{\prime \prime} \times 11 \mathrm{~s} / \mathrm{m}^{\prime \prime} \times 16^{7 / 16^{\prime \prime}}$. Shipping Weight: 140 lbs .
Cat. No. 240-353-1 . .Kit. Amateur Net $\$ 524.50$
Cat. No. 240-353-2 . . Wired and rested.
Amateur Net $\$ 589.50$

VIKING "COURIER" AMPLIFIER-Rated o solid one-holf kilowott P.E.P. input with ouxiliory SSB exciter as a Closs B lineor omplifier; one-holf kilowott input CW or 200 wotts in AM lineor mode. Completely self-contoined desk-top pockoge-moy be driven by the Viking "Novigotor," "Ronger," "Pocemoker," or other unit of comporoble output. Continuous coveroge 3.5 to 30 mes. Drive requirements: 5 to 35 wotts depending upon mode ond frequency desired. Pi-network output designed to motch 40 to 600 ohm ontenno loods. Fully TVI suppressed. Complete with tubes ond built-in power supply. Dimensions: $15 \frac{1}{2} \times 9 \mathrm{~s} / \mathbf{"}^{\circ} \times 14^{\prime \prime}$. Shipping Weight: 68 lbs .
Cot. No. 240-352-1 . . Kił.
Amateur Net \$244.50
Cat. No. 240-352-2 . Wired and tested A mote ur Nel $\$ 289.50$

VIKING "6N2" TRANSMITTER - lnstant bondswitching on 6 and 2 meters, this compoct VHF tronsmitter is roted of 150 wotts CW and 100 wotts AM phone. Completely shielded and TVI suppressed, the " 6 N2" may be used with the Viking "Ronger," "Viking I," "Viking Il," or similor power supply modulator combinations copoble of of leost 6.3 VAC of 3.5 omp., 300 VOC of 70 mo ., 300 to 750 VDC of 200 mo . ond 30 or more wotts oudio. Moy be operoted by built-in crystol control or externol VFO with 8.9 mc . output. With
 Weight: 14 lbs .
Cat. No. 240-201-1. . Kit \qquad Amateur Nel \$129.50
Cat. No. 240-201-2 . Wired and tested Amateur Net $\$ 169.50$

VIKING "KILOWATT" AMPLIFIER—Brilliantly designed and encineered, the Viking "Kilowott" is the only power amplifier ovoiloble which will handle full 2000 wotts SSB *input and 1000 wotts CW ond AM! Closs "C" fincl omplifier perotion provides plote circuit efficiencies in excess of 70%. Final ampliffer tilizes two 4-400A tetrodes in porollel, bridge neutralized. Contanuous coverge 3.5 to 30 mc . Excitotion requirements: 30 wotts RF ond 10 watts oudio for AM; 10 wotts peok for SSB.
Cat. No. 240-1000. . Wired and tested. Amateur Net \$1595.00 Cat. No. 251-101-1. . Matching accessary desk top, back and three drower pedestal.

FOB Corry, Pa. \$132.00
The FCC permits o moximum of ane kilowott overage power immut for the omoteur service. In SSB operation under normol condilions this results in peok envelope power inputs of 2000 watts or more depending upen individuol voice chorocteristics.

The E, F, Johnson Compony reserves the right to chonge prices ond specificctions without notice ond without incurring obligotion.

Your best buy!

Johnson Station Accessories -. - For Outstanding PERFORMANCE!

VIKING AUDIO AMPLIFIER - A self-contained 10 -watt speech amplifier complete with power supply. Speech clipping and filtering designed to raise overage modulated carrier level. , improves the performance and effectiveness of your AM transmitter, Inputs provided for microphone, phone patch, or line. Complete with tubes. Dimensions: $137 / \mathbf{y}^{*} \times 8^{*} \times 53 / 2^{*}$. Shipping Weight: 22 lbs .
Cal. No. 250-33-1 . . Kit.
Amateur Net \$73.50
Cat. No, 250-33-2 . Wired and tested. Amateur Net $\$ \mathbf{\$ 9 . 5 0}$

POWER REDUCER -Provides up to 20 watts continuous dissipation for 100.150 watt transmitters such as Johnson Viking, Collins 32 V , or others, permitting them to serve os exciters for the Viking "Kilowatt". Completely shielded-equipped with SO-239 coaxial connectors. Dimensions: $31 / 2^{\circ}$ long $\times 21 / 4^{\circ}$ diameter.
Cat, No, 250-29
Amateur Net $\$ 13.95$
POWER DIVIDER - Provides up to 35 watts continuous dissipation. Designed to provide the proper output looding of the "Pacemoker" SSB Transmitter when used to drive the Viking Kilowatt Amplifier,
Cat. No. 250-34
Amateur Net $\$ 25.50$

VIKING "6N2" VFO-Exceptionally stable and compact-designed to replace 8 to 9 mc. crystals in frequency multiplying 6 and 2 meter transmitters, including types using overtone oscillators. Temperature compensated and voltage regulated for minimum drift and high stability. Plexiglas dial calibrated from 144 to 148 mc ., 50 to 51.5 mc. 51.5 to 53 mc .10 to 1 vernier tuning. Complete with tubes and calibrated dial. Dimesion: $4^{*} \times 41 / 2^{*} \times 5^{\prime \prime}$.
Cat. No. 240-133-1 . . Kit. \qquad Amateur Net $\$ 34.95$
Cat. No. 240-133-2, . Wired and tested
Amateur Net $\$ \mathbf{5 4 . 9 5}$
MOBILE VFO-Diminutive variable frequency oscillator designed specifically for mobile use. Rugged construction minimizes frequency shift due to road shock and vibration.. small size permits steering post mounting. Temperature compensated and voltage regulated. Calibrated 75 through 10 meters... 3.75 to 4 mc , output for 75 meters and 7.05 to 7,45 for 40 to 10 meters. 10.5 me. output also available for doubling to 15 meters. With tubes. Dimensions: $4^{\prime \prime} \times 41 / 4^{\prime \prime} \times 5^{\prime \prime}$.
Cat. No. 240.152-1 . Kit. .
Amateur Net $\$ 33.95$
Cat. No. 240-152-2. Wired and tested.
Amateur Net \$52.50
DYNAMOTOR POWER SUPPLIES—Supplies plate voltages for Viking "Mobile" and VFO. Rated: 500 volts, 200 ma. intermittent. Base kits accommodate PE-103, Carter, and others.
Cat. No.
Amateur Net
239-102 Dynamotor Power Supply, 6 volt Wired and tested........... 598.50
239-104 Dynamotor Power Supply, 12 volt Wired and tested. 99.50

239-103 12 volt base kit only. 21.20
"WHIPLOAD-6"-Provides high efficiency bose loading for mobile whips with instant bandswitch selection of $75,40,20,15,11$, and 10 meters. On 75 meters a special copacitor with dial scale permits tuning entire band, Covers other bands without tuning. Air-wound coil provides extremely high "Q." Fibre-gloss housing protects assembly. Mounts on standard mobile whip.
Cot. No, 250-26. . Wired and tested \qquad Amateur Net
$\$ 16.95$

VIKING "MATCHBOXES" Provides completely integrated antenna matching and switching systems for kilowatt or 275 -watt transmitters. Units complete with builtin directional coupler and indicator. Bandswitching $80,40,20,15$, and 10 meters. Quickly and easily moth transmitter to balanced or unbalanced lines over a wide range of antenna imppedances will tune out large amounts of capacitive or inductive reactance. No "plug-in" coils or "load-tapping" necessary.

275 WATT "MATCHBOX"

"SIGNAL SENTRY" - Monitors CW or phone signals on all frequencies to 50 mc . without funing. Energized by transmitter RF. Mutes receiver audia for breakrin. May be used as code practice oscillator with simple circuit modification. Requires 250 VDC at 5 ma .; and 6.3 VAC of .6 omp. from receiver or other source. With tubes. Dimensions: $35 / \mathrm{s}^{*} \times 3 \mathrm{~m}$ $\times 33 / 4^{*}$. Shipping Weight: 3 lbs.
Cat. Na. 250-25. Wired and tested
Amateur Net \$22.00
CRYSTAL CALIBRATOR-Provides accurate 100 kc . check points to 55 mc . Requires 6.3 volts at .15 amps. and 150.300 volts at 2 mo . With pube, military-pype crystal, power cable and extension leads. Dimensions: $15 / e^{\prime \prime} \times 21 / 2^{*} \times 11 / 2^{\prime \prime}$. (Over-all height to top of tube is $33 / 8$ ".)
Cat. Na. 250-28. . Wired and tested
Amateur Net \$17.95
LOW PASS FILTER-Handles more than 1000 watts RF-provides 75 db or more attenuation above 54 mc . Insertion loss less than .25 db . Replaceable Tefon insulated fixed capacitors. SO 239 coaxial connectors. Wired and pre-tuned. Dimensions: 9 " long $\times 25 / 16^{\prime \prime}$ diameter.
Cat. No. 250-20. Wired and pre-funed 52 ahms........... Amateur Net \$14.95 Cat. No. 250-35. Wired and pre-tuned 72 ohms........... Amateur Net $\$ 14.95$

INDUCTORS-Johnson manufactures a somplete line of high power variable, rotary, edgewise wound "Hl-Q" ond swinging link inductors for commercial ond amateur use. For complete information write today.
KEYS AND PRACTICE SETS- Johnson olso manufactures a complete line of semi automatic, high speed, stondard, heavy duty and practice keys; code practice sets and automatic, high speed, standard, heavy duty and procic

Cat. No. Amoteur Net
$\begin{array}{ll}\text { 138-116 With limit switches far } 370 \text { rotatian-coaxial line......... } 334.00 \\ 138-108 & \text { Beam switching relay.................................... } 22.00\end{array}$
8 conductor cable for rotatar. Per ft. .26
144.16
"MATCHSTICK" - Fully automatic, pre-tuned multi-band vertical antenna system. Bandswitching 80 through 10 meters, Remotely mator driven from operating position. Easily mounts on roof top or in limited space location. Low SWR (less than 2 to l) all bands. mounts on roof top or in limited space 5° most, base, funing network, relays, sontrol box and 6 nylon guy ropes. Shipping Weight: 38 lbs.
Cot. No. 137-102. . Pre-tuned.
Amateur Net $\$ 129.50$
Cal. Na. (With 3 elements, beam and balun)
Amateur Net
138-420-3 20 Meter Beam-20 Baom. 84 lbs. Net Weight.............. $\$ 139.50$
138-415-3 15 Meter Beam-13'7" Baom. 53 Ibs. Net Weight. 110.00
138-410-3 10 Meter Beam- 10' Baom. 42 lbs. Net Weight............. . . 79.50
ROTOMATIC ROTATOR-Safely supports multiple arrays weighing up to several hundred pounds even under heavy icing candifions or high wind loading. Rotates 1 RPM-over-all gear reduction 12000 to 1. Rototor housing is cast aluminum, with $516^{\prime \prime}$ steel rotating table. Includes desk top control arimuth bearing

T-R SWITCH—Provides instantaneous high-efficiency electronic antenno switching. Exellent作 peak power. Instantaneous break-in on SS, Sb, to most receivers through 3 to 30 mc ine SWR-provides an effestive impedance motch to most receivers through 3 to 30 mc , an'je. With tube, power supply, and provision for RF probe, etc. Dimensions: $4^{3} / 16^{6} \times 43 / s^{4}$ $\times 5$ /ht. Shipping Weight: 5 lbs.
Cat. No. 250-39. Wired and tested. Amateur Net \$27.75
DIRECTIONAL COUPLER AND INDICATOR - Provides continuous reading of SWR and elative power in tronsmission line. Coupler may be permonently installed in 52 ohm coaxial line-handles maximum legal power as specified by FCC. Standard tip jacks permit use of commerciol multimeter as indicating instrument-reference sheets showing curves supplied for popular multimeter basic ranges. Indicotor is a $0-100$ micro-ammeter calibrated in SWR and relorive power. Monitors incident or reflected power quickly with Aip of a switch. Coupler dimensions: $61 / 4$ " long $\times 2^{3} / \mathrm{hb}^{\prime \prime}$ diameter. Shipping Weight: 2 lbs . Indicator dimensions: $4^{*} \times 43 / /^{\prime \prime} \times 4 \mathrm{l} / 4^{\prime \prime}$. Shipping Weight: 4 lbs .
Caf, Na. 250-37. . Coupler, Wired and tested
Amateur Net $\$ 11.75$
Caf. Na. 250-38 Indicator, Wired and tested............ . Amateur Nel $\$ 25.00$

The E. F. Johnson Company reserves the right to change prices and specifications without notice and without incurring obligation.

E- Fi- Tolimsorn Companiyy
120 SECOND AVENUE S. W. - WASECA, MINNESOTA

Johnson Components
 ..-TOPS for QUALITY!

The E. F. Johnson Company also manufactures a complete line of electronic components for those of you who prefer to design and build your own transmitting equipment and accessories. The complate line is covered in Catalog 977 b . . . write for your free copy today!

KNOBS AND DIALS-A distinctive line of matching knobs and dials, derived from a new basic knob design and suitable for the finest electronic equipment. Available with phenolic skirts, etched and anodized aluminum skirts with markings, or flat dial scales engraved and filled. All plastic is tough phenolic meeting MIL-P-14 specifications, with heavy brass inserts for $1 / 4^{\prime \prime}$ shafts.

INSULATORS—High quality steatite and porcelain insulators. Heavily glazed surfaces and heavy nickel-plated brass hardware suitable for exposed application. May be supplied with screws and nuts or with jacks to accommodate standard banana plugs. Through-panel and stand-off types. Also antenna insulators, bushings, and feeder insulators.

PILOT LIGHTS-A complete selection of standardized pilot lights. Faceted jewel or wide-angle lucite lens types; enclosed or open body styles; standard bayonet, candelabra, or miniature screw types, and a wide variety of mounting brackets and assembliss. Jewels available in clear, red, green, amber, blue, and opal. All Johnson pilot lights are described in detail in Pilot Light Catalog 750a-send for your copy!

CONNECTORS-A complete line of new nylon connectors is available in addition to standard banana jacks and plugs. Nylon components include insulated solderless tip and banana plugs, tip and banana jacks, tip jack and sleeve assemblies, metal-clad tip jacks, and a 6 -way binding post. In thirteen bright colors-nylon components are designed to operate through an extremely wide temperature range and high relative humidity conditions. (Voltage breakdown up to 11,000 volts.) Solderless nylon plugs are easy to assemble-both plugs and jacks require a minimum amount of mounting space.

VARIABLE CAPACITORS

TYPE "M" - These diminutive capacitors provide the perfect answer to problems encountered in the design of compoct radio frequency equipment. Bridge-type slator terminal provides extremely low inductance path to both stator supports. Soldered bearing and heavily anchored stator supports insure extreme rigidity.
TYPE " S "-Midway between types " M " and " K " in size, design is compact and construction rugged. Equipped with DC. 200 treated steatite end frame and nickel-plated brass plates-an excellent choice where higher capacity values than provided in " M " types is required in small space.
TYPES "C" AND "D"—Functional favorites built to exacting standards for medium power RF equipment. Dual types have centered rotor connection for balance. End frames tapped for panel mounting. Brackets furnished for chassis mounting.
TYPES "E" AND "F"-Rugged units provide a large amount of capacity per cubic inch and extremely low capacity to the chassis. Panel or chassis mounting.
TYPE "G"—Neutralizing capacitors for medium and low-powered stages constructed on the rotor-stator principle. Panel or chassis mounting.
TYPE " j "- Heavy-duty miniature type has wider spacing than most small air variables, yet occupies little more space. Useful for small space plate tank circuits and low power stages where standard miniatures have insufficient plate spacing.
TYPE "K"-Widely used for military and many commercial applications, the Johnson lype " K " features DC-200 impregnated steatite end frames, slotted stator contacts, and extra-rigid soldered plate construction.
TYPE "L"一A superior quality general purpose capacitor embodying important advances in design and construction. The rotor bearing and stator support rods are actually soldered directly to the ceramic (steatite) end frames, making the capacitor virtually vibration-proof.
TYPE " N "-Extremely high valtage rating in proportion to size requiring a small mounting area. Constant voltage rating throughout full capacity range. These are of the aluminum cup and cylinder type of construction and are supported by a steatite frame with cast aluminum mounting bracket.
TYPE "R"-The rugged Johnson version of a popular standardized capacitor. Featuring extra heavy steatite stator support insulators and soldered $.023^{\prime \prime}$ thick brass plates; all metal parts heavily nickel-plated for corrosionresistance.

TYPE "U" - New design-rotor and stator are precision machined from one piece of solid brass, offering excellent uniformity and outstanding mechanical stability. Low cost due to automatic production techniques. High torque-to-mass ratio. Excellent, low temperature coefficient.
TYPE "T" -Fully complies with JAN-C-92 specifications. Excellent mechanical stability. High torque-to-mass ratio. " Q " great. er than 1000. Available only in production quantities for early 1959 delivery.)

TUBE SOCKETS

Johnson steatite and porcelain tube sockets are available in three grades: Standard, Industrial, and Military. All are monufactured to rigidly controlled specifications, and all are made of only the highest quality materials.
Bayonet Types - include Medium, Jumbo, and Super Jumbo 4 pin models.
Steatite Wafer Types-ovailable in 4, 5, 6, 7, and 8 pin standard sockets as well as Super Jumbo 4 pin, Giant 5 and 7 pin models and VHF transmitting Septar base types.
Miniature Types-are sleatite insulated and available in Miniature 7 and 9 pin madels. Matching miniature shields also available.
Special Purpose Types-include sockets for tubes such as the 204A and 849, the 833A, 304TL, 5D21, 705 A , and other special types.
For High Power Transmitting Tubes - such as the $4 \times 150 \mathrm{~A}, 4 \times 150 \mathrm{D}, 4 \times 250 \mathrm{~B}, 4 \mathrm{CX} 250 \mathrm{~B}, 4 \times 250 \mathrm{~F}$, 7034, 7035. Available in several designs-with or without screen grid by-pass capacitor. Basic socket molded of low-dielectric loss-factor Kel-F plastic. Contacts are low-resistance silver-plated beryllium copper.

For complete information on all Johnson sockets-write for your copy of Tube Socket Standardization Booklet 536.

HY-GAIN'S EXTENSIVE RESEARCH AND DESIGN FACILITIES AVAILABLE FOR DEVELOPMENT PROJECTS IN THE FIELDS OF COMMERCIAL \& MILITARY COMMUNICATIONS

thu - q ain

Hy-Gain Antenna Products carry the Seal of Superiority in hamdom gained by mass amateur acceptance. Top quality, easy construction and assembly, maximum operation and low prices have placed hy-gain in the enviable position of being "most wanted" by hams all over the world. Here is a capsulized complete listing of the entire hy-gain line. See your distributor for details.

THE VHF BEAMS

THE MONOBANDERS

hy-gain antenna products - 1135 no. 22 nd - lincolr, nebraska specifications and prices subject to chance without notice

The completely new $S /$ Line is Collins' latest addition to its distinguished single sideband series of amateur radio systems. Individual units on which a system may be built are the $32 \mathrm{~S}-1$ Transmitter, $75 S-1$ Receiver, $30 \mathrm{~S}-1$ Linear Amplifier, $516 \mathrm{~F}-2$ Power Supply, 31213-4 Speaker Console and 319E-3 Speaker.

The 32S-1 and 75S-1 may be operated separately or as a transceiver in which the receiver controls the transmitter frequency, With the $32 \mathrm{~S}-1$, the input is 175 watts l'EP on SSB, and 160 watts on CW. The 30S-1 Linear Amplifier increases this power to full legal limit on SSB and 1 kw on CW. The 319B-4 Speaker Console integrates control of all station funetions.

32S-I TRANSMITTER

The $32 \mathrm{~S}-1$ is an SSB or CW transmitter with a nominal output of 100 watts on all amateur bands between 3.5 and 29.7 me. Input power is 175 watts IPEP on SS13 or 160 watts on CW.

The transmitter covers 3.5 to 30 mc except for the 5.0-6.5 me range. Crystal sockets, crystals and band switch position are provided for 10200 kc bands, with the standard amateur configuration equipped as follows: 3.4-3.6, 3.6-3.8, 3.8-4.0: 7.0-7.2 $7.2-7.4 ; 14.0-14.2,14.2-14.4$; 21.0)-21.2, 21.2-21.4, 21.4-21.6. Crystal sockets and band switch positions also are provided for three 200 kc bands between 28 and 29.7 mc . One of these sockets is equipped with a crystal for 28.5 to 28.7 mc . A fourteentla pesi-
tion, corresponding to the WWV position on the receiver, can be used for an additional 200 ke band in the $9.5-15.0 \mathrm{me}$ range, if desired.

Time-proven features of the Collins KWS-1 and KWM-1 have been incorporated into the $325-1$, including Mechanical Filter-type sideband generation; stable, permeability-tuned VFO; crystal-controlled IHF oscillator; MF inverse feedhack for better linearity, and automatic load control for higher average

The associated $516 \mathrm{~F}-2$ Power Supply is housed separately in a matching cabinet with ample room for mounting additional station accessories. The $516 \mathrm{E}-112 \mathrm{v}$ de and 516E-2 28 v de Power Supplies for the KWM-1 also may be used with the 32S-1.

SPECIFICATIONS

EMISSION: SSB - upper or lower sideband. CW - keyed tone.

POWER INPUT: 175 watts PEP on SSB, 160 watts on CW.
POWER OUTPUT: 100 watt PEP nom (slightly lower on 10 meters).
OUTPUT IMIPEIDANCE: 50 ohms with not more than approximately 2 to 1 SWR.
FREQUENCY RANGE: 80, 40, 20, 15 and 10 meter amateur bands; may be tuned to other frequencies by changing crystals.
OSCILLATORS: Double conversion circuit is used with CR-18/U crystals in the HF oscillator. A VFO, tuming 2.500 to 2.700 mc , provides 200

SIDEBAND SYSTEMS

kc bands. A crystal oscillator provides carrier for SSB generation and choice of upper or lower sideband.
FREQUENCY STABILITY: After warm-up, overall stability dae to temperature, humidity, pressure and voltage variation is 100 cps . Calibration aceuracy: 1 kc .
VISUAL DIAL ACCURACY: 200 cps all bands.
ELECTIRICAL DIAL ACCURACY (after calibration): 300 cps all bands.
BACKLASH: Less than 50 eps.
HARMONIC AND OTHER SPURIOUS RADIA'ION: Carrier suppression -50 db . Unwanted sideband -50 db . Oscillator feed-through and/ or miver products -50 db . Second harmonic -50 db . 3rd order distortion -30 db .
KEYING CIIARACTERISTICS: Break-in CW provicled by operating VOX from keyed tone.
AUIDIO INPUT: High impedance microphone and 600 -ohm auxiliary input.
RESPONSE (over-all): Nom 300-2500 cps $\pm 3 \mathrm{db}$.
AUDIO COMPRESSION CHARACTERISTICS: ALC applied to IF and RF amplifier stages provides 10 db compression.
RF FEEDBACK: Approximately 10 db of RF feedback around PA and driver for improved PA linearity.
NOISE LEVEL: 40 db below one tone carrier.
 $73 / 4^{\prime \prime} \mathrm{H}, 10^{\prime \prime} \mathrm{W}, 19^{\prime \prime} \mathrm{D}$.
WEIGHT: $32 \mathrm{~S}-1-16 \mathrm{lbs}$., $516 \mathrm{~F}-2-28 \mathrm{lbs}$.
POWER SOURCE: $115 \mathrm{v}, 50 / 60$ cps.

POWER REQUIREMENTS: CW key closed - 320 watts ac, or $23 \mathrm{amps} @ 14 \mathrm{v}$. SSB, average speech - 225 watts ac, or $16 \mathrm{amps} @ 14$ v.

75S-1 RECEIVER

The 75S-1 provides SSB, CW and AM reception on all amateur bands between 3.5 and 29.7 nic. It is capable of coverage of the entire HF spectrum between 3.5 and 30 mc by selection of the appropriate HF beating crystals.

The standard amateur configuration includes crystal sockets, crystals and band switch positions for: $3.4-3.6,3.6-3.8,3.8-4.0 ; 7.0-7.2,7.2-7.4 ; 14.0$-14.2, 14.2-14.4; 21.0-21.2, 21.2-21.4, 21.4-21.6. Crystal sockets and band switch positions are also provided for three 200 kc bands between 28 and 29.7 mc , with one of the sockets equipped with a crystal for 28.5 to 28.7 mc . A crystal and band switch position is also provided for $14.5-15 \mathrm{mc}$ for reception of WWV and WWVH for time and frequency calibration data.

The same standard of excellence and many of the design features of the $75 \mathrm{~A}-4$ are incorporated in the
(continued overleaf)

single sideband systems, cont.
75S-1. These include dual conversion with a erystal controlled tirst beating oscillator; handpass first $1 \mathrm{~F}^{\text {; }}$ stable permeability-tunced VFO; RF amplifier designed to minimize coross modulation products: Mechanical Filter; excellent $A V^{\prime}($ chanateristies and product delector.

New features include the use of only 150 volts on vacum tube plates. use of silicon diodes in lien of conventional high vacomm rectifier, and choice of three degrees of selectivity.

A power connector at the rear of the 75S-I dassis provides for disabling the internal ac power sumply so that either the 12 or 25 vele power supply for the KWM-1 may be used wower the receiver as well as the tramsmitter.

Soon to be available as an internal atecessory in the $75.5-1$ is the Collins noise Whater. This device is very effective in not merely limiting but in virthally eliminating impulse type noise.

SPECIFICATIONS

FREOUENCY RANGE:

So meters - 3.4 to 4.0 mc .
40 meters -7.0 to 7.4 mc .
20 meters -14.0 to 14.4 me.
WTV - 14.8 to 15.0 me .
15 meters $=21.0$ to 21. (i) ine.

11 meters
 10 meters
 Choice of three zoo ke portions of these bauds; 28.5 to 28.4 fimmished.

Overtrasel - 7.5 ke on all bands.
FREOUEXCY STABHITY: Nfter wam-np, oweratl stability due to temperature humidity. pressure and vollage variation: 100 eps. Catibration ancuracy: l kc.

YISUAL DIAL ACCURACY: 200 cps all bands.
EL.ECTRICAL DIAL, ACCURACY (after calibration): 300 cps all bands.
BACKLASH: Less tham 50 eps.
SENSIAIDTY: The OW sensitivity is better than 1 microvolt (with a 50 -olnm dumany antenma) for a I0 dh signal-phus-noise-to-noise ratio.
SliLECTIVITY: 2.1 ke Mechanical Pïlter for SSB; 0.5 he Mechanical Filter (not supplied) for CWI; 4.0 he If transtormer passband for All.

Shirt-to-nose ratio (60 to 6 db down) both Mechanical Filters: nominal 2 to 1.
Shirt-to-nose ratio (60 to ($(\mathrm{dl}$) down) for t ke IF" transtormer passband: nominal 5 to 1.
SPURIOUS RESPONSE: IF rejection is more than - () db. Hatge rejection is more than (i) (tb). Crossover spurious down more than 50 dth .
AUTOMATIC GVIC CON゙IROL.: ACC threshold 1 microvolt nominal. ACPC time constant - fast attach and slow release.
OUlPU"I LF:VEL, 0.75 watts with I microwolt CW input.
SIZK: $6^{\top} s^{\prime \prime} \mathrm{H}$, $14^{1,2^{\prime \prime}}$ W, $11^{\circ} \mathrm{s}^{\prime \prime} \mathrm{D}$).
W'vililll: 20 lbs .
POWER SOCRCE: 105-125 v, 50-60 cps, 85 watts nom.

30S-I LINEAR AMPLIFIER

Built in a flom-momed cabinet, the $305-1$ is a completely self-contamed, single tube, grounded grid linear amplifier. Reguiring 70 to 100 watts driving power (trom the 325-1 or KWM-1 for example), it provides the full legal power input for SSB (1 hw average) or 1 hw input for CW. The tube used is the Eimate tCXIOOOA. lerequency coverage is consistent with the $32 \mathrm{~S}-1$ and $75 \mathrm{~S}-1$.

Correct tuning and loading are indicated by a meter with its rero at 20 of full sale. The loading control is simply adjusted for zero meter readingg. while the P. taming control is operated in the asual manaer to obtain minmum plate current. At any power level, any deviation of the loading indicator from zero provides immediate warning of malfanction.

Front pane switching thakes immediately available two ditherent power levels for SSB operation: 100 watts from the exciter alone or the full 1 hw moter average input for SSB.

As is trme in all Collins linear power amplifiers. the $30 \mathrm{~S}-1$ is provided with RF inverse teedback for better linearity. Automatic load control voltage from the amplifier is fed back to the 32S-1 Transmitter or KWM1-1 Transceiver.

ACCESSORIES

3I213-4 SPEAKER CONSOLE

The 31213-4 (pietured between 75S-I and 32S-1 above) houses a speaker, an RF directional wattmeter with 200 and 2000 watt scales, and switches for various station control functions.
SIZE: $7^{3} 4^{\prime \prime} 1 \mathrm{I}, 10^{\prime \prime} \mathrm{W}, 121 / 4 " \mathrm{D}$. WIEIGIIT: $8 \frac{1}{2} \mathrm{lhs}$.

3I2B-3 SPEAKER

Contains a 5 " $\times 7$ " speaker and connecting cable. Attractively styled to match receiver and transmitter.
SIZE: $7^{3} \boldsymbol{4}^{\prime \prime} 1 \mathrm{I}, 10^{\prime \prime} \mathrm{W}, 8^{\prime \prime} \mathrm{D}$. WEIGHT: 4 lbs .

The power supply for the 30S-1, which is lroused in the lower portion of the cabinet, provifes eathode biss vollage and 3000 vols for the 4 (21000 A plate. Space is provided in this compartment for mounting the 516F-2 Power Supuly

SPECHETCATIONS

FREQUENCY RANGES: 3.5-4.0 un: $7 .(1-7.3 ; 14.0-$ $14.4 ; 21 .(1)-21.45 ; 28.0)-29.7$. Covers entire suxco trun from 3.5 to 30 me by retuning cathocle circuit.
oUTPU' INIPEDANCE: 50 ohms, SWR 2-1 or less on all hands.
NXPUT INPEDANCE: 50 ohms uabalanced.
POWER INPCT: SSB - 1 kw average. CW - 1 kw .
POWER OU'TPU'T: SSB: 1000 watts PEP with 40 dh) signaal to distortion ratio; 1300 watts PEP with 35 db signal to distortion ratio. CW: 600 watts with I hw input.
HARMONIC OUTPUT: 2nd harmonic at least 40 (th) down all others at least 50 (th) down.
AUTOMATIC LOAD CONTROL: U_{p} to 12 db compression.
NOISE: With 1 kw single tone input, signal-to-noisc-and-hum ratio at least 40 db.
PRIMARY POWERS: 115 or 2.30 vac $50 / 60 \mathrm{cps}$ single phase. 3 -wire neutral ground; 2 kw max. SIZE: $300^{5} 8^{\prime \prime} \mathrm{H}, 17^{\prime \prime} \mathrm{W}, 16^{5} \mathrm{~s}^{\prime \prime} \mathrm{D}$.
WEIGHT: 160 lls .

516F-2 AC POWVER SUPPLY

Operates from 11.5 v ac, $50-60 \mathrm{cps}$. Provides all voltages for the 32 S -1 .
SIZE: $7^{3} 4^{\prime \prime} 1$ If, $10^{\prime \prime} 11^{\prime}, 12^{\prime \prime} 1$. Weigitt: 28 lbs.

KWM-I

KWM-1 TRANSCEIVER

The KWM-1 covers the $14-30$ me frequency range with an input of 175 watts PEP on SSB for molile or tixed installations. In addition to S 813 emission it also utilizes the VOX circuits for break-in CW op)cration with a built-in menitor. the bands are covered in 100 ke segments with a total of 10 such segments. A box that plugs into the front panel contains the 10 injection oscillator erystals. For operation other than amateur sach as on MARS or commercial frequencies, extra crystal boxes with the proper crystal complement are available. The front panel meter acts as an S -meter on receive and as the tuning meter on transmit. A 100 kc crystal calibrator enables acenrate dial calibration.
RF HOWER INPUT: 175 watts SSB PEP or 160 watts CW.
OUTPUT IMPEDANCE: 50 ohms with not more than 2.5 SWR.
POWER SOURCE: $115 \times$ ac $50-60 \mathrm{cps}, 320$ watts max, 12 v de or 28 v de, 25 amps mis.
POWER 1 NPU'I: Filaments - 12 v, 5.25 amps, $B+$ and bials - tramsmit $800 \mathrm{v}, 200$ mat; $265 \mathrm{v}, 210$ ma;; -50 to 80 v, 3 mat; rec: 290 v, 170 mad.
SIZE:
KWM-1 Transceiver $-6^{14^{\prime \prime}} \mathrm{H}, 14^{\prime \prime} \mathrm{W}, 10^{\prime \prime} \mathrm{D}$). $516 \mathrm{~F}^{-1} \mathrm{AC}$ Power Supply - $6^{1} 4^{\prime \prime} \mathrm{H}, 7^{5} \mathrm{~s}^{\prime \prime} \mathrm{W}$, $1(1)^{\prime \prime} \mathrm{D}$.
$516 \mathrm{E}-1$ DC Power Supply - $5^{3} 4^{\prime \prime} \mathrm{H}, 11^{3 / \mathbf{3}^{\prime \prime}}$ W, $7^{3} \mathrm{~s}^{\prime \prime} 1$).
WEIGITT:
KWM-1 Transceiver - 15 ll s .
$516 \mathrm{~F}-1$ AC Power Supply - 25 lbs .
$516 \mathrm{E}-1 \mathrm{D}$ C Power Supply - $12 \frac{12}{2} \mathrm{lls}$ s.
FREQUENCY RNNGE: $14-30 \mathrm{mc}$ continuous. Choice of any ten 100 ke bands by erystal switch. Standard complement of crystals -$14.0-14.1 \mathrm{mc}$ CW, $14.2-14.3 \mathrm{mc}$ SSB, $14.9-15.0$ me calibration with WWV, $21.0-21.1$ me CIV, 21.3-21.4 une SSB, 21.4-21.5 mc SSB, 28.0-28.1 me CW. 28.1-28.2 ac CW, 28.5-28.6 me SSB, $25.6-28.7 \mathrm{mc}$ SSB.
FREQUEXCY CONTROL: 70K-1 permeability tuned YFO.
HARAIONIC \& SPURIOUS RADIATION: Carrier supression -50 db , unwanted sideland -50 db , oscillators and mixer products -50 db , second harmonic -50 db , 3 rd order products -30 db .
FREQUENCY STABILITY: After 10 -minute warmup, within 100 cps . Reset within 1 kc throughout range.
RECEIVER SENSITIVITY: 1.0 uv for 6 db S/N ratio with 3 ke bandwidth.

516E-I DC POWFER SCPILY

Operates from [20 volts de. Provedes all required voltages for the KW.M-1 or 32S-1 and $755-1$ for mobile or portable operation. Transistorized for masimum efliciency and minimum maintenance. The $516 \mathrm{E}-2$, a 28 volt de supply, may also be used. SIZE: $53 / 4{ }^{3 \prime}$

LADDER LINE ${ }^{\ominus}$
 IDEAL FOR TELEVISION LEAD-IN, COMMUNITY T.V., TRANSMITTER FEED LINES OR ANTENNA ELEMENTS.

alr dux ${ }^{(1)}$ BALUN
Unbalanced coax lines used on most transmitters can be matched to balanced lines of either 75 or 300 ohms impedance by using the 82009 air dux coils. May be used with transmitters and receivers without adjustment over the frequency range of 80 through 10 meters, and will handle power inputs up to 200 watts.

NO. B2009	DESCRIPTION Coil with hardware	NET EA.
MB2009	Mounting plate	1.96

Indented pi dux ${ }^{\text {(1) }}$

z new pl dux assemblles The 500 and 1000 watt pi dux assemblies are compact yet conservatively rated. The high frequency coil sections are silver plated for high tank circuit efficiency. A complete technical sheet is included with each assembly.

NET EA.
\#195-1 500 watt pi dux Assembly 5.95
\#195-2 1 KW pi dux Assembly
14.50

Cat.No.	Ola	TPI	$\begin{aligned} & \text { Wre } \\ & \text { Size } \end{aligned}$	$\begin{aligned} & \text { Lengeth } \\ & \text { of coll } \end{aligned}$	$\frac{1}{\text { uh. }}$	Net
816A	1	16	18	$3^{3} 16$	18.0	1.25
1014 A	$1{ }^{1 / 4}$	14	18	$2{ }^{25} 3$	18.3	1.50
1212A	13	12	16	$2{ }^{3}{ }_{4}^{4}$	18.3	1.70
1411A	13.	11	14	$2{ }^{5}$	18.0	1.90
1609A	2	9	14	3	18.1	2.10
2007A	2^{\prime} '	7	12	$31 / 4$	18.6	2.60
2406A	3	6	10	$3^{3} 16$	18.7	3.25
vari-pitch pi dux ${ }^{\text {k }}$						
820010	1	20\& 10	18	$3^{1 / 4}$	18.0	1.25
121206	$1{ }^{1}$	1286	14	3^{1316}	18.6	2.00
160806	2	886	12	4) ${ }^{18}$	18.1	2.70
200805	$2^{1} 2$	885	12	$3{ }^{3}{ }_{4}$	18.2	3.25
240804	3	$8 \& 4$	10	$3^{3}{ }_{4}$	18.6	3.95

=

air dux

Cat.No. Wire Lenoth Ne | 404 | | 4 | 18 | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 406 | | 8 | 18 | | |
| 408 | $1 / 2$ | 8 | 18 | 2 | .40 |
| 410 | 10 | 18 | | | |
| 416 | 16 | 20 | (Si.iver .80) | | |
| 432 | 32 | 24 | | | | $\begin{array}{ccccc}504 & & 4 & 16 & \\ 506 & & 8 & 18 & \\ 508 & 5 / 8 & 8 & 18 & \\ 510 & 10 & 18 & 2\end{array}$ (Silver.85)

1204		4	14		
1206		6	14		
1208	$1 / 2$	8	16	10	1.80
1210	10	18	10		
1216		16	20		
$=1232$		32	24		
1404		4	14		
1406		6	14		
1408	$13 / 4$	8	14	10	1.90
1410		10	16	10	
1416		16	18		
$=1432$		32	24		
1804		4	12		
1606		6	14		
1608	2	8	14	10	1.95
1610		10	16		
1616		16	18		
2004		4	12		
2008	$21 / 2$	6	12	10	2.25
2008	8	14	10		
2010		10	16		
2404		4	10		
2406	3	6	12	10	3.40
2408	3	14			
2410		10	14		

"T" series air dux are Tinned copper wire.
rAdd "I" after Co". No

Available from your parts distributor.

Write for complete literature.

EXPORY DEPT.: 15 MOORE ST, NEV YORK 4. A Y CABLE ADDRESS: MINTHORNE - NEV. YORK. CANADIAN REP.: LEN FF.KLER CO . TORO: TO

iLCEVEis : ACCESORIS

NATIONAL HRO-60 RECEIVEI

Features the widest frequency coverage of any receiver currently available: 50-430 KCS, 48035,000 KCS, and 50,000-54,000 KCS.
Direct frequency reading slide-rule dial. Thirteen calibrated tuning bands. Calibrated bandspread for 6, 10, 15, 20, 40 and 80 meter amateur bands. Dual conversion on all frequencies above 7 MC . Provides excellent image rejection on all frequencies.
Crystal filter with six positions of selectivity. Crystal phasing control provides efficient suppression of heterodyne interference.
Has two RF stages providing high sensitivity and front-end selectivity and excellent signal to noise ratio.
Front panel mode switch selects CW, AM, narrow band FM or phono.
Plug-in coil sets. Four provided as standard equipment. Nine extra coil sets available for additional frequency coverage on special ranges.
Famous National HRO micrometer tuning knob increases frequency as dial reading increases, provides logging scale of 500 divisions equivalent to a scale length of 12 feet.
Automatic adjustable threshold, double-ended, noise limiter is equally effective on voice or code.

[^8]corrwite: call se

*Optional accessories

GEMEAAL covtane
$14.0 \cdot 30.0 \mathrm{mc}$ $7.0 \cdot 14.4 \mathrm{mc}$ $3.5 \cdot 7.3 \mathrm{mc}$ $1.7 \cdot 4.0 \mathrm{mc}$ $900 \cdot 2050 \mathrm{kc}$ 480 . 960 kc 180 - 430 kc 100-200 kc
$50 \cdot 100 \mathrm{kc}$
25-35mc
manspical
27.0-30.0 mc (10 met $27.0 \cdot 30.0 \mathrm{mc}(10 \mathrm{met}$
$14.0-14.4 \mathrm{mc}(20 \mathrm{met}$ $7.0-7.3 \mathrm{mc}(40 \mathrm{met}$ $3.5 \cdot 4.0 \mathrm{mc}(80$ met
27.0-30 mc (10 meter $21.0 \cdot 21.5 \mathrm{mc}$ (15 met 50-54 mc (6 meters)

TUNING SYSTEM: PW knob has worm gear drive box. Large dial n changing numbers gives a logging scale from 0-500, equlval to a scale length of 12 feet. In addition, a slide-rule direct-read scale is ganged with the PW dial to show frequency setting direc The scale drum can be rotated to change scales. Plug-in colls separate ranges.

AUDJO SYSTEM: A push-pull audio output stage delivers 8 watts less than 10% distortion. Output impedance is 8 and 500 ohr A high impedance phono-jack is located on the chassis, and a phe jack is provided on the receiver panel.

SENSITIVITY: Better than 1.5 microvolts from 2 to 30 mc (w 300 -ohm dummy antenna and 10 db signal/nolse ratio.)

SELEGTIVITY
NORMAL:
(Crystal off) $6 \mathrm{db} \cdot 3.5 \mathrm{kc}$ $60 \mathrm{db} \cdot 10.5 \mathrm{kc}$
CRYSTAL IN
POSITION \#5 $6 \mathrm{db} \cdot 100$ cycles
CONTROLS: Tuning Dial Selector; Oscillator Trimmer; Tone; Antenna Trimmer; Dimmer; AVC; Lim. iter; Calibrate Switch; BFO ; Phasing; Selectivity; AF Gain/AC ON-OFF; RF Gain; CW-AM-NFM phono; $\mathrm{B}+\mathrm{ON} / \mathrm{OFF}$.
OTHER SPECIFICATIONS
Antenna Input: $\mathbf{5 0 - 3 0 0}$ ohms, balanced or unbalanced.
Size: Table $193 / 4^{\prime \prime}$ wide $\times 101 / 8^{\prime \prime}$ high $\times 16^{\prime \prime}$ deep.
Rack $19^{\prime \prime}$ wide $\times 1042^{\prime \prime}$ high x 17.1/16" from rear of front panel incl. $11 / 8^{\prime \prime \prime}$ hande.
Finish: Smooth grey enamel
Shipping Weight: 88 lbs.
OPTIONAL ACcESSORIES:
HRO-60-SC2 - Speaker and container for 10 coil sets.
HRO-60-XCU.2-100/1000 kc crystal calibrator.
HRO-650S-6V vibrator type supply HRO-60TS - Table Model Speaker MRR-2 - Table Rack

IMAGE REJECTION
(At high end of band)

BAND	IMAGE RATI
A	65 db
B	$80+\mathrm{db}$
C	$80+\mathrm{db}$
D	$80+\mathrm{db}$

TUBE COMPLEMENT
1st RF Amp.
2nd RF Amp.
1st Frequency Conv.
68
$6 B$

High Frequency Osc. 61
2nd Frequency Conv. and Osc.
1st If Amp.
2nd IF Amp.
3rd If Amp
Det. - AVC
Noise Limiter
S-Meter Amp.
Phase Inverter

1st AF Amp.
Audio Output (2) BFO
Voltage Reg.
Current Reg.
Rectifier
$\begin{array}{ll} & 4 \mathrm{H4}\end{array}$
NFM-83-50 - Narrow Band FI adaptor
Coils - E, F, G, H, J, AA, $A E$ $A C, A D$

NEW NATIONAL NC-400

Frequency range 540 to 31,000 KC in 7 bands.
Nilvar tuning gangs and ceramic coil forms create low drift-.002\% long term after warm-up.

Extreme selectivity range from 16 KC to 150 cycles with IF and crystal filter or 16 KC to 500 cycles with mechanical filters.
Front panel selector allows instant selection of manual, crystal (5 positions), and external control of HFO.
Provisions for erystal control of all frequency determining circuits. Diversity adaptation allows external control of all oscillators.
Outputs provided for IF, detector, AGC, and audio signals.

Two RF stages and double conversion provide excellent sensitivity and image rejoction.
Pentagrid detector with separate BFO provide for optimum single sideband detection.
Passband switching (or accessory mechanical fllters) provides iastant sideband selection.

FREQUENCY RANGE:

540 kllocycles to 31 megacycles in 7 bands.

Band $1 \quad .54-1.1 \mathrm{NC}$

1	$54-1.1 M C$
2	$1.1-2.1 \mathrm{NC}$
3	$2.1=4.1 \mathrm{MC}$
4	$4.1-1.0 \mathrm{MC}$
5	$6.9-12.2 \mathrm{MC}$
6	$11.8-20.4 \mathrm{MC}$
7	$19.6-310 \mathrm{MC}$

Note: Bandspread dial provided with 0.100 logging scale and callbrated for $80,40,2 \mathrm{C}, 15$ and 10 meter amateur bands.

SENSITIVITY:

Approximately 1 microvolt for a 10 DB signal nolse ratio.

A plug-In accessory is avallable
iter and wlil provide front panel
ters wlthout modification of the
ers will enable bandwldths from selection of three mectingical filter and will provide front panel selection of three mechanical filters without modification of the receiver. Proper selection of fllters will enable bandwldths from 500 cycles to 16 kilocycles or filter type of sldeband selection from the front panel when desired.

SINGLE SIOEBAND PROVISLONS:

Heterodyne detector uses a pentagrid converter and separate beat oscillator.

Beat oscillator may be crystal controlled if desired.
On the standard receivers sideband selection is made by use of the 14 tuned circults in the second If whose center frequency may be switched from one s deband to the other.

SELECTIVITY:

1. Broad-16 KC Xtal filter not 2. Medium-8 KC $\begin{aligned} & \text { opperating. } 6 \\ & \text { tuned circuits. }\end{aligned}$
2. Sharp-4 KC tuned circuits
3. Very Sharp - 3.5 KC using 10 tuned circuits and Xtal filter which provides 5 additional sharper degrees of selectivity to 150 cycles.
4. SB_{3} 3.5 KC using 14 tuned 5. SB_{3} circults:
5. $\left.\mathrm{SB}_{2}\right\} 3.5 \mathrm{KC}$ at $6 \mathrm{DB}, 10 \mathrm{KC}$ at 60 DB .

input.

2. Beat-frequency oscillater inprt.
3. Intermedlate-frequencl! oscl lator master-siave switch.
4. Beat-frequency oscillaicr mesier. slave switch.
5. High-frequency oscillator masterslave switch.

Addef tetile on reguest

In the event of commercial type single sideband reception, appropriate single sideband mechanizal filiters may be installed In the accessory lifter housing and switched from the front panel.

FIXED CHANNEL OPERATION:

The high-trequency osciliator s provided with 5 crystal sockets which may be used for fixed channel operation of the receiver. Crystal controlled channels may be selected by a froit panel switch.
in addition the high-frequency oscilator may be controlled from an externel master oscli'ator which may be selected by a front panel swlteh.
A callbrate-tune switch enables use of the " $\$$ " meter to tune receiver to crystal or external oscillator frequency in the absence of signal.

DIVERSITY PROVISIONS:

Basic recelver may be ope ated trom an extrinal master osclllator as noled abrove.

A special diversity modification Is avallasle which allows internal or external control of all escillators (high frequency, intermediatefrequency and beat-frequency). With this diversity modiflcation, rear panel selection on the receiver nakes it possible to use any recelver, elther as a master controll ing recelver or a slave recelver fed from other oscillator sources.
All osclilators of the AC-400 are so designed that no auxiliary ampliflers or special circuits need be used to adequately drlve the mixers when the diversity modification is made. External excltation requires approximately $1 / 2$ volt.
Detactor output information, AGC information and IF signal are all avallable on rear connctors. If output level -.01 volts.

NEW NATIONAL NC-303

NEW front panel SSB selector with exclusive new "IF SHIFT" for instant sideband choice . . . eliminates retuning or detuning.
NEW "Q" Multiplier provides razorsharp rejection notch (more than 60 db deep). May be tuned continuously across entire receiver passband. Separate notch frequency and notch depth controls.
NEW 5-position IF selector provides sharp, SSB-1, SSB-2, medium and broad selectivity. $.5 \mathrm{Kc}, 2 \mathrm{Kc}, 3.5 \mathrm{Kc}$ and 8 Kc band-widths provide optimum selectivity for SSB, CW, phone, phone net and VHF plus sideband selection.
NEW dual noise limiters. Separate automatic noise limiter for AM. Separate dou-ble-ended manual limiter for CW and SSB.
NEW tone switch provides for attenuation of highs, lows, or both for maximum readability.
NEW exclusive wwV converter provision. No interference with dial calibration or frequency coverage. Accessory calibrator provides two microvolt sensitivity on 10 mc WWV frequency.
NEW hi-speed, 40-1 tuning knos with logging scale.
NEW fine tuning vernier dial drive provides super-precision for CW and SSB tuning.
NEW "Fast attack, slow release" AGC circuit. "Slow release" eliminates background noise during pauses in speech. "Fast attack" provides freedom from "thumps" or momentary overload by eliminating AGC lag.

ADDITIONAL FEATURES:

Dual conversion on all bands. Crystal controlled 2nd converter oscil. lator. 4 tuned circuits at 2215 kc . Gfant, slide-rule dial with ten dlal scales covers 160 to $11 / 4$ meters, easily readable to 2 kc without interpolation up to 21.5 mc . Excluslve converter provision for 6,2 and $11 / 4$ meters. Separate heterodyne detector for SSB. Glant " S " meter. Provision for automatic external control of RF gain during transmitting perlods. Muting provision for CW break-In operation. Calibration reset adjustable from front panel. Socket for plug-In crystal and WWV callbrator. Accessory socket for powering converters and future acces. sories. Fifteen tubes including rectifler.

SPECIFICATIONS

COVERAGE:

Band Designation and Length 160 meters -1.8 to 2.0 mc .
80 meters -3.5 to 4.0 mc .
40 meters -7.0 to 7.3 mc .
20 meters -14.0 to 14.4 mc.
15 meters- 21.0 to 21.5 mc .
11 meters -26.5 to 27.5 mc .
10 meters -28.0 to 29.7 mc .
6 meters -49.5 to 54.5 mc .
2 meters -143.5 to 148.5 mc .
$11 / 4$ meters -220 to 225 mc .
WWV-10 mc.*
*With Accessory Converter.

CONTROLS

RF Gain and AC ON/OFF; AF galn; Tone Control: Mode Switch; CW pltch; Main Tuning; Calibration Adjustor; Antenna Trimmer; Lim. Iter; If Selectivity; Band Switch; PhoneJack; Tuning Vernier; Calibrator OFF, CAL, WWV; Notch Frequency; Notch Depth; Stand by-recelve

TUNING SYSTEM

Combination gear/pinch for smooth Inertia tuning. Special vernier drive for superfine SSB and CW tuning.

TUBE COMPLEMENT

RF Amplifler 1st Converter 1st Osclllator 2nd Converter " Q " Multiplier 1st IF Amplifler 2nd IF Amplifier ANL and Detector Heterodyne Detector Manual Noise Llmiter 1st Audio and " S " 1 st Audio and "S Audio Output Current Regulator Voltage Regulator Rectifler

AUDIO SYSTEM

The audlo amplifier uses a single 6AQ5 output tube. Has front panel phone jack. Output impedance is 3.2 ohms .

SENSITIVITY

Better than 1.0 mlcrovolt (with 70. ohm dummy antenna and 10 db slgnal/nolse ratio.)

SELECTIVITY

Sharp SSB-1 SSB-2 Medlum Broad $6 \mathrm{db} 0.4 \mathrm{kc} 2.0 \mathrm{kc} 2.0 \mathrm{kc} \quad 3.5 \mathrm{kc}$ S 8 kc 60 db 3 kc 9 kc 9 kc 12 kc 30 kc IMAGE REJECTION BAND IMAGE RATIO
$160 \quad 80 \mathrm{db}$ $80 \quad 80 \mathrm{db}$ $40 \quad 60 \mathrm{db}$ 2075 db $15 \quad 55 \mathrm{db}$ $10 \quad 50 \mathrm{db}$ 1150 db

6826
6BA7
6AH6
6BE6 (19 rack out of cabinet)
12AX7 FINISH: Attractive black and grey enamel 6816 SHIPPING WEIGHT: (Legal) 64 lbs. 6816 $6 B 16$
$6 A L 5$ 6BE6 6AL5 NC-300C6A Converter for 6 -meter band 12 AT7 NC. 300 C 2 Converter for 2 -meter band 6 AQ5 NC. 300 Cl Converter for $11 / 4$ meter band 4H4-C NTS-2 speaker

OB2 XCU. 300 Plug-In Crystal Calibrator
EY3GT XCU. 303 Deluxe Crystal/WWV Calibrator

Covers 540 KC to $\mathbf{4 0}$ MC in four bands including broadcast band. Receives AM, CW and SSB.

Large, easy-to-read, 11 inch slide rule dial with indirect lighting.

Calibrated electrical bandspread for $10,15,20$, 40 and 80 meter amateur bands, uses separate tuning knob and tuning capacitor. Logging scale for shortwave bands.

Automatic noise limiter provides freedom from impulse noise.

Separate heterodyne detector for excellent reception of CW and SSB signals.

Separate RF and AF gain controls.

Front panel antenna trimmer.
Separate high-frequency oscillator has ceramic coil forms and is temperature compensated and voltage regulated for exceptional stability.

Features National's exclusive new "MICROTOME" filter which provides 5 degrees of sharp selectivity in addition to normal bandwidth for voice. Has sharp phasing notch (over 60 db deep) for interference rejection.
" S " meter for signal strength indication and accurate tuning.

Present day operating requirements of amateur radio operators and shortwave listeners are completely fulfilled by the National NC.109. The National NC-109 is a single conversion, superheterodyne receiver which employs a tuned RF stage, a high-frequency mixer and separate high-frequency oscillator, two stages of IF amplification at 455 KC, separate AM and heterodyne detectors, an automatic noise limiter, two stages of audio amplification and a separate " S " meter amplifier. In addition, the receiver contains an AC operated power supply and a voltage regulator for extreme stability. The bandwidth of the NC. 109 may be controlled through the use of the exchusive National "MICROTOME" filter which provides variable
selectivity and a sharp phasing notch for reduction of interference. Provisions are made for the use of external accessories such as the National XCU-109 crystal calibrator and the National NFM-83-50 narrow band FM adaptor. Front panel controls are provided for control of all functions of the receiver which might te of interest to the operator.
coverage:
general goverage
$.54-1.6 \mathrm{mc}$
1.6
4.8 .7 mc
4.15 .0 mc $\begin{aligned} 4.7 & -15.0 \mathrm{~m} \\ 14.0 & -40 \mathrm{mc}\end{aligned}$

BANDŚPREAD

3.5-4.0 me (80 meters) $6.9 \cdot 7.3 \mathrm{mc}$ (40 meters) 14 - 14.35 mc (20 meters) $20.4-21.5 \mathrm{mc}(15 \mathrm{~meters})$ 27-30 mc (10 meters)

TUNING SYSTEM:
Separate general coverage and bandspread tuning capacitors connected in parallel on all bands. Bandspread tuning caliwrated for direct frequency reading on the amateur bands, or can be used as a vernier for general coverage. Antenna trimmer is on the front panel.

AUDIO SYSTEM:

Two-stage audio amplifier with single 6AQ 5 output tube provides 1.5 watts at less than 10% distortion. A handsomely styled accessory speaker is available. Output impedance 3.2 ohms. Front panel phone-jack.

DRIFT: Less than . 01%
SELECTIVITY: 6 Positions.

	NORMAL
6 db	5.2 kc
60 db	29.5 kc

NORMAL
5.2 kc
29.5 kc

SENSITIVITY: 1-2 microvolts (10 db signal-nolse ratio).

SHARP
200 cycles
plus four additional intermediate degrees of sharpness.

CONTROLS:

Main tuning; bandspread tuning; antenna trimmer; band selector switch; RF gain control; AF gain control with AC ON/OFF switch; stand-by switch; mode selector swilch for AML, AM, CW, SSB and ACC; tone control switch; BFO pitch control; selectlvity control; phasing control.
TUBE COMPLEMENT:

RF Amp.	6BA6
Freq. Conv.	6BE6
HF OSC.	6C4
1st IF Amp.	6BA6
2nd IF Amp.	6BA6
Heterodyne detector and BFO	6BE6
Det, AVC and ANL	6AL5
1stAF and S meter Amp.	12AT7
AF Output	$6 A 05$
Rectifier	SY3GT
Voltage Regulator	OB2

other specifications:

Antenna Input: $50 \cdot 300$ ohms, balanced or unbalanced.
Size: $16-13 / 16^{\prime \prime}$ wide $\times 10^{\prime \mu}$ high $\times 107 / 8^{\prime \prime}$ deep
Finish: Handsome two-tone gray wrinkle finish
Shipping Weight: Approx. 35 lbs.
Optional Accessories: Matching Speaker, XTAL calibrator.

Covers 540 KC to $\mathbf{4 0}$ MC in four bands including
broadcast band. Receives AM, CW and SSB.

Large, easy-to-read, 11 inch slide-rule dial with combination edge and backlighting.

Calibrated electrical bandspread for 10, 15, 20, 40 and 80 meter amateur bands. Logging scale for shortwave bands.

Separzte tuning knobs, capacitors and dial scales for general coverage and bandspread.

Has tuned RF amplifier stage for increased sensitivity and image rejection.

Separate RF and AF gain controls.

Separate beat-frequency oscillator for optimum reception on CW and SSB.

Series type automatic noise limiter.

Separate antenna trimmer on front panel.

" S " meter on front panel for signal strength indications and accurate tuning.

The National NC-188 is a modern superheterodyne communications receiver designed to fulfill present day operating requirements of the amateur radio operator and shortwave listener. The frequency range of the NC-188 is from 540 KC to 40 megacycles in four bands. The circuit employs a tuned RF stage, high-frequency mixer and a separate high-frequency oscillator. Two IF stages are used feeding the diode detector. An automatic noise limiter is provided as well as two stages of audio amplification which deliver high level, low distortion audio output into a 3.2Ω speaker load. A separate tube is provided as a beat-frequency oscillator and " S " meter am-
plifier. The AC operated power supply employs a 5 Y3GT rec. tifier tube. Full electrical bandspread is provided to take full advantage of the receiver's high degree of selectivity and sensitivity.
coverage:

general coverage

$.54-1.6 \mathrm{MC}$
$1.6-4.7 \mathrm{MC}$
$4.7-15 \mathrm{MC}$
14.0 - 40.0 MC

BAMDSPREAD

3.5-4.0 MC (80 meters) 6.9-7.3 MC (40 meters) 14.0-14.35 MC (20 meters) $20.4 \cdot 21.5 \mathrm{MC}$ (15 meters) 27.0-30 MC (10 meters)

TUNING SYSTEM:
Separate general coverage and bandspread tuning capacitors connected in parallel on ali bands. Bandspread calibrated for direct frequency reading on the amateur bands, or can be used as vernier for general coverage use. Separate antenna trimmer control.
AUDIO SYSTEM:
Two-stage audio amplifier with single 6AQ5 output tube provides 1.5 watts at less than 10% distortion. A handsomely styled accessory speaker is available. Front panel phone-jack.
SENSITIVITY:
Better than 2.5 microvolts (10 db signal-noise ratio).

SELECTIVITY	NORMAL
6 DB	5.2 kc
60 DB	22 kc

CONTROLS:

Main tuning; bandspread tuning; antenna trimmer; band selector switch; RF gain control; AF gain control with AC ON/OFF switch; stand-by receive switch; noise limiter swltch; tone control switch; 8FO pitch control; AM/CW switch.
TUBE COMPLEMENT:

RF Amp.	6BA6
Freq. Conv.	68E6
HF OSC.	$6 \mathrm{C4}$
1st IF Amp.	6BA6
2nd If Amp.	6BA6
Det, AVC and ANL	6AL5
1 st AF and $\mathrm{BFO} / \mathrm{S}$ meter Amp.	12AT7
AF Output	6 6Q5
Rectifler	5Y3GT

OTHER SPECIFICATIONS:
Antenna Input: 50-300 ohms, balanced or unbalanced.
Size: $16.13 / 16^{\prime \prime}$ wide $\times 10^{\prime \prime}$ high $\times 107 / 8^{\prime \prime}$ deep
Finish: Handsome two-tone gray wrinkle finish
Shipping Weight: Approx. 35 Ibs.
Optional Accessories: Matching Speaker

5 bands. Features continuous coverage of marine and aircraft direction finding beacons (150-400 kc), standard AM broadcast ($\mathbf{5 0 - 1 . 4 \mathrm { mc } \text {), } 1 6 0 - 1 5}$ meter amateur, and world-wide shortwave bands (1.4-23 mc).

Large, "Full-Vue" slide-rule dial with easy-to-read scale. Amateur, principal shortwave broadcast bands, and CD positions clearly marked.

Full electrical bandspread with separate control and tuning capacitor with $0-100$ calibrated logging scale.

Receives voice or code. Has beat frequency oscillator and front panel phone-jack.

Operates on 115 volt AC or DC or self-contained dry battery pack.

Has two antennas: Built-in ferrite loop for DF and BC bands. Built-in whip antenna for shortwave bands.

Complete with large built-in speaker. Excellent sound reproduction.

Handsome, modern styling: two-tone metal cabinet (salt spray tested), chrome trim, carrying handie and enclosed back.

Provision for exclusive Natlonal RDF-66 adaptor for radio direction finding.

Band	COVERAGE
DF	$150-400 \mathrm{KC}$
BC	$.50-1.4 \mathrm{MC}$
1	$1.40-4.05 \mathrm{MC}$
2	$4.0-11.4 \mathrm{MC}$
3	$11.0-23 \mathrm{MC}$

TUNING SYSTEM:

Separate general coverage and bandspread tuning capacitors connected in parallel on all bands. Three gang capacitors tune antenna, RF and oscillator circuits. Bandspread knob can be used as a vernier on all frequencies.

AUDIO SYSTEM:

Two-stage audio amplifier with 3V4 output tube. Has speaker and phone output jack.

COMTROLS:

Main tuning; bandspread; volume control; band selector switch; AM-CW switch; stand-by off - receive switch.

TUBE COMPLEMENT:

RF	$1 U 4$
Converter	116
IF Amp. - BFO	$1 \cup 4$
2d Det. AVC - 1st audio	$1 U 5$
Audio output	$3 V 4$
Rectifier	Selenlum

OTHER SPECIFICATIOMS:

Antenna input: high impedance, unbalanced.
Size: $12-5 / 16^{\prime \prime}$ wide $\times 9-11 / 16^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep (overall).
Finish: two-tone grey.
Shipping welght: 16 lbs. less batteries.

RDF-66 DIRECTIDN FINDER ACCESSDRY

The National RDF-66 is an accessory for use with the National NC. 66 Portable Receiver to provide a simple but efficient means of direction finding for small Imarine craft. It consists of a modified loop antenna mounted on an adjustable compass rose. The front panel contains a null indicator.

NATIONAL NC-60 SPECIAL

First, all-new, low-priced shortwave and standard broadcast receiver in over 10 years.
Giant, easy-to-read dial with standard AM broadcast, marine, aircraft, civil defense, WWV, amateur and foreign shortwave stations clearly marked.

Full electrical bandspread on all frequencies. 0.100 calibrated logging scale.

Built-in 5" permanent magnet speaker. Provides excellent sound reproduction. Audio system has two stage audio amplifier with 50C5 output tube.
5

Beat frequency oscillator provides for reception of CW and SSB signals.

Separate tuning coils on each band provide exceptional sensitivity and selectivity.

Separate general coverage and bandspread tuning capacitors connected in parallel. Bandspread knob may be used as a vernier on all frequencies.

Controls: tuning; bandspread; volume control with AC ON/OFF switch; band selector; phone jack; AM-CW switch; stand-by receive switch.

Other Specifications: 5 tubes including rectifier; antenna input 50-300 ohms. Size: 75/8" high $\times 85 / \mathbf{g}^{\prime \prime}$ deep $\times 131 / 2^{\prime \prime}$ wide. Shipping weight: approximately 12 lbs. Finish: two-tone black and gray enamel.

WATIONAL TF0-62

- A precision varlable frequency oscillator deslgned to operate with most trans. mitters using crystal oscillators in the $8-9 \mathrm{mc}$ region, or with most equipment using overtone oscillators in the 25 to 27 mc range.
- Full coverage of both 6 and 2 meter Amateur bands.
- Completely self-powered, self-contalned. Plugs into $\mathbf{1 0 5 - 1 2 5}$ Volt AC outlet and transmitter crystal socket. Needs no power from your rig.
- Has front panel controlled internal crystal oscillator for use with 1 mc . call brating crystal. Provides for crystal callbration without accessory equipmeni or without changing connections.
- Front panel crystal socket allows instant selection of your favorite crystal without changing transmitter connections.
- Built-In phone jack allows direct detection of calibrating markers.
- Precision vernier drive provides precise tuning control.
- Front panel mode switch provides off-calibrate-standby-operate functions.
- Front panel bandswitch for choice of 6 meter- 2 meter-crystal operation.
- Has provision for remote standby-operate control.
- Frequency stability better than $.005 \%$ after brief warm up. Separate tuned circuits on each band provide maximum stability.
- Low power consumption (18 watts allows 24 harr operation for pennies a day with maximum frequency stability better than 1 part in 10° per 24 hours.)
- Complete internal shielding eliminates all hand effects.
- Housed in an attractive, modern, grey, plastlc cablnet for maximum mechanical stabillty.
Size: $51 / 2^{\prime \prime}$ deep $\times 61 / 2^{\prime \prime}$ wide $\times 5 * 4^{\prime \prime}$ high. Shlpping weight: 6 lbs.

FREQUENCY RANGE on local transmitters 0.1 to 175 MC - to 3000 MC by measuring in multiplier stages. ACCU RACY conservatively guaranteed better than $0.0025^{\text {e }}$-actually 9 ont of 10 results come within 0.001 \% CALIBRATION table for each meter; charts show percentage off-frequency from FCC assignment. DIAL $4^{\prime \prime}$ diameter. 40 turns, totals 8000 divisions spread over 42 feet-resettable better than 5 parts per million. CRYSTAL thermoneter on panel antomaticalls indicates dial checkpoint. SIGNAL GENFR-ATOR-a pinpoint CW source for mobilereceiver final alignment.

LAMPKIN 205-A

FM MODULATION METER

FREQUENCY RANGE - Continuous 25 MIC to 500 MC . No coils to change. Rough and vernier tuning controls. PEAK FM swing shows directly on indicating meter-calibrated $0-12.5$ or $0-25.0$ peak KC. positive or negative. No charts or tables. ACCURATE-within 10% at full scale. FIILD STRENGTH METER Reals relative transmitter ontput. I'RO'TEC'IED - Panel components recessed behind edges of the case. PORTABLE Just a 2 -finger load.

JUST THESE TWO METERS-WITH NO ADDITIONAL CRYSTALS OR FACTORY ADJUSIMENIS - WILL CHECK FREQUENCY AND MODULATION ON HUNDRECS OF TRANSMITTERS OPERATING ON SCORES OF FREQUENCIES. LAMPKIN METERS ARE USED BY NUMERCUS MUNICIPALITIES-BY MORE THAN 41 STATES-BY THE SERVICE ORGANIZATIONS OF MOST TWO-WAY RADIO MANUFACTURERS-AND BY HUNDPEDS OF INDEPENDENT MO-bile-service engineers. they are guaranteed to please you, too, or your MONEY WILL BE REFUNDED.

To learn about contract rates and service arrangements, send for YOUR free copy of HOW TO MAKE MONEY IN MOBILERADIO MAINTENANCE?
MAIL COUPON TODAY!

Measurements Section
I Lampkin Laboratories, Ine.
| Bradenton, Florida

[^9]\square "How To Make Money in Mobile-Radio Maintenance!"
\square Technical data and prices on Larr.pkin Meters

LAMPKIN LABORATORIES, INC.
BRADENTON, FLORIDA

Name
Address
RCA
"High-Perveance"..
Heser Fierot Fule Iesion Is we spa Eepolvpment

W.
ith power gains ranging up to 100 to l or more, it's remarkable how little grid power it takes to drive an RCA beam power tube to full input. In most amateur transmitter designs, receiving tubes do it easily. With RCA High-Perveance Beam Power Tubes your transmitter can use smaller, less expensive drivers...fewer stages...fewer components... fewer tuning controls...simplified bandswitching circuitry.
And that's not all! High-Pervcance design-an RCA development-makes it practical to get the power you want at lower plate voltage. This means that your transmitter can deliver the same output ... with lower voltage-rated tank-circuit components...lower rated high-voltage plate transformers and filter capacitors... and more reasonable values of pi-network components.
So design that next rf power amplifier or modulator around RCA High-Perveance Beam Power Tubes-and get more watts for your "transmitter dollar." Your RCA Industrial Tube Distributor handles the complete line.

ROGER MACE (W8MWZ)
SENIOR HAM ENGINEER
HEATH COMPANY

HEATHKIT 50-WATT CW TRANSMITTER KIT

If high efficiency at low cost in a CW transmitter interests you, you should be using a DX. 20 ! it employs a single 6DQ6A tube in the final Amplifier stage for plate power input of 50 watts. The oscillator stage is a 6CL6, and the rectifier is a $5 \cup 4 \mathrm{~GB}$. Singleknob band-switching is featured to cover $80,40,20,15,11$ and 10 meters, and a pi network output circuit matches antenra impedances between 50 and 1000 ohms to reduce harmon c output. Designed for the novice as well as the advanced clas.s CW operator. The transmitter is actually fun to build, even for a beginner, with complete step-by-step instructions and pictorial diagrams. All the parts are top-quality and well rated for their application. "Potted" transformers, copper-plated chassis, and ceramic switch insulation are typical. Mechanical and electrical construction is such that TVI problems are minimized. If you desire a good clean CW signal, this is the transmitter for youl Shpg. Wt. 19 lbs.

HEATHKIT "APACHE" HAM TRANSMITTER KIT

- Newly Designed VFO-Provision For S.S.B. Adapter
- Modern Styling-Rotating Stide Rule Dial

MODEL \(\$ 77050 \begin{aligned} \& Shipped motor ireight untes
\& otherwise speciflied, \$ 50.00 de\end{aligned}\) TX-1
229. posit required on C.O.D. orders.

Fresh out of the Heath Company laboratories, the brand-new "Apache" model TX-1 Ham Transmitter features modern styling and is designed as a handsome companion to the also-new Heathkit "Mohawk" receiver. The "Apache" is a high quality transmitter operating with 150 watt phone input and 180 watt CW input. In addition to CW and phone operation, the "Apache" features built-in switch selected circuitry providing for single-sideband transmission through the use of a plug-in external single-sideband adapter. These Heathkit adapters will be available in the near future. A compact, stable and completely redesigned VFO provides low drift frequency control necessary for single-sideband transmission. An easy-to-read slide rule type illuminated rotating VFO dial with vernier tuning provides ample bandspread and precise frequency setting. Simple band-switching control allows flip-of-the-wrist selection of the amateur bands on 80,40 , 20,15 and 10 meters (11 M with crystal contral). The "Apache" features adjustable low level speech clipping and a low distortion modulator stage employing two of the new 6CA7/EL34 tubes in push-pull class $A B$ operation. Time sequence keying is provided for "chirpless" break-in CW operation.

The final amplifier is completely enclosed in a perforated aluminum shielding for greater TVI protection ard transmitter stability. Cabinet comes completely preassembled with top hatch for convenient access without taking chassis out of cabinet. Die-cast aluminum knobs and front panel escutcheons add to the attractive styling of the transmitter. Pi network output coupling matches antenna impedances between 50 and 72 ohms. Incorporates all the refinements necessary with many "plus" features for effective and de. pendable communications. Shpg. Wt. 115 lbs.

top quality at lowest prices!

HEATHKIT "MOHAWK" HAM RECEIVER KIT

- All Critical Circuits Prewired and Aligned
- Crystal Controlled Oscillators for Drift-Free Reception

$$
\begin{array}{ll}
\text { MODEL } & \$ 97495 \\
\text { RX-1 } & \begin{array}{l}
\text { Shipped motor frelght untess } \\
\text { otherwise specified. } \$ 50.00 \text { de- } \\
\text { posit required on C.O.D. orders. }
\end{array}
\end{array}
$$

Outstanding results can be expected with the new "Mohawk" receiver which is designed to combine all the necessary functions required in a high quality communications receiver. A perfect companion for the Heathkit "Apache" transmitter, the "Mohawk" features the same wide-band slide rule type vernier tuning and covers all of the amateur bands from 160 through 10 meters on seven bands with an extra band calibrated to cover 6 and 2 meters using a converter. External receiver powered, accommodations are available for these converters which will be available in Heathkits soon. The "Mohawk" is specially designed for single-sideband reception with crystal controlled oscillators for upper and lower sideband selection. A completely preassembled, wired and aligned front end assures ease of assembly. All critical wiring is done for you insuring top performance. This 15 . tube receiver features double conversion with IF's at 1682 kc and 50 kc . Five selectivity positions from 5 kc to 500 CPS . A

bridged T-notch filter is employed for maximum heterodyne rejection. Complete accuracy is obtained with the use of a built-in 100 kc crystal calibrator and the set features 10 db signal-to-noise ratio at less than 1 microvolt input. S-meter and many other fine features built-in for top-notch signal reception. Shpg. Wt. 90 lbs .

HEATHKIT PHONE \& CW TRANSMITTER KIT

The DX-40 incorporates the same high quality and stability as the DX- 100 , but is a lower powered rig for crystal operation, or for use with an external VFO. Plate power input is 75 watts on CW. permitting the novice to utilize maximum power. An efficient, control-carrier modulator for phone operation peaks up to 60 -watts, so that the rig has tremendous appeal to the general class operator also. Single-knob switching covers $80,40,20,15,11$ and 10 meters. Pi network output coupling makes for easy antenna loading, and pi network interstage coupling between the buffer and final amplifier improves stability and attenuates harmonics. A line filter is incorporated for power line isolation. The efficient oscillator and buffer circuits provide adequate drive to the 6146 final amplifier from 80 to 10 meters, even with an 80 -meter crystal. A drive control adjustment is proviaed, and the function switch incorporates an extra "tune" position so that the buffer stage can be pretuned before the final is switched on. A switch selects any of three crystals, or a jack for external VFO. High quality D'Arsonval meter for tuning. Shpg. Wt. 26 Ibs.

HEATHKIT DX-100 PHONE \& CW TRANSMITTER KIT

MODEL
DX. 100
\$1895.
Shipped motor freight unless otherwise specified. $\$ 50.00$ deposit required on C.O.D. orders.

You get more for your transmitter dollar when you decide on a DX-100 for your ham shack! Recognized as a leader in its power class, the DX-100 offers such features as a built-in VFO, built-in modulator, TVI suppression, pi network output coupling to match a variety of antenna impedances from 50 to 600 ohms, pi network interstage coupling, and high quality materials throughout. Copper plated 16 -gauge steel chassis, ceramic switch contacts, etc., are typical of the kind of parts you get, in assembling this fine rig. The DX-100 covers $160,80,40,20,15,11$ and 10 meters with a single bandswitch, and with VFO or crystal operation on all bands. RF output is in excess of 100 watts on phone and 120 watts on CW , with a pair of 6146 tubes in parallel for the final amplifier, modulated by a pair of 1625 tubes in parallel. VFO tuning dial and panel meter are both illuminated for easy reading, even under subdued lighting conditions. Attractive front panel and

case styling is completely functional, for operating convenience. Designed exclusively for easy step-by-step assembly. No other transmitter in this power class combines high quality and real economy so effectively. Here is a transmitter that you will be proud to own. Time payments are availablel Shpg. Wt. 107 lbs.

more fine ham gear from the pioneer

HEATHKIT GRID DIP METER KIT

A Grid Dip Meter is basically an RF Oscillator used to determine the frequency of other Oscillators, or tuned circuits. Numerous other applications such as pretuning, neutralization, locating parasitics, correcting TVI, adjusting antennas, designing new coils, etc. Features continuous frequency coverage from 2 MC to 250 MC , with a complete set of prewound coils, and a 500 ua panel meter. Has sensitivity control and a phone jack for listening to the "Zero-Beat"', It will also double as an absorption-type wave meter. Shpg. Wt. 4 lbs.
Low frequency coil kit: two extra plug-in coils extend fre. quency coverage down to 350 KC . Shpg. Wt. 1 lb. No. 341-A $\$ 3.00$
model $60-1 \mathrm{~B}$
$\$ 2195$

HEATHKIT ALL-BAND COMMUNICATIONS. TYPE RECEIVER KIT

Ideal for the short wave listener or beginning amateur, this Receiver covers 550 KC through 30 MC in four bands. It provides good sensitivity and selectivity, combined with fine image rejection. Amateur bands are clearly marked on the illuminated dial scale. Features transformer type-power supply-electrical band spread-antenna trimmer-separate RF and AF gain con-trols-noise limiter-internal $5 \frac{1}{2 \prime \prime}$ speaker-head phone jack and AGC. Has built-in BFO for CW reception. An accessory power socket is also provided for connecting the Heathkit model QF-1 Q Multiplier. Will supply 250 VDC at 15 ma MODEL AR-3 and 12.6 VAC at 300 ma . Shpg. Wt. 12 lbs .
Cabinet: Fabric covered cabinet with aluminum
panel as shown part $91-15 \mathrm{~A}$. Shpg. Wt. 5 los. $\$ 4.95$ $\mathbf{\$ 9 5}$

HEATHKIT ELECTRONIC VOICE CONTROL KIT

Here is a new and exciting kit that will add greatly to your enjoy. ment in the ham shack. Allows you to switch from Receiver to Transmitter merely by talking into your microphone. Lets you operate "break.in" with an ord,nary AM transmitter. A terminal strip is provided for Receiver and speaker connections and also for a 117 volt antenna relay. Unit is adjustable to all conditions by sensitivity and gain controls provided. Easy to MODEL VX-1 build with complete instructions provided. Requires no transmitter or Receiver alterations to operate.
${ }^{5} 23.5$ Shpg. Wt. 5 lbs.

HEATHKIT "Q" MULTIPLIER KIT

This fine Q Multiplier is a worthwhile addition to any communications, or Broadcast Receiver. It provides additional selectivity for separating signals, or will reject one signal and eliminate a hetrodyne. Functions with any AM Receiver having an IF fre. quency between 450 and 460 KC that is not AC -DC type. Oper. ates from your Receiver power supply, and requires only 6.3 VAC at 300 ma (or 12.6 VAC at 150 ma), and 150 to 250 VDC at 2 ma . Simple to connect with cable and plugs supplied. MODEL QF.I Effective Q of approximately 4000 for sharp "peak" or "null". A tremendous help on crowded phone or CW bands. Shog. Wt. 3 Ibs.
s9!

. in do-it-yourself electronics!

HEATHKIT "AUTOMATIC" CONELRAD ALARM KIT

Designed to give instant warning whenever a monitored station goes off the air, the CA. 1 automatically cuts the AC power to your transmitter, and lights a red indicator. Works with any radio receiver; AC-DC-transformer operated-battery powered, solong as the receiver has AVC. A manual "reset" button is provided to reactivate the transmitter. Incorporates a heavy duty 6 . ampere relay, a thyratron tube, and its own built-in power supply. A neon lamp shows that the alarm is working. MODEL CA-1 Simple to install and connect with complete in. structions provided for assembly and operation. Shipg. Wt. 4 lbs .

"AUTOMATIC' CONELRAD ALARM

HEATHKIT VARIABLE FREQUENCY OSCILLATOR KIT

Enjoy the convenience and flexibility of VFO operation by obtain. ing this fine variable frequency oscillator. It covers 160-80-40-20. 15.11 and 10 meters with three basic osciltator frequencies. Better than 10 volt average RF output on fundamentals. Requires 250 volts DC at 15 to 20 ma , and 6.3 VAC at 0.45 a , available on most transmitters. It features voltage regulation for frequency stability, and has illuminated frequency dial. VFO operation allows you to move out from under interference and select the portion of the band you want to use without having to be tied down to only 2 or 3 frequencies through the use of MODEL VF-1 crystals. "Zero in" on the other fellows signal and return his CQ on his own frequency! Shpg. Wt. 7 lbs .
\$1950.

HEATHKIT REFLECTED POWER METER KIT

A necessity in every well equipped ham shack, the model AM. 2 lets you check the match of the antenna transmission system, by measuring the forward and reflected power or standing wave ratio. Handles up to one kilowatt of energy on all bands from 160 to 2 meters, and may be left in the antenna system feed line at all times. Input and output impedances for 50 or 75 ohm lines. No external power required for operation. Meter MODEL AM-2 indicates percentage forward and reflected power, and standing wave ratio from 1:1 to 6:1. Shpg. Wt. 3 los.
§15.5.

HEATHKIT BALUN COIL KIT

This convenient transmitter accessory has the capability of matching unbalanced coax lines, used on most modern transmitters, to balanced lines of either 75 or 300 ohms impedance. Design of the bifilar wound Balun Coils will enable transmitters with unbalanced output to operate into balanced transmission line, such as used with dipoles, folded dipoles or any balanced antenna system. Can be used with transmitters and MODEL B-I Receivers without adjustment over the frequency range of 80 through 10 meters. Will handle power inputs up to 200 watts. Shpg. Wt. 4 Ibs.
s895
 FREE 1958 Catalog

Send for this Free informative catalog listing our entire line of kits, with complete schematics and specifications.Rush Free 1958 catalog.

HEATH COMPANY

BENTON HARBOR 9, MICH. a subsidiary Pi Daystrom, Inc. name
address
city \& state

QUAN.	ITEM	MODEL NO.	PRICE

$\$$
charges collect All enclosed. Parcel post, Include postage-express orders are sent shlpping U.S. and Possessions only. All prices and specificatlons subject, Mich. and apply to Continental U.S. and Possessions only. All prices and specifications subject to change wlihout notice.

EXPERIENCED HAMS SAY
 "MAKE MINE MOSLEY"

FOR BEST-EVER ANTENNA PERFORMANCE!

TRAPMASTER 10-15-20 METER ROTARY AND VERTICAL ANTENNAS

One Eimac Radia Club installation, ARRL Field Day, 1958.

4CX300A

4CX1000A

4-65A Radial-Beam Power Tetrode

Smaliest of the Eimac internal-anode tetrodes, the 4.65 A has a plate-dissipa tion rating of 65 watts and is ideal for deluxe mobile as well as fixed.station service.

	CW	AM	SSB
Plate Voltage	3000 v	2500 v	3000 v
Driving Power	1.7 w	2.6 w	0
Input Power	345 w	275 w	195 w

4-400A Radial-Beam Power Tetrode

Highest powered of the Eimac Big Six, it will easily handle a kilowatt per tube in CW, AM or SSB application. Forced-air cooling is required.

	CW	AM	SSB
Plate Voltage	3000 w	3650 v	4000 v
Driving Power	6 w	4 w	0
Input Power	1000 w	1000 w	1000 w

4E27A/5-125B Radial-Beam Power Pentode

The Eimac 4E27A/5-125B is intended for use as a modulator, oscillator or amplifier. The driving-power requirement is very low, and neutralization problems are simplified or eliminated entirely.

	CW	AM	SSB
Plate Voltage	3000 v	2500 v	4000 v
Driving Power	1 w	2 w	0
Input Power	500 w	380 w	360 w

4CX1000A Ceramic Power Tetrode

Specifically designed for SSB operation the ceramic-metal $4 \mathrm{C} \times 1000 \mathrm{~A}$ Class AB linear-amplifier tube achieves maximum rated output power with zero grid drive.

	SSB
Plate Voltage	3000 v
Driving Power	0
Input Power	2700 w

3000 v
g Power
2700w

4CX250B Ceramic Power Tetrode
A compact, rugged tube unilaterally in. terchangeable in nearly all cases with the famous $4 \times 150 \mathrm{~A}$, with the advantages of higher power and easier cooling.

	CW	AM	SSB
Plate Voltage	2000 v	1500 v	2000 v
Driving Power	2.8 w	2.1 w	0
Input Power	500 w	300 w	500 w

4-125A Radial-Beam Power Tetrode
The versatile tube that made screen grid transmitting tubes popular, This favorite for commercial, military and amateur use is radiation cooled.

	CW	AM	SSB
Plate Voltage	3000 v	2500 v	3000 v
Driving Power	2.5 w	3.3 w	0
Input Power	500 w	380 w	315 w

4-250A Radial-Beam Power Tetrode
A high power output tube with low driving requirements. A pair of Eimac 4-250A's easily hande a kilowatt input in AM, CW or SSB service.

	CW	AM	SSB
Plate Voltage	3000 v	3000 v	4000 v
Driving Power	2.6 w	3.2 w	0
Input Power	1035 w	675 w	660 w

4CX300A Ceramic Power Tetrode
A new ceramic-metal high power tetrode designed for rugged service. Will withstand heavy shock and vibration and operate with envelope temperatures to 250° Centigrade.

	CW	AM	SSB
Plate Voltage	2500 v	1500 v	2500 v
Driving Power	2.8 w	2.1 w	0
Input Power	625 w	300 w	625 w

Information on these popular tubes for amateur applications is available from our Amateur Service Department.
4.125A

TRIODES	
2C39A	75TH
2C39B	75TL
2C39WA	100TH
3 C 24	100TL
3CPN10A5	152 TH
3CX100A5	152 TL
3W5000A1	250TH
3W5000A3	250TL
3W5000F1	304TH
3W5000F3	304 TL
3×10045	450TH
3X2500A3	450 TL
3X2500F3	592/3-200
$3 \times 3000 \mathrm{Al}$	750 TL
$3 \times 3000 \mathrm{Fl}$	1000 T
25 T	1500 T
35 T	2000 T
35TG	
TETRODES	
4.65A	4×150A
4-125A	4×1500
4-250A	4X150G
4-400A	$4 \times 250 \mathrm{~B}$
4-1000A	$4 \times 250 \mathrm{~F}$
4CN15A	$4 \times 500 \mathrm{~A}$
4CW10,000A	- $4 \times 500 \mathrm{~F}$
4 CX 250 B	
$4 \mathrm{C} \times 250 \mathrm{~K}$	
4CX250M	
$4 \mathrm{C} \times 300 \mathrm{~A}$	
4CX1000A	
4C×5000A	
4W300B	
4W20,000A	

a BRUTE

Mobile

Commercial

Our "S" Series-Standard Hann Tower available $40^{\circ}, 50^{\circ}, 10^{\circ}$ heights. Cranks up and down, tilts over for ease maintenance and adjustments to beam and rotor, Alountings provided for CDR "HAN1" and small prop piich motors. Addaptor kits available for all other rotors.

Another importani factor with the self supporting E-Z Way Tower is no concrete needed. The "wonder ground post" does it all-simpls, efficientlp. Theres "TOUER POWER" here-a brute, but beautiful!

HEAVY WALLED STRUCTURAL STEEL TUBING USED THROUGHOUT.
ONAL BRACING ON TWO SIDES AND LADDER BRACING ON THIRD!

"X Series - Heavy Duty - the REAL Brutes! Designed to put a heary beam and rotor where you want it. W'ill handle a four element full 20 meter beam at 60° in 60 MPH winds; at 50^{\prime} in 75 MPII: at 40° in 90 MPH winds or, crank down and "let 'er blow!" Handles same rotors as " S " Series. plus R200 Telrex and lly -Gain Roto Brake.

Puts your Beam where

nut Bcautfuc

- FEATURING THE "WONDER POST"
- CRANKS UP OR DOWN
- tILTS OVER
- SELF SUPPORTING-NO CONCRETE

There is an E-Z Way Tower for every requirement.

E-Z Way Towers are built to excecd requirements of E.I.A. Standard Mi-116 for the radio industre. Designed for the ultimate in uperating efliciency, every possible contenience for simple, fast crection. maintenance, and adiustment is provided. Comforms to all ordinances and building corles. Adds impressive appearance to vour propertv. No permit problems; we provide engineering data upom request.

3 Section "X" Series-For towering height 60 to 175 ft . Highest crank up, tilt ower tower in the WORLD! Available on Cround P'ost mountines to 100', and on Jack staft mountings for greater heights.
See your local "Ham" distributor, or write for further details concerning vour particular needs. Please state type of antenna, rotor, and desired height.

\section*{| 6 |
| :--- |
 s}
 \section*{IE-Z WAY}
 \section*{IE-Z WAY}

ENGINEERED
 TO FIT YOUR

BEAM REQUIREMENTS

Mr. Communications Engireer: E-7 Way has the answer to your rontine and xpecial needs in powers for MA, FM, LHHF, VHF TV. AH.ITELIR, TVOWAY, MICHOWAVE, and N'DUSTRIAL application:. Tersatility is our watchuorsl. crank-up, self-supporting. guined, filt-oter . . . and mobile applicalions are rontine witín us. Tourers supplied either in hotdipped zinc galvanize (after fabrication) or painted. Write, wire, or call; we'll have an answer.

RUGGED! THE
SAFEST. MOST STURDY WINCH EVER MADE FOR A HAM TOWE?.

TOWVRRS ABE OUIR BLSINMES'

1. The E-Z Way Safety Rest safely relieves all strain from crank-up cable at operational heights, locks the tower in place to prevent possible rattle.
2. The combination of the E-Z Way Thrust Bear. ing and Top Bush. ing absorbs radial thrust and entire weight of Rotor mast and beam. Also insures perfect alignment of mast to rotor.

3. WONDER

GROUND POST
(Patent applied for) Revolutionizes the installation of tiltover towers. Minmum yard space, no concrete, stays plumb. Stabilizing fins insure a solid setting under practically all ground conditions, eliminating the use of concrete.

P. O. BOX 5491

 \section*{The outstanding line of
 \section*{The outstanding line of OMMMIUINICATHORS OMMMIUINICATHORS in stock at. .} in stock at. .} univorssal

10 METER FIXED STATION COMMUNICATOR

No. 320 t . . 299.50

6 METER
FIXED STATION COMMUNICATOR

No. 3221
319.50

Gonset fixed station Communicators, the sure, simple, inexpensive means for putting an excellent signal on the air. Available in two different models, one for 6 meters, the other for 10 meters. These complete station "packages" give you everything within one compact cabinet: 50 watt transmitter with pi network and calibrated VFO (optional xtal) \ldots a sensitive, selective communications receiver, 115 V AC power supply. All elements are completely integrated, operate perfectly together. Gonset "packaging" saves extra cost of several individual units ... excellent performance, exceptional value.

6 METER FIXRIDSTATION COMMINICATOR

- Coverage, 50.54 megacyoles - Complete 6 meter station 50 watts input - Type 6146 tube with pi network output - Stable, calibrated VF D with spotting switch to aid tuning. Optional xtal control.
- Highly selective, sensitive receiver
- Adjustable squelch. . noise limiter S" meter, panel mounted speaker.
- Heary-duty 115 V AC power supply built in

IO METER FIXEID.STATION COMMUNICATOR

- Coverage 28-29.7 megacycles.
- Complete 10 meter station 50 watts input. .
- Type 6146 tube with pi network output...
- Stable, calibrated VFO with spotting switch to aid tuning. Optional xtal control. . .
- Highly selective, sensitive receiver
- Adjustable squelch . . noise limiter. " S " meter, panel mounted speaker.
- Built-in heary duty 115 F AC power supply

2 and 6 METER VFO
COMMUNICATOR IIf Models'for 2 and 6 meters.

INEAR AMPLIFIERS

Cammunicatar Madel III is a camplete station, having the advantage of small size and lightness in weight far easy partability. Use these Cammunicatars anywhere. Fram yaur car in matian . . . vacation... at hame.
Transmitter, receiver and universal $6 / 12 \mathrm{~V} D C$ and 115 VAC pawer supply are all cantained within a handsamely styled easily carried "package." Madels of this versatile equipment are available far either 2 ar 6 meter amateur bands, for C-D, CAP and various commersial, industrial and graund-fa-air applicatians.
Each madel has calibrated, tunable receiver with lawnoise, sensitive "Cascode" RF. Special gang-tuned circuits give high image rejectian. I-F selectivity is improved over alder madels. All madels have noise limiter, adjustable

squelch, earphane pravisians. Tuning dial is full visian, slide rule type. Panel meter switched ta indicate exciter ar final autput ar receiver autput level.
Transmitter delivers 6.8 watts autput, uses 6L6GB madu. latar, has pravisians far 6 -crystals, selectable by switch. Operation may be optianally with VFO. Cabinets are finished in Alpine White with Gunmetal Blue knabs.
Easily cannected linear amplifiers are available far 2 ar 6 meters, increase power cutput ta $50-60$ watts, motich Cam. municatar in general size and appearance.
VFO, separately available, savers bath 2 and 6 meter bands. Highly stable, full calibratian. 115 V AC meter supply. Intended far use anly with Cammunicatar III madels.
2 meter Communicator INI.. . . \#3133. . . 289.50
6 meter Communicator IIf . . . $\$ 3136$. . . 289.50
 2 and 6 METER VFO . . $\# 3226 \ldots 69.50$

All-band communications receivers.

Single-sideband transmitters, linear amplifiers.

Fixed/mobile receivers, transmitters.

C-66B

Gonset's feature-packed equipment . . . for fixed and mobile applications

G-33 ALL-BAND RECEIVER.

G-33, Gonset's new all-band rereiver represents an outstanding value. Excellent for navice and short wave listener, general esage. $\mathbf{6}-33$ reflects big value, modern functional styling. Ideal for ham shach, den, living room.
Priated circuit techniques and unique design give good sensitivity and signal to noise ratio even on the highest frequency bands. Receiver has 6 tubes, is transformer powered MOT $A C$ DC! Other features: Hi-D permeability tuned coils, good image and spurious sesponse rejection ly use of high frequency, single conversion I.F system. Has audim gain and sensitrvity contral important to CW and SSB reception. Also antenna trimmer, built-in speaker, provisions for connection of external speaker, (optianally available) or earphones.
Receiver provides continuous coverage 540 kes to 34 mes in 4 bands. Has bandspreat dial calibrated for amateur bands. Vernier dial bas counterweight for smooth, non-critical short wave tuning. Design features handsome die cast front panel assemoly and formed metal cabinet finished in metallic gray.

Model number 3222.
89.95

G-43 ALl-band receiver

G-43 utilizes special mrinted circuit techniques and unique tuner design for excellent sensitivity and signal-anise rafio even on highest bands. Receirer covers frequency range of 540 kes to 30 mes, spread over 6 bands to give highest stability and great range of tuning. $G-43$ features a full-vision druan dial which exposes only the band in use. Has provision for VHF converter.
Features include: Low noise, single conversion 1650 kc d-f section gives high imagr rejection, has σ. doutile-tuned hi-0 transiormers for selectivity of 6 kes at 6 dh down, 24 kes at 60 do down. Receiver has 8 tubles, is transtor mer powered MOT AC/DC! Speaker is built in, jack provided for external speaker, earphones. NOT AC/DC! Speaker is buit in, jack provies $A l$, signal strength meter. Centrols: Bandswith, audio volume, sensitivity, antenna Also signal strength meter. Cantrois: Banuswith, audio volume,
trimmer, AML on-aff. Erystal calitrator an-off. (Crystal calibrator separately available as an accessory.)

Madel number 3241...
159.50

GSB-100 SINGLE SIDEBAND TRANSMITTER

GSB-f00 is a complete, self-contained SSB tramsmitter for operation on 80, 40, 20, 15 and 10 meter bands, rated at 100 watts P.E.P. Operates on SSB with selectable sidebands, phase modulation, amplitude modulation and C.W.
Output circuit utilizes pi metwork. Gonset exclusive Filter Phasing Network gives high sideband rejection, uses quartz erystal handelimination filter for carrier suppression of more than 69 db , avoids ueed for critical balaming.
Fresuency control is by fixed quarta crystal and built-in VFO which features exceptional stability. Unit gives wull 680 kes within all amateur bands, 80 through 10. Highly effective YOX system provided. Euilt in 115 V AC supply.

SSB LINEAR AMPLIFIER

Grounded grid Linear Amplifier is rated at 1000 watts P.E.P. Amplifier is designed to operate with GSB-100, or similar SSB transmitters supplying 75.160 watts peak power drive. Unit is self-contained, includes power supply, pi network autput, antenna changeover relay. Bandswitched operation on 80, 40, 20, 15 and 10 meters. Same size and general appearance as GSB-100.
Similar to G-33 in general appearance, G. 43 has a number of refimements that recommend its use by radio amateurs and the advanced short wave listener.

Model number $3262 . .$.
439.50

G.66B FIXED/MOBILE RECEIVER

A highly fiexible receiver, well suited for fixed station use without equal for superior mobile reception. 6 band coverage: . 54 to 2 mes. 3.54.7.73 mes. 14-14.35 mes. $21-21.45$ mes. AM, CW, SSB reception. Highy stable HF and BF oscillators and crystal controlled second conversion oscillator. Steep skirt selectivity by 265 kc 2nd I-F with 8 tuned circuits. Double conversion all bands. AVC and lamous Gonset noise limiter, antenna trimmer, " $\$$ " meter. Slide rale dial exposes oally band in use. $40: 1$ tuning ratıc. Universal power supply is separate unit for $6 / 12 \mathrm{~V}$ oC and 115 AC, has built-in loudspeaker.

C-66B receiver with 6/12V DC and 115V AC power supply...\#3213-12.259.00
"Thin pack", 12 V DC only, power supply also availabie. is only $\mathbf{2 1}_{2}^{1 "}$ thick, plugs into rear of G G. 68 receiver or connected with cable. No speaker.
6.668 receiver with "Thin pack" power supply, 12V OC only. Mo speaker. Less patch cable...\#3214.

g-7TA FIXED/MDBILE TRANSMITTER.

Fixed/mobile transmitter with every desirable feature. Companion unt to the C.66B same size and appearance. Covers $80-40-20 \cdot 15-10$ meters, has built-in stable, calibrated YFO witb crystal control optional. Power input 50 -ibo watts, modulated. Pi network output. Full press-totalk with built-in anterna relay. Power supply and modulator are in separate housing. Output voltage is $500-600$ volts full load. Silicon rectifiers avaid rectifier filament standlay drann. Power supply is universal for $6 / 12 \mathrm{~V} D \mathrm{C}$ and 115 V AC.
G.77A transmitter with universal 6/12V OC and 115V AC power supply and installation hit. . \#3203

Write for further information and name of your nearest Gonset dealer.

harvey DISTRIBUTORS

HARVEY's line of RCA tubes is so complete, that HARVEY can fill virtually any requirement . . . right from stock . . . and deliver at almost a moment's notice.

This is particularly important to AM, FM, and TV Broadcasters, Industrial and Commercial users, Amateurs, and Service-Technicians, all of whom depend on tubes for sustained operation of important electronic equipment.

Write, Wire or Phone for PROMPT HARVEY SERVICE
lisil llarms \om Ihon Radio, Ciputer. The lutest and
 displu:

58

When you plan a new rig and need the parts, or if you wish to buy the latest factory-built job, you can be sure that HARVEY has it ... in stock... for immediate delivery. Through a pin-pointed inventory control system, HARVEY sends your order on its way within a few hours after it's received . . . whether you phone, order by mail, or take it with you when you drop into the store, just of Times Square. You can depend on HARVEY that you receive exactly what

5 hams PLUS reliable service PLUS complete stock PLUS immediate delivery
and the very latest ham products on the shelf immediately after their release from the manufacturer and you'll find HARVEY'S is the place for every ham need.

Visit Harvey's New Ham Radio Center.
The latest and best in ham gear
The latest and best in ham

STILL YOUR STANDARD OF COMPARISON

AM•CW•SSB•DSB•ISB•FSK

The TMC SBE-2 is continuously tuneable in the range of 2 to $\mathbf{3 2}$ megacycles and is frequency controlled by means of temperature controlled crystals or external VFO. Sideband selection is accomplished by a specially designed filter. The carrier may be suppressed to 55 db . Harmonic and spurious output are at least 40 db down. VOX (voice control with anti-trip features) is built-in and adjustable. The SBE-2 provides at least 2.5 watts PEP output and can be followed by any appropriate $A B-1$ amplifier.
The illustration shows the basic exciter unit, with power supply. The unit occupies $83 / 4^{\prime \prime}$ of a standard WE relay rack. The power supply occupies $51 / 4^{\prime \prime}$ of additional space.

60

Duality, Style and Beauly....

We said it would be arcund a long time and you will be interested to krow that despice all the "New" receivers which have been introduced, the GPR-90 is selling better than ever.

FOR THE FINEST SSB OR CW SIGNALS JUST ADD A

GSB-I
SINGLE
SIDEBAND SIDEBAND ADAPTER DETAILS IN
BULLETIN 194

RADIATION DETEGTION • SPECIAL PURPOSE

COMMUNICATION

HELPFUL CHARTS \& LITERATURE FREE:

Write for CONDENSED TUBE CATALOG, information of a glance, rapid tube data reference tables, 26 pages of condensed information arranged for quick refer. ence. Address your dis. tributor or Amperex direct.

§The AMPEREX types 6268 and 6279 are nat anly impraved versians but campletely inferchangeable in every respect with the Types 4C35 and 5C22 respectively. They have a minimum guaranteed life af 1,000 haurs due ta the self-cantained, self-regulating saurees of hydragen. \ddagger Includes sensing plate. Far thermastatic cantral, ardered separately either -
(a) "Water Saver" Thermastat Assembly, Cat. Na. S-17024, Price $\$ 5.25$.
(b) "Overlaad Pratection" Thermastat Assembly, Cat. Na. S-17025, Price $\$ 5.25$.

- Price an requess.

Prices subject ta change withaut natice.

RADIATOR CREDIT FOR FORCED AIR-COOLED TUBES TUBE TYPE USERS ALLOWANCE 889RA \$20.00 891 R, 892 R 30.00 5604 45.00 5667 20.00
6445 … 300
6447300

6757 75.00
6801 75.00

DEPENDABLE PRODUCTS FOR 1959

Model 381 T-R Switch

- Ideal for automatic break-in operation on CW-SSBB-AM-INEB, with common intenna for transmitting and reeriving - Handles full legal limit of power with wide margin of safety. - selecetable bandswiteling, 80 through 10 meters, provides high signal-to-noise ratio, minimum intermodulation effects from local broadeast and TV stations - Fail-safe design: No damage to transmitter if unit is not curgized or is set to wrong operating band - Matches 52-75 ohm coaxial lines.
- For commercial applieations, this unit will hamde more than 1 KW AM phone and up to $\overline{3} \mathrm{KW}$ Nill and CW under silla conditions not excerding $1.5: 1$ when 22 ohm conxial line is in use. Higher power can be handled with 52 ohm line.

Medium Powered Transmitter 5100-B

- Completely solf-rontained including power supply and VFO - Bandswitching on the S0-40-20-15-11/10 metcr batnds. Prak envelope power 180 watts CW-sil3: 145 watts AME Dixcellent sish when used with the 51SB-13 described below - Stible VFO aceurately abalibrated for ath amateur binds including 10 meters. Bias system provides complete eutoff under key-up conditions Dxeellent TVI suppression - Pi-network output © Output receptacle on the back for powering other units including the 51si3-13 - Plenty of audio for 100% AM modulation at all times.

5100-B

Single Sideband Generator 5ISB-B/51SB

Fxecllent sisk with your present tramsmitter - Provides pushl-to-talk. speaker deastivating eirenit. TVI suppression - Complete handswitehing on 80-40-20-151110 meters - Itilizes freguency control method of your present rig - R-F portion has $!00^{\circ}$ phase shift network, double batanced modulator, and two clatss "I" r-f voltage amplifiers - All operating eontrols on the front panel - Input impedance boblans resistive: input voltage 1.5-2.0 RANS on all bands.
 which it derives all oprating power.
M(OD) power supply. For use with other eommercial or home built rigs.

515B-B/515B

B \& W

BARKER \& WILLAMSON, INC. Bristol, Pennsylvania

64

MODEL 851 Medium Powered Bandswitched Pi-Network Inducior Assembly

An ultran-ompact, highly efficient, integrally handswitehed pi-net work inductor assembly for single or parallel tube operation 80 through 10 meters. Rated for 2000 VOC at 250 mat input Sisli-CW . . 1250 VI)C at 200 ma input for AM. Minimum measured " Q^{2} of 300 .

R-F Plate Choke - Transmitting Type

Ideal for parallel or series fed cireuits. High cuality grooved steatite form. (Merates 80 through 10) meters. Rated for 2500 ViOC at 500 ma . Model 800 .

Low Pass Filter

For Transmitters to 1 lilf. Minimum 85 db attenuation throughout TV bends. Uses exclusive BdW patented wave-guide design in novel multi-sectional construction giving greater attemuation in loss spare at lower cost. Model 425 for 52 ohms imperdanes. Model 426 for 75 ohms.

Matchmaster

Self-contained in $6^{\prime \prime} \times \varepsilon^{\prime \prime} \times 8^{\prime \prime}$ sted cabinot. Ferves as dummy load for transmitter tests. SWIR measurements throughout range of 500 kc to 30 me . Directreading r.f. watt meter up to 125 watts, highor powers ly stumpling. IntegralswR bridge for matehing anternas and other loads to transnitter. Model (Gi20) for use with 52 ohm line. Model 651 for 75 ohm line.

1-KW Pi-Network Assembly

A high-pmer, integral bandswitched ioductor for single or parallel tulue operation on 80 through 10 metors. Rated at $1 K W$ on CWT-SSls and AM with 100% modulation. 1000 DC voltage maximum on CW-NSB, 2500-3M(N) on All 110% modulated. All windings ample for mated current with optimum "(2" over entire operating range. Model $850 . \mathrm{d}$.

T-R Switch

Fully automatic clectronic :untenna switching from transmitter to receiver and vice-versa. For medium power applisation. Ideal for fast hreak-in operation on Sish, AM, or CW: Rereiver gain 6 dh at 3.5 mc . Broadbanded . . no tuning refuired, Model 38013 .

Grid Dip Meter

A highly accurate, sensitive instrument. May be used as a grid-dip oscillator. signal gencrator, or absorption wavemeter. Five color-toded pluy-in coils cover 1.75 to 260 mr . Color-ended dial easily real. ()perates from 110 ViC . Fasy to nse in hard-to-getat places. Model 600.

Multi-Position Coax Switches

For 75 or 52 ohm line. Instantly swithes coax lines ... no screwing or unscrewing coax connectors. ilandles up to 1 Kil modulated power. Max. crosstalk - 45 db at 30 me . Model 550A 5 -position switeh. Model 551 A 2 -pole, 2 -positiom switch.

ONE DAY PROCESSING ON CRYSTALS

for use with FO-IL 100 KC oscillator Kit, less tube \$5.95
Wired, with tube 8.95

Shipping weight 2 bbs.

FCV-2 CONVERTOR

Model 50, 6 meters. Model 144, 2 meters
Kit, with crystal, less tubes $\$ 12.95$
Wired, with crystal \& tubes 17.95
Shipping weight 2 lbs.

STP-10
 10 Watt MODULATOR

Kit, less tubes
\$22.75
Kit, with tubes .. 25.25
Wired and tested, with tubes
30.50

Crystal microphone 3.95

Shipping weight 3 lbs.

Kit, less tubes and crystal \$ 8.95
Wired, with tubes, less crystal 13.95
FA-5 crystal (specify frequency) 3.00
Special T-12 kit, less tubes with 80 or 40 meter crystal (specify frequency) 10.95
Special T-12 kit, wired with tubes and 80 or 40 meter crystal (specify frequency) 15.95

STP- 50

6 meter TRANSMITTER

Kit, less tubes and crystal \$21.50
Kit, with tubes, less crystal 26.50
Wired, with tubes, less crystal 32.50
Crystal, FA-5 12 MC 4.00
Shipping weight 5 lbs.

FO-1 PRINTED CIRCUIT OSCILLATOR

For generating spot frequencies with GUARANTEED tolerance from 200 KC to 60 MC . FO- 1 for fundamental operation, 200 KC to $15,000 \mathrm{KC}$
FO-1 kit, less tube $\$ 3.95$
FO-1A, wired and tested, with tubes, less crystal
FO-1B for overtone operation 15 MC to 60 MC
FO.1B kit, less tube and crystal
\$3.95*
FO-IBA, wired and tested, with tube, less crystal 6.95
*Includes coil in one of four ranges: $15-20$ MC, 21-30 MC, 31-40 MC or 41-60 MC. Specify when ordering. Extra coils, 35c each

FO-1L 100 KC OSCILLATOR

Kit, with fube and crystal
Wired and rested 15.95 $\$ 12.95$ 100 KC crystal 8.50
Shipping weight \qquad 2 lbs.

MODEL C-12

 ALIGNMENT OSCILLATOR200 KC to 60 MC
Oscillator, less crystal, in case with cover and carrying handle $\$ 69.50$

SEND FOR FREE CATALOG TODAY

Dept. RAH, International Crystal Mfg.
Co., Inc.

18 N. Lee, Oklahoma City, Oklahoma
Please send me my copy of your complete catalog.
NAME \qquad
NO. \& STREET
CITY \qquad

OSCILLATOR SPECIFICATIONS

	$\begin{gathered} \text { FO-I } \\ \text { tiunde } \\ \text { menlei) } \end{gathered}$	$F O-1 B$ (overtone)
Fieq. Ronge	$\begin{aligned} & 200 \times \mathrm{KC} \\ & 15,000 \mathrm{KC} \end{aligned}$	$\begin{aligned} & 15 \mathrm{MC} \\ & 80 \mathrm{mC} \text { lir } \\ & \text { ranges) } \end{aligned}$
4F Oulpul	$\begin{aligned} & 3 \text { to } 10 \\ & \text {-ols } 1200 \mathrm{ntl} \\ & 120 \mathrm{mms} \end{aligned}$	$\begin{aligned} & 2 \text { to } \\ & \text { volt } \\ & 18000 \text { onlo } \end{aligned}$
Plate Power	$\begin{aligned} & 210 \text { volls } \\ & \text { es mo } \end{aligned}$	$\begin{aligned} & 150 \text { volt } \\ & \text { ce } 8 \mathrm{mo} \end{aligned}$
Meater Power	$\begin{aligned} & 0.3 \text { volls } \\ & \text { © } 180 \mathrm{~mol} \end{aligned}$	6.3 volls - 175 ma
Tubo	6BM6	6AK 5
Moximum Dilt 40° re $120^{\circ} \mathrm{F}$ — $\pm 002 \%$ inel, evystal* (•encept 200 to $500 \mathrm{KC} \pm .02 \%$)		
ManimumD,if with		
Voltope Change	0002\%	0015\%
Cotibration Poleronce	$\begin{align*} & 001 \%{ }^{10} \\ & 01 \% \end{align*}$	$\begin{aligned} & 001 \% \text { 10 } \\ & 01 \% \end{aligned}$
depending on Px.l crystal used		
Sixe	41413	$\begin{aligned} & 4.4,3 \\ & 0.01011 \end{aligned}$
mountung 4	holes (with brecket	plovidea)

IFA-10 IF

 AMPLIFIERFor use between converter and receiver for IF ranges from broadcast band through 30 MC .
Kit, less tube
$\$ 5.75$
Wired, with tube 8.50

Shipping weight
2 lbs.

for stable crystal control with
high frequency-crystals.
Kit, less tube and crystal Wired and tested, with tube, less crystal 9.95
Shipping Weight 2 lbs.

HOW TO ORDER

Please supply sufficie t information with order to focilitate accurate processing. Shipments are made F.O.B. Oklahoma City. Other shipments C.O.D. On C.O.D. orders of $\$ 25.00$ or more $1 / 3$ down payment with order is required.

Put Yourself

in the SSB Picture. . .

For further information see your dealer,
or write ELDICO direct.

Now "Top-of-th-Hill" Performance with the only

Tunable VHF CONVERTER

for the serious VHF man

Radio amateurs designed and built this versatile VHF converter. Specifically designed to extend the range of any communications receiver through the 6,2 and $11 / 4$ meter amateur bands.
The VHF 126 is an independent receiver
with its own power supply utilizing the low-frequency IF stages and audio of your present receiver. Simple to install, it requires no circuit modification to select either VHF or standard communication ranges.

Here's Why You get "Top-of-the-Hill" Performance

- Extends effective usefulness of any receiver to 225 megacycles
- Performance equals that of costly astronomy receivers
- Dual Conversion eliminates images
- Dual-speed tuning: 1 to 1,75 to 1
- Heary, steel cabinel
- Complete shielding reduces spurious radiation below FCC requirements

Ronge: 48.4 to $54.2 \mathrm{MC}_{\mathrm{i}} 143.4$ to $149.2 \mathrm{MC}_{;} 219.4$ to 225.2 MC .

Noise Figure: $50 \mathrm{MC}-2.5 \mathrm{db} ; 144 \mathrm{MC}-4.0 \mathrm{db} ; 220 \mathrm{MC}$ -6.0 db .
Colibration: Direct, MC subdivided in 100 KC divisions.
Panel Contrals: Antenna changeover switch, band selector, funing control, line switch.
Dimensions: $161 / 2^{\prime \prime}$ wide, $10^{\prime \prime}$ deep, $10^{\prime \prime}$ high.
Weight: 32 pounds.

YOURS NOW FOR THE FINEST VHF RECEPTION. \$239, Amateur Net!

GET THE FACTS about RME equipment - built by Hams, for Hams. Write Dept. QII59 for l3ulletin 244. Sce your R.ML-Eilectro-Voice I Daler.

radio manufacturing enginerss, inc.

Division of Electro-Voice, Inc., Buchanan, Michigan

ARRL WORLD MAP

Printed in eight colors on heavy map paper with 267 countries clearly outlined. Continental boundaries, time zones, amateur prefixes, plainly marked. Size: 30×40 inches. $\$ 2.00$.

LIGHINING

 CALCULATORSQuick and occurate answers with AREL Lightning Calculatcrs! Type A for problems ínvolving frequency inductance, capacity. Type B for resistance, waltage, current and power. \$1.25 each.

AST Although primarily a ham magazine, QST is found on the desks of engineers, technicians and just about everyone in the electronics field. There is something for everyone in QST, from the Novice to the Old Timer. QST and ARRL membership $\$ 4.00$ in U.S.A., $\$ 4.25$ in Canada, $\$ 6.00$ elsewhere.
THE RADIO AMATEUR'S HANDBOOK Internationally recognized, universally consulted. Packed with information essential to the amateur and professional alike. Hundreds of photos, diagrams, charts and tables. $\$ 3.50$ U.S.A., $\$ 4.00$ U.S. Poss. and Canada, $\$ 4.50$ elsewhere; Buckram Edition, $\$ 6.00$ everywhere.
A COURSE IN RADIO FUNDAMENTALS A complete course of study for use with the Radio Amateur's Handbook. Applicable to individual home study or class use. \$1 U.S.A. proper, \$1.25 elsewhere.
HOW TO BECOME A RADIO AMATEUR Tells what amateur radio is and how to get started in this fascinating hobby. Emphasis is given to the needs of the Novice licensee, with three complete simple amateur stations featured. 50 d .
THE RADIO AMATEUR'S LICENSE MANUAL Complete with typical questions and answers to all of the FCC amateur exams-Novice, Technician, General and Extra Class. Continually kept up to date. 50 c

LEARNING THE RADIOTELEGRAPH CODE For those who find it difficult to master the code. Designed to help the beginner. Contains practice material for home study and classroom use. 50 c.
THE ARRL ANTENNA BOOK Profusely illustrated, the Antenna Book includes information on theory and operation of antennas for all amateur bands; simple doublets, multi-element arrays, rotaries, long wires, rhombics, mobile whips, etc. $\$ 2.00$ U.S.A. proper, $\$ 2.25$ elsewhere.
SINGLE SIDEBAND FUR THE RADIO AMATEUR A digest of the best SSB articles from QST. Includes discussions of theory and practical "how-to-build-it" descriptions of equipment. \$1.50 U.S.A. proper, $\$ 1.75$ elsewhere.

THE MOBILE MANUAL FOR RADIO AMATEURS It's a collection of articles on tried and tested equipment that have appeared in QST. A "must" for the bookshelf of anyone interested in the installation, maintenance and operation of mobile stations. $\$ 2.50$ U.S.A. proper, $\$ 3.00$ elsewhere.
HINTS AND KINKS If you build equipment and operate an amateur radio station, you'll find this a mighty valuable book in your shack and workshop. More than 300 practical ideas. \$1 U.S.A. proper, \$1.25 elsewhere.

QST BINDERS

Na need to let your copies of QST rest in a disardered pile. A QST binder will keep them neat and orderly. Each holds a ane-year file. $\$ 3.00$ (available in U.S. and Passessions anly).

SUPPLIES

Active amateurs need these supplies: ARRL Lagbook, 50f U.S.A., 60% elsewhere. Minilog, $30 \notin$ U.S.A., $35 \notin$ elsewhere. Radiogram blanks, $35 \not \subset$ per pad posipaid. Message delivery cards, 54 each stamped, $2 k$ each unstamped. Members' slationery, 100 sheefs $\$ 1.00 ; 250$ sheets $\$ 2.00$; 500 sheefs $\$ 3.00$.

Applicatian for Membership

American Radio Relay league

Administrative Headquarters: West Hartford, Connecticut, U. S. A.

American Radio Relay League,

 West Hartford, Conn., U. S. A.Being genuincly interested in Amatcur Radio, I hereby apply for membership in the American Radio Relay Leaguc, and enclose $\$ 4.00^{*}$ in payment of one year's dues, $\$ 2.00$ of which is for a sulbscription to SST for the same period. [Sul)scription to OST alone cannot be entered for one year for $\$ 2.00$, since inembership and subscription are inscparable.] Please begin my subscription with the issuc.

The call of my station is
The class of my operator's license is
I belong to the following radio societies

Send my Certificate of Membership \square or Membership Card \square (Indicate which) to the address below:

Name \qquad
voting membership is granted only to licensed radia amateurs of the Unifed Stapes and Caneda. Therefore, if you hove a license,
please be sure to indicote it above.

> * $\$ 4.00$ in the United States and Possessions.
> $\$ 4.25$, U. S. funds, in Canada. $\$ 6.00$, U. S. funds, in all other countries.

the Globe Sidebander DSB-100 AM, CW, Double Sideband

for
 PERSONALIZED SERVICE PROMPT SHIPMENT - EASY TERMS GUARANTEED SATISFACTION TOP TRADE-INS - LEADING LINES Order Your Ham Gear

from

"the World's Largest Distributor of Amateur Radio Equipment" "the house the hams built!"

representing

 dozens of top flicht manufacturers INCLUDING HAMMARLUND. HALLICRAFTERS, COLLINS, HY-GAIN. NATIONAL, GLOBE, DRAKE, EIMAC, AND OTHERS!here's just a sample . . .
R. L. Drake SSB Receiver 1-A

KIT:
$\$ 12.00$ down
$\mathbf{5 9 . 9 0}$ per mo.
$\$ 119.95 \mathrm{eash}$
w / T :
$\$ 14.00$ Down
$\$ 11.55$ per mo.
sarefoot or pircy-i,ack, this bandswitching 10-80M Sideland Xmete: for three modes of operation $100 \mathrm{w} \mathrm{J}^{\prime}$.E.P. suppressed carrior, $40 \mathrm{w} . \mathrm{M}$ or 50 w CW) ca: be used with present AM egnt.. standard Xtals. * regutar VFO. Exclusive automatic balancing and floating grid circuit holds carrier suppression to 45 db . or better, Continuous band coverage $3-9 \mathrm{mc}$ and 12 -309mc. 3 -gtage RF Section allows straight thru operatun. Pi-net $5=-300$ ohms. Speech clipping of flltering for powerrut communication punch and narrow band width. Provizions for Antenna Relay Control, Ceramic band \& function swirches. Jusw'm look.
the Clobe Hi-Bander 6 \& 2 Xmttr.

KIT:
$\$ 13.00$ Down
$\$ 7.60$ per mo.
$\$ 129.95 \mathrm{cash}$
W/T:
$\$ 15.00$ down
58.70 per mo $\mathbf{\$ 1 4 9 . 9 5}$ eash
 KF section ifully metered) allows straight thru operation. Exclusise nev duo-band Final eliminates swithma, bariable ohin coas output matehes dilleams, most batowitehing. llaratitetna loading control. Sithele rovisions for operating $110 \mathrm{~V}^{\circ}$ rontic end TVI suppression. on piug-in mobile power supply. clauge-brer relay. Prorisions or por power for auxtiarfes at socket on chassis rear apron. Iteserve power
Furward Louk.
$\$ 29.90$

Down
\$24.50 per mo. or $\$ 299.00$ cash

High stability VFO has warm up drift less than 300 cps after 15 min , operation. Xtal-controlled hi-frequency conversion estallishes same stability for all l,ands. Selectivity: 3.5 kc at 6 db . 8.1 at 60db. Sideband AVC. Product detector for SSB, CW * AM by exalted carrier method. seven Gooke tuning ranges cover 5 ham lbands. Sensitivity: less than 1 uv tor $20 \mathrm{db} \$ / \mathrm{m}$. Antenna attenuator: 30rlb. RF input to match 50-75 ohm coax. Built-in speaker for portable use, looke. Xtal. callbrator incl. 13 tulues.

Hy-Gain's Full-Size Tribander

3 ELEMENTS

FOR 10, 15, 20 M
$\$ 9.98$
$\$ 5.70$
per mo.
\$99.75 cash
There are more Hy,Gain Trap Tribanders in use than all other 3-Band Beams comblned. Boom lengtis: 18^{\prime} Longest element: 32 . 8 di) Forward construction throughout. Wind 1oadtits sinallest total possible in full size trithander through use of streamline Insu-Traps. Traps will take 1 KW AM, 200w P.E.P. Indtwldually fac. tory resonated and weather-proofed. Incl. new Trlaxial Gamma Match for perfect $1: 1$ SWR possibility. One Full Year Written Guarantec.

FREE CATALOG! Hundreds of top items for novice and Advanced

Please rush me your FREE 1959 CATALOC LISTS \square. . and quote your top trade-in value for
\square LATE RECONDITIONED

HB

My present: \qquad
On a new: \qquad
Name: \qquad
Address:
City \mathcal{G} State:

BLLLEY CRYSTAL FILTERS

STANDARD DESIGN—CUSTOM DESIGN

Bliley filter net works are custom designed to meet individual equipment requirements over the range 2 me to 20 mc : bandwidths from 100 cycles to 100 kc . Complete facilities are available for the development and evaluation of special filter requirements.

Bliley filter networks are now available in threc standard designs with characteristics selected for general application in communications systems and particularly in SSi3 equipment. The compact size and rugged construction of the units makes them especially suitable for use in mobile and miniaturized eguipment.

BIILEY GRYSTALS for GOWPLETE SPEETRUM COVERAGE

MILITARY AND COMMERCIAL CRYSTALS

 ture and subminiature units hermetically sealed. For range 4 ks . to 125 me. Militory units meet or exceed MIL-C-3098B. BH6, BH9 and BX Series ovoiloble as plug in or with wire

Special designs are avoilable to meet vibrotion up to 2000 cps. at 5G. for airborne and missile environments. New exclusive Bliley development for high temperature operotion up to $185^{\circ} \mathrm{C}$. moy be specified for range 40 kc . to 600 ks .

Technical bulletins are available Technica complete line of Bliley products. Request intamats. your specific re

HIGH STABILITY CRYSTALS

Vocuum mounting and special processing combine high stobility with minimum oging in Bliley's sealed-in-glass series. These advanced designs far frequency range 4 kc . to 125 mc ore ideal where precision performance and ong ferm reliability are premium considerations Supplied with temperoture confral ovens (Bliley types BTC-2 or TCO-11C)
where required.

BLILEY BUILDS COMPONENT OVENS FOR TRAN. SISTORS, COILS AND OTHER CIRCUIT ELEMENTS requiring temperature stabilization.

Telrex "BeamedPower" ArraysWorld renowned for performance, excellence and value! The end result of constant striving for perfection, in the little things as well as the big.

Telrex "BeamedPower" Arraysthe choice of discriminating communication engineers ... those who require outstanding performance, material and workmanshipspecify Telrex Antennas.

Truly-America's finest low-cost communication antenna svstems!

TELREX LABS

M.D. Endino President and Chief Engineer

Single Transmission Line

"TRI-EAND" ARRAY

The Standard of Comparison

3 Element. 7 db on 10 Meters; 2 Element, 5.5 db on 15 Meters; 2 Element, 5.5 db on 20 Meters; Capacity, $3 \mathrm{KW} ; 100 \%$ AM
By actual on the air comparisons, has out-performed so-called 3 element tribanders! NO-COMPROMISE, full 'size "Tri-Band' array precisicn funed and matched to provide hi-pe-formance, clean uni-directional paftern on 10,15 and 20 mefers
Easy to follow fool-proof calibration chart supplied. Antenna easily assembied (approx. 1 hour) to the frequency of your choice for outstandirg "Tri-Band" performance, without fuss, bother or formulas!
SPECIFICATIONS

- Exclusive Telrex full size, full - Large diameter (. 058 wail) specia performance. 10,15 and 20 alloy, taperswaged eltements, for meter "Tri-Band" dipole.
- Gain 5.5 db on 15 and 20 meter; 7 db on 10 meters.
- F/B ratio 19 db on 15 and 20 ; 22 db on 1 C meters.
- V/S/W/R $1.3 / 1$ or better each band at iesonant point.
- 2" OD x 14 ft ., 2 piece heavy wall, 2 piece alum. boom, precision drilied. minimum wind drag and exceptional strength to weight ratio.
- Stainless steel electrical hardware.
- Heavy-duty "Cycolac" eiement insulators.
- Universal heavy-duty steel gusse: plate with wide strap mounting --no flimsy U-bolt affifair.

Fifty-three pounds of educated aluminum, with no coils, condensers or coaxial couplings to break down or deteriorafe!

Communication

 Systems from $\$ 5.95$ to $\$ 12,000$. Write for catalog."Originators and Manufacturer's of time World's Finest Communication Antenmas'

0
 SYLVANIA GERMANIUM TRANSISTORS

Power Transistors

NPN \& PNP Switching Transistors

RF-IF Transistors
Type
TV
TRANSISTORS

For complete data on the above types contact your authorized Sylvania Distributor or write Sylvania directly.

Type	Description	Not Price
CRYSTAL DIODES		
IN3	60 Volt, General Purp	1.5
1N35.	Matched Pair, type IN34A	85
IN38A.	100 Volt. General Purpose 0	85
- IN388. IN38A With Contralled Forward Current. ${ }^{\text {a }}$. 50		
IN39A.	200 Volt. General Purpose diode	2.50
in398. 200 Volt, Gen. Purpose Diode Controlled Forward Current.... ${ }_{500} .50$		
1 NaO		2.00
IN41....... 25 Volt, Varistof, Can with Lugs		
IN48 85 volt, General Purdose Di		
iN52A	85 volt, General Purpose Diode:	. 80
1 N54A 50 Volt, High Back Resistance Diode .70 $_{79}$		
IN55A	150 Voit. General Purpose Diode	. 90
1 N56A. 40 Voit. High Conductance Diode		
$1 \mathrm{~N} 6025$ Volt. Video Detector Diode		
IN63.	100 Voit. High Back Resistance Dio	1.50
IN64. 20 Volt. Video Detector Diode. ${ }_{53}$		
1N65.	70 Volt. General Purpose biode.	95
IN69...... . 60 Volt, General Purpose Diode . ${ }_{50}$		
1 N69A	1 N69 with controlled farward	55
1 N70.	100 Volt, General Purpase Diode.......	75
-1N70A.	11970 With controlled Forward cur	5.00
1N71....... 40 Valt. Low Impedance Varistor Plugin. ${ }^{\text {5 }}$ 58		
[N72.	5 Volt. UHF TV Mixer Diod	50
	Same Electricaliy as iNJIA. only	. 85
iN81...... 40 Volt. High Back Resistance Diode		
IN81A.1N81 With Controlled Forward Current. 95		
IN82A..... 1 IN82 With Low Noise, UHF TV Mixer Diode. 1.15		
IN98...... 80 Volt. High Back Resistance Diode-Miniature 96		
1N100..... 80 Volt. High Ressistance.		
IN119...... 60 Volt, Computer Diade . 60		
1 12126.	60 Volt General Purpose Diode-M iniat	45
in126A.....1N126 With Controlled Forward Current. 45		
*IN126A.	1 N126 With Controlled Forwaro curre	
In 127100 Volt. General Purpose Diode-Miniature ${ }^{\text {a }}$. ${ }^{\text {a }}$. 90		
1N127A.	1 N127 With Controlled Forward Curren	
	40 Valt. General Purpose Diode.M	. 73
*iN128.... . . 40 Volt, General Purpose Diode-Miniature ${ }_{75}$		
1N191...... 90 Volt. Computer Diode-Miniature		
1N195...... 40 Volt. High Temperature Diode........................... 1.8.		
1N196.	. 50 Volt, High Temperature Diod	1.20
	volt. High Speed Switching Sili	3.75
IN276...... 50 Volt, 40 ma. General Purpose-Miniature 1.65		
in283....... 20 volt, High Conductance Diode-Miniatu		
1N295..... 40 Volt. TV Video Detector Diode....................................... 1.15		
1 1N17..... 60 Volt. Computer Diode................................... ${ }^{\text {a }}$. 70		
IN450 100 volt. VLI . ${ }^{\text {. }} 1.05$		
IN451....... 150 voitt vLI . ${ }^{\text {a }}$. 1.50		
IN453 100 Voit. VLI ... ${ }^{2}$ 2.50		
1 N 454.	50 Volt. VLI	
IN455..... 30 volt VL1 ${ }^{\text {a }}$		
1N571	volt. Computer Diode	. 1.85
iN1093.... 15 volt Computer Divde.. 1.20		

- Jan Type Approval.

Type
MICROWAVE CRYSTAL DIODES

IN21A.
IN21B.

* IN218M
- IN218R..

IN21BMR

- IN21CM
-1N21CR.
- IN210..

IN210M
IN210R IN2IDR... IN21E. IN21EM. . IN21ER. IN21EMR
IN2IWE
1N21WE
$1 N 23 A$

- IN238.
- IN23BR.
- IN23BMR

IN23C.
1N23CM

- IN23CR
- IN23CMR

IN230.
IN230M
IN230R.
IN230MR
IN230M
IN23E.
1 N23EM
IN23ER.
IN23EMR
IN23WE
IN23WE
IN25R...
IN25A..

- IN26...
- IN26M.

IN26R.
IN26MR'
IN26A..
IN26AM
IN26AR.
IN2GAMR
IN31.
-1N32.
1N53
$-1 N 53 \mathrm{M}$
-1N53M.
-1N53R..
IN53MR.
INS3AM..
IN53B
IN53BR
IN53BMR

* IN76.

IN76..
IN76R.
IN76R
IN76A
:1N78.
-1N78M

- IN78M.
- IN78MR.

1N78A
IN78AM
IN78AR.
IN78AMR.
1N78AMR
IN78B...
1N78B
IN78BM
N N 788 M
IN78BR IN78BR
IN78BMR.

1N79

IN149
N1N286.
iN358.
IN358.
IN358R
iN358A
IN358A.
iN369.
IN369
IN369A

IN630R
IN1132
$1 N 1610$
1N1611

IN369A..... Brasd Band Video Detector 26.5140 kmc .

1N416E Double Ended IN21E .. 64.50

1N630 Broad Band Video Detector . 65.50
3000 mc Mixer.
$\$ 1.25$
3000 mc Mixer . y . ${ }^{\prime}$ ' . 3.05
N218 Reverse Polarity
Malched Pair $1 N 218 \cdot 1 N 218 R$
3000 mc Mixer.
Matched Pair 1 N 21 C 's.
1N21C Reverse Polarity ${ }^{\text {Matched }}$
3000 mc Mixer Low Noise.
Matched Pair 1N210's.
1N210 Reverse Polarity.

.
Matched Pair 1N21E's 17.50
1N21E Reverse Polarity ; . 21.10

10,000 mc Mixer.
10.000 mc Mixer

Matched Pair 1N23B's
Matched Pair 1N23B's. 3.15
Matched Pair JN238-1N23BR . 3.70

IN23C Reverse Polarity . 3.15
Matched Pair 1N23C-1N23CR. 5.3 .35

Matched Pair 1N230-1N230R . 10
Matched Pair 1 N 23 E © $\mathrm{s} . .$. 18.60
1N23E Reverse Polarity ${ }^{\text {I }}$.
Nouble Ended IN23E . 480
1000 mc Mixer. 4.10
IN25 Reverse Polarity . 9.90
24,000 mc Mixer . 11.55
Matched Pair 1N26's . 17.25
N26M Reverse Polarity . 34.5
24,000 mc Mixer Low Noise . 35.00
. IN26A Reverse Polarity . 21.00
Matched Pair 1N26A-1N26AR . 42.0
10.000 mc Video Detector . 15.70

IN53 Reverse Polarity . 54.50

35.000 mc Mixer ${ }^{2} 3$. 120.00

35,000 mc Mixer . 49.00
Matched Pair 1N538's . 73.50
Matched Pair 1N53B-1N53BR. 147.00
10.000 mc Video Detector . 4.84
$0,000 \mathrm{mc}$ Video Detector Low Noise....... 3.88
16.000 mc Mixer . 12.400

IN78 Reverse Polarity. 18.50
IN78M Reverse Polarity. 36.00
16.000 mc Mixer

Matched Pair IN78A's.
IN78A Reverse Polarity.
16.000 mc Mixer.

Matched Pair IN78B.
N788 Reverse Polarity,

Meter Rectifier. 60
10.22 .000 mc Broad Band . 61.50

Broad Band Video Detector $1-12.4 \mathrm{kmc}$ TriPplar 29.50
IN358 Reverse Polarity. . . . L. 36.00
$1 \cdot 12.4 \mathrm{kme}$ Trip olar Crystal Low Noise
12.4 kme OC Roturn

Double Ended 1N23C

98.00

1N630 Reverse Polarity
64.50
3.12.4 kmc Broad Band Video Datector TriPolar. 74.0

High Temp. Broad Band Video Det. 3-12kC.
X-Band Video Detector $9-k m c ~$
12.40

SYLVANIA ELECTRIC PRODUCTS INC., 1740 Broadway, New York 19, N. Y.
In Canada: P. O. Box 1190, Station " 0 ", Montreal 9
LLIGHTING - TELEVISION • RADIO • ELECTRONICS • PHOTOGRAPHY - ATOMIC ENERGY • CHEMISTRY-METALLURGY

Belden Radio and Electronic

 Service Rated-Quality Controlledin Easy-to-Use Packages!

RGU Cables

8238 Type RG-1 $/ \mathbf{U}$

Belden RGU Cables are designed for lowest losses, longer service life, and maximum dependability. Cables are essentially flat with no peaks in attenuation to reduce signal on either high or low frequencies.

Twin-Lead Cable

WELDOHM

8230 VHF Lead-in Cable

Weldohm* Transmission Line Cables reduce antenna lead-in conductor breakage to a minimum. Have over $21 / 2$ times whipping and flexing strength and $11 / 2$ times breaking strength of ordinary copper lead-in wire.

* Belden Trademark

Rubber-Jacketed Portable Cords

8454

8453

Provide dependable service as power supply cords, interconnecting cables on electronic equipment, remote control circuits, special press-to-talk microphone circuits and other Ham applications. Designed for long service life with excellent mechanical and electrical characteristics, and uniform quality. Special black rubber jacket offers maximum resistance to abrasion and ozone.

Wire for Every Ham Application

Ham Transmission Lines

8210

Heavy duty, heavy gauge, 1 kw (RF) rated cables, virgin brown polyethylene for long service life in rain and sun.

8484
Sturdy, flexible, plastic insulated cable for all Ham antenna rotor applications. Cables are color coded for easier hook-up. Chrome, vinyl plastic jacket resists sun and aging.

Workbench Hook-Up Wire Dispenser Kits

Magnef Wire - Lead Wire - Power Supply Cords - Cord Sets ond Portable Cord - Aircroft Wires - Electricol Household Cords Electronic Wires - Welding Coble - Automotive Wire and Coble

Solve the problems of waste and inconvenience for all users of Hook-Up Wire. Available in 14 most popular assortments of Vinyl, Vinyl-Nylon, Textile, and Teflon* insulated wire. Rack conveniently mounts on workbench or wall at user's finger tips.

- Duport Trademark.

Turn your skills into profit servicing G-E Two-Way Mobile Radio

G-F. Servi-e Station operator Floyd Ziehl. W2RtT, a seeond class Commercial Radio Operator and 30-year amateur veteran, installs new 150 mc pre-amplifier containing General Hlectric's new $\mathbf{5 0 7} \mathbf{4}$ miero-miniature tube in a mobile unil servige:nen arm kept up-io-date on new and advanced units like this by a constant flow of information from the General Electric National Service Manager.

Thousands of new mobile radio systems are being installed every yearfor delivery services, salesmen, taxis, gas and electric utilities, industrial and construction vehicles, and many other uses. All these systenis require service - service your unique background and knowledge can be easily adapted to provide.

Servicing two-way radio can be a fuli-tinue vocation, or a urofitable sideline. Many highly successful General Electric mobile radio service stations were founded by licensed radio amateurs, and many now utilize the skills of hams such as yourself on a parl-time basis as well as full-time. Working in an authorized G-E Service Station is also an ideal way in which to prepare for the second or first class Commercial Radio Operator's license, required for commercial mobile radio servicing.

C-E two-way radio equipment is designed and built with the serviceman in mind. General Electric's famous Progress Line, for example, features interchangeable rack-mounted transmitter, receiver and power supply for fast servicing. G.E.'s new line of transistorized portable and mobile equipment offers even greater service advantages.
Find out how you can become an authorized G-E serviceman. Write National Service Manager, General Electric Company, Communication Products Dept., Section 39, Mountain View Road, Lynchburg, Virginia.

Progress /s Our Most Imporrant Product GENERAL ELECTRIC

If If's Shown In This Handbook

 Henry Has It!
HENRY gets the new equipment First YOU get the world's best Terms!

Low Terms

You get the best terms anywhere because Henry finances all the terms with his easy time payment plan. 10% down (or your trade-in accepted as down payment), 20 months to pay.

Long Trades
Henry wants to trade and he trades big. YOU get truly liberal allowances on your equipment. Tell us what you want to trade. We also pay cash for used equipment.

Complete Stocks
Henry has everything in the amateur equipment ield, new or used . . . transmitters or receivers, and Henry has the NEW equipment FIRST.

Low Prices
Henry's large purchasing power means low prices to you. You just can't beat our wholesale prices.

Henry gives you a guarantee of " 100% satisfaction" or your money back at the end of a 10 day trial.

Write, wire, phone or visif either store foday.

[^10]

This is only a partial listing of Measurements' products.
Write for our complete Catalog.

Labooatory Stardarda

©
MEASUREMENTS A McGraw-Edison Division BOONTON, NEW JERSEY

84

* True Hammariund quality at low cost! General coverage, 540 KCS to 30.0 MCS. 10 -tube superheterodyne with automatic noise limiter. Electrical bandspread. Q-multiplier.

Optional Telechron clock-timer $\$ 10$ EVERYONE A WINNER!

A true amateur receiver at a low price! Dual conversion. 6, 10, 15, 20, 40, 80 and 160 meter ham bands. Crystal calibrator. Q-multiplier. Separate linear detector for SSB and CW. Separate BFO.

Optional Telechron clock-timer $\$ 10$

HQ-145

Brand-new general-coverage receiver! 540 KCS to 30.0 MCS. Dual conversion. Adjustable 60 db slot filter. Crystal filter, 11-tube superheterodyne with automatic noise limiter.

Optienal Telechron clock-timer $\$ 10$
Optional plug.in 100 KCS calibrator $\$ 15.95$

Best for the amateur at any price! Dual and triple conversion 17-tube superheterodyne with automatic noise limiter. 60 db slot filter. Separate vernier tuning. Selectable sideband. Tuned IF amplifier. Crystal calibrator.

Optional Telechron clock-timer $\$ 10$

HQ-160

Everything you could wish for in general-coverage! 13 -tube superheterodyne with automatic noise limiter. Dual conversion. 540 KCS to 31.0 MCS. Crystal calibrator. Electrical bandspread. Slot filter. Q-multiplier.

Established 1910

MANUFACTURING COMPANY, INC. 460 West 34 th Street, New York 1, N.Y. In Canada: White Radio, Lid., 41 West Ave., N. Hamilton, Ont

Talk To Terminal...

about Ham Equipment

... and when you talk with us, in person or by mail, you will discover we have a genuine interest in hams and ham radio. (As a matter of fact, you'll find us steeped in ham radio right up to our earphones.) Whether you're a novice or an oldtimer, you'll enjoy talking with the many hams on our staff -W2FZ, W2AQA, W2BUS, W2JBA, W2MKH, K2VVV, K2VBD, to name a few. They'll show you the top ham equipment values...all name brands in stock, ready for immediate off-shelf delivery to save you time and money:

RCA • Hammarlund • National • Hallicrafters - Gonset • UTC • Johnson • Millen • Triad • Ohmite • Eimac • Shure • Advance • Bud - Stancor • Thordarson • Triplett • Mallory • Astatic • Simpson • Barker \& Williamson - and hundreds of others.

Talk to Terminal

About Everything in Electronics...

Ham equipment,. industrial equipment, high fidelity...Terminal has the fullest selection of name brand products that you'll ever want to see .. . Talk to us first-find out about the dollar-saving advantage of Terminal's "OffShelf Delivery" on ham and industrial materials...ask about our famous "P.D.Q." (Package Deal Quotes) on hi-fi equipment... and when you do talk to us you'll find friendly, informed men who speak your language. One phone call, one order, one source for all your electronic procurements... You can always depend on Terminal for your best deal.

Talk to Terminal Today...

For Ham Radio...for your career in communications ...pass FCC commercial and amateur code exams and amateur theory exams. Learn code and theory this fast, easy, inexpensive way...study at home with unbreakable phonograph records.
No. 1 - Novice Code Course. You get and keep album of 10 recordings (through 8 w.p.m.), sample FCC type code exams, instruction book, charts to check your receiving accuracy. All for only: $45 \mathrm{rpm} \$ 5.95$, $331 / 3 \mathrm{rpm} \$ 4.95,78 \mathrm{rpm} \$ 6.95$.

No. 2 - Senior Code Course. Everything in the Novice Course - plus. 22 recordings (through 18 w.p.m.) and typical FCC type code exams for both General and 2nd class commercial telegraph licenses. 45 rpm $\$ 10.50,331 / 3 \mathrm{rpm} \$ 9.50,78 \mathrm{rpm} \$ 11.50$.
No. 3 - Advanced Course. Prepares Novice operators for Amateur General class and Second class commercial licenses, 12 recordings (8 through 18 w.p.m.) plus the complete code book, typical FCC code exams. $45 \mathrm{rpm} \$ 4.95,33^{1 / 3} \mathrm{rpm} \$ 4.95$, $78 \mathrm{rpm} \$ 5.95$.
No. 4 - Complete Radio Theory Course. Covering the Novice, Technician, Conditional and General classes - all under one cover - with nearly 400 typical FCC type questions. Simple... no technical background required. Also, free, a guide to setting up your ham station. For the amazingly low price of $\$ 3.95$.
No. 5 - Radio Amateur Questions \& Answers License Guide. A "must" if preparing for Novice, Technician or General class exams. Approx. 200 questions \& answers (mostly multiple choice) similar to ones on FCC exams, plus 2 sample FCC type exams. Other ques. tions arranged by subject for easy study. Only 50 c DELUXE CODE PRACTICE OSCILLATOR
In Kit Form or Wired Produces a pure, steady tone with no clicks or chirps. Built-in 4 inch speaker. Takes several headphones
 or keys. After code has been learned, the oscillator is easily converted to a fine cw monitor. Has variable tone control \& volume control. Sturdy, grey hammer-tone cabinet.
Kit, with instructions, less tubes (Model CPS-KL)s11.95 Kit, complete with tubes (Model CPS-KT) $\$ 13.75$ Completely wired \& tested, less tubes (Model CPS.WL) $\$ 13.15$ Completely wired \& tested, with tubes (Model CPS-WT)........... $\$ 14.95$

Never tires the arm . $:$. never upsets the nerves VIBROPLEX MAKES SENDING EASIER THAN EVER BEFORE

VIBROPLEX

Its semi-automatic action actually performs the work for you.

Vibroplex is a pleasing key. Suits any hand or style of sending. Its easy, natural response helps tevelop speed fast. Vou take it easy, while Vibroplex performs the arm-tiring work for you. your sigmals are cleap and easy to read.
It's the signal that counts. Vibroulex signals are thiformily good at whatever speed it is being operated.
-ibroplex never tires the arm, never insets the nerves, as use of the old keys ftell does.
l'recision machined. rugged. Vibroplex stands rough usage. Trouble-proof and adjustable to any desired speed. Dependable as the day is long.
Vibroplex then is the perfect key for rou. Try it and see for yourself. At you, iealers or direct.

Vibroplex Super DeLuxe

Fast operation and easy action make this newest Xibroplex a popular choice among the elite. Equinped with the work's easiest sending features, in addition to all former Vibroplex feat ures, has a super deluxe speed control mainsperk that wights Precisiot speed range and slowest senuing, intoule to any desired speed. Λ machined, trouble-proor and a lifetime of sending enjoyment. seautiful key, Everybody wants one, With circuit closer. DeLuxe, only

Vibroplex Original

Here's a key you can buy with confidence. In daily use for over 40 years has pleased thousands with its ease of operation, strong, clean signal and allaround senting excellence. "Sure easy on the arm. Trouble-proof, aljustable to any speed, Many of

Vibroplex Carrying Case

Hack simulated morocco. Cloth-lined. Reinorced corners. Flexible leather handle, keeps forced corners. dree of dirt, dust and ministure, and insures safe-keeping when not in use. With lock and key. \$6.75. The "BUGG imitations! ${ }^{\text {Trade Mark }}$ identifies the
Genuine Vibroplex
Accept no substitute
Accept no substitute

Beautifully at yled. brecision machined rugged with an improved frame, a fat nenduluin bar with slotided damper frame prevents damage to key, an in stantly adiostable dot contact spring that may be removed without disturb ing the speed weights. A great buy at this low, low price. With circuit closer

Vibroplex Blue Racer

Small, compact, fugged built extrat sturdy like the ()riximal, but oniy mall amace, jrecision tnachined, aliustable to any deaired speed. Has the same features as the ()riginal ant very popular with thonsands of nsers for a fine sending performance with the least labor. With cireuit closer. Stamlard. $\$ 19.95$; 1)el.uxe. $\$ 23.95$.*

NEW SPECIAL ENLARGED Edition of PIIILLIPS CODE, $\$ 2.75$ Postpaid

Also inclutes:
Radio Corle Signals
Jnternational Morse American Morse Amerian, i ireek, Arabic Turkish and Japanese Morse Canles
World Cime Chat
f'uited States Time Chart "ommercial "\%" Code Aeronantical " Q " Code Niscellantous Abbreviations. Used on international wire, sthinarine cable and radio telegraph
circuits.
Get your copy today!

You must be tired of the old-faslioned keys and their annoyances or maybe your bug is old and not perking as youd ifke, then why no or maybe your new Vibroplex and etioy your operating as never before. Choose yours from those illustrated here. You can be sure if it's Vibroplex.

THE VIBROPLEX CO., Inc., 833 Broadway, New York 3, N. Y. W. W. Alspicht, Prenident

IF YOU SEND YOU SHOULD USE THE VIBROPLBX

All From One Source

> These four quality lines of Electronic Components may be obtained quickly and conveniently from Distributors who stock ERIE RESISTOR CORPORATION products.
 tation of having the highest quality and make up the most complete line of Ceramic Replacement Capacitors. Distributor Stock items are representative of the most common types used by dealers, servicemen, experimenters, amateurs, laboratories, project engineers, and industrials.

CORNING Glass Electronic Components include the complete line of Fixed Glass Capacitors, Direct Traverse and Midget Rotary Glass Trimmer Capacitors, and various types of Low Power, Precision and High Power Glass Resistors.

ERIE-Chemelec Teflon Electronic Components are made of the most nearly perfect insulating material available, and are ideally suited to withstand high humidity, high or low temperatures, high altitudes, high voltages, and high frequency operation. It is serviceable at any temperature from -110° to $550^{\circ} \mathrm{F}$ for long periods with negligible change in critical electrical characteristics.

GRIGSBY-ALLISON Switches are known throughout the industry for dependable quality and smooth performance. They include a complete variety of styles for all types of applications.

HAMMARLUND HAS IT! And ARROW Has Hammarlund!

Hammarlund Madel HQ- 145
The HQ-l 145 is feoture-full and warks like a charm. Cavars $.54-30 \mathrm{mc}$, dauble conversion fram $10-30 \mathrm{mc}$. Has crystal lilter and the well-known Hammarlund 60 db slat filiter. Electrical bandspread is pravided with calibrated markings on the 80, 40, 20, 15 and 10 moter bands. Extremely stable, Incorparating valtage regulation and temperature compensation. Amoteur Net $\$ 299.0$ Amoteur Net (with Cliock) $\$ 279.00$

Hammarlund Model HQ-170
All the best features of the finest 55B converters, plus the best features of the finest amateur receivers wropped up in a single, autstanding receiver. Cavers the 6. 10, 15. $20,40,80$ and 160 meter amateur bands. Separate vernier tuning. Dual and triple canver: sian 17.fube superheteradyne. Adjustable 60 db natch filtor. If passband tuning. Adiustable AVC.
Amateur Net $\$ 359.00$
Amoteur Net ((with Ciock) $\$ 369.00$

Hammarlund Model HQ. 160
Campores with receiver: costing hundreds of dallars marel Dual canversian. 540 KCS to 31 MCS. S5B. Q-multiplier. Electrical bandspread. Separate stabilized BFO. Crystal. cantralied 2nd IF. Crystal calibrotar. Adjustable 60 db noteh filter. 13 -tube superhetera. वуп.
Amoteur Net
$\$ 379.00$

Hammarlund Model HQ-100
The hattest, fostest selling general caverage teceiver on the market! Cantinuaus tuning from 540 KCS to 30 MCS . Electrical bandspread tuning. Q multiplier for cantinuously variable selectivity, lo-tube superheteradyne with autamatic noise limiter.
Amateur Net Amateur Net (with Culacki..... $\$ 199.00$

Hammarlund Model HQ-110
Oual canversian, 12 tube superheteradyne. Full caverage af 6, 10, 15, 20, 40, 80 and 160 meter amateur bands'. Builtion erystal cal. ibratar. Q.multiplier. Separate linear detectar far S5B and CW. Separate stabillzed BFO. Amateur Net \$249.00 Amateur Net (With Clack) $\$ 259.00$

AUTHORIZED DISTRIBUTORS OF ELECTRONIC PARTS \& EQUIPMENT

Arrow's Export Dept. Ships To All Parts Of The World

ARROW/Electronics, inc. 65 Cortlandr St., New York 7, N. Y. . Digby 9-3790 525. Jericho Turnpike, Mineolo, N. Y. • Ploneer 6.8686

Trade-ins Welcomed
Your old equipment is worth money at Arrow. Get Arrow's deal before you buy.

TWO-WAY RAIIIO

communications equipment

VHF-FM FOR: MOBILE Atretaft marive Moroacyey Pontable MsE	VHF-A II FOH: AIRPDRT VEHICLES GROUND STAIIONS POINT.TO-POINT	VHF ANTENNAS REMOTE CONTROLS ACCESSOAIES

CONTROLLER

VHF-AM TWO-WAY RADIO

for airport vehicles and ground stations
The CONTROLLER mobile unit was specificolly designed for airport vehicles requirirg two-woy communicotion with control towers ond plones.
Far use in romp jeeps, electricion's trucks, crosh trucks, fow troctors, snow plows, executive cors, police cors ond of tem. parory locations such o: construction sites.

FEATURES

- FREQUENCY RANGE: 11810400 ME. crystal controlled.
- SINGLE OR DUAL CHANNEL: maximum spread 500 kc .
- POWER OUTPUT: 3 to 4 watts, more than enough for airport service.
- LOW BATTERY DRAIN: total standby 10 amps. at 6 volts, 5 amps. at 12 volts.
- UNIVERSAL: instantly change. able from 6 to 12 volt opera. tion.
- COMPACT: unjer dash or trumk mounting case $5 \frac{1}{2 \prime \prime} \times 11^{\prime \prime} \times 13^{\prime \prime}$.
- LOW COST MAINTENANCE; thousands of CONTROLLERS have earned an excellent reputation for trouble.free operation.

NEW!

ELIGHTCOM

12/24 VOLT VHF-FM FOR AIRCRAFT

 ecutive, potroling and utility circraft. Used by fishing fleuts, petroleum producers, pipe line helicopiers, Stote police, Conservotion deportments, =rop dusters, power companies and deportments of the U.S. government- COMPACT $\times 111 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$

22 Ibs. (without antenna and speaker)

- UNIVERSAL . . . instantly changed from 12 volt to 24 volt operation.

Provides communicotions between ground FM systems and ex

- POWERFUL . . . 25 walls ult - Efficient . . . Low battery drain.
LOUD . 1 trat! minimum
- PERFDRMANCE .. meets al existing and proDosed FCC and ECDA requirements.

ATTENTION DEALERS!

Write for available territories.

Package consists of: Chassis, case, shock mounting rack, control box, cables, microphone.
 RADIO CONMUNICATIONS EQUIPMENT collinusiositions
FOUNDED 1938
CORAL GABLES, MIAMI 34 FLORIDA
90

LEARN ELECTRONICS

Electronic Technical Institute of Inglewood, Vorth Hollywood and San Diego, Calif., now offers Associate of Science and Bachelor of Science degrees!

With over 12 years' experience, ETI of California trains you for the job you want in the tremendously growing electronics industry. Learn now for automation, radar, rocket and missile racking and guidance systems, home service and repair of TV, radio.

Start now! ETI has a tailor-made program for you!

Resident Study (engineering technician). You get basic electronies and electronies through radar, loran and digital computers, including preparation for all FCC licenses. Theory, math and lab experiments with practical training given by accredited instructors in modern classrooms. An ECPD Accredited Engineering Technician Curriculum.

Graduotes of the Resident Study Course with an Associate in science Degree may be eligible for advanced training for the Bachelor of Science Degree in Electronic Iingineering.

Home Study (for technician jobs). You get electronics theory, radio, television, radar \& loran (direction location) through I:TI's famed Photo-Sound recordings and text books. These give you basic electrical and electronic know-how, math brush up and laboratory training (with equipment, if you desire). Tests are administered and graded. Student may apply grades and credits carned toward a resident earned Associate or Bachelor of Science Degree. Course also includes code study series to help you pass FCC license requirements. ETI's labs may be used at no cost if student lives in Southern California.

DON'T DELAY!

MAIL COUPON NOW!

Electronic Technical Institute

970 W. Manchester Blvd., Inglewood, Calif.

An accredited institution
Approved for veterans

Leorning at ETI. Skilled instructors in modern classrooms with the best equipment give students the electronic theory and practice they need to get better jobs in rapidly expanding industry.

Learning of home. ETI student with textbooks, study outline and lab equipment learns electronic theory and practice as step toward higher pay job.

Electronic Technical Institute

970 W. Manchester, Inglewood, Calif. 10705 Burbank Blvd., No. Holly wood, Colif. 4863 El Cojon Blyd., San Diego, Colif.

Please send information on the following:
\square ETI Extension Courses (Home Study)ETI Resident Courses at Degree Leve!
ETI Code-by-Sound Home Courses
\qquad
Address..
City .Zone.State
ETI HBS9

Complete Outfitters

FOR THE

- Ham
 - Communications

- Electronic Engineers

Eugene G. Wile

 218-220 South 11th St.Philadelphia 7, Pa.
WAlnut 3-1343
Distributors of
Nationally Advertised Lines of RADIO, TELEVISION and ELECTRONIC Parts

BECAUSE IT'S SO REVOLUTIONARY

 we'd like to explain the four modes of operation of the
COSMOPHONE "35"

SPECIFICATIONS

- Operotes on 10, 11, 15, 20, 40 and 80 meter bands.
- Transmits or receives SSB (upper or lower), single sideband with carrier (AM) or C.W.
- Peak-Null " O^{\prime} Multiplier.
- Receiver Sensitivity: 1 Micro-volt@6db5/N ratio.
- Single 6146 output.
- Built-in VOX and QT.
- 40 db suppression.
- 3.1 ks mechanical filter for tronsmission ond reception.
- Dual speed funing knobs with ratios of $20: 1$ and 100:1 over a 600 kc band spread.
- Meter Indication for R.F. output, final Grid or Plate current and receiver signal strength.
- Dimensions $17^{\prime \prime}$ wide x $12^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep.

Amoteur Net Price
$\$ 799^{50}$
Power Supply \#P35
\$13950

The Cosmophone " 35 " is a complete amateur station. It functions as either a 2 -channel bilateral transceiver or as 2 independent transmitter-receiver combinations.

HERE'S HOW...

T Set tune selector switch to RA TA. Tune channel A to desired 1. frequency. Peak transmitter. You are now set for the single channel transceiver operation.
2. Set tune selector switch to RB TA. Tune channel B to foreign the A Xing station. Tune channel A to any desired frequency inside band and receive DXing stations outside the ham band.
3. Set tune selector switch to RA TB. The same tuning procedure 3. applies as to Mode 2 except channel A and channel B are now reversed.
4. Set tune selector switch to RB TB. The same tuning procedure 4. applies as to Mode 1 , except you are now transceiving on the channel B frequency.
By alternating between RA TA and RB TB you can maintain contacts with two nets without disturbing any frequency settings.

Limited Quantity of COSMOPHONE 35 Now Being Distributed
For additionat information and dealer nearest you, write Dept. HB1

Specify Birtcher tube cooling and retention devices

85% of all electronic equipment failures are caused by tube failures, the main causes being heat and vilration. The Birtcher Corporation is currently solving tough reliability problems for both government and private industry through the use of its tube and component cooling and retention devices - specially adapted where necessary to fit customers' special needs.

KOOL KLAMPS

Birtcher KOOL KLAMPS perform two important functions, they reduce miniature and sub-min iature tube temperatures by as much as $40^{\circ} \mathrm{C}$, while retaining against shock and vibration. refer to catalog $5-K K$

TRANSISTOR CLIPS

TRANSISTOR CLIPS are made in a range of sizes and shapes to retain nearly all currently used transistors and carry off much of the heat to insure greater life and performance. refer to catalog 2-TC

TUBE CLAMPS

Available in more than 6,000 modifications, Birtcher TUBE CLAMPS hold tubes and components securely in place, under severe shock and vibration. refer to catalog 4-D)

TRANSISTOR RADIATORS
To fit all JETEC 30 package transistors. Provides large radiating surface to get rid of excessive and damaging heat. Permits maximum input within recommended heat limits.
refer to catalog $2-T C$

JAN SHIELD INSERTS

The Navy Electronics Research Laboratory developed these Birtcher-manufactured corrugated JAN shield inserts to combat the high rate of tube failures due to excessive heat. refer to data sheet

DIODE RADIATORS

Prevent "thermal runaway" in power diodes by maintaining collector junction temperature at or below manufacturers recommended levels. Permits use above ground potential. refer to catalog 2-TC

TOP HOLDING CLAMPS

In three types: TOP TAINERS. TYPE 2 CLAMPS and CRYSTAL CLIPS. To retain all standard and miniature tubes and plug. in components plus crystals and other wafer-shaped components. refer to catrelog $2-T T$

For catalogs and complete information
WRITE, WIRE OR CALL
W6DTQ Otherwise known as Charles Booher. Sales Manager

THE BIRTCHER CORPORATION

[^11]The specs are the proof... now your best buy in ham equipment is
 TRANSMITTER \#720

KIT $\$ 79.95$ WIRED $\$ 119.95$

Conservative, highly efficient design plus stability, safety, and excelient parts quality. Covers 80 thru 40, 20, 15, 11,10 meters (popular operating bands) with one knob band-switching. 6146 final amplifjer for full "clean" 90 W input, protected by clamper tube circuit. 6CL6 Colpitts oscillator, 6AQ5 clamper, 6AQ5 buffer-multiplier, GZ34 rectifier. "Novice limit" calibration on meter keeps novice inside the FCC-required 75 W limit. No shock hazard at key. Wide range, hi-efficiency pi-network matches antennas 50 to 1000 ohms, minimizes harmonics. EXT plate modulation terminals for AM phone modulation with 65 W input. Excellent as basic exciter to drive a power amplifier stage to maximum allowable input of 1 KW . Very effective TVI suppression. Ingenious new "low silhouette" design for complete shielding and "living room" attractiveness. rinest quality, conservatively rated parts, copper-plated chassis, ceramic switch insulation. $5^{\prime \prime} \mathrm{H}, 15^{\prime \prime \prime} \mathrm{W}, \mathrm{g} / 2^{\prime \prime} \mathrm{D}$.

NEW UNIVERSAL MODULATOR-DRIVER . . \#730

 KIT $\$ 49.95$ WIRED $\$ 79.95$ Cover E. $5 \$ 4.50$ Superb, tuly versatiie modulator at low cost. Can deliver 50 watts of undistorted audio signal for phone operation, more than sufficient those RF amplifier has a plate input power of up to 100 W . Multimatch output xfmr matches most loads between $500-10,000$ ohms. Unique over-modulation indicator permits easy monitoring, precludes need for plate metur. Low level speech clipping and filtering with peak speach frequency pange circuitry. Low distortion feedback circuit, premium quality audio power pentodes, indirectly heated rectifier filament. Belance \& bias adjust controls. inputs for crystaf or dynamic mikes, etc. Excellent deluxe driver for high-power class B modulation. ECC83 / 12AX7 speech amplifier, 6AL5 speech clipper, EAN8 amplifier driver, 2-EL34/6CA7 power output, EM84 over-modulation indicator, G234 rectifier. Finest quality, conser. vatively rated parts. copper.plated chassis. 6" H, $14^{\prime \prime}$ W, 8" D .
NEW GRID DIP METER \#710

KIT \$29.95 WIRED \$49.95 including complete set of coils for full band coverage.
Exceptionally versatile, stable, rugged, compact. Basically a VFO with a microammeter in its grid circuit: determines frequency of other oscillators cr tuned circuits; sensitivity control and phone meter. Ham uses: pretuning and neutral zing xmitters, power indication, locating parasitic osculations, antenna adj... correcting IVI. general de-buggrag with xmotter power oft, determining C,L.Q general de-buggirg wies alignment of traps,' filters, If's, peaking compensation networks; as signal or marker generator. Easy to hold 8 thumb tune with one hand. Contrauoss coverage of $400 \mathrm{kc}-230 \mathrm{mc}$ (broadcast. FM, ham, TV bands) in B ranges with pre-wound colls of $+0.5 \%$ accuracy. 500 ua meter movemont. 6AF4 (A) or $6 T 4$ Colpitts
 Brushed satin deep-etched aluminum panel; grey wrinkle steel case. NOW IN STOCK! compare \& take them home - right "off the shelf" - from 1900 neighborhood EICO distributors. These world-famous EICO advantages underwrite your complete satisfaction

1. Guaranteed easy step-by-step instructions and pictorial diagrams. 2. Guaranteed finest quality components. 3. Calibration and service guaranteed for the LIFETIME of your instrument. 4. Advanced engineering: the best that is per-formance-proven integrated with the best of the "latest state of the art."

In the West, add 5%.

THE HAMS NO. 1 CHOOCE

 in clear plastic or metal cases
Shurrite. METERS

850 Series

Shawn actual size, zero adjuster aptional

CLEAR-PLASTIC CASES: One look will moke every ham enthusiastic about the madern, expensive-laoking 850 series.. and you will be pleased to find the meters cost only 20 c mare than the equivalent metal cased meter. Equally goad news will be the longer, mare visible scale arc... the remavable front \ldots and the availability of zera adiusters on cll AC or DC ranges.* See Bulletin 75A listing the popular ranges available in this case.

ATTRACTIVE METAL CASES: In certain applicatians-iar panel appearance ar specialized service conditions, you may prefer to select fram the lang-time metal favorites, the basic Models 550 , 650 , or 950 as illustrated. Althaugh all have seen modernized in appearance recently, each continues ta fit $25 / 32^{\prime \prime}$ mounting hole. See Bulletin 63 A cavering metal-cased types, including many with zero adiuster.
CHOICE OF MANY TYPES: $A C$ and DC Ammeters, Milliameters, Voltmeters and Resistance Meters. AC meters are double-vane repulsian lype with jeweled bearing. $D C$ are palarized-vane solenoid type, or moving magnet construction. Well over 200 ranges and fypes. Among the most popular are a $0-3 \mathrm{DC}$ Milliammeter with 500 ohms internal resistance and built-in zero adiuster, and a $0-1$ DC Milliammeter with 1,000 ohms internal resistance and zera adjuster, both many times mare sensitive than previaus models in this price class.

DEPENDABLE PERFORMANCE: By for the best torque-fo-weight ratio in its field gives yau a sturdy meter with fast responses and obility to duplicate readings. Molded inner units with internai and external locking nuts ossure maximum rigidity. Dials are lithographed on metal so they stay gaad-laoking and easy to read ir spite of age and moisture. Accuracy well within the standard 5%.
REASONABLE PRICES: Typical of the exceptianal values are the meters illustrated.

Range	Models	Model
$0-150 \mathrm{DC} \mathrm{Ma}$	$\$ 1.85$	850
0.10 AC Amps	2.95	$\$ 2.05$
0.1 DC Ma (with zera adj.)	3.50	3.15
0.150 AC Volis	3.60	3.70
0		3.80

Other meters are correspardingly low in price. You get the benefit of low costs made possible by large quantity production.
"Some models include zero-adjuster in price; others are 35 ¢ exira.
GUARANTETD: For one year against defective workmanship and material. Will be repaired or replaced if sent postpaid to the factory with $40<$ handling charge.
WIDELY AVAILABLE: Stacked by leading elestranic parts distributors for prompl deliveries.

80,000

Square foot national mail-order plant

mais ixuss RADIO SHACK

We're proud of the BIG NEW RADIO SHACK where every courtesy is extended to Hams who drop in personally for "over-the-counter" talk, or those who do business by mail from the remote corners of the world! STAFFED BY HAMS, you can visit the new RADIO SHACK during evening hours (open Mon, thru Fri. till 9 p.m.) where we are ready, willing and able to handle any of your Amateur Radio needs.

- BEST TRADEINS ofiered anywhere. Radia Shack's "swap ond shop Haws can get the best tradedins toward new equipment.
- CONVENIENT TIME PAY plons moke buy* ing rodio equipment easy. Only 10% is metded, or use your trode-in as the down payment.
- CREAM OF RADIO MAN'S STOCK teaturing top monufocturers' newest industrial, electranic, radio supplies for same day deliveries from stock.
- FULL HAM STAFFS in the 3 modern Rodio Shoeks provide expert and in dividual attention to noviet and oldtime Hows.

BEST "73" AI Coe WIRVQ and The Hams from Radio Shack FREE! RADIO SHACK'S 1959
 ELECTRONIC BUYING GUIDE

Brand New Amateur Radio Section

- NEW AMATEUR EQUIPMENT
- ANTENNAS AND SUPPLIES
- RADIO PARTS, ACCESSORIES

Write for FREE USED EQUIPMENT LIST!

RADIO SHACK CORPORATION

- 730 Commonwealth Ave, Boston 17, Mass.
- 167 Washington Streef. Boston 8. Mass.
- 230 Crown Streef, New Haven 10, Conn. 1

RADIO SHACK CORPORATION, Dept. H 730 Commonwealth Avenue, Boston 17, Mass. Please send me \square Rodio Shack's 1959 Elecironic Buying Guide \square Your Used Equipment List

Name

Address

City
City

Our downtown Boston Radio Shack, locoted of 167 Washington Street. is open Mondoy and Wednesday evenings until 8:30 p.m. and until $5: 30$ oll other evenings including Soturdor.

Radio Shack in New Haven, Conn., is open for fomily shopping convenience on Monday ond Thursday evenings until 9 o'clock and until $5 \mathrm{p} . \mathrm{m}$. other eyenings.

Forg oghace 904 BROADW'AY. ALBANY 4 N Y U S A AMATEUR HEADQUARTERS

NEW! Hallicraffer's "2 and 6"
SR-34 two and six meter transmitter/receiver
has maunting clips for twa-band antenna, nwner's micraphane and cards. Bath receiver and transmitter mary be used far CW : key-iack and adjustable B.F.O pravided Drip-praof cose designed far safe autdaar use.

Transmitter: Crystal-cantralled; up to four crystals may be switch-selected. Fifth pasition an switch permits external V.F.O aperatian. Band selectian alsa frantpanel contralled.

Receiver: Dauble canversian superheteradyne, having quortz crystal cantralled secand ascillatar. This affers autstanding selectivity and high image rejectimn. Highest stability abtained thraugh separate ascillatar and R.F. sections far each band.
Power autput: 6 ta $71 / 2$ watts an 2 meter and 7 ta 10 watts an 6 meter AM or CW. 100% mad negative peak clipping. Rear apran: Speech input level cantrol; key jack; PA speaker terminals; mic. selectar (high Z ar corban): mic input; $A C$ and DC fuses: pawer plug.
$A C-\$ 395$. $A C / D C-\$ 495$.

NEW! Hallicraffer's HT-33A Lineas kilowatt amplifier

Maximum legal input.
One of the highest autputs in the industry.
Third and fifth arder distartian praduets down in excess of 30 db .
Passive grid circuit, 50 ta 75 ohms input.
Built-in r f. autput meter ta simplify tuneup.
Camplete caverage of 80 thru 10 meter amateur bands. Pi-netwarks far maximum harmanic suppressian.

Specifications:
Variable output laading.
All impartant circuits metered.
Circuit breaker assures pratection of pawer supply.
Perfect match ta HT-32 in size, appearance and drive require. ments.
Tubes: one PL-172 high pawer pentade; two 866AX rectifiers; four OA2 screen regulatars.
Frant panel contrals; meter selectar; filament switch; high valtage switch; bias adjustment; band switch; plate tuning; plate laading.

Write for price

Hallicrafter's HT-32 Transmitter

Camplete caveroge of seven bands $=160,80,40,20,15$, 11-10 meters. Large slide rule dial. Band-in-use scales individually illuminated. Dual scale S-meter; functians with AVC aff. Special 10 Mc pasition for WWV' Exclusive Hallicrafter's upper-lower sideband selection. Second canversion oscillatars quartz crystal controlled. Tee-notch filter. Full gear drive fram tuning knab to gang condensers. 40:I tuning knab ratia. Five steps of selectivity from 500 cycles ta 5000 gycles. Sensitivity one microvalt or less an all bands. 52 ohm input. Thirteen tubes plus voltage regulatar and rectifier. . 089 cald ralled steel chassis.
\$395.
5.0 mc quartz crystal filter - rejection 50 db or mare. Bridged tee sideband madulatar. C.T.O. direct reading in kilacycles to less than 300 cycles fram reference paint. 144 watts plate input Six band autput ($80,40,20,15,11.10$ meters). Alt mades af transmissian - CW, AM, SSB. Unwanted sideband dawn 50 db ar mare. Distartian praducts dawn 30 db ar mare. Carrier suppressian dawn 50 db ar mare. Precisian gear driven C.T.O. Exclusive Hallicrafter's patented sideband selectian. Logarithmic meter far accuracy tuning and carrier level adjustment. Full vaice cantral system built in.
$\$ 675$.

Write Uncledave W2APF
 with your needs and problems.

FULL LINE FIXED STATION, MOBILE, PORTABLE HAM EQUIPMENT. WHATEVER YOU WANT - WE'VE GOT IT! WE SPECIALIZE IN FOREIGN TRADE

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the instructograph, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.
Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting you should decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best ad vantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols. words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.
With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card $\begin{gathered}\text { WILl bring full partic- } \\ \text { Ulars immediately }\end{gathered}$

Minature Panel Meters by ALCO

FEATURES

- Smallest and lightest moving coil meter commercially available.
- Unique cose design allows optional mounting as round or rectangular meter.
- New core magnet meter movement eliminotes need to calibrate for steel panels. Not affected by strong magnetic fields.
- Minimum seale are af 90° permitting accurote readings.
- Nine Alca Miniatures occupy the space af one standard $31 / 2^{\prime \prime}$ rectongular meter.
- Requires anly a 1 " mounting hale.
- All meters equipped with zera set.

D. C. MICROAMMETERS	D. C. VOLTMETERS 1000 Ohms Per Volt
0-300 $\$ 5.95$	0-3 $\$ 4.95$
0.500 5.75	0-10 4.95
D. C.	$0-50$ …........... 4.95
MILLIAMMETERS	0-150 4.95
0-1 \$4.95	0-300 4.95
0-5 4.95	
0.10 4.95	RECTIFIER TYPE
0.50 …........... 4.95	A. C. VOLTMETERS
$0-100$.............. 4.95	1000 Ohms Per Vol
0-200 4.95	0.15 $\$ 5.25$
0.300 4.95	0.150 5.25
0.500 4.95	0.300 5.25

WORLD'S SMALLEST PLASTIC PANEL METER

FEATURES

- D'Arsanval Mavemeat
- Single $1-1 / 32^{\prime \prime}$ hole mounting.
- Attractive cleor plastic frant
- Wide scole orc provides occurate readings
- Easily mounted with single fostener (furnished)

DC MICROAMMETERS 0-100 $\$ 6.95$	DC VOLTMETERS 1000 ohm per volt
0-200 5.95	0-50 $\$ 4.95$
$0-500$................ 3.75	$0-150$............ 4.95
50-0-50 6.95	0-300 4.95
100-0-100 5.95	0-500
DC MILLIAMMETERS	
0-1 $\$ 4.95$	RECTIFIER TYPE
0-10 4.95	AC VOLTMETERS
0.50 …............. 4.95	1000 ohm per volt
0-100 4.95	
0.150 4.95	0-15 $\$ 5.25$
0-200 4.95	0-150 5.25
0-300 8.95	"S' METERS
0-500 4.95	0-1MA 5.75

ALCO VOLT-OHM-MILLIAMMETER

MODEL TS-55A

- Porfable
- Meosures just $5^{\prime \prime}$ wide $\times 3^{1 / 2} \mathbf{2}^{\prime \prime}$ high $\times 13 / \mathbf{2}^{\prime \prime}$ deep
- Handiest tester yau can own

DC Voltage Ranges: $\quad 0-10,50,250,500 \& 1000$
AC Voltage Ranges: $0-10,50,250,500 \& 1000$ DC Current Ranges: $0.1 \& 0.500 \mathrm{ma}$ Resistance: $0-100 \mathrm{k}$ ohm:
Decibel: $20 \sim 0 \sim+36 \mathrm{db}$ (2 Ranges)
AMATEUR NET JUST

SEND FOR YOUR COPY TODAY

180 BIG PAGES

 LOADED WITH EVERYTHING YOU NEED- Complete selection of everything in Ham equipment, electranic parts, tools and supplies right of your fingertips in this one big, handy book.
- Sove $\$ \$ \$$ with B-A's EXCLUSIVE "Free-Finance Plon"! Take a full yeor to pay for your receiver or tronsmitter. . . the total yau pay equals no more than the net cash price. No interest or finance chorges, no hidden extros . . . it's purely a B-A accommadotion!
- B-A ships only factory-fresh, spanking new merchandise. Never will your equipment hove been out on trial. Every set is fully guaranteed by the maker and backed by $\mathrm{B}-\mathrm{A}$'s 32 years of square-dealing.
- Check the 21 big pages of special money-soving buys in ports and equipment, not found in any other catalog.
- Caunt an B-A far fostest, most complete shipment ovailoble onywhere . . . at alwoys lowest prices.

A GOMPLETE EUYIMG GUIDE FOR EYERYTHING IM

BURSTEIN-APPLEBEE CO., 1012-14 MGGII St, KAMSAS CITY 6, mo.

International Rectifiers SELENIUM -GERMANIUM - SILICON

Ratings: 20 te 160 valts 100μ te 11 ma. Ideal components for bias supplies, sensitive relays, computers tc. High resistance, (10 megohms and higher at $\mathbf{- 1 0}$ volts). Excellent lineat forward characteristics. Extremely small, low in cost. Encapsulated to resist adverse environmental extremes. Specify Eullotin SD-1B.

Matings: 25 to 158 valts AC, 50 to $1,200 \mathrm{ma}$. DC The widest range in the industry! Designed for Radio, Television, TV booster, UHF converter and experimental applications, Input ratings current 50 to $1,200 \mathrm{MA}$. Write for application information. Bullotin ER-17E-A

All-purpose silicon replacement kit of fers radio.TV men simple means of replacing all existing silicon rectifier types. Hermetically sealed diode can be wired in or plugged into fuse.clip. To 100 C ; needs no heat sink. Bulletin J8 505.

Ratings: 100 ts 600 PIV, Ip to 500 ma. Specifically designed for missile and airborne equipnaent applications where miniaturization and reliability are prime factors. Hermeti cally sealed, all-welded, pigtail lead construc tion. Manafactured to meet the most rigid mil itary requirements. Request Eullotin 5 (1.203

Ratings: 50 to 600 velts PIV - 230 to 750 mas. An extensive tine of silicon power diodes for military and industrial applications featuring all-welded, hermet ically sealed construction. All designed and manufactured to meet the most designed military requirements. Fwr information on types for your application Contoct Pactory

Ratings: 1 of 1000, 200 PiV OC
Semicap"z small size, light weight, high relia, bility and low power requirements make it ideal for wutomatic frequency control, freiquency modulation oscillators and filter networks. All-welded hermetically sealed, shock-proof housing. Request Bulitin SR-205.

Rating: From 100 ma to 50 Amps.
Low forward voltage drop and low leakage characteristic make this series ideal for a wide variety of power applications. For details request Bulbin 52 , (26 volt cells) i Bultotin $5 \mathrm{~F} \cdot 152$, on high curcent density celle

A direct and unlversal replacement for all existing selenium stacks up to 500 ma. Eyelet construction. No "special socket," conversion kit or drilling required. Especially suited to the elevated operating temperatures inherent in most TV sets. Bulletin TV-500.

Self-generating photocells available in standard or custom sizes, mounted or unmounted. Optimum load resistance range: 10 to 10,000 ohms. Output from .2 MA to 60 MA in ave. sunlight. Ambient temperature range $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Bulletin PC 649 ELECTRIC COMPANY For generations Hams have looked to Newark for this unbeatable deal... Sky-High Trades on Top-Notch Gear!

SX101 MARK III-IT'S ALL AMATEUR - Full ham

 coverage. 160-10 meters. Slide rule dial with $40: 1$ tuning knoid ratio. Full gear drive from turning knob to gang condenser. Built-in 100 kc crystal calibrator. Precision temperature compensation plus heat cycling for lowest drift, second conversion oscillators erystal controlled Sensitivityone uv or 'ess. Dual conversion, exclusive upperlower side band selection.. 5 steps of selec tivity. 5 ke to 500 cycles at 6 db down. Tee notch filter for heterodyne reduction. Finished in satin black and light gray. Less speaker 395.00 98F037. NETSX100-LOW COST SSB RECEPTION - A dual conversion, continuous coverage ham receiver with $538-1580 \mathrm{kc}$ and $1.7-34 \mathrm{mc}$ covered in 4 bands with velvet precision gear drive tuning. "Upperlower" SSB selection, plus nctch filter reject unwanted heterodynes. Selectivity variable in 5 steps: 5 kc to 500 cycles. Built-in 100 kc . crystal calibrator. Sensitivity less than 1 uv on all bands. Trimmer compensates for various impedance antennas. Gray and satin black cabinet with brushed chrome trim. Size: $181 / 2^{\prime \prime} W .9^{\prime \prime} H$, $11^{\prime \prime} \mathrm{D}$. Less speaker, 42 lbs.
295.00 98F034. NET
 hallicrafters finest

HT33A LINEAR AMPLIFIER-Conservatively rated 1 kw . Ideal companion unit for HT-32. A PL-172 pentode operaiıng Class ABI provides excellent stability, hiaher efficiency and areate: overload capacity. $50-75$ ohm resistive input requires no tunina or neutralization. One knob bandswitching 80 thru 10 meters. Metered circuits include grid, screen, cathode current-olate voltage, R F. output tuning indicator. Special fan insures cooling. Varable pi network output. Size $101 / 2^{\prime \prime} \mathrm{H} x$ $20^{\circ} \mathrm{W}$ x $17^{\prime \prime} \mathrm{D}$. Shpa. wt., $130 \mathrm{lbs} \quad \mathbf{7 9 5 . 0 0}$ 98F061. NET

MODEL R-47 SPEAKER-Matching 4" communication speaker for all Hallizratter receivers. Has 3.2 ohm speaker output. Response 300 to 2850 cps . Size: $51 / 2 \times 51 / 4 \times 31 / 2^{\prime \prime}$. Shipping Weight 21/3 lbs. 98F046. NET. \qquad

SR-34 6 AND 2 METER STATION -For AM or CW. Combines all the functrons of both receiver and transmitter for fixed, portable or mobile communications. Three-way power supply-115 VAC, 6 or 12 volt DC. $\mathbf{4 9 5 . 0 0}$
$98 F 060$. NET
F.O.B. Chicago, include shipping and insurance.

S-38E WORLD WIDE RADIO-For foreign and domestic shortwave broadcasts, amateurs, police, aircraft and ships. Built-an speaker plus tip jack for headset listening. Frequency coverage .54-32MC 98F045. NET
54.95

WANT A GENEROUS TRADE-IN ALLOWANCE?

Then write to Treger W9IVJ loday at Newark223 West Madison St., Chicago. Ask obout Newark's Convenient Time Payment Plan. Your trade-in can serve as down payment, balance in easy monthly poyments.

WRITE FOR NEW FREE NEWARK CATALOGHere is the biggest Newark Catalog everl 388 poges packed from cover to cover with the newest and finest equipment in Amateur, Electronics, Rodio-TV and High Fidelity. Write for your FREE copy today.

You can depend on

The amphenol Amateur Antenna has been designed to meet your need for a simple, effective folded dipole antenna system. The efficiency of the amphenol Antenna for both transmitting and receiving has been demonstrated by years of satisfied amateur use. The Amateur Antenna is available in an economical, easy-to-assemble kit form. All the kits are pre-cut to band length and are ready for final assembly and installation. Complete assembly instructions are included

AMATEUR ANTENNA KIT

Amphenol twin-lead, flat or tubular, is made of the finest materials available, manufactured with constant and rigid inspection. The brown pigmented virgin polyethylene assures a minimum of signal loss and constant impedance.

Amphenol flat twin-lead is available in a variety of types and sizes. AIR-CORE Tubular twin-lead (U.S. Pat. No. 2,543,696) is a must for UHF television lead-in purposes.

Amphenol cables are produced in strict conformity to the rigid military specifications. Constant checks and inspections are made to assure the best in mechanical and electrical construction.

Most of the RF cables in the amphenol line have top grade polyethylene dielectric for low-loss, flexibility and mechanical stability. For high temperature applications, cables are also available with other types of dielectric, including Teflon.

FLAT and TUBULAR TWIN-LEAD

Amphenol R F connectors are unsurpassed for mechanical design and electrical efficiency. They provide low-loss continuity in critical R F circuits with little or no impedance change or increase in voltage standing wave ratio.
Amphenol R F connectors are available in every popular Series. New Solderless R F plugs 83-850 and 83-851 are ideal for amateur use, being completely re-usable; both eliminate braid soldering-the 83-850 eliminates contact soldering also.

MICROPHONE CONNECTORS
Four separate series of microphone connectors are manufactured by amphenol. Newest of the new are the sensational QWIKs. These 3 and 4 contact bullet-shaped connectors add modern efficiency and modern design to every mike application. The 75 series connectors function as either male or female fitting, include jacks, plugs, receptacles, adapters and switches. The 80 series 1 and 2 contact connectors are designed for use with shielded cable. Obtainable in any combination of male or female cable connectors or chassis units. The 91 series include 3 and 4 contact connectors, polarized to prevent incorrect insertion.

RF CONNECTORS

Amateur radio folks in the west know that Elmar is always up-todate, has the largest stocks of the latest radio equipment and supplies. Any time the word gets out about a real sizzling electrenic "sparkler", nobody looks puzzled... nobody gets excited... western folks just say, "Try Elmar . . they'll have it!"

LaRGE EXPERIENCED STAFF TO SERVE YOU

Eighteen licensed radio "hands" are always ready to provide that famous Elmar "hospitality" service . . . to give helpful advice on selection of equipment, parts or accessories. Depend upon the Elmar men to provide the finest in fast, efficient service.

ELMAR TRADING POST...

helps get your new station on the air, offers you liberal trade-in allowances and financing of your purchases through our excellent time-payment plan. Visit, write or call Elmar today!

ORDER BY MAIL TOO...

A complete, well staffed department gives prompt, efficient attention to your mail order requests. Write today for details.

ANTENNAS

aNTENNA SPECIALISTS• - GONSET

FREDERICK TOOL \& ENGINEERING HY-GAIN MASTER MOBILE

RECEIVERS

collins - orake elmac GONSET - HALLICRAFTERS HAMMARLUND - MORROW NATIONAL RME technical materiel corp.

TRANSMITTERS
B\&W - CENTRAL ELECTRONICS COLLINS ELDICO - ELMAC GLOBE RIECTRONICS GONSET HALLICRAFTERS - E.F. JOHNSON LAKISHORE MORROW SANTA ROSA ELECTRONICS TAPETONE

ㅋMaR electronics

140 - 11th Street at Madison, Oakland 7, California TWX-OA73 FAX-FCF HIgate 4-7011
Serving the entire Western Region... Alaska... the Pacific Ärea.

UNDER THIS COVER!

RADIO Handbook

Cameradio-truly a pioneer in the field of electronics since 1919 -has built its reputation for dependability on prompt, expedient service and delivery of quality electronic equipment and compo. nents. Cameradio can fill virtually any requirement directly from complete stocks of "Everything Electronic." Cameradio's catalog is a ready reference for everyone and should be included in your library of indispensable volumes. Write for your 1959 copy.

109

Index

Charts and Tables Page	Gain of Directive Antennas
Abbreviations for C.W. Work. 583	Gauges, Standard Metal 500
Amateur, Frequeney Bands. 14	Germanium Crystal Diodes
Amateur's Code, The Antenna and Fceder Lengths $35 \overline{4}, 358,360,361,363$	
Antenna Diameter rs. Length................. 357	Half-Wave Antenna Lengths............... 358
Antenna Gain........................ 371,372	Impedance Step-Up in Folded Dipoles 377, 378
Antenna Length Factor 3543	Index, Modulation. 324
Attenuation of Transmission Lincs	Inductance and Capacitance for Ripple Reduction.
Band-Pass Filters, ${ }^{\text {B }}$. 50	Inductance, Capacitance and Frequency
Bandwidth, Typical I.F................... 88	Charts . 35 , 45
Beam Element Lengths. 373	Inductance of Small
Brcakdown Voltages....................... 23	Inductive Reactance 45
	Inductors, Dimensions of
Call Areas. . . .i.................... 58.	International Amateur Prefixes 581
Capacitance of Short Vertical Antennas. . . . 4845	International Morse Code 13
Capacitive Reactance $503,504,506$	International Prefixes. 582
Capacitor-Input Power Supplies 223, 224	L-C Computation. 52
Capacitor, Plate Spacings. 172	L^{\prime} / R Time Constant
Cathode and Screen-Dropping Resistors for	Linear Amplifier Tube-Operation Data. 312
R.F. and I.F. Amplifiers. 100	Loading-Coil Data.
Cathode-Modulation Performance Curves . . 293	Log, Station. 571
Characteristic Impedance 341, 342	Long-Wire Antenna Lengths 361
Choke-Input Power Supplies	Low-Pass Filter Data.
Circuit and Operating Values for Converter Tuhes	Metals, Relative Resisti
C-L Computation. 525	Mobile-Antenna Data....................... 482
Coaxial Line Data . 342	Modulation Index . 3 , 324
Coils, Dimensions of ${ }_{173}{ }^{28}$	Modulator Characteristic Chart. 287, 290, 295
Coils, Wire Sizes for Transmitting 503, Color Code for Radio Parts	
	Nomenclature of Frequencies.
Continental Code................... 13	Operating Values, Converter Tubes......... . 97
Conversion of Fractional and Multiple Units.. $\mathbf{5 0}^{00}$	
Copper-Wire Table. 595	Peak-Rectifier-Current/D.C.-Load-Current
Corner-Reflector Antenna Feed Imperlance.. 459	Ratio. 224
Countries List, ARRL 588	Percentage Ripple Across Input Capacitor... 224
Coupling-Coefficient Curves.............d 48	Phonetic List. 569
Critical Inductance, Bleeder Resistance and 225	Pilot-Lamp Data . $20.50{ }_{23} 506$
Current for . v-32	
	Puncture Voltages, Dielectric. 23
Decay, Voltage . 30, . 31	Q Signals................................... 580
Decimal Equivalents of Fractions. 500	
Dielectric Constants. ${ }^{23}$	RC Time Constant. 30,31
Drill Sizes 498	RST System.................................. ${ }^{\text {R }}$. ${ }^{580}$
DX Operating Code. 57	Radiation Angles. 358 . 358,359
	Radiation Resistance 356, 361
Electrical Quantities, Symbols for 2	Reactance Change with Antenna Length. . . ${ }_{35}{ }^{361}$
Emergency Points................ 574	Reactance Charts Relationship of Amateur-Band Harmonics . 540, 565
	Resistance-Control Voltage-Amplifier Data... 259
Folded Dipole Nomogram 377,378	Resistivity of Metals, Relative 504
Frequency-Spectrum Nomenclature 18	Resistor Color Code. 50 (

Sereen-Dropping and Cathode Resistors forR.F. and I.F. Amplifiers100
Signal-Strength, Readability and Tone Scales 581
50.3Standard Frequeney and Time Signals
Standing-Wave Ratio 500
Station Lop 5.1
Symbols for Electrical Quantities 5.31
Tank-Circuit Capacitance498
Time, Capacitor Charge and Discharge30,:31Time Constant, $r^{\prime} R$30, 31
Tools for Construetion 407
Transformer liatios $\cdot 20: 3$
Transistor Symbols- K
Transmission-Line La34.3
V.II.F. Arrays 450
Tables) V-1
sion Lines
3.13
3.13
Voltage-Output/Transformer-Voltage Ratio 2.23
Wire Thes by states 583
Word List for Aceurate Transmission 569
Formulas
A.C. Average, Effective R.M.S. and Peak 17
Capacitance 21
Gapacitive Reactance $3: 3$
Athode-Bias Resistor 3
(avity Resonator Diniensions
342
Coaxial-Line Matching fiection
3
3
Critieal Coefficient$2.2 \cdot 1$
Gain in 41
ancy, Power -2.
Feedlback Percentage 267
Filter Design $50,2 \times 2$
rack 18
id mpedance
357
Half-Wave Phasing Section, Length50
medance Matching. 40
mpedance Matching, Pi Networks 49
mpedance, Trausformer 222
nductance Calcuation. 24
Inductance Measurement 224
Input Impedance 70
retwor 222
L.' Constant 46
fong-Wire Antemna, Length 361
50
5 ()
Morlulation Impedance
Modalation Index 324
Modulation Transformers, Turns Ratio ${ }^{2} 63$Ohm's Law (A C C)34, 36
Output Caparitor for Modulated AmpliferPlate Power Supply287
Pi Networks 49
Power-Supply Output Voltare 220QSection Transformer5R^{\prime} ' Time Constant
Raniation Resistance 361
Reactance, Inductive 34
Resistance Measured by Voltnicter 222
Resonance
42
Ripple
74
Series, Parallel and Series-Parallel Capaei- 25,26
Series, Parallel and Series-Parallel Inductances 29atices
1,22
Standing-Wave Ratio 5:36
Tine Constant, ($R, L / R$ 30
Transormer Efficiency 38
Transformer Voltage 3
. 228
Transmission-Line Output Impedance 339
Yoltage Decay Time330

INDEX

PAGE
PAGE
Crystal-Controlled Converters 130
401-417, 466, 469
Crystal-Controlled Oscillators. $147,148-149,174$ 418-419
Crystal Detector
Crystal Detector
Crystal Filter, Tuning with 80,91
106
Crystal, Gernanium 80
Crystal-Lattice Filter 310
Crystals, Overtone 419
Crystals, Piezoelectric 51
Current:
Alternating 16, 32-43
Amplification Factor 82
Antenna 361
Direct 16
Distribution, Antenna 361
Eddy 29
Effective 17
Electric 15-16
Gain 82
Lag and Lead 32-39
Line 335
Loop 337
Magnetizing 38
Measurement 508-509
Node 337
Plate 61
Pulsating 16,52
Ratio, Decibel 41
Values 17
Curve, Resonance 42, 48
Curves, Transistor Characteristic 83
Curves, Tube-Characteristic
Curves, Tube-Characteristic -6.3 -6.3
Cut-Off Frequency
Cut-Off Frequency 73
Cut-Off, Plate-Current
583
C.W. Procedure 566-568
C.W. Reception 109
Cycle
16, 32
16, 32
Cyclic Variations in lonosphere 392
Cylindrical Antennas 458
D
D'Arsonval Movement 507
I) Region 391
D.C. 16-17
D.C. Instruments 507-511
D.C. Measurements 507
Dead Sprots 95
Decay, Voltage 3)
Decibel 41
Decoupling 102
Deflection Plates 536
Degeneration 68-79
Degree, Phase 3.
Delta Matching Transformer 360
Demodulation 58
Density, Flux 15
Design of Speech Amplifiers 260
Detection 88
Detectors 88
Deviation Ratio 324
Diagrams, Schematic Symbols for 23
Dielectric 23
Dielectric Constants
Difference of Potential 15,16
Differential Keying 247, 248
Diffused Junction Transistors 84
Diode Clippers 76
$1-32$
Diodes 61
Diodes, Crystal 80
Dipole, Folded 359

INDEX

	ce
Fly-Back	536
Focusing Electrode	7
Folded Dipole.	
Force, Electromotive	
Force, Lines of	571
Form, Log Form Mesuar	57.2
Forward Resistance	79
Fractons, Decimal Equi	300
Free-Space Pattern	16
Frequency Brands, Ama	14
Frequency Conversion .	19
Frequency Measurement:	
Absorption Frequency $\$ & \hline Frequency Standards & 514 \hline Heterodyne Frequener Metcrs & D1 \hline Interpolation-Type Freguency Meter & 517 \hline WWV and WWVIL schedules & \hline Frequency and Phase Modulation. & \hline Narrow-Band Reactance-Modulator & 3.0 \hline Deviation Ratio & \hline Discriminator & 329 \hline Index, Modulation & 324 \hline Methods & 320 \hline On V.H.F. & 323 \hline Principles Reactance Modulator & 326 \hline Reactance Modulator & 112 \hline Transmitter Checking & 326 \hline Frequency Multipliers & \hline Frequency Resporse, Microphone & \hline Frequency Shift Keying & \hline Frequency-Wavelength Conversion & -182 \hline Front End Overloading & 355 \hline Full-Wave Bridge Rectifiers & 220 \hline Full-Wave Center-Tap Rectifiers & 219 \hline Fusing & \hline G & \hline Gain Control. & 9, 260 \hline Gain, Vacuum Tube Amplifier & \hline "Gamma" Match & 378, 454 \hline Ganged Tuning & \hline Gaseous Regulator Tubes & \hline Gasoline-Engine-Driven Generators & \hline Generator & \hline Generator Noise & \hline Germanium Crystal & \hline & \hline Bias. & \hline Capacitor & 74, 172 \hline Current. & 62, 150 \hline Excitation & \hline Injection, Mixer & \hline Keying. & \hline Leak... & $54,157$ \hline & \hline Voltage & 19 \hline Grid-Bias Modulation & \hline Grid-Cathode Capacitance & 69-71 \hline Grid-Dip Meters & 519 \hline Grid-Input Impedance & \hline Grid-Leak Detectors & \hline Grid-Plate Cabacitance - ${ }^{\text {a }}$	149
Grid-Plate Crystal ${ }^{\text {Gideratilator }}$	
Grid-Separation Circuit .	71-72
Ground	350, 369
Ground Effeets	
Ground-Plane Anteniat.	

	page
Ground Point, R.F.	
Ground Potential	
Ground Waves	
Grounded Antennas	
Grounded-Base Circuit	83, 81
Grounded-Collector Circuit	
Grounded-Emitter Circuit.	
Grounded-Grid Amplifier	6, 314, 398
Grounds	369
	382

H

Half-Lattice Crystal Filter 310
Half-Wave Antenna357-360
Half-Wave Line . 419
Half-Wave Rectifiers. 219
Halyards, Antemna . 38 .3
Harmonic . 17
Antenna. 36 . 36
Distortion .64-65
Generation. 551
Reduction . 420, 551-552
Suppressiun, Audio . 263
Traps . 551,563
Hartley Circuit .74, 149-150
Hash Elimination. 492
Heater. 60
Heater Effect . 17
Henry . 26
Heteroryne Frequency Meters. 517
Heterodyne Reception 89
Heterodyning . 58
High-C. 45, 75
High Frequencies. 17-18
High-Frequency Oscillator $89-146$
High-Frequency Receivers 89-146
High-Frequency Transmitters. 147-218
High-Pass Filters. 5 453
High-Q Circuit 62 , 45
High-Vacuum Rectifiers . 63
High- - Tubes Maxim Memorial station 12, 5i. $7,5 \%$
Hiram Percy Maxim Memorial staton........ 9-12
Hole Cutting. 490
Holes 80
Hole Conduction $\quad 80$
Horizontal Angle of Radiation: .i.......... 355
Horizontal Polarization of Radio Waves...389, 448
Hum . 72, 93, 283, 302
Hy'steresis.

I

I (Current)...................................... . . . 15-16
Ignition Interference . 461
Image . 95
Image Ratio . 97
Image Ratio... 547
Impedance. 36
Antenna 355, 356, 358, 362

Bridge. 3 . 528
Characteristic $335,341,342$
Complex
Complex 160
Grid Input . $1,3,38,341$
Matehing . 39, 48, 262, 449
Measurements. 534
Modulating . 288
Output. .. ${ }^{39}$
Ratio. 341
Transformation . 3 . 339
Transformer . 376

INDEX

Back Wave 2.5
Key-Click Reduction 247, 252
cthods. 244
Oscillator 247
Kilocycle 17
Kilohn 22
Kilowatt
22
howatt Hour 23
Critical 294
Leakage. 39
Mutual29
Slug-Tuned
ductance-Resistance Time Constant 31
Inductive Capacitance, Specific46
Inductive Neutralization 163
Inductor 26Input Choke224
群 , 157
Instability, Receiver12
insulators 16
Interference Patterns 550
Intermediate Frequency $99,105,400$
Intermediate-Frequency Bandwidths, Table 102
Interniediate-Frequency Transformers 100
International Prefixes 583
Interpolation-Type Frequency Mcter 517
Interstage Transformer 101
nverse Peak Volt 389
Inversion, Phase
Ionization15, 390392395
Ions
15, 390
Iron-Core Coils 150,
ITV 565
Junction Diodes 80
Keeping a Log.151, 24
Key Clicks247
Keyers, Vacuum-Tube2.16
Link Neutralization 346
"Little Oatey" 536
Load 376
L (Inductance) -30
L/C Ratios 49
L / R Time Constant -31
502Lacine Cable
..... $2 \cdot 4$
Laminations29
Operations15-61
37Lead, Current or Voltage
Lead-In, Antenna $38:$
Leakage Flux 3
Leakage Inductance 39
Level, Microphone 256
Licenses, Amateur$1: 3$
(1) 54
Protection. 544
Limiters, Noise $103,46^{\circ}$
Line Current 31Line, Open-Circuited$3: 3$
Line-Voltage Arljustment240
312
Linear Baluns 3.44
Linear Transformers376
Lines, Coaxial 341
15Lines of
lines, Nonresonant and Resonant. 339
Lines, Parallel Conductor 340
Load Isolation, VFO 150, 151
Loaded Circuit Q 47
Locking-In57

INDEX

Q

Q. Loaded Circuit
43, 95, 152 44 44
Q, Mobile Antenna
Q, Mobile Antenna
"Q"-Section Transformer 482
376
Q Signals $5 \times()$ $5 \times()$
QST
QST 12 12
Quarter-Wave Transformer 376
Quenching 400

INDEX

	PAGE
Shorting Stick	543
Short-Circuiting	23
Shot Noise	103
Shunt Matching, Ground-Plane	367
Shunts Meter	507
Sideband Cutting	99
Sideband Interference	684
Sidebands	, 284
Sidebands, F.M. and P.M.	324
Sideband Teehniqucs	3
Side Frequencies....	, 2
Signal Envelope Shape	4
Signal Generators	520
Signal-Handling Capability	89
Signal-to-Image Ratio...	5
Signal Monitor	$24 \times$
Signal Monitoring	248
Signal-Strength Indicators	105
Signal-Strength Scale . . .	580
Signal Voltage	63
Silencer, Noise.	
Silicon Diodes	
Sine Wave	, 32
Single-Ended Circuits	54
Single Sideband (see also " IRad	
Adjustment.	$31 \pm$
Amplification	311
Exciters...	7, 309
Generators	305
Mixers.	314
Signal Reception	, 321
Transmission .	314
Single-Signal Reception	105
Skin Effect.	
Skip Distance	91, 395
Skip Zone. .	391
Skirt Selectivity	
Sky Wave	390
Slug-Tuned Inductance	95
Smcothing Choke.	227
Solar Cycle.	22, 395
Soldering	50)-501
Space Charge	1
Space Wave	390
Spark Plug Suppressors	461
Specific Inductive Capacity	
Spectrum, Frequency	8
Speech Amplifiers.	
Speech-Amplifier Construction	
Speech Amplifier Design	260
Speech Clipping and Filtering.	
Speech Compression	
Speeeh Equipment	256
Splatter . .	
Splatter-Suppression Filter	268
Sporadie-E Layer Ionization	93, 395
Sporadie-E Skip	395 389
Spreading of Radio Waves	+389
Spurious Responses.	398, 562
Spurious Sidebands	302
Squegging	99 108
Squelch Circuits	108
Stability, Amplifier	- 163
Stability, Oscillator	75, 399
Stabilization, Voltage	231
Stacked Arrays	370, 455
Stage, Amplifier	
Stage, Driver	67
Stagger-Tuning	48
Standard Component Values	503
Standards, Frequency	516
Standard Metal Gauges	500
Standing Waves.	336
Standing-Wave Ratio	336
Starting Voltage . . .	

States, W Prefixcs by . $\begin{array}{r}\text { PAGE } \\ 583\end{array}$
Static Characteristics . 63
Static Collectors . 461
Station Appointments. 576
Station Control Circuits 545
Storage Battery, Automobile. 490
Straight Amplifier . 147
Stray Receiver Rectification 547
Stubs, Antenna-Matching 449
Sunspot Cycle .392, 395
Superheterodyue . 9 .
Superhigh Frequencies (see also "Vory High
Frequeneies')
\&1
Superimposed A.C. on i). C................................. 52
Superregeneration . 400
Suppressed (arrier . 304
Suppressor Grid . 70
Suppressor-Grid Modulation 293
Suppressor, Noise............. 103
Surface Barrier Transistor 82
Surface Wave . 395
Surge Imperlance. 335,341
Sweep Circuits . 536
Sweep Wave Forms . 536
swing, Grid 63
Swinging Choke . 225
Swinging Choke . 242
Switches, Power .542-543
Switching, Antenna . 380
Switching, Meter . 169
Sumbols for Elcetrical Quantities 2
Sumbols, Sehematic . 2
Sumbols, Transistor . 82
Synchronous Vibrators 491

T

" T" "-Match to Antennas 374, 378

Tank Circuits, Multiband 156
Tank Constants . $152-153$
Tape Printer . 330
Teletype Code. 330
Television Interference, Eliminating 546
Temperature Effects . 19
Temperature Inversion 395
Termination, Line . 335
Tertiary Winding . 101
Test Oscillators . 520
Tetrode . 70
Tetrode Amplifiers . 158
Tetrode Neutralization 163
Tetrodes, Beam . 70
Thermal-Agitation Noise 87
Thermionic Emission . 60
Thermoeouple . 523
Thoriated-Tungsten Cathodes 61
Tickler Coil . 92
Time Base . 536
Time Constant . $30-31$
Tre Static . 461

Tone Control . 267
Tools . 497-499
Top Loading . 482
Trace, Cathode-Ray . 536
Tracing Noise. 462
Traeking . 94,110
Tracking Capacity .94, 110
Training Aids . 576
Transatlantics $\quad 10$
Transconductance, Grid-Plate. 63
Transformation, Impedance 45
Transformers . Color Codes . $504-506$

'Tuncl-Line Tank Circuit. $56,{ }_{4}^{\text {PAGF }}$	
Tuned Transmission Lines.56, 419
Tuners, Antenna, Construction of:	
Coax-Coupled Matching Circuit 350	
Matching Circuit with Multiband Tuner ... 352	
Receiver Coupler 132	
Tuning Indicators. 104	
Tuning Receivers	
Tuning Slug	
Tuning Transmitters . ${ }^{957}$	
TVI.....	
"Twin-Five" Array ${ }^{\text {TVicies 562, } 565}$	
"Twin-Lamp" Standing-Wave Indicator . .	
Twin-Lead .340-341	
U	
Ultra-High-Frequencies:	
Cavity Resonators.	
Klystrons.	
"Lighthouse" Tubes	, 418
Pencil	
Pencil Tubes	
Transmission-Line Ta	
Traveling-Wave Tubes	
Tubes	
Velocity Modulation	7-78
Wave Guides	
Unbalance in Amplifiers	
Unbalance in Transmission	
"Underwriters' Code.	545
UUniversal "' Antenna Coupler	
Unsymmetrical Modulation	
Untuned Transmission Lines	
rd Modulation	
V	
"V" Antennas	
VR Tube Break-In System	
VR Tubes . ${ }_{24}^{47}$	
Vacuum Tubes and Seniconductors (Index to Tables)	
Vacuum Tube Amplifier Gain . .	
Vacuum-Tube Keyers . ${ }_{24}^{575}$	
Vacuum Tube Principles 60-79	
Variable Capacitor ${ }_{24-25}^{511}$	
	71
Velocity Factor	
Velocity Microphone	
Yelocity-Modulated Tubes	
Velocity of Radio Waves 18 , 389	
Vertical Anple of Radiation 5.36	
Crystal-Controlled Converter for 432 Mc. 4 Crystal-Controlled Converter for 50 and 144 Mc. Mobile Use	
Crystal-Controlled Converters for 50,144 and 220 Mc .	

INDEX

\mathbf{w}

W Prefixes by States
PAgr
407 W1AW $12,577,578$
WAC Award 578
WAS A ward 577
Watt
23
23
Watt-Hour
23
23
Watt-Second $355,356,358,391$
Wave Angle
Wave Angle
286, 297
286, 297
Wave-Envelope Pattern
389
389
Wave Front $\begin{array}{r}390 \\ 56 \\ \hline\end{array}$
Wave Guides
513
513
Wavemeters 389-396
Wave Propagation
Wave Propagation
17, 32
17, 32
Wave, Sine
390
390
Wave, Sky
Wave, Sky
17
17
Wave Form
17-18
17-18
Wavelength-Frequency Conversion 18
Wavelength Performance 393-394
Wavelengths, Amateur 14
Waves, Complex 37
Waves, Distorted 15
Waves, Electromagnetic 552, 564
Wave Traps
461
461
Wheel Static
458
458
Wide-Band Antennas
364
364
"Windom" Antenna........... 2
Wiring, Station 543-544
Wiring, Transmitter 501-502
Word Lists for Accurate Transmission 569
Working DX 569-570
Working Voltage, Capacitor
497-506
497-506
Workshop Practice 518
\mathbf{x}
X (Reactance) 33
Y
"Yagi" Antennas 449, 455
\mathbf{Z}
Z (Impedance) 36
Zero Beat 67

NOTES

$$
\begin{aligned}
& \text { Cityens Band } \\
& 27 \mathrm{mc} / 2 \lambda=1822 / 4218.6 \text { in }
\end{aligned}
$$

$$
\because
$$

[^0]: Standard circuit symbols (151 Y32.: - 1951). In cases where identification is necessary or desirable, the eurved line in the capaeitor symbol represents the ontside electrode (marked "outside foil" or "ground") in paper-dielectric capacitors, and the negative electrode in electroly tic capacitors. In variable capaeitors the curved line usually represents the movable plate or glates.
 In a mumber of cirenits in this Handbook, prepared before adoption of the standard, some symbols are not quite identical with those above. However, in pratically all cases the intent of the symbol will be easily recognized. In the older eircuits the ground symbol is generally used to indieate a conmection to chassis.

[^1]: Example: The time constant of a $2-\mu$ f. capacitor and a $250,000-\mathrm{ohm}$ (0.25 negohni) resistor is

 $$
 T=C R=2 \times 0.25=0.5 \text { second }
 $$

[^2]: Example: A $0.01-\mu$. capacitor is charged to 150 volts and then allowed to discharge through a 0.1 -megohm resistor. 1 Iow long will it take the voltage to fall to 10 volts? In percentage, $10 / 150=6.7 \%$. From the chart, the factor corresponding to 0.7% is 2.7 . The time constant of the circuit is equal to $C R=0.01 \times 0.1=$ 0.001 . The time is therefore $2.7 \times 0.001=$ 0.0027 second, or 2.7 milliseconds.

[^3]: Parts List for Regenerative Receiver
 $2100-\mu \mu$. midget varialles (Millen 20100) (C_{1}, C_{2})
 $115-\mu \mu \mathrm{f}$. midget variable (Millen 20015) (C_{3})
 $1100-\mu \mu \mathrm{f}$. mica or ceramic capacitor
 $1500-\mu \mu \mathrm{f}$. nica or ceramic capacitor
 $30.001-\mu$ f. disk ceramic capacitors
 $10.01-\mu$ f. disk ceramic capacitor
 $10.1-\mu \mathrm{f}, 200$-volt paper capacitor
 $110-\mu$ f. 25 -volt electrolytic capacitor
 $216-\mu$ f. 250 -volt electrolytic (or dual 16-uf.)
 1470 -ohm $1 / 2$-watt carbon resistor
 168.000 -ohm 1 -wat carbon resistor
 10.1 -megohn $1 / 2$-watt carbon resistor
 10.5 -megohnu $1 / 2$-watt carbon resistor

 1 1.0 -megohn $1 / 2$-watt carbon resistor
 150,000 -ohm potentiometer
 2 I-mh. r.f. chokes (National R-50)
 $80-, 40$-, and 20 -meter Barker \& Williamson Baby Inductors MEL, (L_{1}, L_{2})
 1 interstage transformer (Stancor A-53-C) (L_{3})
 2 6-henry 40-ma. filter chokes (UTC R-55) (L_{4}, L_{8})
 1 power transformer, 120 -volt secondary at 50 mas ; 6.3 volt at 1 amp . (Merit 1P3045 or P3046)

 1 dry rectifier, 130 volts, 20 ma . (Federal 1159) ($C R_{1}$)
 1 aluninum chassis, $7^{\prime \prime} \times 7^{\prime \prime} \times 2^{\prime \prime}$
 1 aluminum pancl, $7^{\prime \prime} \times 6^{\prime \prime}$
 1 piece of aluninum for power-supply chassis, $3^{\prime \prime}$ by $10^{\prime \prime}$ (the panel and this piece are obtainable at any sheet-metal shop)
 19 -pin miniature tube socket, bakelite or mica filled
 15 -pin socket for coils L_{1} : and L_{2}, bakelite or isolantite
 43 -terminal tie points
 $78 / 8^{\prime \prime}$ rubber grommets
 1 Panel hearing assembly, over-all length3"
 1 insulated shaft coupler
 1 terminal strip, 6 terminals
 2 pin jacks, insulated type
 Miscellaneous 6-3:2 machine screws and nuts
 6 grourd lugs
 25 feet of hook-up wire
 4 knobs for controls
 1 6U8 tube
 1 length of spaghetti wire covering
 Line eord and plug

[^4]: * Iycon lastern, Inc., 7s ('ambridge Parkway, Cambridge 42, Mass.

[^5]: ＇Voltage across next－stage grid resistor at grid－current point．
 At 5 volts r．m．s．output．
 ${ }^{3}$ Cathode－resistor values are for phase－inverter service

[^6]: C_{1}, C_{2}-Approx. 1 to $2 \mu \mu$. Make from two pieces of plastic-covered No. 18 wire twisted together about 1 inch.
 $\mathrm{C}_{3}-10-\mu \mu \mathrm{f}$. ceramic. Connect at plate ferminal.
 $L_{1}, L_{3}, L_{4}-11$ turns No. 24 enam. of top end of $1 / 4$-inch iron-slug form (North Hills Type F-1000). It tapped at 3 turns.

[^7]: $\mathrm{C}_{1}, \mathrm{C}_{2}$-Dual . $005 . \mu \mathrm{f}$., 125 volts o.c. disk ceramic (Sprague 125L-2D50).
 $\mathrm{C}_{3}-.01-\mu \mathrm{f}$. disk ceramic. Mount of plug end of cable.
 $R_{1}-50,000$ ohms, 2 wotts (2 100,000-ohm 1-watt resistors in parallell.
 L_{1} - 10 -hy. 50 -ma. filter choke.
 $L_{2}-N o .28$ enam. closewound $1 / 2$ inch long on $3 / 8$-inch iron-slug form. Wind near upper end.
 J_{1}-Coaxial fitting, female.
 $J_{2}-4$-pin power connector, female. Must mount flush with surface of chossis.
 S_{1}, S_{2}-S.p.s.t. toggle switch.
 T_{1}-Power transformer, 480 v . a.c., c.t., 40 ma ., 5 v . $2 \mathrm{amp} ., 6.3 \mathrm{v} .2 \mathrm{amp}$. (Thordarsor TS-24ROO).
 P_{1}-A.c. plug on cord.

[^8]: The HRO-60 is a modern double-conversion communications recelver featuring extreme versatility of frequency coverage. The circuit employs two RF stages with three tuned circuits at signal frequency. A separate high-frequency oscillator is provided and feeds the first mixer to produce an IF output of 455 KC for signal frequencies below 7 MC or to produce an IF output of 1720 KC for signal frequencies above 7 MC. A second converter stage converts the 1720 KC first IF signal to 455 KC . The 455 KC IF circult employs three stages using ten tuned circuits plus a highly selective crystal filter. The output of the 455 KC IF is fed to the second detector. A sepa. rate beat-frequency oscillator is provided. A separate AVC detector is employed. The output of the AVC detector is fed to five stages and to the S Meter amplifier for signal strength indication. The output of the second detector feeds a balanced, double-ended noise Ilmiter which effectively clips both positive and negative peaks of the signal and may be used in all modes of operation. The audio amplifier employs one stage of pentode amplification, a phase inverter and a high power, low distortion, push-pull output circult which is capable of feeding either an 8Ω speaker of a 500Ω transmission line. In addition to the operating circuits, the recelver employs an AC operated power supply which may be fed from 110 or 220 volt $A C$ power sources. Voltage and current regulation are provided for extreme stabllity.

[^9]: At no obligation to me, please send

[^10]: "World's Largest Distributors of Short Wave Receivers."

[^11]: 4371 Valley Blvd., Los Angeles 32, California Telephone: CApitol 2.9101

