The

Rodio Amoteur's Handbook

The Standard'Mamual of :tmateur Radio Communication

1977

Shed by the americañ radio relay League

The

Radio Amateur's

Handbook

By the HEADQUARTERS STAFF of the

AMERICAN RADIO RELAY LEAGUE

NEWINGTON, CONN., U.S.A. 06111

Coordinators

Robert Myers, WIFBY
Tony Dorbuck. WI YNC

Assistant Editors:

Geurge Barker, WB81PBC
Charles Cartoll, WIGQO
George Hart, W1 NJM
Thomas McMulien, WISL
Ed Tilion, WiHDQ
1977

Fifty-Fourth Edition

COPYRIGHT 1976 BY
 THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention
 International Copyrighl secured ©

This work is publication No. 6 of the Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. Al! rights of translation are reserved. Printed in U.S. A.

Quedan reservados lodos los derechos
Library of Congress Catalog Card Number: 41.3345
Fifry-Fourth Edition
$\$ 7.50$ in the U.S.A. and Possessions, $\$ 8.50$ in Canada, $\$ 9.50$ elsewhere.

Clothbound edition $\$ 12.50$ U.S.A. and Possessions, \$ 13.50 in Canada, $\$ 14.50$ elsewhere.

FOREWORD

The Radio Amateur's Handbook has long been a staple of the radio amateur's library. Since it was first published in 1925, nearly five million copies have been distributed, putting it near the top of the all-time best seller list. It has achieved that distinguished record because it is a practical, useful manual. Its continuing purpose is to present the necessary fundamentals, as well as changing technology and applications, to serve the varied interests of the experimenter, the home builder, the DXer, the contester, and the ragchewer.

The present volume is the product of the efforts and the skills of many talented amateurs. We hope you will find it of value in the pursuit of your goals and your interests, particularly in these times when there seems to be a growing enthusiasm in and excitement about amateur radio.

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

The Amateur's Code 6
Chapter 1 Amateur Radio 7
2 Electrical Laws and Circuits 14
3 Vacuum-Tube Principles 61
4 Semiconductor Devices 79
5 AC-Operated Power Supplies 105
6 HF Transmitting 136
CONTENTS 7 VHF and UHF Transmitting 199
8 Receiving Systems 235
9 VHF and UHF Receiving Techniques 290
$10^{\text { }}$ Mobile and Portable/Emergency
Equipment and Practices 319
11 Code Transmission 352
12 Amplitude Modulation and Double-Sideband Phone 368
13 Single-Sideband Transmission 379
14 Frequency Modulation and Repeaters 420
15 Specialized Communications Systems 458
16 Interference with other Services 484
17 Test Equipment and Measurements 506
18 Construction Practices and Data Tables 543
19 Wave Propagation 559
20 Transmission Lines 573
21 HF Antennas 588
22 VHF and UHF Antennas 623
23 Assembling a Station 639
24 Operating a Station 646
25 Vacuum Tubes and Semiconductors VIIndex

The Amateur's Code

Abstract

ONE Tbe Amateur is considerate . . .He never knowingly uses the air in such a way as to lessen the pleasure of others.

Two

Tbe Amateur is Loyal . . .He offers his loyalty, encouragement and support to his fellow radio amateurs, his local club and to the American Radio Relay League, through which amateur radio is represented.

THREE

Tbe Amateur is Progressive . . .He keeps his station abreast of science. It is well built and efficient. His operating practice is above reproach.

FOUR

Tbe Amateur is Friendly . . . Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance, cooperation and consideration for the interests of others; these are marks of the amateur spirit.

FIVE

Tbe Amateur is Balanced . . .Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

SIX

The Amateur is Patriosic . . . His knowledge and his station are always ready for the service of his country and his community.

- PAUL M. SEGAL

Amateur Radio

Amateur Radio. You've heard of it. You probably know that amateur radio operators are also called "hams." (Nobody knows quite why!) But who are these people and what are they doing?

Well, every minute of every hour of every day, 365 days a year, radio amateurs all over the world are communicating with each other. It's a way of discovering new friends while experimenting with different and exciting new ways to advance the art of their hobby. Ham radio is a global fraternity of people with common and yet widely varying interests, able to exchange their ideas and learn more about each other with each new contact. Because of this, radio amateurs have the unique ability to enhance international relations as does no other hobby. How else is it possible to talk to an engineer involved in a space program, a Tokyo businessman, a U.S. legislator, a store owner in the New York Bronx, a camper in a Canadian national park, the head of state of a Mediterranean-area country, a student at a high school radio club in Wyoming or a sailor on board a ship in the middle of the Pacific? And all without leaving your home! Only with amateur radio - that's how!

The way in which communication is accomplished is just as interesting as the people you get to "meet." Signals can be sent around the world using reflective layers of the earth's ionosphere or beamed from point to point from mountaintops by relay stations. There are satellites in orbit that hams built and hams presently use to achieve communication. Still other hams bounce their signals off the moon! The possibilities are almost unlimited. Not only do radio amateurs use international Morsc code and voice for communication, but they also use radioteletype, facsimile and various forms of television. Some hams cven have computers hooked up to their equipment! As new techniques and modes of communication are developed, hams continue their long tradition of being among the first to use them.

What's in the future? Digital voice-encoding techniques? Three-dimensional TV? One can only guess. But if there is ever such a thing as a Star Trek transporter unit, hams will probably have them!

Once radio amateurs make sure that their gear does work, they look for things to do with the equipment and with the special skills they possess. Public service is a very large and integral part of the whole Amateur Radio Service. Hams continue this tradition by becoming involved and sponsoring various activities in their community.

Field Day, just one of nany public service-type activities, is an annual event occurring every June when amateurs (using electricity generated at the site of operation) take their equipment into the
great outdoors and test it for use in case of disaster. Not only do they test their equipment, but they make a contest out of the exercise and try to contact as many other hams operating emergency-type stations as possible (along with "ordinary" types). Often they make Field Day a chub social event while they are operating.

Traffic nets meet on the airwaves on a schedule for the purpose of handling routine messages for people all over the country and in other countries where such third-party traffic is permitted. By doing so, amateurs stay in practice for hendling messages should any real emergency or disaster occur which would require operating skill to move messages efficiently. Nets also meet because the members often have common interests: Similar jobs, interests in different languages, different hobbies (yes, some people have hobbies other than ham radio!) and a whole barrelful of other reasons. It is often a way to improve one's knowledge and to share experiences with other amateurs for the good of all involved.

DX (distance) contests arc popular and awards are actively sought by many amateurs. This armchair travel is one of the more alluring activities of amateur radio. There are awards for Worked All States (WAS), Worked All Provinces (WAVE), Worked All Continents (WAC). Worked 100 Countries (DXCC) and many others.

Mobile operation (and especially on the very high frequencies) holds a special attraction to many hams. It's always fun to keep in touch with ham friends over the local repeater (devices which

HIRAM PERCY MAXIM
President ARRL, 1914-1936

A didah	N dahi!
B dahdididit	0 dahdahdah
C dahdidahdit	\mathbf{P} didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdi!
F dididahdit	\mathbf{S} didididit
G dahdahdit	T dah
H didididit	U dididah
I didit	\mathbf{V} didididah
3 didahdahdah	W didahdah
K dahdj ${ }_{\text {dah }}$	\mathbf{X} dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
1 didahdahdahdah	6 dahdidididjit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahdahdah

Period : didahdidahdidah. Comma : dahdahdididahdah. Question mark: dididahdahdidit. Error: didididididididit. Double dash: dahdidididah. Colon: dahdahdahdididit. Semicolon: dahdidahdidahdit. Parenthesis: dahdidahdahdidah: Fraction bar: dahdididahdjt. Wait : didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work : didididahdidah.
receive your signal and retransmit it for better coverage of the area) or finding new friends on other frequencies while driving across the country. Mobile units are often the vital link in emergency communications, too, since they are usually first on the scene of an accident or disaster.

The Oscar (Orbiting Satellite Carrying Amateur Radio) program is a new challenge to the amateur radio fratemity. Buill by hams from many countries around the world, these ingenious devices hitch rides as ballast (secondary payloads) on space shots for commerctal communications or weather satellites. Oscar satellites then receive signals from the ground on one frequency and convert those signals to another frequency to be sent back down to Earth. Vhf (very high frequency) and uhf (ultra-high frequency) signals normally do not have a range much greater than the horizon, but when beamed to these satellites, a vhf/uhf signal's cffective range is greatly increased to make global communication a possibility. These Oscar satellites also send back telemetry signals cither in Morse code or radioteleprinter (RTTY), constantly giving information on the condition of equipment aboard the satellite.

Radio amateur clubs often provide social as well as operational and technical activities. The fun provided by amateur radio is greatly enhanced when hams get together so they can "eyeball" or see each other. It's a good supplement to talking to each other over the radio. The swapping of tales (and sometimes equipment), telling of jokes and a
general feeling of high spirits adds a bit of spice to club meetings along with technical matters on the agenda. Clubs offer many pcople their first contact with amateur radio by setting up displays in shopping centers and at events like county fairs, etc. Classes for beginners are given by many clubs on a regular basis and offer the prospective ham a chance to exchange ideas with the instructor and classmates so that learning may progress at a faster speed than by individual study.

Self-reliance has always been a trademark of the radio ansateur. This is often best displayed by the strong desire by many hams to design and build their own equipment. Many others prefor to build their equipment from kits. The main point here is that hams want to know how their equipment functions, what to do with it and how to fix it if a malfunction should occur. Repair shops aren't always open during hurricanes or floods and they aren't always out in the middle of the Amazon jungle, either. Hams of ten come up with variations on a circuit design in common use so that they may achieve a special function, or a totally original electronic design may be brought out by a ham, ali in the interest of advancing the radio art.

GETTING A LICENSE

"All of this sounds very interesting and seems to be a lot of fun, but just how do I go about getting into this hobby? Don't you almost need a degree in electronics to pass the test and get a license?"

Nothing could be farther from the truth. Although you are required to have a license to operate a station, it only takes a minimal amount of study and effort on your part to pass the basic, entry-grade exam and get on the air.
"But what about the code? Don't I have to know code to get a license?" Yes, you do. International agreements require amateur radio operators to have the ability to communicate in international Morse code. But the speed at which you are required to receive it is relatively low so you should have no difficulty passing it in the course of your exam. It's not all that hard, cither. Many grade-school students have passed their tests and each montl hundreds of people from 8 to 80 join the ever-growing number of amateur radio operators around the world.

Concerning the written exam, to get a license you need to know some basic electrical and radio principles and regulations governing the class of license applicd for. The ARRL's basic beginner package, Tune in the World with Ham Radio, is available for $\$ 7$ from local radio stores. It may also be purchased by mail from the address below. Quite a few radio clubs teach amatcur radio theory and welcone all those interested in the hobby. Learning with a group often seems to make the study a bit easier and go more smoothly, too. You may obtain the location of the closest amateur radio club with classes simply by sending a self-addressed-stamped envelope to the American Radio Relay League, 225 Main St., Newington, CT 06111.

Don Mix, 1 TS, ar WNP (Wireless North Pole).

LOOKING BACK

How did amateur radio become the almost unlimited hobby it is today? The beginnings are slightly obscure, but electrical experimenters around the "turn of the century" inspired by the experiments of Marconi and others of the time. began duplicating those experiments and attempted to communicate among themselves. There were no regulatory agencies at that time and much interference was caused by these "amateur" experimenters to other stations until governments the world over stepped in and established licensing. laws and regulations to control the problems involved in this new technology. "Amateur" experimenter stations were then restricted to the "useless" wavelengths of 200 meters and below. Amatcurs suddenly found that they could achicve communication over longer distances than commercial stations on the longer wavelengths. Even so, signals often had to be relayed by intermediate amateur stations to get a message to the proper destination. Because of this. the American Radio Relay Leaguc was organized to establish routes of amsteur radio communication and serve the public interest through amateur radio. But the dream of eventual transcontinental and even transoceanic amateur radio contact bumed hot in the minds of radio amateur experimenters.

World War I broke out and amateur radio, still in its infancy, was ordered out of existence until further notice. Many former amateur radio operators joined the armed services and served with distinction as radio operators, finding their skills to be much needed.

After the close of the "War to End All Wars," amateur radio was still banned by law; yet there were many hundreds of formerly licensed amateurs just itching to "get back on the air." The govern-
ment had tasted supreme authority over the radio services and was half inclined to keep it. Hiram Percy Maxint, one of the founders of the American Radio Relay League, called the pre-war League's officers together and then contacted all the old members that could be found in an attempt to re-establish amateur radio. Maxinn traveled to Washington, D.C. and after considerable effort (and untold red tape) amateur radio was opened up again on October 1, 1919.

Experiments on shorter wavelengths were then begun with encouraging results. It was found that as the wavelength dropped (i.c. frequency increased) greater distances werc achieved. The commercial stations were not about to miss out on this opportunity. They moved their stations to the new shorter wavelengths while the battle raged over who had the right to transmit in this new area. Usually it turned out to be the station with the stronger signal able to blot out everyone else.

Many national and international conferences were called in the twenties to straighten out the whole mess of wavelength allocations. Through the efforts of ARRL officials, amateurs obtained frequencies on various bands similar to what we have today: One-hundred sixty through six meters. When the amateur operators moved to 20 meters, the dream of coast-to-coast and transoceanic communication without a relay station was finally realized. (A more detailed history of the carly days of amateur radio is contained in the ARRL publication Two Hundred Meters and Down by Clinton B. DeSoto.)

PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by many governments at international conferences. There are other reasons. One of these is a thorough appreciation of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "public service."

The "public-service" record of the amateur is a brilliant tributc to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expedjtions began in 1923 when a League member, Don Mix, ITS, accompanied MacMillan to the Arctic on the schooner Bowdoin with an amateur station Amatcurs in Canada and the U.S. provided the home contacts. The success of this venture was so outstanding that other explorers followed suit. During subsequent years a total of perhaps twohundred voyages and expeditions were assisted by amateur radio. the several explorations of the Antarctic bcing perhaps the best known.

Since 1913 amateur radio has been the principal, and in many cases the only, means of outside communication in several hundred storn, flood and earthquake emergencies. The earthquakes which hit Alaska in 1964, Peru in 1970, Califormia in 1971, the Guatemalan carthquake of 1976 and the 1976 Italian earthquake, the Dakota floods, the aftermath of tropical storn Agnes in 1972,

respectively, called for the amateur's greatest emergency effort. In these disasters and many others - tornados, sleet storms, forest fires, blizzards - amateurs played a major role in the relief work and camed wide commendation for their resourcefulness in effecting communication where all other means had failed.

TECHNICAL DEVELOPMENTS

Amateurs started the hobby with spark-gap transmitters taking up great hunks of frequency space. Then they moved on to tubes when these devices came along. Much later, transistors werc utilized; now integrated circuits are a part of everyday hardware in the amateur radio shack. This is because the amateur is constantly in the forefront of technical progress. His incessant curiosity and his eagerness to try any thing new are two reasons. Another is that ever-growing amateur radio continually overcrowds its frequency assignments, spurring amateurs to the development and adoption of new techniques to permit the accommodation of more stations.

Amatcurs have come up with ideas in their shacks while at home and then taken them to industry with surprising results. During World War II, thousands of skilled amateurs contributed their knowledge to the development of secret radio devices, both in government and private laboratories. Equally as important, the prewar technical progress by amsteurs provided the keystone for the development of modern military communications equipment.

Many youngsters start out with an interest in amateur radio and then follow through with a career in a technical field. Ham engineers often come up with many of the new developments, if not actually designing a new device that is applicable not only to industry but to amateur radio use as well. This aspect of the hobby is often best demonstrated by pointing to the Oscar satellite program. Hams from around the world with technical backgrounds participate in the design, construction and launch plans for each satellite. The entire program is under the direction of

AMSAT, the Amateur Radio Satellite Corporation, an affiliate of the American Radio Relay League.

THE AMERICAN RADIO RELAY LEAGUE

Ever since its establishment in 1914 by Hiram Percy Maxim and Clarence Tuska, the American Radio Relay League has been and is today not only the spokesman for amateur radio in the U.S. and Canada but the largest amatcur organization in the world. It is strictly of, by and for amatcurs, is noncommercial and has no stockholders. The members of the League are the owners of the ARRL and QST, the monthly joumal of amateur radio published by the l.eague.

The League is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. It represents the amateur in legislative matters.

One of the League's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of responsibilities - the maintenance of high standards, a cooperative loyalty to the traditions of amateur radio, a dedication to its ideals and principles, so that the institution of amateur radio may continue to operate "in the public interest, convenience and necessity."

In addition to publishing QST, the ARRL

A USAF space vehicle going into orbit with Oscar, the first amateur satellite.
maintains a model amateur radio station, WIAW, which conducts code practice and sends bulletins of interest to amateurs the world over. ARRL maintains an intruder watch so that unauthorized use of the amateur radio frequencies may be detected and appropriate action taken. At the headquarters of the League in Newington, Conn., is a well-equipped laboratory to assist staff members in preparation of technical material for QST and the Radio Amoteur's Handbook. Among its other activities, the League maintains a Communications Department concemed with the operating activities of League members. A large field organization is headed by a Section Communications Manager in each of the League's seventy-four sections. There are appointments for qualified members in various fields, as outlined in Chapter 24. Special activities and contests promote operating skill. A special place is reserved each month in QST for amsteur news from every section.

The ARRL publishes a virtual library of information on amateur radio. Tune in the World with Ham Radio, written for the person without previous contact with amateur radio, and the Radio Amateur's License Monual are two of the books designed to assist the prospective amateur to get into the hobby in the shortest possible time. Tune in the World comes complete with a code instruction and practice tape. They are both available from either local radio stores or from the ARRL postpaid.

Once you have studied, taken the test and have received your license, you will find that there is no other thrill quite the same as amateur radio. You may decide to operate on the lowest amateur band, 160 meters (sce map). Or you may prefer to operate in the gigahertz bands (billions of cycles per second) where the entise future of communications may lie. Whatever your interest, you are sure to find it in amateur radio.

CANADIAN AMATEUR BANDS

80 meters 1) 3) 4) 5)	$\begin{aligned} & 3.500- \\ & 3.725- \end{aligned}$	$\begin{aligned} & 3.725 \mathrm{MHz} \\ & 4.000 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { A1, F1 } \\ \text { A1, A3. F3 } \end{gathered}$
40 melers	$7.000-$	7.150 MHz	A1. Ft ,
1) 3) 4) 5)	$7.150-$	7.300 MHz	A1, A3, F3
20 meters	14.000-	14.100 MHz	A1, F1
1) 3) 4) 5)	14.100-	14.350 MHz	A1, A3, F3
15 meters	21.000	21.100 MHz	A1, F1
1) 3) 4) 5)	21.100	21.450 MlIz	A1. A3. F3
10 meters	28.000-	28.100 MHz	A1. FI
2) 3) 4) 5)	28.100-	29.700 MHz	A1, A3. 83
6 meters	$50.000-$	50.050 MHz	A1
3) 4)	50.050-	51.000 Mliz	$\begin{aligned} & A 1, A 2, A 3, F 1 \\ & F 2, F 3 \end{aligned}$
	51.000-	54.000 MHz	$\begin{aligned} & \text { AB, A1, A2, A3 } \\ & \text { A4, F1, F2, F3. } \\ & \text { F4 } \end{aligned}$
2 meters	144.000-	144.100 MHz	A1
3) 4)	144.100-	148.000 MHz	$\begin{aligned} & \text { A }, \text { A1, A2, A3 } \\ & \text { A4, F1, F2, F3 } \\ & \text { F4 } \end{aligned}$
3) 4)	220.000-	225.000 MHz	$\begin{aligned} & \text { A乌. A1, A2, A3, } \\ & \text { A4, F1, F2, F3. } \\ & \text { F4 } \end{aligned}$
4) 6)	$420.000-$	450.000 MHz)	
	1215.000-	1300.000 MHz)	
	2300.000-	2450.000 MHz)	
	3300.000-	3500.000 MHz)	AD, A1, A2, A3
	5K50.000-	5925.000 MHz)	A4. A5, PI, F2
	$\begin{aligned} & 10000.000- \\ & 24000.000 \end{aligned}$	0500.000 MHz)	F3, F4

1) Pbone privilegen are restricied to holders of Advanced Amar tear Radio Oparntor Certificases, and of Commencial Certif cates.
2) Phome privileges are restricted as In footmote 1), and to bolders of Amatour Radio Operalon Certificates. whose cestincates have been endorsed for operation on ghone in these banda.
3) Amplitude modulation (A2, A3, A4) shall not exceod ± 3 kHz (6A3).
4) Frequescy modulation (F2, F3, F4) shall not produce a carneier deviation exceeding $\pm 3 \mathrm{kHz}$, (6F3) except that in the 52 54 MHz and $146-148 \mathrm{MHz}$ bands and higher the carrier deviation shall not exceed 415 kPz (30F3).
5) Slow Scan tolevision (AS), permitted by special authoriaguon, shall not oxceed a bandwidth groates than that occupled by a normal single sideband voice tranemission.
6) Televidon (AS), permitted by special authorization. shall employ asystem of slandard intertace and ccanning with a bandvidth of not more than 4 MHz.

Operation in frequency band $1.800-2.000 \mathrm{MHz}$ shall be limited to the areas as indicated in the following table and shall be limited to the indicated maximum de powar input to the ande of the finsl radio frequency stage of the transmitter during day and night hours respectively: for the purpose of this rable "tay" means the houn between suarisc and sanset, and "might" means the hours between sonset and sunntse. A1, A3 and I'3 annixion are permiltied.

	A	B	C	D	E	F	G	H
Aritish Columbla	31)	3	3	1	0	0	0	0
Alberts	$31)$	3	3	3	1	0	0	I
Saskatchewan	311	3	3	3	3	1	1	J
Manisoba	31)	2	2	1	2	2	2	3
Ontario	3	1	1	I	1	0	0	2
North of 50* N. Lal.								
Ontario	31)	2	1	0	0	0	0	1
South of $50^{\circ} \mathrm{N}$. Lat.								
Province of Oueber	1	0	0	1	1	0	0	2
North of $52^{\circ} \mathrm{N}$. Lat.								
Province of Quebec	3	2	1	0	0	0	0	0
South of 52\% N. LuL								
New Brunswick	3	2	1	0	0	0	0	0
Nova Scatia	3	2	1	0	0	0	0	0
Prince Edward Island	3	7	1	0	0	0	0	0
Newfoundland (Island)	3	,	1	-	0	0	0	0
Newfoundiand (Labredor)	2	0	0	0	0	0	0	0
Yukon Tertitory	31)	3	,	1	0	0	0	
Districl of MacKenrie	311	3	3		1	0	0	1
District of Keewalin	3	1	1	3	2	0	0	2
District of Franklin	0	0	0	0	1	0	0	1

1) The power leveks 500 day - 100 night may be increased to 1000 day - 200 nitht when authorized by a Radio Insperimp of the Department of Communications.

Frequency Bond

A 1.800-1.825 M ${ }^{\text {d }}$	E 1.900-1.925 MHz
B 1.825-1.850 M ${ }^{\text {chz }}$	F 1.925-1.950 MHz
C $1.850-1.875 \mathrm{MHz}$	G 1.950-1.975 MHz
D $1.875-1.900 \mathrm{MHz}$	H $1.975-2.000 \mathrm{MHz}$

$0-$ Operation not pertuitted	
$1-25$ night	125 day
$2-50$ night	250 day
$3-100$ night	500 day

U.S. AND POSSESSIONS AMATEUR BANDS

kHz		EMISSIONS		MHz	EMISSIONS		
160 m .	1800-2000	A1.A3	6 m .	$\begin{aligned} & 50.0-54.0 \\ & 50.1-54.0 \end{aligned}$	Al A2, A3, A4, A53, F_{1},		
80 m .	3500-4000	A!			F2, F3 ${ }^{2}$, FS ${ }^{1}$		
	3500-3775	F1		31.0-54.0	AD		
	3775-3890	A51, F51		52.5-54.0	F3		
	3775-4000	A3, F3 ${ }^{2}$					
40 m .			2 m.	$144.1-148$	A1		
	7000-7300				$\begin{aligned} & \text { AQ, A2, A3, A4, A5 } \\ & \text { F0, F1, F2, F3, FS1 } \end{aligned}$		
	7150-7225	A51, FS1					
	7150-7300	A3, F3 ${ }^{2}$					
20 m .				220-225	$A D, A 1, A 2, A 3, A 4, A 5{ }^{8}$		
	14000-14350	A1			F0, F1, F2, F3, F4, F51		
	14000-14200	F1					
	14200-14275	A51, 551		420-4504			
	14200-14350	A3, F3 ${ }^{2}$		1,215-1,300	F0, F1, F2, F3, F4, F5		
15 m.	MHz	EMISSIONS					
				3,300-3,500			
	21.00-21.45	${ }^{\text {A1 }}$		5,650-5,925			
	21.00-21.25	Fi ${ }^{\text {c }}$		10,000-10,500 ${ }^{5}$	Fi, F1, F2, F3, F4, F5,		
	21.25-21.35	A51,F51		24,000-24,250			
	21.25-21.45	$\mathrm{A} 3, \mathrm{~F}^{2}$					
10 m.	28.0-29.7	A1					
	28.0-28.5	A3, A5 ${ }^{1}, \mathrm{~F} 3^{2}, \mathrm{~F} 5^{1}$		The bands 220 thruugh $10,500 \mathrm{MHz}$ are shared with the Government Radiu Pasitioning Service. which has priority.			
	28.5-29.7						
	29.0-29.7	F3					

NOTE: Frequencies from 3.9-4.0 MHz and 7.1-7.3
MHz are not available 10 amateurs on Baker, Canton, Enderbury, Guam, Howland, Jarvis, Palmyra, American Samoa, and Wake Islands.

When opernting from points outside ITU Region 2 (roughly, the Westen Hemisphere extended to include Hawail), ticensecs of General Class and higher may operate A3 and F3 from 7075-7100 kHz ; Novice licensees may operate Ad from $7050-7075 \mathrm{kHz}$.

REPEATERS:

The frequency ranges (in MHz) available for repeater inputs and outpuis are as follows:

$$
\begin{array}{r}
29.5-29.7 \\
52.0-54.0 \\
146.0-148.0 \\
222.0-225.0 \\
442.0-450.0
\end{array}
$$

any amateur frequency above $: 215 \mathrm{MHz}$.

Nowice licensees may use Al emission and a maximum power ingut of 250 watts on the following frequencies:
$3.700-3.750 \mathrm{MHz}$
21.100-21.200 MHz
$7.100-7.150 \mathrm{MHz}$
$28.100-28.200 \mathrm{MHz}$

Technician licensees are permitted all amateus privileges in $50.1-54 \mathrm{MHz}, 145-148 \mathrm{MHz}$ and in the bands 220 MHz and above, and in addition have full Novice privileges.

Except as otherwise specified, the maximum amateur power input is $\mathbf{1 0 0 0}$ watts.

Chapter 2

Electrical Laws and Circuits

FUNDAMENTAL PRINCIPLES

Some of the manifestations of electricity and magnetism are familiar to everyone. The effects of static electricity on a dry, wintry day, an attraction by the magnetic north pole to a compass needle, and the propagation and reception of radio waves are just a few examples. Less easily recognized as being electrical in nature perhaps, the radiation of light and even radiant heat from a stove are governed by the same physical laws that describe a signal from a TV station or an amateur transmitter. The ability to transmit electrical energy through space without any reliance on matter that might be in that space (such as in a vacuum) or the creation of a disturbance in space that can produce a force are topics that are classified under the study of electromagnedic fields. Krowledge of the properties and definitions of fields is important in understanding such devices as transmission lines. antennas, and circuit-construction practices such as shielding.

Once a field problem is solved, it is often possible to use the results over and over again for other purposes. The field solution can be used to derive numerical formulas for such entities as resistance, inductance, and capacitance or the latter quantities can be determined experimentally. These elements, then, form the building blocks for more complex configurations called networks or circuits. Since there is no need to describe the physical appearance of the individual elements, a pictorial representation is often used and it is called a schematic diagram. However, each elernent must be assigned a numerical valuc, otherwise the schematic diagram is incomplete. If the numerical values associated with the sources of energy (such as batteries or generators) are also known, it is then possille to determine the power transferred from one part of the circuit to another element by finding the numerical values of entitics called voltage and current.

Finally, there is the consideration of the fundamental properties of the matter that makes up the various circuit elements or devices. It is believed that all matter is made up of complex structures called atoms which in turn are composed of more or less unchangeable particles called electrons, protons, and neutrons. Construction of an atom will determine the chemical and electrical properties of matter composed of like atoms. The periodic table of chemical elements is a classification of such atoms. Electrons play an important role in both the chemical and electrical properties of matter and elements where some of the elect-
rons are relatively free to move about. These materials are called conductors. On the other hand, elements where all of the electrons are tightly bonded in the atomic structure are called insulators. Metals such as copper, aluminum, and silver are very good conductors while glass, plastics, and rubber are good insulators.

Although electrons play the principal role in the properties of both insulators and conductors, it is possible to construct matter with an apparent charge of opposite sign to that of the electron. Actually, the electron is still the charge carrier but it is the physical absence of an electron location that moves. However, it is convenjent to consider that an actual charge carrier is present and it has been labeled a hole. Materials in which the motion of electrons and holes determine the electrical characteristics are called semiconductors. Transistors, integrated circuits, and similar solid-state devices are made up from semiconductors. While there are materials that fall in between the classifications of conductor and insulator, and might be labeled as semiconductors, the latter term is applied exclusively to materials where the motion of electrans and holes is important.

Electrostatic Field and Potentials

All electrical quantities can be expressed in the fundamental dimensions of fime, mass. force, and length. In addition, the quantity or dimension of charge is also required. The metric system of units (SI system) is almost exclusively used now to specify such quantities, and the reader is urged to become familiar with this system. In the metric system. the basic unit of charge is the coulomb. The smallest known charge is that of the electron which is -1.6×10^{-19} coulombs. (The proton has the same numerical charge except the sign is positive.)

The concept of electrical charge is analogous to that of mass. It is the mass of an object that determines the force of gravitational attraction between the object and another one. A similar phenomenon occurs with two charged objects. If the charges can be considered to exist at points in space, the force of attraction (or repulsion if the charges have like signs) is given by the formula:

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \epsilon r^{2}}
$$

where Q_{1} is the numerical value of one charge, Q_{2} is the other charge value, r is the distance in meters, e is the permitivity of the medium surrounding the charges, and F is the force in

Fig. 1 A - Field (solid lines) and potential (dotted lines) lines surrounding a charged sphere.
newtons. In the case of free space of a vacuum, ϵ has a value of 8.854×10^{-12} and is the permittivity of free space. The product of relative permittivity and e_{0} (the permittivity of free space) gives the permittivity for a condition where matter is present. Permittivity is also called the dielectric constant and relative dielectric constants for plastics such as polycthylene and Teflon are 2.26 and 2.1 respectively. (The relative dielectric constant is also important in transmission-line theory. The reciprocal of the square root of the dielectric constant of the material used to separate the conductors in a transmission line gives the velocity factor of the line. The effect of velocity factor will be treated in later chapters.)

If instead of just two charges, a number of charged objects are present, the force on any one member is likely to be a complicated function of the positions and magnitudes of the other changes. Consequently, the concept of electric fieid strength is a useful one to introduce. The field strength or field intensity is defined as the force on a given charge (concentrated at a point) divided by the numerical value of the charge. Thus, if a force of I newton existed on a test charge of 2 coulombs, the field intensity would be 0.5 newtons/coulomb.

Whenever a force exists on an object, it will require an expenditure of energy to move the object against that force. In some instances, the mechanical energy may be recovered (such as in a compressed spring) or it may be convertod to another form of energy (such as heat produced by friction). As is the case for electric-field intensity, it is convenient to express energy \div charge as the putential or voltage of a charged object at a point. Fos instance, if it took the expenditure of 5 newton-meters (5 joules) to move a charge of 2 coulombs from a point of zero energy to a given point, the voltage or potential at that point would be 2.5 joules/coulomb. Because of the frequency of problems of this type, the dimension of joules/ coulumb is given a special designation and one joulc/coulomb is defined as one volt. Notice that if
the voltage is divided by length (meters), the dimensions of tield intensity will be obtained and a field strength of one newton/coulomb is also defined as one volt/meter. The relationship bctween field intensity and potential is illusteated by the following example shown in Fig. 1A.

A conducting sphere receives a charge until its surface is at a potential of 5 volts. As charges are placed on the surface of a conductor, they tend to spread out into a uniform distribution. Consequently, it will require the same amount of energy to bring a given amount of charge from a point of zero reference to any point on the sphere. The outside of the sphere is then said to constitute an equipotential surface. Also, the amount of energy expended will be independent of the path traveled to get to the surface. For instance, it will require S joules of encrgy to bring a charge of 1 coulomb from a point of 0 voltage to any point on the sphere (as indicated by the dotted lines in Fig. 1A). The direction of the force on a charged particle as the surface of the surface of the sphere must be perpendicular to the surface. This is because charges are able to flow about freely on the conductor but not off it. A force with a direction other than a right angle to the surface will have a component that is parallel to the conductor and will cause the charges to move about. Eventually, an equilibrium condition will be reached and any initial ficld component parallel to the surface will be zero. This motion of charge under the influence of an clectric field is a very important concept in electricity. The rate at which charge flows past a reference point is defined as the current. A rate of I coulomb per second is defined as 1 ampere.

Because of the symmetry involved, the direction of the electric force and electric field can be sepresented by the solid straight lines in Fig. IA. The arrows indicate the direction of the force on a positive charge. At points away from the sphere. less energy will be required to bring up a test charge from zero reference. Consequently, a series of concentric spherical shells indicated by the dashed lines will define the equipotential surfaces around the sphere. From mathematical consider-

Fig. 1B - Variation of potential with distance \dagger the charged sphere of Fig. 1 A .

Fig. 1C - Variation of field strength with distance around a sphere charged to 5 volts for spheres of different radii.
ations (which will not be discussed here), it can be shown that the potential will vary as the inverse of the distance from the center of the sphere. This relationship is indicated by the numbers in Fig. IA and by the graph in Fig. 1B.

While the electric field gives the direction and magnitude of a force on a charged object, it is also equal to the negative slope numerical value of the curve in Fig. 1B. The slope of a curve is the rate of change of some variable with distance and in this case, the variable is the potential. This is why the electric field is sometimes called the potential gradient (gradient being equivalent to slope). In the case of a curve that varies as the inverse of the distance, the slope at any point is proportional to the inverse of the distance squared.

An examination of Fig. 1 would indicate that the potential variation is only dependent upon the shape of the conductor and not its actual physical size. That is, once the value of the radius a of the sphere in Fig. I is specified, the potential at any other point a given distance from the sphere is also known. Thus, Fig. 1B can be used for any number of spheres with different radii. When it is changed by a certain percentage, all the other values would change by the same percentage too. However. the amount of charge required to produce a given voltage, or voltage change, does depend upon the size of the conductor, its shape, and its position in relation to other conductors and insulators. For a given conductor configuration, the voltage is related to the required charge by the formula:

$$
V=\frac{Q}{C}
$$

where the entity C is defined as the capacitance. Capacitance will be discussed in more detail in a later section.

Since the electric-field intensity is related to the change in potential with distance, like potential, the manner in which it changes will be uneffected by the absolute physical size of the conductor configuration. However, the exact numerical value at any point does depend on the dimensions of the
configuration. This is illustrated in Fig. IC for spheres with different radii. Note that for larger radii, the numerical value of the field strength at the surface of the sphere (distance equal to a) is less than it is for smaller radii. This effect is important in the design of transmission lines and capacitors. (A capacitor is a device for storing charge. In older terminology, it was sometimes called a condenser.) Even though the same voltage is applied across the terminals of a transmission line or capacitor, the field strength between the conductors is going to be higher for configurations of small physical size than it is for larger ones. If the field strength becomes too high, the insulating material (including air) can "break down." On the other hand, the effect can be used to advantage in spark gaps used to protect equipment connected to an antenna which is subject to atmospheric electricity. The spark-gap conductors or efectrodes are filed to sharp points. Because the needlepoints appear as conductors of very small radii. the field strength is going to be higher for the same applied potential than it would be for blunt electrodes (Fig. 1D). This means the separation can be greater and the effect of the spark gap on normal circuit operation will not be as pronounced. However, a blunt electrode such as a sphere is often used on the tip of a whip antenna in order to lower the field strength under transmitting conditions.

An examination of Fig. IC reveals that the field strength is zero for distances less than a which includes points inside the sphere. The implication here is that the effect of fields and charges cannot penetrate the conducting surface and disturb conditions inside the enclosure. The conducting sphere is said to form an electrostatic shield around the contents of the enclosure. However, the converse is not true. That is, charges inside the sphere will cause or induce a field on the outside surface. This is why it is very important that enclosures designed to confine the effects of charges be connected to a point of zero potential. Such a point is often called a ground.

Fields and Currents

In the last section, the motion of charged particles in the presence of an electric field was mentioned in connection with charges placed on a conducting sphere and the concept of current was

Fig. 1D - Spark gaps with sharp points break down at lower voltages than ones with blunt surfaces even though the seporation s is the same.
introduced. It was assumed that charges could move around unimpeded on the surface of the sphere. In the case of actual conductors, this is not true. The charges appear to bump into atoms as they move through the conductor under the influence of the electric field. This effect depends upon the kind of material used. Silver is a conductor with the least amount of opposition to the movement of charge while carbon and certain alloys of iron are rather poor conductors of charge flow. A measure of how easily charge can flow through a conductor is defined as the conductivity and is denoted by a.

The current density J, in a conductor is the rate of charge flow or current through a given crosssectional area. It is related to the electric field and conductivity by the formula:

$$
J=\sigma E
$$

In gencral, the conductivity and electric field will not be constant over a large cross-sectional area, but for an important theoretical case this is assumed to be true (Fig. 2).

A cylinder of a material with conductivity σ is inserted between two end caps of infinite conduct ivity. The end caps are connected to a voltage source such as a battery or gencrator. (A battery consists of a number of cells that convert chemical energy to electrical energy and a generator converts mechanical energy of motion to clectrical energy.) The electric field is also considered to be constant along the length, l, of the cylinder and, as a consequence, the slope of the potential variation along the cylinder will also be a constant. This is indicated by the dotted lines in Fig. 2. Since the electric field is constant, the cusrent density will atso be constant. Therefore, the total current entering the end caps will just be the product of the current density and the cross-sectional area. The value of the electric field will be the quotient of the total voltage and the length of the cylinder. Combining the foregoing results and introducing two new entities gives the following set of equations:

$$
\begin{aligned}
& J=\sigma\left(\frac{V}{l}\right) \text { since } J=\sigma E \text { and } E=\frac{V}{T} \\
& I=J(A)=\frac{\sigma A V}{l} \\
& \rho=\frac{1}{\sigma} \text { and } V=I\left(\frac{\rho l}{A}\right) \\
& R=\frac{\rho l}{A} \text { and } V=I R
\end{aligned}
$$

where ρ is the resistivity of a conducting material and R is the resistance. The final equation is a very basic one in circuit theory and is called Ohm's Law. Configurations similar to the one shown in Fig. 2 are very common ones in electrical circuits and are called resistors.

It will be shown in a later section that the power dissipated in a resistor is equal to the product of the resistance and the square of the current. Quite often resistance is an undesirable effect (such as in a wire carrying current from one

Fig. 2 - Potential and field strength along a current-carrying conductor.
location to another one) and must be reduced as much as possible. This can be accomplished by using a conductor with a low resistivity such as silver (or copper which is close to sijver in resistivity but is not as expensive) with a large cross-sectional area and as short a length as possible. The current-carrying capability decreases as the diameter of a conductor size gets smaller.

Potential Drop and Electromotive Force

The application of the relations between fields, potential, and similar concepts to the physical configuration shown in Fig. 2 permitted the derivation of the formula that eliminated further consideration of the field problem. The idea of an electrical energy source was also introduced. A similar analysis involving mechanics and field theory would be required to determine the characteristics of an electrical generator and an application of chemistry would be involved in designing a chemical cell. However, it will be assumed that this problem has been solved and that the energy source can be replaced with a symbol such as that used in Fig. 2.

The term electromotive force (emf) is applied to describe a source of electrical energy, and potential drop (or voltage drop) is used for a device that consumes electrical energy. A combination of sources and resistances (or other elements) that are connected in some way is called a network or circuit. It is evident that the energy consumed in a network must be equal to the energy produced. Applying this principle to the circuit shown in Fig. 3 gives an important extension of Ohm's Law.

Fig. 3 - A series circuit illustrating the effects of emf and potential drop.

In Fig. 3, a number of sources and resistances are connected in tandem or in series to form a circuit loop. It is desired to determine the current J. The current can be assumed to be flowing in either a clockwise or counter-clockwise direction. If the assumption is not correct, the sign of the current will be negative when the network equations are solved and the direction can be corrected accordingly. In order to solve the problem, it is necessary to find the sum of the emfs (which is proportional to the energy produced) and to equate this sum to the sum of the potential drops (which is proportional to the energy consumed). Assuming the cursent is flowing in a clockwise direction, the first element encountered at point a is an emf. V1, but is appears to be connected "backwards." Therefore, it receives a minus sign. The nexl source is V4 and it appears as a voltage rise so it is considered positive. Since the current flow in all the resistors is in the same direction, all
the potential drops have the same sign. The potential drop is the product of the current in amperes and the resistance in ohms. The sums for the emfs and potential drops and the resulting current are given by:

$$
\begin{aligned}
& \text { sum of emf }=V_{1}+V_{4}=-10+5=-5 \text { volts } \\
& \text { sum of pot. drops }=V_{2}+V_{3}+V_{5}+V_{6}= \\
& I(2+4+7+10)=23 I \\
& I=\frac{-5}{23}=-0.217 \text { ampere }
\end{aligned}
$$

Because the sign of the current is negative, it is actually flowing in a counter-clockwise direction. The physical significance of this phenomenon is that one source is being "charged." For instance, the circuit in Fig. 3 might represent a directcurrent (dc) generator and a battery.

RESISTANCE

Given two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given emf is applied wisl be found to vary with what is called the resistance of the material. The iower the resistance, the greater the current for a given value of emf.

Resistance is measured in ohms. A circuit has a resistance of one ohm when an applied emf of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each edge. One of the best conductors is copper, and it is frequently corvenient, in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape. Table 2-I gives the ratio of the resistivity of various conductors to that of copper.

The longer the path through which the currenl flows the higher the resistance of that conductor.

TABLE 2-1

Relative Resistivity of Metals

Materials

Aluminum (pure)	1.6
Brass	$3.7-4.9$
Cadmuium	4.4
Chromium	1.8
Copper (hard-drawn)	1.03
Copper (annealed)	1.00
Gold	1.4
Iron (pure)	5.68
Lead	12.8
Nickel	5.1
Phosphor Bronze	$2.8-5.4$
Silver	0.94
Steel	$7.6-12.7$
Tin	6.7
Zinc	3.4

For direct current and low-frequency alternating currents (up to a few thousand cycles per second) the resistance is inversely proportional to the cross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cross-sectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opposite, finding a suitable size and length of wire to supply a desired amount of resistance - can be easily solved with the help of the copper-wire table given in a later chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

Example: Suppose a resistance of 3.5 ohms is needed and some No. 28 wire is on hand. The wire table in Chapler 18 shows that No. 28 has a resistence of 66.17 ohms per thousand feet. Since the desired resistance is 3.5 ohms, the length of wire required will be

$$
\frac{3.5}{00.17} \times 1000=52.89 \mathrm{fect} .
$$

Or, suppose that the resistance of the wire in the circuit must not exceed 0.05 ohm and that the length of wire required for making the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \text { ohm }
$$

where R is the maximum allowable resistance in ohms per thousand feet. Rearranging the formula gives

$$
R=0.05 \times \frac{1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft} .
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistance less than this value.

When the wire is not copper, the resistance values given in the wire table should be multiplied by the ratios given in Table 2-1 to obtain the resistance.

Types of resistors used in radio equipment. Those in the foreground with wire leads are carbon types, ranging in size from 1/2 watt at the left to 2 watts at the right. The larger resistors use resistance wire wound on ceramic tubes; sizes shown range from 5 watts to 100 watts. Three are the adjustable type, having a sliding contact on an exposed section of the resistance winding.

Example: If the wire in the first example werenickel Instead of copper the length required for 3.5 ohms would be

$$
\frac{3.5}{66.17 \times 5.1} \times 1000=10.37 \mathrm{feot}
$$

Temperature Effects

The resistance of a conductor changes with its temperature. Although it is seldom necessary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. Carbon, however, acts in the opposite way; its resistance decreases when its temperature rises. The temperature effect is important when it is necessary to maintain a constant resistance under all conditions. Special materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "package" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. The flow of current through resistance causes the conductor to become heated; the higher the resistance and the larger the current, the greater the amount of heal developed. Resistors intended for carrying large currents must be physically large so the heat can be radiated quickly to the surrounding air. If the resistor does not get rid of the heat quickly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the carrent is alternating there are internal effects that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistance increases.

For low audio frequencies the increase in resistance is unimportant, but at radio frequencies this skin effect is so great that practically all the
current flow is confined within a few thousandths of an inch of the conductor surface. The if resistance is consequently many times the dc resistance, and increases with increasing frequency. In the if range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually represented by the symbol G. A circuit having large conductance has low resistance, and vice versa. In radio work the term is used chiefly in connection with vacuum-tube characteristics. The unit of conductance is the mho. A resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of .001 mho , and so on. A unit frequently used in connection with vacuum tubes is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance connected to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current can flow out of the battery, through the apparatus connected to it, and back into the battery. The circuit is broken, or open, if a connection is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

The values of current, voltage and resistance in a circuit are by no means independent of each

Fig. 2-3 - A simple circuit consisting of a battery and resistor.

TABLE 2-II Conversion Factors for Fractional and Multiple Units			
Change From	To	Divide by	Multiply by
Units	Micro-unit Milth-units		$\begin{aligned} & 1,000,000 \\ & 1,000 \end{aligned}$
	Kilo-units Mega-units	1,000 $1,000,000$	
Micro units	$\begin{aligned} & \text { Milli-units } \\ & \text { Units } \end{aligned}$	$\begin{aligned} & 1,000 \\ & 1,000,000 \end{aligned}$	
Milliunits	Micro-units Units	1,000	1,000
Kilounits	Units Mega-units	1,000	1,000
Megaunits	Units Kilo-units		$\begin{aligned} & 1,000,000 \\ & 1,000 \end{aligned}$

other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied emf and inversely proportional to the resistance. Expressed as an equation, it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are known. It may be transposed so that each of the three quantities may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

All three forms of the equation are used almost constantly in radio work. It must be remembered that the quantities are in volts, ohms and amperes: other units cannot be used in the equations without first being converted. For example, if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-II shows how to convert between the various units in common use. The prefixes attached to the basic-unit name indicate the nature of the unit. These prefixes are;

$$
\begin{aligned}
& \text { micro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } k \text {) } \\
& \text { mega - one million (abbreviated } M \text {) }
\end{aligned}
$$

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ microvolts in one volt, and 0.000001 megohm in one ohm.

The following examples illustrate the use of ohm's law: The current flowing in a resistance of 20,000 ohms is 150 milliampercs. What is the voltage? Since the valtage is to be found, the equation to use is $E=I R$. The curment must first be converted from milliamperes to amperes. and reference to the table shows that to do so it is necessary to divide by 1000 . Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a valtage of $\$ 50$ is applied io a circuit the curnent is measured at 2.5 emperes. What is the resigtance of the circuit? In this case R is the unknown, so

$$
R=\frac{E}{J}=\frac{150}{2.5}=60 \mathrm{ohms}
$$

No conversion was necessary because the voltage and current were given in volts and amperes.

How much current will flow if 250 volts is applied to a 5000 -athm resistor? Since I is unknown

$$
I=\frac{E}{R}=\frac{250}{5000}=0.05 \text { ampere }
$$

Miltiampere units wauld be more converient for the current, and $0.05 \mathrm{amp} . \times 1000=50$ milliamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found connected in a variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current flows from the source of emf (in the direction shown by the arrow, let us say) down through the first resistance, $R l$, then through the second, $R 2$, and then back to the source. These resistors are connected in series. The current everywhere in the circuit has the same value.

Fig. 24 - Resistors connected in series and in paraliel.

In the lower drawing the current flows to the common connection point at the top of the two resistors and then divides, one part of it flowing through $R 1$ and the other through $R 2$. At the lower connection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this case the two resistors are connected in parallel.

Resistors in Series

When a circuit has a number of resistances connected in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered $R 1, R 2, R 3$, etc., then
$R($ total $)=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+\mathrm{R} 4+\ldots$.
where the dots indicate that as many resistors as necessary may be added.

$$
\begin{aligned}
& \text { Example: Suppose that three resistors are connected to } \\
& \text { a source of emf as shown in Fig } 2 \text {-5. The cmf is } 250 \text { volts. } \\
& \text { R1 is } 5000 \text { ohms, } R 2 \text { is } 20,000 \text { ohms, and } R 3 \text { is } 8000 \\
& \text { ohms. The total resistance is then } \\
& \qquad \begin{array}{r}
R=R 1+R 2+R 3=5000+20,000+8000 \\
\\
=33.000 \text { ohms }
\end{array}
\end{aligned}
$$

The current nowing in the circuit is then

$$
I=\frac{E}{R}=\frac{250}{3} \frac{250}{3.000}=0.00757 \mathrm{amp} .=7.57 \mathrm{~mA}
$$

(We need not carry calculations beyond tluee significant figures, and often two will suffice because the accuracy of measuremonts is seldom better than a few percent.)

Voltage Drop

Ohm's Law applies to any part of a circuit as well as to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides among them. The voltage appearing across each resistor (the voltage drop) can be found from Ohm's Law.

Example: If the voltage across R1 (Fig. 2-5) is called E1, that across R2 is called E2, and that across R3 is called E3. then
E1 $=$ IR1 $=\mathbf{0 . 0 0 7 5 7 \times 5 0 0 0 = 3 7 . 9 \text { volts } ~}$
$E 2=I R 2=0.00757 \times 20.000=151.4$ volus
$E 3=I R 3=0.00757 \times 8000=60.6$ volts
The applied voltage must equal the sum of the individual voltage drops:

$$
\begin{aligned}
\mathrm{E}=\mathrm{E}_{1}+\mathrm{E} 2 & +\mathrm{E}_{3}=37.9+151.4+60.6 \\
& =249.9 \text { volts }
\end{aligned}
$$

The answer would have bean more nearly exect if the current had been calculated to more decimal places, but as explained above a very high order of accuracy is not necessary.

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be milliamperes if the emf is in volts.

Fig. 2-5 - An example of resistors in series. The solution of the circuit is worked out in the text.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is because the total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}+\frac{1}{R 4}+\ldots \ldots}
$$

where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula becomes

$$
R=\frac{R 1 R 2}{R 1+R 2}
$$

Example: If a 500 -ohm resistor is paralleled with one of 1200 ohms. the total resistance is

$$
\begin{aligned}
R=\frac{R 1 R 2}{R 1+R 2} & =\frac{500 \times 1200}{500+1200}=\frac{600.000}{1700} \\
& =353 \mathrm{chms}
\end{aligned}
$$

It is probably easier to solve practical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three resistors of the previous example are connected in parallel as shown in Fig. 2-6. The same emf, 250 volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown below, $I 1$, being the current through $R I, I 2$ the current through $R 2$ and $I 3$ the current through $R 3$.

For convenience, the resistance will be expressed in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& 11=\frac{\mathrm{E}}{\mathrm{R} 1}=\frac{250}{5}=50 \mathrm{~mA} \\
& 12=\frac{\mathrm{E}}{\mathrm{R} 2}=\frac{250}{20}=12.5 \mathrm{~mA} \\
& 13=\frac{\mathrm{E}}{\mathrm{R} 3}=\frac{250}{8}=31.25 \mathrm{~mA}
\end{aligned}
$$

The total current is

$$
\begin{gathered}
1=11+12+13=50+12.5+31.25 \\
=93.75 \mathrm{~mA}
\end{gathered}
$$

The total resistance of the circuit is therefore
$\mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}}=\frac{250}{93.75}=2.66$ kilohms ($=2660$ ohms)

Fig. 2-6 - An example of resistors in parallel. The solution is worked out in the text.

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving a circuit such as Fig. 2-7 is as follows: Consider R2 and R3 in parallel as through they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R/ forms a simple series circuit, as shown at the right in Fig. 2-7. An example of the arithmetic is given under the illustration.

Using the same principles, and staying within the practical limits, a value for $R 2$ can be computed that will provide a given voltage drop across R3 or a given current through R1. Simple algebra is required.

Example: The Grst step is to find the equivalent resistance of R2 and R3. From the formula for two resistances in parallel.

$$
\begin{aligned}
R e n= & \frac{R 2 R 3}{R 2+R 3}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohms }
\end{aligned}
$$

Fig. 2-7 - An example of resistors in series-parallel. The equivalent circuit is at the right. The solution is worked out in the eext.

The sotal resistance in the circuit is then

$$
R=R 1+R \text { eg. }=5+5.71 \mathrm{k} \text { Iohms }
$$

- 10.71 kilohms

The current is

$$
I=\frac{E}{R}=\frac{250}{\frac{10.71}{2}}=23.3 \mathrm{~mA}
$$

The voltage drops across R1 and Req are
$E 1=\mid R 1=23.3 \times 5=117$ volts
$E 2=1$ Req $^{2}=23.3 \times 5.71=133$ volts
with sufticient accuracy. These fotal 250 volts, thus checking the calculalions so fay. because the sum of the voltage drops must equat the applied voltage. Since E. 2 appears across boill R2 and R3,

$$
\begin{aligned}
& 12= E_{2}=\frac{133}{20}=6.65 \mathrm{~mA} \\
& 13=\frac{\mathrm{E}_{2}}{R 3}=\frac{133}{8}=16.6 \mathrm{~mA} \\
& \text { where } 12=\text { Current through } \mathrm{R}^{2} \\
& 13=\text { Cument through } \mathrm{R}^{2}
\end{aligned}
$$

The sots is 23.25 mA , which checks closely enough with 23.3 mA , the carrent through the whole circult.

POWER AND ENERGY

Power - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
P=E I \quad \text { where } P=\text { Power in watts } \quad \begin{aligned}
E & =\text { Emf in volts } \\
I & =\text { Current in amperes }
\end{aligned}
$$

Common fractional and multiple units for power are the milliwatt, one one-thousandth of a watt, and the kilowatt, or one thousand watts.

Example: The plate voltage on a transmitting vacum tome is $\mathbf{2 0 0 0}$ volts and the plate current is $\mathbf{3 5 0}$ milliamperes. (The carrent mual be changed to amperes before subatitution in the formulth. and math 0.35 mmp .) Then

$$
P=E I=2000 \times 0.35=700 \text { watts }
$$

By substituting the Ohm's Law equivalent for E and I, the following formulas are obtained for power:

$$
P=\frac{E^{2}}{R} \quad P=I^{2} R
$$

These formulas are useful in power calculations when the resistance and either the current or voltage (but not both) are known.

Exemple: How much power will be uecd up in a 4000 -ahm resistor if the voltage applied in it is 200 volts? From the equation

$$
P=\frac{E^{2}}{R}=\frac{(200) 2}{4000}=\frac{40,000}{4000}=10 \text { watts }
$$

Or, suppose a current of 20 milliamperes flows through a 300 -ohm resistot. Then

$$
\begin{gathered}
P=r^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \mathrm{watt}
\end{gathered}
$$

Nate that the cursent was shanged from milliamperes to amperes before subatifuition in the formula.

ELECTRICAL LAWS AND CIRCUITS

Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 8$ watt. The largest resistors commonly used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Electrical power is not always turned into heat. The power used in running a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. Power applicd to a loudspeaker is changed into sound waves. But in every case of this kind the power is completely "used up" - it cannot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristics of resistance, so it can be said that any devioc that dissipates power has a definite value of "resistance." This concept of resistance as something that absorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple resistance for the load or power-consuming part of the device receiving power, often with considerable simplification of calculations. Of course, every electrical device has some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to be a loss, because it is not the useful power. The efficiency of a device is the useful power output (in its converted form) divided by the power input to the device. In a vacuum-tube transmitter, for example, the object is to convert power from a dc source into ac power at some radio frequency. The ratio of the rf power outpul to the de input is the efficiency of the tube. That is,

$$
E f f .=\frac{P_{0}}{P_{\mathrm{i}}}
$$

where Eff. = Efficiency (as a decimal)
$P_{o}=$ Power output (watts)
$P_{i}=$ Power inpat (watts)
Example: If the de input to the tube ts 100 watts, and the if powes output is 60 walts. The efliciency is

$$
E / J .=\frac{P_{0}}{R_{1}}=\frac{60}{100}=0.6
$$

Efficiancy in usually expressed as a percentage: ithat is, if tells whal percent of the inpul powee will be available as useful output. The efficiency in the above example is 60 percens.

Energy

In residences, the power company's bill is for electrical energy, not for power. What you pay for
is the work that electricity does for you, not the rate at which that work is done. Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
\begin{aligned}
W=P T \quad \text { where } \begin{aligned}
W & =\text { Energy in watt-hours } \\
P & =\text { Power in watts } \\
T & =\text { Time in hours }
\end{aligned}
\end{aligned}
$$

Other energy units are the kilowatt-hour and the watt-second. These units should be self-explanatory.

Energy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

CAPACITANCE

Suppose two flat metal plates are placed close to each other (but not touching) and are connected to a battery through a switch, as shown in Fig. 2-8. At the instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative battery terminal. Enough electrons move into one plate and out of the other to make the emf between them the same as the emf of the battery.

If the switch is opened after the plates have been charged in this way, the top plate is left with a deficiency of electrons and the bottom plate with an excess. The plates remain charged despite the fact that the battery no longer is connected. However, if a wire is touched between the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality. The plates have then been discharged.

Fig. 2-8 -
A simple capacitor.

The two plates constitute an electrical capacitor; a capacitor possesses the property of storing electricity. (The energy actually is stored in the electric field between the plates.) During the time the electrons are moving - that is, while the capacitor is being charged or discharged - a current is flowing in the circuit even though the circuit is "broken" by the gap between the capacitor plates. However, the current flows only during the time of charge and discharge, and this time is usually very short. There can be no continuous flow of direct current "through" a capacitor, but an alternating current can pass through easily if the frequency is high enough.

The charge or quantity of electricity that can be placed on a capacitor is proportional to the applied voltage and to the capacitance of the capacitor. The larger the plate area and the smaller the spacing between the plate the greater the capacitance. The capacitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the
capacitance many times. The ratio of the capacitance with some material other than air between the plates, to the capacitance of the same capacitor with air insulation, is called the dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials commonly used as dielectrics in capacitors are given in Table 2-III. If a sheet of polystyrene is substituted for air between the plates of a capacitor, for example, the capacitance will be increased 2.6 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work. Capacitance is usually measured in microfarads (abbreviated $\mu \mathrm{F}$) or picofarads (pF). The microfarad is one-millionth of a farad, and the picofarad (formerly micromicrofarad) is one-millionth of a microfarad. Capacitors nearly always have more than two plates, the alternate plates teing connected together to form two sets as shown in Fig. 2-9. This makes it possible to attain a fairly large capacitance in a small space, since several plates of smaller individual area can be

TABLE 2-1II		
Dielectric Constants and Breakdown Voltages		
Material	Dielectric Constant*	Puncture Voltage**
Air	1.0	
Alsimag 196	5.7	240
Bakelite	4.4-5.4	300
Bakelite, mica-filled	4.7	325-375
Cellulose acetate	3.3-3.9	250-600
Fiber	5-7.5	150-180
Formica	4.6-4.9	450
Glass, window	7.6-8	200-250
Glass, Pyrex	4.8	335
Mica, ruby	5.4	3800-5600
Mycalex	7.4	250
Paper, Royalgrey	3.0	200
Plexiglass	2.8	990
Polyethylene	2.3	1200
Polystyrene	2.6	500-700
Porcelain	5.1-5.9	40-100
Quartz, fuxed	3.8	1000
Steatite, low-loss	5.8	150-315
Teflon	2.1	1000-2000

* At 1 MHz ** In volts per mil (0.001 inch)

Fig. 2-9 - A multiple-plate capacitor. Alternate plates are connected together.
stacked to form the equivalent of a single large plate of the same total area. Also, all plates, except the two on the ends, are exposed to plates of the other group on boih sides, and so are twice as effective in increasing the capacitance.

The formula for calculating capacitance is:

$$
C=0.224 \frac{K A}{d}(n-1)
$$

where $C=$ Capacitance in pF .
$K=$ Dielectric constant of matcrial between plates
$A=$ Area of one side of one plate in square inches
$d=$ Separation of plate surfaces in inches $n=$ Number of plates
If the plates in one group do not have the same area as the plates in the other, use the area of the smaller plates.

Capacitors in Radio

The types of capacitors used in radio work differ considerably in physical size, construction, and capacitance. Some representative types are shown in the photograph. In variable capacitors (almost always constructed with air for the dielectric) one set of plates is made movable with respect to the other sel so that the capacitance can be varied. Fixed capacitors - that is, assemblies having a single, non-adjustable value of capacitance - also can be made with metal plates and with air as the dielectric, but usually are constructed from plates of metal foil with a thin solid or liquid dielectric sandwiched in between, so that a relatively large capacitance can be secured in a small unit. The solid dielectrics commonly used are mica, paper and special ceramics. An example of a
liquid dielectric is mineral oil. The electrolytic capacitor uses aluminum-foil plates with a semiliquid conducting chemical compound between them; the actual dielectric is a very thin film of insulating material that forms on one set of plates through electrochemical action when a dc voltage is applied to the capacitor. The capacitance obtained with a given plate area in an electrolytic capacitor is very large, compared with capacitors having other dielectrics, because the film is so thin - much less than any thickness that is practicable with a solid dielectric.

The use of electrolytic and oil-filled capacitors is confined to power-supply filtoring and audio bypass applications. Mica and ceramic capacitors are used throughout the frequency range from audio to soveral hundred megacycles.

Voltage Breakdown

When a high voltage is applied to the plates of a capacitor, a considerable force is exerted on the electrons and nuclei of the dielectric. Because the dielectric is an insulator the electrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down": usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the diclectric, as shown in Table 2-ILI. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or are hetween the plates, hiat if the voltage is removed the arc ceases and the capacitor is ready for use again. Brcakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the capacitance for a given plate area, a high-voltage capacitor must have more plate area than a low-voltage one of the same capacitance. High-voltage high-capacitance capacitors are physically lage.

Fixed and variable capacitors. The large unis at the left is a transmitting-type variable capacitor for rf tank circuits. To its right are other air-dielectric variables of different sizes ranging from the midget "air padder" to the medium-power tank capacitor at the top center. The cased capacitors in the top row are for pawer-supply filters, the cylindri-cal-can unit being an electrolytic and the rectangular one a paperdielectric capacitor. Various types of mica, caramic, and paperdielectric capacitors are in the foreground.

CAPACITORS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to capacitors have the same circuit meaning as with resistances. When a number of capacitors are connected in parallel, as in Fig. 2-10, the total capacitance of the group is equal to the sum of the individual capacitances, so
$C($ total $)=\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\mathrm{C} 4+\ldots$.
However, if two or more capacitors are connected in series, as in the second drawing, the total capacitance is Iess than that of the smallest capacitor in the group. The rule for finding the capacitance of a number of series-connected capacitors is the same as that for finding the resistance of a number of parallel-connected resistors. That is,
$C($ total $)=\frac{1}{\frac{1}{\mathrm{C} 1}+\frac{1}{\mathrm{C} 2}+\frac{1}{\mathrm{C} 3}+\frac{1}{\mathrm{C} 4}+}$
and, for only two capacitors in series,

$$
C(\text { total })=\frac{C 1 C 2}{C 1+C 2}
$$

Fig. 2-10 - Capacitors in parallel and in series.

The same units must be used throughout; that is, all capacitances must be expressed in either $\mu \mathrm{F}$ or pF; both kinds of units cannot be used in the same equation.

Capacitors are connected in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of capacitors in parallel is the voltage that can be applied safely to the one having the lowest voltage rating.

Fig. 2-11 - An example of capacitors connected in series. The solution to this arrangement is worked out in the text.

When capacitors are connected in series, the applied voltage is divided up among them, the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each capacitor of a group connected in series is in inverse proportion to its capacitance, as compared with the capacitance of the whole group.

Example: Three capacitors having capacitances of 1, 2 and $4 \mu \mathrm{~F}$, respectively, are connected in series as shown in Fig. 2-11. The total capacitance is

$$
\begin{gathered}
\mathrm{C}=\frac{1}{\frac{1}{\mathrm{Cl}}+\frac{1}{\mathrm{C} 2}+\frac{1}{\mathrm{C} 3}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \\
\quad=0.571 \mu \mathrm{~F}
\end{gathered}
$$

The voitage across cach capacitor is proporional to the fotal capacitaree divided by the capacitance of the capacitor in question, so the voltage across Cl is

$$
\mathrm{EI}=\frac{0.571}{1} \times 2000=\$ 142 \text { volts }
$$

Similarly, the voltages across C 2 and C 3 arc

$$
E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts }
$$

$$
\text { E3 }=\frac{0.571}{4} \times 2000=286 \text { volts }
$$

totaling approximately 2000 volts, the applied voltage.
Capacitors are frequently connected in series to enable the group to withstand a larger voltage (at the expense of decreased total capacitance) than any individual capacitor is rated to stand. However, as shown by the previous example, the applied voltages does not divide equally among the capacitors (except when all the capacitances are the same) so care must be taken to see that the voltage rating of no capacitor in the group is exceeded.

INDUCTANCE

It is possible to show that the flow of current through a conductor is accompanied by magnetic effects; a compass needle brought near the conductor, for example, will be deflected from its normal north-south position. The current, in other words, sets up a magnetic field.

The transfer of energy to the magnetic field represents work done by the source of emf. Power is required for doing work, and since power is equal to current multiplied by voltage, there must be a voltage drop in the circuit during the time in which energy is being stored in the field. This voltage "drop" (which has nothing to do with the
voltage drop in any resistance in the circuit) is the result of an opposing voltage "induced" in the circuit while the field is building up to its final value. When the field becomes constant the induced emf or back emf disappears, since no fusther energy is being stored.

Since the induced emf opposes the emf of the source, it tends to prevent the current from rising rapidly when the circuit is closed. The amplitude of the induced emf is proportional to the rate at which the current is changing and to a constant associated with the circuit itself, called the inductance of the circuit.

Inductance depends on the physical characteristics of the conductor. If the conductor is formed into a coil, for example, its inductance is increased. A coil of many tums will have more inductance than one of few tums, if both coils are otherwise physically similar. Also, if a coil is placed on an fron core its inductance will be greater than it was without the magnetic core.

The poiarity of an induced emf is always such as to oppose any change in the current in the circuit. This means that when the current in the circuit is increasing, work is being done against the induced emf by storing energy in the magnetic field. If the current in the circuit tends to decrease, the stored encrgy of the field returns to the circuit, and thus adds to the energy being supplied by the source of emf. This tends to keep the current flowing even though the applied emf may be decreasing or be removed entirely.

The unit of inductance is the henry. Values of inductance used in radio equipment vary over a wide range. Inductance of several henrys is required in power-supply circuits (see chapter on Power Supplies) and to obtain such values of inductance it is necessary to use coils of many turns wound on iron cores. In radio-frequency circuits, the inductance values used will be measured in millihenrys (amH , one one-thousandth of a henry) at low frequencies, and in microhenrys (lAH, one one-millionth of a herry) at medium frequencies and higher. Although coils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most rf coils made and used by amateurs are of the "air-core" type; that is, wound on an insulating support consisting of nonmagnetic material.

Every conductor has inductance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is small, but it may not be negligible because if the current through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the case in even a few inches of wire when an altemating current having a frequency of

Fig. 2-12 - Coll dimensions used in the inductance formula. The wire diameter does not enter into the formula.

the order of 100 MHz . or higher is flowing. However, at much lower frequencies the inductance of the same wire could be ignored because the induced voltage would be negligibly small.

Calculating Inductance

The approximate inductance of single-layer air-core coils may be calculated from the simplified formula

$$
L(\mu \mathrm{H})=\frac{a^{2} n^{2}}{9 a+10 b}
$$

where $L=$ Inductance in microhenrys
$a=$ Coil radius in inches
$b=$ Coill length in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. This formula is a close approximation for coils having a length equal to or greater than 0.8 a

Example: Aswme a coll haring 48 sums wound 32 tums per inch and : diameter of $3 / 4$ inch. Thus $e=0.75+2=$ $0.375 . b=48 \div 32=1.5$, and $n=48$. Substitating.

$$
L=\frac{375 \times .375 \times 48 \times 48}{(9 \times .375)+(10 \times 1.5)}=17.6 \mu \mathrm{H}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance,

$$
n=\sqrt{\frac{L(9 a+10 b)}{a^{2}}}
$$

Example: Suppose an inductance of $10 \mu \mathrm{H}$ is required. The form on which the coll in 10 be wound has a diameter of one inch and is long cnough to accommodate a coil of $11 / 4$ behes Then $a=0.5, b=1.25$. and $L=10$. Substiluting.

$$
n=\frac{\sqrt{10(45.4 \sqrt{2.5)}}}{5 \times .5}=\sqrt{680}=26.1 \mathrm{tums}
$$

Inductors for power and radio frequencies. The two iron-core coils at the left are "chokes" for power-supply filters. The mounted air-core coils at the top center are adjustable inductors for transmitting tank circuits. The "piewound" coils at the left and in the foreground are radio-frequency choke coils. The remaining coils are typical of inductors used in if tuned circuits, the larger sizes being used principally for transmitters.

A 26-turn cod woald be close enough in praciical wart. Since the coil will be 1.25 inches long. the number of tums pef inch will be $26.1 \div 1.25=20.8$. Coraulting the wire teble, we find that No. 17 enameled wire tos anytaing amalies) can bo used. The propet inductance is obtained by winding the required number of turns on the form and then adjusting the spacing between the turtis io make a unformlyspaced coil 1.25 inthes long.

Inductance Charts

Most inductance formulas lose accuracy when applied to small coils (such as are used in vhf work and is low-pass filters built for reducing harmonic interference to television) because the conductor thickness is no longer negligible in comparison with the size of the coil. Fig. 2-13 shows the measured inductance of vhf coils, and may be used as a basis for circuit design. Two curves are given: curve \mathbf{A} is for coils wound to an inside diameter of $1 / 2$ inch: curve B is for coils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding pitch 8 turns to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads 1/2 inch long.

The charts of Figs. 2-14 and 2-15 are useful for rapid determination of the inductance of coils of the type commonly used in radio-frequency circuits in the range $3-30 \mathrm{MHz}$. They are of sufficient accuracy for most practical work. Given the coil length in inches, the curves show the multiplying factor to be applied to the inductance value given in the table below the curve for a coil of the same diameter and number of turns per inch.

Example: A coil I inch in diamelce is I I/4 inches long and has 20 turns. Thereforc it has 16 sums per inch, and from the table undet Fige 2-15 it is found that the refegence inductance for a coil of this diameter and number of lums per inch is $16.8 \mu \mathrm{H}$. From curve B in the ligure the multiplying fuctur is 0.35 , so the inductance in

$$
16.8 \times 0.35=5.9 \mu \mathrm{H}
$$

The charts also can be used for finding suitable dimensions for a coil having a required value of inductance.

Example: A coil having an inductance of $12 \mu \mathrm{H}$ is required. It is to be wound an a fogm having a diancter of I tnch, the length available for the winding being mut mare than 11/4 inches. From Fite 2-15. the multiplying factor for a l-inch diameter coll (curve 8) having the maxinum ponsibie Iength of $11 / 4$ inches is 0.35 . Hence the number of tums pes inch muse be chosen for a reference induceance of at leum $12 / 0.35$, or $34 \mu \mathrm{Mi}$. From the Table under Fig. 2-15 it is seen that 16 turns per inch (reference inductance $16.8(\mu 1)$ is 100 small. Using 32 turns per inth, the multiplyting factor is $12 / 68$, or 0.177 , and from curve B this comesponds to o coil lengith of $3 / 4$ inth. There will te 24 turns in this lengith, stonce the winding "pliten" is 32 turns per inch.

Machine-wound coils with the diameters and turns per inch given in the tables are available in many radio stores, under the trade names of "B\&W Miniductor" and "Illumitronic Air Dux."

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-16 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2 square
inches, the flux density is $\mathbf{4 0 , 0 0 0}$ lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 50 lines per square inch. The ratio of the flux density with the given core material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core since, otler things being equal, the inductance will be proportional to the magnetic flux through the coil.

The permeability of a magnetic material varies with the 0lux density. At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, but at very high tlux densitics, increasing the current may cause no appreciable change in the flux. When this is so, the iron is said to be saturated. Saturation causes a rapid decrease in permeability, because it decreases the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core inductor is highly dependent upon the current flowing in the coil. In an air-core coil, the inductance is independent of current because air does not saturate.

Iron core coils such as the one sketched in Fig. 2-16 are used chiefly in power-supply equipment. They usually have direct current flowing through the winding, and the variation in inductance with current is usually undesirable. It may be overcome by keeping the flux density below the saturation point of the jron. This is done by opening the core so that there is a small "air gap," as indicated by the dashed lines. The magnetic "resistance" introduced by such a gap is so large - even though the gap is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, controls the flux density. This reduces the inductance, but makes it practically constant regardless of the value of the current.

Fig. 2-13 - Measured inductance of coils mound with No. 12 bare wire, 8 turns to the inch. The values include half-inch leads.

Fig. 2-14 - Factor to be applied to the inductance of coils listed in the table below, for coil lengths up to 5 inches.

Eddy Currents and Hysteresis

When alternating current flows through a coil wound on an iron cose an emf will be induced, as previously explained, and since iron is a conductor a cument will flow in the core. Such cuments (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating. Eddy-current losses can be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellac.

There is also another type of energy loss: the iron tends to resist any change in its magnetic state, so a rapidly-changing current such as ac is

Coil dia, Inches	No. of tpi	Inctucrance in $\mu \mathrm{H}$
$11 / 4$	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{array}{r} 2.75 \\ 6.3 \\ 11.2 \\ 17.5 \\ 42.5 \end{array}$
11/2	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{array}{r} 3.9 \\ 8.8 \\ 15.6 \\ 24.5 \\ 63 \end{array}$
$13 / 4$	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{aligned} & 5.2 \\ & 11.8 \\ & 21 \\ & 33 \\ & 85 \end{aligned}$
2	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 16 \end{array}$	$\begin{aligned} & 6.6 \\ & 15 \\ & 26.5 \\ & 42 \\ & 108 \end{aligned}$
21/2	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \end{array}$	$\begin{aligned} & 10.2 \\ & 23 \\ & 41 \\ & 64 \end{aligned}$
3	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \end{array}$	$\begin{aligned} & 14 \\ & 31.5 \\ & 56 \\ & 89 \end{aligned}$

forced continually to supply energy to the iron to overcome this "inertia." Losses of this sort are called hysteresis losses.

Eddy-current and hysteresis losses in iron increase rapidly as the frequency of the alternating currest is increased. For this reason, ordinary iron cores can be used only at power and audio frequencies - up to, say, 15,000 cycles. Even so, a very good grade of iron or steel is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

Fig. 2-16 - Factor to be applied so the inductance of coils listed in the table below, as a function of coil length. Use curve A for coils marked $A_{\text {a }}$ and curve 8 for coils marked B.

Coil dia Inches	No. of tpi	Induclance in μH
$\begin{aligned} & 1 / 2 \\ & (\mathrm{~A}) \end{aligned}$	4	0.18
	6	0.40
	8	0.72
	10	1.12
	16	2.9
	32	12
$5 / 8$(A)	4	0.28
	6	0.62
	8	1.1
	10	1.7
	16	4.4
	32	18
$\begin{aligned} & 3 / 4 \\ & \text { (B) } \end{aligned}$	4	0.6
	6	1.35
	8	2.4
	10	3.8
	16	9.9
	32	40
(B)	4	1.0
	6	2.3
	8	4.2
	10	6.6
	16 32	${ }_{68}^{16.9}$
	32	

For radio-frequency work, the losses in iron cores can be reduced to a satisfactory nigure by grinding the tron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores can be made that will function satisfactorily even through the vhf range - that is, at frequencies up to perhaps 100 MHz . Because a large part of the magnetic path is through a nonmagnetic material, the permeability of the iron is low compared with the values

Fig. 2-16 - Typical consiruction of an iron-core inductor. The small alr gap prevents magnetic saturation of the iron and thus maintains the inductance at high currents.
obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construcLion, the major portion of the magnetic path for the flux is in air, the slug is quite effective in increasing the coil inductance. By pushing the slug in and out of the coil the inductance can be varied over a considerable range.

INDUCTANCES IN SERIES AND PARALLEL

When two or more inductors are connected in series (Fig. 2-17, left) the total inductance is equal to the sum of the individual inductances, provided the coils are sufficiently separated so that no coil is in the magnetic field of another.
That is,
$L_{\text {total }}=\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+$
If inductors are connected in parallel (Fig. 2.17, right) - and the coils are separated sufficiently, the total insuctance is given by

$$
L_{\text {total }}=\frac{1}{\frac{1}{\mathrm{~L} 1}+\frac{1}{\mathrm{~L} 2}+\frac{1}{\mathrm{~L} 3}+\frac{1}{\mathrm{~L} 4}+\ldots . .}
$$

and for two inductances in parallel,

$$
\mathrm{L}=\frac{\mathrm{L} 1 \mathrm{~L} 2}{\mathrm{~L}!+\frac{\mathrm{L}}{}}
$$

Fig. 2-17 $-\operatorname{In}$ ductances in series and parallel.

Thus the rules for combining inductances in series and parallel are the same for resistances, if the coils are far enough apart so that each is unaffected by

Fig. 2-18 Mutual inductance. When the switch, S, is closed cur. rent flows through coil No. 1, setting up a magnetic field that induces an emf in the turns of coil
 No. 2.
another's magnetic field. When this is not so the formulas given above cannot be used.

MUTUAL INDUCTANCE

If two coils are arranged with their axes on the same line, as shown in Fig. 2-18, a current sent through Coil 1 will cause a magnetic field which "cuts" Coil 2. Consequently, an emf will be induced in Coil 2 whenever the field strength is changing. This induced emf is similar to the emf of self-induction, but since it appears in the second coil because of current flowing in the first, it is a "mutual" effect and results from the mutual inductance between the two coils.

If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a small part of the flux set up by one coil cuts the tums of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could theoretically be obtained with two given coils is called the coefficient of coupling between the coils. It is frequently expressed as a percentage. Coils that have nearly the maximum possible (coefficient $=1$ or 100%) mutual inductance are said to be closely, or tighty, coupled, but if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of coupling depends upon the physical spacing between the coils and how they are placed with respect to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of coupling is closely approached oaly when the two coils are wound on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

TIME CONSTANT

Capacitance and Resistance

Connecting a source of emf to a capacitor causes the capacitor to become charged to the full cmf practically instantaneously, if there is no
resistance in the circuit. However, if the circuit contains resistance, as in Fig. 2-19A, the resistance limits the current flow and an appreciable length of time is required for the emf between the capacitor

Fig. 2-19 - Illustrating the time constant of an RC circuit.
plates to build up to the same value as the emf of the source. During this "building-up" period the current gradually decreases from its initial value, because the increasing emf stored on the capacitor offers increasing opposition to the steady emf of the source.

Theoretically, the charging process is never really finished, but eventually the charging current drops to a value that is smaller than anything that can be measured. The time constant of such a circuit is the length of time, in seconds, required for the voltage across the capacitor to reach 63 per cent of the applied emf (this figure is chosen for mathematical reasons). The voltage across the capacitor rises with time as shown by Fig. 2-20.

The formula for time constant is

$$
T=R C
$$

where $T=$ Time constant in seconds
C = Capacitance in farads
$R=$ Resistance in ohms

$$
\begin{aligned}
& \text { Example: The time constant of a } 2 \mu \mathrm{~F} \text { capacitor and a } \\
& \text { 250.000-ohm }(0.25 \mathrm{megohm}) \text { sesistor is } \\
& \qquad T=R C=0.25 \times 2=0.5 \text { second } \\
& \text { If the applied emf is } 1000 \text { volts, the voltage between the } \\
& \text { capacitur plates will be } 630 \text { volts at the end of } 1 / 2 \text { second. }
\end{aligned}
$$

If C is in microfarads and R in megohms, the time constant also is in seconds. These units usually are more convenient.

If a charged capacitor is dischanged through a resistor, as indicated in Fig. 2-19B, the same time constant applies. If there were no resistance, the capacitor would discharge instantly when S was closed. However, since R limits the current flow the capacitor voltage cannot instantly go to zero, but it will decrease just as rapidly as the capacitor can rid itself of its charge through R. When the capacitor is discharging through a resistance, the time constant (calculated in the same way as above) is the time, in seconds, that it takes for the capacitor to lose 63 percent of its voltage; that is, for the voltage to drop to 37 percent of its initial value.

Example: If the capacitor of the example above is chaged to 1000 volts, it will discharge to 370 volis in $1 / 2$ second through the 250,000 -ohun resistor.

Inductance and Resis tance

A comparable situation exists when resistance and inductance are in series. In Fig. 2-21, first consider L to have no resistance and also assume that R is zero. Then closing S would tend to send a current through the circuit. However, the instantaneous transition from no cument to a finite value,

Fig. 2-20 - How the voltage across a capacitor rises, with time, when charged through a resistor. The lower curve shows the way in which the voltage decreases across the capacitor terminals on discharging through the same resistor.
however small, represents a very rapid change in current, and a back emf is developed by the self-inductance of L that is practically equal and opposite to the applied emf. The result is that the initial current is very small.

The back emf depends upon the change in current and would cease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely large current, by Ohm's Law) the current would increase forever, always growing just fast enough to keep the emf of self-induction equal to the applied emf.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. The back emf generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaches the final Ohm's Law value. Theoretically, the back emf never quite disappears and so the current never quite reaches the Ohm's Law value, but practically the differences becomes unmeasurable after a time. The time constant of an

Fig. 2-21 - Time constant of an $L R$ circuit.
inductive circuit is the time in seconds required for the current to reach 63 percent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L=$ inductance in Henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as if it were in series with the inductance.

Example: A coil hevine an inductance of 20 herrys and 2 resistance of 100 otras has a tione constant of

$$
T=\frac{h}{R}=\frac{20}{100}=0.2 \text { second }
$$

If thore is no other resistance in the circuit. If ade emf of 10 volts is applied to such a coil. the final current. by Ohm's Low, is

$$
I=\frac{E}{R}=\frac{10}{100}-0.1 \text { arup. or } 100 \mathrm{sRA}
$$

The current would rise from 2 ero to 63 mallamperex in 0.2 second after closing the swisth.

An inductor cannot be "discharged" in the same way as a capacitor, because the magnetic field disappears as soon as current flow ceases. Opening S does not leave the inductor "charged." The energy stored in the magnetic field instantly returns to the circuit when S is opened. The rapid disappearance of the field causes a very large voltage to be induced in the coil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field changes. The common result of opening the switch in a circuit such as the one shown is that a spark or are forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great deal of energy is reieased in a very short period of time. It is not at all unusual for the switch contacts to burn or melt under such circumstances. The spark or arc at the opened switch can be reduced or suppressed by conrecting a suitable capacitor and resistor in series across the contacts.

Fig. 2-22 - Voltage across capacitor terminals in a discharging $R C$ circuit, in terms of the initial charged voltage. To obtain time in secands, multiply the factor $\mathrm{f} / \boldsymbol{R} \mathrm{C}$ by the time constant of the circuit.

Time constants play an important part in numerous devices, such as electronic keys, timing and control circuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters. In nearly all such applications a resistance-capacitance ($R C$) time constant is involved, and it is usually necessary to know the voltage across the capacitor at some time interval larger or smaller than the actual time constant of the circuit as given by the formula above. Fig. 2-22 can be used for the solution of such problems, since the curve gives the voltage across the capacitor, in terms of percentage of the initial charge, for percentages between 5 and 100 , at any time after discharge begins.

[^0]
ALTERNATING CURRENTS

PHASE

The term phase essentially means "time," or the cime interval between the instant when one thing occurs and the instant when a second related thing takes place. The later event is said to lag the earlier, while the one that occurs first is said to lead. In ac circuits the current amplitude changes continuously, so the concept of phase or time becomes importart. Phase can be measured in the ordinary time units, such as the second, bat there is a more convenient method: Since each ac cycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. Using the cycle as the time unit makes the specification or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. When two or more
frequencies are to be considered, as in the case where harmonics are present, the phase measurements are made with respect to the lowest, or fundamental, frequency.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length of time from the instant the cycle began. There is no actual "angle" associated with an alternating current. Fig. 2-23 should help make this method of measurement clear.

Fig. 2-23 - An ac cycle is divided off into 360 degrees that are used as a measure of time or phase.

Measuring Phase

The phase difference between two currents of the same frequency is the time or angle difference between corresponding parts of cycles of the two currents. This is shown in Fig. 2-24. The current labeled A leads the one marked B by 45 degrees, since A 's cycles begin 45 degrees earlier in time. It is equally correct to say that B lags A by 45 degrees.

Two important special cases are shown in Fig. $\mathbf{2 - 2 5}$. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just one-quarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is considered to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completely out of phase.

The waves shown in Figs. 2-24 and 2-25 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage and B current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, because adding any number of sine waves of the same frequency always gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an altemating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the

Fig. 2-24 - When two waves of the same frequency start thair cycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth cycle) later than wave A, and so lags 45 degrees behind A.
resistance is "pure" - that is, is free from the reactive effects discussed in the next section. Practically, it is often difficult to obtain a purely resistive circuit at radio frequencies, because the reactive effects become more pronounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valld for ac of any frequency as it is for dc.

REACTANCE

Alternating Current in Capacitance

In Fig. 2-26 a sine-wave ac voltage having a maximum value of 100 volts is applied to a capacitor. In the period $O A$, the applied voltage increases from zero to 38 volts; at the end of this period the capacitor is charged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, 33 volts additional. In this interval a smaller quantity of charge has been added than in $O A$, because the voltage rise during interval $A B$ is smaller. Consequently the average current during

Fig. 2-25 - Two important special cases of phase difference. In the upper drawing, the phase difference between A and B is 90 degrees; in the lower drawing the phase difference is 180 degrees.
$A B$ is smaller than during $O A$. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase during $A B$, so the quantity of electricity added is less: in other words, the average current during interval $B C$ is still smaller. In the fourth interval, $C B$, the voltage increases only 8 volts; the charge added is smaller than in any preceding interval and therefore the current also is smaller.

By dividing the first quarter cycle into a very lange number of intervals it could be shown that the current charging the capacitor has the shape of a sine wave. just as the applied voltage does. The current is langest at the beginning of the cycle and becomes zero at the maximum value of the voltage. so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle the current is flowing in the normal direction through the circuit, since the capacitor is being charged. Hence the current is positive, as indicated by the dashed line in Fig. 2-26.

Fig. 2-26 - Voltaga and currant phase relationships when an alternating voltage is applied to a capacitor.

In the second quarter cycle - that is, in the time from D to H, the voltage applied to the capacitor decreases. During this time the capacitor loses its charge. Applying the same reasoning, it is plain that the current is small in interval $D E$ and continues to increase during each succeeding interval. However, the current is flowing against the applied voltage because the capacitor is discharging into the circuit. The current flows in the negotive direction during this quarter cycle.

The third and fourth quarter cycles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alternating current flows in the circuit because of the alternate charging and discharging of the capacitance. As shown by Fig. 2-26, the current starts its cycle 90 degrees before the voltage, so the current in a capacitor leads the applied voltage by 90 degrees.

Capacitive Reactance

The quantity of electric charge that can be placed on a capacitor is proportional to the applied emf and the capacitance. This amount of charge moves back and forth in the circuit once each cycle, and so the rate of movement of charge that is, the current - is proportional to voltage, capacitance and frequency. If the effects of capacitance and frequency are lumped together, they form a quantity that plays a part similar to that of resistance in Ohm's Law. This quantity is called reactance, and the unit for it is the ohm, just as in the case of resistance. The formula for it is

$$
X_{\mathbf{C}}=\frac{1}{2 \pi f C}
$$

where $X_{C}=$ Capacitive reactance in ohms

$$
\begin{aligned}
& f=\text { Frequency in cycles per second } \\
& C=\text { Capacitance in farads } \\
& \pi=3.14
\end{aligned}
$$

Although the unit of reactance is the ohm, there is no power dissipation in reactance. The energy stored in the capacitor in one quarter of the cycle is simply retumed to the circuit in the next.

The fundamental units (cycles per second, farads) are too large for practical use in radio circuits. However, if the capacitance is in microfarads and the frequency is in megacycles, the reactance will come out in ohms in the formula.

Example: The reaclance of eapacition of 470 DF $(0.00047 \mathrm{fF})$ al a frequescy of $7150 \mathrm{kHz}(7.15 \mathrm{MHz})$ ts

Inductive Reactance
When an alternating voltage is applied to a pure inductance (one with no resistance - all pracrical inductors have resistance) the current is again 90 degrees out of phase with the applied voltage. However, in this case the current lagi 90 degrees behind the voltage - the opposite of the capacitor current-voltage relationship.

The primary cause for this is the back emf generated in the inductance, and since the ampliude of the back emf is proportional to the rate at which the current changes, and this in turn is proportional to the frequency, the amplitude of the current is inversely proportional to the applied frequency. Also, since the back emf is proportional to inductance for a given rate of current change, the current flow is inversely proportional to inductance for a given applied voltage and frequency. (Another way of saying this is that just enough current flows to generate an induced emf that equals and opposes the applied voltage.)

The combined effect of inductance and frequency is called inductive reactance, also expressed in ohms, and the formula for it is

$$
\begin{aligned}
& X_{\mathrm{L}}=2 \pi f L \\
\text { where } X_{\mathbf{L}}= & \text { Inductive renctance in ohms } \\
f= & \text { Frequency in cycles per second } \\
L= & \text { Inductance in henrys } \\
\pi= & 3.14
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: The reactarce of a } 15 \text {-microbenry coil at a } \\
& \text { frequency of } 14 \mathrm{MH} \mathrm{x} \text { is } \\
& \qquad X_{\mathrm{L}}=2 \pi \mathrm{~L}=6.28 \times 14 \times 15=1319 \text { ohms }
\end{aligned}
$$

In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without first converting to fundamental units. Similarly, no conversion is necessary if the inductance is in microhenrys and the frequency is in megacy cles.

Fig. 2-27 - Phase relationships between voltage and current when an alternating voltage is applied to an inductance.

Fig. 2-28 - Inductive and capacitive reactance vs. frequency. Heavy lines represent multiples of 10 , intermediate light lines multiples of 5 ; e.g., the light line between $10 \mu \mathrm{H}$ and $100 \mu \mathrm{H}$ represents $50 \mu \mathrm{H}$, the light line between $0.1 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ represents $0.5 \mu \mathrm{~F}$, etc. Intermediate values can beestimated with the help of the interpolation scale.

Reactances outside the range of the chart may be found by applying appropriate factors to values within the chart range. For example, the reactance of 10 henrys at 60 cycles can be found by taking the reactance to 10 henrys at 600 cycles and dividing by 10 for the 10 -times decrease in frequency.

$$
\begin{aligned}
& \text { Example: The reactance of a coil having an inductance } \\
& \text { of } 8 \text { hensys, at a frequency of } 120 \text { cycles, is } \\
& \qquad X_{\mathrm{L}}=2 \pi f \mathrm{~L}=6.28 \times 120 \times 8=6029 \text { ohms }
\end{aligned}
$$

The resistance of the wire of which the coil is wound has no effect on the reactance, but simply acts as though it were a separate resistor connected in series with the coil.

Ohm's Law for Reactance
Ohm's Law for an ac circuit containing only reactance is

$$
\begin{gathered}
I=\frac{E}{X} \\
E=I X \\
X=\frac{E}{I}
\end{gathered}
$$

where $E=$ Emf in volts
$I=$ Current in amperes
$X=$ Reactance in ohms
The reactance in the circuit may, of course, be either inductive or capacitive.

Example: If a cuncent of 2 ampen's is flowing through the capacites of the earlici example (reactance $=47.4$ ohras) at 7150 kItz . the voltage drop across the capacitor is

$$
E=1 X=2 \times 47.4=94.8 \text { volts }
$$

If 400 valts at 120 hertz is applied io the R-henry inductor of the earlici example, the current through the coil will be

$$
I=E_{X}=\frac{420}{6029}=0.0663 \mathrm{amp} .(66.3 \mathrm{~mA})
$$

Reactance Chart

The accompanying chatt, Fig. 2-28, shows the reactance of capacitances from 1 pF to $100 \mu \mathrm{~F}$, and the reactance of inductances from $0.1 \mu \mathrm{H}$ to 10 henrys, for frequencies between 100 hertz and 100 megahertz per second. The approximate value
of reactance can be read from the chart or, where more exact values are needed, the chart will serve as a check on the order of magnitude of reactances calculated from the formulas given above, and thus avoid "decimal-point errors."

Reactances in Series and Parallel

When reactances of the same kind are connected in series or parallel the resultant reactance is that of the resultant inductance or capacitance. This leads to the same rules that are used when determining the resultant resistance when resistors are combined. That is, for series reactances of the same kind the resultant reactance is

$$
X=X 1+X 2+X 3+X 4
$$

and for reactances of the same kind in parallel the resultant is

$$
X=\frac{1}{\frac{1}{X 1}+\frac{1}{X 2}+\frac{1}{X 3}+\frac{1}{X 4}}
$$

or for two in parallel.

$$
X=\frac{X 1 X 2}{X 1+X 2}
$$

The situation is different when reactances of opposite k inds are combined. Since the current in a capacitance leads the applied voltage by 90 degrees and the current in an inductance lags the applied voltage by 90 degrees, the voltages at the terminals of opposite types of reactance are 180 degrees out of phase in a series circuit (in which the current has to be the same through all elements), and the currents in reactances of opposite types arc 180 degrees out of phase in a parallel circuit (in which the same voltage is applied to all elements). The 180-degrec phase relationship means that the currents or voltages are of opposite polarity, so in the series circuit of Fig. 2-29A the voltage EL across the inductive reactance $X L$ is of opposite polarity to the voltage $E C$ ocross the capacitive reactance $X C$. Thus if we call $X L$ "positive" and XC "negative" (a common convention) the applied voltage $E A C$ is $E L-E C$. In the parallel circuit at B the total current. I, is equal to $I L-I C$, since the currents are 180 degrees out of phase.

In the series case, therefore, the resultant reactance of $X L$ and $X C$ is

$$
X=X_{\mathrm{L}}-X_{\mathrm{C}}
$$

and in the parallel case

$$
X=\frac{-X_{\mathrm{L}} X_{\mathrm{C}}}{X_{\mathrm{L}}-X_{\mathrm{C}}}
$$

Fig. 2-29 - Series and parallel circuits containlng opposite kinds of reactance.

Note that in the series circuit the total reactance is negative if $X C$ is larger than $X L$; this indicates that the total reactance is capacitive in such a casc. The resultant reactance in a series circuit is always smaller than the larger of the two individual reactances.

In the parallel circuit, the resultant reactance is negative (i.e., capacitive) if $X L$ is larger than $X C$, and positive (inductive) if $X L$ is smaller than $X C$. but in every case is always larger than the smaller of the two individual reactances.

In the special case where $X L=X C$ the total reactance is zero in the series circuit and infinitely large in the parallel circuit.

Reactive Power

In Fig. 2-29A the voltage drop across the inductor is larger than the voltage applied to the circuit. This might seem to be an impossible condition, but it is not; the explanation is that while energy is being stored in the inductor's magnetic ficld, energy is being returned to the circuit from the capacitor's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across reactances in series can be larger than the voltage applied to them.

In a resistance the flow of current causes heating and a power loss equal to $I^{2} R$. The power in a reactance is equal to $I^{2} X$, but is not a "loss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere-reactive, or var, instead of the watt. Reactive power is sometimes called "wattless" power.

IMPEDANCE

When a circuit contains both resistance and reactance the combined effect of the two is called impedance, symbolized by the letter Z. Impedance is thus a more general term than either resistance or reactance, and is frequently used even for circuits that have only resistance or reactance, although usually with a qualification - such as "resistive impedance" to indicate that the circuit has only resistance, for example.)

The reactance and resistance comprising an impedance may be connected either in series or in parallel, as shown in Fig. 2-30. In these circuits the reactance is shown as a box to indicate that it may be either inductive or capacitive. In the series circuit the current is the same in both elements, with (generally) different voltages appearing across the resistance and reactance. In the parallel circuit the same voltage is applied to both elements, but different currents flow in the two branches.

Since in a resistance the current is in phase with the applied voltage while in a reactance it is 90 degrees out of phase with the voltage, the phase relationship between current and voltage in the circuit as a whole may be anything between zero and 90 degrees, depending on the relative amounts of resistance and reactance.

Fig. 2-30 - Series and parallel circuits containing resistance and reactance.

Series Circuits

When resistance and reactance are in series, the impedance of the circuit is

$$
Z=\sqrt{R^{2}+X^{2}}
$$

where $Z=$ Impedance in ohms
$R=$ Resistance in ohms
$X=$ Reactance in ohms
The reactance may be either capacitive or inductive. If there are two or more reactances in the circuit they may be combined into a resultant by the rules previously given, before substitution into the formula above; similarly for resistances.

The "square root of the sum of the squares" rule for finding impedance in a series circuit arises from the fact that the voltage drops across the resistance and reactance are 90 degrees out of phase, and so combine by the same rule that applies in finding the hypothenuse of a right-angled triangle when the base and altitude are known.

Parallel Circuits

With resistance and reactance in parallel, as in Fig. 2-30B, the impedance is

$$
Z=\frac{R X}{\sqrt{R^{2}+X^{2}}}
$$

where the symbols have the same meaning as for series circuits.

Just as in the case of series circuits, a number of reactances in parallel should be combined to find the resultant reactance before substitution into the formal above; similarly for a number of resistances in parallel.

Equivalent Series and Parallel Circuits

The two circuits shown in Fig. 2-30 are equivalent if the same current flows when a given voltage of the same frequency is applied, and if the phase angle between voltage and current is the same in both cases. It is in fact possible to "transform" any given series circuit into an equivalent parallel circuit, and vice versa.

Transformations of this type often lead to simplification in the solution of complicated circuits. However, from the standpoint of practical work the usefulness of such transformations lies in the fact that the impedance of a circuit may be modified by the addition of eisher series or parallel elements, depending on which happens to be most convenient in the particular casc. Typical applications are considered later in connection with tuned circuits and transmission lines.

Ohm's Law for lmpedance

Ohm's Law can be applied to circuits containing impedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=E m f$ in volts
$I=$ Current in amperes
$Z=$ impedance in ohms
Fig. 2-31 shows a smple cirruit consislifg of a resistance of 75 ohms and a rearlance of 100 ohms in series From the formula previously given. the impectance is

$$
Z=\sqrt{R^{2}+X^{2}}=\sqrt{(75)^{2}+(700)^{2}}=125
$$

If the applied vollage t 250 voles. then
$I=\frac{E}{Z}=\frac{250}{125}=2$ amperes
This cagrent flows throuyh both the resistance and reastance, so the valtage draps are
$E_{R}=f R=2 \times 73=150$ volis
$E \times L=1 K_{L}=2 \times 100=200$ volts

The simple arithmetcal mum of these two drops, 350 valth, is greater than the applied voltage because the two vollages are 90 degrecy out of phase. Their actual resultant. when phase is takon into account, is

$$
\sqrt{(150)^{2}+(200)^{2}}=250 \text { volts }
$$

Power Factor

In the circuit of Fig 2.31 an applied emf of 250 volts results in a current of 2 amperes, giving an apparent power of $250 \times 2=500$ watts. However, only dre resistance actually consumes power. The power in the resistance is

$$
P=f^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in this example the power factor would be $300 / 500=0.6$. Power factor is frequently expressed as a percentage; in this case, it would be 60 percent.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes. It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely resistive circuit is $\mathbf{1 0 0}$ percent or 1 , while the power factor of a pure reactance is zero. In this illustration, the reactive power is $V A R=I 2 X=(2) 2 \times 100=400$ volt-amperes.

Fig. 2-31 - Circuit used as an example for impedance calculations.

Reactance and Complex Waves

It was pointed out earlier in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of hammonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same wave shape as the applied voltage. This is because the reactance of an inductor and capacitor depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the inductor is twice and the reactance of the capacitor one-half their respective values at the fundamental frequency; for the third harmonic the inductor reactance is three times and the capacitor reactance one-thind, and so on. Thus the circuit impedance is different for each harmonic component.

Just what happens to the current wave shape
depends upon the values of resistance and reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in series, the amplitudes of the hammonic currents will be reduced because the inductive reactance increases in proportion to frequency. When capacitance and resistance are in series, the harmonic current is likely to be accentuated because the capacitive reactance becomes lower as the frequency is raised. When both inductive and capacitive reactance are present the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "constants," or the relative values of L, C, and R, selected.

This property of nonuniform behavior with respect to fundamental and hamonics is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

TRANSFORMERS FOR AUDIO FREQUENCIES

Two coils having mutual inductance constitute a transformer. The coll connected to the source of energy is called the primary coil, and the other is called the secondary coil.

The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts ac and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. A transformer can be used only with ac, since no voltage will be induced in the secondary if the magnetic field is not changing. If dc is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

THE IRON-CORE TRANSFORMER

As shown in Fig. 2-32, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the inductance of the coils so that a relatively small number of turns may be used to induce a given value of vollage with a small current. A clused core (one having a continuous magnetic path) such as

Fig. 2-32 - The transformer. Power is transferred from the primary coil to the secondary by maans of the magnatic field. The upper symbol at right indicates an iron-core transformer, the lower one an air-core transformer.
that shown in Fig. 2-32 also tends to insure that practically all of the field set up by the current in the primary coil will cut the tums of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is normally practicable only at power and audio frequencies. The discussion in this section is confined to transformers operating at such frequencies.

Voltage and Tums Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of tums in the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns in each coil. In the primary the induced voltage is practically equal to, and opposes, the applied voltage, as described earlier. Hence,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}}
$$

where $E_{\mathrm{s}}=$ Secondary voltage
$E_{\mathrm{p}}=$ Primary applied voltage
$n_{8}=$ Number of turns on secondary
$n_{\mathrm{p}}=$ Number of turns on primary
The ratio, $\mathrm{ns} / \mathrm{np}$ is called the secondary-to-primary tums ratio of the transformer.

Exampie: A Imasformer has a primery of 400 tums and a secondary of 2800 rumas, and an emf of 115 volts is applied to the primary.

$$
\begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{D}}} E_{\mathrm{D}} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \text { volts }
\end{aligned}
$$

Also. if an emf of BOS valls to applied to the 2800 -tum winding (which thon becomes the primary) the output voligge from the 400 -ium winding will be 115 volts.

Either winding of a transformet can be used as the primary. providing the winding has enougt lums tenough inductance) to induce a valtage equal to the applled volteye withous reqdiring an excessive carrent flow.

ELECTRICAL LAWS AND CIRCUITS

Effect of Secondary Current

The current that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary inductance will be so large that the magnetizing current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amount necessary to supply the losses in the iron core and in the resistance of the wire with which the primary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetic field that opposes the field set up by the primary current. But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary must draw enough additional current to set up a field exactly equal and opposite to the field set up by the secondary current.

In practical calculations on transformers it may be assumed that the entire primary current is caused by the secondary "load." This is justifiable because the magnetizing current should be very small in comparison with the primary "load" current at rated power output.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns must equal the secondary current multiplied by the secondary turns. From this it follows that

$$
i_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} i_{\mathrm{s}}
$$

where $I_{p}=$ Primary current
$P_{\mathrm{s}}=$ Secondary current
$n_{p}=$ Number of turns on primary
$n_{s}=$ Number of turns on secondary
Example: Suppose that the secondary of the transformer in the previous example is delivering a current of 0.2 ampere to a load. Then the primary current will be

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{s}}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}
$$

Althougt the secondary vollage is highet than the primary voltage, the secondary current is lower than the primary curront, and by the same ratio.

Power Relationships: Efficiency

A transformer cannot create power; it can only transfer it and change the emf. Hence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied emf. There is always some power loss in the resistance of the coils and in the iron core, so in all practical cases the power taken from the source will exceed that taken from the secondary. Thus,

$$
P_{0}=n P_{i}
$$

where $P_{0}=$ Power output from secondary
$P_{i}=$ Power input to primary
$n=$ Efficiency factor
The efficiency, n , always is less than 1. It is usually expressed as a percentage; if n is 0.65 . for instances, the efficiency is 65 percent.

Example: A transformer has an efficiency of 85 percent ut les full-load output of 150 walts. The power input to the primary at full secondary load will be

$$
P_{1}=\frac{P_{\mathrm{Q}}}{n}=\frac{150}{0.85}=176.5 \text { watts }
$$

A transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency decreases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined by its own losses, because these heat the wire and core. There is a limit to the temperature rise that can be tolerated, because too-high temperature either will melt the wire or cause the insulation to break down. A transformer can be operated a reduced output, even though the efficiency is low, because the actual loss will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and transmitters usually lies between about 60 and 90 percent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small percentage of the total Пlux. This leakage flux causes an emf of self-induction; consequently, there are small amounts of leakage indactance associated with both windings of the transformer. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit. It has, thercfore, a certain reactance, depending upon the amount of leakage inductance and the frequency. This reactance is called leakage reactance.

Current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing current, hence it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the transformer windings also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably welt-designed transformer, should not drop more than about 10 percent from open-circuit conditions to full load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies because the leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{\mathrm{D}}=Z_{\mathrm{s}}\left[\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}\right]_{2}
$$

where $Z_{p}=$ Impedance looking into primary terminals from source of power
Z_{8} Impedance of load connected to secondary
$N_{\mathrm{p}} / N_{\mathrm{s}}$ = Turns ratio, primary to secondary
That is, a load of any given impedance connected to the secondary of the transformer will be transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-Io-secondary tums ratio of 0.6 (primary bas $6 / 10$ an many sums as the secondary) and a laad of 3000 ohms in comnected to the secondary. The impedance looking into the primary then will be

$$
\begin{gathered}
Z_{\mathrm{p}}=Z_{\mathrm{s}}\left[\frac{N_{p}}{N_{s}}\right]=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \text { ohms }
\end{gathered}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any destred value, within practical limits. If transformer losses can be neglected, the transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.

The above relationship may be used in practical work even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low internal losses and low leakage reactance, the only requirement is that the primary have enough inductance to operate with low magnctizing current at the voltage applied to the primary.

The primary impedance of a transformer - as if appears 10 the source of power - is determined wholly by the load connected to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage and frequency at which it is being used. Most transformers will operate quite well at voltages from slightly above to well below the design figure.

Impedance Matching

Many devices require a specific value of load resistance (or impedance) for optimum operation.

Fig. 2-33 - The equivalent circuit of a rransformer includes the effects of leakage inductance and resistance of both primary and secondary windings. The resistance Rc is an equivalent resistance representing the core losses, which ars essentially constant for any given applied voltaga and frequency. Since these are comparatively small, their effect may be neglected in many approximate calculations.

SHELL TYPE

LAMINATION SHAPE

Fig. 2-34 - Two common types of transformer construction. Core pieces are interleaved to provide a continuous magnetic path.

The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transformer is used to change the actual load into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{s}}}}
$$

where $N_{\mathrm{p}} / N_{\mathrm{s}}=$ Required turns ratio, primary to secondary
$Z_{p}=$ Primary impedance required
$Z_{8}=$ Impedance of load connected to secondary
Example: A vacuum-fybe af amplifier reqoires a load of 5000 ohms for optimum performance, and is to be connected to a loud-speaker having an tmpedance of 10 ohms. The turns matio, primary to secondary, required in the coupling transformer is

$$
\frac{N_{2}}{N_{s}}=\sqrt{\frac{7_{2}}{Z_{2}}}=\sqrt{\frac{5000}{10^{0}}}-\sqrt{500}=224
$$

The primary therefore must have 22.4 times as many turns as the secondary.
lmpedance matching means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. However, there is also another meaning. It is possible to show that any source of power will deliver its maximum possible output when the impedance of the load is equal to the internal impedance of the source. The impedance of the source is said to be "matched" under this condition. The efficiency is only 50 percent in such a case; just as much power is used up in the source as is delivered to the load. Because of the poor efficiency, this type of impedance matching is limited to cases where only a small amount of power is available and heating from power loss in the source is not important.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer tums, for a given applied voltage, than if the path were long. A short path also helps to reduce flux leakage and therefore minimizes leakage reactance.

Two core shapes arc in common use, as shown in Fig. 2-34. In the shell type both windings are placed on the inner leg, while in the core type the

Fig. 2-35 - The autotransformer is based on the transformer principle, but uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, so that the resultant current is the difference between them. The voltage across A is proportional to the turns ratio.
primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacitive effects between the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of laminations, insulated from each other (by a thin coating of shellac, for example) to prevent the flow of eddy currents. The laminations are interleaved at the ends to make the magnetic path as continuous as possible and thus reduce flux leakage.

The number of turns required in the primary for a given applied emf is deterrmined by the size, shape and type of core material used, and the
frequency. The number of turns required is inversely proportional to the cross-sectional area of the core. As a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of 1 -square-inch cross section and have a magnetic path 10 or 12 inches in length. A longer path or smaller cross section requires more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin sheet of treated-paper insulation between each fayer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. $2-35$; the principles just discussed apply equally well. A one-winding transformer is called an autotransformer. The current in the common section (A) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wire. This will be the case only when the primary (line) and secondary (load) voltages are not very different. The autotransformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts. Continuously-variable autotransformers are commercially available under a variety of trade names; "Variac" and "Powerstat" are typical examples.

THE DECIBEL

In most radio communication the received signal is converted into sound. This being the case, it is useful to appraise signal strengths in terms of relative loudness as registered by the ear. A peculiarity of the ear is that an increase or decrease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is increased from 10 watts to 40 watts, he will also estimate that a 400 -watt signal is twice as loud as a 100 -watt signal. In other words, the human ear has a logarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel (abbreviated $\mathbf{d B}$). A change of one decibel in the power level is just detectable as a change in loudness under ideal conditions. The number of decibels corresponding to a given power ratio is given by the following formula:

$$
d B=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithms (base 10) are used.

Voltage and Current Ratios

Note that the decibel is based on power ratios. Voltage or current ratios can be used, but only when the impedance is the same for both values of
voltage, or current. The gain of an amplifier cannot be expressed correctly in dB if it is based on the ratio of the output voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or current ratios:

Fig. 2-36 - Decibel chart for power, voltage and current ratios for power ratios of 1:1 and 10:1. In determining decibels for current or valtage ratios the currents (or voltages) being compared must be referred to the same value of impedance.

Decibel Chart

The two formulas are shown graphically in Fig. 2-36 for ratios from 1 to 10 . Gains (increases) expressed in decibels may be added arithmetically; losses (decreases) may be subtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 dB means that the power has been multiplied by 4 , while -6 dB means that the power has been divided by 4 .

The chart may be used for other ratios by
adding (or subtracting, if a loss) 10 dB each time the ratio scale is multiplied by 10 , for power ratios; or by adding (or subtracting) 20 dB each time the scale is multiplied by 10 for voltage or ourrent ratios. For example, a power ratio of 2.5 is 4 dB (from the chart). A power ratio of 10 times 2.5 , or 25 , is $14 \mathrm{~dB}(10+4)$, and a power ratio of 100 times 2.5 , or 250 , is $24 \mathrm{~dB}(20+4)$. A voltage or current ratio of 4 is 12 dB , a voltage or current ratio of 40 is $32 \mathrm{~dB}(20+12)$, and one of 400 is 52 $\mathrm{dB}(40+12)$.

RADIO-FREQUENCY CIRCUITS

RESONANCE IN SERIES CIRCUITS

Fig. 2-37 shows a resistor, capacitor and inductor connected in series with a source of alternating current, the frequency of which can be varied over a wide range. At some low frequency the capacitive reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance of C or the resistance of R. R is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of C will be very small and the reactance of L will be very large. In either case the current will be small, because the net reactance is large.

At some intermediate frequency, the reactances of C and L will be equal and the voltage drops across the coil and capacitor will be equal and 180 degrees out of phase. Therefore they cancel each other completely and the current flow is determined wholly by the resistance, R. At that frequency the current has its largest possible value, assuming the source voltage to be constant regardless of frequency. A series circuit in which the inductive and capacitive reactances are equal is said to be resonant.

The principle of resonance finds its most extensive application in radio-frequency circuits. The reactive effects associated with even small inductances and capacitances would place drastic limitations on rf circuit operation if it were not possible to "cancel them out" by supplying the right amount of reactance of the opposite kind in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X L=X C$. Substituting

Fig. 2-37 - A series circuit containing L, C and R is "resonant" at the applied frequency when the reactance of C is equal to the reactance of L.
the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in cycles per second
$L=$ Inductance in henrys
$C=$ Capacitance in farads
$\pi=3.14$
These units are inconveniently large for radiofrequency circuits. A formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilohertz (kHz)
$L=$ Inductance in micmhenrys ($\mu \mathrm{H}$)
$C=$ Capacitance in picofarads (pF)
$\pi=3.14$
Example: The resonant frequency of a series circuit containing a $5 \mu \mathrm{H}$ inductor and a $35-\mathrm{pF}$ capacitor is

$$
\begin{aligned}
& f=\frac{106}{2 \pi \sqrt{2 C}}=\frac{106}{6.28 \times \sqrt{5 \times 35}} \\
& =\frac{106}{6.28 \times 13.2}=\frac{106}{83}=12,050 \mathrm{kHz}
\end{aligned}
$$

Fig. 2-38 - Current in a series-resonant circuit with various values of series resistance. The values are arbitrary and would not apply to all circuits, but represent a typical case. It is assumed that the reactances (at the resonant frequency) are 1000 ohms. Note that at frequencies more than plus or minus ten percent away from the resonant frequency the current is substantially unaffected by the resistance in the circuit.

The formula for resonant frequency is not affected by resistance in the circuit.

Resonance Curves

If a plot is drawn on the current flowing in the circuit of Fig. 2-37 as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-38. The shape of the resonance curve at frequencies near resonance is detemined by the ratio of reactance to resistance.

If the reactance of either the coil or capacitor is of the same order of magnitude as the resistance, the current decreases rather slowly as the frequency is moved in either direction away from resonance. Such a curve is said to be broad. On the other hand, if the reactance is considerably larger than the resistance the current decreases rapidly as the frequency moves away from resonance and the circuit is said to be sharp. A sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite close to resonance; a broad circuit will respord almost equally well to a group or band of frequencies centering around the resonant frequency.

Both types of resonance curves are useful. A sharp circuit gives good solectivity - the ability to respond strongly (in terms of current amplitude) at one desired frequency and discriminate against others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Q

Most diagrams of resonant circuits show only inductance and capacitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 MHz this resistance is mostly in the wire of the coil. Above this frequency energy loss in the capacitor (principally in the solid dielectric which must be used to form an insulating support for the capacitor plates) also becomes a factor. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design is to reduce the inherent resistance to the lowest possible value.

The value of the reactance of either the inductor or capacitor at the resonant frequency of a series-resonant circuit, divided by the series resistance in the circuit, is called the \mathbf{Q} (quality factor) of she circuit, or

$$
Q=\frac{X}{r}
$$

where $Q=$ Quality factor
$\boldsymbol{X}=$ Reactance of either coil or capacitor in ohms
$p=$ Series resistance in ohms
Example: The inductor and capacior in a series circuit each have a reactance of 350 ohms at the resonanl frequency. The resistance is 5 ohms . Then the Q in

$$
Q=\frac{X}{r}=\frac{350}{5}=70
$$

The effect of Q on the sharpness of resonance of a circuit is shown by the curves of Fig. 2-39. In these curves the frequency change is shown in percentage above and below the resonant fre-

Fig. 2-39 - Current in series-resonant circuits having different Q s. In this graph the current at resonance is assumed to be the same in all cases. The lower the Q, the more slowly the current decreases as the applied frequency is moved away from sesonance.
quency. Q s of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work. The unlouded Q of a circuit is determined by the inherent resistances associated with the components.

Voltage Rise at Resonance

When a voltage of the resonant frequency is inserted in series in a resonant circuit, the voltage that appears across either the inductor or capacitor is considerably higher than the applied voltage. The current in the circuit is limited only by the resistance and may have a relatively high value; however, the same current flows through the high reactances of the inductor and capacitor and causes large voltage drops. The ratio of the reactive voltage to the applied voltage is equal to the ratio of reactance to resistance. This ratio is also the Q of the circuit. Therefore, the voltage across cither the inductor or capacitor is equal to $Q E$ where E is the voltage inserted in series. This fact accounts for the high voltages developed across the components of series-tuned antenna coupless (see chapter on "Transmission Lines").

RESONANCE IN PARALLEL CIRCUITS

When a variable-frequency source of constant voltage is applied to a parallel circuit of the type shown in Fig. 2-40 there is a resonance effect similar to that in a series circuit. However, in this case the "line" current (measured at the point indicated) is smollest at the frequency for which the inductive and capacitive reactances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through C, so that only the current taken by R flows in the line. At frequencies below resonance the current through L is larger than that through C, because the reactance of L is smaller and that of C higher at low frequencies; there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies above resonance the situation is reversed and more current flows through C than

Fig. 2-40 - Circuit illustrating parallel resonance.
through L, so the line current again increases. The current at resonance, being determined wholly by R, will be small if R is large and large if R is small.

The resistance R shown in Fig. 2-40 is not necessarily an actuad resistor. In many cases it will be the series resistance of the coil "transformed" to an equivalent parallel resistance (see later). It may be antenna or other load resistance coupled into the tuned circuit. In all cases it represents the total effective resistance in the circuit.

Parallel and series resonant circuits are quite alike in some respects. For instance, the circuits given at A and B in Fig. 2-41 will behave identically, when an external voltage is applied, if (1) L and C are the same in both cases; and (2) R multiplied by r, equals the square of the reactance (at resonance) of either L or C. When these conditions are met the two circuits will have the same Q. These statements are approximate, but are quite accurate if the Q is 10 or more.) The circuit at \mathbf{A} is a series circuit if it is viewed from the "inside" - that is, going around the loop formed by L, C and r - so its Q can be found from the ratio of X to r.

Thus a circuit like that of Fig. 2-41A has an equivalent paraliel impedance (at resonance)
of $\quad R=\frac{X^{2}}{r}: \quad X$ is the reactance of either the inductor or the capacitor. Although R is not an actual resistor, to the source of voltage the parallel-resonant circuit "looks like" a pure resistance of that value. It is "pure" resistance because the inductive and capacitive currents are 180 degrees out of phase and are equal; thus there is no reactive current in the tine. In a practical circuit with a high Q capacitor, at the resonant frequency the paralle! impedance is

$$
Z_{Y}=Q X
$$

where $Z_{T}=$ Resistive impedance at resonance
$Q=$ Quality factor of inductor
$X=$ Reactance (in ohms) of either the inductor or capacitor

(A)

(B)

Fig. 2-41 - Series and parallel equivalents when the two circuits are resonant. The series resistance, r, in A is replaced in 8 bv the equivalent parallel resistance $\left(R=X^{2} c / r=X^{2} L / r\right)$ and vice versa.

Fig. 2-42 - Relative impedance of parallel-resonant circuits with different Qs. These curves are similar to those in Fig. 2-39 for current in a series-resonant circuit. The effect of Q on impedance is most marked near the resonant frequency.

Example: The paraliel impedance of a circute with a coll Q of 50 and having inductive and capacitive reactance of 300 ohms will be

$$
Z_{\mathbf{r}}=Q X=50 \times 300=15.000 \mathrm{hms}
$$

At frequencies off resonance the impedance is no longer purely resistive because the inductive and capacitive currents are not equal. The off-resonant impedance therefore is complex, and is lower than the resonant impedance for the reasons previously outlined.

The higher the Q of the circuit, the higher the parallel impedance. Curves showing the variation of impedance (with frequency) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-42 is a set of such curves. A set of curves showing the relative response as a function of the departure from the resonant frequency would be similar to Fig. 2-39. The -3 dB bandwidth (bandwidth at 0.707 relative response) is given by

$$
\text { Bandwidsh }-3 \mathrm{~dB}=\mathrm{f}_{\mathrm{d}} / Q
$$

where fo is the resonant frequency and Q the circuit Q. It is also called the "half-power" bandwidth, for ease of recollection.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for $Q s$ of 10 or more. When the Q is below 10 , resonance in a parallel circuit having resistance in series with the coil, as in Fig. 2-41A, is not so casily defined. There is a set of values for L and C that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Another set of values for L and C will make the parallel impedance a maximum, but this maximum value is not a pure resistance. Either condition could be called "resonance," so with low-Q circuits it is necessary to distinguish between maximum impedance and resistive impedance parallel resonance. The difference between these L and C values and the equal reactances of a series-resonant circuit is appreciable when the Q is in the vicinity of 5 , and becomes more marked with still lower Q values.

ELECTRICAL LAWS AND CIRCUITS

(A)

Fig. 2-43 - The equivalent circuit of a resonant circuit delivering power to a load. The resistor R represents the load resistance. At B the load is tapped across part of L, which by transformer action is equivalent to using a higher load resistance across the whole circuit.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the circuit itself. At frequencies below 30 MHz most of this resistance is in the coil. Within limits, increasing the number of turns in the coil increases the reactance faster than it raises the resistance, so coils for circuits in which the Q must be high are made with relatively large inductance for the frequency.

However, when the circuit delivers energy to a load (as in the case of the resonant circuits used in transmitters) the energy consumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-43A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is at least ten times as great as the power lost in the inductor and capacitor, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. Under these conditions the Q of a parallel resonant circuit loaded by a resistive impedance is

$$
Q=\frac{R}{X}
$$

where $R=$ Parallel load resistance (ohms)
$X=$ Reactance (ohms)
Example: A resistive load of 3000 ohms is connected across resonant circuil in which the inductive and capacitive reactances ane each 250 ohms. The circult Q is then

$$
Q=\frac{R}{X}=\frac{3000}{250}=12
$$

The "effective" Q of a circuit loaded by a parallel resistance becomes higher when the reactances are decreased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance elements (large capacitance and small inductance) to have reasonably high \boldsymbol{Q}.

Impedance Transformation

An important application of the parallelresonant circuit is as an impedance-matching device in the output circuit of a vacuum-tube rf power amplifier. As described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and set of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is
considerably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may be tapped across part of the coil, as shown in Fig. $2-43 \mathrm{~B}$. This is equivalent to connecting a higher value of load resistance across the whole circuit, and is similar in principle to impedance transformation with an iron-core transformer. In highfrequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux lines do not cut every tum of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.

When the load resistance has a very low value (say below 100 ohms) it may be connected in series in the resonant circuit (as in Fig. 2-41A, for example), in which case it is transformed to an equivalent parallel impedance as previously described. If the Q is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{X^{2}}{r}
$$

where $Z_{\mathbf{r}}=$ Resistive parallel impedance at resonance
$X=$ Reactance (in ohms) of either the coil or capacitor
$r=$ Load resistance inserted in series
If the Q is lower than 10 the reactance will have to be adjusted somewhat, for the reasons given in the discussion of low-Q circuits, to obtain a resistive impedance of the desired value.

While the circuit shown in Fig. $2-43 B$ will usually provide an impedance step-up as with an iron-core transformer, the network has some serious disadvantages for some applications. For instance, the common connection provides no dc isolation and the common ground is sometimes troublesome in regards to ground-loop currents. Consequently, a network in which only mutual magnetic coupling is employed is usually preferable. However, no impedance step-up will result unless the two coils are coupled tightly enough. The equivalent resistance seen at the input of the network will always be lower regardless of the turns ratio employed. However, such networks are still useful in impedance-transformation applications if the appropriate capacitive elements are used. A more detailed treatment of matching networks and similar devices will be taken up in the next section.

Unfortunately, networks involving reactive elements are usually narrowband in nature and it would be desirable if such elements could be eliminated in order to increase the bandwidth. With the advent of ferrites, this has become possible and it is now relatively easy to construct actual impedance transformers that are both broadband and permit operation well up into the vhf portion of the spectrum. This is also accomplished in part by tightly coupling the two (or more) coils that make up the transformer either by twisting the conductors together or winding them in a parallel fashion. The latter configuration is sometimes called a bifiliar winding.

COUPLED CIRCUITS AND FILTERS

Simple Ladder Networks

Two circuits ase said to be coupled when a voltage or current in one network produces a voltage or current in the other one. The network where the energy originates is often called the primary circuit and the network that receives the energy is called the secondary circuit. Such coupling is often of a desirable nature since in the process, unwanted frequency components or noise may be rejected or isolated and power transferred from a source to a load with greatest efficiency. On the other hand, two or more circuits may be coupled inadvertently and undesirable effects produced. While a great number of coupling-circuit configurations are possible, one very important class covers so many practical applications that analysis of it will be covered in detail.

Any two circuits that are coupled can be drawn schematically as shown in Fig. 1A. A voltage source represented by E_{gc} with a source resistance R_{p} and a source reactance X_{p} is connected to the input of the coupling network, thus forming the primary circuit. At the output, a load reactance X_{s} and a load resistance R_{s} are connected as shown to form the secondary circuit. The circuit in the box could consist of an infinite variety of resistors, capacitors, inductors, and even transmission tines. However, it will be assumed that the network can be reduced to a combination of series and shunt elements consisting only of inđucsors and capacitors as indicated by the circuit shown in Fig. 1 B. For obvious reasons, the circuit is often called a ladder network. in addition, if there are no resistive elements present, or if such elements can be neglected, the network is said to be dissipationless.

If a network is dissipationless, all the power delivered to the inpul of the network will be dissipated in the load resistance R_{g}. This effect leads to important simplifications in computations involved in coupled networks. The assumption of a dissipationless network is usually valid with transmitting circaits since even a small network loss (0.5 dB) will result in considerable heating at the higher power levels used in amateur applications. On the other hand, coupled circuits used in some receiving stages may have considerable loss. This is because the network may have some advantage and its high loss can be compensated by additional amplification in another stage. However, such devices form a relatively small minority of coupled networks commonly encountered and only the dissipationless case will be considered in this section.

Effective Attenuation and Insertion Loss

The most important consideration in any coupled network is the amount of power delivered to the load resistance, $\boldsymbol{R}_{\mathrm{s}}$, from the source, $E_{\text {ac }}$, with the network present. Rather than specify the source voltage each time, a comparison is made with the maximum available power from any source with a given primary resistance, R_{p}. The
value of $\boldsymbol{R}_{\mathrm{p}}$ might be considered as the impedance level associated with a complex combination of sources, transmission tines, coupled networks, and even artenras. Typical values of R_{p} are $52 \Omega, 75 \Omega$, 300Ω, and 600Ω. The maximum available power is given by:

$$
P_{\max }=\frac{E_{\mathrm{ac}}^{2}}{4 R_{\mathrm{p}}}
$$

If the network is also dissipationless, the power delivered to the load resistance, R_{g}, is just the power "dissipated" in $R_{\text {in }}$. This power is related to the input current by:

$$
P_{\mathrm{o}}=I_{\mathrm{in}}{ }^{2} R_{\text {in }}
$$

and the current in terms of the other variables is:

$$
I_{\mathrm{in}}=\frac{\varepsilon_{\mathrm{ac}}}{\sqrt{\left(R_{\mathrm{p}}+R_{\mathrm{in}}\right)^{2}+\left(X_{\mathrm{p}}+X_{\mathrm{in}}\right)^{2}}}
$$

Combining the foregoing expressions gives a very useful formula for the ratio of power delivered to a load in terms of the maximum available power. This ratio expressed in decibets is given by:

$$
\begin{aligned}
& \text { Attn }=-10 \log \left(\frac{P_{\mathrm{o}}}{P_{\mathrm{in}}}\right)= \\
& -10 \log \left[\frac{4 R_{\mathrm{in}} R_{\mathrm{p}}}{\left(R_{\mathrm{p}}+R_{\mathrm{in}}\right)^{2}+\left(X_{\mathrm{p}}+X_{\mathrm{in}}\right)^{2}}\right]
\end{aligned}
$$

and is sometimes called the effective attenuation.
in the specja! case where X_{p} and X_{g} are either zero or can be combined into a coupling network, and where R_{p} is equal to R_{s}, the effective

Fig. 1 - A representative coupling circuit (A) and ladder network (B).
attenuation is also equal to the insertion loss of the network. The insertion loss is the ratio of the power delivered to the load with the coupling network in the circuit to the power detivered to the load with the network absent. Unlike the effective attenuation which is always positive when defined by the previous formula, the insertion loss can take on negative values if $\boldsymbol{R}_{\mathrm{g}}$ is not equal to \boldsymbol{R}_{5} or if X_{p} and X_{s} are not zero. In effect, the insertion loss would represent a power gain under these conditions. The intepretation of this effect is that maximum available power does not occur with the coupling network out of the circuit because of the unequal source and loud resistances and the nonzero reactances. With the network in the circuit, the resistances are now "matched" and the reactances are said to be "tuned out". The action of the coupling network in this instance is very similar to that of a transformer (which was discussed in a previous section) and networks consisting of "pure" inductors and capacitors are often used for this purpose. Such circuits are often referred to as matching networks. On the other hand, it is often desired to deliver the greatest amount of power to a load at some frequencies while rejecting energy at other frequencies. A device that accomplishes this action is called a filter. In the case of unequal source and load resistance, it is often possible to combine the processes of filtering and matching into one network.

Solving Ladder-Network Problems

From the last section, it is evident that if the values of $R_{\text {in }}$ and $X_{\text {in }}$ of Fig. 1 A can be determined, the effective attenuation and possibly the insertion loss are also eacily found. Being able to solve this problem has wide applications in rf circuits. For instance, design formulas for filters often include a simplifying assumption that the lood resistance is constant with frequency. In the case of many circuits, this assumption is not true. However, if the value of R_{S} and X_{8} at any particular frequency is known, the attenuation of the filter can be determined even though it is improperly terminated.

Unfortunately, while the solution to any ladder problem is possible from a theoretical standpoint, practical difficulties are encountered as the network complexity increases. Many computations to a laigh degree of accuracy may be required, making the process a tedious one. Consequently, the availability of a calculator or similar computing device is recommended. The approach used here is adapted readily to any calculating method including the use of an inexpensive pocket calculator.

Susceptance and Admittance

The respective reactances of an inductor and a capacitor arc given by:

$$
X_{\mathrm{L}}=2 \pi f f . \quad X_{\mathrm{C}}=\frac{-1}{2 \pi f C}
$$

In a simple series circuit, the total resistance is just the sum of the individual resistances in the network

Fig. 2 - Resistances and reactances add in series circuits while conductances and susceptances add in parallel circuits. (Formulas shown are for numerical values of X and B.\}
and the total reactance is the sum of the reactances. However, it is important to note the sign of the reactance. Since capacitive reactance is negative and inductive reactance is positive, it is possible that the sum of the reactances might be zero even though the individual reactances are not zero. In a series circuit, it will be recalled that the network is said to be resonant at the frequency where the reactances cancel.

A complementary condition exists in a parallel combination of circuit elements and it is convenjent to introduce the concepts of admittance. conductance, and susceptance. In the case of a simple resistance, the conductance is just the reciprosal. That is, the conductance of a $50-82$ resistance is $1 / 50$ or 2×10^{-2}. The reciprocal unit of the ohm is the mho. For simple inductances and capacitances, the formulas for the respective reciprocal entities are:

$$
B_{\mathrm{L}}=\frac{-1}{2 \pi f L} \quad B_{\mathrm{C}}=2 \pi f C
$$

and are defined as susceptances. In a parallel combination of conductances and susceptances, the total conductance is the sum of the individual conductances and the total susceptances is the sam of the individual susceplances taking the respective signs of the latter into account. A comparison between the way resistance and reactance add and the manner in which conductance and susceptance add is shown in the example of Fig. 2. An entity called admittance can be defined in terms of the total conductance and total susceptance by the formula:

$$
Y=\sqrt{C_{\mathrm{T}}{ }^{2}+B_{\mathrm{T}}{ }^{2}}
$$

and is often denoted by the symbol Y. If the impedance of a circuit is known, the admittance is just the reciprocal. Likewise, if the admittance of a circuit is known, the impedance is the reciprocal of the admittance. However, conductance, reactance, resistance, and susceptance are not so simply related. If the total resistance and total reactance of a series circuit are known, the conductance and

Fig. 3 - Application of conversion formulas can be used to transform a shunt conductance and susceptance to a serles equivalent circuit. The converse is illustrated as (B).
susceptance of the circuit are related to the latter by the formulas:

$$
G=\frac{R_{\mathrm{T}}}{R_{\mathrm{T}}{ }^{2}+X_{\mathrm{T}}{ }^{2}}, \quad B=\frac{-X_{\mathrm{T}}}{R_{\mathrm{T}}{ }^{2}+X_{\mathrm{T}}{ }^{2}}
$$

On the other hand, if the total conductance and total susceptance of a parallel combination are known, the equivalent resistance and reactance can be found from the formulas:

$$
R=\frac{G_{\mathrm{T}}}{G_{\mathrm{T}}{ }^{2}+B_{\mathrm{T}}{ }^{2}} \quad, \quad X=\frac{-B_{\mathrm{T}}}{G_{\mathrm{T}}{ }^{2}+B_{\mathrm{T}}{ }^{2}}
$$

These relations are illustrated in Fig. 3A and Fig. 3B respectively. While the derivation of the mathematical expressions will not be given, the importance of the change of sign cannot be stressed too highly. Solving network problems with a calculator is merely a matter of bookkeeping, and failure to take the sign change associated with the transformed reactance and susceptance is the most common source of error.

A Sample Problem

The following example illustrates the manner in which the foregoing theory can be applied to a practical problem. A filter with the schematic diagram shown in Fig. 4A is supposed to lave an insertion loss at 6 MHz of 3 decibels when connected between a $52-\Omega$ ioad and a source with a $52 . \Omega$ primary resistance both X_{p} and X_{g} are zero). Since this is a case where the effective attenuation is equal to the insertion loss, the previous formula for effective attenuation applies. Thereforc, it is required to find R_{in} and X_{in}.

Starting at the output, the values for the conductance and susceptance of the parallel $R C$ circuit must be determined first. The conductance is just the reciprocal of 52Ω and the previous formula for capacitive susceptance gives the value shown in parentheses in Fig. 4A. (The upside-down Ω is the symbol for mho.) The next step is to apply the formulas for resistance and reactance in terms of the conductance and susceptance and the results give a $26-\Omega$ resistance in series with a $-26-\Omega$ capacitive reactance as indicated in Fig. 4B. The reactance of the inductor can now be added to give a total reactance of 78.01Ω. The conductance and susceptance formulas can now be applied and
the results of both of these operations is shown in Fig. 4C. Finally, adding the susceptance of the S10.1-pF capacitor (Fig .4 D) gives the circuit at Fig. 4E and applying the fomulas once more gives the value of $R_{\text {in }}$ and $X_{\text {in }}$ (F ig. 4F). If the latter values are substituted into the effective attenuation formula, the insertion loss and effective attenuation are 3.01 dB , which is very closs to the value specified. The reader might verify that the insertion loss is $0.167,0.37$, and 5.5 dB at 3.5 , 4.0. and 7.0 MHz respectively. If a plot of insertion loss versus frequency was constructed this would give the frequency response of the filter.

Frequency Sealing and Normatized Impedance

Quite often, it is desirable to be able to change a coupling network at one frequency and impedance level to another one. For example, suppose it was desired to move the $3-\mathrm{dB}$ point of the filter in the preceding illustration from 6 to 7 MHz . An examination of the reactance and susceptance formulas reveals that multiplying the frequency by some constant k and dividing both the inductance and capacitance by the same value of k leaves the equations unchanged. Thus, if the capacitances and inductance in Fig . 4A are multiplied by 6/7, all the reactances and susceptances in the new circuit will now have the same value at 7 MHz that the old one had at 6 MHz .

Fig. 4 - Problem illustrating network reduction to find insertion loss.

ELECTRICAL LAWS AND CIRCUITS

associated table. Filters derived by network synthesis and similar methods (such as optimized computer designs) are often referred to as "modern filters" even though the theory has been in existence for years. The term is useful in distinguishing such designs from those of an older approximate method called "image-parameter" theory.

Butterworth Filters

Fiters can be grouped into four general categories as illustrated in Fig. 5A. Low-pass filters have zero insertion loss up to some critical frequency (f_{c}) or cutoff frequency and then provide high rejection above this frequency. (The latter condition is indicated by the shaded lines in Fig. 5A.) Band-pass filters have zero insertion loss between two cutoff frequencies with high rejection outside of the prescribed "bandwidth." (Band-stop filters reject a band of frequencies while passing all others.) And high-pass filters reject all frequencies below some cutoff frequency.

The attenuation shapes shown in Fig. SA are ideal and can only be approached or approximated in practice. For instance, if the filter in the preceding problem was used for low-pass purposes in an 80 -meter transmitter to reject harmonics on 40 meters, its performance would leave a lot to be desired. While insertion loss at 3.5 MHz was acceptable, it would likely be too high at 4.0 MHz and rejection would probably be inadequate at 7.0 MHz.

Forlunately, design formulas exist for this type of network and form a class called Butterworth filters. The name is derived from the shape of the curve for insertion-loss is. frequency and is sometimes called a maximally flat response. A formula for the frequency response curve is given by:

$$
A=10 \log _{10}\left[1+\left(\frac{f}{f_{\mathrm{c}}}\right)^{2 \mathrm{k}}\right]
$$

where f_{c} is the frequency for an insertion loss of 3.01 dB , and k is the number of circuit elements.

Fig. 6 - Schematic diagram of a Butterworth low-pass filter. (See Table I for element values.)

	.				Table I					
Fig. 6A	Cl	L2	C3	L4	C5	L6	C7	L8	C9	L10
Fig. 6B	LI	C2	L3	C4	L5	C6	L7	C8	L9	C10
k										
1	2.0000									
2	1.4142	1.4142								
3	1.0000	2.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654						
5	0.6180	1.6180	2.0000	1.6180	0.6180					
6	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450			
8	0.3902	1.1111	1.6629	1.9616	1.9616	1.6629	1.1111	0.3902		
9	0.3473	1.0000	1.5321	1.8794	20000	1.8794	1.5321	1.0000	0.3473	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129

The shape of a Butterworth low-pass filter is shown in the left-hand portion of Fig. SB. (Another type that is similar in nature, only one that allows some "ripple" in the passband, is also shown in Fig. 5B. Here, a high-pass characteristic illustrates a Chebyshev response.)

As can be seen from the formula, increasing the number of elements will result in a filter that approaches the "ideal" low-pass shape. For inslance, a 20 -element filter designed for a $3.01-\mathrm{dB}$ cutoff frequency of 4.3 MHz , would have an insertion loss at 4 MHz of 0.23 dB and 84.7 dB at 7 MHz . However, practical difficulties would make such a filter very hard to construct. Therefore, some compromises are always required between a theoretically perfect frequency response and ease of construction.

Element Values

Once the number of elements, k, is determined, the next step is to find the network configuration corresponding to k. (Filter tables sometimes have sets of curves that enable the user to select the desired frequency response curve rather than use a formula. Once the curve with the fewest number of elements for the specified passband and stop-band insertion loss is found, the filter is then fabricated around the corresponding value of k.) Table 1 gives normalized element values for values of k from 1 to 10. This table is for a $1-\Omega$ source and load resistance (reactance zero) and a $3.01-\mathrm{dB}$ cutoff frequency of 1 radian/second (0.1592 Hz). There are two possible circuit configurations and these are shown in Fig. 6. Here, a 5 -element filter is given as an example with either a shunt element next to the load (fig. 6A) or a series element next to the load (Fig. 6B). Either filter will have the same response.

After the values for the $1-\Omega, 1$-radian/second "prototype" filfer are found, the corresponding values for the actual frequency/impedance level can be determined (see the section on frequency and impedance scaling). The prototype inductance and capacitance values are multiplied by the ratio $\left(0.1592 / f_{c}\right)$ where f_{c} is the actual 3.01 dB cutoff frequency. Next, this number is multiplied by the
load resistance in the case of an inductor and divided by the load resistance if the element is a capacitance. For instance, the filter in the preceding example is for a 3 element design (k equal to 3) and the reader might verify the values for the components for an f_{c} of 6 MHz and load resistance of 52Ω.

High-Pass Butterworth Filters

The formulas for change of impedance and frequency from the $1-\Omega, 1$-radian/second prototype to some desired level can also be conveniently written as:
$L=\frac{R}{2 \pi f_{c}} L_{\text {prototype }} \quad C=\frac{1}{2 \pi f_{\mathrm{c}} R} C_{\text {prototype }}$
where R is the load resistance in ohms, f_{c} is the desired $3.01-d B$ frequency in Hz . Then, L and C give the actual circuitelement values in henrys and farads in terms of the prototype element values from table 1 .

However, the usefuiness of the low-pass prototype does not end here. If the following set of equations is applied to the prototype values, circuit elements for a high-pass filter can be obtained. The filter is shown in Fig. 7A and Fig. 7B which correspond to Fig. 6A and Fig. 6B in table 1. The equations for the actual high-pass circuit values in terms of the low-pass prototype are given by

$$
C=\frac{1}{R 2 \pi f_{\mathrm{c}} C_{\text {prot. }}} \quad L=\frac{R}{2 \pi f_{\mathrm{c}} L_{\text {prot }} .}
$$

and the frequency response curve can be obtained from:

$$
A=10 \log \left[1+\left(\frac{f_{\mathrm{c}}}{f}\right)^{2 k}\right]
$$

For instance, a high-pass filter with 3 elements, a $3.01-\mathrm{dB} f_{\mathrm{c}}$ of 6 MHz and 52Ω, has a Cl and C 3 of 510 pF and an L 2 of $0.6897 \mu \mathrm{H}$. The insertion loss at 3.5 and 7 MHz would be 14.21 and 1.45 dB respectively.

Fig. 7 - Network configuration of a Butterworth high-pass filter. The low-pass prototype can be transformed as described in the text.

Butterworth Band-Pass Pilters

Band-pass filters can also be designed through the use of Table I. Unfortunately, the process is not as straightforward as it is for low-pass and high-pass filters if a practical design is to be obtained. In essence, a low-pass filter is resonated to some "center frequency" with the $3.01-\mathrm{dB}$ cutoff frequency being replaced by the filter bandwidth. The ratio of the bandwidth to center frequency must be relatively large otherwise component values tend to become unmanageable.

While there are many variations of specifying such filters, a most useful approach is to determine an upper and lower frequency for a given attenuation. The center frequency and bandwidth are then given by:

$$
f_{0}=\sqrt{f_{1} f_{2}} \quad B W=f_{2}-f_{1}
$$

If the bandwidth specified is not the $3.01-\mathrm{dB}$ bandwidth (BW_{c}), the latter can be determined from:

$$
B W_{\mathrm{c}}=\frac{B W}{\left[10^{\frac{\mathrm{A}}{10}}-1\right] \frac{1}{2 \mathrm{~K}}}
$$

in the case of a Butterworth response or from tables of curves. A is the required attenuation at the cutoff frequencies. The upper and lower cutoff frequencies ($f_{c u}$ and $f_{c l}$) are then given by:

$$
\begin{gathered}
f_{c l}=\frac{-B W_{c}+\sqrt{\left(B W_{c}\right)^{2}+4 f_{o}^{2}}}{2} \\
f_{c u}=f_{c l}+B W_{c}
\end{gathered}
$$

A some what more convenient method is to pick a $3.01-\mathrm{dB}$ bandwidth (the wider the better) around some center frequency and compute the at-

ELECTRICAL LAWS AND CIRCUITS

tenuation at other frequencies of interest by using the transformation:

$$
\frac{f}{f_{c}}=\left|\left(\frac{f}{v_{0}}-\frac{f_{0}}{f}\right) \frac{f_{0}}{B W_{\mathrm{c}}}\right|
$$

which can be substituted into the insertion-loss formula or table of curves.

As an example, suppose it is desired to build a band-pass filter for the 15 -meter Novice band in order to etiminate the possibility of radiation on the $14-$ and $28-\mathrm{MHz}$ bands. For a starting choice, 16 and 25 MHz will be picked as the $3.01-\mathrm{dB}$ points giving a $3-\mathrm{dB}$ bandwidth of 9 MHz . For these two points, f_{0} will be 20 MHz . It is common practice to equate the number of branch elements or filter resonators to certain mathematical entities called "poles" and the number of poles is just the value of k for purposes of discussion here. For a 3 -pole filter (k of 3), the insertion loss will be 12.79 and 11.3 dB at 14 and 28 MHz respectively.
$\mathrm{Cl}, \mathrm{C} 3$ and L 2 are then calculated for a $9-\mathrm{MHz}$ low-pass filter and the elements for this filter are resonated to 20 MHz as shown in Fig. 8A. The response shape is plotted in Fig. 8B and it appears to be unsymmetrical about f_{0}. In spite of this fact, such filters are called symmetrical band-pass filters and f_{0} is the "center frequency."

If the response is plotted against a logarithmic frequency scale, the symmetry will become apparent. Consequently, using a logarithmic plot is helpful in designing filters of this type.

Examination of the component values reveals that while the filter is practical, it is a bit untidy from a construction standpoint. Rather than using a singic 340.1-pF capacitor, paralleling a number of smaller valued units would be advisable. Encountering difficulty of this sort is typical of most filter designs, consequently, some tradeoffs between performance, complexity, and easc of construction are usually required.

Coupled Resonators

A problem frequently encountered in rf circuits is that of a coupled resonator. Applications include simple filters, oscillator tuned circuits, and even antennas. The circuit shown in Fig. 9A is illustrative of the basic principles involved. A series RLC circuit and the external terminals ab are "coupled" through a common capacitance, Cm. Applying the formulas for conductance and susceptance in terms of series reactance and resistance gives the following set of formulas:

$$
\begin{gathered}
G_{\mathrm{ab}}=\frac{R_{\mathrm{r}}}{R_{\mathrm{r}}^{2}+X^{2}} \\
B_{\mathrm{ab}}=B_{\mathrm{cm}}-\frac{X}{R_{\mathrm{r}}^{2}+X^{2}}
\end{gathered}
$$

The significance of these equations can be seen with the aid of Fig. 9B. At some point, the series inductive reactance will cancel the series capacitive reactance (at a point slightly below f_{0} where the conductance curve reaches a peak). Depending

Fig. 8 - A Butterwarth Bandpass filtar. (Capacitance values are in picofarads.I
upon the value of the coupling susceptance, $B \mathrm{~m}$, it is possible that another point can be found where the total input susceptance is zero. The input conductance at this frequency, f_{0}, is then G_{0}.

Since G_{0} is less than the conductance at the peak of the curve, $1 / G_{0}$ or $\boldsymbol{R}_{\mathbf{o}}$ is going to be greater than R_{r}. This effect can be applied when it is desired to match a low-value load resistance (such as found in a mobile whip antenna) to a more practical value. Suppose $\boldsymbol{R}_{\mathrm{r}}$ and $C_{\mathrm{r}} \ln$ Fig. 9 A are 10Ω and 21 pF respectively, and represent the equivalent circuit of a mobile antenna. Find the value of L_{r} and C_{m} which will match this antenna to a $52-\Omega$ feed line at a frequency of 3900 kHz . Substituting the foregoing values into the formulas for input conductance gives:

$$
\frac{1}{52}=\frac{10}{10^{2}+x^{2}}
$$

Solving for X (which is the rotal series reactance) gives a value of 20.49Ω. The reactance of a $21-\mathrm{pF}$ capacitor at 3900 kHz is 1943.3Ω so the inductive reactance must be 1963.7Ω. While cither a positive or negative reactance will satisfy the equation for $G_{a b}$, a positive value is required to tune out $B_{\text {cm }}$. If the coupling element was a shunt inductor, the total reactance would have to be capacitive or negative in value.) Thus, the required inductance value for L_{r} will be $80.1 \mu \mathrm{H}$. In order to obtain a perfect match, the input susceptance must be zero and the value of $B_{c m}$ can be found from the equation:

$$
0=B_{\mathrm{cm}}-\frac{20.49}{10^{2}+(20.49)^{2}}
$$

giving a susceptance valuc of .04 mhos which corresponds to a capacitance of 1608 pF .

Piezoelectric Crystals

A somewhat different form of resonator consists of a quartz crystal between two conducting
plates. If a voltage is applied to the plates, the resultant electric field causes a mechanical stress in the crystal. Depending upon the size and "cut" of the crystal, a frequency will exist at which the crystal begins to vibrate. The effect of this mechanical vibration is to simulate a series $R L C$ circuit as in Fig. 9A. There is a capacitance associated with the crystal plates which appears across the terminals (C_{m} in Fig. 9A). Consequently, this circuit can also be analyzed with the aid of Fig. 9B. At some frequency (f_{1} in Fig. 10), the series reactance is zero and $G_{a b}$ in the preceding formula will just be $1 / R_{\mathbf{r}}$. Typical values for R_{r} range from $10 \mathrm{k} \Omega$ and higher. However, the equivalent inductance of the mechanical circuit is normally extremely high (over 10,000 henries in the case of some low-frequency units) which results in a very high circuit $Q(30,000)$. Above f_{1}, the reactance is "inductive" and at f_{2}, the susceptance of the series resonator is just equal to the susceptance of the crystal holder, B_{cm}. Here, the total susceptance is zeso. Since B_{cm} is usually very small, the equivalent series susceptance is also small. This means the value for X in the susceptance formula will be very large and consequently $G_{\text {ab }}$ will be small, which corresponds to a high input resistance. A plot of the magnitude of the impedance is shown in Fig. 10. The dip at f_{1} is called the series-resonant mode and the peak at δ_{2} is referred to as the parallef-resonant or "antiresonant" mode. When specifying crystals for oscillator applications, the type of mode must be given along with external capacitance across the holder or type orcillafor circuit to be used. Otherwise, considerable difference in actual oscil-

(A)

(B)

Fig. 9 - A capacitivaly coupled resonatar is shown at (A). See text for explanation of figure shown at (B).

Fig. 10 - Frequency response of a quartz-crystal resonator. The minimum value is onlv approximate since holder capacitance is neglected.
lator frequency will be observed. The effect can be used to advantage and the frequency of a crystal oscillator can be "pulled" with an external reactive element or even frequency modulated with a device that converts voltage or current fluctuations into changes in reactance.

Coefficient of Coupling

If the solution to the mobile whip-antenna problem is examined, it can be seen that for a given frequency, $R_{\mathrm{r}}, L_{\mathrm{r}}$, and C_{r}, only one valuc of C_{m} results in an input load that appears as a pure resistance. While such a condition might be defined as resonance, the resistance value obtained is not necessarily the one required for maximum transfer of power.

A definition that is helpful in determining how to vary the circuit elements in order to obtain the desired input resistance is called the coefficient of coupling. The coefficient of coupling is defined as the ratio of the common or mutual reactance and the square root of the product of two specially defined reactances. If the mutual reactance is capacitive, one of the special reactances is the sum of the series capacitive reactances of the primary mesh (with the resonator disconnected) and the other one is the sum of the series capacitive reactances of the resonator (with the primary disconnected). Applying this definition to the circuit of Fig. 9A, the coefficient of coupling, k, is given by:

$$
k=\sqrt{\frac{C_{\mathrm{r}}}{C_{\mathrm{r}}+C_{\mathrm{m}}}}
$$

How meaningful the coefficient of coupling will be depends upon the particular circuit configuration under consideration and which elements are being varied. For example, suppose the value of L_{r} in the mobile-whip antenna problem was fixed at $100 \mu \mathrm{H}$ and C_{m} and C_{r} were allowed to vary. (It will be recalled that C_{r} is 21 pF and represents the antenna capacitance. However, the total resonator capacitance could be changed by adding a series capacitor between C_{m} and the antenna. Thus, C_{r} could be varied from 21 pF to some lower value but not a higher onc.)

A calculated plot of k versus input resistance, $R_{\text {in }}$, is shown in Fig. 11. Note the unusually high change in k when going from resistance values near 10Ω to slightly higher ones.

Similar networks can be designed to work with
any ratio of input resistance and load resistance but it is evident small ratios are going to pose difficulties. For larger ratios, component tolerances are more relaxed. For instance, C_{m} might consist of switchable fixed capacitors with C_{r} being variable. With a given load resistance, C_{m} essentially sets the value of the reactance and thus the input resistance while C_{5} and L_{r} provide the required reactance for the conductance formula. However, if L_{r} is varied, k varies also. Generally speaking, higher values of L_{r} (and consequently circuit Q) require lower values of k.

At this point, the question arises as to the significance and even the merit of such definitions as coefficient of coupling and Q. If the circuit element values are known, and if the configuration can be resolved into a ladder network, important properties such as input impedance and attenuation can be computed directly for any frequency. On the other hand, circuit information might be obscured or even lost by attempting to attach too much importance to an arbitrary definition. For example, the plot in Fig. 11 merely indicates C_{m} and C_{r} are changing with respect to one another. But it doesn't illustrate how they are changing. Such information is important in practical applications and even a simple table of C_{m} and C_{r} vs. R_{in} for a particular R_{r} would be much more valuable than a plot of k.

Similar precautions have to be taken with the interpretation of circuit Q. Selectivity and Q are simply related for single resonators and circuit components but the situation rapidly deteriorates with complex configurations. For instance, adding loss or resistance to circuit elements would seem to contradict the idea that low-loss or high- Q circuits provide the best selectivity. However, this is actually done is some filter designs to improve frequency response. In fact, the filter with the added loss has identical characteristics to one with "pure" elements. The method is called predistortion and is very useful in designing filters where practical considerations require the use of circuit elements with parasitic or undesired resistance.

As the frequency of operation is increased, discrete components become smaller until a point is reached where other forms of networks have to be used. Here, entities such as k and Q are sometimes the only means of describing such networks. Another definition of Q that is quite useful in this instance is that it is equal to the ratio

Fig. 11 - Variation of k with input resistance for circuit of Fig. 9.

Fig. 12 - Two types of magnetically coupled circuits. At (A), only mutual magnetic coupling exists while the circuit at (B) contains a common inductance also. Equivalents of both circuits are shown at the right which permit the application of the fadder-network analysis discussed in this section. (If the sign of voltage is unimportant. T1 can be eliminated.)

(A)

of 2π (energy stored per rf cycle)/(energy lost per rf cycle).

Mutually Coupled Inductors

A number of very useful rf networks involve coupled inductors. In a previous section, there was some discussion on iron-core transformers which represent a special case of the coupled-inductance problem. The formulas presented apply to instances where the coefficient of coupling is very close to 1.0. While it is possible to approach this condition at frequencies in the rf range, many practical circuits work at values of k that are considerably less than 1.0 . A general solution is rather complex but many practical applications can often be simplified and solved through use of the ladder-network method. In particular, the sign of the mutual inductance must be taken into account if there are a number of coupled circuits or if the phase of the voltage between two coupled circuits is important.

The latter consideration can be illustrated with the aid of Fig. 12A. An exact circuit for the two mutually coupled coils on the left is shown on the right. T1 is an "ideal" transformer that provides the "isolation" between terminals $a b$ and $c d$. If the polarity of the voltages between these terminals can be neglected, the transformer can be eliminated and just the circuit before terminals $c^{\prime} d^{\prime}$ substituted. A second circuit is shown in Fig. 12B. Here, it is assumed that the winding sense doesn't change between L1 and L2. If so, then the circuit on the right of Fig. 12B can be substituted for the tapped coil shown at the left.

Coefficients of coupling for the circuits in Figs. 12A and 12B are given by:

$$
\begin{gathered}
k=\frac{M}{\sqrt{L_{1} L_{2}}} \\
k=\frac{L_{1}+M}{\sqrt{L_{1}\left(L_{1}+L_{2}+2 M\right)}}
\end{gathered}
$$

If L1 and L2 do not have the same value, an interesting phenonemon takes place as the coupling is increased. A point is reached where the mutual inductance exceeds the inductance of the smaller coil. The interpretation of this effect can be illustrated with the aid of Fig. 13. While all of the flux lines (as indicated by the dashed lines) associated with L1 also encircle turns of L2, there are additional ones that encircle extra turns of L2,
also. Thus, there are more flux lines for M than there are for L 1 . Consequently, M becomes larger than L1. Normally, this condition is difficult to obtain with air-wound coils but the addition of ferrite material greatly increases the coupling. As k increases so that M is larger than Ll (Fig. 13), the network begins to behave more like a transformer and for a k of 1 , the equivalent circuit of Fig. 12A yields the transformer equations of a previous section. On the other hand, for small values of k, the network becomes merely three coils arranged in a " T " fashion. One advantage of the circuit of Fig. 12A is that there is no direct connection between the two coils. This property is important from an isolation standpoint and can be used to suppress unwanted currents that are aften responsible for RFI difficulties.

Matching Networks

In addition to filters, ladder networks are frequently used to match one impedance value to another one. While there are many such circuits, a few of them offer particular advantages such as simplicity of design formulas or minimum number of elements. Some of the more popular ones are shown in Fig. 14. Shown at Fig. 14A and 14B, are two variations of an "L" network. These networks are relatively simple to design.

The situation is somewhal more complicated for the circuits shown at 14 C and 14 D . For a given value of input and output resistance, there are many networks that satisfy the conditions for a perfect match. The difficulty can be resolved by introducing the "dummy variable" labeled N.

Fig. 13 - Diagram illustrating how M can be larger than one of the self inductances. This represents the transition from lightly coupled circuits to conventional transformers since an impedance step up is possible without the addition of capacitive elements.

$$
\begin{aligned}
& R_{1}>R_{2} \\
& x_{L}-\sqrt{R_{1} R_{2}-R_{2}^{2}} \\
& x_{C}=\frac{-R_{1} R_{2}}{R_{L}}
\end{aligned}
$$

(A)

(B)

(C)

(D)
consists of two coils positioned in proximity to each other so that a mutual inductance is present. Unfortanately, such networks do not lend themselves to design very readily. However, if the various circuit elements are known, the problem can be analyzed with the aid of the equivalent circuit shown in Fig. 12.

For instance, suppose measurements indicated the "self inductance" of the primary coil was 21.6 $\mu \mathrm{H}$ and the self inductance of the secondary coil was measured as $11.7 \mu \mathrm{H}$. Also assume the coefficient of coupling was .082 which results in a mutual inductance of $1.3 \mu \mathrm{H}$. If a load resistance of 52 ohms is connected across the secondary coil. what is the impedance seen at the primary terminals at a frequency of 3.7 MHz ?

The solution to the problem is found by first computing the equivalent inductances in the T network and then the reactances. Referring to Fig. 12, the reactance of $L 1-M$ is 472 ohms, of the shunt arm $M, 30.2$ ohms, and the reactance of $L 2$ - M is 242 ohms. If the ladder-network analysis is applied to this new circuit, the input impedance consists of a 0.62 -ohm resistance in series with a 498 -ohm inductive reactance. If the parallel equivafent circuit associated with this impedance is found, the network appears as a $402-k \Omega$ resistance in parallel with a 498 -ohm inductive reactance. If a 498-ohm capacitive reactance was connected across the primary terminals, this network could be used to match a 52 -ohm load to $402-\mathrm{k} \Omega$ source or conversely. Note that the resistance transformation here is not accomplished in the same way that it is with conventional iron-core transformers but by means of reactive elements. However, the reader might verify that if the coefficient of coupling is increased to 0.82 , the result is a 63.3 -ohm resistance in series with an inductive reactance of 176.4 ohms. Here, the resistance has been transformed in the manner of an ordinary transformer although it is far from being one that could be considered ideal.

UHF CIRCUITS

RESONANT LINES

In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. The fact that an inductor has a certain amount of self-capacitance, as well as some resistance, while a capacitor also possesses a small self-inductance, can usually be disregarded.

At the very-high and ultrahigh frequencies it is not readily possible to separate these components. Also, the connecting leads, which at lower frequencies would serve merely to join the capacitor and coil, now may have more inductance than the coil itself. The required inductance coll may be no more than a single tum of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit.

For these reasons it is common practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 100 MHz or so.

Fig. 2-80 - Equivalent coupling circuits for parallel-line, coaxial-line and conventional resonant circuits.

A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other exhibits large standing waves, as described in the section on transmission lines. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit. The equivalent relationships are shown in Fig. 2-60. At frequencies off resonance the line displays qualities comparable with the inductive and capacitive reactances of a conventional tuned circuit, so sections of transmission line can be used in much the same manner as inductors and capacitors.

To minimize radiation loss the two conductors of a parallel-conductor line should not be more than about one-tenth wavelength apart, the spacing being measured between the conductor axes. On the other hand, the spacing should not be less than about twice the conductor diameter because of "proximity effect," which causes eddy currents and an increase in loss. Above 300 MHz it is difficult to satisfy both these requirements simultaneously, and the radiation from an open line tends to become excessive, reducing the Q. In such case the coaxial type of line is to be preferred, since it is inherently shielded.

Representative methods for adjusting coaxial lines to resonance are shown in Fig. 2-61. At the left, a sliding shorting disk is used to reduce the effective length of the line by altering the position of the short-circuit. In the center, the same effect is accomplished by using a telescoping tube in the end of the inner conductor to vary its length and thereby the effective length of the linc. At the right, two possible methods of using parallel-plate capacitors are illustrated. The arrangement with the loading capacitor at the open end of the line has the greatest tuning effect per unit of capacitance; the alternative method, which is equivalent to tapping the capacitor down on the line, has less effect on the Q of the circuit. Lines with capacitive "loading" of the sort illustrated will be shorter, physically, than unloaded lines resonant at the same frequency.

Two methods of tuning parallel-conductor lines are shown in Fig. 2-62. The sliding short-circuiting strap can be tightened by means of screws and nuts to make good electrical contact. The parallel-plate capacitor in the second drawing may be placed anywherc along the line, the tuning effect becoming less as the capacitor is located nearer the shorted end of the line. Although a low-capacitance variable capacitor of ordinary construction can be used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the further advantage that no insulating material is required.

WAVEGUIDES

A waveguide is a conducting tube through which energy is transmitted in the form of electromagnetic waves. The lube is not considered as carrying a current in the same sense that the wires of a two-conductor line do, but rather as a boundary which confines the waves to the enclosed space. Skin effect prevents any electromagnetic

Fig. 2-61 - Methods of tuning coaxial resonant lines.
effects from being evident outside the guide. The energy is injected at one end, either through capacitive or inductive coupling or by radiation, and is received at the other end. The waveguide then merely confines the energy of the fields, which are propagated through it to the receiving end by means of reflections against its inner walls.

Analysis of waveguide operation is based on the assumption that the guide material is a perfect conductor of electricity. Typical distributions of electric and magnetic fields in a rectangular guide are shown in Fig. 2-63. It will be observed that the intensity of the electric field is geratest (as indicated by closer spacing of the lines of force) at the center along the x dimension, Fig. 2-63(B), diminishing to zero at the end walls. The latter is a necessary condition, since the existence of any electric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Modes of Propagation

Fig. 2-63 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general groups. One group, designated TM (transverse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of electric field in that direction. The other type, designated $T E$ (transverse electric) has the electric field entirely transverse, but has a component of magnetic field in the direction of propagation. TM waves are sometimes called E waves, and TE waves are sometimes called H waves, but the TM and TE designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript

Fig. 2-62 - Methods of tuning parallel-type resonant lines.

Fig. 2-63 - Fiedd distribution in a rectangular waveguide. The $T E_{1,0}$ mode of propagation is depicted.
numerals; for example. $T E_{1,0} T M_{1,1}$, ctc. The number of possible modes increases with frequency for a given size of guide. There is only one possible mode (called the dominant mode) for the lowest frequency that can be transmitted. The dominant mode is the one generally used in practical work.

Waveguide Dimensions

In the rectangular guide the critical dimension is x in Fig. 2-63; this dimension must be more than one-half wavelength at the lowest frequency to be transmitted. In practice, the y dimension usually is made about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same considerations apply as in the rectangular case.

Wavelength formulas for rectangulur and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectangular Cincular	
Cutoff wavelength	$2 x$	$3.41 r$
Longest wavelength trans- mitted with little attenu- ation	$1.6 r$	$3.2 r$
Shortest wavelength before next mode becomes pos- sible	$1.1 x$	$2.8 r$

Cavity Resonators

Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a waveguide with the dimensions chosen so that waves of a given length can be maintained inside.

Typical shapes used for resonators are the cylinder, the rectanguiar box and the sphere, as shown in Fig. 2-64. The resonant frequency depends upon the dimensions of the cavity and the mode of oscillation of the waves (comparable to the transmission modes in a waveguide). For the lowest modes the resonant wavelengths are as follows:

$$
\begin{aligned}
& \text { Cylinder } \\
& \begin{array}{l}
\text { Square box } \\
\text { Squ } \\
\text { Sphere } \\
2.211 \\
2.28 r
\end{array}
\end{aligned}
$$

The resonant wavelengths of the cylinder and square box are independent of the height when the height is less than a half wavelength. In other modes of oscillation the height must be a multiple of a half wavelength as measured inside the cavity. A cylindrical cavity can be tuned by a sliding shorting disk when operating in such a mode. Other tuning methods include placing adjustable turing paddles or "slugs" inside the cavity so that the standingwave pattern of the electric and magnetic fields can be varied.

A form of cavity resonator in practical use is the re-entrant cylindrical type shown in Fig. 2-65. In construction it resembles a concentric line closed at both ends with capacitive loading at the top, but the actual mode of oscillation may differ considerably from that occuring in coaxial lines. The resonant frequency of such a cavity depends upon the diameters of the two cylinders and the distance d between the cylinder ends.

Compared with ordinary resonant circuits, cavity resonators have extremely high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can be secured with good design and construction.

Fig. 2-64 - Forms of cavity resonators.

CROSS-SECTIONAL VJEW

Fig. 2-65 - Re-entrant cylindrical cavity resonator.

Coupling to Waveguides and Cavity Resonators

Energy may be introduced into or abstracted from a waveguide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coaxial line, two methods of coupling to which are shown in Fig. 2-66. The probe shown at \mathbf{A} is simply a short extension of the inner conductor of the coaxial line, so oriented that it is parallel to the electric lines of forcc. The loop shown at B is arranged so that it encloses some of the magnetic lines of force. The point at

Fig. 2-66 - Coupling to waveguides and resonators.
which maximum coupling will be secured depends upon the particular mode of propagation in the guide or cavity: the coupling will be maximum when the coupling device is in the most intense field.

Coupling can be varied by turning the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its minimum value.

MODULATION, HETERODYNING, AND BEATS

Since one of the most widespread uses of radio frequencies is the transmission of speech and music, it would be very convenient if the audio spectrum to be transmitted could simply be shifted up to some radio frequency, transmitted as radio waves, and shifted back down to audio at the recciving point. Suppose the audio signal to be transmitted by radio is a pure 1000 -hertz tone, and we wish to transmit the signal at $1 \mathrm{MHz}(1,000,000$ herts. One possible way to do this might be to add 1.000 MHz and 1 kHz together, thereby obtaining a radio frequency of 1.001 MHz . No simple method for doing this directly has been deviscd, although the effect is obtained and used in "single-sideband transmission."

When two different frequencies are present simultaneously in an ordinary circuit (specifically, one in which Ohm's Law holds) each behaves as though the other were not there. The total or resultant voltage (or current) in the circuit will be the sum of the instantancous values of the two at every instant. This is because there can be only one value of current or voltage at any single point in a

Fig. 2-67 - Amplitudews.-time and amplitude-vs.frequency plots of various signals. (A) 1-1/2 cycles of an audio signal, assumed to be 1000 hz in this example. (B) A radio-frequency signal, assumed to be $1 \mathrm{MHz}^{\text {; }} 1500$ hertz are completed during the same time as the $1-1 / 2$ cycles in A, so they cennot be shown accurately. (C) The signals of A and B in the same circuir; each maintains its own identity. (D) The signals of A and B in a circuit where the amplitude of \mathbf{A} can control the amplitude of \mathbf{B}. The $1-\mathrm{MHz}$ signal is modulated by the $1000-\mathrm{hz}$ signal.

E, F, G and H show the spectrums for the signals in A, B, C and D, respectivaly. Note the new frequencies in H, resulting from the modulation process.
circuit at any instant. Figs. 2-67A and B show two such frequencies, and C shows the resultant. The amplitude of the $1-\mathrm{MHz}$ current is not affected by the presence of the $1-\mathrm{kHz}$ current, but the axis is shifted back and forth at the $1-\mathrm{kHz}$ rate. An attempt to transmit such a combination as a radio wave would result in only the radiation of the

(E)

(H)
$1-\mathrm{MHz}$ frequency, since the $1-\mathrm{kHz}$ frequency retains its identity as an audio frequency and will not radiate.

There are devices, however, which make it possible for one frequency to control the amplitude of the other. If, for example, a $1-\mathrm{kHz}$ tone is used to control a $1-\mathrm{MHz}$ signal, the maximum of output will be obtained when the $1-\mathrm{kHz}$ signal is at the peak of one alternation and the minimum will occur at the peak of the next alternation. The process is called amplitude modulation, and the effect is shown in Fig. 2-67D. The resultant signal is now entirely at radio frequency, but with its amplitude varying at the modulation rate (1 kHz). Recciving equipment adjusted to receive the $1-\mathrm{MHz}$ rf signal can reproduce these changes in amplitude, and reveal what the audio signal is, through a process called detection.

It might be assumed that the only radio frequency present in such a signal is the original 1.000 MHz , but such is not the case. Two new frequencies have appeared. These are the sum (1.00 +.001) and the difference ($1.000-.001$) of the two, and thus the radio frequencies appearing after modulation are $1.001,1.000$ and .999 MHz .

When an audio frequency is used to control the amplitude of a radio frequency, the process is generally called "amplitude modulation," as mentioned, but when a radio frequency modulates another radio frequency it is called heterodyning. The processes are identical. A general term for the sum and difference frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and a more specific one is upper side frequency, for the sum, and lower side frequency for the difference.

In the simple example, the modufating signal was assumed to be a pure tone, but the modulating signal can .just as well be a bend of frequencies making up speech or music. In this case, the side frequencies are grouped into the upper sideband and the lower sideband. Fig. $2-67 \mathrm{H}$ shows the side frequencies appearing as a result of the modulation process.

Amplitude modulation (a-m) is not the only possible type nor is it the only one in use. Such signal properties as phase and frequency can also be modulated. In every case the modulation process leads to the generation of a new set (or sets) of radio frequencies symmetrically disposed about the original radio (carrier) frequency.

Fig. 2-68 - Actual oscilloscope photograph showing the signals described in the text and shown in the drawings of Fig. 2-67.

TOROIDAL INDUCTORS AND TRANSFORMERS

With many builders, miniatucization is the watchword. This is especially true when working with solid-state and etched-circuit projects. One of the deterrents encountered in designing smallvolume equipment is the squeezing in of bulky inductors - slug-tuned or air wound - into a compact assembly. Toroids offer a practical solution to the problem of mass. The good points do not end there, however; toroidal-wound inductors not only fit into smail places, they offer exceptionally high values of tuned-circuit Q. a definite
attribute when selectivity in an important consideration in equipment performance. Ordinarily, air-wound inductors which provide comparable Q are many times larger than are their toroidal kinsmen. The correct type of core material must be used in order to realize the best possible Q at a particular frequency.

Minimum interaction between the tuned stages of a given piece of equipment is ussatly of paramount importance to the builder. Here is where the toroid performs well; a toroidal inductor
is self-shielding. That is to say, its magnetic flux is very nearly all contained within the coil itself. This feature cuts down stray inductive coupling between adjacent circuits and permits the toroid to be mounted physically close to other components - including the chassis and cabinet walls - without impairment of its efficiency. The latter is not true of ordinary of or af inductors. Because the flux is contained within the toroid coil, tighter coupling between windings, when a primary and secondary are used, is possible.

The high permeability of ferrite toroid cores permits the user to employ fewer turns in the tuned-circuit inductor. With fewer turns of wire required, larger wire gauges can be used, with a resultant reduction in heating and $J^{2} R$ losses. This feature is especially beneficial in transistorized equipment where high collector currents are frequently required.

It is best to understand that the word "toroidal" refers to a physical format - doughnut shape - rather than to a specific device or type of material. Toroid cores come in a host of sizes, are manufactured by many firms (each with a different identifying code for the type of core material used), and are fashioned from a wide variety of materials. Some cores are made by rolling up great lengths of thin silicon steel tape (Hypersil) into a toroidal form. Such cores are held together by means of plastic covers, or are wrapped with glass tape which holds the core intact while insulating it from the wire which is wound on it. This type of corc is commonly used for low-frequency power applications such as dc-to-dc, and dc-to-ac converters. For audio and rf applications powdered iron and ferrite (a newer type of ceramic) material are generally used. Ferrite acts like an insulating material, making it unnecessary in all instances to place a layer of tape between the core and the winding of the transformer or inductor.

Choosing a Core

There is no simple rule that can be used for selecting a toroid core for a particular job. Many things must be considered notably the intended frequency of operation, the operating frequency versus the physical size and permeability of the core, and whether or not the core will be used in a small- or large-signal tuned circuit. The higher the permeability rating of the material, the fewer will be the number of turns required to obtain a specific inductance value. For example: if a core of certain size has a permeability rating of 400 , it might require, say, 25 turns of wire to give an inductance of $10 \mu \mathrm{H}$. Therefore, where minimum $I^{2} R$ loss in the winding is desirable, the higher permeability is better. A core with a larger crosssectional area (computed from inside diameter, outside diameter, and core height) will reduce the required number of turns also. These are but a few possibilites to consider when selecting a core. Q1 material is rated for rf applications up to 10 MHz , Q2 stock is good to 50 MHz , and Q3 ferrite is rated to 225 MHz . These threc ranges handle most rf needs. 1 If the improper material is chosen for a given frequency of operation, the core material will
not provide a high $-Q$ inductor. In fact, the wrong material can completely ruin a tuned circuit. If too large a core (physical size) is used in the upper hf region, or at vhf, it may be impossible to wind a suitable coil on the toroid because so little wire will be required to provide the needed value of inductance. For this reason, the smaller cores, and those with low permeability ratings, should be used in the upper frequency range.

It is helpful to have some knowledge of the core types offered by the various companies before ordering a toroid for a particular project. Indiana General offers a specification sheet for each of their core materials (see Table I). Each sheet lists such data as permeability, flux density,residual magnetism, usable frequency range, and the loss factor at a specified frequency. Bulletin 101A lists the physical dimensions of their cores and also gives the cross-sectional area of each model in square inches. With this information one can calculate the required number of turns for a specific inductance value, using a selected core size. With the foregoing information at our disposal, the formula given here will enable the constructor to determine the inductance of a toroid when the number of turns is known:

$$
L=\left(0.0046 \mu N^{2} h \log _{10} \frac{O D}{I D}\right) \mu H
$$

Where $L=$ inductance
$\mu=$ permeability of the material
$N=$ number of turns
$O D=$ outer diameter of core (cm.)
ID = inner diameter of core (cm .)
$h=$ height of core (in cm.)
To obtain dimensions in centimeters, multiply inches by 2.54 . The inductance nomogram given in Fig. 2-70 can be used when designing toroidal inductors which are to be wound on the standard cores offered by Indiana General.

Specific Applications

Because toroids can be used in circuits that handle anything from microwatts to kilowatts, they can be put to good use in almost any tuned-circuit or transformer application.

Most amateurs are familiar with balun transformers, having used them at one time or another in their antenna systems. Toroids find widespread use as balun transformers because they provide a broad-band transformer that is compact and offers good power-transfer efficiency. An article which describes how to contruct homemade toroidal baluns was published in August 1964 QST. Core size with respect to four different power levels 150 to 1000 watts - is treated in the article.

Toroidal inductors are useful when applied to circuits in which a high degree of selectivity is desired. A high- Q toroidal tuned circuit in the rf and mixer stages of a communications seceiver can aid image rejection more than is possible with conventional slug-tuned inductors.

[^1]
ELECTRICAL LAWS AND CIRCUITS

Another application for toroidal inductors is in transistorized transmitting and receiving equipment - and in some vacuum-tube circuits - where broad-band input, interstage, or output if transformers are desired. Toraids can be used in such circuits to provide good efficiency and smell physical size. The broad-band transformer requires no tuning controls when properly designed for a given frequency range - a particularly useful feature in mobile equipment. It is not difficult to design a broad-band transformer 2 that will work over a range of 3 to 30 MHz , but one must take precautions against the radiation of harmonic energy when using this kind of transformer in the [inal stage of a transmitter.

Compact equipment calls for the close spacing of component parts, often requiring that the tuned circuits of several stages be in close physical proximity. This sort of requirement of ten leads to electrical instability of one or more of the stages, because of unwanted interstage coupling, thus impairing the performance of the equipment. Because the toroidal transformer or inductor is self-shielding, it is possible to place the tuned circuits much closer together than when usidg conventional inductors. The self-shiciding feature also makes it possible to mount a toroid against a circuit board, or against a metal chassis or cabinet Wall, without significantly affecting their Q. Normally, the most noticeable effect of moving a toroid closer to or farther away from a metal

2C.L. Ruthroff. "Some Broadband Transformers", Proc. IRE's Vol. 47. p. 137. Aug, 1959.
surface is a change in overall circuit capacitance, which in turn slightly affects the resonant frequency of the toroidal tuned circuit. Because fewer turns of wire are needed for a toroid coil than for ordinary ai-wound or slug-tuned inductors, the assembly can be made extremely compact - a much sought-after feature in ministurized equipment.

Inductors and transformers which are wound on toroid cores are subject to the same general conditions that are common to the laminated iron-core types treated earlier in this chapter. A sufficient amount of cross-sectional area is necessary for a given amount of power in order to prevent saturation and heating. Either of these conditions will seriously impair the efficiency of a circuit. When toroids are used in circuits where high pk-pk if voltage is (or can be) present, the core should be wrapped with glass tape or some insulating material of similar characteristics. Tef-lon-insulated wire should be used to prevent flashover between turns, or between the winding and the core.

Additional design data and information on making one's own toroid cores are given in, "Toroidal-Wound Inductors," QST for January 1968, page I1. Industrial data files and application notes are available from the manufacturers of ferrite products. ${ }^{3}$

[^2]Fig. 2-69 - Nomograph which can be used to calculate the number of turns required for a specific inductance once the type of care (Indlana Generall is known. Draw a line of inductance, L through the marker which indicates the core material being used, 01, 02, Q3, etc. Complete this line until it intersects the Reference line. Now draw a line from the intersect point on the Reference line to the catalog number line of the nomogram (CF number of the core). This line will cross the Number of Turns (N) line, indicating the number of turns needed. Example shown 15 -rurn winding required for $10 \mu \mathrm{H}$ inductance on CF-114 care of O2 material. (Nomogram coursesy of Indiana General.)

Vacuum-Tube Principles

CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrical devices is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only possible when "frec" electrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. Free electrons in an evacuated space will be attracted to a positively charged object within the same space, or will be repelled by a ncgatively charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a sufficiently large number of electrons into the evacuated space is by thermionic emission.

Thermionic Emission

If a piece of metal is heated to incandescence in a vacuum, electrons near the surface are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. The name for the emitting metal is cathode.

If the cathode is the only thing in the vacuum, most of the emitted electrons stay in its immediate vicinity, forming a "cloud" about the cathode. The reason for this is that the electrons in the space, being negative electricity, for a negative charge (space charge) in the region of the cathode. The

Transmitting tubes are in the back and center rows. Recaiving tubes are in the front row (1. to r.): miniature, pencil, planar triode (two), Nuwistor and 1 -inch diameter cathode-ray tube.

Fig. 3-1 - Conduction by thermionic emission in a vacuum tube. The A battery is used to heat the cathode to a temperature that will cause it to emit electrons. The B battery makes the plate positive with respect to the cathode, thereby causing the emitted electrons to be attracted to the plate. Electrons captured by the plate flow back through the B battery to the cathode.
space charge repels those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacuum, but not connected to anything else inside the tube. If this second conductor is given a positive charge by connecting a voltage source between it and the cathode, as indicated in Fig. 3-1, electrons emitted by the cathode are attracted to the positively charged conductor. An electric current then flows through the circuit formed by the cathode, the charged conductor, and the voltage source. In Fig. 3-1 this voltage source is a battery (" B " battery): a second battery ("A" battery) is also indicated for heating the cathode to the proper operating temperature.

The positively charged conductor is usually a metal plate or cylinder (surrounding the cathode) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. 3-1 is a two-element or two-electrode tube, one element being the cathode and the other the anode or plate.

Since electrons are negative electricity, they will be attracted to the plate only when the plate is positive with respect to the cathode. If the plate is given a negative charge, the electrons will be repelled back to the cathode and no current will flow. The vacuum tube therefore can conduct only in one direction.

Cathodes

Before electron emission can occur, the cathode must be heated to a high temperature. However, it is not essential that the heating current flow

Fig. 3-2 - Types of cathode comstruction. Directly heated cathodes or "filaments" are shown at A. B, and C. The inverted V filament is used in small receiving tubes, the M in both receiving and transmitting tubes. The spiral filament is a transmitring tube type. The indirectly heated cathodes at D and E show two types of heater construction, one a iwisted loop and the other bunched heater wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
through the actual material that does the emitting; the flament or heater can be electrically separate from the emitting cathode. Such a cathode is called indirectly heated, while an emitting filament is called a directly heated cathode. Fig. 3-2 shows both types in the forms which they commonly take.

Much greater electron emission can be obtained, at relatively low temperatures, by using special cathode materials rather than pure metals. One of these is thoriated tungsten or tungsten in which thorium is dissolved. Still greater efficiency is achieved in the oxide-coated cathode, a cathode in which rare-earth oxides form a coating over a metal base.

Although the oxide-coated cathode has the highest efficiency, it can be used successfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiving-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small because the space charge (which is negative) prevents those electrons nearest the cathode from being attracted to the plate. As the plate voltage is increased, the effect of the space charge is increasingly overcome and the number of electrons

Fig. 3-3 - The diode, or two-alement iube, and a rypical curve showing how the plate current depends upon the voltage applied to the plate.
attracted to the plate becomes langer. That is, the plate current increases with increasing plate voltage.

Fig. 3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A curve of this type can be obtained with the circuit shown, if the plate voltage is increased in small steps and a cument reading taken (by means of the current-indicating instrument - a milliammeter) at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has substantially overcome the space charge and almost all the electrons are going to the plate. At higher voltages the plate cument stays at

Fig. 3-4 - Rectification in a diode. Current flows only when the plate is positive with respect to the cathode, so that only half-cycles of current flow through the load resistor, R.
practically the same value.
The plate voltage multiplied by the plate current is the power input to the tube. In a circuit like that of Fig. 3-3 this power is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value (the plate may become red or even white hot). The heat developed in the plate is radiated to the bulb of the tube, and in turn radiated by the bulb to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change alternating current into direct current. It does this by permitting current to flow only when the anode is positive with respect to the cathode. There is no current flow when the plate is negative.

Fig. 3-4 shows a representative circuit. Altemating voltage from the secondary of the transformer, T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with ac, but current flows through the tube and R only when the plate is positive with respect to the cathode - that is, during the half-cycle when the upper end of the transformer winding is positive. During the negative half-cycle there is simply a gap in the current flow. This rectified alternating
current therefore is an intermittent direct current.
The load resistor, R, represents the actual circuit in which the rectified alternating current does work. All tubes work with a load of one type or another; in this respect a tube is much like a generator or transfomer. A circuit that did not provide a load for the tube would be like a short-clecuit across a transformer; no useful purpose would be accomplished and the only result would be the generation of heat in the transformer. So it is with vacuum tubes; they must cause power
to be developed in a load in order to serve a useful purpose. Also, to be efficient most of the power must do useful work in the load and not be used in heating the plate of the tube. Thus the valtage drop across the load should be much higher than the drop across the diode.

With the diode connected as shown in Fig. 3-4, the polarity of the current through the losd is as indicated. If the diode were reversed, the polarity of the voltage developed across the load R would be reversed.

VACUUM-TUBE AMPLIFIERS

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the cathode and plate as in Fig. 3-5, it can be used to control the effect of the space charge. If the grid is given a positive voltage with respect to the cathode, the positive charge will tend to meutralize the negative space charge. The result is that, at any selected plate voltage, more electrons will flow to the plate than if the grid were not present. On the other hand, if the grid is made negative with respect to the cathode the negative charge on the grid will add to the space charge. This will reduce the number of electrons that can reach the plate at any sclected plate voltage.

The grid is inserted in the tube to control the space charge and not to attract electrons to itself, so it is made in the form of a wire mesh or spiral. Electrons then can go through the open spaces in the grid to reach the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current can be shown by a set of charactendstic curves. A typical set of curves is shown in Fig. 3-6, together with the circuit that is used for getting them. For each value of plate voltage, there is a value of negative grid voltage that will reduce the plate current to zero; that is, there is a value of negative grid voltage that winl cut off the plate current.

Fig. 3-5 - Construction of an elementary triode vacuum tube, showing the directly-heated cathode (filament), grid (with an end view of the grid wires\} and plate. The relative density of the space charge is indicated roughly by the dot density.

Fig. 3-6 - Grid-voltage-vs.-plate-current curves at various fixed values of plate voltage $\left\langle E_{b}\right\rangle$ for a typical small triode. Characteristic curves of this type can be taken by varying the battery voltages in the circuit at the right.

The curves could be extended by making the grid voltage positive as well as negative. When the grid is negative, it repels electrons and therefore none of them reaches $j t$; in other words, no current flows in the grid circuit. However, when the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid current there is an accompanying power loss in the gid circuit, but so long as the grid is negative no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. Actually, the grid has a much greatcr effect on plate current flow than does the plate voitage. A small change in grid voltage is just as effective in bringing about a given change in plate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the

Fig. 3-7 - Dynamic characteristics of a small iriode with various load resistances from 5000 to 100,000 ohms.
triode tube. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified output is not obtained from the tube itself, but from the voltage source connected between its plate and cathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a load must be connected in the plate or "output" circuit, just as in the diode case. The load may be either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. The contiol of the grid is increased by moving it closer to the cathode or by making the grid mesh finer.

The plate resistance of a vacuum tube is the ac resistance of the path from cathode to plate. For a given grid voltage, it is the quotient of a small change in plate voltage divided by the resultant change in plate current. Thus if a 1 -volt change in plate voltage caused a plate-current change of .01 mA (.00001 ampere), the plate resistance would be 100,000 ohms.

The amplification factor (usually designated by the Greek letter μ) of a vacuum tube is defined as the ratio of the change in plate voltage to the change in grid voltage to effect equal changes in plate current. If, for example, an increase of 10 plate volts raised the plate current 1.0 mA , and an increase in (negative) grid voltage of 0.1 volt were required to retum the plate current to its original value, the amplification factors of triode tubes would be 100. The amplification factors of triode tubes range from 3 to 100 or so. A high- μ tube is one with an amplification of perhaps 30 or more, medium- μ tubes have amplification factors in the approximate range 8 to 30 and low $-\mu$ tubes in the range below 7 or 8 . The μ of a triode is useful in computing stage gains.

The best all-around indication of the effectiveness of a tube as an amplifier is its grid-plate transconductance - also called mutual conductance or g_{m}. It is the change in plate current divided by the change in grid voltage that caused the change; it can be found by dividing the amplification factor by the plate resistance. Since current divided by voltage is conductance, transconductance is measured in the unit of conductance, the mho.

Practical values of transconductance are very small, so the micromho (one millionth of a mho) is the commonly used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand. The higher the transconductance the greater the posible amplification.

AMPLIFICATION

The way in which a tube amplifies is best known by a type of graph called the dynamic characteristic. Such a graph, together with the circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig. 3-6 is that in Fig. 3-7 a load resistance is connected in series with the plate of the tube. Fig 3-7 thus shows how the plate current will vary, with different grid voltages, when the plate current is made to flow through a load and thus do useful work.

The several curves in rig. 3-7 are tor various values of load resistance. When the resistance is small (as in the case of the 5000 -ohm load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small; also, the curve tends to be straighter.

Fig. 3-8 is the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -5 volts, and from the curve it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no ac signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times .002=100$ volts, leaving 200 volts between the plate and cathode.

When a sine-wave signal having a peak value of 2 volts is applied in serics with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 mA . At intermediate values of grid voltage, intermdiate plate-current values will occur.

Fig. 3-8 - Amplifier operation. When the plate current varies in response to the signal applied to the grid, a varying voltage drop appears across the load, R_{p}, as shown by the dashed curve. $E_{\mathrm{p}} . I_{\mathrm{p}}$ is the plate current.

The instantaneous voltage between the plate and cathode of the tube also is shown on the graph. When the plate current is maximum, the instantaneous voltage drop in R_{p} is $50,000 \times$ $.00265=132.5$ volts; when the plate current is minimum the instantaneous voltage drop in R_{p} is $50,000 \times \quad .00135=67.5$ volts. The actual voltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum plate current and 232.5 volts at minimum plate current.

This varying plate voltage is an ac voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this ac output voltage is the difference between either the maximum or minimum plate-cathode voltage and the no-signal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-167.5$; that is, 32.5 volts in either case. Since the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is obtained from the plate circuit as is applied to the grid circuit.

As shown by the drawings in Fig. 3-8, the alternating component of the plate voltage swings in the negative direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an altemating voltage that has the same wave shape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selected. The curve must be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth over a part of the curve that is not straight, as in Fig. 3-9, the shape of the ac wave in the plate circuit will not be the same as the shape of the grid-signal wave. In such a case the output wave shape will be distorted.

A second reason for using negative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot cause grid current to flow. With no current flow there is no power consumption, so the tube will amplify without taking any power from the signal source. (However, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Distortion of the output wave shape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of harmonics. In other words, distortion from nonlinearity causes the generation of harmonic frequencies - frequencies that are not present in the signal applied to the

Fig. 3-9 - Harmonic distortion resulting from choice of an operating point on the curved part of the tube characteristic. The lower half-cycle of plate current does not have the same shape as the upper half-cycle.

Fig. 3-10 - Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.
grid. Harmonic distortion is undesirable in most amplifiers, although there are occasions when harmonics are deliberately generated and used.

Audio Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The dc voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause difficulties if it were applied, along with the ac output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the ac is transferred to the load but the dc is not.

Three types of coupling are in common use at audio-frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.

In the resistance-coupled circuit, the ac voltage developed across the plate resistor $\boldsymbol{R}_{\mathbf{p}}$ (that is, the ac voltage between the plate and cathode of the tube) is applied to a second resistor, $\boldsymbol{R}_{\mathbf{g}}$. through a coupling capacitor, C_{c}. The capacitor "blocks of"' the dc voltage on the plate of the first tube and prevents it from being applied to the grid of tube
B. The latter tube has negative grid bias supplied by the battery shown. No current flows on the grid circuit of tube B and there is therefore no dc voltage drop in $\boldsymbol{R}_{\mathrm{g}}$; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling capacitor, C_{c}, must be low enough compared with the resistance of $\boldsymbol{R}_{\mathrm{g}}$ so that the ac voltage drop in C_{c} is negligible at the lowest frequency to be amplified. If $\boldsymbol{R}_{\mathrm{g}}$ is at least 0.5 megohm, a $0.1-\mu \mathrm{F}$ capacitor will be amply large for the usual range of audio frequencies.

So far as the alternating component of plate vodtage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as dc is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why $\boldsymbol{R}_{\mathrm{g}}$ is made as high in resistance as possible; then it will have the least effect on the load represented by $R_{\text {p }}$.

The impedance-coupled circuit differs from that using resistance coupling only in the substitution of a high inductance (as high as several hundred henrys) for the plate resistor. The advantage of using an inductor rather than a resistor at this point is that the impedance of the inductor is high for audio frequencies, but its resistance is relatively low. Thus it provides a higher vaiue of load impedance for ac without an excessive dc voltage drop, and consequently the power-supply voltage does not have to be high for effective operation.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube \boldsymbol{B}. The transformercoupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of dc voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "xtepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for cxample. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a transformer-coupled amplifier can be kept fairly constant over the audio-frequency range. On the other hand, transformer coupling in voltage amplifiers (see below) is best suited to triodes having amplification factors of about 20 or less, for the reason that the primary inductance of a practicable transform-

Fig. 3-11 - An elamentary power-amplifier circuit in which the power-consuming load is coupled to the plate circuit through an impedance-matching transformer.
er cannot be made large enough to work well with a tube having high plate resistance.

Class A Amplifiess

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load.

Voltage amplifiers belong to a group called Class \mathbf{A} amplifies. A Class \mathbf{A} amplifier is one operated so that the wave shape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class \mathbf{A}_{1} amplifier. Voltage amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following Class \mathbf{A}_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some work. For example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of af power supplied to the speaker the louder the sound it will produce.

Fig. 3-11 shows an elementary power-amplifter circuit. It is simply a transformer-coupled amplifier with the load connected to the secondary. Although the load is shown as a resistor, it actually would be some device, such as a loudspeaker, that employs the power usefully. Every power tube requires a specific value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chosen to reflect the power value of resistance into the primary. The tums ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the ac signal in the grid circuit. There is no power lost in the grid circuit of a Class A_{1} amplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a

Class A amplifier in such a way that current flows in its grid circuit during at least part of the cycle. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class \mathbf{A}_{2} amplifier. It is necessary to use a power amplifier to drive a Class \mathbf{A}_{2} amplifier, because a voltage amplifier cannot deliver power without serious distortion of the wave shape.

Another term used in connection with power amplifiers is power sensitivity. In the case of a Class \mathbf{A}_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power input.

The ac power that is delivered to a load by an amplifier tube has to be paid for in power taken from the source of plate voltage and current. In fact. there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. The ratio of useful power output to dc plate input is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a given plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connected in parallel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

Fig. 3-12 - Parallel and push-pull af amplifier circuits.

Fig. 3-13 - Class B amplifier operation.
An increase in power output also can be secured by connecting two tubes in push-pull. In this case the grids and plates of the two tubes are connected to opposite ends of a balanced circuit as shown in Fig. 3-12. At any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in any push-pull-connected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

In push-pull operation the even-hamonic (second, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tube. If the gids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifer, then take the second amplifier's output and apply it to a third, and so on. Each amplifier is called a stage, and stages used successively are said to be in cascade.

Class B Amplifiens

Fig. 3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when ло signal is applied) the plate current is just cut off, then a signal can cause plate current to flow in either tube only when the signal voltage applied to that particular tube is positive with respect to the cathode. Since in the balanced grid circuit the signal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induce a half-cycle of voltage in the secondary. In the secondary of $T 2$, the original waveform is restored. This type of operation is called Class B amplification.

The Class B amplifier has considerably higher plate efficiency than the Class A amplifier. Furthermore, the de plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The dc plate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum dc plate input that can be applied to a Class A amplifier is equal to the rated plate dissipation of the tube or tubes. Two tubes in a Class B amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class A amplifier.

A Class B amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of plate current, and to obtain them the signal voltage must completely overcome the grid bias during at least part of the cycle, so grid cument flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the cycle means that the load on the preceding amplifier or driver slage varies in magnitude during the cycle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifically for Class B service and can be operated without fixed or other form of grid bias (zero-bias tubes). The amplification factor is so high that the plate current is small without signal. Because there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuous throughout the cycle. This makes the load on the driver much more constant than is the case with tubes of lower μ biased to plate-current cut off.

Class B amplifiers used at radio frequencies are known as linear amplifiers because they are adjusted to operatc in such a way that the power output is proportional to the square of the if exciting voltage. This permits amplification of a modulated rf signal without distortion. Push-pull is not required in this type of operation; a single tube can be used equally well.

Class AB Amplifiers

A Class AB audio amplifier is a push-pull amplifier with higher bias than would be normal for pure Class A operation, but less than the cut-oiff bias required for Class B. At low signal levels the tubes operate as Class A amplifiers, and
the plate current is the same with or without signal. At higher signal levels, the plate current of one tube is cut off during part of the negative cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The total plate current for the amplifier also rises above the no-signal level with a large signal is applied.

In a properly designed Class AB amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure Class A operation. A Class AB amplifier can be operated either with or without driving the grids into the positive region. A Class $A B_{1}$ amplifier is one in which the grids are never positive with respect to the cathode; therefore no driving power is required - only voltage. A Class $\mathbf{A B}_{2}$ amplifier is one that has grid-current flow during part of the cycle if the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class $A B_{1}$ amplifier avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly variable resistance.

Operating Angle

Inspection of Fig. 3-13 shows that either of the two vacurum tubes is working for only half the ac cycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig. 3-13 each tube lias "180-degree" excitation, a half-cycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360-degree excitation, because plate current flows during the whole cycle. In a Class $A B$ amplifier the operating angle is between 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angie becomes.

An operating ange of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce even a half-cycle of the signal on its grid. Using two tubes in push-pull, as in Fig. 3-13, would merely put together two distorted half-cycles. An operating angle of less than 180 degrees therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the ri wave form is relatively unimportant. For reasons described later in this chapter, an if amplifier must be operated with funed circuits, and the selectivity of such circuits "filters out" the if harmonics resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, because the loss in the plate is proportional, anong
other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class C amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tuned-circuit arrangements, of the type described in the chapter on circuit fundamentads, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate efficicncy, and power output usually results when the minimum plate voltage (at the peak of the driving cycle, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. Under these conditions the operating angle is usually between 120 and 150 degrees and the plate efficiency lies in the range of 60 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class C ampiifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as described in the chapter on amplitude modulation.

FEEDBACK

It is possible to take a part of the amplified energy in the plate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feedback.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feedback is called negative, or degenerative. On the other hand, if the voltage is fed back in phase with the grid signal, the feedback is called positive, or regenerative.

Negative Feedback

With negative fcedback the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative fcedback (when properly applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This tends to make the frequency-response characteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Also, any distortion generated in the plate circuit of the tube tends to

Fig. 3-14 - Simple circuits for producing feedback.
"buck itself out." Amplifiers with negative feedback are therefore comparatively free from harmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

In the circuit shown at A in Fig. 3-14 resistor $\boldsymbol{R}_{\mathrm{c}}$ is in series with the regular plate resistor, $\boldsymbol{R}_{\mathrm{p}}$ and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across $\boldsymbol{R}_{\mathbf{c}}$. However, $\boldsymbol{R}_{\mathrm{c}}$ also is connected in series with the grid circuit, and so the output voltage tha: appears across R_{c} is in series with the signa: voltage. The output voltage across R_{c} opposes the signal voltage, so the actual ac voltage between the grid and cathode is equal to the difference betweer. the two voltages.

The circuit shown At B in Fig. 3-14 can be usec to give either negative or positive feedback. The secondary of a transformer is connected back into the grid circuit to insert a desired amount of feedback voltage. Reversing the terminals of either transformer winding (but not both simultancously? will reverse the phase.

Positive Feedback

Positive feedback increascs the amplification because the feedback voltage adds to the original signal voltage and the resulting larger voltage on the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (which depends upon the particulan circui: arrangement) and harmonic distortion is increased. If enough energy is fed back, a self-sustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid can be supplied from the plate circuit; no external signal is needed because any small irregularity in the plate current - and there are always some irregularities - will be amplified and thus give the oscillation an opportunity to build up. Positive feedback finds a major application in such "oscillators," and in addition is
. used for selective ampllification at both audio and radio frequencies, the feedback being kept below the value that causes self-oscillation.

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube forms a small capacitor "plate." There are three such capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathode. The capacitances are very small - only a few picofarads at most but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the ac grid voltage and ac plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tube as a reforence point. However, these two voltages are in phasc going around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate capacitance of the tube.

As a result, a capacitive current flows around the circuit, its amplitude being directly proportional to the sum of the ac grid and plate voltages and to the grid-plate capacitance. The source of the grid signal must furnish this amount of current, in addition to the capacitive current that flows in the grid-cathode capacitance. Hence the signal source "sees" an effective capacitance that is larger than the grid-cathode capacitance. This is known as the Miller Effect.

The greater the voltage amplification the greater the effective input capacitance. The input capacitance of a resistance-coupled amplifier is given by the formula

$$
C_{\text {input }}=C_{\text {gk }}+C_{\text {Ep }}(\mathrm{A}+1)
$$

where C_{gk} is the grid-to-cathode capacitance, $C_{\text {to }}$ is the grid-to-plate capacitance, and A is the voltuge amplification. The input capacitance may be as much as several hundred picofarads when the voltage amplification is large, even though the interelectrode capacitances are quite small.

Fig. 3-15 - The ac voltage sppearing berween the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as shown by this simplified circuit. Instantaneous polarities are indicated.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual plate-tocathode capacitance of the tube. The output capacitance usually need not be considered in audio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at RF

At radio frequencies the reactances of even very small interelectrode capacitances drop to very low values. A resistance-coupled amplifier gives very little amplification at rf, for example, because the reactances of the interelectrode "capacitors" are so low that they practically short-circuit the input and output circuits and thus the tube is unable to amplify. This is overcome at radio frequencies by using tuned circuits for the grid and plate, making the tube capacitances part of the tuning capacitances. In this way the circuits can have the high resistive impedances necessary for satisfactory amplification.

The grid-plate capacitance is important at radio frequencies because its reactance, relatively low at rf, offers a path over which energy can be fed back from the plate to the grid. In practically every case the feedback is in the right phase and of sufficient amplitude to cause self-oscillation, so the circuit becomes useless as an amplifier.

Special "neutralizing" circuits can be used to prevent feedback but they are, in general, not too satisfactory when used in radio receivers. They are, however, used in transmitters.

SCREEN-GRID TUBES

The grid-plate capacitance can be reduced to a negligible value by inserting a second grid between the control grid and the plate, as indicated in Fig. 3-16. The second grid, called the screen grid, acts

Fig. 3-16 - Representative arrangement of elements in a screen-grid tetrode, with part of plate and screen cut away. This is "single-ended" construction with a button base, typical of miniature receiving tubes. To reduce capacitance between control grid and plate the leads from these elements are brought out at opposite sides; actual tubes probably would have additional shielding between these leads.
as an electrostatic shield to prevent capacitive coupling between the control grid and plate. It is made in the form of a grid or coarse screen so that electrons can pass through it.

Because of the shielding sction of the screen grid, the positively charged plate cannot attract electrons from the cathode as it does in a triode. In order to get electrons to the plate, it is necessary to apply a positive voltage (with respect to the cathode) to the screen. The screen then attracts electrons much as does the plate in a triode tube. In traveling toward the screen the electrons acquire such velocity that most of them shoot between the screen wires and then are attracted to the plate. A certain proportion do strike the screen, however, with the result that some current also flows in the screen-grid circuit.

To be a good shield, the screen grid must be connected to the cathode through a circuit that has low impedance at the frequency being amplified. A bypass capacitor from screen grid to cathode, having a reactance of not more than a few hundred ohms, is generally used.

A tube having a cathode, control grid, screen grid and plate (four elements) is called a tetrode.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the plate and they cause no disturbance. In the screen-grid tube, however, the positively charged screen attracts the secondary electrons, causing a reverse current to flow between screen and plate.

To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the screen and plate. This grid acts as a shield between the screen grid and plate so the secondary electrons cannot be attracted by the screen grid. They are hence attracted back to the plate without appreciably obstructing the regular plate-current flow. A five-element tube of this type is called a pentode.

Although the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it does in a triode. Consequently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of corresponding structure. On the other hand, since a change in plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

In practical screen-grid tubes the grid-plate capacitance is only a small fraction of a picofarad. This capacitance is too small to cause an appreciable increase in input capacitance as described in the preceding section, so the input capacitance of a screen-grid tube is equal to the capacitance between the plate and screen.

In addition to their applications as radio-frequency amplifiers, pentodes or tetrodes also ase used for audio-frequency power amplification. In tubes designed for this purpose the chief function of the screen is to serve as an accelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared with triodes of the same power output, aithough harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Additional design features overcome the effects of secondary enussion so that a suppressor grid is not needed. The "beam" construction makes it possible to draw large plate currents at relatively low piate voltages, and increases the power sensitivity.

For power amplification at both audio and radio frequencies beam tetrodes have largely supplanted the non beam types because large power outputs can be secured with very small amounts of grid driving power.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases when its grid bias is made more negative, assuming that the other electrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers.

The ordinary type of tube has what is known as a sharp-cutoff characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased. The amount of signal voltage that such a tube can handle without causing distortion is not sufficient to take care of very strong signals. To overcome this, some tubes are made with a variable- μ characteristic - that is, the amplification factor decreases with increasing grid bias. The variable μ tube can handle a much larger signal than the sharp-cutoff type before the signal swings either beyond the zero grid-bias point or the plate-current cutoff point.

INPUT AND OUTPUT IMPEDANCES

The input impedance of a vacuum-tube amplifier is the impedance "seen" by the signal source when connected to the input terminals of the amplifier. In the types of amplifiers previously discussed, the input impedance is the impedance measured between the grid and cathode of the tube with operating voltages applied. At audio frequen-
cies the input impedance of a Class $\mathrm{A}_{\mathbf{1}}$ amplifier is for all practical purposes the input impedance of the stage. If the tube is driven into the grid-current region there is in addition a resistance component in the input impedance, the resistance having an average value equal to E^{2} / P, where E is the rms driving voltage and P is the power in watts consumed in the grid. The resistance usually will vary during the ac cycle because grid current may flow only during part of the cycle; also, the grid-voltage/grid-cument characteristic is seldom linear.

The output impedance of amplifiers of this type consists of the plate resistance of the tube shunted by the output capacitance.

At radio frequencies, when tuned circuits are employed, the input and output impedances are usually pure resistances; any reactive components are "tuned out" in the process of adjusting the circuits to resonance at the operating frequency.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the meeting point for the input and output circuits. However, it is possible to use any one of the three principal elements as the common point. This leads to two additional kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in simplified form in Fig. 3-17. In both circuits the resistor R represents the load into which the amplifier works; the actual load may be resistance-capacitancecoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid bjas and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the

Fig. $3-17$ - In the upper circuit, the grid is the junction point between the input and output circuits in the lower drawing, the plate is the junction. In either case the output is developed in the load resistor, R, and may be coupied to a following amplifier by the usual methods.

output is taken between the plate and grid. The grid is thus the common element. The ac component of the plate current has to flow through the signal source to reach the cathode. The source of signal is in series with the load through the plate-to-cathode resistance of the tube, so some of the power in the load is supplied by the signal source. In transmitting applications this fedthrough power is of the order of 10 percent of the total power output, using tubes suitable for grounded-grid service.

The input impedance of the grounded-grid amplifier consists of a capacitance in parallel with an equivalent resistance representing the power furnished by the driving source of the grid and to the load. This resistance is of the order of a few hundred ohms. The output impedance, neglecting the interelectrode capacitances, is equal to the plate resistance of the tube. This is the same as in the case of the grounded-cathode amplifier.

The grounded-grid amplifier is widely used at vhf and uhf, where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of operation, an of amplifier can be built that is free from the type of feedback that causes oscillation. This requires that the grid act as a shield between the cathode and plate, reducing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligible impedance in the batteries) and the output is taken between cathode and plate. This circuit is degenerative; in fact, all of the output voltage is fed back into the input circuit out of phase with the grid signal. The input signal therefore has to be larger than the output voltage; that is, the cathode follower gives a loss in voltage, although it gives the same power gain as other circuits under equivalent operating conditions.

An important feature of the cathode follower is its low output impedance, which is given by the formula (neglecting interelectrode capacitances)

$$
Z_{\text {out }}=\frac{r_{D}}{1+\mu}
$$

where γ_{p} is the tube plate resistance and μ is the amplification factor. Low output impedance is a valuable characteristic in an amplifier designed to cover a wide band of frequencies. In addition, the input capacitance is only a fraction of the grid-tocathode capacitance of the tube, a feature of further benefit in a wide-band amplifier. The cathode follower is useful as a step-down impedance transformer, since the input impedance is high and the output impedance is low.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is powered by the ac line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give pure de - that is,
direct current that is constant and without a superimposed ac component - the relatively large currents required by filaments and heaters usually make a rectifier-type dc supply impracticable.

Filament Hum

Alternating current is just as good as direct current from the heating standpoint, but some of the ac voltage is likely to get on the grid and cause a low-pitched "ac hum" to be superimposed on the output.

Hum troubles are worst with directly-heated cathodes or filaments, because with such cathodes there has to be a direct connection between the soarce of heating power and the rest of the circuit. The hum can be minimized by either of the connections shown in Fig. 3-18. In both cases the grid- and plate-return circuits are connected to the electrical midpoint (center tap) of the filament supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are balanced by an equal and opposite voltage and current on the other side. The balance is never quite perfect, however, so filament-type tubes are never completely hum-free. For this reason directly-heated filaments are emplpyed for the most part in power tubes, where the hum introduced is extremely small in comparison with the power-output level.

With indirectly heated cathodes the chief problem is the magnetic field set up by the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small ac voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are obtained if the heater supply is center-tapped and the centertap grounded, as in Fig. 3-18,

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid bias has been supplied by a battery. However, in equipment that operates from the power line, cathode bias is almost universally used for tubes that are operated in Class \mathbf{A} (constant dc input).

The cathode-bias method uses a resistor (cathode resistor) connected in series with the cathode,

Fig. 3-18 - Filament center-tapping methods for use with directly heated tubes.

Fig. 3-19 - Cathode biasing. R is the cathode resistor and C is the cathode bypass capacitor.
as shown at R in Fig. 3-19. The direction of piate-current flow is such that the end of the resistor nearest the cathode is positive. The voltage drop across R therefore places a negative voltage on the grid. This negative bias is obtained from the steady dc plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the ac will be degenerative (note the similarity between this circuit and that of Fig. 3-14A). To prevent this the resistor is bypassed by a capacitor, C, that has very low reactance compared with the resistance of R. Depending on the type of tube and the particular kind of operation, R may be between about 100 and 3000 ohms. For good bypassing at the low audio frequencies, C should be 10 to 50 microfarads (electrolytic capacitors are used for this purpose). At radio frequencies, capacitances of about 100 pF to $0.1 \mu \mathrm{~F}$ are used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megahertz a capacitance of $.01 \mu \mathrm{~F}$ is satisfactory.

The value of cathode resistor for an amplifier having negligible dc resistance in its plate circuit (transformer or impedance coupled) can easily be calculated from the known operating conditions of the tube. The proper grid bias and plate curcent always are specified by the manufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

Example: It in found from tube tables that the tube to be used should have a negative grid btas of 8 volta and thas at thin biat the plate current will be 12 mulliemperes (0.012 amp). The required cathode resistance is thon

$$
R=\frac{E}{I}=\frac{8}{012}=667 \mathrm{ohms}
$$

The nearest standard vahue, 680 ahms, would be close onough. The power used in the restator in

$$
P=E /=8 \times .012=0.096 \text { walt }
$$

A $1 / 4-$ natt or $1 / 2$-watt resistor would have ample rating

The current that dows through R is the total cathode current. In an ordinary triode amplifier this is the same as the plate current, but in a screen-grid tube the cathode current is the sum of the plate and screen currents. Hence these two currents must be added when calculating the value of cathode resistor required for a screen-grid tube.

$$
\begin{aligned}
& \text { Example: A recetving pentode requires } 3 \text { rolts nepative } \\
& \text { hins. At this btas and the recommended plate and sereen } \\
& \text { voltages. its plate current is } 9 \mathrm{~mA} \text { and its screen current is } 2 \\
& \mathrm{~mA} \text {. The cathode current is therefore } 11 \mathrm{~mA}(0.01) \text { amp). } \\
& \text { The required reabtance is } \\
& \qquad R=E=\frac{3}{011}=272 \text { othms } \\
& \text { A } 270 \text {-ohm resistor would be satisfactory. The powes in the } \\
& \text { resistor in } \\
& \qquad P=E I=3 \times 0.011=.033 \text { watt }
\end{aligned}
$$

The cathode-resistor method of biasing is selfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the bias will increase if the plate current is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the cathode resistor for a resist-ance-coupled amplifier is ordinarily not practicable by the method described above, because the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistance-coupled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

"Contact Potential" Bias

In the absence of any negative bias voltage on the grid of a tube, some of the electrons in the space charge will have enough velocity to reach the grid. This causes a small current (of the onder of microamperes) to llow in the external circuit between the grid and cathode. If the current is made to flow through a high resistance - a megohm or so - the resulting voltage drop in the resistor will give the grid a negative bias of the order of one volt. The bias so obtained is called contact-potential bias.

Contact-potential bias can be used to advantage in circuits operating at low signal levels (less than one volt peak) since it eliminates the cathode-bias resistor and bypass capacitor. It is principally used in low-level resistance-coupled audio amplifiers. The bias resistor is connected directly between grid and cathode, and must be isolated from the signal source by a blocking capacitor.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the screen frequently is taken from the plate supply through a resistor. A typical circuit for an rf amplifier is shown in Fig. 3-20. Resistor R is the screen dropping resistor, and C is the screen bypass capacitor. In flowing through R, the screen current causes a voltage drop in R that reduces the plate-supply voltage to the proper value for the screen. When the plate-supply voltage and the screen current are known, the value of R can be caluclated from Ohm's Law.

[^3]

Fig. 3-20 - Screen-voltage supply for a pentode tube through a dropping resistor, R. The screen bypass capacitor, C, must have low enough reactance to bring the screen to ground potential for the frequency or frequencies being amplified.

$$
R=E=\frac{150}{.002}=75,000 \text { ohms }
$$

The power to the dissipated in the resistar in

$$
P=8 f=150 \times .002=0.3 \text { wata }
$$

A $1 / 2$ - or 1-watt resisiar would be satisfactory.
The reactance of the screen bypass capacitor, C, should be low compared with the screen-tocathode impedance. For radio-frequency applications a capacitance in the vicinity of $.01 \mu \mathrm{~F}$ is amply large.

In some vacuum-tube circuits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of voltage dividers is discussed at length elsewhere in this book.

OSCILLATORS

It was mentioned earlier that if there is enough positive feedback in an amplifier circuit, self-sustaining oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oscillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. For example, in Fig. 3-21A the circuit LC- is tuned to the desired frequency of oscillation. The cathode of the tube is connected to a tap on coil L and the grid and plate are connected to opposite ends of the tuned circuit. When an of current flows in the funed circuit there is a voltage drop across L that increases progressively along the turns. Thus the point at which the tap is connected will be at an intermediate potential with respect to the two ends of the coil. The amplified current in the plate circuit, which flows through the bottom section of L, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive feedback.

The umount of feedback depends on the position of the tap. If the tap is too near the grid end the voltage drop between grid and cathode is too small to give enough feedback to sustain oscillation, and if it is too seas, the plate end of the impedance between the cathode and plate is too small to permit good amplification. Maximum feedback usually is obtained when the tap is somewhere near the center of the coid.

The circuit of Fig. 3-21A is paraliel-fed, C_{b} being the blocking capacitor. The value of C_{b} is not critical so long as its reactance is low (not more than a few hundred ohms) at the operating frequency.

Capaciror C_{g} is the grid capacitor. it and $\boldsymbol{R}_{\mathrm{g}}$ (the grid leak) are used for the purpose of obtaining grid bias for the tube. In most oscillator circuits the tube generates its own bias. During the part of the cycle when the grid is positive with respect to the cathode, it attracts electrons. These electrons cannot flow through L back to the cathode because C_{g} "blocks" direct current. They therefore have to flow or "leak" through R_{g} to cathode, and in doing so cause a voltage drop in $\boldsymbol{R}_{\mathrm{g}}$ that places a negative bias on the grid. The amount
of bias so developed is equal to the grid current multiplied by the resistance of $\boldsymbol{R}_{\mathrm{g}}$ (Ohm's Law). The value of grid-leak resistance required depends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a fow thousand to several hurdred thousand ohms. The capacitance of C_{g} should be large enough to have low reactance (a few hundred ohms) at the operating frequency.

The circuit shown at B in Fig. 3-21 uses the voltage drops across two capacitors in series in the tuned circuit to supply the feedback. Other than this, the operation is the same as just described. The feedback can be varied by varying the ratio of the reactance of Cl and C 2 (that is, by varying the ratio of their capacitances).

Another type of oscillator, called the tunedplate tuned-grid circuit, is shows in Fig. 3-22. Resonant circuits tuned approximately to the same frequency are connected between grid and cathode and between plate and eathode. The two coils, LI

Fig. 3-21 - Basic oscillator circuits. Feedback voltage is obtained by tapping the grid and cathode across a portion of the tuned circuit. In the Hartley circuit the tap is on the coil, but in the Colpitts circuit the voltage is obtained from the drop across a capacitor.

Fig. 3-22 - The tuned-plate suned-grid oscillator.
and L2, are not magnetically coupled. The feedback is through the grid-plate capacitance of the tube, and will be in the right phase to be positive when the plate circuit, C2-L2, is tuned to a slightly higher frequency than the grid circuit, L1-Cl.The amount of feedback can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined by the tuned circuit that has the higher Q. The grid leak and grid capacitor have the same functions as in the other circuits. In this case it is convenient to use series feed for the plate circuit, so C_{b} is a bypass capacitor to guide the rf current around the plate supply.

There are many oscillator circuits (examples of others will be found in later chapters) but the basic feature of all of them is that there is positive feedback in the proper amplitude and phase to sustain oscillation.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feedback will depend on how heavily the oscillator is loaded - that is, how much power is being taken from the circuit. If the feedback is not large enough - grid excitation too small - a small increase in load may tend to throw the circuit out of oscillation. On the other hand, too much feedback will make the grid current excessively higher, with the result that the power loss in the grid circuit becomes larger than necessary. Since the oscillator itself supplies this grid power, excessive feedback lowers the over-all efficiency because whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oscillator design is frequency stability. The principal factors that cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or the tuning capacitor will alter the inductance or capacitance slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small amount, an effect called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective Q. The energy taken from the circuit to supply grid losses, as well as energy supplied to a load, represent an increase in the effective resist-
ance of the tuned circuit and thus lower its \mathbf{Q}. For highest stability, therefore, the coupling between the tuned circuit and the tube and load must be kept as loose as possible. Prefcrably, the oscillator should not be required to deliver power to an external circuit, and a high value of grid leak resistance should be used since this helps to raise the tube grid and plate resistances as seen by the taned circuit. Loose coupling can be effected in a variety of ways - one, for example, is by "tapping down" on the tank for the connections to the grid and plate. This is done in the "series-tuned" Colpitts circuit widely used in variable-frequency oscillators for amateur transmitters and described in a later chapter. Altematively, the L / C ratio may be made as small as possible while sustaining stable oscillations (high C) with the grid and plate connected to the ends of the circuit as shown in Figs. 3-21 and 3-22. Using relatively high plate voltage and low plate current also is desirable.

In general, dynamic stability will be at maximum when the feedback is adjusted to the least value that permits reliable oscillation. The use of a tube having a high value of transconductance is desirable, since the higher the transconductance the looser the permissible coupling to the tuned circuit and the smaller the feedback required.

Load variations act in much the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Mechanical variations, usually caused by vibrations, cause changes in inductance and/or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-21 and 3-22 the cathode is connected to ground. It is not actually essential that the radio-frequency circuit should be grounded at the cathode; in fact, there are many times when an of ground on some other point in the circuit is desirable. The rf ground can be placed at any point so long as proper provisions are made for fecding the supply voltages to the tube elements.

Fig. 3-23 shows the Hartley circuit with the plate end of the circuit grounded. The cathode and control grid are "above ground," so far as the rf is concerned. An advantage of such a circuit is that the frame of the tuning capacitor can be grounded. The Colpitts circuit can also be used with the plate

Fig. 3-23 - Showing how the plate may be grounded for if in a typical oscillator circuit (Hartley).
grounded and the cathode above ground; it is only necessary to feed the dic to the cathode through an If choke.

A tetrode or pentode tube can be used in any of the popular oscillator circuits. A common
variation is to use the screen grid of the tube as the anode for the Hartley or Colpitts oscillator circuit. It is usually used in the grounded anode circuit, and the plate circuit of the tube is tuned to the second harmonic of the oscillator frequency.

VHF AND MICROWAVE TUBES

Until now, it has been assumed that the time it takes for the electrons to travel from the cathode to the plate does not affect the performance of vacuum-tube operation. As the frequency of operation is raised, this time, called the transit time, becomes increasingly important. The transit time depends upon the voltage from the cathode to the plate and the spacing between them. The higher the voltage and the smaller the spacing, the shorter the transit time. This is why tubes designed for vhf and uhf work have very small interelectrode spacings. However, the power handing capabilities also get smailer as the spacing decreases so there is a limit above which ordinary triode and pentode tubes cannot be operated efficiently.

Many different tubes have been developed which actually use transit-time effects to an advantage. Velocity modulation of the electron stream in a klystron is one example. A small voltage applied across the gap in a re-entrant cavity resonator either retards or accelerates an electron stream by means of the resultant electric fietd. Initially, ali the electrons are traveling at the same velocity and the current in the beam is uniform. After the velocity fluctuations are impressed on the beam, the current is still uniform for awhile but then the electrons that were accelerated begin to catch up with the slower ones that passed through when the field was zero. The latter are also catching up with ones that passed through the gap earlier but were retarded. The result is that the current in the beam is no longer uniform but consists of a series of pulses. If the beam now passes through another cavity gap, a current will be induced in the cavity walls and an electric field also will be set up across the gap. If the phase of the electric field is right, the electron pulses or "bunches" pass through the gap and are retarded, thus giving up energy to the electric field. When the electric field reverses, it would normaliy accelerate the same number of electrons and give back the energy, but fewer electrons now pass through the gap and the energy given up is less. Thus, a net flow of energy is from the beam to the cavity. If the voltage produced across the output cavity is greater than that across the input cavity, amplification results (assuming the two cavity impedances are the same).

The type of kiystron that amateurs are most likely to use is the reflex klystron oscillator. Here, the input and output cavity are the same. The electron stream makes one pass through, becomes velocity modulated, and is turned around by the negative charge on an element called the repeller. During the second pass through, the stream is now bunched and delivers some of its energy to the cavity. The dissipated beam is then picked up by
the cavity walls and the circuit is completed. This is shown pictorially in Fig. 3-24.

Klystrons either have cavities external to the vacuum part of the tube or built in as an integral part of the tube structure. The 723 reflex klystron is of the latter type, and along with similar types can be purchased surplus. These tubes were used as local oscillators in radar receivers and can be used for the same purpose in amateur applications. They also may be used in low power transmitters.

Along with a heater supply (usually 6.3 volts), two other voltages are necessary for the operation of the reflex klystron. This is shown in Fig. 3-24. Vc is typically 300 volts dc and Vr will vary from 100 to 150 volts dc. The loaded Q of the reflex klystron cavity is quite low and oscillations will occur at different frequencies for various values of Vr. This can be used to advantage and either frequency modulation or automatic frequency control (afc) can be applied to the klystron by means of changes in Vr. As the repeller voltage is made more negative, it will be found that oscillations wilk occur, increase in amplitude, and then drop out. This will be repeated as the voltage is increased and each time the maximum amplitude of the output power will be less. However, the frequency range covered by each different set of oscillation conditions is approximately the same.

Fig. 3-24 - Cross-sectional view of a typical reflex klystron. The frequency of the cavity resonator is changed by varying the spacing between the grids using a suning mechanism and a flexible bellows. Modification of this system may be necessary to get certain surplus klysirons into an appropriate amateur band.

Fig. 3-25 - Schematic diagram and parts information for a power supply and control unit suitable for amateur microwave transceivers. Unless otherwise specified, capacitor values are in $\mu \mathrm{F}$ and resistors are 1/2-watt composition.
CR1 - 1000 PRV, 1-A.
F1 - 1-A fuse and holder.
J1 - Shielded microphane jack.
J2 - Coaxial chassis fitting.
L1 - 10-H 110-mA choke (Stancor C-1001).
R1 - 0.5-megohm potentiometer, audio taper.
R2 - 0.2-megham potentiometer, carbon, linear taper.
R3 - Meter shunt; value to suit meter used, for $1-\mathrm{mA}$ range.
R4 - 5000 ahms, 20 watts, with slider.
RFC1 - 15 turns No. 24 enamel on $1 / 2$-inch form. (Any rf choke for 30 to 100 MHz is suitable.)
S1 - Toggle switch.
S2 - Toggle switch.
S3 - Single-pole 3-position wafer switch.
S4 - Toggle switch.
T1 - 270-0-270 volts at 70 mA min., 5 volts, 3 A. 6.3 volts, 3.5 A (Stancor PC-8405).
T2 - 6.3 volts, 1.2 A (Stancor P-6134).

Practical metering, afc, modulator, and power supply circuit diagrams are shown in Fig. 3-25 (QST, August, 1960) which are suitable for the 723 and 2 K 26 klystrons. One disadvantage of the system shown is that the shell of the klystron is at 260 volts above ground. An alternate method is to ground the shell and apply -260 volis to the cathode and $-\left(260+V_{r}\right)$ to the repeiler. A 510 -voit supply is needed for the repeller, but since the repeller draws negligible current, this should not be difficult.

As is the case with most microwave tubes, coupling power out from the klystron is somewhat more complicated than is the case with lowfrequency tubes. A magnetic pickup loop placed in the cavity is connected either to a coaxial fitting or a waveguide probe. The latter (used with the 2 K 26 and the 723) is inserted into the middle of the
waveguide and the coupling to the line is determined by the depth of the probe. Since klystrons (and other microwave tubes) are quite sensitive to variations in loading, some sort of attenuator or an isolator is often necessary to prevent malfunctions.

Other types of microwave tubes that the amateur may encounter are the traveling wave tube (TWT), and the backward wave oscillator (BWO). Here, an electromapnetic wave is slowed down below the speed of light in free space and allowed to interact continuously with an electron stream. While the latter two tubes use magnets for focusing the electron beam, the magnetron and other crossed-field amplifiers also use a magnetic field in conjunction with an electric field in their operation.

Chapter 4

Semiconductor Devices

Materials whose conductivity falls approximately midway between that of good conductors (e.g., copper) and good insulators (e.g. quartz) are called semiconductors. Some of these materials (primarily germanium and silicon) can, by careful processing, be used in solid-state electronic devices that perform many or all of the functionsof thermionic fubes. In many applications their small size, long life and low power requirements make them superior to tubes.

The conductivity of a material is proportional to the number of free electrons in the material. Pure germanium and pure silicon crystals have relatively few free electrons. If, however, carefully controlled amounts of "impurities" (materials having a different atomic structure, such as arsenic or antimony) are added the number of free electrons, and consequently the conductivity, is increased. When certain other impurities are introduced (such as aluminum, gallium or indium), an electron deficiency, or hole, is produced. As in the case of free electrons, the presence of holes encourages the flow of electrons in the semiconductor material, and the conductivity is increased. Semiconductor material that conducts by virtue of the free clectrons is called n-type material; material that conducts by virtue of an electron deficiency is called p-type.

Electron and Hole Conduction

If a piece of p-type material is joined to a piece of n-type material as at A in Fig. 4-1 and a voltage is applied to the pair as at B, current will flow across the boundary or junction between the two (and also in the extemal circuit) when the battery has the polarity indicated. Electrons, indicated by the minus symbol, are attracted across the junction from the n material through the p material to the positive terminal of the battery, and holes, indicated by the plus symbol, are attracted in the opposite direction across the junction by the negative potential of the battery. Thus current flows through the circuit by means of electrons moving one way and holes the other.

If the battery polarity is reversed, as at C, the excess electrons in the n material are attracted away from the junction and the holes in the p material are attracted by the negative potential of the battery away from the junction. This leaves the junction region without any current camiers, consequently there is no conduction.

In other words, a junction of p - and n-type matcrials constitutes a rectifier. It differs from the

[^4]

Fig. 4-2 - At A, a germanium point-contact diode. At B, construction of a silicon junction-type diode. The symbol at \mathbf{C} is used for both diode types and indicates the direction of minimum resistance measured by conventional methods. At C, the arrow corresponds to the plate (anode) of a vecuum-tube diode. The bar represents the tube's cathode element.
diodes are used. The construction of such diodes is shown in Fig. 4-2. Germanium and silicon are the most widely used materials; silicon finds much application as a microwave mixer diode. As compared with the tube diode for rf applications, the semiconductor point-contact diode has the advantages of very low interelectrode capacitance (on the order of 1 pF or less) and not requiring any heater or filament power.

The germanium diode is characterized by relatively large current flow with small applied voltages in the "forward" direction, and small, although finite, current flow in the reversc or "back" direction for much larger applied voltages. A typical characteristic curve is shown in Fig. 4-3. The dynamic resistance in either the forward or back direction is determined by the change in current that occurs, at any given point on the

Fig. 43 - Typical point contact germanium diode characteristic curve. Because the back current is much smaller than the forward current, a different scale is used for back voltage

curve, when the applied voltage is changed by a small amount. The forward resistance shows some variation in the region of very small applied voltages, but the curve is for the most part quite straight, indicating fairly constant dynamic resistance. For small applied voltages, the forward resistance is of the order of 200 ohms or less in most such diodes. The back resistance shows considerable variation, depending on the particular voltage chosen for the measurement. It may run from a few thousand ohms to well over a megohm. In applications such as meter rectifiers for rf indicating instruments (rf voltmeters, wavemeter indicators, and so on) where the load resistance may be small and the applied voltage of the order of several volts, the resistances vary with the value of the applied voltage and are considerably lower.

Junction Diodes

Junction-type diodes made of silicon are employed widely as rectifiers. Depending upon the design of the diode, they are capable of rectifying currents up to 40 or 50 amperes, and up to reverse peak voltages of 2500 . They can be connected in series or in parallel, with suitable circuitry, to provide higher capabilities than those given above. A big advantage over thermionic rectifiers is their large surge-to-average-current ratio, which makes them suitable for use with capacitor-only filter circuits. This in tum leads to improved no-Hoad-to-full-load voltage characteristics. Some consideration must be given to the operating temperature of silicon diodes, although many carry ratings to 150 degrees \mathbf{C} or so. A silicon junction diode requires a forward vollage of from 0.4 to 0.7 volts to overcome the junction potential barrier.

Ratings

Semiconductor diodes are rated primarily in terms of maximum safe inverse voltage (PIV or PRV) and maximum average rectified current. Inverse voltage is a voltage applied in the direction opposite to that which would be read by a dc meter connected in the current path.
it is also customary with some types to specify standards of performance with respect to forward and back current A minimum value of forward current is usually specified for one volt applied. The voltage at which the maximum tolcrable back current is specified varies with the type of diode.

Zener Diodes

The Zener diode is a special type of silicon junction diode that has a charactenistic similar to that shown in Fig. 4-4. The sharp break from non-conductance to conductance is called the Zener knee; al applied voltages greater than this breakdown point, the voltage drop across the diode is essentially constant over a wide range of currents. The substantially constant voltage drop over a wide range of currents allows this semiconductor device to be used as a constant voltage reference or control element, in a manner somewhat similar to the gascous voltage-regulator tube. Voltages for Zener-diode action range from a

Fig. 4-4 - Typical characteristic of a Zener diode. In this example, the voltage drop is substantially constant at 30 volts in the (narmaly) reverse direction. Compare with Fig. 4-3. A diode with this characteristic would be called a " 30 -voit Zener diode."
few volts to several hundred and power ratings run from a fraction of a watt to 50 watts.

Zener diodes can be connected in series to advantage; the temperature coefficient is improved over that of a single diode of equivalent rating and the power-handling capability is increased.

Examples of Zerer diode applications are given in Fig. 4-5. The illustrations represent some of the more common uses to which Zeners are put. Many other applications are possible, though not shown here.

Voltage-Variable Capacitor Diodes

Voltage-variable capacitors, Varicaps or varactors, are $p-n$ junction diodes that behave as capacitors of reasonable Q when biased in the reverse direction. They are useful in many applications because the actual capacitance value is dependent upon the dc bias voltage that is applied. In a typical capacitor the capacitance can be varied over a 10 -to- 1 range with a bias change from 0 to -100 volts. The current demand on the bias supply is on the order of a few microamperes.

Typical applications include remote control of tuned circuits, automatic frequency control of receiver local oscillators, and simple frequency modulators for communications and for sweep-

Fig. 4-5 - Zener diodes have many practical uses. Shown at A, is a simple de voltage regulator which operates in the same manner as a gaseous regulator tube. Several Zener diodes can be connected in series (B) to provide various regulated voltages. At C, the filament line of a tube is supplied with regulated de to enhance oscillator stability and reduce hum. In the circuit at D a Zener diode sets the bias level of an rf power amplifier. Bias regulation is afforded the bipolar transistor at E by connecting the Zener diode between base and ground. At F, the 18-valt Zener will clip peaks at and above 18 volts to protect 12 -valt mobile equipment. (High peaks are frequently caused by transients in the automotive ignition systern.)

Fig. 4-6 - Varactor frequency multipliers are shown at A and B. In practice the tuned circuits and impedance-matching techniques are somewhat more complex than those shown in these representative circuits. At C, a varactor diode is used to vary the frequency of a typical JFET VFO. As the de voltage is changed by control R, the junction capacitance of CR1 changes to shift the resonant frequency of the tuned circuit.
tuning applications. Diodes used in these applications are frequently referred to as "Varicap" or "Epicap" diodes.

An important transmitter application of the varactor is as a high-efficiency frequency multiplier. The basic circuits for varactor doublers and triplers are shown in Fig. 4-6, at A and B. In these circuits the fundamental frequency flows around the input loop. Harmonics generated by the varactor are passed to the load through a filter tuned to the desised harmonic. In the case of the tripler circuit at B, an idler circuit, tuned to the second harmonic, is required. Tripling efficiencies of 75 percent are not too difficult to come by, at power levels of 10 to 25 watts.

Fig. 4-6C illustrates how a voltage-variable capacitor diode can be used to tune a VFO. These diodes can be used to tune other of circuits also, and are particularly useful for remote tuning such as might be encountered in vehicular installations. These diodes, because of their small size, permit tuned-circuit assemblies to be quite compact. Since the Q of the diode is a vital consideration in

Fig. 4-7 - Cross-sectional view of a hoi-carrier diode.
such applications, this factor must be taken into account when designing a circuit. Present-day manufacturing processes have produced units whose Qs are in excess of 200 at 50 MHz .

HOT-CARRIER DIODES

The hot-carrier diode is a high-frequency and microwave semiconductor whose characteristics fall somewhere between those of the point-contact diode and the junction diode. The former is comparable to the point-contact diode in highfrequency characteristics, and exceeds it in uniformity and reliability. The hot-carrier diode is uscful in high-speed switching circuits and as a mixer, detector, and rectifier well into the microwave spectrum. In essence, the hot-carrier diode is a rectifying metal-semiconductor junction. Typical metals used in combination with silicon of either the n - or p-type are platinum, silver, gold or palladium.

The hot-carrier diode utilizes a true Schottky barrier, whereas the point-contact diode used a metal whisker to make contact with the semiconductor element. In a hot-carrier diode a planar area provides a uniform contact potential and uniform current distribution throughout the junction. This geometry results in lower series resistance, greater power capability, lower noise characteristics, and considerably greater immunity to burmout from mansjent pulses or spikes. A cross-sectional view of a hot-carrier diode is shown in Fig. 4-7 (courlesy of Hewlett Packard Associates). A comparison in characteristics between a point-contact diode and a hot-carrier diode is given in Fig. 4-8. Detailed information on the characteristics of hot-carricr diodes and their many applications is given in Hewlett Packard Application Nore 907.

PiN Diodes

Another type of diode is the PIN diode. It might more aptly be described as a variable resistor than as a diode. In its intended application (at vhf and higher) it docs not rectify the applied signal, nor does it generate harmonics. Its resistance is controlled by dc or a low-frequency signal, and the high-frequency signal which is being controlled by the diode sees a constant polarity-independent resistance. The dynamic resistance of the PIN diode is often larger than 10,000 ohms, and its junction capacitance is very low.

PIN diodes are used as variable shunt or series resistive elements in microwave transmission lines. and as agc diodes in the signal input lead to vhf and uhf fm receivers. The PIN diode offers many interesting possibilities.

Fig. 4-8 - Curves showing the comparisan in characteristics between a IN21G point-contact diode and a Hewlett-Packard HPA2350 hot-carrier diode.

TRANSISTORS

Fig. 4-9 - Illustration of a junctionpnp transistor. Capacitances Cbe and Cbc are discussed in the text, and vary with changes in operating and signal voltage.

Fig. 4-9 shows a "sandwich" made from two layers of p-type semiconductor material with a thin layer of n-type between. There are in effect two pn junction diodes back to back. If a positive bias is applied to the p-type material at the left, current will flow though the left-hand junction, the holes moving to the right and the clectrons from the n-type material moving to the left. Some of the holes moving into the n-type material will combine with the electrons there and be neutralized, but some of them also will travel to the region of the right-hand junction.

If the pn combination at the right is biased negatively, as shown, there would normally be no current flow in this circuit. However, there are now additional holes available at the junction to travel to point B and electrons can travel toward point A, so a current can flow even though this section of the sandwich is biased to prevent conduction. Most of the current is between A and B and does not flow out through the common connection to the n-type material in the sandwich.

A semiconductor combination of this type is called a transistor, and the three sections are known as the emitter, base and collector, respectively. The amplitude of the collector current depends principally upon the amplitude of
the emitter current; that is, the collector current is controlled by the emitter current.

Between each p-n junction exists an area known as the depletion, or transition region. It is similar in characteristics to a dielectric layer, and its width varies in accordance with the operating voltage. The semiconductor materials either side of the depletion region consitute the plates of a capacitor. The capacitance from base to emitter is shown as $C_{\text {be }}$ (Fig. 49), and the collector-base capacitance is represented as C_{bc}. Changes in signal and operating voltages cause a nonlinear change in these junction capacitances, which must be taken into account when designing some circuits. A base-emitter resistance, $r b^{\prime}$, also exists. The junction capacitance, in combination with rb' determines the useful upper frequency limit ($f T$ or $f a$) of a transistor by establishing an $R C$ time constant.

Power Amplification

Because the collector is biased in the back direction the collector-to-base resistance is high.

This photo shows various modern-day bipolar and fieldeffect transistors. Various case styles and power classes are represented here.

Fig. 4-10 - Schematic and pictorial representations of junction-type transistors. In analogous terms the base can be thought of as a tube's grid, the collector as a plate, and the emitter as a cathode. (See Fig. 4-12.)

On the other hand, the emitter and collector currents are substantially equal, so the power in the collector circuit is larger than the power in the cmitter circuit ($P=I^{2} R$, so the powers are proportional to the respective resistances, if the currents are the same). In practical transistors emitter resistance is of the order of a few hundred ohms while the collector resistance is hundreds or thousands of times higher, so power gains of 20 to 40 dB or cven more are possible.

Types

The transistor may be one of the types shown in Fig. 4-10. The assembly of p - and n-types materials may be reversed, so that pnp and npn transistors are both possible.

The first two letters of the npn and pnp designations indicate the respective polarities of the voltages applied to the emitter and collector in normal operation. In a pnp transistor, for example, the emitter is made positive with respect to both the collector and the base, and the collector is made negative with respect to both the emitter and the base.

Manufacturers are constantly working to improve the performance of their transistors greater reliability, higher power and frequency ratings, and improved uniformity of characteristics for any given type number. Recent developments provided the overiay transistor, whose emitter structure is made $\mu \mathrm{p}$ of several emitters which are joined together at a common casc terminal. This process lowers the base-emitter resistance, $r b^{d}$, and improves the transistor's input time constant, which is determined by $r b^{\circ}$ and the junction capacitance of the device. The overlay transistor is extremely useful in vhf and uhf applications, and is
capable of high-power operation well above 1000 MHz . These transistors are quite useful as frequency doublers and triplers, and are able to provide an actual power gain in the process.

Another multi-emitter transistor has been developed for use from hf through uhf, and should be of particular interest to the radio amateur. It is called a balanced-emitter transistor (BET), or "ballasted" transistor. The transistor chip contains several triode semiconductors whose bases and collectors are connected in parallel. The various emitters, however, have built-in emitter resistors (typically about 1 ohm) which provide a current-limiting safety factor during overload periods, or under conditions of significant mismatch. Since the emitters are brought out to a single case terminal the resistances are effectively in parallel, thus reducing the combined emitter resistances to a fraction of an ohm. (If a significant amount of resistance were allowed to exist it would cause degeneration in the stage and would lower the gain of the circuit.)

Most modem transistors are of the junction varicty. Various names have been given to the several types, some of which are junction alloy, mesa, and planar. Though their characteristics may differ slightly, they are basically of the same family and simply sepresent different physical properties and manufacturing techniques.

Transistor Characteristics

An important characteristic of a transistor is its beta (β), or current-amplification factor, which is sometimes expressed as $h_{\text {FE }}$ (static forward-current

Fig. 4-11 - Transit-time effects (in combination with base-collector capacitance Cbc) can cause the positive-feedback condition shown at A. Normally, the phase of the collector signal of an amplifier is the inverse of the bese signal. Positive feedback can be corrected by using unilateralization, feeding an equal amount of opposite-phase signal back to the base through Uc. Neutralization is shown at B, and deals with negative feedback, as can be seen by the phase relationships shown.
transfer ratio) or hfe (small-signal forward-current transfer ratio). Both symbols relate to the grounded-mitter configuration. Beta is the ratio of the base current to the collector current. Thus, if a base current of 1 mA causes the collector current to rise to 100 mA the beta is 100 . Typical betas for junction transistors range from as low as 10 to as high as several hundred.

A transistor's alpha (a) is the ratio of the emitter and collector currents. Symbols h FB (static forwand-current transfer ratio) and hfb (smallsignal forward-current transfer ratio), commonbase hookup, are frequently used in connection with gain. The smaller the base current, the closer the collector current comes to being equal to that of the emitter, and the closer alpha comes to being 1. Alpha for a junction transistor is usually between 0.92 and 0.98 .

Transistors have frequency characteristics which are of importance to circuit designers. Symbol f_{T} is the gain bandwidth product (common-emitter) of the transistor. This is the frequency at which the gain becomes unity, or 1 . The expression "alpha cutoff" is frequently used to express the useful upper-frequency limit of a transistor, and this relates to the common-base hookup. Alpha cutoff is the point at which the gain is 0.707 , its value at 1000 Hz .

Another factor which limits the upper frequency capability of a transistor is its transit time. This is the period of time required for the current to How from emitter to collector, through the semiconductor base material. The thicker the base material, the greater the transit time. Hence, the thicker the hase material the more likelihood there will be of phase shift of the signal passing through it. At frequencies near and above fry or alpha cutoff partial or complete phase shift can occur. This will give rise to positive feedback because the internal capacitance, C_{bc}, (Fig. 4-11) feeds part of the in-phase collector signal back to the base. The positive feedback can cause instability and oscillation, and in most cases will interlock the input and output tuned circuits of an If amplifier so that it is almost impossible to tune them properly. Positive feedback can be corrected by

Fig. 4-12 - A typical collector-current ws. collector-voltage characteristic of a junction-type transistor, for various emitter-current values. The circuit shows the setup for taking such measurements. Since the emitter resistance is low, a current-limiting resistor, R, is connected in series with the source of current. The emitter current can be set at a desired value by adjustment of this resistance.

Fig. 4-13 - Collector current vs. collector voltage for various values of basa current, for a junction-type transistor. The values are determined by means of the circuit shown.
using a form of neutralization called unilateralization. In this case the feedback conditions are balanced out. These conditions include a resistive as well as a capacitive component, thus changing a network from bilaterial to one which is unilateral. Negative feedback caused by $C_{\text {be, }}$ on the other hand, can be corrected by neutralization. Examples of both techniques are given in Fig. 4-11.

Characteristic Curves

The operating characteristics of transistors can be shown by a series of characteristic curves. One such set of curves is shown in Fig. 4-12. It shows the collector current us. collector voltage for a number of fixed values of emitter current. Practically the collector current depends almost entirely un the emitter current and is independent of the collector voltage. The separation between curves representing equal steps of emitter current is quite uniform, indicating that almost distortionless output can be obtained over the useful operating range of the transistor.

Another type of curve is shown in Fig. 4-13, together with the circuit used for obtaining it. This also shows collector current us collector voltage, but for a number of different values of base current. In this case the emitter element is used as the common point in the circuit. The collector current is not independent of collector voltage with this type of connection, indicating that the output resistance of the device is fairly low. The base current also is quite low, which means that the resistance of the base-mitter circuit is moderately high with this method of connection. This may be contrasted with the ligh values of emitter current shown in Fig. 4-12.

Ratings

The principal maximum ratings for transistors are collector dissipation, collector voltage, collector current, and emitter current. Variations in these basic ratings, such as maximum collector-io-base voltage, are covered in the symbols chart later in this chapter. The designer should study the maximum ratings of a given transistor before selecting it for use in a circuit.

The dissipation rating can be a troublesome matter for an inexperienced designer. Techniques must be employed to reduce the operating

Fig. 4-14 - Basic transistor amplifier circuits. The differences between modes is readily apparent. Typical component values are given for use at audio frequencies. The input and output phase relationships are as shown.
temperature of power transistors, and this usually requires that thermal-conducting materials (heat sinks) be installed on the body of the transistor. The specification sheets list the maximum transistor dissipation in terms of case temperatures up to 25 degrees \mathbf{C}. Symbol $\mathbf{T}_{\mathbf{C}}$ is used for the case temperature and $\mathrm{P}_{\mathbf{T}}$ represents the total dissipation. Silicone grease is often used to assure proper thermal transfer between the transistor and its heat sink. Additional information on the use of heat sinks is given in Chapter 18.

Excessive heat can lead to a condition known as thermal sunaway. As the transistor gets hotter its intemal resistance becomes lower, resulting in an increase of emitter-to-collector and emitter-to-base current. The increased current raises the dissipation and further lowers the internal resistance. The effects are cumulative, and eventually the transistor will be destroyed. It can be seen from this
discussion that the use of heat sinks is important, where applicable.

TRANSISTOR AMPLIFIERS

Amplifier circuits used with transistors fall into one of three types, known as the common-base, commonemitter, and common-collector circuits. These are shown in Fig. 4-14 in elementary form. The three circuits correspond approximately to the grounded-grid, grounded-cathode and cathodefollower circuits, respectively, used with vacuum tubes.

The important transistor parameters in these circuits are the short-circuit current transfer ratio, the cut-off frequency, and the input and output impedances. The short-circuit current transfer ratio is the ratio of a small change in output current to the change in input current that causes it, the output circuit being short-circuited. The cutoff frequency was discussed earlier in this chapier. The input and output impedances are, respectively, the impedance which a signal source working into the transistor would see, and the internal output impedance of the transistor (corresponding to the plate resistance of a vacuum tube, for example).

Common-Base Circuit

The input circuit of a common-base amplifier must be designed for low impedance, since the emitter-to-base resistance is of the order of $25 / I_{\text {e }}$ ohms, where f_{e} is the emitter current in uillianperes. The uptimum output load impedance, R_{L}, may range from a few thousand ohms to $\mathbf{1 0 0}, 000$, depending upon the requirements.

In this circuit the phase of the output (collector) current is the same as that of the input (emitter) current. The parts of these currents that flow through the base resistance are likewise in phase, so the circuit tends to be regenerative and will oscillate if the current amplification factor is greater than 1.

Common-Emitter Circuit

The commonemitter circuit shown in Fig. 4-14 corresponds to the ordinary grounded-cathode vacuum-tube amplifier. As indicated by the curves of Fig. 4-13, the basc current is small and the input impedance is therefore fairly high - several thousand ohms in the average case. The collector resistance is some tens of thousands of ohms, depending on the signal source impedance. The commonemitter circuit has a lower cutoff frequency than does the common-base circuit, but it gives the highest power gain of the three configurations.

In this circuit the phase of the output (collector) current is opposite to that of the input (base) current so such feedback as occurs through the small emitter resistance is negative and the amplifier is stable.

Common-Collector Circuit

Like the vacuum-tube cathode follower, the common-collector transistor amplifier has high
input impedance and low output impedance. The latter is approximately equal to the impedance of the signal input source multiplied by ($1-a$). The input resistance depends on the load resistance. being approximately equal to the load resistance divided by $(1-a)$. The fact that input resistance is directly related to the load resistance is a disadvantage of this type of amplifier if the load is one whose resistance or impedance varles with frequency.

The current transfer ratio with this circuit is :

$$
\frac{1}{1-a}
$$

and the cut-off frequency is the same as in the groundedemitter circuit. The output and input currents are in phase.

PRACTICAL CIRCUIT DETAILS

The bipolar transistor is no longer restricted to use in low-voltage circuits. Many modern-day transistors have voltage ratings as high as 1400. Such transistors are useful in circuits that operate directly from the 117 -volt ac line, following rectification. For this reason, battery power is no longer the primary means by which to operate transistorized equipment. Many low-voltage transistor types are capable of developing a considerable amount of af or rf power, hence draw amperes of current from the power supply. Dry batteries are seldom practical in circuits of this type. The usual approach in powering high-current, highwattage transistorized equipment is to employ a wet-cell storage battery, or operate the equipment from a 117-volt ac line, stepping the primary voltage down to the desired level by means of a transformer, then rectifying the ac with silicon diodes.

Coupling and Impedance Matching

In contrast to vacuum tubes, bipolar transistors present low input and output impedances when used as amplifiers. Fieldeffect transistors are the
exception, exhibiting terminal impedances similar to those of triode vacuum tubes. Therefore, the designer of bipolar transistor circuits must deal with specific matching techniques that assure efficient power transfer and acceptable stability of operation. Most of the LC networks used in tuned transistor amplifiers are of established standard configuration, but in practice call for much higher C-to- L ratios than are common to circuits using tubes. The low terminal impedances of bipolsr transistors result from the fact that current is being amplified rather than voltage. High base or collector current (plus relatively low operating voltages) establishes what may at times seem to be unworkable terminal impedances - ten ohms or less. The greater the power input and output of an amplifier stage the more pronounced the matching problem becomes, requiring the employment of special matching techniques. Low-level amplifying stages are not so seriously affected, and the usual procedure is to use simple $R C$-coupling techniques for audio (and some ri) amplifiers. This being the case, the discyssion will relate primarily to common-emitter stages that are called upon to deliver significant amounts of output power.

When designing matching network for efficient transfer of power from the collector to a given load impedance, the designer must first establish what the level of power output will be in watts. He must know also what the operating voltage for the collector (collector to emitter) will be. Once these quantities are determined the collector load impedance can be calculated by using the formula:

$$
R_{L}=\frac{V_{c c_{c}^{2}}}{2 P_{0} \text { (watts) }}
$$

where $R_{\mathrm{L}}=$ Collector load impedance at resonance
$V_{\text {cc }}=D c$ operating voltage. collector to emitter
$P_{0}=$ Required power output in watts

Fig. 4.15 - A practical exampla illustrating the problems encountered when designing natworks for use with solid-state power amplifiers. Transformers T 1 and r 2 can be used to bring the base and collector impedences up to a practical value for matching with L and T networks. The transformers are broad-band, roroidal types.

Example: An amplinier stage must deliver 10 watts to a known resistive load. The dc voltage from collector to emitter is $13.6 . R_{\mathrm{L}}$ is

$$
R_{L}=\frac{V_{c c^{2}}}{2 P_{\mathrm{o}}}=\frac{184.26}{20}=9.248 \text { ohms }
$$

It is not difficult to determine from this that an amplifier delivering, say, 25 watts output at a collector supply of 12 volts would have an extremely low collector impedance (2.88 ohms). Few standard $L C$ networks are suitable for transforming that value to the typical 50 -ohm nonreactive antenna impedance. The situation becomes even more complex when matching a power driver to the base element of a power-amplifier stage. In such a case it would not be uncommon to match an 18 -ohm collector impedance to a 3 -ohm base impedance, or similar.

Two common networks are illustrated in Fig. 4-15. Additional information is contained in Chapter 6 of this book. An excellent design aid is Motorola's Matching Network Designs with Computer Solutions, Application Note AN-267. The bibliography at the end of this chapter lists other recommended texts for amateur and professional designers.

Broadband toroidal-wound transformers and baluns are frequently used to match difficult impedances. They can be used in combination with tuned circuits or networks to arrive at practical network values. Resonant networks are employed to provide needed selectivity for assurance of clean output waveforms from amplifiers. A practical upper limit for network Q_{L} (loaded Q) is 5 , though some professional engineers design for values higher than 5 . It should be understood that the higher the Q_{L} the greater the chance for electrical instability. It is recommended that the amateur adhere to the practice of designing his networks for $Q_{\text {L }}$ values between 3 and 5 . Values as low as 1 are suitable for some circuits, especially low-pass harmonic filters of the variety used in the 50 -ohm output line from many amplifiers.

Bias and Bias Stabilization

Transistors must be forward biased in order to conduct significant current. In the npn design case the collector and base must be positive with respect to the emitter. The same is true when working with a pnp device, but the base and
collector must be negative with respect to the emitter. The required bias is provided by the collector-to-emitter voltage, and by the emitter-tobase voltage. These bias voltages cause two currents to flow ~ emitter-to-collector current and emitter-to-base current. Either type of transistor, pnp or npn, can be used with a negative- or positive-ground power source by changing the circuit hookup as shown in Fig. 4-16. Forward bias is still properly applied in each instance. The lower the forward bias, the lower the collector current. As the forward bias is increased the collector current rises and the junction temperature increases. If the bias is continuously increased a point will be reached where the transistor becomes overloaded and bums out. This condition, called chermal runaway was discussed earlier in the chapter. To prevent damage to the transistor, some form of bias stabilization should be included in the design. Some practical bias-stabilization techniques are given in Fig. 4-17. At A and B, R1 in series with the emitter, is for the purpose of "swamping out" the resistance of the emitter-base diode; this swamping helps to stabilize the emitter current. The resistance of RI should be large. compared with that of the emitter-base diode, which is "approximately equal to 25 divided by the emitter current in $\mathbf{m A}$.

Since the current in R1 flows in such a direction as to bias the emitter negatively with respect to the base (a pnp transistor is assumed), a base-emitter bias slightly greater than the drop in Rl must be supplied. The proper operating point is achieved through adjustment of voltage divider R2R3, which is proportioned to give the desired value of no-signal collector current.

In the transformer-coupled circuit, input signal currents flow through R1 and R2, and there would be a loss of signal power at the base-emitter diode if these resistors were not bypassed by Cl and C 2 . The capacitors should have low reactance com-

Fig. 4-16 - An example of how the circuit polarity can be changed to accommodate either a positive or negative power-supply ground. Npn transistors are shown here, but the same rules apply to pnp types.

NEGATIVE GROUND

POSITIVE GROUND
 niques. A text discussion is given.
pared with the resistances across which they are connected. In the resistance-coupled circuit R2 serves as part of the bias voltage divider and also as part of the load for the signal-input source. As seen by the signal source, R3 is in parallel with R2 and thus becomes part of the input load resistance. C3 must have low reactance compared with the paralle! combination of R2R3 and the base-toemitter resistance of the transistor. The load impedance will determine the reactance of C4.

The output load resistance in the transformercoupled case will be the actual load as reflected at the primary of the transformer, and its proper value will be determined by the transistor characteristics and the type of operation (Class A, B). The value of $\boldsymbol{R}_{\mathbf{L}}$ in the resistance-coupled case is usually such as to permit the maximum ac voltage swing in the collector circuit without undue distortion, since Class-A operation is usual with this type of amplifier.

Transistor currents are sensitive to temperature variations, and so the operating point tends to shift as the transistor heats. The shift in operating point is in such a direction as to increase the heating, leading to thermal monaway. The heat developed depends on the amount of power dissipated in the transistor, so it is obviously advantageous in this respect to operate with as little internal dissipation as possible; i.e., the de input should be kept to the lowest value that will permit the type of operation desired and should never exceed the rated value for the particular transistor used.

A contributing factor to the shift in operating point is the collector-to-base leakage current (usually designated $I_{\text {co }}$) - that is, the current that flows from the collector to base with the emitter
connection open. This current, which is highly temperature sensitive, has the effect of increasing the emitter current by an amount much larger than $f_{\text {co }}$ itself, thus shifting the operating point in such a way as to increase the collector current. This effect is reduced to the extent that $I_{\text {co }}$ can be made to flow out of the base terminal rather than through the base-emitter diode. In the circuits of Fig. 4-17, bias stabilization is improved by making the resistance of R1 as large as possible and both R2 and R3 as small as possible, consistent with gain and power-supply cconomy.

It is common practice to employ certain devices in the bias networks of transistor stages to enhance bias stability. Thermisfors or diodes can be used to advantage in such circuits. Examples of both techniques are given in Fig 4-17 at C and D. Thermistors (temperature-sensitive resistors) can be used to compensate the rapid increase in collector current which is brought about by an increase in temperature. As the temporature in that part of the circuit increases, the thermistor's resistance decreases, reducing the emitter-to-base voltage (bias). As the bias is reduced in this manner, the collector current tends to remain the same, thus providing bias stabilization.

Resistors RS and R7 of Fig. 4-17D are selected to give the most effective compensation over a particular temperature range.

A somewhat better bias-stabilization method is shown in Fig. 4-17C. In this instance, a diode is used between the base of the transistor and ground, replacing the resistor that is used in the circuits at A and B . The diode establishes a fixed value of forward bias and sets the no-signal collector current of the transistor. Also, the diode

bias cument varies in direct proportion with the supply voltage, tending to hold the no-signal collector current of the transistor at a steady value. If the diode is installed thermally close to the transistor with which it is used (clamped to the chassis near the transistor heat sink), it will provide protection against bias changes brought about by temperature excursions. As the diode temperature increases so will the diode bias current, thus lowering the bias voltage. Ordinarily, diode bias stabilization is applied to Class B stages. With germanium transistors, diode bias stabilization reduces collector-current variations to approximately one fifth of that obtainable with thermistor bias protection. With silicon transistors, the current variations are reduced to approximately one-fifteenth the thermistor-bias value.

Frequency Stability

Parasitic oscillations are a common source of trouble in transistor circuits. If severe enough in magnitude they can cause thermal runaway and destroy the transistor. Oscillation can take place at any frequency from just above de to the f_{T} of the device, and these parasitics can often pass unnoticed if the waveforms are not examined with an oscilloscope. In addition to posing a potential danger to the device itself, the oscillations can cause distortion and unwanted radiation of spurious energy. In an amateur transmitter this condition can lead to violation notices from the FCC, interference to other services, and TV1. In the case of receivers, spurious energy can cause "birdies" and poor noise figures.

A transistor chosen for high-frequency operation U_{T} at least five times greater than the proposed operating frequency) can easily oscillate above the operating frequency if feedback conditions are correct. Also, the device gain in the
spectrum below the operating frequency will be very high, giving rise to low-frequency oscillation. At vhf and uhf phase shifts come into play, and this condition can encourage positive feedback, which leads to instability. At these higher frequencies it is wise to avoid the use of rf chokes and coupling capacitors whencver possible. The capacitors can cause shifts in phase (as can the base semiconductor material in the transistor), and the if chokes, unless of very low Q, can cause a tuned-base tuned-collector condition. Some precautionary measures against instability are shown in Fig. 4-18. At A, RFCl has its Q lowered by the addition of the 100 -ohm series resistor. Alternatively, RFC1 could be shunted by a low-value resistor, but at some sacrifice in driving power. One or more ferrite beads can be slipped over the pigtail of an rf choke to lower the \boldsymbol{Q} of the inductor. This method may be preferred in instances where the addition of a low-value resistor might establish an undesirable bias condition, as in the base return of a Class C stage. Parasitic choke 21 consists of three ferrite beads slipped over a short piece of wire. The choke is installed as close to the collector terminal as possible. This low- Q choke will help prevent vhf or uhf instability. RFC2 is part of the decoupling network in the collector supply lead. It is bypassed for the operating frequency by means of the $.01-\mu \mathrm{F}$ capacitor, but is also bypassed for low frequencies by the addition of the $1-\mu \mathrm{F}$ capacitor. In the whi amplifier at $\mathrm{B}, \mathrm{Z1}$ and Z 2 arc ferrite-bead chokes. They present a high impedance to the base and collector elements, but because they are low- Q chokes there is little chance for them to permit a tuned-base tuned-collector oscillation. At C, the stage operates Class A, a typical arrangement in the low-level section of a transmitter, and the emitter is above ground by virtue of bias resistor R1. It must be bypassed to
assure maximum stage gain. Here the emitter is bypassed for the operating frequency and for vhf. By not bypassing the emitter for low frequencies the stage is degenerative at 'lf. This will lessen the chance of low-frequency oscillation. The supply leads, however, are bypassed for the operating frequency and for $1 f$, thus preventing unwanted feedback between stages along the supply leads. ZI is a ferrite-bead vhf/uhf parasitic choke. The 10 -ohm resistor, R 2 , also helps suppress vhf parasitics. The emitter lead should be kept as short as possible in all three circuits to enhance stability and to prevent degeneration at the operating frequency. It is wise to use rf shields between the input and output halves of the rf amplifier stage to prevent unwanted coupling between the base and collector tuned circuits. At operating frequencies where toroid cores are suitable, the sluields can often be omitted if the tuned circuits use toroidal inductors. Toroidal transformers and inductors have self-shielding properties - an asset to the designer.

FIELD-EFFECT TRANSISTORS

Still another semiconductor device, the fieldeffect transistor, (FET) is superior to bipolar transistors in many applications because it has a high input impedance, its charactenstics more nearly approach those of a vacuum tube.

The Junction FET

Field-effect transistors are divided into two main groups: junction FETs, and MOSFETs. The basic JFET is shown in Fig. 4-19.

The reason for the terminal names will become clear later. A dc operating condition is set up by starting a current flow between souxce and drain. This current flow is made up of free electrons since the semiconductor is n-type in the channel, so a positive voltage is applied at the drain. This positive voltage attracts the negatively charged free electrons and the current flows (Fig. 4-20). The next step is to apply a gate voltage of the polarity shown in Fig. 4-20. Note that this reverse-biases the gates with respect to the source, channel, and drain. This reverse-bias gate voltage causes a depletion layer to be formed which takes up part of the chammel, and since the electrons now have less volume in which to move the resistance is greater and the current between source and drain is reduced. If a large gate voltage is applied the depletion regions meet, causing pinch off, and consequently the source-drain current is reduced

Fig. 4-19 - The junction field-effect transistor.

Fig. 4-20 - Operation of the JFET under applied bias. A depletion region (light shading) is formed, compressing the channel and increasing its resistance to current flow.
nearly to zero. Since the large source-drain current changed with a relatively small gate voltage, the device acts as an amplifier. In the operation of the JFET, the gate terminal is never foward biased, because if it were the source-drain current would all be diverted through the forward-biased gate junction diode.

The resistance bctween the gate terminal and the rest of the device is very high, since the gate terminal is always reverse biased, so the JFET has a very high input resistance. The source terminal is the source of current carriers, and they are drained out of the circuit at the drain. The gate opens and closes the amount of channel current which flows in the pinch-off region. Thus the operation of a FET closely resembles the operation of the vacuum ube with its high grid input impedance. Comparing the JFET to a vacuum tube, the source corresponds to the cathode, the gate to the grid, and the drain to the plate.

MOSFETs

The other large family which makes up fieldeffect transistors is the insulated-gate FET, or MOSFET, which is pictured schematically in Fig. 4-21. In order to set up a dc operating condition, a positive polarity is applied to the drain terminal. The substrate is connected to the source, and both are at ground potential, so the channel electrons are attracted to the positive drain. In order to regulate this source-drain current, voltage is applied to the gate contact. The gate is insulated from the rest of the device by a layer of very thin dielectric material, so this is not a p-n junction between the gate and the device - thus the name insulated gate. When a negative gate polarity is applied, positive-charged holes from the p-type substrate

Fig. 4-2i - The insulated-gate field-effect transistor.

Fig. 4-21A-Typical JFET characteristic curves.
are attracted toward the gate and the conducting channel is made more narrow; thus the sourcedrain current is reduced. Wher a positive gate voltage is connected, the holes in the substrate are repelled away, the conducting channel is made larger, and the source-drain current is increased. The MOSFET is more flexible since cither a positive or negative voltage can be applied to the gatc. The resistance between the gate and the rest of the device is extremely high because they are separated by a layer of thin dielectric. Thus the MOSFET has an extremely high input impedance. In fact, since the leakage through the insulating material is generally much smaller than through the reverse-biased $\mathrm{p}-\mathrm{n}$ gate junction in the IFET, the MOSFET has a much higher input impedance. Typical values of $R_{\text {in }}$ for the MOSFET are over a million megohms, while $R_{\text {in }}$ for the JFET ranges from megohms to over a thousand megohms. There are both single-gate and dual-gate MOSFETs avaif able. The fatter has a signal gate, Gate 1, and a control gate, Gate 2. The gates are effectively in serics making it an easy matter to control the dynamic range of the device by varying the bias on Gate 2. Dual-gate MOSFETs are widely used as agc-controlled rf and i-f amplifiers, as mixers and product detectors, and as variable attenuators. The isolation between the gates is relatively high in mixer service. This helps lessen oscillator "pulling" and reduces oscillator radiation. The forward transadmittance (transconductance, or g_{m}) of modern MOSFETs is as high as 18,000 , and they are designed to operate efficiently well into the uhf spectrum.

Characteristic Curves

The characteristic curves for the FETs described above are shown in Figs. 4-21A and 4-21B, where drain-source current is plotted against drain-source voltage for given gate voltages.

Fig. 4-22 - Schematic presentation of a gateprotected MOSFET. Back-to-back Zener diodes are bridged internally from gates 1 and 2 to tha source/substrate element.

Fig. 4-21B-Typical MOSFET characteristic curves.

Classifications

Fieldeffect transistors are classed into two main groupings for application in circuits, ENHANCEMENT MODE and DEPLETION MODE. The enhancement-mode devices are those specifically constructed so that they have no channel. They become useful only when a gate voltage is applied that causes a chansel to be formed. IGFETs can be used as enhancement-mode devices since both polarities can be applied to the gate without the gate becoming forward biased and conducting.

A depletion-mode unit corresponds to Figs. 4-19 and 4-21 shown earlier, where a channel exists with no gate voltage applied. For the JFET we can apply a gate voltage and deplete the channel, causing the current to decrease. With the MOSFET we can apply a gate voltage of either polarity so the device can be depleted (current decreased) or enhanced (current increased).

To sum up, a depletion-mode FET is one which has a channel constructed; thus it has a current flow for zero gate voltage. Enhancement-mode FETs are those which have no channel, so no current flows with zero gate voltage.

Gate-Protected FETs

Most JFETs are capable of withstanding up to 80 volts pk-pk from gate to source before junction damage occurs. Insulated-gate FETs, however, can be damaged by allowing the leads to come in contact with plastic materials, or by the simple act of handling the leads with one's fingers. Static charges account for the foregoing, and the damage takes the form of punctured dielectric between the gate or gates and the remainder of the internal elements. Devices of the MFE3006 and 3N140 series are among those which can be easily damaged.

Gate-protected MOSFETs are currently available, and their gates are able to withstond pk-pk voltages (gate to source) of up to 10 . Internal Zener diodes are connected back to back from each gate to the source/substrate element. The 40673 and 3 N 200 FETs are among the types which have built-in Zener diodes. Dual-gate MOSFETs which are gate-protected can be used as single-gate protected FETs by connecting the two gate leads in parallel. A gate-protected MOSFET is shown schematically in Fig. 4-22.

A collection of modern ICs. Various case styles of metal and epoxy materials are illustrated.

INTEGRATED CIRCUITS

Just as the term implies, integrated circuits (ICs) contain numerous components which are manufactured in such a way as to be suitably interconnected for a particular application, and on one piece of semiconductor base material. The various elements of the IC are comprised of bi-polar transistors, MOSFETs, diodes, resistances, and capacitances. There are often as many as ten or more transistors on a single IC chip, and frequently their respective bias resistors are formed on the chip. Generally speaking, ICs fall into four basic categories - differential amplifiers, operational amplifiers, diode or transistor arrays, and logic ICs.

IC Structures

The basic IC is formed on a uniform chip of n-type or p-type silicon. Impurities are introduced into the chip, their depth into it being determined by the diffusion temperature and time. The geometry of the plane surface of the chip is dctermined by masking off certain areas, applying photochemical techniques, and applying a coating of insulating oxide. Certain areas of the oxide coating are then opened up to allow the formation of interconnecting leads between sections of the IC. When capacitors are formed on the chip, the oxide serves as the dielectric material. Fig 4-23
shows a representative three-component IC in both pictorial and schematic form. Most integrated circuits are housed in TO-5 type cases, or in Ilat-pack epoxy blocks. ICs may have as many as 12 or more leads which connect to the various elements on the chip.

Types of IC Amplifiers

Some ICs are called differential amplifiers and others are known as operational amplifiers. The basic differential-amplifier IC consists of a pair of transistors that have similar input circuits. The inputs can be connected so as to enable the transistors to respond to the difference between two voltages or currents. During this function, the circuit effectively suppresses like voltages or currents. For the sake of simplicity we may think of the differential pair of transistors as a push-pull amplifier stage. Ordinarily, the differential pair of transistors are fed from a controlled, constantcurrent source (Q3 in Fig. 4-24A. Q1 and Q2 are the differential pair in this instance). Q3 is commonly called a transistor current sink. Excellent balance exists between the input terminals of differential amplifiers because the base-to-mitter voltages and current gains (beta) of

Fig. 4-23 - Pictorial and schematic illustrations of a simple IC device.

(A)

Fig. 4-24 - At A. a representative circuit for a typical differential IC. An Operational Amplifier IC is illustrated at B, also in representative form.

Fig. 4-25 - Some typical circuit applications for a differential amplifier IC. The internal circuit of the CA3028A IC is given in Fig. 4-24 at A.

(C)
the two transistors are closely maiched. The match results from the fact that the transistors are formed next to one another on the same silicon chip.

Differential ICs are useful as linear amplifies from dc to the vhf spectrum, and can be employed in such circuits as limiters, product detectors, frequency multipliers, mixers, amplitude moduletors, squelch, rf and i-f amplifiers, and even in signal-generating applications. Although they are designed to be used as differential amplifiers, they can be used in other types of circuits as well. treating the various IC components as discrete units.

Operationatamplifier ICs are basically very-high-gain direct-coupled amplifiers that rely on feediback for control of their response chasacteristics. They contain cascaded differential amplifiers of the type shown in Fig 4-24A. A separate output stage, Q6-Q7, Fig. 4-24B, is contained on the chip. Aithough operational ICs can be successfully operated under open-loop conditions, they are generally controlled by externally applied negative feedback. Operational amplifiers are most often used for audio amplification, as frequency-shaping (peaking, notching, or bandpass) amplifiers, or as integrator, differentiator, or comparator amplifiers.

Diode-ICs are also being manufactured in the same manner os outlined in the foregoing section. Several diodes can be contained on a single silicon wafer to provide a near-perfect match between diode characteristics. The diode arrangement can take the form of a bridge circuit, series-connected

BALANCED DIFFERENTIAL AMPLIFIER
(日)

(D)

groups, or as separate components. Diode ICs of this kind are useful in balanced-modulator circuits, or to any application requiring closely matched diodes.

Fig. 4-25 demonstrates the versatility of just one type of IC, an RCA CA3028A differential amplifier. Its internal workings are shown in Fig. 4-24A, permitting a comparison of the schematic diagram and the block representations of Fig. 4-25. The circuit at B in Fig. 4-25 is characterized by its high input and output impedances (several thousand ohrss), its high gain, and its stability. This circuit can be adapted as an audio amplivier by using transformer or RC coupling. In the circuits of B and C terminal 7 is used to manually control the rf gain, but age can be applied to that terminal instead. In the circuit at D the CA3028A provides low-noise operation and exhibits good conversion gain as a product detector. The CA3028A offers good performance from dc to 100 MHz.

PRACTICAL CONSIDERATIONS

Some modern-day ICs are designed to replace nearly all of the discrete components used in earlier composite equipment. One example can be seen in the RCA CA3089E Dat-pack 1C which contains nearly the entire circuit for an fm receiver. The IC contains 63 bipolar transistors, 16 diodes, and 32 resistors. The CA3089E is designed for an i-f of 10.7 MHz and requires but one outboard tuned circuit. The chip consises of an i-f

Fig. 4-26 - The circuit at A shows practical component values for use with the CA3089E fm subsystem IC. A COS/MOS array IC is illustrated at 8 in schematic-diagram form. It consists of three complementary-symmetry MOSFET pairs. The illustration at C shows how the CA3600E can be connected in cascade to provide at least 100 dB of audio amplification.
amplifier, quadrature detector, audio preamplifier, agc, afc, squelch, and a tuning-meter circuit. Limiting of -3 dB takes place at the $12 \mu \mathrm{~V}$ input level. When using an IC of this kind it is necessary only to provide a frontend converter for the desired frequency of reception, an audio amplifier, and a power supply (plus speaker, level controls, and meter).

There are two IC subsystem units designed for $\mathrm{a}-\mathrm{m}$ receiver use. Each is similar in complexity to the CA3089E illustrated in Fig. 4-26. These components are identiffed as CA3088E and CA3123E. The latter is described in RCA Data File No. 631. Both ICs are readily adaptable to communications receives use and should become popular building blocks for amateurs who desire compact, portable receiving equipment.

TRANSISTOR ARRAYS

Amateur designers should not overlook the usefulness of transistor- and diode-array 1Cs. These devices contain numerous bipolas os MOSFET transistors on a common substrate. In most instances the transistors can be employed as one would treat discrete npn devices. An entire receiver can be made from one transistor-array IC if one wishes to construct a compact assembly. The CA3049 is a dual independent differential r/fi-f amplifier chip with an f_{T} of 1.3 GHz . It is especially well suited to applications which call for double-balanced mixers, detectors, and modulators. Another device of similar usefulness is the CA3018A. The CA3045 should also be of interest to the amateur. Matched electrical characteristics of the transistors in these lCs offer many ad-

(6000705 MHz)

EnCET AS MOMCATED. DECIMAL VALUES OF CAPACITANCE ARE IM MICRORAMADS I gII:
 Rearstances are m ohms H-1000, M-1000 000.
vantages not available when using discrete transistors. Fig. 4-27 shows the internal workings of the CA3018A and CA 3045 ICs.

COS/MOS (complementary-symmetry metaloxide silicon) iCs are becoming increasingly populat, and one RCA part, the CA3600E, contains an array of complementary-symmetry MOSFET pairs (three) which can be used individually or in cascade, as shown in Fig. 4-26 at B. Detailed information is given in RCA File No. 619. The CA3600E is a high-input impedance, micropower component which is suitable for use as a preamplifier, differential amplifier, op amp, comparator, timer, mixer, chopper, or oscillator.

Fig. 4-27 - Transistor arrays offer unlimited application because several circuit combinations are possible. The CA3018A IC at A has a Darlingtonconnected pair plus two separate transistors. At B, two transistors are internally

(B)
connected in a differential amplifier fashion. Three separate transistors are available for use in other functions. The arreys shown here are usgiul into the vhf spectrum.

One of the more interesting and useful array of ICs is the RCA CA3102E. It contains two differential pairs and two current-source transistors. The device is ideally suited for use in doubly balanced mixers, modulators, and product detectors. The CA3102E is excellent for use in the following additional applications: whf amplifiers, whf mixers, of amp./mixer/oscillator combinations, i-f amplifiers (differential and/or cascode mode), synchronous detectors, and sense amplifiers. This IC is similas in configuration to the CA3049T array, but has an independent substrate connection which is common to an internal shield that separates the
two differential amplifiers. The shield helps assure good isolation in applications where that feature is required.
F_{T} for CA3102E is in excess of 1000 MHz . Noise figure at 100 MHz single transistor is 1.5 $\mathrm{dB}, R_{\mathrm{s}}=500$ ohms, Noise figure at 200 MHz cascude mode is 4.6 dB . Additional specifications can be found in RCA Dato File No. 611. The CA3102E offers almost limitless possibilities for applications in amateur radio design work. The chip is manufactured in a 14-lead DIP package. The CA3049T comes encased in a standard TO-5 package.

DIGITAL-LOGIC INTEGRATED CIRCUITS

Digital logic is the term used to describe an overall design procedure for electronic systems in which "on" and "off" are the important words, not "amplification," "detection," and other terms commonly applied to most amateur equipment. It is "digital" because it deals with discrete events that can be characterized by digits or integers, in contrast with lincar systems in which an infinite number of levels may be cncountered. It is "logic" because it follows mathematical laws, in which "effect" predictably follows "cause."

Just like linear integrated circuits, digital ICs are manufactured in such a way that the internal components are interconnected for particular applications. Packaging of the digital ICs is the same for their lincar counterparts, with the full package range pictured earlier being used. lirom outward appearances, it would be impossible to tell the difference between the two types of ICs except from the identification numbers.

Linear ICs are constructed to respond to continuously variable or analog signals, such as in an amplifier. Digitad devices, on the other hand, generally have active components operating only in either of two conditions - cutoff or saturation. Digital ICs find much application in on-off switching circuits, as well as in counting, computation, memory-storage, and display circuits. Operation of these circuits is based on binary mathematics, so words such as "one" and "zero" have come into frequent use in digital-logic terminology. These terms refer to specific voltage
levels, and vary between manufacturers and devices. Nearly always, a " 0 " means a voltage near ground, while " 1 " means whatever the manufacturer specifies. One must distinguish between "positive logic" and "negative logic." In positive logic, a 1 is more positive than a 0 , though both may be negative voltages. In negative logic, the reverse is tuc. Often the terms "high" and "low" are used in reference to these vollage levels. The definitions of these terms are the same for both positive and negative logic. A "high" is the most positive or least negative potential, while a "low" is the least positive or most negative.

For practical use in some applications it is desirable to convert binary data into decimal equivalents, such as in electronic counting and display systems. In other applications, such as for the graphic recording or metering of summations or products of integers, it is convenient to convert the digital data into analog equivalents. Specialized integrated circuits designed to perform these functions are also considered to be included in the digital-iC catcgory.

LOGIC SYMBOLS

With modern microcircuit technology, hundreds of components can be packaged in a single case. Rather than showing a forest of transistors, resistors, and diodes, logic diagrams show symbols based on the four distinctive shapes given in Fig. $4-28$ at A through D. These shapes may be "modified" or altered slightly, according to

From outward appearances, these three ICs appear to be identical. Although each is a $J \cdot K$ flip-flop. there are differences in their characteristics. Pictured at the left is a Texas Instruments SN74H72N integrated circuit, called a $J-K$ master-slave flipflop. Shown in the center is a Motorola MC1927P IC, which is a $120-\mathrm{MHz}$ ac-coupled $\delta \cdot K$ flip-flop. Both of these ICs might be considered "universal" flip-flops, for they may be used in a variety of ways. Shown at the right is a Motorola MC726P, a simple J-K flip-flop.
specific functions performed. Examples are shown at E through H of Fig 4-28.

The square, Fig. 428D and H, may appear on logic diagrams as a rectangle. This symbol is a somewhat universal one, and thus must be identified with supplemental information to indicate the exact function. Internal labels are usually used. Common identification labels are:

$$
\begin{aligned}
& \text { FF - Flip-flop } \\
& \text { FL - Flip-flop latch } \\
& \text { SS - Single shot } \\
& \text { ST - Schmidt trigger. }
\end{aligned}
$$

Other logic functions may also be represented by the square or rectangle, and the label should adequately identify the function performed. Unique identifying shapes are used for gates and inverters, so these need no labels to identify the function. Hardware- or package-identification information may appear inside any of the symbols on logic diagrams.

TYPES OF DIGITAL ISs

Digital integrated circuits perform a variety of functions, but these functions can generally be cataloged into just a few categories: gates, inverters, flip-flops, drivers and buffers, adders and subtractors, registers, and memories, plus the special-purpose ISs as mentioned cartier decoders and converters. Some of these types, such as adders and subtractors, registers, and memories, find use primarily in computer systems. More universally used types of ICs are the inverters, gates and (lip-flops.

Inverters

A single chip in one IC package may be designed to perform several functions, and these functions can be independent of each other. One example of an IC of this type is Motorola's MC789P, which bears the name, "hex inverter." This IC contains six identical inverter sections. The schematic diagram of one section is shown in Fig. 4-29A. In operation, 3.0 to 3.6 volts are applied between +VAc and ground. For this device in positive-logic applications, a 0 is defined as any potential less than approximately 0.6 volt, and a 1 is any voltage greater than about 0.8 . With a logic 0 applied at the input, the transistor will be at or near cutoff. Its output will be a potential near + Vc, of a logic 1. If the 0 at the input is replaced by a 1 , the transistor goes into saturation and its output drops nearly to ground potential; a 0 appears at the output. The output of this device is always the opposite or complement of the input logic level. This is sometimes called a NOT gate, because the input and output logic levels are not the same, under any conditions of operation.

Shown at the right in Fig. 4-29A is the logic symbol for the inverter. In all logic symbols, the connections for $+V c c$ and the ground retum are omitted, although they are understood to be made. The proper connections are given in the manufacturer's data sheets, and, of course, must be made

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Fig. 4-28 - Distinctive symbols for digital logic diagrams. At A is shown an inverter, at B an AND gate, at C an $O R$ gate, and at D a flip-flop. Additions to these basic symbols indicate specific functions performed. A small circle, for example, placed at the output point of the symbol, denotes that inversion occurs at the output of the device. Shown at E is an inverting AND or NAND gate, and at F is an inverting OR or NOR gate. At G is the symbol for an exclusive OR gate. The symbol a\& H represents a J-K flip-flop.
before the device will operate properly. In the case of ail multiple-function JCs, such as the hex inverter, a single ground connection and a single + Voc connection suffice for all sections contained in the package.

Gates

Another example of an IC containing several independent functions in one package is Motorola's MC724P, a quad 2 -input gate. Four gates are contained in one chip. The schematic diagram and logic symbols for a gate section are shown at B in Fig. 4-29. As with the MC789P, a supply of 3.0 to 3.6 volts is used; for positive logic a 0 is a potential less than 0.6 volt, and a 1 is a potential greater than 0.8 volt. It may be seen from the schematic diagram that the two transistors have an independent input to each base, but they share a common collector resistor. Either transistor will be saturated with a logic 1 applied at its input, and a 0 output will result. A 0 at the input of either transistor will cause that transistor to be cut off, but a ! at the opposite input will hold the output a! 0 . Thus, a 1 at either Input 1 or Input 2 will cause a 0 (or a NOT 1) to appear at the output. The NOT functions are usually written with a bar over them, so $\overline{1}$ means the same thing as NOT 1 ,

INVERTER

Fig. 4-29 - Digital circuits and their equivalent logic symbols. See text. Indicated resistor values are typical.
and is expressed as NOT 1 when reading the term. Logic-circuit operation can be expressed with equations. Boolean algebra, a form of binary mathematics, is used. These equations should not be confused with ordinary algebraic equations. The logic equation for the operation of the circuit in Fig. $4-28 \mathrm{~A}$ is $1 v 1=1$. The little ν means OR. Sometimes " + " is used instead of " v." In plain words, the equation says that a 1 at Inpul 1 or Input 2 will yicld a NOT 1 at the output. This is equivalent of saying the circuit is an inverting $O R$ gate, or a NOT OR gate. This latter name is usually contracted to NOR gate, the name by which the circuit is known.

If the circuit of Fig. 4-29B is used with regative logic, circuit operation remains the same; only the definitions of terms are changed. A logic 1, now, is a voltage level less than 0.6 , and a 0 is a level greater than 0.8 volt. If a logic 1 is applied at both inputs, 1 and 2, both transistors will be cut off. The output is near +Vcc, which is a logic 0 or Nor 1. The equation for this operation is $1 \cdot 1=\overline{1}$, where the dot means AND. In this way, with negative logic, the circuit becomes an inverting AND gate, or a NOT AND gate or, more commonly, a NAND gate. Manufacturers' literature frequently refers to this type of device as a NAND/NOR gate, because it performs either function.

Flip-Flops

It is not necessary for the various functions on a single chip to be identical. Motorola's MC780P IC, a decade up-counter, contains four flip-flops, an inverter, and a 2 -input gate. These functions are interconnected to provide divide-by- 10 operation, with ten input pulses required for every output pulse which appears. Intermediate outputs are also provided (in binary-coded form) so that the
number of pulses which have entered the input can be determined at all times. These binary-coded decimal (BCD) outputs, after decoding, may be used to operate decimal-readout indicators.

The term, medium-scale integration (MSI) is frequently applied to 1Cs such as this decade up-counter, which contains the equivalent of 15 or more gates on a single chip. Large-scale integration (LSI) describes ICs containing the equivalent of 100 or more gates on a single chip. These terms. when applied to a particular IC, convey an idea of the complexity of the circuitry.

A flip-flop is a device which has two outputs that can be placed in various 1 and 0 combinations by various input schemes. Basically, one output is a 1 when the other is a 0 , although situations do occur (sometimes on purpose) where both outputs are alike. One output is called the Q output, or "set" output, while the other is the \bar{Q} (NOT Q) or "reset" output. If $\boldsymbol{Q}=1$ and $\boldsymbol{Q}=0$, the llip-flop is said to be "set" or in the "I state," while for the reverse, the flip-flop is "reset," or "cleared," or in the " 0 state." A variety of inputs exist, from which the flip-flops derive their names.

The $R-S$ flip-flop is the simplest type. Its outputs change directly as a result of changes at its inputs. The type T flip-flop "toggles," "flips," or changes its state during the occurrence of a T pulse, called a clock pulse. The T nip-flop can be considered as a special case of the J.K flip-flop described later. The type D flip-flop acts as a storage element. When a clock pulsc occurs, the complementary status of the D input is tansferred to the Q output. The flip-flop remains in this state even though the input may change, as it can change states only when a clock pulse occurs.

Although there is some disagrcement in the nomenclature, a $J-K$ flip-flop is generally considered to be a toggled or clocked RS flip-flop. It may also be used as a storage element. The J input is frequently called the "set" or S input; the K is called the "clear" or C input (not to be confused with the clock input). The clock input is called T. as in the type T flip-flop. A clear-direct or C_{D} input which overrides all other inputs to clear the flip-flop to 0 is provided in most J-K flip-flop packages. The logic symbol for the $J-K$ flip-flop is shown in Fig. 4-28H. A simple J-K nip-flop circuit contains 13 or 14 transistors and 16 or 18 resistors.

There are essentially two types of llip-flop inputs, the dc or level-sensitive type, and the "ac" or transistion-sensitive type. It should not be concluded that an ac input is capacitively coupled. This was true for the discrete-component flip-flops, but capacitors just do not fit into microcircuit dimensions. The construction of an ac input uses the "master-slave" principle, where the actions of a master flip-flop driving a slave nip-flop are combined to produce a shift in the output level during a transit of the input.

DIGITAL-LOGIC IC FAMILIES

There are seven categories or families of which nearly all semiconductor digital ICs are members.

Each family has its own inherent advantages and disadvantages. Each is geared to its own particular market, meeting a specific set of needs.

Resistor-Transistor Logic - RTL

RTL is known primarily for its economy. It is well named, since it contains resistors and transistors exclusively. The circuits of Fig. 4-29 are RTL. Advantages of the RTL family are economy, ease of use in system designs, ease of interface with discrete components, and high speed-power product. There are a wide number of functions available in this family. Disadvantages are low immunity to voltage noise (transients, rf pickup, and the like), and relatively low fanout (the number of loads that may be connected to an output before performance is degraded). The RTL family requires a supply of 3.0 to 3.6 volts.

Diode-Transistor Logic - DTL

DTL ICs contain diodes, as well as resistors and transistors. Early DTL ICs used design criteria carried over from the use of discrete components, where diodes were inexpensive compared to transistors. These $I C 8$ required negative and positive voltage sources. Later DTL ICs are of a modified design which lends itself more easily to IC processing. Performance characteristics are also enharced, with less input current being required, and only a single voltage source needed. Members of the DTL family are limited generally to gates. Advantages of this family are low power dissipation, compatibility with TTL (see later section), low cost, easc of use in system design, ease of interface with discrete circuits, and relatively high fanout. DTL disadvantages are low noise immunity, especially in the high state where the input impedance is relatively high, rapid change in voltage thresholds with temperature, speed slowdown with capacitive loading, and lower speed capabilities than some other families. The DTL family requires a supply voltage of 5 .

High-Threshold Logic - HTL

HTL devices are designed for high noise immunity. The circuit form is the same as DTL except that breakdown (Zener) diodes are used at the inputs. Higher supply voltuges and higher power dissipations accompany the HTL family. These ICs find applications in industrial environments and locations likely to have high electrical noise levels. Advantages are high noise immunity, stable operation over very large temperature ranges, interfaces easily with discrete components, electromechanical components, and linear functions (operational ampliflers and multipliers), and a constant threshold-versus-temperature charactenistic. Disadvantages are higher cost than other families, and relatively high power dissipation. The HTL family requires a supply voltage of 15 .

Transistor-Transistor Logic -TTL

TTL has characteristies that are similar to DTL, and is noted for many complex functions and the
highest available speed of any saturated logic. TTL may be thought of as a DTL modification that results in higher speed and driving capability. It is noted for better noise immunity than that offered by DTL, and is more effective for driving high-capacitance loads because of its low output impedance in both logic states. TTL ICs fall into two major categories - medium speed and high speed. Various manufacturing techniques are used to increase the speed, including gold doping and incorporation of high-speed Schottky diodes on the chip. Another advantage of ITL is that it is compatible with various other families. Multiple sources and extensive competition have resulted in low prices for TIL devices. Disadvantages are that more care is required in the layout and mechanical design of systems because of its high speed, and additional capacitors are required for bypassing because of switching transients. The TTL familly requires a supply of 5 volts.

Emitter-Coupled Logic - ECL

ECL has the highest speed of any of the logic forms. It is sometimes called current-mode logic. This family is different from standard saturating logic in that circuit operation is analogous to that of some linear devices. In this case, the transistors do not saturate and the logic swings are reduced in amplitude. Very high speeds can be attained because of the small voltage swings and the use of nonsaturating transistors. The input circuitry of ECL devices is of the nature of a differential amplifier, resulting in much higher input impedances than saturated-logic devices. Emitter-follower outputs arc of low impedance with high fanout capabilities, and are suited for driving 50-ahm transmission lines directly. Disadvantages are higher power dissipation, less noise immunity than some saturated logic, Iranslators are required for interfacing with saturated logic, and sloweddown operation with heavy capacitive loading. The ECL family requires a supply of -5.2 volts.

Metal-Oxide Semiconductor (MOS)

Digital MOS devices are gaining significance in industrial applications, with p-channel or P-MOS ICs being the most popular. Large, complex repetitive functions, such as long shift registers and high-capacity memories, have proved very practical. Gates and basic logic circuits have not become as popular, because they exhibit lower drive capability than other IC families. Input impedances to these devices are essentially capacitive (an open circuit for dc). This feature allows very high fanout where speed is not a consideration. Bidirectional devices give more flexibility to the circuit designer. P-MOS technology results in the lowest cost per bit for memories and long shift registers, because many more functions can be contained on a given chip size than in bipolar devices. Disadvantages are that devices must be handled more carefully than bipolar ICs because excessive static electricity can destroy the narrow gate oxide, even with internal breakdown-diode input protection. Drive capability is limited because of the high output
impedances characteristic of these devices. Two power supplies are usually required. The P-MOS family requires supplies of -13 and -27 volts.

Complementary Metal-Oxide Semiconductor - CMOS

CMOS technology employs both p-channel and n-channel devices on the same silicon substrate. Both types are enhancement-mode devices; that is, gate voltage must be increased in the direction that inverts the surface in order for the device to conduct. Only one of the two complementary devices of a circuit section is turned on at a time, resulting in extremely low power dissipation. Dissipation is primarily from the switching of devices through the active region and the charging and discharging of capacitances. Advantages are low power dissipation, good noise immunity, very wide power supply voltage variations allowed, high fanout to other CMOS devices, and full tempera-ture-range capabilities. Disadvantages are restricted interfacing capabilities because of high output impedance, and medium to high cost. The CMOS family requires a supply of 1.5 to 16 volts, 10 volts being nominal.

IC Eamity Groups

The popular digital-logic families have several groups where basic designs have been modified for medium speed, high speed, of low power consumption. The TTL family ICs have singleletter designators added to the part number to identify the group: S - Schottky high speed, H - medium speed, L - low power. ECL logic, as yet, has no such simple identification system. Manufacturers group their ECL products by propagation delay, an expression of the maximum speed at which the logic device will operate. Motorola, for example, calls the ECL group
with 8 -ns delay MECL. MECL 11 has a speed of 4 ns ; MECL $10,000,2 \mathrm{~ns}$; and MECL III, 1.1 ns. With a propagation delay of 1 ns , operation at 300 MHz is possible.

Special Digital ICs

In addition to the logic ramilies, many special-purpose digital ICs are available to accomplish specific tasks. A divide-by-10 circuit, such as the Fairchild U6B95H9059X, operates up to 320 MHz and is used as a prescaler to extend the range of a frequency counter. This IC has been designed to operate with low-tevel input signals, typically 100 mV at 150 MHz .

Large MOS arrays are being used for a number of applications which require the storage of logic instructions. These ICs are called memories. Instructions are stored in the memory by a process named programming. Some memories can be programmed only once; they are called ROMs (Read-Only Memory). ROMs must be read in sequence, but another group of devices called RAMs (Random-Access Memory) can be used a section at a time. Both ROMs and RAMs are also made in reprogrammable versions, where the information stored in the memory can be changed as desired. These models are named PROMs and PRAMs, respectively.

Large memory arrays are often used for the generation and conversion of information codes. One IC can be programmed to convert the 5 leve! RTTY code to the 8 -level ASCII code popular in computer devices. National Semiconductor manufactures a single IC which generates the entire 56-character 8 -level code. Several ICs are now available for character generation where letters and numerals are produced for display on an oscillograph screen.

OTHER DEVICES

THE UNIJUNCTION TRANSISTOR

Unijunction transistors (UJT) are being used by amateurs for such applications as side-tone oscillators, sawtooth generators, pulse generators, and timers.

Structurally, the UJT is built on an n-type silicon bar which has ohmic contacts - base one (B1) and base two (B2) - at opposite ends of the bar. A rectifying contact, the emitter, is attached between B1 and B2 on the bar. During normal operation B1 is grounded and a positive bias is supplied to 82 . When the emitter is forward biased, emitter current will flow and the device will conduct. The symbol for a UJT is given in Fig. 4-30 at C. A circuit showing a typical application in which a UJT is employed is shown in Fig. 4-30.

SILICON CONTROLLED RECTIFIERS

The silicon controlled rectifier, also known as a Thyristor, is a four-layer ($p-n-p-n$ or $n-p-n-p$) three-electrode semiconductor rectifier. The three
terminals are called anode, cathode and gate, Fig. 4-28B.

The SCR differs from the sillicon rectifier in that it will not conduct until the voltage exceeds the forward breakover voltage. The value of this voltage can be controlled by the gate current. As the gate current is increased, the value of the forward breakover voltage is decreased. Once the rectifier conducts in the forward direction, the gate current no longer has any contsol, and the rectifier behaves as a low-forwand-resistance diode. The gate regains controls when the current through the rectifier is cut off, as during the other half cycle.

The SCR finds wide use in power-contsol applications and in time-delay circuits. SCRs are available in various voltage and wattage ratings.

TRIACS

The triac, similar to the SCR, has three electrodes - the main terminal (No. 1), another

SCR JUNCTIONS

Fig. 4-30 - Unijunction transistor and SCR symbols are given at B and C. A neon lamp is used to trigger an SCR in the circuit at D. A U.ST triggers the SCR in example E .
main terminal (No. 2), and a gate. The triac performs in the same manner as the SCR, but for either polarity of voltage applied to its main terminals. The SCR, as mentioned in the foregoing, conducts only during one half the sine-wave cycle. When an SCR is used in a motor-speed control, therefore, the motor cannot be brought up to full speed. The triac, however, does trigger on both halves of the cycle. Therefore, triacs are preferred to SCRs in many control circuits. The triac can be regarded as a device in which two SCRs are employed in paralle! and oriented in opposite directions as shown in the drawing of Fig. 4-30. An example of a motor-speed control which uses a triac is given in the construction chapter of this book.

(A)

(B)

Fig. 4-31 - The symbol for a triac is given at A. The illustration at \mathbf{B} shows how a triac compares to two SCRs connected for the same performance offered by a triac, thus permitting conduction during both halves of the cycle.

OPERATIONAL AMPLIFIERS

Early analog computers used amplifier blocks which became known as operational amplifiers, or simply op amps. Operational amplifiers can be constructed using tubes or transistors, and as hybrid or monolithic integrated circuits. The monolithic IC has become the most populas type of op amp. Today op-amp ICs cost approximately one dollar for the preferred types. They are used as building blocks in many circuit applications.

The op amp is a dc-coupled multistage linear amplifier which, in an ideal device, would have infinite input impedance and infinite gain. While the ideal op amp remains an unobtainable goal, voltage gains of 100,000 or more can be achieved. FET-input op amps have sufficiently high input impedance that the current required from the driving source is measured in PA (fulA).

Gain and Feedback

The internal circuit of a popular op-amp IC, the Fairchild $\mu \mathrm{A} 741$ (also produced by most other
semiconductor manufacturers) is shown in Fig. 4-32. Two inputs are provided, one the complement or inverse of the other. An amplifier with two such inputs is known as a differential amplifier. If a small positive voltage is applied to the noninverting (+) terminal, it will produce a positive output. The same positive voltage applied to the inverting (-) terminal will result in a negative output. If the same voltage was apphied to both terminals, the output would be zero. Both inputs can be used, calied the differential connection, or one can be returned to ground for single-ended operation. In practical ICs, the output may not be exactly zero when both inputs are at zero potential. Any output under these conditions is called offset - some op amps have provision for connections to an external control which compensates for any offset voltage by applying bias current to the input transistors. The offset connections for the $\mu \mathrm{A} 741$ are shown in Fig. 4-32. Op amps are available in all of the popular IC packages; consult

Fig. 4-32 - Internal circuit of a $\mu \mathrm{A} 741$ operational amplifier.
the manulacturer's literature for pin connections. Usually the pinconnections are not the same for a particular device when it is made up in different package styles.

For most applications the full gain of the op amp is not used. Feedback is employed, as shown in Figs. 4-34A and B.. The addition of a resistive divider network, Ro-Ri, causes negative feedback by allowing part of the output voltage to be applied to the inverting input. The gain of the device will be equal to the sum of Ro and Ri, divided by the value of Ri. Feedback can be applied in a similar manner for a noninverting amplifier, Fig. 4-33B.. The voltage summer, Fig. 4-33C, provides an output voltage which is the sum of all input voltages multiplied by the gain of the
operational amplifier. This circuit is often employed as an audio mixer. Fig. 4-33D shows the voltage-follower connections. The load at the output of this circuit can draw a large current while the input draws almost no current. The output voltage follows the level of the input potential almost exactly. The output of the differentiator (Fig. 4-33E) is proportional to the rate of change of the input voltage, while the integrator (Fig. 4-33F) averages the level of a voltage that varies over a short period of time. A differential connection of a single opamp is shown at G .

Stability

Because op amps are high-gain devices with frequency response from dc to several megahertz,

DIFFERENTIATOR

DIFFERENTIAL AMPLIFIER

Fig. 4-33 - Basic op-amp circuits.

oscillation can occur. In any op-amp circuit layout, the inputs should be well isolated from the output. Input leads should be kept as short as possible. Supply-voltage terminals should be bypassed with 0.1 - or $.01-\mu \mathrm{F}$ capacitors. As the frequency is increased, the stages within an op amp will introduce phase shift. If the phase shift in the amplifier reaches 180 degrees before the gain has decreased to unity, the amplifier will be unstable. Some op amps, such as the $\mu \mathrm{A} 709$ of Fig. 4-34A. require an external compensation network, R1-C1, to reduce the gain of the device at hf. Others, the $\mu \mathrm{A} 741$ of Fig. 4-34B for example, contain internal compensation and, thus, require no additional components to assure stability.

Applications

Most monolithic op-amp ICs require supply voltages of plus 5 to 15 and minus 5 to 15. Practical examples of an audio amplifier and audio mixer are given in Fig. 4-33A and B, respectively. In some amateur applications, the dual-polarity

Fig. 4-34 - Some typical applications of operational amplifiers. The pin numbers shown are all for the metal can (TO-99) package.
requirement can be eliminated by using a resistive divider to bias the noninverting input as indicated in Fig. 4-34C. If the amplifie is intended to be used as a limiting device (the input stage of an RTTY demodulator is an example) an offset control should be added to allow adjustment for equal clipping of the negative and positive peaks (Fig. 4-34D).

Another popular use for the op amp is as a comparator - see Fig. 4-34E. A comparator is used to indicate when a difference exists between a reference voltage and an input voltage. The output of the comparator will swing from its maximum positive voltage to maximum negative when the input exceeds the reference (zero voltage if the reference is zero). A number of op amps optimized for comparator service are available; they are often used as interface devices between linear and digital circuits. The operational amplifier is often employed in active filters, which use $R C$ components to provide low-pass, high-pass, and bandpass characteristics. A simple illustration, an $R C$ filter network tuned to 1200 Hz connected in parallel with the feedback resistor, is given in Fig. 4-34F. This design is for low Q giving a characteristic suitable for a cw receiver. The gain at resonance is approximately 40. Additional information about active filters and other op-amp circuits is available in the publications listed in the bibliography at the end of this chapter.

ABBREVIATED SEMICONDUCTOR SYMBOL LIST

Semiconductor Bibliography

Garrett, "Intcgrated-Circuit Digital Logic Families," in three parts, IEEE Spectrum, October, November, and December, 1970.
Heilweil, Introcuction to Boolean Algebra and Logic Design, McGraw-Hill, 1964.
Maley, Manual of Logic Circuirs, Prenticc-Hall, 1970.

Pike, "The Operational Amplifier," Parts I and II, QST, August and September, 1970.
Pos, "Digital Logic Devices," QST, July, 1968.
Pos, "Integrated-Circuit Flip-Flops," QST, February, 1971.
RCA Translisior. Thyrisfor, and Diode Manual, Series SC-14, RCA. Harrison, NJ 07029.

RCA Power Circuits, DC to Microwaves, Series SP-51, RCA, Harrison, NJ 07029.
RCA Linear Integrated Circuits. Series IC-42, RCA, Harrison, NJ 07029.
RCA Hobby Circuits Manual, Series HM-91, RCA, Harrison, NJ 07029.
SolidState Communications McGraw-Hill.
Transistor Circuit Design, McGraw-Hill.
Malmstadt and Enke, Digifal Electronics for
Scientists, W. A. Benjamin, Inc., New York, NY 10016.

Malmstadt and Enke, A Laboratory Workbook (computer logic). W. A. Benjamin, Inc., New York, NY 10016.

Chapter 5

AC-Operated Power Supplies

Abstract

Powertine voltages bave been "standardized" tbrougbout the U.S. at 115 - 230 V in residential areas wbere a single voltage phase is supplied. These figures represent nominal voltages, bozever. "Normal" line voltage in a particular area may be between approximately 110 and 125 volts, but generally will be above 115 volts. In many states, the service is governed by the state's public utilities commission. Tbe doltage average across the country is approximately 117 volts. Source of information: Edison Electric Company (an association of power companies), New York, NY.

The electrical power required to operate amateur radio equipment is usually taken from the ac lines when the equipment is operated where this power is available; in mobile operation the prime source of power is usually the storage battery.

The high-voltage dc for the plates of vacuum tubes used in receivers and transmitters is derived from the commercial ac lines by the use of a transformer-rectifier-filter system. The transformer changes the voltage of the ac to a suitable value, and the rectifier converts it to pulsating dc. The filter reduces the pulsations to a suitably low level,
and may have either a capacitor input or a choke input, depending on whether a shunt capacitor or a series inductor is the first filter element. Essentially pure direct current is required to prevent hum in the output of receivers, speech amplifiers, modulators and transmitters. In the case of transmitters, a pure dc plate supply is also dictated by government regulations. If a constant supply voltage is required under conditions of changing load or ac line voltage, a regulator is used following the filter.

When the prime power source is dc (a battery), the dc is first changed to ac, and is then followed by the transformer-rectifier-filter system. Additional information on this type of supply is contained in Chapter 10.

The cathode-heating power can be ac or dc in the case of indirectly heated cathode tubes, and ac or dc for filament-type tubes if the tubes are operated at a high power level (high-powered audio and rf applications). Low-level operation of filament-type tubes generally requires dc on the filaments if undue hum is to be avoided.

Occasionally transformerless power supplies are used in some applications (notably in the ac-dc type of broadcast receiver). Such supplies operate directly from the power line, and it is necessary to connect the chassis or common-return point of the circuit directly to one side of the ac line. This type of power supply represents an extreme shock hazard when the equipment is interconnected with other apparatus in the amateur station, or when the chassis is exposed. For safety reasons, an isolation transformer should be used with such equipment when it is present in an amateur station.

POWER-LINE CONSIDERATIONS

POWER LINE CONNECTIONS

In most residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230 , while half of this voltage (115) appears between cach of these wires and neutral, as indicated in Fig. 5-1 A. In systems of this type, usually it will be found that the 115 -volt houschold load is divided as evenly as possible between the two sides of the circuit, half of the load being connected between
one wire and the neutral, while the other half of the load is connected between the other wire and neutral. Heavy appliances, such as electric stoves and heaters, normally are designed for 230 -volt operation and therefore are connected across the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The reason for this is that opening the neutral wire does not disconnect the equipment. It simply leaves the equipment on one side of the 230 -volt circuit in series with whatever load may be across the other side of the

Fig. 5-1 - Three-wire power-line circuits. A - Normal 3-wire-line termination. No fuse should be used in the grounded \{neutral) line. B - Showing that a switch in the neutral does not remove voltage from either side of the line. C - Connections for both 115 - and 230 -volt transformers. D - Operating a 115 -volt plate transformer from the 230 -volt line to avoid light blinking. T 1 is a $2-10-1$ step-down transformer.
circuit, as shown in Fig. 5-1B. Furthermore, with the neutral open, the voltage will then be divided between the two sides in inverse proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the other side, unless the loads happen to be equal.

The usual line running to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, uansmitter, receiver and other auxiliary equipment, it is not unusual to find this $15-\mathrm{A}$ rating exceeded by the requirements of a station of only moderate power. It must also be kept in mind that the same branch may be in use for other household purposes through another outlet. For this reason, and to minimize light blinking when keying or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A three-volt drop in line voltage will cause noticeable light blinking.)

If the system is of the three-wire $230-\mathrm{V}$ type, the three wires should be brought into the station so that the load can be distributed to keep the line balanced. The voltage across a fixed load on one side of the circuit will increase as the load current on the other side is increased. The rate of increase will depend upon the resistance introduced by the neutral wire. If the resistance of the neutral is low. the increase will be correspondingly small. When the currents in the two circuits arc balanced, no current flows in the neutral wire and the system is operating at maximum efficiency.

Light blinking can be minimized by using transformers with 230 -volt primaries in the power supplies for the keycd or intermittent part of the load, connecting them across the two ungrounded wires with no connection to the neutral, as shown in Fig. 5-1C. The same can be accomplished by the insertion of a step-down transformer with its primary operating at 230 volts and secondary delivering 115 volts. Conventional 115 -volt transformers may be operated from the secondary of the step-down transformer (see Fig. 5-1D).

When a special heavy-duty line is to be installed, the local power company should be consulted as to local requirements. In some localities it is necessary to have such a job done by a licensed electrician, and there may be special
requirements to be met. Some amateurs terminate the special line to the station at a switch box, while others may use electric-stove receptacles as the termination. The power is then distributed around the station by means of conventional outlets at convenient points. All circuits should be properly fused.

Three-Wire I $15-\mathrm{V}$ Power Cords

To meet the requirements of state and national codes, electrical tools, appliances and many items of clectronic equipment now being manufactured to operate from the 115 -volt line must be equipped with a 3 -conductor power cord. Two of the conductors carry power to the device in the usuad fashion, while the third conductor is connected to the case or frame.

When plugged into a properly wired mating receptacle, the 3 -contact polarized plug connects this third conductor to an earth ground, thercby grounding the chassis or frame of the appliance and preventing the possibility of electrical shock to the user. All commercially manufactured items of electronic test equipment and most ac-operated amateur equipments are being supplied with these 3 -wire cords. Adapters are available for use where older electrical installations do not have mating receptacles. For proper grounding, the lug of the green wire protruding from the adapter must be attached underneath the screw securing the cover plate of the outlet box where connection is made. and the outlet box itself must be grounded.

Fusing

All transformer primary circuits should be properly fused. To determine the approximate current rating of the fuse to be used, multiply each cussent being drawn from the supply in amperes by the voltage at which the current is being drawn. Include the current taken by bleeder resistances and voltage dividers. In the case of serics resistors, use the source voltage, not the voltage at the equipment end of the resistor. Include filament power if the transformer is supplying, filaments. After multiplying the various voltages and currents, add the individual products. Then divide by the line voltage and add 10 or 20 percent. Use a fuse with the nearest larger current rating.

Fig. 5-2 - Two methods of transformer primary control. At A is a tapped toy transformer which may be connected so as to boost or buck the line voltage as required. At B is indicated a variable transformer or autotransformer (Variac) which feeds the transformer primaries.

LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the load on the line. Since most of the variation comes at certain fixed times of the day or night, such as the times when lights are tumed on at evening, they may be taken care of by the use of a manually operated compensating device. A simple arrangement is shown in Fig. 5-2A. A toy transformer is used to boost or buck the line voltage as required. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load current.

The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought up to the rated 115 volts by setting the toy-transformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 115 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as seriously. The cincuit of $5-2 \mathrm{~B}$ illustrates the use of a variable autotransformer (Variac) for adjusting line voltage.

Constant-Voltage Transformers

Although comparatively expensive, special transformers called constant-voltage transfomers are available for use in cases where it is necessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. These are static-magnetic voltage regulating transformers operating on principles of ferroresonance. They have no tubes or moving parts, and require no manual adjustments. These iransformers are
rated over a range of less than one VA at 5 volts output up to several thousand VA at 115 or 230 volts. On the average they will hold their output voltages within one percent under an input voltage variation of ± 15 percent.

SAFETY PRECAUTIONS

All power supplies in an installation should be fed through a single main power-line switch so that all power may be cut off quickly, either before working on the equipment, or in case of an accident. Spring-operated switches or relays are not sufficiently reliable for this important service. Foolproof devices for cutting off all power to the transmitter and other equipment are shown in Fig. 5-3. The arrangements shown in Fig. 5-3A and B are similar circuits for two-wire (115 -volt) and three-wire (230 -volt) systems. S is an enclosed double-throw switch of the sort usually used as the entrance switch in house installations. J is a standard ac outlet and P a shorted plug to fit the outlet. The switch should be located prominently in plain sight, and members of the household should be instructed in its location and use. I is a red lamp located alongside the switch. Its purpose is not so much to serve as a warning that the power is on as it is to help in identifying and quickly

Fig. 5-3 - Reliable arrangements for curting off all power to the transmitter. S is an enclosed double-pole power switch, J a standard ac outlet, P a shorted plug to fit the outlet and I a red lamp.

A is for a two-wire 115 -valt line, B for a three-wire 230 -volt system, and C a simplified arrangement for low-power stations.
locating the switch should it become necessary for someone else to cut the power off in an emergency.

The outlet J should be placed in some corner out of sight where it will not be a temptation for children or others to play with. The shorting plug can be removed to open the power circuit if there are others around who might inadvertently throw the switch while the operator is working on the rig. If the operator takes the plug with him, it will prevent someone from turning on the power in his absence and either hurting themselves or the equipment or perhaps starting a fire. Of utmost importance is the fact that the outlet J must be placed in the ungrounded side of the line.

Those who are operating low power and feel that the expense or complication of the switch isn't warranted can use the shorted-plug idea as the main power switch. In this case, the outlet should be located prominently and identified by a signal light, as shown in Fig. 5-3C.

The test bench should be fed through the main power switch, or a similar arrangement at the bench, if the bench is located remotely from the transmitter.

A bleeder resistor with a power rating which gives a considerable margin of safety should be used across the output of all transmitter power supplies, so that the filter capacitors will be discharged when the high-voltage is turned off.

PLATE AND FILAMENT TRANSFORMERS

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required dc load voltage and the type of filter circuit.

With a choke-input filter (see Fig. 5-4), the required rms secondary voltage (each side of center-tap for a center-tap rectifier) can be calculated by the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{\mathrm{o}}+l\left(R_{1}+R_{2}+R_{\mathrm{s}}\right)\right]
$$

where E_{o} is the required dc output voltage, I is the load current (including bleeder current) in amperes, R1 and R2 are the dc resistances of the chokes, and R_{s} is the series resistance (transformer and rectifier). E_{t} is the open-circuit rms voltage.

With a capacitive-input filter system, the approximate transformer output voltage required to give a desired dc output voltage with a given load can be calculated with the aid of Fig. 5-5.

[^5]

Fig. 5-4 - Diagram showing various voltage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired output voltage.

$$
\begin{aligned}
& \text { Series resistance }-5 \mathrm{ohms} \\
& \text { Load resistance }=\frac{25}{0.5}=50 \mathrm{ohms} \\
& R C=50 \times 1000=50,000 \\
& R_{g} / R=5 / 50=0.1
\end{aligned}
$$

Fig. 5-5 shows that the ratio of dc volts to the required transformer rms voltage is 1.07.

The required transformer terminal voltage under load is

$$
E_{\mathrm{Ac}}=\frac{E_{\mathrm{DC}+I} \times R_{\mathrm{s}}}{1.07}
$$

where I is the load current in amperes.

$$
\begin{aligned}
E_{A C} & =\frac{25+0.5 .}{1.07} \times 5 \\
& =\frac{27.5}{1.07}=25.7 \text { volts }
\end{aligned}
$$

Fig. 5-5 - Dc output voltages from a full-wave rectifier circuit as a function of the filter capacitance and load resistance. $\mathrm{R}_{\mathbf{s}}$ includes transformer winding resistance and rectifier forward resistance. For the ratio R_{s} / R, both resistances are in ohms; for the RC product, R is in ohms and C is in $\mu \mathrm{F}$.

The required transformer is one having a 51.4-V center-tapped secondary. A 50 or $55-\mathrm{V}$ secondary would be entirely satisfactory. Should the filter section contain one or more filter chokes connected between the input capacitor and the load, the dc-resistance values of the chokes are added to the value of R_{s} is the equation before multiplying by the load-current value.

Volt-Ampere Rating

The number of voit-amperes delivered by a transformer depends upon the type of filter (capacitor or choke input) used, and upon the type of rectifier used (full-wave center tap, or full-wave bridge). With a capacitive-input filter the heating effect in the secondary is higher because of the high ratio of peak-to-average current. The voltamperes handled by the transformer may be several times the watts delivered to the load. With a choke-input filter, provided the input choke has at least the critical inductance, the secondary volt-amperes can be calculated quite closely by the equation:

$$
\begin{aligned}
& \text { (Full-wave ct) } S e c . V A=\frac{.707 E I}{1000} \\
& \text { (Full-wave bridge) } S e c . V A=\frac{E I}{1000}
\end{aligned}
$$

where E is the total rms voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the dc output current in milliamperes (load current plus bleeder current). The primary volt-amperes will be somewhat higher because of transformer losses.

BROADCAST \& TELEVISION REPLACEMENT TRANSFORMERS

Small power transformers of the type sold for replacement in broadcast and television receivers are usually designed for service in terms of use for several hours continuously with capacitor-input filters. In the usual type of amateur transmitter service, where most of the power is drawn intermittently for periods of several minutes with equivalent intervals in between, the published ratings can be exceeded without excessive transformer heating.

With a capacitor-input filter, it should be safe to draw 20 to 30 percent more current than the rated value. With a choke-input filter, an increase in current of about 50 percent is permissible. If a bridge rectifier is used, the output voltage will be approximatcly doubled. In this case, it should be possibe in amateur transmitter service to draw the rated current, thus obtaining about twice the rated output power from the transformer.

This does not apply, of course, to amateur uransmitter plate transformers, which usually are already rated for intermittent service.

REWINDING POWER TRANSFORMERS

Although the home winding of power transformers is a task that few amateurs undertake, the

CROSS-SECTIONAL AREA $=$ WIOTH \times HEIGHT (WXH) OF CORE

Fig. 5-6 - Cross-sectional drawing of a typical power transformer. Multiplying the height for thickness of the laminations) times the width of the central core area in inches gives the value to be applied to Fig. 5-7.
rewinding of a transformer secondary to give some desired voltage for powering filaments or a solid-state device is not difficult. It involves a matter of only a small number of turns and the wire is large enough to be handled easily. Often a receiver powes transformer with a bumed-out high-voltage winding or the power transfomer from a discarded TV set can be converted into an entirely satisfactory transformer without great effort and with little expense. The average TV power transformer for a 17 -inch or larger set is capable of detivering from 350 to 450 watts, continuous duty. If an amateur transmitter is being powered, the service is not continuous, so the ratings can be increased by a factor of 40 or 50 percent without danger of overloading the transformer.

The primary volt-ampere rating of the transformer to be rewound, if known, can be used to determine its power-handling capability. The secondary volt-ampere rating will be ten to twenty percent less than the primary rating. The power rating may also be determined approximately from the cross-sectional area of the core which is inside the windings. Fig. 5-6 shows the method of determining the area, and Fig. 5-7 may be used to convert this information into a power rating.

Before disconnecting the winding leads from their terminals, each should be marked for identification. In removing the core laminations, care should be taken to note the manner in which the core is assembled, so that the reassembling will be done in the same manner. Most transformers have secondaries wound over the primary, while in some the order is reversed. In case the secondaries are on the inside, the tums can be pulled out from the center after slitting and removing the fiber core.

The turns removed from one of the original filament windings of known voltage should be carefully counted as the winding is removed. This will give the number of tums per volt and the same Gigure should be used in determining the number of turns for the new secondary. For instance, if the

Fig. 5-7 - Power-handling capability of a transformer versus cross-sectional area of core.
old filament winding was rated at 5 volts and had 15 turns, this is $15 / 5=3$ turns per volt. If the new secondary is to deliver 18 volts, the required number of turns on the new winding will be $18 \times 3=54$ turns.

In winding a transformer, the size of wire is an important factor in the heat developed ir. operation. A cross-sectional area of 1000 circular mils per ampere is conservative. A value commonly used in amateur-service transfomers is $700 \mathrm{cmil} / \mathrm{A}$. The larger the cmil/A figure, the cooler the
transformer will run. The current rating in amperes of various wire sizes is shown in the copper-wire table in another chapter. If the transformer being rewound is a filament transformer, it may be necessary to choose the wire size carefully to fit the smail available space. On the other hand, if the transformer is a power unit with the high-voltage winding removed, there should be plenty of room for a size of wire that will conservatively handle the required current.

After the first layer of tums is put on during rewinding, secure the ends with cellulose tape. Each layer should be insulated from the next; ordinary household waxed paper can be used for the purpose, a single liyer being adequate. Sheets cut to size beforehand may be secured over each layer with tape. Be sure to bring all leads out the same side of the core so the covers will go in place when the unit is completed. When the last layer of the winding is put on, use two sheets of waxed paper, and then cover those with vinyl electrical tape, keeping the tape as taut as possible. This will add mechanical strength to the assembly.

The laminations and housing are assembled in just the opposite sequence to that followed in disassembly. Use a light coating of shellac between each lamination. During reassembly, the lamination stack may be compressed by clamping in a vise. If the last few lamination strips cannot be replaced, it is better to omit them than to force the unit together.

RECTIFIER CIRCUITS

Hall-Wave Rectifier

Fig. 5-8 shows three rectifier circuits covering most of the common applications in amateur equipment. Fig. 5-8A is the circuit of a half-wave rectifier. The rectifier is a device that will conduct current in one direction but not in the other. During one half of the ac cycle the rectifter will conduct and current will flow through the rectifier to the load. During the other half of the cycle the rectifier does not conduct and no current flows to the load. The shape of the output wave is shown in (A) at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.

The averagc output voltage - the voltage read by the usual de voltmeter - with this circuit (no filter connected) is 0.45 times the rms value of the ac voltage delivered by the transformer secondary. Because the frequency of the pulses is relatively low (one pulsation per cycle), considerable filtering is required to provide adequately smooth dc output, and for this reason this circuit is usually limited to applications where the current involved is small, such as suppijes for cathode-ray tubes and for protective bias in a transmitter.

The peak reverse voltage (PRV), the voltage the rectifier must withstand when it isn't conducting, varies with the load. With a resistive load it is the peak ac voltage ($1.4 E_{\mathrm{RMS}}$) but with a capacitor
load drawing little or no current it can rise to 2.8 $E_{\text {RMS }}$.

Another disadvantage of the half-wave rectifier circuit is that the transformer must have a considerably higher primary volt-ampere rating (approximately 40 percent greater), for the same dc power output, than in other rectifier circuits.

Full-Wave Center-Tap Rectifier

A commonly used rectifier circuit is shown in Fig. 5-8B. Essentially an arrangement in which the outputs of two half-wave rectifjers are combined, it makes use of both halves of the ac cycle. A transformer with a center-tapped secondary is required with the circuit.

The average output voltage is 0.9 times the rms voltage of half the transformer secondary; this is the maximum voltage that can be obtained with a suitable choke-input filter. The peak output voltage is 1.4 times the rms voltage of half the transformer secondary; this is the maximum voltage that can be obtained from a capacitor-input filter (at little or no load).

The peak reverse voltage across a rectifier unit is 2.8 times the rms voltage of half the transformer secondary.

As can be seen from the sketches of the outpu? wave form in (B) to the right, the frequency of the output pulses is twice that of the half-wave rectifier. Therefore much less filtering is required.

Since the rectifiers work alternately, each handles half of the load current, and the load-current rating of each rectifier need be only half the total load current drawn from the supply.

Two separate transformers, with their primaries connected in parallel and secondaries connected in series (with the proper polarity) may be used in this circuit. However, if this substitution is made, the primary volt-ampere rating must be reduced to about 40 percent less than twice the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig. 5-8C. In this arrangement, two rectifiers operate in series on each half of the cycle, one rectifier being in the lead to the load, the other being in the retum lead. The current flows through two rectifiers during one half of the cycle and through the other two rectifiers during the other half of the cycle. The output wave shape (C), to the right, is the same as that from the simple center-tap rectifier circuit. The maximum output voltage into a resistive load or a properly designed choke-input filter is 0.9 times the rms voltage delivered by the transformer secondary; with a capacitor-input filter and a very light load the output voltage is 1.4 times the secondary mos voltage. The peak reverse voltage per rectifier is 1.4 times the secondary rms voltage. Each rectifier in a bridge circuit should have a minimum load-current rating of one-half the total load current to be drawn from the supply.

RECTIFIER RATINGS

All rectifiers are subject to limitations as to breakdown voltage and current-handling capability. Some tube types are rated in terms of the maximum ms voltage that should be applied to the rectifier plate. This is sometimes dependent on whether a choke- or capacitive-input filter is used. Others, particularly mercury-vapor and semiconductor types, are rated according to maximum peak reverse voltage.

Rectifiers arc rated also as to maximum dc load current, and some may carry peak-current ratings in addition. To assure normal life, all ratings should be carefully observed.

HIGH-VACUUM RECTIFIERS

High-vacuum rectifiers depend entirely upon the thermionic emission from a heated falament

Fig. 5-8 - Fundamental ractifier circuits. A -Half-wave (ERRV $=1.4 E_{\text {RMS }}$ with resistive load, $=2.8$ ERMS $_{\text {with capscitor-input filzert. }}$ 8-Full-wave. C - Full-wave bridge. Output voltage values do not include rectifier voltage drops.
and are characterized by a relatively high internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in cases where the relatively high internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overioad and they are free from the bothersome electrical noise sometimes associated with other types of rectifiers.

Some rectifiers of the high-vacuum full-wave type in the so-called receiver-tube class will handle up to 275 mA at 400 to 500 -volts de output. Those in the higher power class can be used to handle up to 500 mA at 2000 volts dc in full-wave circuits. Most low-power high-vacuum rectiflers are produced in the full-wave type, while those for greater power are invariably of the half-wave type, two tubes being required for a full-wave rectifier circuit. A few of the lower voltage types have indirectly heated cathodes, but are limited in heater-to-cathode voliage rating.

SEMICONDUCTOR RECTIFIERS

Silicon rectifiers are being used almost exclusively in power supplies for amateur equipment. Types are available to replace high-vacuum and mercury-vapor rectifiers. The semiconductors have the advantages of compactness, low internal voltage drop, low operating temperature and high current-handling capability. Also, no filament transformers are required.

Silicon rectifiers are available in a wide range of voltage and current rating in peak reverse voltage ratings of 600 or lesi, silicon rectifiers carry current ratings as high as 400 amperes, and at 1000 PRV the current ratings may be 1.5 amperes or so. The extreme compactness of silicon types makes feasible the stacking of several units in serics for higher voltages. Standard stacks are available that
will handle usp to 10,000 PRV at a dc load cursent of 500 mA , although the amateur can do much better, economically, by stacking the rectifiers himseif.

PROTECTION OF SILICON POWER DIODES

The important specifications of a silicon diode are:

1) PRV (or PIV), the peak reverse (or peak inverse) voltage,
2) I_{0}, the average dc current rating.
3) I REP, the peak repetitive forward current, and
4) ISURGE, the peak one-cycle surge current. The first two specifications appear in most catalogs. The last two often do not, but they are very important.

Since the rectifier never allows current to flow more than half the time, when it does conduct it has to pass at least twice the average direct current. With a capacitor-input filter, the rectifier conducts much less than half the time, so that when it does conduct, it may pass as much as ten to twenty times the average dc current, under certain conditions. This peak current is $/_{\text {REP }}$, the peak repetitive forward current.

Also, when the supply is first tumed on, the discharged input capacitor looks like a dead short, and the rectifier passes a very heavy current. This is ISURGE. The maximum $I_{\text {SURGE rating is usually }}$ for a duration of one cycle (at 60 Hz), or about 16.7 milliseconds.

If a manufacturer's data sheet is not available, an educated guess about a diode's capability can be made by using these rules of thumb for silicon diodes of the type commonly used in amateur power supplies:

Rule 1) The maximum $I_{\text {REP }}$ rating can be assumed to be approximately four times the maximum I_{o} rating.

Rule 2) The maximum ISURGE rating can be assumed to be approximately twelve times the maximum I_{0} rating. (This should provide a reasonable safety factor. Silicon rectifiers with $750-\mathrm{mA}$ de ratings, as an example, seldom have 1-cycle surge ratings of less than 15 amperes; some are rated up to 35 amperes or more.) From this then, it can be seen that the rectifier should be sclected on the basis of $I_{\text {SURGE }}$ and not on I_{o} ratings.

Thermal Protection

The junction of a diode is quite small, hence it must operate at a high current density. The heat-handling capability is, therefore, quite small. Normally, this is not a prime consideration in high-voltage, low-cursent supplies. When using high-current rectifiers at or near their maximum ratings (usually 2 -ampere or larger stud-mount
rectifiers), some form of heat sinking is necessary. Frequently, mounting the rectifier on the main chassis - directly, or by means of thin mica insulating washers - will suffice. If insulated from the chassis, a thin layer of silicone grease should be used between the diode and the insulator, and between the insulator and the chassis to assure good heat conduction. Large high-current rectifiers often require special heat sinks to maintain a safe operating temperature. Forced-air cooling is sometimes used as a further aid. Safe casc temperatures are usually given in the manufacturer's data sheets and should be observed if the maximum capabilities of the diode are to be realized.

Surge Protection

Each time the power supply is activated, assuming the input filter capacitor has been discharged, the rectifiers must look into what represents a dead short. Some form of surge protection is usually necessary to protect the diodes until the input capacitor becomes nearly charged. Although the dc resistance of the transformer secondary can be relied upon in some instances to provide ample surge-current limiting, it is seldom enough on high-voltage power supplies to be suitable. Series resistors can be installed between the secondary and the rectifier strings as illustrated in Fig. 54, but are a deterrent to good

115V.A.C.

Fig. 5-9 - The primary circuit of T1 shows how a 115 -volt ac relay and a series dropping resistor, R_{8} 。 can provide surge protection while C charges. When silicon rectifiers are connected in series for high-voltage operation, the inverse voltage does nat divide equally. The reverse voltage drops can be equalized by using equalizing resistors, as shown in the secondary circuit. To protect against voltage "spikes" that may damage an individual rectifier, each rectifier should be bypassed by a .01- $\mu \mathrm{F}$ capacitor. Connected as shown, two 400-PRV silicon rectifiers can be used as an 800-PRV rectifier, although it is preferable to include a safety factor and call it a " $750-\mathrm{PRV}$ " rectifier. The rectifiers, CR1 through CR4, should be the same type (same type number and ratings).

Fig. 5-10 - Methods of suppressing line transients. See text.
voltage regulation. By installing a surge-limiting device in the primary circuit of the plate transformer, the need for series resistors in the secondary circuit can be avoided. A practical method for primary-circuit surge control is shown in Fig. 5-9. The resistor, $\boldsymbol{R}_{\mathrm{g}}$ intsoduces a voltage drop in the primary feed to T1 until C is nearly changed. Then, after C becomes partially charged, the voltage drop across R_{g} lessens and allows Kl to pull in, thus applying full primary power to T 1 as K1A shorts out $\boldsymbol{R}_{\mathrm{g}} \cdot \boldsymbol{R}_{\mathrm{s}}$ is usually a 25 -watt resistor whose resistance is somewhere between 15 and 50 ohms, depending upon the power supply characteristics.

Transient Problems

A common cause of trouble is transient voltages on the ac power line. These are short spikes, mostly, that can temporarily increase the voltage seen by the rectifier to values much higher than the nomal transfomer voltage. They come from distant lightning strokes, electric motors turning on and off, and so on. Transients cause unexpected, and often unexplained, loss of slificon rectifiers.

It's always wise to suppress line transients, and it can be easily done. Fig. 5-10A shows one way. C1 looks like 280,000 ohms at 60 Hz , but to a sharp transicnt (which has only high-frequency components), it is an effective bypass. C2 provides additional protection on the sccondary side of the transformer. It should be $.01 \mu \mathrm{~F}$ for transformer voltages of 100 or less, and $.001 \mu \mathrm{~F}$ for high-voltage transformers.

Fig. 5-10B shows another transient-suppression method using selenium suppressor diodes. The diodes do not conduct unless the peak voltage becomes abnormally high. Then they clip the transient peaks. General Electric sells protective diodes under the trade name, "Thyrector."

Sarkes-Tarzian uses the descriptive name, "Klipvolt."

Transient voltages can go as high as twice the normal line voltage before the suppressor diodes clip the peaks. Capacitors cannot give perfect suppression either. Thus, it is a good idea to use power-supply rectifiers rated at about twice the expected PRV.

Diodes in Series

Where the PRV rating of a single diode is not sufficient for the application, similar diodes may be used in series. (Two 500-PRV diodes in series will withstand 1000 PRV, and so on.) When this is done, a resistor and a capacitor should be placed across each diode in the string to equalize the PRV drops and to guard against transient voltage spikes, as shown in Fig. 5-9. Even though the diodes are of the same type and have the same PRV rating, they may have widely different back resistances when they are cut off. The reverse voltage divides according to Ohm's Law, and the diode with the higher back resistance will have the higher voltage developed across it. The diode may break down.

If we put a swamping resistor across each diode, \mathbf{R} as shown in Fig. 5-9, the resultant resistance across each diode will be almost the same, and the back voltage will divide almost equally. A good rule of thumb for resistor size is this: Multiply the PRV rating of the diode by 500 ohms. For example, \& 500-PRV diode should be shunted by 500×500, or 250,000 ohms.

The shift from forward conduction to high back resistance does not take place instantly in a silicon diode. Some diodes take longer than othors to develop high back resistance. To protect the "fast" diodes in a series string until all the diodes are properly cut off, a $.01 \mu \mathrm{~F}$ capacitor should be placed across each diodc. Fig. 5-9 shows the complete series-diode circuit. The-capacitors should be noninductive, ceramic disk, for example, and should be well matched. Use 10 -percent-tolerance capacitors if possible.

Diodes in Parallel

Diodes can be placed in parallel to increase current-handling capability. Equalizing resistors should be added as shown in Fig. 5-11. Without the resistors, one diode may take most of the current. The resistors should be selected to have about a 1-volt drop at the expected peak current.

Fig. 5-11 - Diodes in parallel should have equalizing resistors. See text for appropriate value.

FILTERING

The pulsating dc waves from the rectifiers are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters are required between the rectifier and the load to smooth out the pulsations into an essentially constant dc voltage. Also, upon the design of the filter depends to a large extent the dc voitage output, the voltage regulation of the power supply. and the maximum load current that can be drawn from the supply without exceeding the peakcurrent rating of the rectifier. Power supply filters are low-pass devices using series inductors and shunt capacitors.

Load Resistance

In discussing the performance of power-supply filters, it is sometimes convenient to express the load connected to the output terminals of the supply in terms of resistance. The load resistance is equal to the output voltage divided by the total current drawn, including the current drawn by the bleeder resistor.

Voltage Regulation

The output voltage of a power supply always decreases as more current is drawn, not only because of increased voltage drops on the transformer, Eilter chokes and the rectifier (if high-vacuum rectifiers are used) but also because the output voltage at light loads tends to soar to the peak value of the transformer voltage as a result of charging the first capacitor. By proper filter dexign the latter effect can be eliminated. The change in output voltage with load is called voltage regulation and is expressed as a percentage.

$$
\text { Percent regulation }=\frac{100(E 1-E 2)}{E 2}
$$

Example: No-load vollage $=E 1=1550$ volss. Fulthoed vollage $=$ E2 - 1230 volts.
Percentage regulation $=\frac{100(1550-1230}{1230}$

$$
=\frac{32,000}{1230}=26 \text { percent }
$$

A steady load, such as that represented by a receiver, speech amplifier or unkeyed stages of a transmitter, does not require good (low) regulation as long as the proper voltage is obtained under load conditions. However, the filter capacitors must have a voltage rating safe for the highest value to which the voltage will soar when the external load is removed.

A power supply will show more (higher) regulation with long-term changes in load resistance than with short temporary changes. The regulation with long-term changes is often called the static regulation, to distinguish it from the dynamic regulation (short temporary load changes). A load that varies at a syllabic or keyed rated, as represented by some audio and rf
amplifiers, usually requires good dynamic regulation (15 percent or less) if distortion products are to be held to a low level. The dynamic regulation of a power supply is improved by increasing the value of the output capacitor.

When essentially constant voltage regardless of current variation is required (for stabilizing an oscillator, for example), special voltage-regulating circuits described elsewhere in this chapter are used.

Bleeder

A blecder resistor is a resistance connected across the output terminals of the power supply. Its functions are to discharge the filter capacitors as a safety measure when the power is turned off and to improve voltage regulation by providing a minimum load resistance. When voltage regulation is not of importance, the resistance may be as high as 100 ohms per volt. The resistance valuc to be used for voltage-regulating purposes is discussed in later sections. From the consideration of safety, the power rating of the resistor should be as conservative as possible, since a burned-out bleeder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter may be considered to consist of shunting capacitors which shortcircuit the ac component while not interfering with the flow of the dc component, and series chokes which pass dc readily but which impede the now of the ac component.

The altemating component is called the ripple. The effectiveness of the filter can be expressed in terms of percent ripple, which is the ratio of the rms value of the ripple to the de value in terns of percentage. Any multiplier or amplifier supply in a code transmitter should have less than 5 percent ripple. A linear amplifier can tolerate about 3 percent ripple on the plate voltage. Bias supplies for linear amplifiers, and modulator and modu-lated-amplifier plate supplies, should have less than 1 percent ripple. VFOs, speech amplifiers and receivens may require a ripple reduction to .01 percent.

Ripple frequency is the frequency of the pulsations in the rectifier output wave - the number of pulsations per second. The frequency of the ripple with half-wave rectifiers is the same as the frequency of the line supply -60 Hz with $60-\mathrm{Hz}$ supply. Since the output pulses are doubled with a full-wave rectifier, the ipple frequency is doubled - to 120 Hz with a $60-\mathrm{Hz}$ supply.

The amount of filtering (values of inductance and capacitance) required to give adequate smoothing depends upon the ripple frequency, with more filtering being required as the ripple frequency is lowered.

Type of Filter

Power-supply filters fall into two classifications, capacitor input and choke input. Capacitor-input filters are characterized by relatively high output voltage in respect to the transformer voltage. Advantage of this can be taken when silicon rectiflers are used or with any rectifier when the load resistance is high. Silicon rectifiers have a higher allowable peak-to-dc ratio than do thermionic rectifiers. This permits the use of capacitor-input filters at ratios of input capacitor to load resistance that would seriously shorten the life of a thermionic rectifier system. When the series resistance through a rectifier and filter system is appreciable, as when high-vacuum rectifiers are used, the voltage regulation of a capacitor-input power supply is poor.

The output voltage of a properly designed choke-input power supply is less than would be obtained with a capacitor-input filter from the same transformer.

CAPACITIVE-INPUT FILTERS

Capacitive-input filter systems are shown in Fig. $5-12$. Disregarding voltage drops in the chokes, all have the same characteristics except in respect to ripple. Better ripple reduction will be obtained when LC sections are added, as shown in Figs. 5-12B and C.

Outpat Voltage

To determine the approximate dc voltage output when a capacitive-input filter is used, reference should be made to the graph of Fig. 5-5.

Example:
Transformer ms voluge - 350
Load renistance - 2000 ohms

Fig. 5-12 - Capacitive-input filter circuits. A Simple capacitive. B - Single-section. C -Double-section.

Fig. 5-13 - Graph showing the relationship between the dc load current and the rectifier peak current with capacitive input for various values of load and input resistance.

```
Series resixtance \(\mathbf{- 2 0 0}\) ohma
\(200-2000=0.1\)
Inpur capacisor \(C=20 \mu \mathrm{~F}\)
    RC \(-2000 \times 20=40\)
    \(1000 \quad 1000\)
From curve 0.1 and \(R C=40\). dc vollage \(=350 \times 1.06\) \(=370\).
```


Regulation

If a bleeder resistance of $\mathbf{2 0 , 0 0 0}$ ohms is used in the example above, when the load is removed and R becomes 20,000 , the dc voltage will rise to 470 . For minimum regulation with a capacitor-input filter, the bleeder resistance should be as high as possible, or the series resistance should be low and the filter capacitance high, without exceeding the transformer or rectifier ratings.

Maximum Rectifier Current

The maximum current that can be drawn from a supply with a capacitive-input filter without exceeding the peak-current rating of the rectifier may be estimated from the graph of Fig. 5-13. Using values from the preceding example, the ratio of peak rectifier current to dc load current for 2000 ohms, as shown in Fig. 5-13, is 3. Therefore. the maximum load current that can be drawn without exceeding the rectifier rating is $1 / 3$ the peak rating of the rectificr. For a load current of 185 mA , as above ($370 \mathrm{~V}+2000 \Omega$), the rectifier peak current rating should be at least $3 \times 185=555 \mathrm{~mA}$.

With bleeder current only, Fig. S-13 shows that the ratio will increase to 6.5 . But since the bleeder draws 23.5 mA dc , the rectifier peak current will be only 153 mA .

CHOKE-INPUT FILTERS

With thermionic rectifiers better voltage regulations results when a choke-input filter, as shown in Fig. 54, is used. Choke input permits better utilization of the thermionic rectifier, since a lugher load current usually can be drawn without excceding the peak current rating of the rectifier.

Minimum Choke Inductance

A choke-input filter will tend to act as a capacitive-input filter unless the input choke has at least a certain minimum value of inductance called the critical value. This critical value is given by

$$
L_{\text {crit }} \text { (henrys) }=\frac{E \text { (volts) }}{I(\mathrm{~mA})}
$$

where E is the output voltage of the supply, and I is the current being drawn through the filter.

If the choke has at least the critical value, the output voltage will be limited to the average value of the rectified wave at the input to the choke (see Fig. 5-8) when the current drawn from the supply is small. This is in contrast to the capacitive-input filter in which the output voltage tends to soar toward the peak value of the rectified wave at light loads.

Minimum-Load - Bleeder Resistance

From the formula above for critical inductance, it is obvious that if no current is drawn from the supply, the critical inductance will be infinite. So that a practical value of inductance may be used, some current must be drawn from the supply at all times the supply is in use. From the formula we find that this minimum value of current is

$$
I(\mathrm{~mA})=\frac{E(\text { volts })}{L_{\mathrm{crit}}}
$$

In the majority of cases it will be most convenient to adjust the bleeder resistance so that the bleeder will draw the required minimum current. From the formula, it may be seen that the value of critical inductance becomes smaller as the load current increases.

Swinging Chokes

Less costly chokes are available that will maintain at least the critical value of inductance over the range of current likely to be drawn from practical supplies. These chokes are called swinging chokes. As an example, a swinging choke may have an inductance rating of $5 / 25 \mathrm{H}$ and a current rating of 200 mA . If the supply delivers 1000 volts, the minimum load current should be $1000 / 25=40$ mA . When the full load current of 200 mA is drawn from the supply, the inductance will drop to 5 H . The critical inductance for 200 mA at 1000 volts is $1000 / 200=5 \mathrm{H}$. Therefore the $5 / 25 \mathrm{H}$ choke maintains the critical inductance at the full
current rating of 200 mA . At all load currents between 40 mA and 200 mA , the choke will adjust its inductance to the approximate critical value.

Output Voltage

Provided the input-choke inductance is at least the critical value, the output voltage may be calculated quite close by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\left(I_{\mathrm{B}}+I_{\mathrm{L}}\right)(\mathrm{R} 1+\mathrm{R} 2)-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; E_{t} is the rms voltage applied to the rectifier (rms voltage between center-tap and one end of the secondary in the case of the center-tap rectificr); I_{B} and I_{L} are the bleeder and load currents, respectively, in amperes; R_{1} and R_{2} are the resistances of the first and second filter chokes; and E_{r} is the voltage drop across the rectifier. The various voltage drops are shown in Fig. 5-4. At no load I_{L} is zero; hence the no-load voltage may be calculated on the basis of bleeder current only. The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

OUTPUT CAPACITOR

Whether the supply has a choke- or capacitorinput filter, if it is intended for use with a Class A af amplifier, the reactance of the output capacitor should be low for the lowest audio frequency; 16 $\mu \mathrm{F}$ or more is usually adequate. When the supply is used with a Class B amplifier (for modulation or for ssb amplification) or a cw transmitter, increasing the output capacitance will result in improved dynamic regulation of the supply. However, a region of diminishing returns can be reached, and 20 to $30 \mu \mathrm{~F}$ will usually suffice for any supply subjected to large changes at a syllabic (or keying) rate.

RESONANCE

Resonance effects in the scries circuit across the output of the rectifier, formed by the first choke and first filter capacitor, must be avoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intended, but may also cause excessive rectifier peak currents and abnormally high peak-reverse voltages. For full-wave rectification the ripple frequency will be 120 Hz for a $60-\mathrm{Hz}$ supply, and resonance will occur when the product of choke inductance in henrys times capacitor capacitance in microfarads is equal to 1.77. At least twice this product of inductance and capacitance should be used to ensure against resonance effects. With a swinging choke, the minimum rated inductance of the choke should be used.

RATINGS OF FILTER COMPONENTS

In a power supply using a choke-input filter and properly designed choke and bleeder resistor, the no-load voltage across the filter capacitors will be about nine-tenths of the ac rms voltage. Neverthe-
less, it is advisable to use capacitors rated for the peak transformer voltage. This large safety factor is suggested because the voltage across the capacitors can reach this peak value if the bleeder should burn out and there is no load on the supply.

In a capacitive-input filter, the capacitors should have a working-voltage rating at least as high, and preferably somewhat higher, than the peak voltage from the transformer. Thus, in the case of a center-tap rectifier having a transformer delivering 550 volts each side of the center tap, the minimum safe capacitor voltage rating will be 550×1.41 or 775 volts. An 800 -volt capacitor should be used, or preferably a 1000 -volt unit.

Filter Capacitors in Series

Filter capacitors are made in several different types. Electrolytic capacitors, which are available for peak voltages up to about 800 , combine high capacitance with small size, since the dielectric is an extremely thin film of oxide on aluminum foil. Capacitors of this type may be connected in series for higher voltages, although the filtering capacitance will be reduced to the resultant of the two capacitances in series. If this arrangement is used, it
is important that each of the capacitors be shunted with a resistor of abou: 100 ohms per volt of supply voltage applied to the individual capachtors, with an adequate power rating. These resistors may serve as all or part of the blecder resistance. Capacitors with higher voltage ratings osually are made with a dielectric of thin paper impregnated with oil. The working voltage of a capacitor is the voltage that it will withstand continuously.

Filter Chokes

Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability decreases, and consequently the inductance also decreases. Despite the air gap, the inductance of a choke usually varies to some extent with the direct current flowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current flowing in the winding will usually be considerably higher than the value when full load current is flowing.

NEGATIVE-LEAD FILTERING

For many years it has been almost universal practice to place filter chokes in the positive leads of plate power supplies. This means that the insulation between the chroke winding and its core (which should be grounded to chassis as a safety measure) must be adequate to withstand the output voltage of the supply. This voltage requirement is removed if the chokes are placed in the negative lead as shown in Fig. 5-14. With this connection, the capacitance of the transformer secondary to ground appears in parallel with the filter chokes tending to bypass the chokes. However, this effect will be negligible in practical application except in cases where the output ripple must be reduced to a very low figure. Such applications are usually limited to low-voltage devices such as receivers, speech amplifiers and VFOs where insulation is no problem and the chokes may be placed in the positive side in the conventional manner. In higher voliage applications, there is no reason why the filter chokes should not be placed in the negative lead to reduce

Fig. 6-14 - In most applications, the filter chokes may be placed in the negative instead of the positive side of the circuit. This reduces the danger of a voltage breakdown between the choke winding and core.
insulation requirements. Choke terminals, negative capacitor terminals and the transfomer center-tap terminal should be well protected against accidental contact, since these wIII assume full supply voltage to chassis should a choke bum out or the chassis connection fail.

THE "ECONOMY" POWER SUPPLY

In many transmitters of the 100 -watt class, an excellent method for obtaining plate and screen voltages without wasting power in resistors is by the use of the "economy" power-supply circuit. Shown in Fig. 5-15, it is a combination of the full-wave and bridge-rectifier circuits. The voltage at E 1 is the normal voltage obtained with the full-wave circuit, and the voltage at E2 is that obtained with the bridge circuit (see Fig. 5-8). The rotal dc power obtained from the transformer is, of course, the same as when the transformer is used in its normal manner. In cw and ssb applications, additional power can usually be drawn without excessive heating, especially if the transformer has a rectifier filament winding that isn't being used.

Fig. 5-15 - The "economy" power supply circuit is a combination of the full-wave and bridge-rectifier circuits.

VOLTAGE-MULTIPLYING CIRCUITS

Although vacuum-rube rectifiers can be used in voltage-multiplying circuits, semiconductor rectifiers are recommended.

A simple half-wave rectifier circuit is shown in Fig. 5-16. Strictly speaking this is not a voltage-multiplying circuit. However, if the current demand is low (a milliampere or less), the dc output voltage will be close to the peak voltage of the source, or $1.4 E_{\text {rins }}$. A typical application of the circuit would be to obtain a low bias voltage from a heater winding; the + side of the output can be grounded by reversing the polarity of the rectifier and capacitor. As with all half-wave rectifiers, the output voltage drops quickly with increased current demand.

The resistor R1 in Fig. 5-16 is included to limit the current through the rectifier, in accordance with the manufacturer's rating for the diode. If the resistance of the transformer winding is sufficient, R1 can be omitted.

Fig. 5-16 - If the current demand is low, a simple half-wave rectifier will deliver a voltage increase. Typical values, for $E_{\text {RMS }}=117$ and a load current of 1 mA :
C1 - $50-\mu \mathrm{F}, 250-\mathrm{V}$ electrolytic.
$\mathrm{E}_{\text {output }}-160$ volts.
R1-22 ohms.

VOLTAGE DOUBLERS

Several types of voltage-doubling circuits are in common use. Where it is not necessary that one side of the transformer secondary be at ground potential, the voltage-doubling circuit of Fig. 5-17 is used. This circuit has several advantages over the voltage-doubling circuit to be described later. For a given output voltage, compared to the full-wave rectifier circuit (Fig. 5-8B), this full-wave doubler circuit requires rectifiers having only half the PRV rating. Again for a given output voltage, compared to a full-wave bridge circuit (Fig. 5-8C) only half as many rectifiers (of the same PRV rating) are required.

Resistors R1 in Fig. 5-17 are used to limit the surge currents through the rectifiers. Their values are based on the transformer voltage and the rectifier surge-current rating, since at the instant the power supply is turned on the filter capacitors look like a short-circuited load. Provided the limiting resistors can withstand the surge current, their current-handling capacity is based on the maximum load current from the supply.

Output voltages approaching twice the peak voltage of the transformer can be obtained with the voltage-doubling circuit of Fig. 5-17. Fig. S-18 shows how the voltage depends upon the ratio of the series resistance to the load resistance, and the product of the load resistance times the filter capacitance.

When one side of the transformer secondary must be at ground potential, as when the ac is derived from a heater winding, the voltage-multiplying circuits of Fig. 5-19 can be used. In the voltage-doubling circuit at A, Cl charges through the left-hand rectifier during one half of the ac cyle; the other rectifier is nonconductive during this time. During the other half of the cycle the right-hand rectifier conducts and C2 becomes charged; they see as the source the transformer plus the voltage in Cl. By reversing the polarities of the capacitors and rectifiers, the + side of the output can be grounded.

VOLTAGE TRIPLING AND QUADRUPLING

A voltage-tripling circuit is shown in Fig. 5-19B. On one half of the ac cycle Cl is charged to the source voltage through the left-hand rectifier. On the opposite half of the cycle the middle rectifier conducts and C2 is charged to twice the source voltage, because it sees the transformer plus the charge in C 1 as its source. (The left-hand rectifier is cut off on this half cycle.) At the same time the righthand rectifier conducts and, with the transformer and the charge in C2 as the source, C3 is charged to three times the transformer voltage. The + side of the output can be grounded if the polarities of all of the capacitors and rectifiers are reversed.

The voltage-quadrupling circuit of Fig. 5-19C works in substantially similar fashion.

In any of the circuits of Fig. 5-19, the output voltage will approach an exact multiple (2,3 or 4 , depending upon the circuit) of the peak ac voltage when the output current drain is low and the capacitance values are high.

$\xrightarrow[\substack{E_{P E A K}=2.8 E_{\text {RMS }} \\ E_{P R V}=2.8 E_{R M S}}]{\sim}$
Fig. 5-17 - Full-wave vol-tage-doubling circuit. Values of limiting resistors, Ri, depend upon allowable surge currents of rectifiers.

Fig. 5-18 - Dc output voltages from a full-wave voltage-doubling circuit as a function of the filter capacitances and load resistance. For the ratio R_{s} / R and for the RC product, resistances are in ohms and capacitance is in microfarads. Equal resistance values for $\boldsymbol{R}_{\mathbf{s}}$ and equal capacitance values for \mathbf{C} are assumed.

Fig. 5-19 - Voltage-multiplying circuits with one side of transformer secondary grounded. (A) Voltage doubler (B) Voltage tripler (C) Voitage quadrupler.

Capacitances are typically 20 to $50 \mu \mathrm{~F}$ depending upon output current demand. De ratings of capacitors are related to $E_{\text {peak }}\left(1.4 \mathrm{E}_{\mathrm{BC}}\right)$:
C1 - Greater than Epeak
C2 - Greater than 2E ${ }^{\text {peak }}$
C3-Greater than 3E peak
C4 - Greater than 4Epeak

VOLTAGE DROPPING

Senies Voltage-Dropping Resistor

Certain plates and screens of the various tubes in a transmitter or receiver often require a variety of operating voltages differing from the output voltage of an available power supply. In most cases, it is not economically feasible to provide a separate power supply for each of the required voltages. If the current drawn by an electrode (or combination of eiectrodes operating at the same voltage) is reasonably constant under normal operating conditions, the required voltage may be obtained from a supply of higher voltage by means of a voltage-dropping resistor in series, as shown in Fig. $5-20 \mathrm{~A}$. The value of the series, resistor, R1, may be obtained from Ohm's Law,

$$
R=\frac{E_{\mathrm{d}}}{I}
$$

where E_{d} is the voltage drop required from the supply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the screens of the tubes in two other slages require an operating voltage of 250 . The nearest available supply voltage is 400 and the total of the rated plate and screen currents is 75 mA . The required resistance is

$$
R \approx \frac{400-250}{075}=\frac{150}{.075}=20000 \mathrm{hms}
$$

The power rating of the resistor is obtained from P (watts) $\Rightarrow l^{2} R=\{0.075)^{2} \times(2000\}=11.2$ watts. A 20-watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, since any change in current through the resistor will cause a directly proportional change in the voltage drop across the resistor. The regulation can be improved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. 5-20B. Such an arrangement constitutes a voltage divider. The second resistor, R2, acto as a constant luad for the first, R1, so that any variation in current from the tap becomes a smaller percentage of the total current through R1. The heavier the current drawn by the resistors when they alone are connected across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typical arrangement is

Fig. 5-20 - A - Series voltage-dropping resistor. B - Simple voltage divider.

$$
R 2=\frac{E 1}{I 2} ; R 1=\frac{E-E 1}{J 1+J 2}
$$

I2 must be assumed.
C - Multiple divider circuit.

$$
R 3=\frac{E 2}{I 3} ; R 2=\frac{E 1-E}{I 2+I 3} ; R 1=\frac{E-E 1}{I 1+/ 2+/ 3}
$$

I3 must be assumed.
shown in Fig. 5-20C. The terminal voltage is E, and two taps are provided to give lower voltages, EI and E2, at currents I1 and 12 respectively. The smaller the resistance between taps in proportion to the totsl resistance, the lower is the voltage between the taps. The voltage divides in the figure is made up of separate resistances, R1, R2 and R3. R3 carries only the bleeder current, I3; R2 carries I2 in addition to I3; R1 carrics I1, I2 and I3. To calculate the resistances required, a bleeder cument, 13, must be assumed; generally it is low compared with the total load current (10 percent or so). Then the required values can be calculated as shown in the caption of Fig. 5-20, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's Law using the needed voltage drop across it and the total current through it. The power dissipated by each section may be calculated by multiplying I and E or I^{2} and R.

VOLTAGE STABILIZATION

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseous regulator tubes (0B2/VR105, 0A2/VR150, etc.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are avallable for regulated voltages near $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. 5-21. The tube is connected in series with a limiting resistor, R1, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 to 40 percent higher than the operating voltage. The load is connected in parallel with the tube. For stable
operation, a minimum tube current of 5 to 10 mA is required. The maximum permissible current with most types is 40 mA ; consequently, the load current cannot exceed 30 to 35 mA if the voltage is to be stabilized over a range from zero to maximum load. A single VR tube may also be used to regulate the voltage to a load current of almost any value as long as the variotion in the current does not exceed 30 to 35 mA . If, for example, the average load current is 100 mA , a VR tube may be used to hold the voltage constant provided the cument does not fall below 85 mA or rise above 115 mA .

The value of the limiting resistor must lie between that which just permits minimum tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{\left(E_{\mathrm{B}}-E_{\mathrm{I}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{g} is the voltage of the source across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in amperes (usually 40 mA , or .04 A).

Two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. Regulation of the order of 1 percent can be obtained with these regulator tubes when they are operated within their proper current range. The capacitance in shunt with a VR tube should be limited to $0.1 \mu \mathrm{~F}$ or less. Larger values may cause the tube drop to oscillate between the operating and starting voltages.

ZENER DIODE REGULATION

A Zener diode (named after Dr. Carl Zener) can be used to stabilize a voltage source in much the same way as when the gaseous regulator tube is used. The typical circuit is shown in Fig. 5-22A. Note that the cathode side of the diode is connected to the positive side of the supply. The electrical characteristics of a Zener diode undes conditions of forward and reverse voltage are given in Chapter 4.

Zener diodes are available in a wide variety of voltages and power ratings. The voltages range from less than 2 to a few hundred, while the power ratings (power the diode can dissipate) run from less than 0.25 watt to 50 watts. The ability of the Zener diode to stabilize a voltage is dependent upon the conducting impedance of the diode, which can be as low as one ohm or less in a low-voltage high-power diode to as high as a thousand ohms in a low-power high-voltage diode.

Diode Power Dissipation

Unlike gaseous regulator tubes, Zener diodes of a particular voltage rating have varied maximum current capabilities, depending upon the power ratings of each of the diodes. The power dissipated in a diode is the product of the voltage across it and the current through it. Conversely, the maximum current a particular diode may safely conduct equals its power rating divided by its voltage rating. Thus, a $10-\mathrm{V} 50-\mathrm{W}$ Zener diode, if

Fig. 5-21 - Voltage stabilization circuit using a VR tube. A negativa-supply output may be regulated by reversing the polarity of the powersupply connections and the VR-qube connections from those shown here.

Fig. 5-22 - Zener-diode voltage regulation. The voltage from a negative supply may be regulated by reversing the powersupply connections and the diode polarities.
operated at its maximum dissipation rating, would conduct 5 amperes of current. A $10-\mathrm{V} 1-\mathrm{W}$ diode, on the other hand, could safely conduct no more than 0.1 A , or 100 mA . The conducting impedance of a diode is its voltage rating divided by the current flowing through it, and in the above examples would be 2 ohms for the $50-\mathrm{W}$ diode, and 100 ohms for the 1-W diode. Disregarding small voltage changes which may occur, the conducting impedance of a given diode is a function of the current lowing through it, varying in inverse proportion.

The power-handling capability of most Zener diodes is rated at 25 degrees C, or approximately room temperature. If the diode is operated in a higher ambient temperature, its power capability must be derated. A typical 1 -watt diode can safely dissipate only $1 / 2$ watt at 100 degrees C.

Limiting Resistance

The value of \boldsymbol{R}_{g} in Fig. 5-22 is determined by the load requirements. If $\boldsymbol{R}_{\mathrm{g}}$ is too large the diode will be unable to regulate at large values of I_{L}, the current through R_{L}. If R_{g} is too small, the diode dissipation rating may be exceeded at low values of I_{L}. The optimum value for R_{g} can be calculated by:

$$
R_{\mathrm{S}}=\frac{E_{\mathrm{DC}}(\min)-E_{\mathrm{Z}}}{1.1 I_{\mathrm{L}}(\max)}
$$

When R_{S} is known, the maximum dissipation of the diode, P_{D}, may be determined by:

$$
P_{\mathrm{D}}=\left[\frac{E_{\mathrm{DC}}(\max)-E_{Z}}{R_{S}}-I_{\mathrm{L}}(\min)\right] E_{\mathbf{Z}}
$$

In the first equation, conditions are set up for the Zener diode to draw $1 / 10$ the maximum load
current. This assures diode regulation under maximum load.

$$
\begin{aligned}
& \text { Example: A } 12 \text {-voli source is } 10 \text { mpgly a circuit requir- } \\
& \text { Ing } 9 \text { vols. The loed current varies betweon } 200 \text { and } 350 \\
& \mathrm{~mA} \text {. } \\
& E_{\mathrm{Z}}=9.1 \text { V ineareal availatie value). } \\
& R_{8}=\frac{12-9.1}{1.5 \times 0.35}=\frac{2.9}{0.385}=7.5 \text { otms } \\
& P_{\mathrm{D}}=\left[\frac{12-9.1}{7.5}-0.2\right] 9.1=.185 \times 9.1=1.7 \mathrm{~W}
\end{aligned}
$$

The nearest available dissipation rating above 1.7 W is 5 ; therefore, a 9.1-V 5-W Zener diode should be used. Such a rating, it may be noted, will cause the diode to be in the safe dissipation range even though the load is completely disconnected $\left[I_{L}(\min)=0\right]$.

Obtaining Other Voltages

Fig. 5-22B shows how two Zener diodes may be used in series to obtain regulated voltages not normally obtainable from a single Zener diode, and also to give two values of rogulated voltage. The diodes need not have equal breakdown voltages, because the arrangement is self equalizing. However, the current-handling capability of each diode should be taken into account. The limiting resistor may be calculated as above, taking the sum of the diode voltages as E_{Z}, and the sum of the load currents as I_{L}.

ELECTRONIC VOLTAGE REGULATION

Several circuits have been developed for regulating the voltage output of a power supply electronically. While more complicated than the VR-tube and Zener-diode circuits, they will handle higher voltage and current variations, and the output voltage may be varied continuously over a wide range.

Voltage regulators fall into two basic types. In the type most commonly used by amateurs, the dc supply delivers a voltage higher than that which is available at the output of the regulator, and the regulated voltage is obtained by dropping the voltage down to a lower value through a dropping "resistor." Regulation is accomplished by varying either the current through a fixed dropping resistance as changes in inpul voltage or load currents occur (as in the VR-tube and Zener-diode regulator circuits), or by varying the equivalent resistive value of the dropping element with such changes. This latter technique is used in electronic regulators where the voltage-dropping element is a vacuum tube or a transistor, rather than an actual resistor. By varying the dc voltage at the grid or current at the base of these elements, the conductivity of the device may be varied as necessary to hold the output voltage constant. In solid-state regulators the series-dropping element is called a pass transistor. Power transistors are available which will handle several amperes of current at several hundred volts, but solid-state regulators of this type are usually operated at potentials below 100 volts.

The second type of regulator is a switching type, where the voltage from the de source is rapidly switched on and off (electronically). The average dc voltage available from the regulator is proportional to the duty cycle of the switching wave form, or the ratio of the ON time to the total period of the switching cycle. Switching frequencies of several kilohertz are normally used to avoid the need for extensive filtering to smooth the switching frequency from the dc output.

The above information pertains essentially to voltage regulators. A circuit can also be constructed to provide current regulation. Such regulation is usually obtained in the form of current limitation - to a maximum value which is either preset or adjustable, depending on the circuit. Relatively simple circuits, such as described later,

Fig. 5-23 - Schematic diagram of the power supply. Capacitonces are in μF; capacitors marked with a polarity are electrolytic. Resistances are in ohms; R1 and R2 are composition.
C1 $-2000-\mu \mathrm{F} 50$ volts de edectrolytic (Mallory CG23U50C1).
C2 - .01- $\mu \mathrm{F}$ disk ceramic.
CRI-CR4, incl. - 50 PRV 3-A silicon diode (Motorola 1N4719).

DS1 - Neon lamp assembly with resistor (Leecraft 32-21111.
Q1-2N1970.
S1 - Spst toggle switch.
S2 - Phenolic rotary. 1 section, 2-pols (1 used), 6 -position, shorting (Mallory 3126 J).
T1 - Filament transformer, 25.2 V. 2 A (Knight 54 D 4140 or similar).
VR1 - Voltage regulator diode.
can be used to provide current limiting only. Current limiting circuitry may also be used in conjunction with voltage regulators.

Solid-State Regulators

One of the simplest forms of solid-state regulation is shown at Fig. 5-23. A bridge rectifier supplies 25 volts dc to a series regulator transistor, Q1, whose base bias is established by means of a Zener diode, VR1, providing a voltage reference of a fixed level. Cl is the input capacitor for the filter. R1 is chosen to establish a safe Zener-diode current, which is dependent upon the wattage rating of the diode. A l-watt Zener diode is adequate for the circuit of Fig. 5-23. R2 is a bleeder resistor and $C 2$ is an rf bypass. If several output voltages are desired, say from 6 to 18 volts, Zener diodes from 6 to 18 volts can be wired to S 2 as shown. When a 2 N1970 is used at Q1, the value of RI will be 680 ohms. This value offers a compromise for the 5 reference diodes used ($6,9,12,15$, and 18 volts).

The output of the supply is equal to the Zener voltage minus the emitter-to-base bias voltage of Q1. Both the Zener voltage and bias voltage will be approximately zero with only R2 as a load, but will rise to roughly 0.3 volt with a I-A load connected to the output. An increase in load current lowers the unregulated dc input voltage which appears across VR1 and R1. Zener current is reduced, decreasing the voltage at which the diode regulates. How much the voltage drops depends upon the characteristics of the particular Zener employed.

This power supply has very low output ripple. The main limitation of the circuit is the possibility of destroying Q1, the series-regulator transistor, when a dead short or heavy overload is connected across the output of the supply. To protect Q1 during normal operation, it should be mounted on a fairly large heat sink which is thermally coupled to the main chassis of the supply. The transistor should be insulated from the sink by means of a mica spacer and a thin layer of silicone grease. The sink can then be bolted directly to the chassis.

IC Regulators

The solid-state regulator described above provides only fixed voltages. Regulator circuits with the output voltage continuously variable over a wide range and with a very high degree of regulation can be built, but the number of circuit components is comparatively large when discrete components ase used. Integrated-circuit devices can be used in a solid-state regulator circuit to replace many or all of the discrete components, depending on the output requirements. The voltage reference, control, shut-down (for current limiting) and passtransistor driver elements are contained on a single silicon chip. The construction of a regulated power supply is simplified to a few interconnections if an IC regulator is used.

Fig. 5-24 is the diagram of a regulator using an IC and a single pass transistor. With a de potential

EXCEPT AB NOICATEO, DEGIEAL VALUES OF CAPACITANCE AME IN MICROFAMAOS ! μF): OTHERS ARE M PICOFAHADS I OF OR gyFI:" RESISTANCES AAE IM OMMS: - - I 000, M-1000 000.

Fig. 5-24 - Schematic diagram of 15-V 5-A regulator (WIKLK, QST for November, 1971).
Q1 - Motorola power transistor: 30 -cubic-inch heat sink required (Delco 7281366 radiator or equiv.).
R1 - 0.1 -ohm resistor, made from 8 feet of No. 22 enam. copper wire.
R2, R4 - For text reference.
R3 - Linear tapar.
U1 - Signetics IC.
of 24 to 30 volts applied at $E_{\text {IN }}$ the circuit as shown will provide an adjustable output voltage between 5 and 15. The circuit will handle up to 5 amperes of current, provided, of course, that the dc source will deliver this amount. If the load requires no more than 150 mA of current the pass transistor may be eliminated from the circuit altogether; in this case pins 2 and 10 of the IC should be interconnected.

The NE. 550 regulator will safely accept input voltages as high as 50, and output voltages may be adjusted by appropriate resistance values for R2, R3, and R4 from 2 to 40 volts. The value of R1 determines the shut-down current (maximum cur-

Table 5-1				
Voltage Divider			Current Limil	
V OUT	$\mathrm{R}_{\text {A }}$	R_{B}	$\mathrm{I}_{\text {MAX }}$	R_{1}
3.6	6135	2967	. 05	12
5	4417	3654	0.1	6
9	11,043	2442	0.5	1.2
12	14,724	2314	1.0	0.6
13.6	16,687	2272	1.5	0.4
15	18,405	2243	2	0.3
20	24,540	2177	2.5	0.24
28	34,356	2122	3.0	0.20
	34,356		5	0.12
			10	. 006

Table 5-1 - Resistance values for various voltege and current outputs from the regulator of Fig. $5-24$. These values were determined by mathematical calculation and are not necessarily available from stock supplies. The figures given do indicate the practical values which may be used along with an appropriate-value control for R2 in the circuit of Fig. 5-24.
$R_{\mathbf{A}}$ - R2 plus top portion of R3.
$\mathbf{R}_{\mathbf{B}}$ - R4 plus bottom portion of R3.
rent which the circuit will deliver into a short circuit) and is usually selected to protect either the pass transistor or the power supply transformer, whichever has the lower current rating. Table 5-1 gives resistance values for various levels of voltage and current from the regulator.

The use of a high-gain pass device improves the output regulation, and a Darlington-connected pair is frequently employed. Of course it is easy to purchase a ready-made Darlington transistor, but the enterprising amateur can make his own, as shown in Fig. 5-25A. However, some of the IC regulators which are available on the market have so much internal gain that it is difficult to avoid oscillation with a high-gain pass transistor.

High-Current-Output Regulators

When a single pass transistor is not available to handle the current which may be required from a regulator, the current-handling capability may be increased by connecting two or more pass transistors in parallel. The circuits at B and C of Fig. $5-25$ show the method of connection. The resistances in the emitter leads of each transistor are necessary to equalize the currents.

Fig. 5.25 - At A. a Darlington-connected pair for use as the pass element in a series-regulating circuit. At B and C, the method of connecting two or more transistors in parallet for high current output. Resistances are in ohms. The circuit at A may be used for load currents from 100 mA to 5 A , at B for currents from 6 to 10 A, and at C for currents from 9 to 15 A .
Q1 - Motorola MJE 340 or equivalent.
Q2-Q7, inct. - Power transistor such as 2N3055 or 2N3772.

Fixed-Voltage IC Regulators

IC regulators with all circuitry contained on a single silicon chip are becoming available for different values of fixed-voltage outputs. The LM309 five-volt regulator, manufactured by Nationial Semiconductor and others, is one type of such ICs. These regulators are three-terminal devices, for making connections to the positive unregulated input, positive regulated output, and ground. They are designed for local regulation on digital-logic circuit-board cards to eliminate the distribution problems associated with single-point regulation. For this reason they are frequently called on card regulators.

The LM309 is available in two common transistor packages. The LM309H in a TO-5 package can deliver output currents in excess of 200 mA if adequate heat sinking is provided, and the LM 309 K in the TO-3 power package can provide an output current greater than $1 \mathbf{A}$. The regulator is essentially blow-out proof, with current limiting included in the circuit. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.

It is not necessary to bypass the output of the LM309, although bypassing does improve immunity from transient responses. Input bypassing is needed, however, if the regulator is located very far from the filter capacitor of the power supply. Typical values of input by pass capacitance are 0.15 and $0.22 \mu \mathrm{~F}$. Although designed primarly as a fixed-voltage regulator, the LM309 can be used to obtain a regulated output at voltages higher than five. This is done by returning the "ground" connection of the IC to a tap point on a voltage divider which is connected between the regulated output and a true circuit ground. An adjustable output regulator for voltages above five can be had if the "ground" pin is connected to the junction of a $300-\mathrm{ohm}$ fixed resistor and one end of a 1000 -ohm linear control. The opposite end of the 300 -ohm resistor should be connected to the output pin, and the wiper contact and third lug of the control to a tue circuit ground.

Switching Regulator

Switching regulators are used when it is necessary or desired to minimize power losses which would otherwise occur in the series pass transistor (or transistors) with large variations in input or output voltages. The basic operation of the switching regulator, known as the flyback type, may be understood by referring to Fig. S-26A. Assume that the switch is closed and the circuit has been in operation long enough to stabilize. The voltage across the load, R_{L}, is zero, and the current through L is limited only by R_{I}, the internal resistance of the inductor. At the instant the switch is opened, the voltage across the load goes to a value higher than the source voltage, E, because of the serics-aiding or "flyback" effect of the inductor. When the magnetic lines of dlux about the inductor collapse completely, the voltage
across RL_{L} will be equal to that of the source (minus the small voltage drop across RI). Each time the switch is closed and then opened, the process is repeater. By opening and closing the switch rapidly, voltage pulses may be applied across R_{L} which are higher than the dc input voltage. A capacitor may be connected across R_{L} to produce a dc output voltage. To keep the capacitor from discharging when the switch is closed, a diode can be connected in series with the load and its parallel-connected capacitor.

In a practical switching-regulator circuit the switching is performed by a transistor, as shown at B of Fig. S-26. The transistor may be driven by any number of circuits. In the practical circuit shown later (Fig. 5-27) four sections make up the driving circuit, as shown in block diagram form in Fig. 5-26B. The oscillator triggers the monostable multivibrator and determines the frequency of operation. The sensor measures the output voltage and controls the puise width of the multivibrator accordingly. The monostable multivibrator combines the signals from the oscillator and sensor to produce the correct pulse width. The driver receives the multivibrator output and drives the power transistor, Q1.

The voltage step-up capability of the inductor has been mentioned briefly. However, in choosing the value of the inductor, energy is an important consideration. During the time the transistor is turned on, the inductor stores energy. This energy is added to the supply and delivered to the load when the transistor turns off. The total energy must be enough to supply the load and maintain output voltage. As the load is increased, the transistor must remain on longer in order to store more energy in the inductor. The required value of inductance depends on frequency of operation, duty cycle, and load. A linear change in current through the inductor is a desirable condition and indicates operation is over a small segment of the inductor's charging and discharging curve. A powdered-iron-core inductor is normally used to

Fig. 5-26 - At A, the fundamental circuit of a flyback switching regulator, and at B, the elements of a practical circuit.
prevent a large inductance change with increased current.

Efficiency of the circuit depends mainly upon the switching and saturation losses of the power transistor. The peak current through the transistor is considerably greater than the input current. The flyback diode must have a fast reverse recovery time and low forward drop. There will be a large current spike through the transistor if the diode is slow.

The complete circuit of a switching regulator is given in Fig. 5-27. This regulator will handle 100 watts of power efficiently, at output voltages as much as 6 volts above the input voitage. The switching rate of the regulator is 9 kHz , and it operates with an input of 22 to 28 volts. Regula-

EXCEPT AS INDICATED, DECIMAL VALUES OF CAPACITANCE ARE IN MICROFARADS I yF I: OTHERS ARE IN PICOFARADS [OF OR g pFF): mesigtances are in omms;
$h=1000$, mel 1000000 .

Fig. 5-27 - A 100-w 28-V switching regulator (circuit design courtesy of Delco Electronics, Kokomo, Ind.). All resistors are $1 / 2 \mathrm{~W}$.
CR1 - Motorola rectifier mounted on Delco heat sink 7281352.
L1 - 124 iurns No. 18 wire wound on Arnold BO79024-3 powderediran core.
Q1 - Darlington power transistor (Delco DTS 1020 or equiv.).

Fig. 5-28 - Two-terminal current limiter. See text for discussion of component values and types.
tion and ripple are less than 1 percent at full output. The switching device, Q1, is a commercially available Darlington transistor.

The efficiency of the circuit drops off at low power levels. This is because the losses of the circuit are not proportional to the output power. Maximum efficiency occurs at about 80 watts because the duty cycle of the fransistor is an optimum for the chosen value of the inductor. Whenever the input voltage increases above 28 volts, the output voltage tracks the input. The difference between the two voltages is the drop in the flyback diode.

Output voltage variations resulting from changes in ambient temperature are caused by two major factors; positive temperature coefficient of the Zener diode, and the negative temperature coefficient of the emitter-base junctions of the transistors. One way to compensate partially for
temperature is to connect diodes that have negative temperature coefficients in series with the Zener diode.

Two-Terminal Current Limiter

The simple circuit of Fig. 5-28 performs the current limiting function of fuses or circuit breakers. The circuit uses only two transistors and two resistors. The necessary supply voltage for operation is oblained from the power source being protected, with the load functioning as the return to the power source. Q1 is a series element which allows current, up to a desired maximum, to flow to the load. R1 provides a suitable bias for Q1 to permit such current to flow, R2 is a sensing resistor interposed between the series transistor and the load, and provides bias for Q2. Normally this bias is low enough to prevent Q2 from conducting. Q2 controls the bias applied to Q1. When excess current flows through $R 2$ as a result of a circuit malfunction or a short across the load, the volfage drop across R2 rises, biasing Q2 into conduction. When Q2 turns on, it reduces the bias on Q1 and limits the amount of current flow. The maximum amount of current flow can be varied by changing the value of $\mathbf{R 2}$. If an adjustable limiting level is desired, R2 may be a variable resistor. The limiting level is an inverse function of the resistance value.

0.25 VOLT ADJUSTABLE POWER SUPPLY

For most amateur work the voltages needed from transistorized power supplies fall into two general ranges; 5 volts foe digital circuits and 12 volts. On occasion there is the need for other values and this power supply is capable of providing voltages from 1.3 to 25.4. The heart of the supply is the National LM317K adjustable voltage regulator. In the following configuration the supply is capable of 3 amperes output current throughout its voltage range.

Circuit Description

The LM3! 7 K , available in three case styles, is a completely self-contained adjustable regulator. The basic, adjustable, regulated supply requires no more than a de source, the regulator and two resistors (Fig. 1). In the basic configuration the regulator is capable of supplying up to 1.5 A output current. To provide higher-output currents. an external pass transistor has been added (liig. 2). C1 and C2 (Fig. 2) are the usual capacitors to

Fig. 1 - Schematic diagram of the basic regulator.
improve transient response and reduce the noise on the output voltage. CI may be eliminated if the regulator is located physically close to the filter capacitor. The 5600 -ohm resistor was added in parallet with the potentiometer to limit the output voltage 10 approximately 25 . The ripple on the output voltage is decreased by the addition of C3 to the adjustment lead. If the regulator is going to be used over 25 volts, a diode (CR5) should be connected for protection if the input or output is shorted.

Depending upon the builder's preferences, meters may be added to the power supply. A shunt resistor was added to the meter reading the output current. The method for determining the value of the shunt resistor is discussed in the Test Equipment and Measurements section of this book.

Construction

The transformer secondary voltage should be in the range of 20 to 24 V ac when drawing slightly more than the desired load current. In addition to

Fig. 2 - Schematic diagram of the complete power supply. All resistors are 1/2 watt composition. CI through C3 are solid tantalum capacitors. T1 and CR 1 through CR4 are discussed in the text. R1 is a panel-mounted linear-taper potentiometer. S1 and
the load current, the transformer must supply a small amount of power to the regulator. The rectifies can be fous individual diodes or an encapsulated bridge module. If individual diodes are used their rating should be at least 50 PRV and 1.5 amperes ($\mathbf{3}$ A or more if pass transistors are used). An encapsulated bridge must have the same minimum ratings. A Radio Shack 276-1146 encapsulated bridge will be more than adequate.

The 2 N 3055 and the regulator will both require a heat sink which can be homemade. A suitable commercially made heat sink would be the Radio Shack 276-1360. Due to the different transformer and heat sink sizes the cabinet can be any type that the builder desires.

The template (Fig. 3) is the etching pattern for a pc board that will hold all the components external to the regulator. This pc board could be etched and then mounted above the regulator. If it is not desired to use a pc board, all the components can be mounted on terminal strips.

One point that should be noted is the proper wire size for the interconnecting wiring. The load regulation is a function of the resistance of the wiring. A value as small as 0.05 ohm can decrease the regulation by as much as a factor of eleven.

Adjustment and Operation

The value of the 5600 -ohm resistor may be changed to suit the builder. Lowering its value will decrease the maximum output voltage available. No other adjustment is necessary for operation of this power supply.

ANOTHER POWER SUPPLY

This regulated power supply is suitable for use as a "battery eliminator" for transceivers of the 10-watt output variety, or for general purpose workbench duty. This supply is designed to provide up to 2 amperces continuously at 12 volts.

S2 are spst toggle switches. The meters are Calectro DI-916 and DI-923. If the pass transistors are not be used, the 22 -ohm resistor between C1 and the regulator inpur to be omited.
although the output voltage may be adjusted with an externally mounted control within the range of 9 to 13 volts.

Circuit Description

The use of two transformers, rather than one, allows a certain degree of flexibility of operation, in that the supply may be used on either 117 or 235 volts ac with only minor differences in wiring. The dc voltage at point A is approximately $30 . \mathrm{Q} 1$ is used as a series pass transistor. Its function is to drop the voltage at point A of Fig. 1 to the desired 12 -volt-outpus value, and maintain that voltage over wide variations in the outpue load cursent. U2 is an intcgrated-circuit voltage regulator which, with the aid of a few external components, is

Fig. 3 - Template for pc board. View from the foil side.
capable of handling up to 600 mA of output current. Since an output current of 2 A is desired, however, U2 is used here to properly bias Q1, which has a much higher current rating. The inner circuitry of U 2 can be divided into four basic elements: a fixed voltage reference, a variable voltage reference derived from the fixed reference,
an error amplifier, and an output regulator. An internal Zener diode is used as the fixed reference. This reference voltage is applied to one input of a differential amplifier (a differential amplifier responds to the difference between two applied voltage levels), while the other input is connected to the junction of R3 and R4 (pin 8 of U2). R3 (in

Power Supply Construction

Inside view of the regulated power supply. The use of the 4-inch square pc board lvisible at upper right) simplifies the inferconnection of most of the parts. The full-wave bridge rectifier assembly (U1) and the heat sink for Q1 are bolted to the chassis floor. A single rransformer has been used here in place of T1 and T2 as described in QST for January, 1975.
scries with R 2) and R 4 form an externally adjustable voltage divider, from the differential amplifier output (pin 9 of U2) to ground. Thus, the output of the differential amplifier will swing to the level that results in the voltage at pin 8 of U 2 being identical to the fixed reference voltage. A second differential amplifier serves as the error amplifier. One inpu: (pin 6 of U 2) is tied directly to pin 9 , while the other input ($p \mathrm{in} 5$ of U 2) is connected to the power supply output bus. The error-amplifier output controls the internal output-regulator bias of the IC, which in turn controls the bias applied to Q1. When connected in this manner, the crror amplifier responds to any difference between the power supply ouput level and the (previously adjusted) voltage reference level. The output regubator acts on Q1 to correct the discrepancy. C3 and C4 are used in the interest of maintaining amplifier stability. RS, R6, R7, and Q2 are included in the circuit to protect the power supply and regulator in the event of an inadvertent short circuit between the output terminals or if the current demanded by the load is too heavy for safe operation. The operation of the current-limiting feature is as follows: When the current flowing through the parallel combination of R5, R6, and R7 (cquivalent parallel resistance of about 0.18 ohm) is large enough to produce a 0.6 -volt drop across the resistors, Q2 is biased into conduction. The action of Q2 on the IC internal output regulator results in the reduction of the current through Qi. The short-circuit output current in this case will be limited to 3.3 amperes $(0.6 / 0.18=3.3)$, which is within the sofe regulator/pass-transistor limits. The value of the currentsensing resistance required for short-circuit currents of other than 3.3 amperes is calculated as follows by Ohn's Law: $R_{\text {SC }}=$ $0.6 / /_{\mathrm{SC}}$ wherc R_{SC} is the current-sensing resistance and $/ \mathrm{SC}$ is the maximum allowable short-circuit current. If a long run of cable is used between the power supply and the load, the voltage drop in the cable may be large enough to be of concern. If this is the case, a separate remote voltago-sensing wire may be run from the load to pin 5 of U2, rather than connecting pin 5 to the output at the power supply. The regulator will compensate for the voltage drop in the cable. This wire may be of a small gauge, as little current will be drawn through it.

Construction Details

Most of the components were mounted on an etched circuit board (see Fig. 2), although point-10point wiring on a perf board would have sufficed. As the transistors inside the IC are capable of operation at vhf, it is good practice to use short leads for interconnecting the regulator components to prevent unwanted oscillations from occurring.

The manufacturer recommends a low-inductance zonnection between the case of the HEP C4069R and ground. No evidence of instability was noted with this circuit.

All parts are housed in an $8 \times 6 \times 3$-1/2-inch Minibox (Bud CU-2109-A). Two standoff insulators support the pc board, while the power transformers, Tl and T 2 , are bolted directly to the Minibox. As Q1 dissipates several watts when maximum load current is being drawn, a heat sink is required. The Motorola HEP500, consisting of an MS-10 predrilled heat sink and an MK-15 powertransistor mounting kit, is ideal for this applcation. In accordance with the instructions supplied with the HEPSOO, the MK-15 should be coated on both sides with a thin layer of silicone thermal compound (Radio Shack 276-1372), with the bottorn of Q1 and the center area of the heat sink treated similarly. After the Q1 emitter and base pins are inserted through the proper holes in the washer, the transistor is mounted in the socket. The mica washer insulates the case of Q1 (which is connected internally to the collector) electrically from the heat sink and chassis, while the silicone compound increases the thermal conductivity between Q1 and the heat sink Care should be taken to prevent contact between the case of Q1 and any grounded object, as the full supply voltage appears on the transistor casc. The current-limiting feature will not protect the device from destruction in event of an accidental short from Q1 to ground, since the current sensing resistors (R5, R6, and R7) are connected between Q1 and the power supply output terminals. The heat-sink assembly is bolted to the rear panel of the Minibox with No. 6 hardware. The MS-10 is 3 inches high and 4-1/2 inches wide, so it must be located off center in order to accomodate the fuse holder and the line cord on the rear pancl. A l-inch-diameter hole was punched in the rear panel prior to the heat sink installation to allow access to the transistor socket pins Short lengths of hookup wire are used between the pc board and the transistor socket. UI is coated with silicone compound and then bolted to one of the inside walls of the Minibox, which serves as a heat sink for the diodes. Ventilation of the Minibox is desirable. Large holes punched or cut in the sides and bottom of the box and covered with perforated metal stock can be used, or ventilation holes can be drilled individually in the
metal enclosure. The regulator IC is mounted directly on the pc board, and it does not require a heat sink.

After the pilot lamp, the power switch, and the binding posts are installed on the front panel, T1 and T2 can be bolted in place near the front of the box. The transformer primaries can be tied in parallel for operation from 117 volts ac, or in series for 235 -volt ac operation. The Tl and T2 secondaries must be connected in series and in proper phase for the power supply to operate correctly. If the unloaded ac output voltage as measured with a VOM is in the neighborhood of 20 volts, the windings are connected properly. If, however, the VOM reads approximately 6 volts, the secondaries are out of phase and the leads from one of the transformers must be reversed. If the primary leads are brought out to four separate terminal posts, changing from 117 -volt to 235 -volt operation will be a simple matter of changing appropriate jumpers. Alternatively, a $117 / 235$ switch may be installed easily on the rear panel if frequent line voltage changes are anticipated. In either case attention should be paid to the matter of proper

Fig. 2 - Foil pattern and parts layout for the regulated power supply. phasing of the windings. The use of a 3-wire ac cord installed in a properly grounded outlet is intelligent practice for this and any line-operated power supply. If a transformer with a secondary rating of approximately 18 volts at 3 amperes is available, it may be used in place of T1 and T2. Details for the modification of a 24 volt secondary transformer are given in QST for January, 1975.

A UNIVERSAL POWER SUPPLY FOR THE AMATEUR STATION

Presented here is a general-purpose unit with provisions for 117-220-volt operation, and it is adapted easily for use with most commercially available gear by constructing appropriate power cords. The supply delivers 800 V at 300 mA dc , 300 V at 175 mA dc, and 0 to -130 V at 25 mA . In

addition the supply provides ac filament potentials of 6.3 V at 11 A or 12.6 V at 5.5 A .

Often the station power supply is a heavy black box that is tucked away in a corner and just sits there. A large cable interconnects this device with the station transmitter or transceiver and the amateur never comes directly in contact with it; all of the supply functions are remotely controiled

Fig. 1 - The Universal Power Supply is constructed on a standard-size aluminum chassis. Back-to-back plugs with appropriate jumper wires make changing from $117-\mathrm{V}$ to $220-\mathrm{V}$ input operation or from $6.3-\mathrm{V}$ to $12.6-\mathrm{V}$ filament operation a simple matter of reversing a plug.

Encem as morcateo, occimal vawes of
 nesiafances ane in owms:
M-1000, w-1000 000 .
W- 3A VOR 220 V OPER ATION.
W - PIL. LEADS MUST BE COARECTLY PMASED

CR1 - CR12, incl. - 1000-PRV, 2.5-A silicon diode (Mallory M2.5A or equiv.).
J1. J2 - 5. pin tube-type socket (Amphenol 78RS5 or equiv.).
J3 - 12 lug terminal block (Cinch 12-140 or equiv.l, and 12 lug fanning strip (Cinch 12-160 L or equiv.).

Fig. 3 - Bottom view of the Universal Power Supply.
from the panel of the station transmitting gear. But what happens if an instance arises where a particular voltage (or combination of voltages) is needed for an experimental project? Can that "black box" in the corner be pressed readily into service? And what about the amateur who buys two power supplies for his station because his mobile transceiver cannot be plugged directly into his home-station transmitter power supply? This supply is designed to fill all these necds.

Many of today's commercially available ac supplies are not equipped for 220 -volt operation. If the station includes a two-kilowatt amplifier, a separate 220 -volt line should be available in the sluack. Blinking house lights are not always a result of running a high-powered amplifier. It could be caused by the intermittent 400 or 500 -watt load presented by an exciter power supply to the 117 -volt source. Connecting the exciter supply to a 220 -volt outlet (providing a dual-primary transformer is used) can be helpful in this regard.

Circuit Details

The supply is shown in Figs. I through 3. Primary power may be applied to the supply in iwo ways. First, terminals 6 and 8 of J3 may be shorted together; this is normally the function of the station transmitting equipment on-off switch (see Fig. 2). On the other hand, S1 may be actuated when the supply is used independently. Transient voltages on the ac line are eliminated by Thyrector assemblies VR1 and VR2.

Full-wave rectification is employed in the secondary circuit of each power transformer to develop the three dc operating voltages. Chokeinput filtering provides adequate regulation of both the 300 and 800 -volt outputs. Both L1 and L2 are shunted with suitable resistors to reduce the possibility of diode damage when primary power to the supply is removed.

The bias voltage is adjustable and may be set to any value between -40 and -80 . Should a range
between -80 and -130 volts be required, R1 may be interchanged with R3. Likewise, if a range from 0 to -40 volts is needed, RI may be swapped with R2.

Metering

A six-position switch and a 0-1-mA meter allows monitoring of high and low voltages, the current for each of these, and the bias voltage. The sixth position permits the meter to be disabled. The meter shunts for both current positions of $\mathbf{S} 2$ are homemade and provide a full-scale reading of 500 mA on each range. The proper resistance for the shunts is determined by dividing the meter internal resistance (approximately 100 ohms in this case) by 500 , and is equal to 0.2 ohm . No. 30 enameled copper wire has a resistance of 105 ohms per 1000 feet, or 0.105 ohm per foot. Extending the division another step, one inch of wire has a resistance of .008 ohm. Approximately 23 inches of wire provided the correct value for the shunts. Each 23 -inch length of wire is wound on a 100,000 -ohm, two-watt composition resistor which serves as a form.

Construction

The supply is built on a $10 \times 8 \times 3$-inch aluminum chassis. The spot welds at the four corners are reinforced with No. 6 hardware since the transformers are quite heavy. The total weight of the completed supply is slightly more than 40 pounds. Several one-inch-diameter holes are cut in the chassis bottom plate to allow adequate air circulation.

All of the power-supply output voltages are present on a 12 -connection terminal block. The end of the cable used to interconnect the supply to the station transceiver is equipped with a 12 -lug fanning strip, providing a convenient means to disconnect it.

One special wiring precaution is necessary; the bleeder resistors for both the high and-low-voltage circuits should be mounted in the clear to allow plenty of air circulation around them. Perforated aluminum stock is placed over a 1×3-inch cut in the chassis which is directly above the mounting position for the 800 -volt bleeder network.

Operation

Two jumper plugs are mounted "back-to-back", making the change from 117-volt operation to 220 volts a simple matter of reversing P1. P2 performs an identical function to select 6 or 12 volts for the filament line.

The cost for this project should be under $\$ 100$, even if all of the parts are purchased new. The price of the two power transformers and two filter chokes comprises approximately 60 percent of the total cost. ${ }^{1}$

[^6]
A 3000-VOLT POWER SUPPLY

This high-voltage power supply may be used with linear amplifiers that are capable of operating at maximum legal input power levels. It was designed for use with a one-kilowatt 3-5002 amplifier, but with minor modifications to the control circuitry to suit individual circumstances it can be used with amplifiers having a pair of 3-500Z tubes, a single 3-10002, 4-1000A, or any tube or tubes calling for 2500 to 3000 volts at up to 700 mA . Examples of such amplifiers may be found in Chapter 6.

The Circuit

A voltage-doubler circuit connected to the secondary of T1 provides approximately 3000 volts dc. See Fig. 3. The primary of TI can be operated from either a 117 -volt line or a 220 -volt source; the latter voltage is preferred. VRI and VR2 are suppressors included to prevent transients from damaging the high-voltage capacitor bank or the rectifier diodes. Since T1 has two 117 -volt primary windings, a suppressor is connected across each. The windings and suppressors are connected in parallel for 117 -volt operation, and they are series connected for a 220 -volt line.

A relay (K 1) is necessary to switch the highcurrent inrush when the supply is activated. Ordinary toggle switches cannot be used to activate the power supply directly. Surge protection is accomplished by placing RI in series with one lead of the ac line. K2B shorts out this resistor a few seconds after the main power switch (S1, located on the amplifier front pancl) is actuated. A separate line cord for the power supply allows this section to be operated on 220 volts while permitting other circuits in the amplifier to operate on 117 volts. The 120 volts needed to energize the coil of K 2 are taken from a half-wave rectified dc supply located on the amplifier chassis. Note that the B-minus terminal is held a few volts above ground by the 15 -ohm, 2-watt resistor. for metering purposes in the companion amplifier.

Construction

The power supply is built on a standard $10 \times 12 \times 3$-inch aluminum chassis. Construction is straightforward, as can be seen from Figs. 1 and 2. The front and rear panels are made from $9 \times$ 10 -inch pieces of $1 / 16$-inch thick aluminum, and the bottom plate and the U-shaped top cover are made out of perforated aluminum stock.

The primary and control-circuit components, as well as the rectifier board and capacitor bank, are

Fig. 2 ~ The primery and control-circuit components are grouped at the bottom, with the high-voltage capacitor bank and rectifier board occupying the upper portion of this bottom chassis view of the power supply. R1 is visible in the lower right-hand corner.

Fig. 1 - Top chassis view of the 3000 -volt power supply as constructed by WA1JZC. The circuit board in the foreground holds the bleeder resistors, which are spaced apart and supported a short distance above the board for proper cooling. The large transformer is for the high-voltage supply, and the small transformer provides filament power for the amplifier.
mounted underneath the chassis. Reasonable care must be taken to prevent any part of the primary or control wiring from coming into contact with the high-voltage components. Each of the $100-\mu \mathrm{F}$ capacitors in the capacitor bank is shunted by a 25,000 -ohm, 20 -watt wirewound resistor. These resistors equalize the voltage drops across the series-connected capacitors, and also serve as the bleeder resistance. Since these resistors get quite hot during normal operation, they are mounted away from the electrolytic capacitors on a separate circuit board above the chassis, to allow for adequate ventilation. The other large heatgenerating components are the power and filament

CR1 - CR10, inc. - 1000-PRV, 2.5-A (Mallory M2.5A or equiv.).
DS1 - 117-volt ac neon pilot lamp assembly.
J1. J2 - High-voltage chassis connector (Millen 37001). K1 - Power relay, dpdt, 117 -volt coil (Potter and Brumfeld PR-11AY or equiv.).
K2 - Dpdt 10 A contacts, 120-V de coil (Potter and Brumfeld KA11DG or equiv.l.
P1 - Cable-mounted 11 -pin power connector.

P2 - Cable-mounted 2-pin power connector.
R2 - 8 feet No. 14 enam. wire wound on 3 -inch long, $3 / 4$-inch dia Plexiglas rad.
T1 - Dual 117-volt primary, $1100-\mathrm{V}$ secondary, 600 VA (Berkshire 6181 or equiv.).
T2-117-volt primary: secondary 5.0 volts at 15 A (Stancor P6433 or equiv.).
VR1, VR2 - Transient-voltage suppressar, $120-$ volt (General Electric 6RS20SP4B4 or equiv.).
transformers (TI and T2), which are also mounted above chassis.

A small etched circuit board supports CR1 through CR10 and their associated equalizing resistors and transient-suppressing disk capacitors In actual operation, the filament voltage measured at the amplifier tube socket exceeded the maxi-
mum voltage recommended by the tube manufacturer slightly, so R2 was included to reduce the voltage to a suitable value. To avoid excessive voltage drop in the cable connecting T2 with the amplifier, it is recommended that the cable be made of No. 10 wire or larger (in many cases, R2 will not be necessary).

NICKEL.CADMIUM BATTERY CHARGER

Any advantage that a NiCad (nickel-cadraium) battery may have over other types can be lost through improper charging. This information concerning NiCadcharging techniques was contributed by WADUZO. NiCads can even be ruined on the first recharging cycle. If connected to a constantvoltage source, initial current may be quite high. Normally, no damage would result unless the battery voltage is low (fully discharged). Using a
constant curren: for battery charging is permissible at the start of the charging cycle, however, as the battery reaches full charge, the voltage may rise to an excessive value.

The correct solution is a combination of the two methods. Any circuit used forcharging NiCads should limit both the current and voltage, such as the one described here.

Fig. 1 - Schematic diagram of the 117.V ac charger.
C1 - Electrolytic.
CR1, CR2 - Silicon diodes, 100 PRV, 3 A.
DS1 - See text.
T1 - Primary 117 V ac, secondary 25.6 V at 500 mA. Calectro 01-752 (or equiv.).
VR1 - See text.
Some other precautions which should be observed while charging NiCads are:

1) Battery temperature should be between 40° and $80^{\circ} \mathrm{F}$. It should never exceed $100^{\circ} \mathrm{F}$.
2) Two or more batteries with the same voltage rating may be charged in parallel, but be sure that the charger has sufficient current capability.
3) Check the manufacturer's data sheet for the maximum allowable charging rate. A typical figure would be ten percent of the ampere-hour rating (a 10-ampere-hour battery would require a current of 1A).
4) Do not attempt to charge two batteries in series with a constant current unless the batteries are of the same type and capacity, and are in the same siate of charge (vollage on onc may be excessive).
5) To determine the approximate charging time, divide the ampere-hour rating by the charging current used, and multiply tine resulting time by 1.25.

Suitable Charging Circuits

Figs, 1 and 2 show two versions of the same basic charging circuit. The circuit shown in Fig. 1 is used with 117 V ac, and the one in Fig. 2 can be used with the car battery. The latter circuit could

Fig. 2 - Schematic diagram of NiCad battery charger suitable for mobile use. See text for explanation of DS1 and VR1. CR2 protects the components in the event of accidental reversal of input leads. See Fig. 1 for CR2.
be connected to the cigarette lighter, and is suitable for battery packs of up to 14 volts

The dial lamp (DSI) is used to limit the current. One with a rating of 100 to 150 mA should work fine with most batteries. The vollage rating should be approximately that of the charging source (for example, two $12-\mathrm{V}$ bulbs in series may be necessary if a $26-\mathrm{V}$ supply is used).

The voltage regulator shown in Fig. 3 is based on the fact that a forward-biased diode will not conduct until approximately 0.75 V dc is applied. By adding a suitable number of diodes in series as shown, a voltage regulator for the maximum battery voltage can be built easily. The circuit shown in Fig. 3 can be used in either Fig. 1 or 2, for VR1. It will draw ittle current until the

Fig. 3 - Schematic diagram of the voltage regulator (VR1, Figs. 1 and 2).
battery voltage reaches a permissible value during charge. Once the voltage reaches a preset level, the diodes start to conduct and limit any further increases.

Initial Testing

After the circuit is wised and checked, apply power (without a battery connected for charging). The bulb should light to less than full brilliance. Measure the voltage across the regulator. It should be 3 to 8 percent above the rated voltage of the batteries to be charged. Adding or removing some diodes in VR1 may be necessary. Connect the discharged batteries and measure the charging current (either a built-in meter could be used, or a temporary one could be connected in series with the battery). The current should be typically 100 $m \mathrm{~A}$ with partially discharged batteries. The current will decrease as the charging time increases, and a value of 5 mA indicates a fully charged condition. No damage will result if the batteries are left on charge continuously.

Chapter

HF Transmitting

Regardless of the transmission mode - codc, $\mathrm{a} \cdot \mathrm{m}$, fm, single sideband, radioteletype, amateur TV - vacuum tubes and semiconductors are common elements in all transmitters. They are used as oscillators, amplifiers, frequency multipliers and frequency converters. These four building blocks, plus suitable power supplies, are basically all that is required to make any of the popular transmission systems.

The simplest code transmitter is a keyed oscillator working directly into the antenna; a more elaborate (and practical) code transmitter, the type popular with many beginners, will include one or more frequency-multiplication stages and one or more power-amplifier stages. Any code transmitter will obviously require a means for keying it. The bare skelcton is shown in Figs. 6-2A and B. The If generating and amplifying sections of a double-sideband phone transmitter ($a-m$ or fm) are similar to those of a code transmitter.

The overull design depends primarily upon the bands in which operation is desired and the power output. A simple oscillator with satisfactory frequency stability may be used as a transmitter at the lower frequencics, but the power output obtainable is small. As a gencral rule, the output of the oscillator is fed into one or more amplifiers to bring the power fed to the antenna up to the desired level.

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier. A buffer amplifier is the term sometimes applied to an amplifier stage to indicate that its

primary purposc is one of isolation, rather than power gain.

Because it becomes increasingly difficult to maintain oscillator frequency stability as the frequency is increased, it is most usual practice in working at the higher frequencies to operate the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exciting frequency. A doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the exciting frequency by three, etc. From the viewpoint of any particular stage in a transmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should not be used to feed the antenna system directly, but should feed a straight amplifier which, in tum, feeds the antenna system.

Good frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequency desired (or multiples of that frequency). A self-controlled oscillator or VFO (variable-frequency oscillator) may be tuned to any frequency with a dial in the manner of a receiver. but requires great care in design and construction if its stability is to compare with that of a crystal oscillator.

Many transmitters use tubes, but for low-power hf and channelized vh fm transmitters, Lransistors are dominant. New solid-state devices are being developed which allow dc inputs of 100 watts or more with a low-level of 1 M distortion products. As the cost of these transistors is reduced it can be assumed that at some point in the future tubes will be used only for high-power amplification.

The best stage or stages to key in a code transmitter is a matter which is discussed in a later chapter. The oscillator/multiplicr/amplifier type of transmitter (Fig. 6-2B) has long been popular. However, the excellent frequency stability and the advantages of grid-block keying (which are explained in the Code Transmission chapter) have

Fig. 6-1 - An amateur's transmitter is his on-the-air voice. He is judged by the quality of that "voice," whatever the mode that he chooses to operate.

Fig. 6-2 - Block diagrams of the three basic types of transmitters.

made the heterodyne exciter of Fig. 6-2C increasingly popular, in spite of the slightly more complex circuitry required.

An fin transmitter can only be modulated in or following the oscillator stage. An a-m phone transmitter can only be modulated in the output stage, unless the modulated stage is followed by a linear amplifier. However, following an amplitudemodulated stage by a linear amplifier is an incfficient process, convenient as an expedient, but not recommended for best efficiency.

Following the generation of a single-sideband phone signal, its frequency can be changed only by frequency conversion (not multiplication), in exactly the same manner that signals in a receiver are heterodyned to a different frequency. Complete details of ssb transmitter design and construction are given in Chapter 13.

CRYSTAL OSCILLATORS

The frequency of a crystat-controlled oscillator is held constant to a high degree of accuracy by the use of a quartz crystal. The frequency depends almost entirely on the dimensions of the crystal (essentiaßly its thickness); other circuit values have comparatively negligible effect. However, the power obtainable is limited by the heat the crystal will stand without fracturing. The amount of heating is dependent upon the if cyrstal current
which, in turn, is a function of the amount of feedback required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. Excitation should always be adjusted to the minimum necessary for proper operation.

The most stable type of crystal oscillator is that which provides only a small voltage output (lightly loaded), and which operates the crystal at a low drive level. Such osciilators are widely used in receivers and heterodyne transmitters. The oscillator/multiplier/amplifier type of transmitter usually requires some power from the oscillator stage. For either type of crystal oscillator, the active element may be a tube or a transistor.

Oscillator Circuits

The simplest crystal-oscillator circuit is shown in Fig. 6-3A. Feedback in this circuit is provided by the gate-source and drain-source capacitance. The circuit shown at B is the equivalent of the tuned-grid, tuned-plate circuit discussed in the chapter on vacuum-tube principles, using the crystal to replace the tuned grid circuit. Although JFETs are shown in the sample circuits at A and B, MOSFETS or triodes may also be employed, using the connections shown in 6-3C through F.

For applications where some power is required from the crystal oscillator, the circuits shown in

Fig. 6-3 - Simple crystal oscillator circuits. (A) Pierce, (B) FET. (C-F) other devices that can also be used in the circuits of A and B with appropriate changes in supply voltage.

Fig. 64 - Crystal-oscillator circuits that are designed to deliver power. L1/C1 resonate at the crystal frequency, or a multiple thereof if the second, third, or fourth harmonic is the desired output frequency.

Fig. 64 may be employed. At A, a bipolar transistor is used, while the tube circuits (B, C) are somewhat more complicated. They combine the functions of oscillator and amplifier or frequency multiplier in a single tube. In these circuits, the screen of a tetrode or pentode is used as the plate in a triode oscillator. Power output is taken from a separate tuned tank circuit in the actual plate circuit. Although the oscillator itself is not entirely independent of adjustments made in the plate tank circuit when the latter is tuned near the fundamental frequency of the crystal, the effects can be satisfactorily minimized by proper choice of the oscillator tube.

The oscillators of Fig. 6-4B and 6-4C are a modification of the grodd-piate circuit of Fig. 6-3B. In Fig. 6-4C the ground point has been moved from the cathode to the plate of the oscillator (in other words, to the screen of the tube). Excitation is adjusted by proper proportioning of 22- and 100-pF feedback capacitors.

When some types of tubes are uscd in the ciscuits of Fig. 6-4B, oscillation will stop when the output plate circuit is tuned to the erystal frequency, and it is necessary to operate with the plate tank circuit critically detaned for maximum output with stability. However, when the 6GK6, 12BY7A, 5763, or the lower-power 6AH6 is used with proper adjustment of excitation, it is possible to tune to the crystal frequency without stopping oscillation. These tubes also operate with less crystal current than most other types for a given
power output, and less frequency change occurs when the plate circuit is tuned through the cyrstal frequency (less than 25 Hertz at 3.5 MHz).

Crystal current may be estimated by observing relative brilliance of a $60-\mathrm{m} \Lambda$ dial lamp connected in series with the crystal. Current should be held to the minimum for satisfactory output by careful adjustment of excitation. With the operating voltages shown, satisfactory output should be obtained with crystal currents of 40 mA or less.

In these tube circuits, output may be obtained at multuples of the crystal frequency by tuning the plate tank circuit to the desired hammonic, the output dropping off, of course, at the higher harmonics. Especially for harmonic operation, a low-C plate tank circuit is desirable.

Practical Considerations

The operation of a crystal oscillator is often hampered because vhf parasitic oscillations also occur in the circuit. An effective way of killing parasitics is the use of a low-value composition resistor or ferrite bead, as shown in Fig. 6-5. The parasitic stopper can be located on the gate (grid or base) lcad, and it should be placed as close as possible to the transistor. The circuit at A may be used for low-power applications. If a crystal above 1 MHz is to be used it may be advisable to include a trimmer capacitor across the crystal to allow the crystal frequency to be set exactly.

It is often desirable in fm and ssb gear to use several crystals, switch-selected in a single oscilla-

Fig. 6-5 - Two practical crystal-oscillator designs. (A) For low-power output applications such as a conversion oscillator or BFO, (B) an example of diade switching of crystals. The rf choke on the base lead of the transistor is a ferrite bead which prevents vhf parasitic oscillation.

Fig. 6-6 - VFO circuits. The devices shown in Fig. 6-2C through F may also be employed as the active component.
tor. If manual switching is used, the leads to the switch may introduce sufficient additional capacitance to upset the operation of the circuit. Therefore, the use of diode switching, such as shown in Fig. 6-5B, is now popular. Any high-speed switching diode may be employed. The use of diode switching for low-level tank circuits, especially in receivers, has gained wide acceptance. A special diode known as the PIN has been developed for this purpose. In any diode-switching circuit it is important to insure that the switching bias is many times larger than the peak rf voltage present.

VARIABLE-FREQUENCY OSCILLATORS

The frequency of a VFO depends entirely on the values of inductance and capacitance in the circuit. Therefore, it is necessary to take careful steps to minimize changes in these values not under the control of the operator. As examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but noticeable change in frequency called drift. The effective input capacitance of the oscillator tube, which must be connected across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the oscillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the oscillator, and
variations in the load may reflect on the frequency. Very slight mechanical movement of the components may result in a shift in frequency, and vibration can cause modulation.

In the past different techniques have been used to design the VFOs for transmitters and receivers. However, today the same circuits may be used for either application. In receivers the VFO is usually called an HFO.

VFO Circuits

Fig. 6-6 shows the most commonly used circuits. They are all designed to minimize the effects mentioned above. The oscillating circuits in Figs. 6-6A and B are the Hartley type; those in C and D are Colpitts circuits. (See chapter on vacuum-tube principles.) In the circuits of A, B and C, all of the above-mentioned effects, except changes in inductance, are minimized by the use of a high- Q tank circuit obtained through the use of large tank capacitances. Any uncontrolled changes in capacitance thus become a very small percentage of the total circuit capacitance.

In the series-tuned Colpitts circuit of Fig. 6-6D (sometimes called the Clapp circuit), a high-Q circuit is obtained in a different manner. The tube is tapped across only a small portion of the oscillating tank circuit, resulting in very loose coupling between tube and circuit. The taps are provided by a series of three capacitors across the coil. In addition, the tube capacitances are shunted by large capacitors, so the effects of the tube changes in electrode voltages and loading - are still

Fig. 6-7 - Isolating stages to be used between a VFO and the following amplifier or mixer stage.
further reduced. In contrast to the preceding circuits, the resulting tank circuit has a high L / C ratio and therefore the tank current is much lower than in the circuits using high-C tanks. As a result, it will usually be found that, other things being equal. drift will be less with the low-C circuit.

For best stability, the ratio of C 2 to C 4 should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the Q of the coil and the mutual conductance of the tube. If the circuit does not oscillate over the desired range, a coil of higher Q must be used or the capacitance of C 2 and C 3 reduced.

The pentode tube of 6-6E or any of the active dovices shown in Fig. 6-3 may be used in either the Hartley or Colpitts circuits. Good resuits can be obtained with both tubes and transistors, so the choice of the active device is often a matter of personal preference.

Load Isolation

In spite of the precautions already discussed, the tuning of later stages in the transmitter may cause a noticeable change in frequency. This effect can be reduced considerably by designing a pentode oscillator for half the desired frequency and doubling frequency in the output circuit.

It is desirable, although not a strict necessity if detuning is recognized and taken into account, to approach as closely as possible the condition where the adjustment of tuning controls in the
transmitter, beyond the VFO frequency control, will have negligible effect on the frequency. This can be done by adding isolating stage or stages whose tuning is fixed between the oscillator and the first tunable amplifier stage in the transmitter.

Fig. 6-7A shows such an arrangement that gives good isolation. A pentode tube is operated with a low-impedance resistive load, and regulated screen voltage. At B a simple follower circuit is used. The disadvantage of this circuit is that the level of the output will be quite low, usually less than one volt. Bipolar transistors are used in a direct-coupled follower arrangement in Fig. 6-7C, providing a higher level of output (above 3 V) than was possible with the design shown at B . The ability of a buffer stage to isolate the VFO from the load can be tested simply. Use a receiver to monitor the VFO, and listen as the buffer output is first left open and then shorted. A good buffer will hold the frequency change to less than 100 Hz . Often the frequency change may be in the order of several kHz when this test is made, an indication that the buffer is not doing its job.

Chirp, Pulling and Drift

Any oscillator will change frequency with an extreme change in plate screen voltages, and the use of stabilized sources for both is good practice. But steady source voltages cannot alter the fact of the extreme voltage changes that take place when an oscillator is keyed or heavily amplitudemodulated. Consequently some chirp or fm is the inescapable result of oscillator keying or heavy amplitude modulation.

A keyed or amplitude-modulated amplifier presents a variable load to the driving stage. If the driving stage is an oscillator, the keyed or modulated stage (the variable load) may "pull" the oscillator frequency during keying or modulation. This may cause a "chirp" on cw or incidental fm on $\mathrm{a}-\mathrm{m}$ phonc. In either case the cure is to provide one or more "buffer" or isolating stages between the oscillator stage and the varying load. If this is not done, the keying or modulation may be little better than when the oscillator itself is keyed or modulated.

Frequency drift is minimized by limiting the temperaturc excursions of the frequency-determining components to a minimum. This calls for good ventilation and a minimum of heat-generating components.

Variable capacitors should have ceramic insulation, good bearing contacts and should preferably be of the double bearing type. Fixed capacitors should have zero-temperature coefficients. The tube socket should have ceramic insulation.

Temperature Compensation

If, despite the observance of good oscillator construction practice, the warm-up drift of an oscillator is too high, it is caused by high-temperature operation of the oscillator. If the ventilation cannot be improved (to reduce the ultimate temperature), the frequency drift of the oscillator can be reduced by the addition of a "temperaturecoefficient capacitor." These are available in
negative and positive coefficients, in contrast to the zero-coefficient "NP0" types.

Oscillator Coils and Vibration

The Q of inductors either in the VFO circuitry proper or in a succeeding stage should be as high as possible. The coil should be well spaced from shields and other conducting surfaces in order to reduce undesirable eddy-current effects. A heavygauge solid wire is recommended for interconnecting leads and lengths should be kept short.

While heating generally produces long-term drift, this is usually not as serious as sudden frequency changes caused by vibration. All components should be securely fastened to the VFO chassis and circuit board with the entire assembly shock mounted on rubber gommet cushions. Care should also be taken concerning the method of coupling the VFO capacitor to the VFO dial. Vibration of the panel on which the dial is mounted should not be transferred to the capacitor shaft.

Filtering

The output of oscillators, mixers and similar stages usually has harmonic and other spuriousfrequency energy along with some desired signal. Depending upon the application, such components may result in undesirable effects and require filtering. The circuits shown in Fig. 6-8 can be employed where cither a high-pass or low-pass filter characteristic is sufficient. (In some instances, a band-pass filter may be required.)

These filters are based on a Chebyshev design and component values are given in Table 1. The filters are "normalized" to a frequency of 1 MHz and an input and output impedance of 52 ohms. In order to translate the designs to other frequencies all that is necessary is to divide the component valucs by the new frequency in MHz . (The $1-\mathrm{MHz}$ valuc represents a "cutoff" frequency. That is, the attenuation increases rapidly above this frequency in the low-pass case or below f_{c} in the high-pass application. This effect should not be confused with the variations in attenuation in the passband.) For instance, if it was desired to climinate harmonics from a VFO at frequencies above 5 MH ., the inductance and capacitance values would be divided by 5.0.

Other impedance levels can also be used by multiplying the inductors by the ratio $Z_{0} / 52$ and the capacitors by $52 / Z_{0}$ where Z_{0} is the new impedance. This factor should be applicd in addi-

TABLE I

Component values for filters shown in Fig. 6-8. Inductances are in microhenriesand capacitances are in picofarads.

fiig. 6-8A (LP)	L_{1}	C_{2}	L_{3}	C_{4}	L_{5}
Fig. 6-8B (HP)	C_{1}	L_{2}	C_{3}	L_{4}	C_{5}
0.1-dB LP	9.49	4197	16.4	4197	9.49
3-dB LP	28.8	2332	37.6	2332	28.6
0.1-dB HP	2669	6.04	1550	6.04	2669
3-dB HP	879	10.9	675	10.9	879

Fig. 68 - Low-pass and high-pass Chebyshev filters normalized to a frequency of 1 MHz and input/output impedance terminations of 52 ohms. Component values for 0.1 - and $3-\mathrm{dB}$ ripple-factor filters are given in Table 1. Passband frequency response for the 0.1 dB low-pass model is shown in Fig. 6-8C. Curve is similar in shape for the 3-dB model except for scale factor. Response for the high-pass designs can be determined by substituting $1 / f(\mathrm{MHz})$ for f in Fig. 6-8C.
tion to the ones for frequency translation. Examination of the component values in Table \downarrow indicates changing the impedance level to a somewhat higher one is advisable if practical. This would avoid having very small inductance values and high capacitance values which might be unhandy in constructing a filter.

The choice of filter model depends mostly on the power level involved. In low-level stages, the effects of variation in insertion loss in the passband usually can be neglected in amateur applications. Consequently, the filter with a $3-\mathrm{dB}$ ripple can be used. However, VSWR is closely related to insertion loss and the $0.1-\mathrm{dB}$ filter should be selected in power-amplifier stages where VSWR could cause harmful effects. The $0.1-\mathrm{dB}$ filter should have a maximum VSWR of approximately 1.4:1. Unfortunately, the $0.1-\mathrm{dB}$ design doesn't have the rapid rolloff that the $3-\mathrm{dB}$ model possesses as can be seen by the tabulated dota in Fig. 6-8C. While other filters are possible with different ripple factors, the ones shown in Fig. 6-8 should cover a wide varicty of applications.

A PRACTICAL VFO CIRCUIT

The circuit shown in Fig. 6-9 is for a solid-state VFO covering 3.5 to 4 MHz . A number of measures have been taken to prevent harmonic and spurious outputs that so often plague transistor designs. Examination of Fig. 6.9 will show that a diode, CR2 is connscted between the signal gate

Fig. 6-9 - A typical VFO design showing extensive use of buffering and filtering to achieve a highly stable ourput with low spuri-ous-frequency content.
of QI and ground. This diode should be designed for high-speed switching - a 1 N914 is suitable and should be connected with its anode toward gate 1 . It clamps on the positive-going half of the cycle to prevent Q1 from reaching high peak transconductance, the time period when the output from the ascillator is rich in harmonic energy. This technique should be applied to any JFET or MOSFET oscillator, but does not work with bipolar-transistor oscillators. CR2 does not impair the performance of the VFO. Additional harmonics can be generated at Q2 and Q3, so attention must be given to that part of the circuit as well. Note that the collector of Q3 is tapped well down on L3. The tap provides an impedance match for the circuit, but still represents a high impedance at the hammonic frequencies, if not located too near the cold end of L3, thus contributing to a cleaner output signal. However, even though these precautions are taken, it is not uncommon to find that the second and third harmonics from a transistor output stage are only down some 10 to 15 decibels in level from the fundamental signal. By taking the VFO output at low impedance, L4, a low-pass, double-section filter can be used to diminish the harmonic to a level that is some 30 decibels or more below that of the desired output signal. FL1 is designed for 3.5 to 4 MHz use, and assures a clean output signal from the VFO.

VFO Output Level and Impedance

One of the things that perplexes many first-time users of transistorized VFOs is the matter of sufficient signal output to properly excite a transmitter input stage, or to supply adequate injection voltage to a receiver or transmitter mixer. The rms output of a solid-state VFO is limited by its low-impedance output port. In the circuits of Fig. 6-9 the output would usually be taken across the emitter resistor of Q2, the buffer. Typically, the mms output voltage at that point in the circuit will be on the order of 0.5 to 2 volts. Tube mixers can require up to several volts of oscillator signal in order to function properly. Most
solid-state transmitters need from 3 to 10 volts of drive on the base of the first powet stage, and a reasonable amount of driving power is needed to satisfy this requirement. Driving power is generally required by the grid of the eirst stage of a tube transmitter. The VFO should, therefore, be capable of supplying from 0.5 to 1 watt of power output. The Class-C amplifier, Q3, provides the needed power output. Should the driven stage present a low-impedance to the VFO, output can be taken directly from the side of FLI opposite Q3. If, however, the driven stage of the transmitter or receiver has a high input impedance, some method must be used to provide the required impedance transformation, low to high. A broad-band toroidal step-up transformer, T , is used for this purpose in Fig. 6-9. The secondary of the transformer is resonant somewhere in the operating range of the VFO, and takes advantage of the stray circuit capacitance, normally around 10 pF , to establish resonance. The impedance-transformation ratio is set by adjusting the number of tums on the primary winding. Alternatively, T1 can be replaced by a tuned circuit of conventional design. It can be equipped with a fixed-value capacitor and a slug-tuned inductor, or a fixed-value inductor can be used with a variable capacitor to permit peaking the output at the operating frequency. The use of a tuned circuit will assure somewhat better efficiency than will the broadband transformer, T1. Thus, it can be seen that the circuit must be tailored to the need.

Checking VFO Stability

A VFO should be checked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristics, final iests should be made with the complete transmitter in operation. Almost any VFO will show signals of good quality and stability when it is running free and not connected to a load. A well-isolated monitor is a necessity. Perluaps the most convenient, as well as one of the most satisfactory, well-shielded monitoring arrangements is a receiver combined with a harmonic
from a frequency standard. (See the Measurements chapter for suitable circuits.) The receiver BFO is turned off and the VFO signal is tuned to beat with the signal from the crystal oscillator instead. In this way any receiver instability caused by overloading the input circuits, which may result in "pulling" of the hf oscillator in the receiver, or by a change in line voltage to the receiver when the transmitter is keyed, will not affect the reliability of the check. Most crystals have a sufficiently low temperature coefficient to give a check on drift as well as on chirp and signal quality if they are not overloaded.

Harmonics of the crystal may be used to beat with the transmitter signal when monitoring at the higher frequencies. Since any chirp at the lower frequencies will be magnified at the higher frequencies, accurate checking can best be done by monitoring at a hamonic.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the crystal oscillator and the transmitter signas. When using harmonics of the crystal oscillator, it may be necessary to attach a piece of wire to the oscillator as an antenna to give sufficient signal in the receiver. Checks may show that the stability is sufficiently good to permit oscillator keying at the lower frequencies, where break-in operation is of greater value, but that chirp becomes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this case to use oscillator keying at the \{ower frequencies and amplifier keying at the higher frequencies.

Premixing

It is difficult to build a variable-frequency oscillator for operation above 10 MHz with drift of onfy a few Hz . A scheme called premixing, shown in Fig. 6-10A, may be used to obtain VFO output in the $10-$ to $50-\mathrm{MHz}$ range. The output of a highly stable VFO is mixed with energy from a crystal-controlled oscillator. The frequencies of the two oscillators are chosen so that spurious outputs generated during the mixing process do not fall within the desired output range. A bandpass filter at the mixer output attenuates any out-of-band spurious energy. The charts given in Chapter 8 can be used to choose oscillator combinations which will have a minimum of spurious outputs. Also, Chapter 8 contains a discussion of mixer-circuit design.

PLL

Receivers and transmitters of advanced design are now using phase-locked loops (PLLs) to generate highly stable local oscillator energy up into the microwave region. The PLL has the advantage that no mixing stage is used in conjunction with the output oscillator, so the output energy is quite "clean." The Galaxy R-530, the Collins $651 \mathrm{~S}-1$, and the National HRO-600 currently use PLL high-frequency oscillator systems.

The basic diagram of a PLL is shown in Fig. 6-10B. Output from a voltage-controlled oscillator

Fig. 6-10 - Block diagrams of the (A) premixing and (B) phase-lock-loop schemes.
(VCO) and a frequency standard are fed to a phase detector which produces an output voltage equal to the difference in frequency between the two signals. The error voltage is amplified, filtered, and applied to the VCO. The error voltage changes the frequency of the VCO until it is locked to the standard. The bandwidth of the error-voltage filter determines the frequency range over which the system will remain in phase lock.

Three types of phase-locked loops are now in use. The simplest type uses hamonics of a crystal standard to phase-lock an HFO, providing the injection for the first mixer in a double-conversion receiver. A typical circuit is given in Fig. 6-11. Complete construction details on this PLL were given in QST for January, 1972. A second type of phase-locked loop uses a stable mf VFO as the standard which stabilizes the frequency of an hf or vhf VCO. This approach is used in the receiver described by Fischer in QST, March, 1970.

The other PLL system also uses a crystalcontrolled standard, but with programmable frequency dividers included so that the VCO output is always locked to a crystal reference. The frequency is changed by modifying the instructions to the dividers; steps of 100 Hz are usually employed for hf receivers while $10-\mathrm{kHz}$ increments are popular in vhf gear. The use of a PLL for fm demodulation is covered separately in Chapter 14.

VFO DIALS

One of the tasks facing an amateur builder is the difficulty of finding a suitable dial and drive assembly for a VFO. A dial should provide a sufficiently slow rate of tuning -10 to $25-\mathrm{kHz}$ per knob revolution is considered optimum without backlash. Planetary drives are popular because of their low cost; however, they often develop objectional backlash after a short period of use. Several types of two-speed drives are available. They are well suited to homemade amateur

Fig. 6-11 - A practical phase-locked oscillator intended for application as the crystal-controlled HFO in a transmitter or receiver. The crystal frequency should be chosen so that the harmonic content of the standard is sufficient at the desired
output frequency. A $200-\mathrm{kHz}$ crystal is good to 40 $\mathrm{MHz}, 500-\mathrm{kHz}$ crystal to 60 MHz , and $3-\mathrm{MHz}$ crystal to 80 MHz . L1 and L3 are chosen to resonate at the desired output frequency.
equipment. Several of the construction projects described elsewhere in this book employ this type of dial. The Eddystone 898 precision dial has long been a favorite with amateurs, although the need to elevate the VFO far above the chassis introduces some mechanical-stability problems. If a permeability tuned oscillator (PTO) is used, one of the many types of tum counters made for vacuum variable capacitors or rotary inductors may be employed.

Linear Readout

If linear-frequency readout is desired on the dial, the variable capacitor must be only a small portion of the total capacitance in the oscitlator tank. Capacitors tend to be very nonlinear near the ends of rotation. A gear drive providing a $1.5: 1$ reduction should be employed so that only the center of the capacitor range is used. Then, as a

Fig. 6-12 - A 5-digit readout using light-omitting diodes.
final adjustment, the plates of the capacitor must be filed until linear readout is achieved. In a PTO, the pitch of the oscillator coil winding may be varied so that linear frequency change results from the travel of the tuning slug. Such a VFO was described in QST for July, 1964. A different approach was employed by Lee (QST, November, 1970), using a variable-capacitance diode (Varicap) as the VFO tuning element. A meter which reads the voltage applied to the Varicap was calibrated to indicate the VFO frequency.

Electronic Dials

An electronic dial consists of a simplified frequency counter which reads either the VFO or operating frequency of a transmitter or receiver. The advantage of an electronic dial is the excellent accuracy (to one Hertz, if desired) and the fact that VFO tuning does not have to be linear. The readout section of the dial may use neon-glow tubes called Nixies (a trade name of the Burroughs Corp.), or a seven-segment display using incandescent lamps, filament wires in a vacuum tube, or LEDs (light-emitting diodes). A typical LED display is shown in Fig. 6-12. The use of MSI and LSI circuits, some containing as many as 200 transistors on a single chip, reduces the size required for an electronic dial to a few square inches of circuit-board space.

Fig. 6-13 - Block diagram of a frequency counter.

A typical counter circuit is given in Fig. 6-13. The accuracy of the counter is determined by a crystal standard which is often referred to as a clock. The output from a $100-\mathrm{kHz}$ calibration oscillator, the type often used in receivers and transceivers, may be employed if accuracy of 100 Hz is sufficient. For readout down to 1 Hz , a $1-$ to $10-\mathrm{MHz}$ AT-cut crystal should be chosen, because this type of high-accuracy crystal exhibits the best temperature stability. The clock output energy is divided in decade-counter ICs to provide the pulse which opens the input gate of the counter for a preset time. The number of if cycles which pass through the gate while it is open are counted and stored. Storage is used so that the readout does not blink. At the end of each counting cycle the information that has been stored activates the display LEDs, which present the numbers counted until another count cycle is complete. A complete electronic dial arranged to be combined with an existing transmitter or receiver was described in QST for October 1970. Also, Macleish ef al reported an adapter which allows a commercially made frequency counter to be mated with ham gear so that the counter performs as an electronic dial (QST, May, 1971).

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output circuit is tuned to a harmonic of the exciting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 MHz , output at $7 \mathrm{MHz}, 10.5 \mathrm{MHz}, 14$ $\mathbf{M H z}$, etc., may be obtained by tuning the plate tank circuit to one of these frequencies. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplier efficiency.

A practical limit to efficiency and output within normal tube ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to the rated value by increasing the bias and decreasing the loading.

Multiplications of four or five sometimes are uscd to reach the bands above 28 MHz from a lower-frequency crystal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three. Screen-grid tubes make the best multipliers because their high power-sensitivity makes them easier to drive properly than triodes.

Since the input and output circuits are not tuned close to the same frequency, neutralization usually will not be required. Instances may be encountered with tubes of high iransconductance, however. when a doubler will oscillate in t.g.t.p. fashion.

Frequency multipliers using tubes are operated Class C, with the bias and drive levels adjusted for plate-current conduction of less than 180 degrees.

Fig. 6-14 - Frequency-multiplier circults.

Fig. 6-15 - Driver stages using (A) a pentode tube and $\{B\rangle$ a bipolar power transistor.

For maximum efficiency, a doubler requires a plate-conduction angle of about 110 degrecs, while a tripler needs 100 degrecs. a quadrupler 80 degrees, and-a quintupler 65 degrees. For higher orders of multiplication increased bias and more drive are needed.

A typical circuit using a 6CL6 pentode tube is shown in Fig. 6-14A. The input circuit is tuned to the driving frequency while the output tank is set for the desired harmonic. If such a multiplier were to be operated directly into an antenna, additional selectivity would be necessary to prevent the radiation of harmonic encrgy (other than the desired frequency).

Push-Push Multipliers

A two-tube circuit which works well at even harmonics, but not at the fundamental or odd harmonics, is known as the push-push circuit. The grids are connected in push-pull while the plates are connected in parallel. The efficiency of a doubler using this circuit approaches that of a straight amplifier.

This arrangement has an advantage in some applications. If the heater of one tube is turned off, its grid-plate capacitance. being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes.

Push-Pull Multiplier

A singte- or parallel-tube multiplier will deliver output at either even or odd multiples of the exciting frequency. A push-pull stage does not work as a doubler or quadrupler but it will work as a tripler.

Transistor Multipliers

A transistor develops harmonic energy with good efficiency, often causing hammonic-output problems in straight-through amplifiers. Two harmonic-generating modes arc present. parametric multiplication and multiplication caused by the nonlinear characteristic presented by the basecollector junction. Transistors may be used in single-ended, push-pull, or push-push circuits. A typical push-pull tripler is shown in Fig. 6-14B. A small amount of forward bias has been added to the bases of the 2 N 2102 s to reduce the amount of
drive required. If a high level of drive is available, the bias circuit may be omitted.

A number of integrated circuits can be eraployed as frequency multipliers. The circuit at C uses a Motorola MC1496G (or the Signetics S5596, or Fairchild $\mu \mathrm{A} 796$) as a doubler. The input signal is batanced out in the IC, so only the desired second harmonic of the input frequency appears it the output. With suitable bypass capacitors this doubler can be used from audio to vhf.

DRIVERS

Pentode tubes are usually chosen for the driver stages of tube transmitters because they provide high amplification, often without requiring neutralization. Many of the receiving-type pentodes and smaller TV sweep tubes may be employed. The 6CL6, 6GK6, 12BY7A, 6BA6, 6AU6, and 6DC6 are often chosen. In cw and fin service the driver stage is operated Class C, while for ssb operation the Class-A mode is preferred to keep distortion to a minimum (third-order products at least 50 dB down). In ssb exciters alc voltage is often applied to a driver stage, in which case a semiremote-cutoff tube is desirable. Sharp-cutoff types are not acceptable because of a rapid increase in distortion as alc voltage drives the grid increasingly negative.

A typical tube driver stage is shown in Fig. 6-15 at A. The output load is a parallel-resonant circuit. Often a bandpass network is used so that the stage does not have to be tuned by a panel control. Also, coupling with a bandpass transfommer provides a higher order of attenuation of harmonic and spurious signals. At Fig. 6-15B, a 2N3632 medium-power transistor serves as a Class C driver. Note that this circuit is not suitable for ssb service.

Broadband Driver

Transistor circuits often require complex interstage coupling networks, because of the low input and output impedance characteristics of bipolar devices. Designing a solid-state multiband hf transmitter often requires some very complex band-switch arrangements. To eliminatc this problem, the cument trend is to use a broadband multistage driver that covers 3.5 to 30 MHz , for example, without switching or tuning adjustments. A typical circuit, similar to that used in Signal/One's CX-7 transceiver, is shown in Fig.

(F)

Fig. 6-16 - Interstage coupling networks for (A, B) tubes, (C-E) transistor stages, and (F) a groundedgrid amplifier.

6-17. Only a few millivoles of ssb or cw drive will provide sufficient output to drive a 4 CX 250 B operating Class $A B_{1}$. Interstage coupling is accomplished with hrnadhand toroidal transformers. Feedback is added from the collector to the emitter of each bipolar-transistor stage to improve linearity. Output impedance of the broadband driver is approximately 390 ohms.

Interstage Coupling

To achieve the maximum transfer of power between the driver and the succeeding amplifier stage, the output impedance of the driver must be matched to the input impedance of the following amplifier. Some form of rf coupling or impedancematching network is needed. The capacitive system of Fig. 6-16A is the simplest of all coupling systems. In this circuit, the plate tank circuit of the driver, C1Ll, serves also as the grid tank of the amplifier. Although it is used more frequently than any other system, it is less flexible and has certain fimitations that must be taken into consideration.

The two stages cannot be separated physically any appreciable distance without involving loss in transferred power, radiation from the coupling lead and the danger of feedback from this lead. Since both the output capacitance of the driver tube and the input capacitance of the amplifier are across the single circuit, it is sometimes difficult to obtain a tank circuit with a sufficiently low Q to provide an efficient circuit at the higher frequencies. The coupling can be varied by altering the capacitance of the coupling capacitor, C2. The driver load impedance is the sum of the amplifier grid resistance and the reactance of the coupling capacitor in series, the coupling capacitor serving simply as a series reactor. The driver load resistance
increases with a decrease in the capacitance of the coupling capacitor.

When the amplifier grid impedance is lower than the optimum luad resistance fos the driver, a transforming action is possible by tapping the grid down on the tank coil, but this is not recommended because it invariably causes an increase in vhf hamonics and sometimes sets up a parasitic circuit.

So far as coupling is concemed, the Q of the circuit is of little significance. However, the other considerations discussed earlier in connection with tank-circuit Q should be observed.

Pi-Network Interstage Coupling

A pi-section tank circuit, as shown in Fig 6-16B, may be used as a coupling device between screen-grid amplifier stages. The circuit can also be considered a coupling arrangement with the grid of the amplifier tapped down on the circuit by means of a capacitive divider. In contrast to the tapped-coil method mentioned previously, this system will be very effective in reducing vhf harmonics, because the output capacitor provides a direct capacitive shunt for harmonics across the amplifier grid circuit.

To be most effective in reducing vhf harmonics, the output capacitor should be a mica capacitor connected directly across the tube-socket terminals. Tapping down on the circuit in this manner also helps to stabilize the amplificr. Since the coupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power capability of the driver stage. If sufficient excitation cannot be obtained, it may be necessary to raise the plate voltage of the

Fig. 6-17 - A solid-state broadband driver for 3 to 30 MHz . The design of transformers T1, T2 and T3 is covered later in the chapter.
driver, if this is permissible. Otherwise a larger driver tube may be required. As shown in Fig. 6-16B, parallel driver plate feed and amplifier grid feed are necessary.

Coupling Transistor Stages

In stages using bipolar power transistors, the input circuit must provide a match between the driver collector and the PA base. The latter exhibits a very low impedance. The input
impedance of an rif power transistor is between several tenths of an ohm and several ohms. Generally, the higher the power rating of the device, the lower the input impedance. The base connection also has a reactive component which is capacitive at low frequencies and inductive at higher frequencies. At some frequency, usually between 50 and 150 MHz , the base lead will be self-resonant. The input impedance will vary with deive level, which makes a cut-and-try adjustsacnt of the interstage network necessary.

An interstage network must provide the proper impedance transformation while tuning out reactance in the transistors. The reactive components of the base and collectors of power transistors are of such magnitude that they must be included in any network calculations. Fig. 6-16 shows several networks capable of interstage matching in a multistage transistor amplifier. At C, a T network is pictured. The value of the inductor is chosen so that its reactance is much greater than the capacitive reactance of the second transistor's base circuit. The capacitive divider provides the impedance match between the collector and the base.

The circuit of $6-16 \mathrm{D}$ is also basically a T network in which both the inductor and second capacitor are chosen to have reactunce of a greater magnitude than the base-enitter capacitance of the second transistor. The circuits of C and D require that the collector of the driver transistor be shunt fed through a high-impedance if choke. Fig. 6-16E shows a coupling network that aliminates the need for a choke. Here the collector of the driver transistor is parallel-tuned and the basc-emitter junction of the following stage is series-tuned.

The remaining circuit, Fig. 6-16F, shows the pi-section network that is often used to match the 50 -ohm output of an exciter to a grounded-grid power amplifier. A Q of 1 or 2 is chosen so that the circuit will be broad enough to operate across an amateur band without ictuning. The network is desigred for a 50 -ohm input impedance and to match an output load of 30 to 150 ohms (the impedance range of the cathode of typical grounded-grid stages). Typical $L C$ values are given in the construction projects presented later in this chapter.

RF POWER AMPLIFIER CIRCUITRY

Tube Operating Conditions

In addition to proper tank and output-coupling circuits, an if amplifier must be provided with suitable operating voltages and an of driving or excitation voltage. All of amplifier tubes require a voltage to operate the filament or heater (ac is usually permissible), and a positive dc voltage between the plate and filament or cathode (plate voltage). Most tubes also require a negative de voltage (biasing voltage) between control grid (grid No. 1) and filament or cathode. Screen-grid tubes require in addition a positive voltage (screen voltage or grid No. 2 voltage) between screen and filament or cathode.

Biasing and plate voltages may be fed to the
tube either in series with or in parallel with the associated if tank circuit as discussed in the chapter on electrical laws and circuits.

It is important to remember that true plate, screen or biasing voltage is the voltage between the particular electrode and filament or cathode. Only when the cathode is directly grounded to the chassis may the electrode-to-chassis voltage be taken as the true voltage. The required rf driving voltage is applied between grid and cathode.

Power Input and Plate Dissipation

Plate power input is the dc power input to the plate circuit (dc plate voliage X dc plate cument). Screen power input likewise is the dc screen voltage X the dc screen current.

Plate dissipation is the difference between the rf power delivered by the tube to its loaded plate tank circuit and the dc plate power input. The screen, on the other hand, does not deliver any output power, and therefore its dissipation is the same as the screen power input.

TRANSMITTING-TUBE RATINGS

Tube manufacturers specify the maximum values that should be applied to the tubes they produce. They also publish sets of typical operating values that should result in good efficiency and normal tube life.

Maximum values for all of the most popular transmitting tubes will be found in the tables of transmitting tubes in the last chapter. Also included are as many sets of typical operating values as space permits. However, it is recommended that the amateur secure a transmitting-tube manual from the manufacturer of the tube or tubes he plans to use.

CCS and ICAS Ratings

The same transmitting tube may have different ratings depending upon the manner in which the tube is to be operated, and the service in which it is to be used. These different ratings are based primarily upon the heat that the tube can safely dissipate. Some types of operation, such as with grid or screen modulation, are less efficient than others, meaning that the tube must dissipate more
heat. Other types of operation, such as cw or single-sideband phone are intermittent in nature, resulting in less average heating than in other modes where there is a continuous power input to the tube during transmissions. There are also different ratings for tubes used in transmitters that are in almost constant use (CCS - Continuous Commercial Service), and for tubes that are to be used in transmitters that average only a few hours of daily operation (ICAS - Intermittent Commercial and Amateur Service). The latter are the ratings used by amateurs who wish to obtain maximum output with reasonable tube life.

Maximum Ratinga

Maximum ratings, where they differ from the values given under typical operating values, are not normally of significance to the amateur except in special applications. No single maximum value should be used unless all other ratings can simultaneously be held within the maximum values. As an example, a tube may have a maximum plate-voltage rating of 2000 , a maximum plate-current rating of 300 mA , and a maximum plate-power-input rating of 400 watts. Therefore, if the maximum plate voltage of 2000 is used, the plate current should be limited to 200 mA (instead of 300 mA) to stay within the maximum power-input rating of 400 watts.

SOURCES OF TUBE ELECTRODE VOLTAGES

Filament or Heater Voltage

The heater voltage for the indirectiy heated cathode-type tubes found in low-power classifications may vary 10 percent above or below rating without seriously reducing the life of the tube. But the voltage of the higher-power filament-type tubes should be held closely between the rated voltage as a minimum and 5 percent above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. If the overload

Fig. 6-18 - (A-C) Various systems for obtaining protective and operating bias. (D) Screen clamper circuit for protecting power tetrodes.
has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of $\mathbf{1 0}$ minutes, or at 20 percent above rated voltage for a few minutes.

Plate Voltage

Dc plate voltage for the operation of rf amplifiers is most often obtained from a transformer-rectifier-filter system (see powersupply chapter) designed to deliver the required plate voltage at the required current. However, batteries or other do-generating devices are sometimes used in certain types of operation (see portable-mobile जhapter).

Bias and Tube Protection

Several methods of obtaining bias are shown in Fig. 6-18. At A, bias is obtained by the voltage drop across a resistor in the grid de return circuit when rectified grid current flows. The proper value of resistance may be determined by dividing the required biasing voltage by the dc grid current at which the tube will be operated. Then, so long as the of driving voltage is adjusted so that the de grid current is the recommended value, the biasing voltage will be the proper value. The tube is biased only when excitation is applied, since the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the bias falls to zero. At zero bias most tubes draw power far in excess of the plate-dissipation rating. So it is advisable to make provision for protecting the tube when excitation fails by accident, or by intent as it does when a preceding stage in a cw transmitter is keyed.

If the maximum cw ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that plate current be cut off completely but only to the point where the rated dissipation is not exceeded. In this case platemodulated phone ratings should be used for cw operation, however.

With triodes this protection can be supplied by obtaining all bias from a source of fixed voltage, as shown in Fig. 6-18B. It is preferable, however, to use only sufficient fixed bias to protect the tube and obtain the balance needed for operating bjas from a grid teak. The grid-leak resistance is calculated as above, except that the fixed voltage is subtracted first.

Fixed bias may be obtained from dry batteries or from a power pack (see power-supply chapter). If dry batteries are used, they should be checked periodically, since even though they may show normal voltage, they eventually develop a high internal resistance.

In Fig. 16-8D, bias is obtained from the voltage drop across a Zener diode in the cathode (or filament center-tap) lead. Protective bias is obtained by the voltage drop across VR1 as a result of plate (and screen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cutoff protective bias саллоt be obtained.

The voltage of the cathode biasing Zener diode VRI should bechosen for the value which will give the correct operating bias voltage with rated grid, plate and screen currents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time required to remove plate voltage. A disadvantage of this biasing system is that the cathode rf connection to ground depends upon a bypass capacitor.

Screen Voltage

For cw and fm operation, and under certain conditions of phone operation (see amplitudemodulation chapter), the screen may be operated from a power supply of the same type used for plate supply, except that voltage and current ratings should be appropriate for screen requirements. The screen may also be operated through a series resistor or voltage-divider from a source of higher voltage, such as the plate-voltage supply, thus making a scparate supply for the screen unnecessary. Certain precautions are necessary, depending upon the method used.

It should be kept in mind that screen current varies widely with both excitation and loading. If the screen is operated from a fixed-voltage source, the tube should never be operated without plate voltage and load, otherwise the screen may be damaged within a short time. Supplying the screen through a series dropping resistor from a higher-voltage source, such as the plate supply. affords a measure of protection, since the resistor causes the screen voltage to drop as the cusrent increases, thereby limiting the power drawn by the screen. However, with a resistor, the screen voltage may vary considerably with excitation, making it necessary to check the voltage at the screen terminal under actual operating conditions to make sure that the screen voltage is nommal. Reducing excitation will cause the screen cursent to drop, increasing the voltage; increasing excitation will have the opposite effect. These changes are in addition to those caused by changes in bias and plate loading, so if a screen-grid tube is operated from a scrics resistor or a voltage divider, its voltage should be checked as one of the final adjustments after excitation and loading have been set.

An approximate value for the screen-voltage dropping resistor may be obtained by dividing the voltage drop required from the supply voltage (difference between the supply voltage and rated screen voltage) by the rated screen current in decimal parts of an ampere. Some further adjustment may be necessary, as mentioned above, so an adjustable resistor with a totad resistance above that calculated should be provided.

Protecting Screen-Grid Tubes

Considerably less grid bias is required to cut off an amplifier that has a fixed-voltage screen supply than one that derives the screen voltage through a high value of dropping resistor. When a "stiff" screen voltage supply is used, the necessary grid
cutoff voltage may be determined from an inspection of the tube curves or by experiment.

When the screen is supplied from a series dropping resistor, the tube can be protected by the use of a clamper tube, as shown in Fig. 6-18D. The grid-leak bias of the amplifier tube with excitation is supplied also to the grid of the clamper tube. This is usually sufficient to cut off the clamper tube. However, when excitation is removed, the clamper-tube bias falls to zero and it draws enough current through the screen dropping resistor usually to limit the input to the amplifier to a safe value. If complete screen-voltage cutoff is desired, a Zener diode may be inserted in the screen lead. The regulator diode voltage rating should be high enough so that it will cease conducting when excitation is removed.

Feeding Excitation to the Grid

The required rf driving voltage is supplied by an oscillator generating a voltage at the desired frequency, either directly or through intermediate amplifiers, mixers, or frequency multipliers.

As explained in the chapter on vacuum-tube fundamentals, the grid of an amplifier operating under Class C conditions must have an exciting voltage whose peak value exceeds the negative blasing voltage over a portion of the excitation cycle. During this portion of the cycle, current will flow in the grid-cathode circuit as it does in a diode circuit when the plate of the diode is positive in respect to the cathode. This requires that the if driver supply power. The power required to develop the required peak driving voltage across the grid-cathode impedance of the amplifier is the rf driving power.

The tube tables give approximate figures for the grid driving power required for each tube under various operating conditions. These figures, however, do not include circuit losses. In general, the driver stage for any Class C amplificr should be capable of supplying at least three times the driving power shown for typical operating conditions at frequencies up to 30 MHz and from three to ten times at higher frequencies.

Since the de grid current relative to the biasing voltage is related to the peak driving voltage, the dc grid current is commonly used as a convenient indicator of driving conditions. A driver adjustment that results in rated de grid current when the de bias is at its rated value, indicates proper excitation to the amplifier when it is fully loaded.

In coupling the grid input circuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifier grid excitation is obtained without exceeding the plate-input ratings of the driver tube.

Driving Impedance

The grid-current flow that results when the grid is driven positive in respect to the cathode over a portion of the excitation cycle represents an average resistance across which the exciting voltage must be developed by the driver. In other words,
this is the load resistance into which the driver plate circuit must be coupled. The approximate grid input resistance is given by:

> Inpul impedance (ohms)
> $=\frac{\text { driving power }}{\text { dc grid current }(\mathrm{mA})^{2}} \times 620,000$

For normal operation, the driving power and grid current may be taken from the tube tables. Since the grid input resistance is a matter of a few thousand ohms, an impedance step-up is necessary if the grid is to be fed from a low-impedance transmission line

TRANSISTOR RATINGS

Transistor ratings are similar in some respects to the maximum limits given for tubes. However, solid-state devices are generally not so forgiving of overload; they can quickly be ruined if a voltage or current parameter of the device is exceeded. All semiconductors undergo irreversible changes if their temperature is allowed to go above a critical limit.

Voltage Rating

In general, the higher the collector-emitter voltage rating of a transistor the less the chance of damage when used as an rf power amplificr. A mismatched load, or the loss of the load entirely, causes high voltages to appear between the collector and emitter of the transistor. If the maximum rating is exceeded, the transistor may break down and pass reverse current. Transistor manufacturers are now including a resistance in series with the emitter lead of each of the many junctions that make up the power transistor as break-down protection. This technique is called ballasting or balanced emitters. Another way to protect a power transistor is to include a Zener diode from collector to emitter. The break-down voltage rating of the diode should be above the peak rf voltage to be developed in the circuit, but below the maximum rating of the power device.

Current and Heat

The current that a power device can stand is related to its ability to dissipate heat. A transistor is physically small, so ligh-power models must use effective heat radiator, called heat sinks, to insure that the operating temperature is kept to a moderate value cven when large currents are flowing through the device.

Cooling considerations for practical solid-state amplifiers are outlined below. Manufacturer's specification shcets describe a safe operating area for an individual power transistor. Also, transistors are rated in terms of power output, rather than imput, so it should be remembered that a device specified to deliver 80 watts of output power will probably be running 160 watts or more input. Transistor amplifiers pass an appreciable amount of driver power to the output, as do grounded-grid tube stages, and this fact must also be taken into account by the circuit designer.

Device Case	$5 W$	$10 W$	$25 W$	$50 W$	$100 W$
TO-S	17.2	7.2	1.2	.71	.35

Fig. 6-19 - (A) Graph to determine the thermal resistance of a heat sink of a given size. The heat sink volume may be computed by multiplying cross-sectional area by height. (B) Approximate thermal resistance needed for proper cooling of two types of transistor cases when operated at the proper levels given.

(A)

COOLING

Tubes

Vacuum tubes must be operated within the temperature range specified by the manufacturer if long tube life is to be achieved. Tubes with glass envelopes rated at up to 25 watts of plate dissipation may be run without forced-air cooling, if a moderate amount of cooling by convection can be arranged. If a cane-metal enclosure is used, and a ring of $1 / 4$-inch diameter holes are placed around the tube socket, normal air flow can be relied upon to remove excess heat at room temperatures.

For tubes with greater plate dissipation, or those operated with plate currents in excess of the manufacturer's ratings (often the case with TV sweep tubes) forced air cooling with a fan or blower is needed. Fans, especially those designed for cooling hi-fi cabinets, are preferred because they operate quietly. However. all fans lose their ability to move air when excessive back pressure exists. For applications where a stream of air must be directed through a tube socket, a blower is usually required. Blowers vary in their ability to work against back pressure, so this specification should be checked when selecting a particular model. Some air will always leak around the socket and through other holes in a chassis, so the blower chosen should have a capacity which is 30 to 50 percent beyond that called for by the tube manufacturer.

An efficient blower is required when using the extemal-anode tubes, such as the 4X150A. Such tubes represent a trade-off which allows highpower operation with a physically small device at the expense of increased complexity in the cooling system. Other types of external-anode tubes are now being produced for conductive cooling. An electrical insulator which is also an excellent thermal conductor, such as AlSiMag, couples the tube to a heat sink. Requirements for the heat dissipator are calculated in the same way as for power transistors, as outlined below. Similar tubes are made with special anode structures for water or
vapor cooling, allowing high-power operation without producing an objectionable noise level from the cooling system.

Transistor Cooling

Bipolar power transistors usually have the collector connectod directly to the case of the device, as the collector must dissipate most of the heat generated when the transistor is in operation. However, even the larger case designs cannot conduct heat away fast enough to keep the operating temperature of the device functioning within the safe area, the maximum temperature that a device can stand without damage. Safe area is usually specified in a device data sheet, often in graphical form. Germanium power transistors may be operated at up to 100 degrees C while the silicon types may be run at up to 200 degrees C. Leakage currents in germanium devices can be very high at elevated temperatures; thus, for power applications silicon transistors are preferred.

A thermal sink, property chosen, will remove heat at a rate which keeps the transistor junction temperature in the safe area. For low-power applications a simple clip-on heat sink will suffice, while for 100 -watts of input power a massive cast-aluminum finned radiator will be necessary. In general, the case temperature of a power transistor must be kept below the point at which it will produce a burn when touched.

HeatSink Design

Simple heat sinks, made as described in the Construction Practices chapter, can be made more effective (by 25 percent or more) by applying a coat of flat-black paint. Finned radiators are most effective when placed where maximum air flow can be achieved - outside a case with the fins placed vertically. The size of a finned heat sink required to give a dcsired thermal resistance, a measure of the ability to dissipate heat, is shown in Fig. $6-19 \mathrm{~A}$. Fig. $6-19 \mathrm{~B}$ is a simplified chart of the thermal resistance needed in a heat sink for transistors in TO-5 and TO-44 cases. These figures

Fig. 6-20 - Typical (A) push-pull and (B) parallel amplifier circuits.
are based on several assumptions, so they can be considered a worst-case situation. Smaller heat sinks may be usable.

The thermal design of solid-state circuits has been covered in QST for April, 1972. The surface contact between the transistor case and the heat sink is extremely important. To keep the sink from being "hot" with dc, a mica insulator is usually employed between the transistor case and the heat dissipator. Newer types of transistors have a case mounting bolt insulated from the collector so that it may be connected directly to the heat sink. Whatever the arrangement, the use of a conductive compound such as silicone grease (Coming PC-4) is recommended between the transistor and the sink. For high-power designs, it may be desirable to add a small cooling fan, providing a stream of air across the heat sink, to keep the size of the heat dissipator within reasonable limits. Even a light air flow greatly increases the radiator's ability to dispose of excess heat.

OUTPUT POWER FROM TRANSMITTERS

CW or FM: In a cw or fm transmitter, any class of amplifier can be used as an output or intermediate amplifier. (For reasonable efficiency, a frequency multiplier must be operated Class C.) Class-C operation of the amplifier gives the highest efficiency (65 to 75 percent), but it is hikely to be accompanied by appreciable harmonics and consequent TVI possibilities. If the excitation is keyed in a cw transmitter, Class-C operation of subsequent amplifiers will, under certain conditions, introduce key clicks not present on the keyed excitation (see chapter on Code Transmission). The peak envelope power (PEP) input or output of any cw (or fm) transmitter is the "key-down" input or output.

A-M: In an amplitude-modulated phone transmitter, plate modulation of a Class-C output amplifier results in the highest output for a given input to the output stage. The efficiency is the same as for cw or fm with the same amplifier, from 65 to 75 percent. (In most cases the manufacturer rates the maximum allowable input on plate-
modulated phone at about $2 / 3$ that of cw or fm .) A plate-modulated stage running 100 watts input will deliver a carrier output of from 65 to 75 watts, depending upon the tube, frequency and circuit factor. The PEP output of any a-m signal is four times the carrier output power, or 260 to 300 watts for the 100 -watt input example.

Grid- (control or screen) modulated output amplifiers in a-m operation run at a carrier efficiency of 30 to 35 percent, and a grid-modulated stage with 100 watts input has a carrier output of 30 to 35 watts. (The PEP output, four times the carrier output, is 120 to 140 watts.)

Running the legal input limit in the United States, a plate-modulated output stage can deliver a carrier output of 650 to 750 watts, while a screenor control-grid-modulated output amplifier can deliver only a carrier of 300 to 350 watts.

SSB: Only linear amplifiers can be used to amplify ssb signals without distortion, and this limits the choice of output amplifjer operation to Classes $A, A B_{1}, A B_{2}$, and B. The efficiency of operation of these amplifiers runs from about 20 to 65 percent. In all but Class-A operation the indicated (by plate-current meter) input will vary with the signal, and it is not possible to talk about relative inputs and outputs as readily as it is with other modes. Therefore linear amplifiers are rated by PEP (input or output) at a given distortion level, which indicates not only how much ssb signal they will deliver but also how effective they will be in amplifying an a-m signal.

LINEAR AMPLIFIERS FOR A-M: In considering the practicality of adding a linear output amplifier to an existing $a-m$ transmitter, it is necessary to know the carrier output of the a-m transmitter and the PEP output rating of the linear amplifier. Since the PEP output of an a-m signal is four times the camier output, it is obvious that a linear with a PEP output rating of only four times the carrier output of the $a-m$ transmitter is no amplifier at all. If the linear amplifier has a PEP output rating of 8 times the a-m transmitter carrier output, the output power will be doubled and a $3-\mathrm{dB}$ improvement will be obtained. In most cases a 3-dB change is just discernible by the receiving operator.

By comparison, a linear amplifier with a PEP output rating of four times an existing ssb, cw or fm transmitter will quadruple the output, a $6-\mathrm{dB}$ improvement, It should be noted that the linear amplifier must be rated for the mode (ssb, cw or fm) with which it is to be used.

GROUNDED-GRID AMPLIFIERS: The preceding discussion applies to vacuum-tube amplifiers connected in a grounded-cathode or grounded-grid circuit. However, there are a few points that apply only to grounded-gid amplifiers.

A tube operated in a given class ($\mathrm{AB}_{1}, \mathrm{~B}, \mathrm{C}$) will require more driving power as a grounded-grid amplifies than as a grounded-cathode amplifier. This is not because the grid losses run higher in the grounded-grid configuration but because some of the driving power is coupled directly through the tube and appears in the platc load circuit. Provided enough driving power is available, this increased requirement is of no concem in cw or lincar operation. In $a-m$ operation, however, the fedthrough power prevents the grounded-grid amplifier from being fully modulated (100 percent).

AMPLIFIER CIRCUITS

Parallel and Push-Pull Amplifiers

The circuits for paralled-tube amplifiers are the same as for a single tube, similar terminals of the tubes being connected together. The grid impedance of two tubes in parallel is thalf that of a single tube. This means that twice the grid tank capacitance shown in Fig. 6-20B should be used for the same Q.

The plate load resistance is halved so that the plate-tank capacitance for a single tube (Fig. 6-24) also should be doubled. The total grid current will be doubled, so to maintain the same grid bias, the grid-leak resistance should be half that used for a single tube. The required driving power is doubled. The capacitance of a neutralizing capacitor should be doubled and the value of the screen dropping resistor should be cut in half.

In treating parasitic oscillation, it is often necessary to use a choke in each plate lead, rather than one in the common lead to avoid building in a push-pull type of vhf circuit, a factor in obtaining efficient operation at higher frequencies.

Two or more transistors are often operated in parallel to achieve high output power, because several medium-power devices often cost less than
a single high-power type. When parallel opcration is used, precautions must be taken to insure that equal drive is applied to each transistor. Otherwise, one transistor may "hog" most of the drive and exceed its safe ratings.

A basic push-pull circuit is shown in Fig. 6-20A. Amplifiers using this circuit are cumbersome to bandswitch and consequently are not very popular below 30 MHz . However, since the push-pull configuration places tube input and output capacitances in series, the circuit is often used at 50 MHz and higher.

In the circuit shown at A two 813s are used. Cross neutralization is employed, with Cl connected from the plate of one tube to the grid of the second, while C2 is attached in the reverse order.

GROUNDED-GRID AMPLIFIERS

Fig. 6-21A shows the input circuit of a grounded-grid triode amplifier. In configuration it is similar to the conventional grounded-cathode circuit except that the grid, instead of the cathode, is at ground potential. An amplifier of this type is characterized by a comparatively low input impedance and a relatively high driver power requirement. The additional driver power is not consumed in the amplifier but is "fed through" to the plate circuit where it combines with the normal plate output power. The total rf power output is the sum of the driver and amplifier output powers less the power nomally required to drive the tube in a grounded-cathode circuit.

Positive feedback is from plate to cathode through the plate-cathode capacitance of the tube. Since the grounded-grid is interposed between the plate and cathode, this capacitance is small, and neutralization usually is not necessary.

In the grounded-grid circuit the cathode must be isolated for ff from ground. This presents a practical difficulty especially in the case of a flament-type tube whose filament current is large. In plate-modulated phone operation the driver power fed through to the output is not modulated.

The chicf application for grounded-grid amplifiers in amateur work below 30 MHz is in the case where the available driving power far exceeds the power that can be used in driving a conventional grounded-cathode amplifier.

Screen-grid tubes are also used sometimes in grounded-gid amplificrs. In some cases, the screen

Fig. 6-21 - Input circuits for triode or triode-connected power tubes operated grounded grid.

Fig. 6-22 - A 30-A filament choke for a grounded-grid power amplifier consisting of 28 turns of No. 10 enam. wire on a 1/2-inch diameter ferrite rod 7 inches long.
is simply connected in parallel with the grid, as in Fig. 6-21B and the tube operates as a high- μ triode. In other cases, the screen is bypassed to ground and operated at the usual de potential, as shown at C. Since the screen is stiel in parallel with the grid for rf, operation is very much like that of a triode except that the positive voltage on the screen reduces driver-power requirements.

In indirectly-heated cathode tubes, the low heater-to-cathode capacitance will often provide enough isolation to keep rf out of the heater transformer and the ac lines. If not, the heater voltage must be applied through rf chokes.

In a directly-heated cathode tube, the filament must be maintained above if ground. This can be done by using a pair of filament chokes or by using the input tank circuit, as shown in Fig. 6-21C. In the former method, a double solenoid (often wound on a ferrite core) is generally used, although separate chokes can be uscd. When the tank circuit is used, the tank inductor is wound from two (insulated) conductors in parallel or from an insulated conductor inside a tubing outer conductor. A typical flament choke is shown in Fig. 6-22.

The input impedance of a grounded-grid power stage is usually between 30 and 150 ohms. For circuits similar to those shown in Figs. 6-21A and B some form of input tuning network is needed. A high-C, low-Q parallel-resonant or pi-section network will suffice. The input network provides benefit other than impedance matching - a reduction in the IM distortion produced by the stage when amplifying an ssb signal. A typical input circuit is shown in Fig. 6-16F. When an amplifier is built for single-band operation, a tank circuit similar to that shown in Fig. 6-21C may be employed. Proper input matching is achieved by tapping the input down on the conl.

TRANSISTOR CIRCUITS

A transistor amplifier requires some means for impedance matching at the input and output of the stage. For conventional narrow-band amplifier designs, impedance matching is achieved with tuned networks (pi, L or T sections or combinations thereof). To simplify band-switching requirements, broadband amplifiers with four octaves or more of bandwidth are desirable. Wide bandwidths are achieved by using a special form of transmission-line transformer for interstage and output coupling that is described later in this chapter.

Most solid-state Class-C amplifiers are operated with both the base and emitter leads connected to dc ground. Thus, the transistor is practically off when no driving signal is present. The distortion of the drive signal by such an amplifier is appreciable. However, with cw, fm, or collector-modulated a-m, the harmonics produced are removed from the desised frequency by at least a factor of 2 . Thus, larmonic encrgy can be reduced or eliminated by using appropriate filters.

Fig. 6-23A shows a basic Class-C transistor amplifier. The base input is held at de ground through a radio-frequency choke. A second choke, consisting of two ferrite beads (collector lead), climinates a tendency to vhf parasitic oscillation. At B, parallel-connccted transistors are operated Class C. Adjustment of L1 and L2 provide equal levels of drive. The devices chosen for this circuit are designed for 30 to $50-\mathrm{MHz}$ operation. Below 14 MHz some form of degenerative feedback will be needed to prevent self oscillation, as the gain of the transistors is quite high at lower frequencies.

For ssb operation transistors must be forward biased at the base. The lowest distortion results with Class-A operation, but, efficiency is poor. The best trade off between low distortion and high efficiency is Class-B operation, even though operation in this region introduces some severe requirements for the bias circuit. Whencver a transistor is forward biased, thermal runaway can be a problem. Also, ssb drive varies in amplitude causing large variations in the transistor base current. For best linearity, the dc base-bias voltage should remain constant as the rf drive level is varicd. This situation is in conflict with the conditions needed to prevent thermal runaway. Exotic schemes have been designed to provide the proper base hias for Class-B ssb amplification. However, a simple diode circuit such as shown in lijgs. 6-23C and D can provide the required dc stability with protection against thermal damage. The ballasted type of transistors are preferred for these circuits. Typical choices for Class-B ssb service arc the 2N5941, 2N2942, 2N3375, 2N5070, 2N5071, and the 2N5093. The design of suitable broadband transformers for the circuits of Fig. 6-29 is covered later in this chapter.

The circuits at $6-23 \mathrm{C}$ and D are similar except for the choice of the active devicc. Both designs were developed by K7QWR. The base-bias circuit maintains a steady voltage while supplying current that varies by a factor of 100 to 1 with drive. The gain versus frequency of both circuits follows the

Fig. 6-23 - Some typical transistor power-amplifier circuits. At C. R1 is adjusted for a collector current of 40 mA with no drive, while R2 at D is set for 20 mA collector current with no input. Broadband transformers used consist of the following:
T1, T3, T5 - 6 turns of 2 iwisted pairs of No. 26 enam. wire on a Stackpole 57-9322 No. 11 toroid core, connected for 4:1. (See sable 6-A.)
T2,T4 - 4 iurns of 4 ivisted pairs of No. 26 enam. wire on a Stackpole 57-9322 No. 11 toroid core, connected for 4:1.
TG - 10 turns of 3 iwisted pairs of No. 28 enam. wire on two Stackpole 57-9074 No. 11 toroid carss, connected for 9:1
power-output curves of the transistors used, changing from 25 dB at 2 MHz to 13 dB at 30 MHz. IMD is typically 30 dB or more down with either circuit.

RF POWER-AMPLIFIER TANKS AND COUPLING

TANK Q

Rf power amplifiers used in amateur transmitters are operated under Class-C or - AB conditions (see chapter on tube fundamentals). The main objective, of course, is to deliver as much fundamental power as possible into a load, R without exceeding the tube ratings. The load resistance R may be in the form of a transmission line to an antenna, or the input circuit of another amplifier. A further objective is to minimize the hammonic energy (always generated by an amplifier) fed into the load circuit. In attaining these objectives, the Q of the tank circuit is of importance. When a load is coupled inductively.
the Q of the tank circuit will have an effect on the coefficient of coupling necessary for proper loading of the amplifier. In respect to atl of these factors, a tank Q of 10 to 20 is usually considered optimum. A much lower Q will result in less efficient operation of the amplifier tube, greater hammonic output, and greater difficulty in coupling inductively to a load. A much higher Q will result in higher tank current with increased loss in the tank coil. Efficiency of a tank circuit is determined by the ratio of loaded Q to unloaded Q by the relationship:

$$
E f f .=100\left(1-\frac{Q_{\mathbf{L}}}{Q_{\mathrm{U}}}\right)
$$

where Q_{L} is the loaded Q and Q_{U} is the unloaded Q.

The Q is determined (see chapter on electrical laws and circuits) by the L / C ratio and the load resistance at which the tube is operated. The tube load resistance is related, in approximation, to the ratio of the de plate voltage to dc plate current at
which the tube is operated and can be computed from:
Class-A Tube:

$$
R_{\mathrm{L}}=\frac{\text { Plate Volts }}{1.3 \times \text { Plate Current }}
$$

Class-B Tube:

$$
R_{\mathrm{L}}=\frac{\text { Plate Volts }}{1.57 \mathrm{X} \text { Plate Current }}
$$

Class-C Tube:

$$
R_{\mathrm{L}}=\frac{\text { Plate Volts }}{2 \text { Platc Current }}
$$

Transistor:

$$
R_{\mathrm{L}}=\frac{\text { (Collector Volts) }^{2}}{2 \times \text { Power Output (Watts) }}
$$

Fig. 6-24 - Chart showing plate tank capacitance required for a Q of 10 . Divide the tube plate voltage by the plate current in milliamperes. Select the vertical line corresponding to the answer obtained. Follow this vertical line to the diagonal line for the band in question, and thence horizontally to the left to read the capacitance. For a given ratio of plate voltage/plate current, doubling the capacitance shown doubles the \boldsymbol{Q}. When a split-stator capacitor is used in a balanced circuit, the capacitance of each section may be one half the value given by the chart.

Fig. 6-25 - Inductive-link output coupling circuits. C1 - Plate tank capacitor - see text and Fig. 6.24 for capacitance.
L1 - To resonate at operating frequency with C1. See LC chart and inductance formula in electrical-laws chapter, or use ARRL Lightning Calculator.
L2 - Reactance equal to line impedance. See reactance chart and inductance formula in electrical-laws chapter, or use ARRL Lightning Calculator.
R - Representing load.

Parallel-Resonant Tank

The amount of C that will give a Q of 10 for various ratios is shown in Fig. 6-24. For a given plate-voltage/piate-current ratio, the Q will vary directly as the tank capacitance, twicc the capacitance doubles the Q, etc. For the same Q, the capacitance of each section of a split-stator capacitor in a balanced circuit should be half the value shown.

These values of capacitance include the output capacitance of the amplifier tube, the input capacitance of a following amplifier tube if it is coupled capacitively, and all other stray capacitances. At the higher plate-voltage/plate-current ratios, the chart may show values of capacitance, for the higher frequencies, smaller than those attainable in practice. In such a case, a tank Q higher than 10 is unavoidable.

INDUCTIVE-LINK COUPLING

Coupling to Flat Coaxial Lines

When the load R in Fig. 6-25 is located for convenience at some distance from the amplifier, or when maximum harmonic reduction is desired, it is advisable to feed the power to the load through a low-impedance coaxial cable. The shielded construction of the cable prevents radiation and makes it possible to install the line in any convenient manner without danger of unwanted coupling to other circuits.

If the line is more than a small fraction of a wavelength long, the load resistance at its output end should be adjusted, by a matching circuit if necessary, to match the impedance of the cable. This reduces losses in the cable and makes the coupling adjustments at the transmitter independent of the cable length. Matching circuits for use bctween the cable and another transmission line are discussed in the chapter on transmission lines, while the matching adjustments when the load is the grid circuit of a following amplifier are described elsewhere in this chapter.

Fig. 6-26 - With flat transmission lines, power transfer is obtained with looser coupling if the line input is tuned to resonance. C1 and L1 should resonate at the operating frequency. See table for maximum usable value of C1. If circuit does not resonate with maximum C1 or less, inductance of L1 must be increased or added in series at L2.

Table 6-A		
Capacitance in pF Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit ${ }^{1}$		
Frequency	Characrenstic I	ace of
Band	52	75
MHz	ohms	ohms
3.5	450	300
7	230	150
14	115	75
21	80	50
28	60	40
${ }^{1}$ Capac Note: lndu resonate at	ce values are ma nce in circuit mus rating frequency	usable diusted

Assuming that the cable is properly temainated, proper loading of the amplifier will be assured, using the circuit of Fig. 6-26A, if

1) The plate tank circuit has reasonably higher valuc of Q. A value of 10 is usually sufficient.
2) The inductance of the pickup or link coil is close to the optimum value for the frequency and type of line used. The optimum coil is one whose self-inductance is such that its reactance at the operating frequency is equal to the characteristic impedance, 2_{0}, of the line.
3) It is possible to make the coupling between the tank and pickup coils very tight.

The second in this list is often hard to meet. Few manufactured link coils have adequate
inductance even for coupling to a 50 -ohm line at low frequencies.

If the line is operating with a low SWR, the system shown in Fig. 6-26A will require tight coupling between the two coils. Since the secondary (pickup coil) circuit is not resomant, the leakage reactance of the pickup coil will cause some detuning of the amplificr tank circuit. This deturing effect increases with increasing coupling, but is usually not serious. However, the amplifier tuning must be adjusted to resonance, as indicated by the plate-current dip, each time the coupling is changed.

Tuned Coupling

The design difficulties of using "untuned" pickup coils, mentioned above, can be avoided by using a coupling circuit tuned to the operating frequency. This contributes additional selectivity as well, and hence aids in the suppression of spurious rađiations.

If the line is flat the input impedance will be essentially resistive and equal to the Z_{0} of the linc. With coaxial cable, a circuit of reasonable Q can be obtained with practicable values of inductance and capacitance connccted in series with the line's input terminals. Suitable circuits are given in Fig. $6-26$ at B and C. The Q of the coupling circuit often may be as low as 2, without running into difficulty in getting adequate coupling to a tank circuit of proper design. Larger values of Q can be used and will result in increased ease of coupling, but as the Q is increased the frequency range over which the circuit will operate without readjustment becomes smaller. It is usually good practice, therefore, to use a couspling-circuit Q just low enough to permit operation, over as much of a band as is normally used for a particular type of communication, without requiring retuning.

Capacitance values for a Q of 2 and line impedances of 52 and 75 ohms are given in the accompanying table. These are the maximum values that should be used. The inductance in the circuit should be adjusted to give resonance at the

PI NETWORK

Fig. 6-27 - Pi and $\mathrm{pi}-\mathrm{L}$ outpurcoupling networks.
operating frequency. If the link coil used for a particular band does not have enough inductance to resonate, the additional inductance may be connected in series as shown in Fig. 6-26C.

Characteristics

In practice, the amount of inductance in the circuit should be chosen so that, with somewhat loose coupling between L1 and the amplifier tank coil, the amplifier plate current will increase when the variable capacitor, Cl , is tuned through the value of capacitance given by the table. The coupling between the two coils should then be increased until the amplifier loads nomally, without changing the setting of C1. If the transmission line is flat over the entire frequency band under consideration, it should not be necessary to readjust Cl when changing frequency. if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some readjustment of Cl may be needed to compensate for changes in the input impedance of the line. If the input impedance variations are not large, Cl may be used as a loading control, no changes in tho coupling between L1 and the tank coil being necessary.

The degree of coupling between L1 and the amplifier tank coil will depend on the coupling-
circuit Q. With a Q of 2 , the coupling should be tight - comparable with the coupling that is typical of "fixed-link" manufactured coils. Wift a swinging link it may be necessary to increase the Q of the coupling circuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

PI AND PI-L OUTPUT TANKS

A pi-section and pi-L tank circuit may also be used in coupling to an antenna or transmission line, as shown in Fig. 6-27. The optimure values of capacitance and inductance are dependent upon values of amplifier power input and output load resistance.

Values for L and C may be taken directly from the charts of Fig. 6-28 if the output load resistance is the usual 52 ohms. It should be bome in mind that these values apply only where the output load is resistive, i.c., where the antenna and line have been matched. Fig. 6-28 and 6-28A were provided by W6FFC.

Output-Capacitor Ratings

The voltage rating of the output capacitor will depend upon the SWR. If the load is resistive, receiving-type air capacitors should be adequate for amplifier input powers up to 2 kW PEP when

Cl	TUBE LOADIMPEDANCE (OPERATING Q1									
	MHz	15004121	20000121	$3500412)$	3000 121	3500\%12)	4000, 121	50001131	$6000(141$	8000 161
	3.5	420	315	252	210	180	[57	126	114	99
	7	190	143	114	95	82	31	57	52	45
	14	93	70	56	47	40	35	2B	25	22
	21	62	47	37	31	27	23	19	17	15
	28	43	32	26	21	18	16	13	12	10
C2	3.5	2117	1776	1536	1352	1203	1079	875	862	862
	7	942	783	670	583	512	451	348	341	341
	14	460	382	326	283	247	217	165	162	162
	21	305	253	216	187	164	144	1 n 9	107	107
	28	210	174	148	128	111	97	72	70	70
L 1	3.5	5.73	7.46	9.17	10.86	12.53	14.19	17.48	19.18	21.98
	7	3.14	4.19	5.03	5.95	6.86	7.77	9.55	10.48	12.02
	14	1.60	2.08	2.56	3.03	3.49	3.95	4.85	5.33	6.11
	21	1.07	1.39	1.71	2.02	2.34	2.64	3.25	3.56	4.09
	28	0.77	1.01	1.24	1.46	1.69	1.91	2.34	2.37	2.95

	TUBE LOAD IMPEDANCE (OPERATING @)									
	M ${ }_{\text {z }}$	15000121	2000412)	250013 21	3000(12)	3500112)	4000(12)	5000(12)	6000112	S000112)
C3	3.5	406	305	244	203	174	152	122	102	76
	7	188	141°	113	94	81	71	56	47	35
	14	92	69	55	46	40	35	28	23	17
	21	62	46	37	31	26	23	18	15	12
	28	43	32	26	21	18	16	13	11	8
C4	3.5	998	859	764	693	638	593	523	472	397
	7	430	370	329	298	274	255	225	203	171
	14	208	179	159	14.4	133	123	109	98	83
	21	139	119	106	98	89	82	73	65	55
	28	95	81	72	68	60	56	50	45	38
L2	3.5	7.06	9.05	10.99	12.90	14.79	16.67	20.37	24.03	31.25
	7	3.49	4.97	6.03	7.07	8.10	9.12	11.13	13.11	17.02
		1.99	2.54	3.08	3.61	4.13	4.65	5.68	6.69	8.68
	21	1.33	1.69	2.05	2.41	2.76	3.10	3.78	4.46	5.78
	28	0.96	1.22	1.48	1.74	1.99	2.24	2.73	3.12	4.17
L3	3.5	4.45	4.45	4.45	4.45	4.45	4.45	4.45	4.45	4.45
	7	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44
	14	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.14
	21	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
	28	6.50	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60

Fig. 6-28 - Chart to determine the values of L and C needed for a pi (A) and pi-L (B) network $s 0$ match a range of input impedances to a 50 -ohm load.

R1	F	Cl	LI	C2	R2	Q	RI	F	Cl	LI	C2	R2	Q
Ohms	MHz	pF	μH	pF	Ohms	Qual.	Ohms	M Hz	pF	$\mu \mathrm{H}$	pF Ohms Qual.		
so	3.5	2600	0.94	4153	10	2.9	125	3.5	839	3.19	1124	50	2.3
50	7.0	1179	0.49	1678	10	2.6	125	7.0	381	1.67	488	50	2.1
S0	14.0	579	0.25	801	10	2.5	125	14.0	187	0.84	237	50	2.1
50	21.0	384	0.16	528	10	2.5	125	21.0	124	0.56	157	50	2.0
50	29.7	266	0.12	351	10	2.5	125	29.7	86	0.40	107	50	2.0
50	3.5	2098	1.27	2811	20	2.3	150	3.5	699	3.62	957	50	2.3
50	7.0	952	0.67	1220	20	2.1	150	7.0	317	1.89	405	50	2.1
so	14.0	467	0.34	593	20	2.1	150	14.0	156	0.95	196	50	2.1
50	21.0	310	0.23	393	20	2.0	150	21.0	103	0.64	129	50	2.0
50	29.7	214	0.16	268	20	2.0	150	29.7	71	0.45	88	50	2.0
50	3.5	2098	1.43	2533	30	2.3	175	3.5	599	4.03	816	50	2.3
50	7.0	952	0.76	1131	30	2.1	175	7.0	272	2.09	333	50	2.1
50	14.0	467	0.38	553	30	2.1	175	14.0	133	1.05	159	50	2.1
50	21.0	310	0.26	367	30	2.0	175	21.0	89	0.70	105	50	2.0
50	29.7	214	0.18	253	30	2.0	175	29.7	61	0.50	70	50	2.0
50	3.5	2098	1.55	2290	40	2.3	200	3.5	569	4.26	822	50	2.5
50	7.0	952	0.83	1033	40	2.1	200	7.0	258	2.22	334	50	2.3
50	14.0	467	0.42	506	40	2.1	200	14.0	127	1.12	160	50	2.2
50	21.0	310	0.28	336	40	2.0	200	21.0	84	0.74	105	50	2.2
50	29.7	214	0.20	232	40	2.0	200	29.7	58	0.53	70	50	2.2
50	3.5	2098	1.66	2098	50	2.3	225	3.5	543	4.48	827	50	2.7
50	7.0	952	0.88	952	50	2.1	225	7.0	246	2.34	335	50	2.4
So	14.0	467	0.45	467	50	2.1	225	14.0	121	1.18	160	50	2.4
50	21.0	310	0.30	310	50	2.0	225	21.0	80	0.79	106	50	2.4
50	29.7	214	0.21	214	50	2.0	225	29.7	55	0.56	70	50	2.3
50	3.5	2098	1.66	2098	50	2.3	250	3.5	520	4.68	831	50	2.9
50	7.0	952	0.88	952	50	2.1	250	7.0	236	2.45	336	50	2.6
50	14.0	467	0.45	467	50	2.1	250	14.0	116	1.23	160	50	2.5
50	21.0	310	0.30	310	50	2.0	250	21.0	77	0.82	106	50	2.5
50	29.7	214	0.21	214	50	2.0	250	29.7	53	0.59	70	50	2.5
75	3.5	1399	2.21	1630	50	2.3	275	3.5	499	4.86	834	so	3.0
75	7.0	634	1.17	731	50	2.1	275	7.0	227	2.56	336	50	2.7
75	14.0	311	0.59	358	50	2.1	275	14.0	111	1.29	160	so	2.7
75	21.0	207	0.40	238	50	2.0	275	21.0	74	0.86	106	50	2.7
75	29.7	143	0.28	164	50	2.0	275	29.7	51	0.61	70	50	2.6
100	3.5	1049	2.72	1337	50	2.3	300	3.5	481	5.04	836	50	3.2
100	7.0	476	1.43	591	so	2.1	300	7.0	218	2.66	337	50	2.9
100	14.0	234	0.72	288	50	2.1	300	14.0	107	1.34	160	50	2.8
100	21.0	155	0.48	191	so	2.0	300	21.0	71	0.89	106	50	2.8
100	29.7	107	0.35	131	50	2.0	300	29.7	49	0.64	70	50	2.8

Fig. 6.28A - The following dara is for a pi network with a Q of 2 at the top of each band. The Q shown is that for the same inductor at the bottom of the band. The capacitors are shown for the bottom of the band to indicate the maximum capecitance needed. If the transformation ratio exceeds 70 percent of maximum, the Q has been automatically recalculated in order to retain the characteristics of a pi network and that new value shown. Do not lorget which end of the network represents 50 ohms!
feeding 52-75-ohm loads. In obtaining the larger capacitances required for the lower frequencies, it is common practice to switch one or more fixed capacitors in parallel with the vuriable air capacitor. While the voltage rating of a mica or coramic capacitor may not be exceeded in a particluar case. capacitors of thesc types are limited in current-carrying capacity. Postage-stamp silver-mica capacitors should be adequate for amplifies inputs over the range from about 70 watts at 28 MHz to 400 watts at 14 MHz and lower. The larger mica capacitors (CM-45 case) having voltage ratings of 1200 and 2500 volts are usually satisfactory for inputs varying from about 350 watts at 28 MHz to 1 kW at 14 MHz and lower. Because of these current limitations. particularly at the higher frequencies, it is advisable to use as large an air capacitor as practicabic, using
the micas only at the lower frequencies. Broad-cast-receiver replacement-type capacitors can be obtained reasunably. Their voltage insulation should be adequate for inputs of 1000 watts or more.

TRANSISTOR OUTPUT CIRCUITS

Since rf power transistors have a low output impedance (on the order of 5 ohms or less), the problem of coupling the transistor to the usual 50 -ohm load is the reverse of the problem with a vacuum-tube amplificr. The 50 -ohm load must be transformed to a low rexistance.

Figs 6-29A and B show two types of parallel-tuned circuits used to couple the load to the collector circuit. The collector is tapped down on the inductor in boll cases. Cl provides tuning

Fig. 6-29 - Typical transistor output-matching networks.
for the collector and C2 adjusts the coupling to the load to achieve the proper impedance transformation. The use of the tapped connection to the inductor helps to maintain the loaded Q of the circuit while minimizing variations in tuning with changes in the junction capacitance of the transistor.

Circuits of Figs. 6-29C through E are not dependent upon coupling coefficient of a tapped coil for load-impedance transformation, making thern more suitable for use at hf than cither A or B. The collector-emitter capacitance (C_{0}) of the transistor is a major factor in the calculations used to design these circuits. Unfortunately C_{0} is not constant, so cut-and-try adjustments are usually necessary to optimize a particular circuit.

Early tests of transistor of power amplifiers should be made with low voltage, a dummy load and no drive. Some form of output indicator should be included. When it has been established that no instability exists, the drive can be applied in increments and adjustment made for maximum output. The amplifier should never be operated at high voltage and no load.

BROADBAND COUPLING

The techniques of broadband-transformer construction use transmission-line elements. A transformer consists of a short transmission line (one-eighth wavelength or less) made from a twisted-wire pair, coaxial or strip line, wound on a high-permeability toroid core to improve the low-frequency characteristics. At vhf the core may be omitted. Only discrete impedance transformations are possible; typical ratios are 9/4:1, 4:1,9:1, 16:1, and 25:1. The higher ratios are difficult to achicve in practice, so several 4:1 transformers are employed for a large transformation ratio as shown in Fig. 6-23. Hybrid transformers, providing the 180 -degree phase shift for input and output matching to push-pull stages, may also be made using broadband techniques.

Large toroid cores are not required for moderate power levels. A one-half inch diameter core is sufficient for operation at 100 watts at the low impedance levels found in transistor circuits. Becauxe the current is high it is important to keep the resistance of the conductors low. Multiconductor leads (3 or 4 strands of No. 26 enam., twisted) or the flat enam. strip used for transformer windings) are suitable. Some typical designs are shown in Table 6-II.

STABILIZING AMPLIFIERS

A straight amplifier operates with its input and output circuits tured to the same frequency. Therefore, unless the coupling between these two circuits is brought to the necessary minimum, the amplifier will oscillate as a tuned-plate tuned-grid circuit. Care should be used in arranging components and wiring of the two circuits so that
(E)

$$
\operatorname{FOR} \frac{Q_{L} X_{c o}}{\sqrt{R_{1} R 2}}>1
$$

$$
\text { (4) } X_{C 2}=\frac{R_{2}}{Q_{L}}\left[\frac{Q_{L} X_{c o}}{\sqrt{R_{1} R_{2}}-1}\right]
$$

there will be negligible opportunity for coupling external to the tube or transistor itself. Complete shielding between input and output circuits usually is required. All rf leads should be kept as short as possible and particular attention should be paid to the rf return paths from input and output tank circuits to emitter or cathode. In general, the best arrangement using a tube is one in which the cathode connection to ground, and the plate tank circuit are on the same side of the chassis or other shielding. The "hot" lead from the input tank (or driver plate tank) should be brought to the socket through a hole in the shielding. Then when the grid tank capacitor or bypass is grounded, a return path through the hole to cathode will be encouraged, since transmission-line characteristics are simulated.

A check on external coupling between input and output circuits can be made with a sensitive indicating device, such as the wavemeter shown in the Measurements chapter. The amplifying device is removed. With the driver stage running and tuned to resonance, the indicator should be coupled to the output tank coil and the output tank capacitor tuned for any indication of rf fcedthrough. Experiment with shielding and rearrangement of parts will show whether the isolation can be improved. For additional information on transistor circuits see Chapter 4.

Screen-Grid Tube Neutralizing Circuits

The plate-grid capacitance of screen-grid tubes is reduced to a fraction of a picofarad by the interposed grounded screen. Nevertheless, the power scnsitivity of these tubes is so great that only a very small amount of feedback is necessary to start oscillation. To assure a stable amplifier, it is usually necessary to load the grid circuit, or to use a ncutralizing circuit.

The capacitive neutralizing system for screengrid tubes is shown in Fig. 6-30A. Cl is the neutralizing capacitor. The capacitance should be chosen so that at some adjustment of C 1 ,

$\frac{C 1}{C 3}=\frac{\text { Tube grid-plate capacitance (or } \mathrm{Cmo})}{\text { Tube input capacitance (or }}$
 Tube input capacitance (or $C_{\text {IN }}$)

The grid-cathode capacitance must include all strays directly across the tube capacitance, including the capacitance of the tuning-capacitor stator to ground. This may amount to 5 to 20 pF . In the case of capacitance coupling, the output capacitance of the driver tube must be added to the grid-cathode capacitance of the amplifier is arriving at the value of Cl .

Neutralizing a Screen-Grid Amplifier Stage

There arc two general procedures available for indicating neutralization in a screen-grid amplifier stage. If the screen-grid tube is operated with or without grid current, a sensitive output indicator

(C)

Table 6-11 - Basic broadband balun transformers. Bifilar windings are six to ten turns, depending on the ferrite-core permeability. A suitable ferrite material is Q1 with a permeability of 125 . Very small size cores (1/4-to 3/4-inch OD) may be used for receiving and law-power applications. For full-power applications a $2-1 / 2$-inch OD Q1 core with $1 / 2$-inch cross section wound with No. 14 Formex copper wire, seven turns per winding, is recommended.
can be used. If the screen-grid tube is operated with grid current, the grid-current reading can be used as an indication of neutralization. When the output indicator is used, both screen and plate voltages must be removed from the tubes, but the dc circuits from the plate and screen to cathode must be completed. If the grid-current reading is used, the plate voltage may remain on but the screen voltage must be zero, with the dc circuit completed between screen and cathode.

The immediate objective of the neutralizing process is reducing to a minimum the rf driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tubc. This is done by adjusting carefully, bit by bit, the neutralizing capacitor or link coils until an rf indicator in the output circuit reads minimum, or the reaction of the unloaded plate-circuit tuning on the grid-current value is minimized.

The wavementer shown in the Measurements chapter makes a sensitive neutralizing indicator. The wavemeter coil should be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is loose enough at all times to prevent buring out the meter or the rectifier. The plate tank capacitor should be readjusted for maximum reading after each change in neutralizing.

When the grid-current meter is used as a ncutralizing indicator, the screen should be grounded for rf and dc, as mentioned above. There will be a change in grid current as the unloaded plate tank circuit is tuned through resonance. The neutralizing capacitor (or inductor) should be adjusted until this deflection is brought to a minimum. As a final adjustment, screen voltage should be returned and the neutralizing adjustment continued to the point where minimum plate current, maximum grid current and maximum screen current occur simultaneously. An increase in grid current when the plate tank circuit is tuned slightly on the high-frequency side of resonance indicates that the neutralizing capacitance is too small. If the increase is on the low-frequency side, the neutralizing capacitance is too large. When neutralization is complete, there should be a slight decrease in grid current on either side of resonance.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power capability to spare. Loading by tapping the grid down on the grid tank coil (or the plate tank coil of the driver in the case of capacitive coupling), or by a resistor from grid to cathode is effective in stabilizing an amplifier.

VHF Parasitic Oscillation

Parasitic oscillation in the vhf range will take place in almost every rई power amplifier. To test for vhf parasitic oscillation, the grid tank coil (or driver tank coil in the case of capacitive coupling) should be short-circuited with a clip lead. This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in identifying the parasitic. Any fixed bias should
be replaced with a grid leak of 10,000 to 20,000 ohms. All load on the output of the amplifier should be disconnected. Plate and screen voltages should be reduced to the point where the rated dissipation is not exceeded. If a Variac is not available, voltage may be reduced by a 117 -volt lamp in series with the primary of the plate transformer.

With power applied only to the amplifier under test, a search should be made by adjusting the input capacitor to several settings, including minimum and maximum, and tuming the plate capacitor through its range for each of the grid-capacitor settings. Any grid current, or any dip or flicker in plate current at any point, indicates oscillation. This can be confirmed by an indicating absorption wavemeter tuned to the frequency of the parasitic and held close to the plate lead of the tube.

The heavy lines of Fig. 6-30B show the usual parasitic tank circuit, which resonates, in most cases, between 100 and 200 MHz . For each type of tetrode, there is a region, usually below the parasitic frequency, in which the tube will be sclf-neutralized. By adding the right amount of inductance to the parasitic circuit, its resonant frequency can be brought down to the frequency at which the tube is self-neutralized. However, the resonant frequency should not be brought down so low that it falls close to TV Channel $6(88 \mathrm{MHz})$. From the consideration of TVI, the circuit may be loaded down to a frequency not lower than 100 MHz . If the self-neutralizing frequency is below 100 MHz , the circuit should be loaded down to somewhere between 100 and 120 MHz with inductance. Then the parasitic can be suppressed by loading with resistance. A coil of 4 or 5 turns, $1 / 4$ inch in diameter, is a good starting size. With the tank capacitor tumed to maximum capacitance, the circuit should be checked with a GDO to make sure the resonance is above 100 MHz . Then, with the shortest possible leads, a noninductive 100 -ohm 1 -watt resistor should be connected across the entire coil. The amplifier should be tuned up to its highest-frequency band and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be increased until the resistor begins to feel warm after several minutes of operation, and the power input noted. This input should be compared with the normal input and the power rating of the resistor increased by this proportion; i.e., if the power is half normal, the wattage rating should be doubled. This increase is best made by connecting 1 -watt carbon resistors in parallel to give a resultant of about 100 ohms. Or, one of the Gobar surge-protection resistors may be used. As power input is increased, the parasitic may start up again, so power should be applied only momentarily until it is made certain that the parasitic is still suppressed. If the parasitic starts up again when voltage is raised, the tap must be moved to include more turns. So long as the parasitic is suppressed, the resistors will heat up only from the operating-frequency current. In grounded-grid

Fig. 6-31 - Metering circuits for (A) tubes and (B) transistors. To measure current, connect a meter at the point shown in series with the lead. For voltage measurements, connect the meter from the point indicated to the common or ground connection.
circuits it is useful to locate the parasitic suppressor in the cathode lcad, as the rf power level is less than at the plate terminal.

Since the resistor can be placed across only that portion of the parasitic circuit represented by L_{p}, the latter should form as large a portion of the circuit as possible. Therefore, the tank and bypass capacitors should have the lowest possible inductance and the leads shown in heavy lines should be as short as possible and of the heaviest pratical conductor. This will permit L_{p} to be of maximum size without tuning the circuit below the $100-\mathrm{MHz}$ limit.

Another arrangement that has been used successfully in transistor and low-level tube stages is to place one or more ferrite beads over the input or output leads, as close as possible to the amplifying device. The beads have sufficient low-Q inductance at vhf to discourage any tendency toward parasitic oscillation.

Low-Frequency Parasitic Oscillation

The screening of most transmitting screen-grid tubes is sufficient to prevent low-frequency parasitic oscillation caused by resonant circuits set up by if chokes in grid and plate circuits. When of chokes are used in both grid and plate circuits of a triode amplifier, the split-stator tank capacitors combine with the rf chokes to form a low-frequency parasitic circuit, unless the amplifier circuit is arranged to prevent it. Often, a resistor is substituted for the grid rf choke, which will produce the desired result. This resistance should be at least 100 ohms. If any grid-lcak resistance is used for biasing, it should be substituted for the 100 -ohm resistor.

Transistor LF Parasitics

Using transistors with shunt feed often means low-frequency parasitic trouble. A word about this problem is in order as it usually doesn't occur in vacuum-tube circuits and is often a rough problem for the newcomer to solid statc. These parasitics manifest themsclves as a wide spectrum of white noise (hash) around and below the operating frequency. They can often be heard on a broadcast receiver several feet away from a transmitter under test. The desired signal may sound clean, so it is necessary to check far below the operating
frequency. Two transistor characteristics combine to cause this trouble. First, transistors have higher gain at lower frequencies than they do at hf. Second, interclement capacitances vary over a wide range of changes in voltage, the result being varactor action that causes spurious outputs. The best way to avoid the problem is to usc a minimum of inductance in the collector circuit. Large chokes are unsatisfactory. Series feed is a gaod answer as no choke is needed. Bypass capacitors should be the minimum value retjuired. Decoupling on power leads between stages should have at least two capacitors, one effective at the operating frequency and a second large capacitor that is good at low frequencies.

METERING

Fig. 6-31 shows how a voltmeter and milliammeter should be connected to read various voltages and currents. Voltmeters are seldom installed permanently, since their principal use is in preliminary checking. Also, milliammeters are not normally installed permanently in all of the positions shown. Those most often used are the oncs reading grid current and plate current, or grid current and cathode current, or collector current.

Milliammeters come in various current ranges. Current values to be expected can be taken from the tube tables and the meter ranges selected accordingly. To take care of normal overloads and pointer swing, a meter having a current range of about twice the normal current to be expected should be selected.

Grid-current meters connected as shown in Fig. 6-31 and meters connected in the cathode ciscuit need no special precautions in mounting on the transmitter panel so far as safety is concemed. However, milliammeters having metal zero-adjusting screws on the face of the meter should be recessed behind the panel so that accidental contact with the adjusting screw is not possible, if the meter is connected in any of the other positions shown in Fig. 6-31. The meter can be mounted on a small subpanel attached to the front panel with long screws and spacers. The meter opening should be covered with glass or celluloid. Illuminated meters make reading easier. Reference should also be made to the TVI chapter of this Handbook in regard to wiring and shielding of meters to suppress TVI.

COMPONENT RATINGS

Output Tank Capacitor Voltage

In selecting a tank capacitor with a spacing between plates sufficient to prevent voltage breakdown, the peak if voltage across a tank circuit under load, but without modulation, may be taken conservatively as cqual to the de plate or collector voltage. If the de supply voltage also appears across the tank capacitor, this must be added to the peak rf voltage, making the total peak voltage twice the de supply voltage. If the amplificr is to be plate-modulated, this last value must be doubled to make it four times the de plate voltage, because both dc and of voltages double with 100 -percent amplitude modulation. At the higher voltages, it is desirable to choose a tank circuit in which the de and modulation voltages do not appear across the tank capacitor, to permit the use of a smaller capacitor with less plate spacing.

Capacitor manufacturers usually rate their products in terms of the peak voltage between plates. Typical plate spacings are shown in the following table, 6-III.

Output tank capacitors should be mounted as close to the tube as temperature considerations will permit, to make possible the shortest capacitive path from plate to cathode. Especially at the higher frequencies where minimum circuit capacitance becomes important, the capacitor should be mounted with its stator plates well spaced from the chassis or other shielding. In circuits where the rotor must be insulated from ground, the capacitor should be mounted on ceramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of safety to the operator - a well-insulated coupling should be used between the capacitor shaft and the dial. The section of the shaft atrached to the dial should be well grounded. This can be done conveniently through tle use of panel shaft-bearing units.

Table 6-III
Typical Tank-Capacitor Plate Spacings

Sypical Tank-Capacitor Pate Spacings					
Spacirg	Peak	Spacing	Peak	Spacing	Peak
(In.)	Volfage	(In.)	Volfage	(In.)	Volrage
0.015	1000	0.07	3000	0.175	7000
0.02	1200	0.08	3500	0.25	9000
0.03	1500	0.125	4500	0.35	11000
0.05	2000	0.15	6000	0.5	13000

Tank Coils

Tank coils should be mounted at least their diameter away from shielding to prevent a marked loss in Q. Except perhaps at 28 MHz it is not important that the coil be mounted quite close to the tank capacitor. Leads up to 6 or 8 inches are permissible. It is more important to keep the tank capacitor as well as other components out of the immediate field of the coil. For this reason, it is preferable to mount the coil so that its axis is parallel to the capacitor shaft, either alongside the capacilor or above it.

Wire Sizes for Transmitting Coils for Tube Transmitters		
Power Input (Wotts)	Band (MHz)	Wire Size
1000	$\begin{aligned} & 28-21 \\ & 14-7 \end{aligned}$	$\begin{array}{r} 6 \\ +\quad 8 \end{array}$
	3.5-1.8	10
500	28-21	8
	14-7	12
	3.5-1.8	14
150	28-21	12
	14-7	14
	3.5-1.8	18
75	28-21	14
	14-7	18
	3.5-8.8	22
25 or less*	28-21	18
	14-7	24
	3.5-1.8	28
- Wire size limited pancipally by conslderation of Q.		

There are many factors that must be taken into consideration in determining the size of wire that should be used in winding a tank coil. The considerations of form factor and wire size that will produce a coil of minimum loss are often of less importance in practice than the coil size that will fit into available space or that will handle the required power without excessive heating. This is particularly true in the case of screen-grid tubes where the relatively small driving power required can be easily obtained even if the losses in the driver are quite high. It may be considered preferable to take the power loss if the physical size of the exciter can be kept down by making the coils small.

Transistor output circuits operate at relatively low impedances because the current is quite high. Coils should be made of heavy wire or strap, with connections made for the lowest possible resistance. At vhf stripline techniques are often employed, as the small inductance values required for a lumped inductance become difficult to fabricate.

RF Chokes

The characteristics of any rf choke will vary with frequency, from characteristics resembling those of a parallel-resonant circuit, of high impedance, to those of a series-resonant circuit, where the impedance is lowest. In between these extremes, the choke will show varying amounts of inductive or capacitive reactance.

In series-feed circuits, these characteristics are of relatively small importance because the if voltage across the choke is negligible. In a parallel-feed circuit, however, the choke is shunted across the tank circuit, and is subject to the full tank rf voltage. If the choke does not present a sufficiently high impedance, enough power will be abosrbed by the choke to cause it to bum out

To avoid this, the choke must have a sufficiently high reactance to be effective at the lowest frequency, and yet have no series resonances near the higher-frequency bands.

THE K1ZJH SOLID-STATE TRANSCEIVER

Construction details for an all-band solid-state transcejver are presented here for the more adventurous builders. Beginners are not encouraged to attempt duplicating the circuits of this advanced project. Printed-circuit templates or layouts are not available. The transceiver has many features making it suited to fit a variety of amatcur needs. Five-hundred kHz coverage of the $80-, 40-20$ and 15 -meter bands is provided, as well as 500 kHz of the 10 -meter band (28.5 to 29.0 MHz). Cw (peak ssb) power output is, 20 watts on 80,40 and 20 meters, dropping to a maximum of 9 watts on 10 meters. Cw operation was included, and the ssb VOX circuit is combined with the cw sidetonc generator to allow semi-break-in operation. Wherever possible, FET and IC circuitry was employed.

In keeping with the state-of-the art, an clectranic dial, or frequency counter, accurately counts and displays the operating frequency of the transcejver. Becausc the counter defives its final count as a product of the oscillators and the BFO, it will be as accurate as its time basc allows. A more detailed description of counter operation will be given later.

Because portability was desired. the complete transcejver, including speaker and power supply. was assembled in an LMB CO-1 enclosure. Although the author's unit (KIZ3H) was built for operation at 117 volts, the 14.5 -volt circuitry makes battery operation possible.

Design Notes

Without a doubt one of the larger problems plaguing the designer of a multiband transceiver is the generation of the local oscillator signal. One approach is to switch bands with the VFO, hoping it will remain stable over wide ranges of operating parameters. Other alternatives are a multiconversion arrangement involving the use of a combination of i-f ranges, of using a premixing scheme which directly synthesizes the mixer in jection by combining the VFO with other oscillators. Single conversion and one VFO range (the premixing method) is used here.

The use of the popular $5-$ to $5.5-\mathrm{MHz} \mathrm{VFO}$ and $9-\mathrm{MHz}$ i-f allows 80 - and 20 -meter coverage to be produced without premixing. Forty-meter operation is accomplished by premixing the $5-\mathrm{MHz}$ VI:O outpul with the $21.5-\mathrm{MHz}$ heterodyne oscillator to generate a mixer injection signal at 16.5 to 16.0 MHz . When combined with $9 \mathrm{MHz}, 40$-meter operation is obtained. The remaining bands, 10 and 15 meters, are produced with a $25-\mathrm{MHz}$ HFO. On 15 meters, the VFO is mixed with the $25-\mathrm{MHz}$ HFO to produce a 30.0 to $30.5-\mathrm{MHz}$ premixer output. When mixed with the $9-\mathrm{MHz}$ i-f, the result is the 21.0 to $21.5-\mathrm{MHz}$ amateur band. For 10 meters, the VFO is mixed with the $25-\mathrm{MHz}$ HFO, and the 20.0 to $19.5-\mathrm{MHz}$ product is selected from the premixer output. Combined with the $9-\mathrm{MHz}$ $\mathrm{i}-\mathrm{f}$, coverage of the 29 to $28.5-\mathrm{MHz}$ portion of the 10 -meter band is provided. This premixing scheme produces a few minor operational quirks. Sideband inversion or VFO tuning inversion occurs on some bands because of down conversion in one of the mixer stages. For this reason, the sideband positions on the mode switch are marked A and B . The variable up or down premixing conversion does not make it practical to offset the VFO to compensate for changes in frequency when sidebands are changed. This would result in an error of a few kHz when using a mechanical dial arrangement, but the counter quickly displays the new frequency. The counter is programmed to correct for VFO tuning inversion on those bands where it occurs.

The VFO and HFO

An MPF-102 JFET Colpitts oscillator is the heart of the VFO. The gate of the MPF-102 is diode clamped to minimize harmonic gereration on positive voltage peaks. Two transistor buffer stages follow to reduce the effects of loading and to provide an amplified low-impedance VFO outpus. Receiver offset tuning which is provided by a diode across the main-tuning capacitor allows up to a $3-\mathrm{kHz}$ offset during receive. Voltage for the MPF-102 is regulated. The Zener will dissipate heat and should not be located in close proximity to frequency determining components. Main-tuning capacitor, Cl , is a rather costly item and was used because one was made available for this project; it is one of the better capacitors available for VFO service. The large value of fixed-input capacitance associated with the Colpitts oscillator swamped Cl and it was not possible to obiain full $500-\mathrm{kHz}$ VFO sange with the $L C$ ratio. $L 2$ serves to expand the frequency coverage available with the $35-\mathrm{pF}$ capacitor to a little over 500 kHz . The VFO tuning range should be adjusted to give about 20 kHz of overlap on band edges. The slug of Ll will largely determine total VFO spread, and trimmer capacitor $\mathrm{C}_{a}(45 \mathrm{pF}$ across Cl) is used to set the VIFO frequency. Both adjustments will interact.

Block diagram for the K1ZJH transceiver. The counspr circuit is not included.

The VFO circuit board and associated VFO components were mounted on a $1 / 8$-inch thick aluminum plate for mechanical rigidity. The gear drive mechanism (not available commercially) has a gear ratio of $16: 1$ providing about 33 kHz per dial revolution. This is about the fastest tuning rate desirable for comfortable tuning of ssb signals.

The internal speaker is located within the VFO enclosure (just below the VOX amplifier). This is a compromise necessitated because of tight cabinet space. Fortunately the VFO is not microphonic, and when possible, a larger and better sounding external speaker is used. The photographs reveal the counter board which is located directly beneath the VFO. During operation, the components on this board get warm and radiate considerable heat. However, after about a 15 -minute warm-up period, thermal equilibrium is reached. and VFO drift stabilizes to less than 100 Hz per hour.

Polystyrene capacitors should be used where indicated. These have a better tolerance to temperature variations (either from external sources or internal of heating) than their silver mica counterparts. Mica capacitors can become leaky with age because of dielectric deterioration, a bane to stable VFO operation. Drifting can be reduced by selecting the " $\mathrm{N}^{\prime \prime}$ coefficient of trimmer C_{a}. An N-500 capacitor was optimum compensation for this unit.

Any harmonics generated in the VFO buffer stages are reduced in a half-wave filter. The VFO output level is adjustable by a $500-0 \mathrm{hm}$ composition trimmer, and should be set for 100 millivolts peak to peak to supply proper injection levels for the MC1496 mixers. On 20 and 80 meters, the VFO directly feeds the MC1496 balanced mixer. On 10 , 15 and 40 meters, the VFO output is premixed with one of the HFO oscillators in the MCI496 premixer to produce the appropriate injection range for the mixer.

The HFO oscillators are used only on 40,15 and 10 meters. Oniy one HFO oscillator is active ai any one time; the operating voltage for the appropriate HFO is supplied through band-switch section nine. On 40 meters, the $21.5-\mathrm{MHz}$ oscillator is active, while on 15 and 10 meters the $25-\mathrm{MHz}$ oscillator is used. Except for the operating frequency, both oscillator circuits are identical. The HFO circuit board is mounted on the rear VFO partition. The crystals used in the HFO are inexpensive, general purpose (third overtone) types supplicd by International Crystals.

The HFO Premixer and Preselector

The doubly-balanced design gives adequate isolation of the input signals and only one tuned

Fig. 1 - Circuit diagram for the transceiver VFO. HFO, and mixer.
C1 - 35pF variable (Millen 28035MKBB or equiv.).
L1 - 24 turns No. 26 enam. on 1/2-inch ceramic form tuned with a red slug.
L2 - 9 iums No. 20 enam. an T-50-2 core.
L3, L5 - 18 iurns No. 24 enam. on T-50-2 toroid core.
L4, L6 - 2 turns No. 24 enam. over L3 and L5 respectively.
L7-19 tums No. 24 enam. on T-50-2 toroid core.
L8 - 2 turns No. 24 enam. over L7.
L9 - 9 turns No. 24 enam. on T-50-2 toroid core.
L10 - 2 turns No. 24 enam. over L9.
L11 - 14 tums No. 24 enam. on T-50-2 toroid core.
L12-2 turns No. 24 enam. over L11.
VRI - silicon, 1000 PRV, 1 A.
Y1 - 21.5 MHz third-overtone general-purpose.
Y2 - 25.0 MHz third-overtone general-purpose.
stage is needed for each premixer output. The necessary $500-\mathrm{kHz}$ pass band is easily obtained. Voltage for the premixer is supplied through band-switch section nine only on 40,15 and 10 meters. The premixer is mounted in the VFO enclosure on the partition shield parallel to the bandswitch. HFO injection measured on pin 8 of the MCI496 premixer should be to $\mathbf{7 0 0}$ millivolts p-p. VFO injection supplied to pin one should be in the area of 35 millivolts $\mathrm{p}-\mathrm{p}$; if not, the $130-\mathrm{pF}$ coupling capacitor can be changed accordingly. Injection levels to both MC1496 mixer stages are critical. When using higher injection levels spurious, raspy buzzsaw sounding signals will be heard randomly as the receiver is tuned across the bands. Motorola mentions likelihood of self oscillation when the devices are driven from a high-impedance source. Low-impedance drive sources are used in the transceiver. Careful regulation of the maximum mixer injection levels seems to be the best safeguard for stable MC1496 mixer operation.

Band-switch section five selects the correct premixer LC output network. These are mounted on the premixer pe board, and leads between the bandswitch and premixer should be short and direct. The low-impedance autputs are brought to band-switch section six in a braided shicid. Section six selects the proper injection signal for the receiver-transmitter mixer and the counter input shaping circuit.

The preselector circuitry is located near the front of the transceiver, adjacent to the VFO compartment. It is shielded on three sides by the front panel, a VFO compartment partition, and the rear partition separating the preselector and receiver-transmitter mixer compartments. The preselector circuit is fairly conventional using two MPF-102 FETs in cascade configuration. Gate bias is under alc/age control. Resistive loading of the 80 and 40 input links reduces excessive and unneeded gain on these two bands. Band-switch sections one, two. three and four are dedicated to preselector
coil switching. Section two should be shielded from section three to isolate the input and output stages of the preselector. The shield is grounded directly to the adjacent shield partition separating the VFO and preseloctor compartments. Shielding fabricated from thin copper flashing on the preselector pc board further isolates the input and output circuitry. The center shicld of the preselector tuning capacitor is grounded with a short section of braid to a pc board shield directly beneath it. The higher frequency coils were placed closest to the band switch permitting short lead lengths.

Both input and output impedances of the preselector are approximately $50-70$ ohms. Relays K1 and $K 2$ switch the preselector between the receiver and transmitter portions of the transceiver. The author acquired a handful of these miniature relays, and they are used in several areas of the transceiver to switch rf . The use of relay switching may seem archaic in a modern transceiver but these little relays are quiet, offer a good degree of switching isolation. readily switch low-impedance if with minimum loss, and are available surplus at reasonable prices. On receive, the presclector input comes from the antenna relay through a rf attenuator gain control. This method of gain control is not only effective, but does not affect the total dynamic agc range of the receiver. On 80 and 40 meters the gain and noise figure of the preselector is of little practical value and the rfegain control will likely be run with almost full attenuation on these bands to allow for good, strongesignal handling characteristics in the receiver. The preselector output in receive goes to the receivertransmitter mixer stage for conversion to the $9-\mathrm{MHz}$ receiver $\mathrm{i}-\mathrm{f}$. In transmit, the preselector input is switched to the receiver-transmitter mixer output. The preselector output, through an attenuator rf-drive-level control, goes to the transmitter power amplifier chain during transmit.

10-Meter Post Amplifier and Receiver-Transmitter Mixer

It was found that both the preselector and transmitter power chain suffered from a lack of pep on ten meters. To improve receiver and transmitter performance on 10 meters, a $28-\mathrm{MHz}$ post amplifier was incorporated. The post amplifier, a MFE-I 21 dual-gate MOSIEET, tike the presclector, is under alc/age control. Operating voltage is supplied to the post amplifier through band-switch section nine on ten meters. Powering the amplifier energizes relay K 2 placing the amplifier in line with the low-impedance output of the preselector. The three tuned stages of the post amplifier offer a large degree of selectivity and require careful stagger tuning to obtain uniform gain across the 10 -meter band. Stability of the amplifier was achieved by stagger tuning and by resistive loading of the input stage. Placement and shielding of the amplifier stage are critical.

One mixer does the necessary conversion functions for both the receiver and transmitter sections of the transceiver. Another Motorola MC1496 IC is

ased in the recciver-transmitter mixer, and the circuit is quite similar to the premixer stage. Like the preselector, miniature hermetic relays are used to switch the mixer between receive and transmit functions. Injection levels to the receivertransmitter mixer are critical. Ninety millivolts p-p should be measured at pin 4 of the MC1496 mixer.

In receive, the mixer output is matched to the 560 -ohm crystal-filter impedance with a pinetwork. During transmit, individual fixed-tuned pi networks for each of the five bands are selected by band-switch sections seven and eight to couple and match the receiver-transmitter mixer output to the preselector. The pi networks also offer selectivity and rejection to out-of-band signals.

Because individual wiring techniques and parts tolerances vary, the values for coils L24A-E and capacitors C12A-E are approximate. Ceramic or mica trimmers may be substituted for the fixed values specified for $\mathrm{Cl} 2 \mathrm{~A}-\mathrm{E}$. Note that these capacitors and toroidal coils L.24A-E were mounted on, and supported by, band-switch sections seven and eight.

I-F Crystal Filter

The Essel M9A filter is used with good results in the transceiver. Because the filter directly affects the receiver selectivity, transmitter bandwidth and carrier suppression, a good quality filter is mandatory. KVG, Swan and others offer ssb filters that would be suitable for use in this transceiver. Diode switching selects the proper filter paths for transmitter or receiver operation. Filter ports $R x a$ and Rxb are associated with the receiver; likewise, ports Txa and Txb are used with the transmitter circuitry. Modern eight-pole filters are capable of more than 100 dB of stop-band attenuation and if they are to be used to full advantage, care is required to maintain good isolation between filter ports.

The I-F Stages, Product Detector and AGC/ALC

The i-f stages, product detector and age/alc circuits are contained on one pc-board assembly. The iff stages are under alc/age control; agc voltage, applied to pin seven of the CA3028A i-f amplifiers varies, from two volts for minimum gain to 12 volts during periods of no agc action. The two i-f stages can produce over 50 dB of gain and, without adequate shielding and power supply decoupling between stages, instability can develop. Toroidal cores in the tuned i-f stages reduce the chance for unwanted interstage coupling. The turns ratio of input transformer L25-L26 performs impedance matching between the filter and i-f stages. Capacitive dividers perform impedance transformations between the j -f stages and to the product detector. The output of the last i-f stage is heavily loaded to prevent overdriving the product detector and to help stabilize the i-f stages. The MC1496 product detector has a dynamic range of 90 dB and a $12-\mathrm{dB}$ conversion gain. Output filtering is simplified as the double balanced design reduces the level of the i-f signal or BFO energy appearing in the output. Two hundred millivolts $\mathrm{p}-\mathrm{p}$ of BFO energy are

Fig. 3 - Circuit diagram for the transmitter power chain. See Table I for capacitor values.
CR1 - IN2154
K4-12 V dc, spdt.
L21A - 18 tums, No. 16 enam. on a T-80-2 core. Inductance is a $1.9 \mu \mathrm{H}$.
L218-15 turns, No. 16 enam. on a T-60-6 core. Inductance is $1.08 \mu \mathrm{H}$.
L21C - 10 zurns, No. 16 enam. on a T-60-6 core. Inductance is $0.57 \mu \mathrm{H}$.
L21D - 9 turns, No. 16 enam. on a T. 80.6 core. Inductance is $0.41 \mu \mathrm{H}$.
L21E - 8 turns. No. 16 enam. on a T-80-6 core. Inductance is $0.33 \mu \mathrm{H}$.
L22A - 16 turns, No. 16 enam. wound on a T-80-2 cors. Inductance is $1.46 \mu \mathrm{H}$. L22B - 13
turns, No. 16 enam. on a T-80-2 core. Inductance is $0.76 \mu \mathrm{H}$.
L22C - 9 tums, No. 16 enam. on a T-80.6 core. Inductance is $0.41 \mu \mathrm{H}$.
L22D - 8 tums, No. 16 enam. on a T-80-6 core. Inductance is $0.27 \mu \mathrm{H}$.
L22E - 7 tums, No. 16 enam. on a T-80-6 core. Inductance is $0.19 \mu \mathrm{H}$.
RFC1 - Six beads from Amidon.
RFC2, RFC3 - One bead from Amidon.
T1 - Primary 6 turns ct; secondary 2 turns ct. See text.
T2 - Primary 4 iurns ct; secondary 6 turns. See texi.
T3 - 26 turns. No. 30 enam. on 0.3 in. Q 1 type cose.
supplied to the product detector. Part of the i-f output is sampled and amplified by a CA3028 rf amplifier. The amplified j-f signal is detected in a diode voltage doubler, and the dc signal is fed to a cascaded de amplifier using a 2 N 3903 and a 2N3905 transistor. The 2N3905 controls the S meter and supplies the alc/agc control voltage. The agc/alc control bus is a common line, allowed by bilatcral stages common to both receiver and transmitter functions.

Two age ranges select fast or slow age characteristics. The one-mA \mathbf{S} meter, a small surplus movement. indicates relative received signal strengths and transmitter alc levels. In transmit. voltage is not supplied to the j-f stages, product detector or C.A3028 agc amplifier. The 2N3903 and 2 N3905 dc amplifiers remain active, and alc voltage developed in the PA is fed back to the de amplifiers for alc control voltage generation.

Audio Amplifier

A large variety of 1 C amplifiers is available that could be used in the audio stage of the transceiver. A Sprague 2277 was used as it was readily available at a nearby Radio Shack store. The RS-2277 is actually two two-watt rms amplifiers in one package and was intended for small stereo systems. It requires a minimum of external components and provides good gain. Only one section of the 2277 was used. It delivers slightly less than two watts with the 14.5 -volt supply. Large ground foil areas left on the pc board will provide a satisfactory heatsink for the IC. The amplifier runs continuously to allow sidetone monitoring for cw operation. The $1500-\mu \mathrm{F}$ capacitor from pin 14 of the 2277 is needed for decoupling and stable operation. The audio output will drive most low--impedance loads. CW selectivity is obtained through a simple bandpass audio filter built from $44-\mathrm{mH}$ telephone loading coils, and the $1000-\mathrm{Hz}$ filter is adequate for casual cw operation.

A sharper filter skirt may be obtained by removing the two 2700 -ohm resistors across the $44-\mathrm{ml}$ coils (at the expense of a noticeable increase is ringing). During cw operation, the
sidetone oscillator is active on keydown and is fed to the audio amplifier. The amplifier assembly is small and is located parallel to the front panel behind the audio-gain control.

The SSB Generator and Associated Circuits

The two sideband crystals are those supplied by the filter manufacturer and should be set to the frequencies recommended. Rather than using a third crystal for cw gencration, it is possible to pull the $9.0017-\mathrm{MHz}$ crystal within the filter passband with a diode-switched trimmer. For cw generation the BFO oscillator transistor emitter is keyed. When receiving in the cw mode, relay contacts K7B energize the BFO for product detector and counter operation. During sideband operation, contacts of mode switch SIB prevent keying the BFO. While in cw operation, voltage is supplied to the twin-tee sidetone oscillator by the contacts of S1A of the

Top view of the transceiver.

mode switch. The emitter of the sidetone oscillator transistor is also keyed during cw operation. Isolation diode CR4 prevents relay contacts of K7B from activating the sidetone generator in receive which could result in false tripping of the semi-break-in circuit. Because the BFO signal is a part of the display frequency, during key-up periods in transmit the display readouts are blanked.

Mode switch contacts S1A supply voltage to the mic amplifiers in either sideband position. An RCA CA3018A transistor array in the VOX circuit reduces the number of active components to a few devices. In the sideband positions, mode switch contacts of S1C feeds audio to the VOX circuit for normal VOX operation. In cw, contacts of S1C feed sidetone audio to the VOX input allowing semi-break-in operation, if desired. The VOX gain, delay and anti trip controls are front-panel mounted for accessibility.

The VOX circuit energizes relay K7. This relay does voltage switching and primarily controls receive or transmit operation. When VOX operation is not desired, the mic PTT contacts will manually key K7, or a front-panel mounted switch allows the transceiver to be locked in transmit. The VOX assembly is mounted to the speaker support bracket within the VFO compartment. Another Motorola MC1496 IC is used for the balanced modulator. Audio is fed to pin four of the IC, BFO injection to pin eight. Best carrier rejection at 9 MHz results with 80 millivolts p-p of BFO injection. The BFO level may be varied by changing the value of the $82-\mathrm{pF}$ coupling capacitor. A multiturn trimpot is used for the carrier balance control to allow for accurate and stable nulling of carrier. Because no if is present on the carrier balance controt, it may be mounted away from the sideband generator. During cw operation the carrier balance is deliberately upset by placing a potential on pin one of the MC1496, permitting the BFO energy to pass through the modulator stage. The balanced modulator is not powered during receive conditions which prevents spurious $9-\mathrm{MHz}$ signals from reaching the filter and the receiver i-f stages. Besides the modulator, BFO

TABLE I

Capacitor values in pF.

C7A -560	C10A -300
C7B -270	C10B -160
C7C -150	C10C -75
C7D -100	C10D -51
C7E -68	C10F -39
C8A -100	C11A -390
C8B -51	C11B -200
C8C -24	C11C -100
C8D -15	C11D -68
C8E -10	C12A -61
C9A -910	C12B -43
C9B -500	C12C -10
C9D -160	C12D -22
C9E -120	

Bottom view of the transceiver.
injection is supplied to the product detector and to the BFO counter-prescaler circuit. Excessive radiation of the BFO signal, through careless shielding or bypassing, could reach the i-f stages causing agc action or i-f blocking to occur.

Transmitter Power Chain

The development of a high-gain broad-band power amplifier able to span 30 MHz can be difficult. Fortunately, two previously published articles laid the basic ground work for the transceiver's power chain.' The circuitry was intended for $20-$ meter service and to obtain adequate performance at 10 meters required several circuit revisions. This included replacing the 2 N 2102 stages with 2N3866 transistors. The CA3028 predriver, like the preselector and 10 -meter postamplifier. is under alc control. Drive to the predriver stage is manually regulated by the drive-level control. A low-frequency rolloff $R C$ network after the drivelevel control helps to equalize for the decrease in transistor gain at the higher frequencies. The push-pull output of the predriver drives two class AB 2N3866 emitter follower stages. These, in turn, drive two push-pull AB 2N3866 transistors in commonemitter configuration. Heatsink fins are needed on the 2 N 3866 transistors.

The final amplifier is a 12 -volt version of one described by Lowe. ${ }^{2}$ Construction of T1 and T2 is somewhat unconventional. The original amplifier described by Lowe was designed for 28 -volt operation allowing the use of inexpensive surplus transistors. Since 14.5 -volt circuitry is used for the of stages, this involved changing the turns ratios of T1 and T2 and necessitated using 12 -volt transistors in place of the 2N3632s. Degenerative feedback in the PA circuit improves linearity with a small sacrifice in output power. Excessive rf drive causes the CA3028 predriver to saturate before danger-

[^7]

Fig. 4 - Circuit diagram for the i-f filter switching circuit and for the receiver-transmitter mixer section. See Table I for capacitor values.
K5, K6-12 V dc, spdt.
L23 - 40 turns. No. 28 enam. wound on a T-50-2 core.
L24A - 62 turns, No. 26 enam. wound on a T.50-2 core.

L24B - 35 tums, No. 26 enam. wound on a T-50-2 core.
L24C - 22 tums. No. 22 enam. wound on a T-50-2 core.
L24D - 12 turns, No. 22 enam. wound on a T-50-2 core.
L24E - 4 turns, No. 22 enam. wound on a T-50-2 core.
ously high base currents are reached in the final amplifier.

T3 samples PA rf output. The secondary of T3 is detected to produce a proportional alc dc output. Alc action is regulated by a front-panel alc control. The 2N2222 alc amplifier increases the dc signal to a level usable for the cascaded dc alc/agc amplifier. The 1 N34 diode prevents the 390 -ohm 2 N 2222 emitter resistor from loading the agc voltage developed in the voltage-doubler detector. Because of the broad-band nature of the amplifier, undesirable energy could be readily coupled to the antenna. Five elliptical low-pass filters, one for cach individuaf band, are used to filter the transmitter output. Band-switch sections 10 and 11 select the appropriate filter for the band in use. ${ }^{3}$.

The power chain was built on double-clad epoxy board. A 12 -volt power amplifier develops large of currents, and stable efficient operation demands low-impedance ground paths. The top foil was left on the board to form a ground plane. Leads above ground going to lower foil runs are isolated by reaming away copper around the lead holes. Leads going to lower ground foil runs should also be soldered to the upper ground plane foil for good bonding and to reduce ground loops. The board was mounted in a section of $1 / 8$-inch aluminum channel that serves as a shield and a heatsink for the final trassistors. The PA transistors were mounted directly on the aluminum channel. The use of metal spacers and screws to mount the board to the aluminum channel assured adequate rf grounding.

Spectral analysis of the two-tone ssb output signal shows third-order IMD products ta be 27 dB down at full power. With a slight reduction in drive, better than 30 dB are obtainable. Broadband white noise, harmonics and other undesirable spurious signals are well within acceptable minimum levels. Because excessive drive levels cause saturation of the CA3028 predriver, it is good practice not to use excessive drive on cw to keep harmonic generation at a minimum. Total transmitter current drain is monitored with a threeampere meter movement. Proper drive levels for ssb operation must be initially determined using an

[^8]

EXCEPY AS INDICATED, DECIMAL
VALUES OF CAPACITANCE ARE
IN MICROFARADS (μF I; OTHERS
ARE IN PICOFARAOS (DF OR HMF):
FESISTANCES ARE IN OHMS:

- $=1000$. $M=1000000$

Fig. 5 - Circuit diagram for the 1-f amplifier, the agc-alc system, and the product detector.
L25 - 15 turns of No. 24 enarn.
L26, L27, L28 - 25 turns, No. 24 enam. wound on a T-50-2 core.

Fig. 6 - Circuit diagram for the sidetone generator, the ssb generator, the BFO, and VOX. All unmarked diodes are 200 PRV, 1 A.
K7 $-4 \mathrm{pdt}, 12 \mathrm{~V} \mathrm{dc}, 185$-ohm coil (Allied Control
T-163-4C or equiv.).
L32 - 40 turns, No. 28 enam. on a T-50-2 core. L29 - 32 turns, No. 26 enam. on a T-50-2 core.
L30, L31 - 2 turns, No. 26 enam. wound over L29.
T4 - Audio type, 800 -ohm to 10,000 -ohm

oscilloscope. Once correct peak current is determined, the alc control should be set to show signs of alc action on voice peaks. The peak meter reading depends on the characteristics of the meter used and upon the voice characteristics of the operator.

BandSwitch Notes

The 11 section ceramic band switch used in the transceiver is assembled from several switches removed from scrapped electronic assemblies. Various switch manufacturers sell the necessary wafer and drive assemblies to produce almost any custom switch required. If available, a fiber drive shaft will reduce unwanted coupling between switch sections. Shields are needed for isolation between switch wafer sections 2 and 3,4 and 5, 6 and 7,8 and 9 , and between 9 and 10. These shields are grounded to ncarby shicld partitions. The metal switch hardware at the end of the assembly should be grounded. In the author's unit, the vertical elliptical-filter pc board was supported in part by the rear of the switch assembly, and ground foil remaining on the board provided a low-impedance ground path to the chasis. The transmitter power runs straight through from the mixer output representing a large value of in-line gain produced by the preselector and power chain circuitry. It doesn't take much unwanted coupling to produce fecdback paths. Careful shiclding, bonding, and elimination of ground loops are important for stable operation.

Power Supply

The power supply provides regulated 5 -volts de and 14.5 -volts de for the transceiver. The five-volt supply is for the TTL logic and LED displays in the frequency counter; the 14.5 -volt supply powers the If and audio sections. A National LM 309 or Fairchild 7805 IC is the heart of the 5 -volt supply. The IC has internal current limiting and automatic over temperature cutoff for self protection. The output is electronically filtered. A series resistor reduces heatsink requirements for the 5 -volt reguiator.

The 14.5 -volt supply centers around a Fairchild 7815 regulator. This IC has the same features of

Rear view of the transceiver.
the 7805 except it furnishes 15 volts. Because the 7815 alone will not meet the current demands of the transceiver, two MJE-3055 pass transistors are used to amplify the current capability of the 14.5 -volt supply. Both pass transisiors and IC regulators require a heatsink. The dropping resistor for the 5 -volt regulator should be mounted so that it will dissipate heat without adversely affecting nearby circuits. An SCR crowbar circuit blows the power supply fuse if regulator or pass transistor failure allows more than 18 volts to appear on the 14 -volt line. Large transients will also activate the SCR.

If battery operation is contemplated, the 5 -volt regulator should be opcrated directly from the 14.4 -volt source without the series dropping resistor. Operation directly from an 18 - to 28 -volt supply may be accomplished, provided the regulators and pass transistors are used for voltage reduction.

The Frequency Display

Two separate amplifiers and scaler stages are used to amplify and shape the rf voltage levels to be TTL compatible. Since the 74192 up-down counters will only operate seliably to 25 MHz in this application, each counter input is prescaled by a factor of ten. The highest scaled input to the counter will be about 3 MHz on 15 meters from the $30-\mathrm{MHz}$ premixer output. The BFO amplitier uses a 7404 hex inverter biased for amplifier servicc, and amplifies and shapes the $9-\mathrm{MHz} \mathrm{BFO}$ signal to a 5 -volt logic level. A 7490 decade counter divides the BFO signal down to 900 kHz . These amplifiers and scalers should be well shielded and bypassed as their harmonics radiate well into the hf region. A MC1350 IC serves to amplify, as applicable, either the premixer or VFO output. Another 7404 hex inverter is used to further amplify and shape the if signal to a usable logic level. It was found that a 7490 would not operate reliably in the presence of an rf field with the maximum $30-\mathrm{MHz}$ premixer output. The solution was to use a high speed 74 S 114 as a divide-by-two prescaler followed by a 7490 divide-by-five stage.

The basic counter circuit evolved from an article appearing in the 1974, May-June issue of the Air Force MARS Newsletter. As originally

Fig. 7 - Circuit diagram for the cw filter, the counter scalers and amplifiers, and the audio amplifier stage for the receiver.

Fig. 8 - Circuit diagram for the diode matrix to select the preselector output for the up-down converters. K8 is a $12-\mathrm{V}$ de dpdt unit. All diodes are power type, 200 PRV, 1 A.
intended, the counter was designed to count up the high-frequency oscillator of a Swan transceiver, and then change over and count down to $5.5-\mathrm{MHz}$ carrier generating oscillator; the difference of these two (the operating frequency of the transceiver) would then be transferred, latched and displayed. With the premixing arrangement used in this transceiver, it is necessary to count up or down either the premixer or BFO signals. On 20 and 10 meters, a double up count of the BFO and premixer signals is needed to reproduce the transceiver operating frequency.

Fig. 8 illustrates the use of U1, a 7400 gate. This gate, in conjunction with a diode matrix from band-switch section nine, serves to select the appropriate prescaler output for the up- or downcounter inputs. Relay K8 is energized on 20 or 10 meters allowing two sequential up counts of the scaler outputs to occur in lieu of the normal up-down count sequence.

The three 74164 registers form the gating circuit for the counter. With initially all of the registers at zero, the first ten clock pulses enable the uperounter gate; the down counter is disabled. The eleventh clock pulse disables the up-counter input, and enables the down-counter input until the 20th clock pulse, when both inputs are disabled. On 10 or 20 meters, the eleventh clock pulse enables the second up-counter input and disables the first up-counter input (U18A-B).

On the 22nd clock pulse. the 7475 latches are set with the count present at the 74192 outputs. The 22nd pulse also clears both the 74192 counters and 74164 gating registers. Because it is possible for the 74192 counters to be reset before the 7475s latch, causing a loss of the count, inverters U13E and U13F provide a small time delay before clearing the 74192 counters.

The counter displays four digits. With the
$100-\mathrm{Hz}$ clock rate selected, the hundreds of kHz . tens of $\mathrm{kHz}, \mathrm{kHz}$, and hundreds of Hz arc displayed. A complete counter cycle takes 200 ms , which provides rapid updating of changes in operating frequency. A selectable $10-\mathrm{Hz}$ clock rate allows displays to within 10 Hz to be displayed, with a loss of the $100-\mathrm{kHz}$ position and a 2.2 second counter update period. The MHz decima? point to the left of the MSD is illuminated to indicate when the higher clock sate is selected.

The counter was assembled on a small square of Vectorbord. This allowed numerous circuit changes to be made in the construction of the counter. The counter circuitry, like the prescalers, generates large amounts of of hash and should be well bypassed and shielded from the receiver circuitry. The use of sockets is recommended. Ideally the counter should be constructed on double-sided pc board with an upper ground plane. The readouts were mounted in a Monsanto MHO4C circularly polarized bezel. In operation the last digit varies up to ± 1 count, possibly caused by the random loss of one or two counts depending upon the phase relationship between the gating clock pulscs and the counter input signals. Placing the scalers after the counter gating may have climinated this condjtion, but it is only a minor annoyance.

A double-pole center-off switch is used to select the $10-\mathrm{Hz}$ or $100-\mathrm{Hz}$ clock rate. The center-off position removes the $5-\mathrm{V}$ dc supply to the counter circuitry, allowing considerable power savings when the counter is not needed. The counter adds a touch of class to the transceiver as well as operating flexibility and convenience. On the minus side, it must be admitted that a substantial portion of the transceiver power requirements and cost arc represented in the counter section. Some amateurs may wish to forego the counter in favor of substituting a mechanical dial arrangement.

Fig. 9 - Circuit diagram for the counter circuits.

Transceiver Alignment

It is assumed that the builder is experienced in aligning ssb equipment, and space permits only a cursory alignment procedure to be outlined. Access to a wideband calibrated oscilloscope is recommended. The VFO range can be set with either a frequency counter or general-coverage receiver. Disabling the BFO prescaler and selecting 80 or 20 meters will allow the internal counter to display the VFO frequency.

The BFO tank should be adjusted so the oscillator will start reliably when power is applied. The trimmer for the BFO crystals should be set using a counter. If one is not available, disable the premixer prescaler and use the internal counter. On 40 meters, the $21.5-\mathrm{MHz}$ HFO should be adjusted so that it starts reliably. The $25-\mathrm{MHz}$ oscillator should be adjusted in a similar manner on either 10 or 15 meters. Sct both of the MC1496 mixer balancing pots to mid position. On the appropriate bands, adjust the premixer tanks for maximum output at mid band. Use an rf voltmeter or suitable scope on the low-impedance premixer output for these measurements. With the scope still on the premixer output, carefully adjust the balance pot until input injection feedthrough is minimal. Adjust the $9-\mathrm{MHz}$ i-f receiver stages using a signal generator. Adjust for maximum S-meter deflection. The $9-\mathrm{MHz}$ receiver-transmitter mixer output can
be tuned in a similar fashion. The third harmonic of the VFO will beat with the $25-\mathrm{MHz}$ oscillator to produce a strong $9-\mathrm{MHz}$ signal on 10 and 15 meters. Tune the receiver to 28.666 MHz . Carefully null the signal using the receiver transmitter mixer balance pot. The preselector coils may be peaked on reccive using a signal generator, or by on-the-air signals. Verify that the MC1496 mixer injection levels (including balanced modulator and BFO) are correct. In cw transmit, peak the $9-\mathrm{MHz}$ balanced modulator output. If transmit drive levels are low, repeak the preselector coils for maximum transmitter drive. In ssb transmit, adjust the carrier-balance pot for minimal carrier feedthrough. Peak the 80 pF recejver-transmitter mixer pi-network loading trimmer for maximum 10 meter cw output.

The mic gain control is fixed. First disable the transmitter power chain. Then, using a suitable scope, monitor the low-impedance receivertransmitter mixer output. Using the station mic and speaking in a slightly louder than normal voice, adjust the mic-gain control to a point just below where flat topping begins in the receivertransmitter mixer. This insures adequate ssb drive levels on 10 and 15 meters. Changing microphones will require this procedure to be repeated.

Preselector tuning during transmit should be smooth; if the preselector tuning peaks abnormally sharp on some bands, it is a probable indication of

Fig. 10 - Circuit diagram for the display unit. .

Fig. 11 - Circuit diagram for the transceiver power supply. U2 and U3 are manufactured by Fairchild. VR1 is a General Electric type C358. U1 is from Motorola. T1 is a Stancor RT-204.
regeneration. Likewise, the drive-level control should exercise a smooth linear control over output power. In ssb transmit, with the rf-drive level at maximum, it should be possible to tune the preselector throughout its range with no indication of spurious oscillations.

The receiver performs as well as most on the
amateur market today. The 20 -watt output power places the transmitter above the QRP class, although some discretion is seeded when rubbing shoulders with high-power stations on a crowded band. Reports have praised the audio quality, and many stations refused to believe the transmitter was running only 20 watts.

SIMPLE TRANSMITTING FILTERS

While the filters in this chart represent somewhat obsolete designs, the circuits are likely to be encountered because of their popularity. The terms wave filters or image-parameter filter are often applied to this type of network. A basic limitation on image-parameter filters is that a terminating impedance that varies in a complicated manner is required if the exact filter response is to be realized. Consequently, such designs are only approximate in nature and should not be used if close tolerance on attenuation is required.

The units for L, C, R, and f are microhenries,
picofarads, ohms and megahertz, respectively. If the so -called m-derived filter section is to be used, the value of m in the chart can be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f \infty}{f_{0}}\right)^{2}}$ for the high-pass filter.
where f_{c} is the cutoff frequency and f_{∞} is a frequency of high attenuation.

Constant -k π section

Constant -k T section
$L_{k}=\frac{0.318 \mathrm{R}}{f_{C}} c_{K}=\frac{3.18\left(10^{5}\right)}{f_{C} R}$

$L_{1}=m L_{k} \quad C_{1}=\frac{1-m^{2}}{4 m} C_{k}$
$L_{2}=\frac{1-m^{2}}{4 m} L_{k} \quad C_{2}=m C_{k}$
$L_{2}=\frac{1-m^{2}}{4 m} L_{k} \quad C_{2}=m C_{k}$
m - derived and sections for use with intermediate T section
$L_{1}=m L_{k} \quad C_{1}=\frac{1-m^{2}}{4 m} C_{k}$

- HIGH-PASS FILTERS

Constant -k π section

Constant -k T section
$L_{K}=\frac{0.0796 R}{f_{C}} C_{K}=\frac{7.96\left(10^{4}\right)}{f_{C} R}$

m-derived π section

m-derived T section
$L_{1}=\frac{4 m}{1-m^{2}} i_{k} \quad C_{1}=\frac{C_{k}}{m}$
$L_{2}=\frac{L_{k}}{m} \quad C_{2}=\frac{4 m}{1-m^{2}} C_{k}$

m-derived end sections for use with intermediate π section

m-derived end section for use with intermediate Tsection
$L_{1}=\frac{4 m}{1-m^{2}} L_{k} \quad C_{1}=\frac{C_{k}}{m}$
$L_{2}=\frac{L_{k}}{m} \quad C_{2}=\frac{4 m}{1-m^{2}} C_{k}$

A 160-METER AMPLIFIER

Fig. 1 - Front view of the 160 -meter amplifier. Note the use of perforated aluminum stock to permit ventilation of both the rf and power supply compartments. The large front-panal knob on the right controls C3. while the adjacent knob to the left controls C2. The power switch, S1, is controlled by the smaller knob located beneath C3. Both S1 and S2, the meter switch, are mounted below the chassis, and DS1 is mounted between the two switches.

Anyone who has operated in the 160 -meter band lately can attest to the fact that interest in the "top band" is on the upswing. With only a handful of manufacturers producing gear for 160 , this band is somewhat of a "homebrewers' haven." Most operation takes place during the evening hours, because the high level of daytime ionospheric absorption makes communication (other than strictly local) all but impossible for low powered stations. Summertime static makes things even more difficult. At present, amateurs occupy this band on a shared basis with various radionavigation services, with maximum input power limitations imposed to prevent harmful interference from occuring. These restrictions are greatest between sundown and sunrise, when the potential for interference is at maximum. However, during the daylight hours, amateurs in 29 states are permitted to usc up to 1000 watts power input, while in the other 21 , the maximum is 500 watts, in selected segnients of the band.' The amplifier described below is for use with 160 -meter excite:s in the 50 to 100 -watt output class, for ssb and cw operation.

Circuit Data

A pair of $572 \mathrm{~B} / \mathrm{T} 160 \mathrm{~L}$ triodes are used in a cathode-driven, grounded-grid configuration (see Fig. 3). A small amount of operating bias is provided by the 3.9 -valt, 10 -watt Zener diode in
'A chart of U.S. and Canadian 160 -meter sub-allocations is available trom ARRL Readquarters: send a stamped. self-addressed envelope ard request form S-15A.
series with the cathode return lead, and the tubes are completely cut off during nontransmitting periods by opening that lead with KIA to reduce unnecessary power consumption and heat generation. The other contacts on K1 perform all necessary antenns switching functions for transceive or separate transmitter/receiver operation. Drive power from the exciter is fed to the directly heated cathodes through a parallel combination of three $.01 \mu \mathrm{~F}$ disk capacitors, and a resonant cathode tank circuit helps minimize the amount of drive required. The filament choke, RFC2, isolates the driving signal from the filament transformer. A B\&W FC-15A choke was used here. A single power switch, Sl, applies 117 V ac to the primaries of both the power and filament transformers simultaneously, as the 572B's require no significant warmup time. Sl also activates the cooling fan, B1, and the front-panel pilot light assembly, DS1. The self-contained high-voltage power supply uses a straightforward voltage doubler circuit. No-load voltage is approximately 3100 V dc, dropping to 2600 V dc under one kilowatt key-down conditions. R2 limits the initial surge current to the filter capacitor bank to prevent exceeding the current hundling capability of the rectifier string when the supply is first turned on.

A single 0-1 mA meter is used to monitor either plate voltage or cathode current. To measure plate voltage, a multiplier consisting of five seriesconnected 1 -megohm I-watt resistors with one end tied to the B plus line is switched in series with the meter to provide a full-scale reading of 5000 volts. A 1000 -ohm one-watt resistor between the bottom of the meter multiplier and ground prevents the full B plus voltage from appearing across the meter switch, S2, when it is in the other position. To measure cathode current. the meter is placed in

Fig. 2 - Top view of the amplifier. The if components occupy the foreground, while the heat-generating power-supply components are visible behind the compartment shield at the rear.

Fig. 3 - Circuit diagram for the 160-meter amplifier. Fixed-value capacitors are ceramic disk unless otherwise indicated. Polarized capacitors are electrolytic. All resistors are $1 / 2$-watt composition unless noted otherwise.

31 - 117-volt axial fan (Rotron Whisper Fan or equiv.).
C1 - Parallel combination of one 5000, 2000, and $1000-\mathrm{pF}$ silver-mica capacitors.
$C 2, C 3-250-p F$ air variable, .075 -inch spacing (E. F. Johnson 154-9 or equiv.).

L1-1.0 $\mu \mathrm{H}$
L2, L3 - See text.
M1-1-mA dc (Simpson model 2121 or equiv.).
RFC1 - $1.0 \mathrm{mH}, 500 \mathrm{~mA}$ (E. F. Johnson 102.752 or equiv.).
S1 - Spst rotary switch.
S2 - Dpdt rotary switch.
T1 - 117-volt primary; secondary 625-0-625 voles ac (ct not used) at 450 mA (Hammond No. 720).

T2 - 117-volt primary; secondary 6.3 V ct at 10 A (Stancor P-6464 ar equiv.).
T3 - 117 -volt primary; secondary 6.3 V ac.
VR1 - Zener, $3.9-\mathrm{V}, 10$ watt $\{$ Motorola HEP 23500 or equiv.).
parallel with shunt Rl, which remains in series with the cathode return lead at all times. To obtain a full-scale reading of one ampere, a shunt resistance of .043 ohms was used with the Simpson model 2121 meter, as it has an internal resistance of 43 ohms (see Chapter 17).

As this amplifier is designed for monoband operation, the mechanical and electrical complexities and compromises involved in the bandswitching of an output network are not a factor here. Tuned-link coupling is used in the output circuit. The grid of each 572B is tied directly to chassis ground, using shost leads, to avoid problems with instability. Parasitic suppressors Z1 and Z2 also contribute to stability. Neutralization is not necessary.

B\&W Miniductor stock is used at L2 and L3. L2 is made from 43 turns of $\mathrm{B} \& W 3034$ (No. 14 wire, 8 tpi, 3-inch dia.) and L3 is made from 39 turns of B\&W 3030 (No. 14 wire, 8 tpi, 2-1/2-inch dia.). The coils are supported on a 10 -inch strip of bakelite which is mounted on three $1-1 / 2$-inch steatite insulating cones. L2 is epoxied into place on the side of the bakelite strip nearest the tubes. L3 will be partially inserted into the cold end of L2, and is epoxied into place after initial adjustments have been made. L3 must be able to slide freely inside L2 without making electrical contact. The first 10 turns of L3 may be covered with a layer of Scotch No. 27 glass insulating tape. Leads from L3 are made with teflon-insulated flexible stranded wire to allow the coil a degree of freedom of movement during initial adjustment. Rf output from L. 3 is connected to K1B through a short length of RG-58/U coaxial cable.

Meter shunt R1 is made by winding $12-1 / 2$ inches of No. 26 enam. wire around a l-megohm

2-watt resistor. If the meter used has an internal resistance other than 43 ohms, the appropriate shunt resistance value may be wound by referring to the copper wire resistance table in Chapter 18.

Parasitic suppressors Z 1 and $\mathrm{Z2}$ are each made with $3-1 / 2$ turns of No. 14 enam. wire wound around the parallel combination of three $82-\mathrm{ohm}$, 1-watt composition resistors, mounted right at each plate cap.

Operation

The power supply should be tested before if drive is applied to the amplifier. For initial tests, it is desirable to control the power transformer primary voltage with a Powerstat, while leaving the fllament transformer primary and fan connected directly to the 117 V ac line. Remember at all times that lethal voltages exist both above and below chassis. Do not make any internal adjustments with the power on, or even with the power off until the bleeders have fully discharged the filter capacitors (at least 40 seconds with this particular amplifier). It is good practice to clip a lead from the B-plus terminal to ground after the capacitors have discharged, whenever working inside the amplifier (remember to remove it before applying power!). The tuned-input circuit (Ll-Cl), should be checked with a grid-dip meter for resonance at the frequency segment of interest. Kl must be closed during transmit; this may be effected by shorting the wire from $\$ 1$ to ground with a relay inside the 160 -meter exciter, of with an external switch. Starting with a plate voltage of about 1500 volts, drive is applied through J 2 and C2 is adjusted for maximum if output as indicated on an external if wattmeter or relative output indicator. C3 is then adjusted for maximum output. The plate voltage may now be advanced to its normal level. The link may be moved in or out (with power off) and C2 and C3 again adjusted until the Gighest efticiency is obtained. At that point the link, L3, may be epoxied in place. In the amplifier described here, the optimum position for L3 was when eight of its turns were inside L2. This may be used as a starting point for the adjustment. Norinal tune-up procedure involves only the adjustment of C2 and C3 for maximum output, within the maximum legal power limits, of course. During normal operation the 572 B anodes may glow with a dull red color. The tubes draw about SO mA resting current, when K1 is closed and no drive is applied.

A CONDUCTION-COOLED TWO-KILOWATT AMPLIFIER

One of the major concerns when dealing with high power amplifiers is heat and how to reduce it. The usual method has been to use a large fan or

blower, but this solution is generally noisy. By using the principles of heat transfer, a noiseless amplifier can be made with the use of an adequate heat sink and conduction-cooled tubes.

The amplifier shown in the photographs and schematically in Fig. 1 uses a pair of recently designed 8873 conduction-cooled triode tubes. The circuit configuration is grounded grid and uses no tuned-input tank components. When properly adjusted, the amplifier is capable of IMD characteristics which are better than can be achieved by a

A 2-kW Amplifier

Top view of the 80 -through 10 -meter conductioncooled amplifier. The chassis is $17 \times 12 \times 3$ inches $143.2 \times 30.5 \times 7.6 \mathrm{~cm})$ and is totally enclosed in a shield. A separate partition was fabricated to prevent if leakage through the meter holes in the front panel. An old National Radio Company vernier dial is used in conjunction with the plate tuning capacitor to provide ease of adjustment (especially on 10 meters). The position of the dial for each band is marked on the dial skirt with a black pen and india ink.
typical exciter, therefore the added complexity of band switching a tuned-input circuit was deemed unnecessary.

Construction

Building an amplifier such as this is often an exercise in adapting readily available components to a published circuit. For this reason, a blow-by-blow description of this phase of the project will not be given. An effort was made, however, to use parts which are available generally, and should the builder desire, this model could be copied verbatim.

The most difficult constructional problem is that of aligning the tube sockets correctly. It is imperative that the sockets be aligned so that when the tubes are mounted in place, the flat surfaces of the anodes fit smoothly and snugly against the thermal-link heat-transfer material. Any misalignment here could destroy the tubes (or tube) the first time full power is appliod. The mounting holes for the tube sockets are enlarged to allow final positioning after the tubes are "socked" in place with the clamping hardware. Pressure must be applied to the anodes so that they are always snug against the thermal link. The hardware used to perform this function must be nonconducting material capable of withstanding as much as $250^{\circ} \mathrm{C}$. The pressure bracket used here was fabricated from several Millen jack-bar strips (metal clips removed) mounted in back-to-lack fashion. The entire assembly is held in place by means of a long piece of No. 10 threaded brass rod which passes through a small hole in the center of the heat sink. An attempt to give meaningful comments about how tight the tubes should be pressured to the copper and aluminum sink will not be given. Suffice it to say that the tubes should fit fiat and snugly against the thermal hardware. The heat sink was purchased from Thermaloy and is connected to a $1 / 4$-inch thick piece of ordinary copper plate. The total cost for the copper and the aluminum sink is somewhat more than the price of a good centrifugal blower ($\$ 30$) but the savings offered by not having to purchase special tube sockets and glass chimneys overcomes the cost differential.

Top view of the power supply built by WA1JZC showing the technique for mounting the filtercapacitor bank. The diodes are mounted on a printed-circuit board which is fastened to the rear of the cabinet with cone insulators and suitable hardware.

The power supply is built on a separate chassis because the plate transformer is bulky and cumbersome. A special transformer was designed for this amplifier by Hammond Transformer Co. Ltd., of Guelph, Ont. Canada. The transformer contains two windings, one is for the plate supply to be used in a voltage-doubler circuit and the other is for the tube filaments. The power supply produces 2200 volts under a load of 500 mA , and is rated for 2000 watts. The Hammond part number is given in Fig. 1. All of the interconnections for powersupply control and the operating voltages needed by the amplifier are carried by a seven-conductor cable. This excludes the B plus, however, which is connected between the units by means of a piece of test-probe wire ($5-\mathrm{kV}$ rating) with Millen highvoltage connectors mounted at both ends. The seven-conductor cable is made from several picces of two-conductor household wire (No. 10) available at most hardware stores. Since the main power switch is mounted on the front panel of the amplifier, the power supply may be placed in some remote position, out of the way from the operator (not a bad idea!). A high-voltage meter was included with the power supply so that it could be used with other amplifiers. It serves no purpose with this system. The main amplifier deck has provisions for monitoring the plate voltage.

Fig. 1 - Circuir diagram for the 8873 conduction-cooled amplifier. Component designations not listed below are for text reference. RFC1 and RFC2 are wound on the same ferrite rod in the same direction: three wires are wound together (Amidon MU-125 kit). Tube sockets for V1 and V2 are E.F. Johnson 124-0311-100. The thermal links are available from Eimac with the tubes. The heat sink is part number 2559-080-A000 from Astrodyne Inc., 353 Middlesex Ave., Wilmingion, MA 01887, and costs approximately $\$ 20$.

Ci - Transmirting air variable, 347 pF (E.F. Johnson 154-0010-0011.
C2 - Transmitting air variable, 1000 pF (E.F. Johnson 154-30).
CR2.CR7, incl, - 1000 PRV. 2.5 A (Motorola HEP170).
J1 - SO-239 chassis mounted coaxial connector. J3, J4, J5 - Phono jack, panel mount.
36 - High-vol tage connection \{Millen 37001).
K1 - Enclosed, three-pole ralay, 110 -volt dc coil (Potter and Brumfield KUP14D15).
L1 - 4-3/4 turns of $1 / 4$-inch copper rubing, 1-3/4-inch inside diameter, 2-1/4 inches long.
L2 - 12.1/2 turns, 1/4-inch copper tubing, 2-3/4inch inside diameter, tap at one turn from connection point with L1, 2.1/2 inches for 20 meters, $7-3 / 4$ turns for 40 meters.
L3 - 11-1/2 turns, 2-inch diameter, 6 tpi (Barker and Williamson 3025).
L4 - 10 tums, 2-inch diameter, 6 tpi, with taps at 3 turns for 10 meters, 3-1/2 turns for 15 meters, 4-3/4 turns for 20 meters, 6-3/4 rums for 40 meters; all taps made from junction of

L3 (Berker and Williamson 3025).
M1 - 200 mA full scale, 0.5 -ohm intemal resistance (Simpson Electric Designer Series Model 523).

M2 - 1 mA full scale, 43 ohms internal resistance (Simpson Electric, same series as M1).
R1 - Meter shunt, . 05555 ohms constructed from 3.375 feet of No. 22 enam. wire wound over the body of any 2 -watt resistor higher than 100 ohms in value.
R2 - Meter shunt, 0.2 ohms made from five 1 -ohm, 1 -watt resistors connected in parallel.
RFC1, RFC5, RFC6 - 2.5 mH (Nillen 34300-2500].
RFC3 - Rf choke (Barker and Williamson Model 800 with 10 turns removed from the bottom end).
RFC4 $-22 \mu \mathrm{H}$ (Millen 34300).
S1 - High voltage band-selecror siyle, double pole, six position (James Millen 51001 style).
Z1. Z2 - 2 turns $3 / 8$-inch-wide copper strap wound over three 100 -ahm, 2 -watt resistors connected in parallel.

Fig. 2 - Circuit diagram for the power supply. The power transformer is available from Hammond; type no. 101165. CR1 through CR9 are 2.5 A, 1000 PRV; see Fig. 1 for suitable part number. T2 is Stancor part number P-8190 and is
rated for 6.3 volts at 1.2 amperes. DS1 is a 117 -volt neon pilot lamp assambly. The tap at R1 should be set for 5000 ohms to the B minus lead Adjustments to this tap cannot be made while vol tage is applied to the power supply. If the pilor
lamp does not glow properly, remove the ac cord, allow suitable time for the high-voltage to bleed to zero, and apply a screwdriver between the B-plus line and ground before making any adjustments!

A conventional household light switch may be used for S4. If the switch is to be mounted horizontally, be sure to use a contactor device and not a mercury type (which operates in a vertical position only). A double-pole switch was used with both poles connected in parallel. The rating is 220 V at 10 A per section.

The RF Deck

The two sections of the pi-L network are isolated from each other by placing one of them under the chassis. Although not shown in the photograph, a shield was added to prevent of energy from entering the control section underneath the chassis. The shicid divides the chassis between the tube sockets and the inductors. The loading capacitor is mounted directly beneath the plate-tuning capacitor. This scheme provides an excellent mechanical arrangement as well as a neat front-panel layout.

The 8873 s require a 60 -second warmup time, and accordingly, a one-minute time-delay circuit is included in the design. The amplifier IN/OUT switch is independent of the main power switch and the time delay. Once the delay circuit "times out," the amplifier may be placed in or out of the line to the antenna, whenever desired. A safety problem exists here: there is no large blower
running, and there are no brightly illuminated tubes to warn the operator that the amplifier is turned on. Except for the pilot lamp on the front panel, one might be fooled into believing the amplifier is turned off? And if the pilot lamp should burn out, there is absolutely no way to tell if the power is turned on (with the resultant high voltage at the anodes of the 8873 s). Beware?

Operation

Tuning a pi-L-output circuit is somewhat different than tuning a conventional pi-network because the grid current should be monitored closely. Grid current depends on two items, drive power and amplifier loading. The procedure found to be most effective is to tune for maximum power output with the loading sufficiently heavy to keep the grid current below the maximum level while adjusting the drive power for the proper amount of plate current. The plate current for cw operation should be 450 mA and approximately 900 mA under single-tone tuning conditions for ssb. This presents a problem since it is not legal to operate under single-tone tuning conditions for ssb. Sixty watts of drive power will provide full input levels. For use with high-power exciters, see QST for October, 1973.

A TWO-KILOWATT AMPLIFIER USING THE EIMAC 8877 TRIODE

Onc of the easicr projects for the amateur to undertake is the construction of an amplifier for use on the hf bands. Generally speaking, the mechanical aspects of the construction are more difficult to bandle than the electrical ones. And, as with any construction project, acquiring the parts can be difficult. The two-kilowatt amplifier shown here is designed for dependable service at the maximum legal power input allowed in the United States. The component ratings are generous and the construction is heavy duty. Since power handling capability is typically determined by physical size, most of the components used here are large and accordingly, a split arrangement has been employed allowing the placement of the power supply on a separate chassis from the amplifier compartment.

Another feature sets this amplifier apart from most others described in the literature; the air is exhausted from the top of the tube socket instead of the conventional pressurized chassis air-flow system.

The Circuit

The triode, a 3CX1500/8877, is connected in a grounded-grid configuration which provides about

Front view of the 8877 amplifier. The nonsequential numbering of the band switch is discussed in the text. A switch is provided to allow the selection of proper bias for the mode in use at the time.
 the time.
the most simple layout possible. The output tank circuit is a pi-network with vacuum-variable capacitors used for both input and output tuning. A $2.5-\mathrm{mH}$ if choke is connected between the output
end of the tank and ground to prevent B plus from appearing at the antenna terminals should Cl develop a short.

A passive, untuned, capacitor-coupled circuit is used to apply re-drive encrgy to the 8877 cathode. Since a moderate amount of bias is permitted, L1 is incorporated to provide isolation from if to the bias-developing Zener diodes. The highest recommended bias voltage for use on ssb is 8.2 , but for ew operation, where IMD is not important, 22 volts is developed which nearly places the tube at cutoff (zero no-signal plate current). A $10-\mathrm{k} \Omega$ resistor is included in series with the Zener-diode circuit to assure complete cutoff of the 8877 during recciving periods. It is switched out of the circuit during transmit periods by a set of contacts on K1.

Antenna transfer along with bias switching is accomplished with two relays. Sequencing can be an important factor since it is very undesirable to provide drive to the 8877, remove its bias, all before the output circuit relay has closed and stopped "bouncing." This is accomplished by the use of a vacuum relay shown as K 2 in Fig. 1. K2 is many times faster in operation than KI and accordingly, the antenns is placed on the amplifier output circuit well ahead of drive arriving at the cathode of the 8877 . Voltage to operate both relays is developed by T2. Since the relays are connected in a fashion to allow straight-through operation of an exciter or transceiver to the antenna in the de-energized position, interruption of the voltage from T2 during transmit perinds with it is undesirable; to have the amplifier "on line" and developing power, is all that need be done. $\$ 4$ serves that function.

Metcring of three operating conditions of the umplifier is accomplished with three meters instead of one or two. The purpose is first, to eliminate a switch for selection, and second, to provide continuous indication of the important parameters of the 8877. Of course, operator error is reduced since it is impossible to assume a meter is measuring one thing while a switch is selected for another. Both platc and grid current meters are difect-reading instruments - no shunts are needed. A string of resistors is used at R1 to multiply the scale of the $500-\mu \mathrm{A}$ meter to indicate zero through 5000 volts. $\mathrm{R}!$ is constructed of 10 resistors, one-watt in size and onc-megohm in valuc. The purpose is to keep the applied voltage across each resistor below 600 . A $1000-\mathrm{ohm}$ resistor is included at the meter end of RI to keep the voltage low should the meter winding become an open circuit.

Another feature of this particular amplifier is the use of a motorized Powerstat for control of the high-voltage circuit. The ability to select the operating plate voltage from the front panel of the amplificr is a feature desired by the builder of the project and need not be duplicated. If voltage control is not used, the power transformer used in the high-voltage power supply should be selected to provide about 3000 volts. This is a suitable compromise for efficient cw and ssb operation at the maximum power input levels. In actual operation, the amplifier shown in the photographs is

Bottom view of the amplifier chassis. L1 is shown near the tube socket. it is wound on a T-50-2 Amidon toroid core. The Zener diodes are mounted on a plate and secured to the side chassis wall.
used with 3400 volts during ssb operation and 2500 volts for cw conditions.

Several 50 -ohm, 10 -watt resistors have been placed at various points in the B-minus circuit, both in the amplifier-chassis comparenent and on the power supply chassis. This prevents the Bminus lead from creeping above "almost ground" potential should a defect develop in the gridcurrent metering circuit. Also, included in the B-plus lead is a 10 -ohm resistor which will help prevent component damage should a direct short take place in the amplifier compartment.

Mechanical Construction

The split-chassis configuration offers several advantages. First, it allows the amplifier compartment to be somewhat more compact because the power supply can be located elsowhere. This consumes less space on the operating desk. It also divides the weight into parts; the heavier section may be placed on the floor. The power supply may be equipped with wheels to give it mobility. The only disadvantage with having a two chassis system comes when portability is desired.

The power supply has been assembled on an aluminum plate which is $1 / 4$-inch thick. Casters are provided because the plate transformer itself weighs about 80 pounds. The capacitor bank for filtering has also been mounted on the aluminum plate. A circuit board is used to interconnect the capacitors and is supported above the plate with ceramic pillar insulators. A screcned covering is provided to keep unwanted objects from contacting the high-voltage system. The power supply relay (T3 primary connection) and the Powerstat have been issembled separately and may be interconnected to the power supply chassis plate via an inconnecting cable. Mounting both the plate transformer and the Powerstal on the same chassis would render it unmovable!

The power supply bleeder-resistor network

must be placed in a position to allow air to flow past it and rise through the top screen cover. R2 and R3 each consist of six resistors (12 total) rated at $20-\mathrm{k} \Omega$ and 20 watts cach. A similar bank of 12 capacitors connected in series constitutes the filter network. Each filter capacitor in the circuit has one of the bleeder resistors connected directly across it in order to assure equal voltage division. Each capacitor is rated at $200 \mu \mathrm{~F}$ and 450 volts.

CR5 and CR6 consist of series diodes similar in hookup to the capacitor and resistor network described above. Each individual diode is rated at 1000 volts; the four series connected equal 4000 PRV. The current rating for each diode is two amperes.

No provisions have been made to operate this plate supply from a 117 -volt ac source. Accordingly, if one wishes to have such capability, a suitable transformer must be substituted for T3 shown in Fig. 1. It should be pointeg out, however, that the plate supply is the only portion to operate with a 234 -volt line. The ampifiner filament circuit
and voltage-source circuits for the relays alnng with the blower all operate from 117 Vac .

The amplifier portion of this system is constructed on an aluninum chassis which is 14×17 $\times 4$ inches. The 14 -inch dimension was chosen as the front-panel side to conserve space on the operating table. A bottom cover for the chassis is cut from a large section of aluminum perforated stock while the area above the chassis top is completely sealed and made airtight. The amplifier top cover is solid stock but has a four-inch flange (stovepipe material) mounted directly above the 8877 tube. Hot air is exhausted via this port using an external "blower" which has been set up to draw air rather than force it. The procedure is simple; just connect the four-inch hose coming from the pipe flange to the blower intake port. Place the blower exhaust outlet in a position so that it will not be restricted. The cold air is drawn in under the amplifier chassis, passes through the 8877 and socket, then out the stovepipe to the blower. The air from the blower is heated and

(B)

Fig. 1 - Circuit diagram for the 8877 two-kilowatt amplifier. Component designations not listed below are for text reference only.
C1 - $500-\mathrm{pF}$ transmitting capacitor, 5000 volts (Centralab 858 series).
C2 - . $001-\mu \mathrm{F}$ transmitting capacitor, 5000 volts (Centralab 858 series).
C3 - Vacuum variable, 500 pF maximum, 7500 volts.
C4 - Vacuum variable, 1000 pF maximum, 5000 volts.
C5, C6 - Six 200- HF units (See text.).
K1 - Dpdt, 5-A contacts. Coil voltage is 12 volts dc.

K2 - Vacuum relav, spst. (Torr Elecironics or equiv.)
K3 - Power relay, 10-A contacts, 117-V ac coil.

Li - 25 turns wound on an Amidon T-50-2 toroid core.
L2 - $125 \mu \mathrm{H}, 2 \mathrm{~A}$ (Hammond Mfg.).
L3 - Strapwound inductor, $12 \mu \mathrm{H}$ total tapped at 2-1/2 turns for 10 meters, 3 turns for 15 meters, 5 turns for 20 meters and 14 turns for 40 meters. (E. F. Johnson 232-6261.
L4 - 5 turns of $1 / 4$-inch copper tubing wound the same diameter as L3.
S1, S3. S4 - spst, 3 A (Radio Shack).
S2 - spdr, 3 A with spring return to center off position (Radio Shack).
T1 - primary 117 V ac, secondary $6.0 \mathrm{~V} \mathrm{ac}, 10 \mathrm{~A}$. (Hammond Transformer).
T2 - primary 117 V ac, secondary 12 V ac at 3 A . T3 - plate transformer, 234 -volt ac primary. 1770-volt (Hammond Transtormer 105677).
should not be directed at anything which might run normally warm (power supply components). In fact, the warm ais may either be directed out of the radio shack in the event the heat is undesirable or the heat may be applied to one's feet in the winter scason if the system is being used in an unheated basement atmospherc. Of course, one of the key features of a solid shield enclosure for the rf compastment is the reduction of unwanted radiation of fundamental or spurious energy which could cause TVI.

Care must be given to the mechanical installation of the high-voltage connectors and the cable used to transport 3600 voits of dc from the power supply to the anode of the 8877 . Millen highvoltage connectors were used throughout. One problem developed during the testing phase of this project. A steel screw and not were used to mount one of the connectors and spparently the Bakelite material cracked during installation. A discharge path developed across the crack creating loud noises and popping fuses. Nylon or Teflon hard-
ware is recommended for mounting the Millen connectors if voltages above 3000 are anticipated.

Operation

Since this projact is one which should not be undertaken by an inexperienced builder, some of the basic steps of pretest will not be discussed in detail here. Suffice it to say that ordinary primary voltage checks and switching should be confirmed as being in correct working order before placing primary power to the high-voltage supply. The 3000 -volt circuit muss be treated with respect - it can seriously injure or even kill a person coming in contact with it! Operation of the motor-controlled Powerstat can be determined by operating the system on the 117-volt primary, leaving the plug to the 234 -vol! line disconnected.

A word of caution: The alr flow system must always be used when any power is applied to the 8877 - even flament. And rf drive power should

Top view of the 8877 amplifier. The ithree meters are separated from the ri compartment with an aluminum shield.
never reach the 8877 unless that tube has plase voltage applied. Of course, if one applies plate voltage and drive, he should be prepared to dissipate the power output from the amplifier into a dummy load of suitable rating.

One particular disadvantage of having the amplifier completely enclosed in a solid shield is the inability of the operator to visually spot any are or component failure. During the initial testing of this amplifier, occasionally an arc would occur. While the arc was audible, the operator had to inspect the inner compartmen: very carefully to determine the cause of the malady. In fact, the arc had to be "encouraged" to a point where damage was easily identified!

Actual operation of the amplifier is quite simple. A feature which simplifies tuneup is the use of turn-counting dials for both the plate tuning and plate loading. Once the proper tuning has been established, one can log the numbers and return to them anytime. It is quite easy to touch up the dial sctings for proper operating conditions once the approximate settings have been determined.

The coil-tap positions shown in the caption for Fig. 1 are given for proper operation at 3000 volts. Slightly better efficiency is possible by increasing the plate voltage to 3600 for two-kilowatt PEP ssb operation. The same is truc of lowering the voltage to 2500 during cw conditions. The actual plate current to which the amplifier is driven should be determined in conjunction with the fulf-load plate voltage.

For cw tuneup and operation, the amplifier should be adjusted for maximum output power (usualfy determined using an externally mounted rf Wattmeter) while maintaining proper grid current under conditions of one kilowatt input as determined by the combination of plate current and voltage. The proper settings will have been found when the piate meters indicate one-kilowatt input,
the grid cursent shows 40 mA , and maximum output power occurs in conjunction with a "dip" in plate current and a "peak" in grid current all at the same time as the plate tuning control is adjusted. A condition of high grid current is usually a result of insufficient loading or too much drive power. If a low grid current condition exists and loading control decrease doesn't correct it, more drive power is indicated.

Tuneup for single sideband at the two-kilowat! level can be done only during dummy load conditions because it requires key-down conditions in excess of the legal-limit power restrictions. There is no way to tune this amplifier into an antenna at reduced power input and then drive is up to the two-kilowatt rated input point. The procedure for adjustment is identical to the one described above for cw operation. The one exception is plate-power input as indicated by the meters should be two kilowatts. Then, when the proper settings have been determined, the ssb drive signal is adjusted so that peak readings of plate current show about one half of that shown for key-down operation.

The lack of a tuned-inpul circuit solves several problems normally encountered when constructing an amplifier. The main advantage is that there need not be two band-switch decks with long leads (or even worse, two band switches!) nor space given to the inductors and capacitors. The driving impedance of the 8877 is very nearly 50 ohms and requires very little power to drive it to full power input. The tuned-circuit characteristics would reduce the drive requisement even further and should be considered by anyone wishing to use a 20 -watt driver. For those amateurs using modernday exciters in the 100 -watl output class, some reduction in exciter gain control may be necessary. Exciters with more than about 150 watts of output power available should not be used without due consideration being given to an attenuator. The measured power required for this particular amplifier and tube shown was 50 watts to achieve a kilowatt on cw and about 70 watts for two kilowatts (this was in conjunction with a plate voltage change between modes) for ssb service. Sligh ly more drive power was required on 10 meters.

Problems

Some of the difficulties which come with making an amplifier of this category operate correctly are worthy of mention. First, as discussed earlicr, some components which seemed adequate for 2500 -volt systems failed when 3600 voles of dc was applied. The Millen connectors were one example. While the failure was not the fault of the component, care must be given to the maintenance of insulation integrity. Rf voltages developed in the tank circuit of this unit are substantial. Several problems with the band-switch contacts were encountered. Even though the piate output inductor has unused turns shoried out by the band switch, the shorted section of the coil can (and
most likely will) have extremely high voltages present on it. In order to solve an arcing problers one of the band-switch tap positions had to be swapped with another. The band-switch markings on the front pancl are nol sequential. A solution to the problem would no doubt come if onc were to use a continuously shorting switch.

Another difficulty which plagued this constructor was the propensity for the amplifier to show large amounts of negative grid current on 80 meters along with erratic plate current and poor efficiency. The calculated value for L 2 is $95 \mu \mathrm{H}$. The original choke used at this point measured 87 $\mu \mathrm{H}$ even though an inductance of 95 was called for.

After many hours of tank-circuit troubleshooting, it was decided to change the plate choke. The new one had an inductance of $125 \mu \mathrm{H}$ and the 80 -meter problems disappeared.

Collecting the Parts

Most of the component parts used in the project were purchased from surplus dealers or were donated by the manufacturer. Special thanks to James Millen Inc., Hammond Transformer Corporation, Simpson Electric, and Eimac for keeping the total cost of the parts to well within the allowable limits of any ARRL Lab project.

AN AMPLIFIER FOR ORP TRANSCEIVERS

The circuit of Fig. I shows a 15 -watt output plug-in amplifier suitable for use with the HW-7 transceiver, or with any 2 -watt class rig designed for $h f$-band work. The nucleus of the circuit is Motorola's new MRF-line transistor, the 449A. Unit cost is $\$ 13$ for the part, and it will deliver up to 30 watts of output to 30 MHz as a Class C amplifier. Operating voltage is 13.0 dc . Rf drive requirements for full output are under 1 watt. Another member of this transistor family is the MRF450A, which will provide 50 watts of output with 2 watts of drive. It costs $\$ 16.50$ according to a quote from an East Coast supplier.

Table I lists L and C values for 15 watts of output. The network is based on a loaded Q of 4. The X_{L} and X_{C} values given in Fig. 1 can be used to obtain inductance and capacitance valucs for frequencies other than 7,14 , and 21 MHz .

A $50-\mathrm{ohm}, 3-\mathrm{dB}$ attenuator pad is used at the amplifier input to assure less than 1 watt of drive without the need to modify the output stage or driver of the HW-7. The base shunting resistors of Q1 consume additional drive power while aiding amplifier stability. Another advantage of the attenuator is that it provides a resistive termination for the HW-7 across its operating range -7 to 21 MHz . Without the attenuator the complex input impedance of Q1 would be reflected through T1, and the reactance scen by the HW-7 could be troublesome. A complex X_{L} and X_{C} condition exists at the input of a power transistor, and reactance amounts vary with operating frequency.

Circuit Notes

A conventional broadband toroidal transformer is used at T1. Fqual performance was noted when comparing this transformer to transmission-line transformers. The latter consisted of two 4:1
transformers in cascade, effecting the desired 16:1 transformation ratio. A conventional transformer requires but one toroid care, and it is easy to build. For that reason it is specified here.

RFC1 serves as a low- Q collector choke, RFC2 is used as a decoupling choke to prevent rf energy from entering the HW-7 via the 13 -volt line.

Performance

Motorola rates the MRF449A at 50-percent efficiency. Our lab findings bring that figure closer to 60 percert at 15 -watts output. The output waveform from the circuit of Fig. 1 is exceptionally "sanitary." No distortion could be seen on the sine wave, as viewed on a $50-\mathrm{MHz}$ scope, while delivering 15 watts into a 50 -ohm dummy load.

Shown here is the assembled amplifier as originally described in OST for December, 1975.

TABLE I

Bend	L1	$L 2$	Cl	C2
7 MHz	$0.6 \mu \mathrm{H}, 13 \mathrm{~T}$ No. 22 enam. $5 / 16^{\prime \prime}$ ID, no core	$1.1 \mu \mathrm{H}, 14 \mathrm{~T}$ No. 22 enam. on T-68-2 torojd corc	450-pF mica trimmer	820-pF silver mica
14 MHz	$0.3 \mu \mathrm{H}, 8 \mathrm{~T}$ No. 22 enam., $5 / 16^{\prime \prime}$ ID, no core.	$0.55 \mu \mathrm{H}, 9 \mathrm{~T}$ No. 22 елат.. on. T-68-6 toroid core	450-pF mica trimmer	$\begin{aligned} & 220-\mathrm{pF} \\ & \text { silver mica } \end{aligned}$
2) MHz	$0.19 \mu \mathrm{H}, 5 \mathrm{~T}$ No. 20 enam., 5/16" ID, no core	$0.39 \mu \mathrm{H}, 6 \mathrm{~T}$ No. 22 enam., on T-68-6 toroid core	$450-\mathrm{pF}$ mica trimnier	None

1.1 coils are airwound. 22 coils are on A midon toroid cores.

Harmonic energy was at least 40 dB below carrier level.

Short test periods were established with the amplifier output port shorted and open (30 seconds maximum), and no damage to Q1 resulted. It is stressed, however, that the amplifier should always have a 50 -ohm termination during operation to assure proper performance and transistor longevity. Gain will be 8.7 dB at 15 -watts output (HW-7 2-watt reference). It can be scen that a significant improvement in signal readability will result from using the amplifier when band conditions are poor.

Final Comments

Three phono plugs are soldered to the amplifier pc board. Mating phono jacks ($\mathrm{J} 1, \mathrm{~J} 2$, and J3) are located on the rear panel of the HW-7. The coaxial cable between the HW-7 PA and the antenna relay is opened to permit insertion of the amplifier. The HW-7 PA output is routed to P1 of Fig. 1, and the amplifier output is fed into the HW-7, then to the antenna relay, through P3. To reinstate the HW-7, simply jumper J 1 and J 3 with a short length of 50 -ohm coaxial cable. P 2 and J 2 permit the operator to obtain 13.0 operating volts for the amplifier from inside the HW-7, if desired. A 3-A

Fig. 1 - Schematic diagram of the 15 watt amplifier. Fixed-value capacitors are disk ceramic unless otherwise noted. Resistors are $1 / 2$ watt composition unless specified differenily. The 47-uF capacitor can be electrolytic or tantalum.
C1 - 450 - FF Mica compression trimmer (ArcoEIMenco 466 or equivalent).
C2 - See Table 1.
L1, L2 - See Table I.
P1-P3, incl. - Phono plugs soldered to edge of pc board.

Q1 - Motorola MRF449A strip-line stud transistor.
RFC1, RFC2 - 7 turns No. 20 enam. wire on 0.5 -inch $O D$ taroid ferrite core with 125 permeability (Amidon Assac. FT-50-61 core or equiv.), $3 \mu \mathrm{H}$.
T1 - Primary, 32 turns No. 24 enam. on Amidon T-68-2 core $(7 \mu \mathrm{H})$. Secondary, 8 turns No. 24 over primary winding.

(USE SILICONE COMPOUND BETWEEN PLATES)

Fig. 2 - Scale layout of the pc board. Heat-sink dimensions are given in English and metric. The heat sink is held to the double-clad pc board by means of the transistor stud and two 4-40 screws and nuts. A substantially larger heat sink should be used if the amplifier is revised for 30 watts of output.
regulated supply is recommended for the overall system when running 15 watts of output.

Details of the pc-board layout and heat sink are given in Fig. 2. The transistor body must make firm contact with the heat sink. Silicone heat-sink compound should be used between Q1 and the heat sink. Tighten the transistor stud nut with care lest the stud be broken off.

Tune up in the center of the cw band by adjusting C1 to provide maximum rf output into a so-ohm load. Amplifier bandwidth will be sufficient for all of cach cw band.

If a band-switched version of the circuit is desired, build the amplifier in a separate box and
use a two-pole, three-position, ceramic-insulated wafer switch to select the T networks. The leads from the switch to the networks and Q1 must be kept short to proserve the network characteristics. Switched-lead inductances will become part of the network, so they must be kept to minimum lengths.

Detailed network design information can be obtained from the QST beginner's series, "Learning to Work with Semiconductors." April-October, inclusive, 1975. Those wishing to operate the amplifier at 30 -watts output can redesign the T network to match a 2.8 -ohm collector impedance, using the equations in the beginner's series.

VHF and UHF Transmitting

Before planning operation on the frequencies above 50 MHz , we should understand the FCC rules, as they apply to the bands we are interested in. The necessary information is included in the allocations table in the first chapter of this Handbook and in The Radio Amateur's License Manual, but some points will bear emphasis here.

Standards governing signal quality in the 50 MHz band are the same as for all lower amateur frequencies. Frequency stability, modulation, keying characteristics, and freedom from spurious products must be consistent with good engineering practice. Simultaneous amplitude and frequency modulation is prohibited. These standards are not imposed by law on amateur frequencies from 144 MHz up. This is not to say that we should not strive for excellence on the higher bands, as well as on 50 MHz , but it is important to remember that we may be cited by FCC for failing to meet the required standards in $50-\mathrm{MHz}$ work.

A sideband signal having excessive bandwidth, an $a-m$ signal whose frequency jumps when modufation is applied, an fm signal that is also ampli-tude-modulated, a cw signal with excessive keying chirp or objectionable key clicks - any of these is undesirable on any band, but they are all illegal on 50 MHz . Any of them could earn the operator an FCC citation in $50-\mathrm{MHz}$ work. And misinterpretation of these points in an FCC examination could cost the would-be amateur his first ticket.

The frequencies above 50 MHz were once a world apart from the rest of amateur radio, in equipment required, in modes of operation and in results obtained. Today these worlds blend increasingly. Thus, if the reader does not find what he needs in these pages to solve a transmitter problem, it will be covered in the hf transmitting chapter. This chapter deals mainly with aspects of transmitter design and operation that call for different techniques in equipment for 50 MHz and up.

DESIGNING FOR SSB AND CW

Almost universal use of ssb for voice work in the hf range has had a major impact on equipment design for the vhf and even uhf bands. Many amateurs have a considerable investment in hf sideband gear. This equipment provides accurate frequency calibration and good mechanical and electrical stability. It is effective in cw as well as ssb communication. These qualities being attractive to the vhf operator, it is natural for him to look for ways to use his hf gear on frequencies above 50 MHz .

Thus increasing use is being made of vhf
accessory devices, both ready made and homebuilt. This started years ago with the vhf converter, for receiving. Rather similar conversion equipment for transmitting has been widely used since ssb began taking over the hf bands. Today the hf trend is to one-package stations, called transceivers. The obvious move for many vhf men is a companion box to perform both transmitting and receiving conversion functions. Known as transverters, these are offered by several transceiver manufacturers. They are also relatively simple to build, and are thus likely projects for the home-builder of vhf gear.

Transverter vs. Separate Units

It does not necessarily follow that what is popular in hf work is ideal for vhf use. Our bands are wide, and piling-up in a narrow segment of a band, which the transceiver encourages, is less than ideal use of a major asset of the vhf bands spectrum space. Separate ssb exciters and receivers, with separate vhf conversion units for transmitting and receiving, tend to suit our purposes better than the transceiver-transverter combination, at least is home-station service.

Future of Other Modes

It should not be assumed that ssb will monopolize voice work in the world above 50 MHz in the way that it has the amateur voice frequencies below 29 MHz . Sideband is unquestionably far superior to other voice modes for weak-signal DX work, but where there is plenty of room, as there is in adl vhf and higher bands, both amplitude and frequency modulation have merit. A low-powered a-m transmitter is a fine construction project for a vhf beginner, and fm has been gaining in popularity rapidly in recent years. A reprint of a very popular 4-part QST series describing a complete two-band vhf station for the beginner is available from ARRL for 50 cents.

The decline in use of amplitude modulation has been mainly in high-powered stations. The heavyiron modulator seems destined to become a thing of the past, but this should not rule out use of $\mathrm{a}-\mathrm{m}$. Many ssb transceivers are capable of producing high-quality a-m, and one linear amplifier stage can build as little as 2 watts a-m output up to 200 watts or so, with excellent voice quality, if the equipment is adjusted with care. It should be remembered that the transmitting converter (or heterodyne unit as it is often called) is not a sideband device only. It will serve equally well with $\mathrm{a}-\mathrm{m}, \mathrm{fm}$ or cw drive.

THE OSCILLATOR-MULTIPLIER APPROACH

Where modes other than ssb are used, most vhf transmitters have an oscillator, usually in the hf range, one or more frequency multiplier stages, and at least one amplifier stage. The basics of this type of transmitter are well covered in the preceding chapter, so only those aspects of design that are of special concern in vhf applications will be discussed here.

Oscillators

Because any instability in the oscillator is multiplied along with the frequency itself, special attention must be paid to both mechanical and electrical factors in the oscillator of a vhf transmitter. The power source must be pure dc, of unvarying voltage. The oscillator should run at low input, to avoid drift due to heating. Except where fm is wanted, care should be taken to isolate the oscillator from the modulated stage or stages.

Crystal oscillators in vhf transmitters may use either fundamental or overfone crystals. The fundamental type is normally supplied for Crequencies up to 18 MHz . For higher frequencies the overtone type is preferred in most applications, though fundamental crystals for up to about 30 MHz can be obtained on order. The fundamental crystal oscillates on the frequency marked on its holder. The marked frequency of the overtone type is approximately an odd multiple of its fundamental froquency, usually the third multiple for frequencies between 12 and 54 MHz , the fifth for roughly 54 to 75 MHz , and the seventh or ninth for frequencies up to about 150 MHz . Crystals are seldom used for direct frequency control above about 75 MH Mz in amateur work, though crystals for 144 MHz oscillation can be made.

Most fundamental crystals can be made to oscillate on at least the third overtone, and often higher, with suitable circuits to provide feedback at the desired overtone frequency. Conversely, an overtone crystal is likely to oscillate on its fundamental frequency, unless the tuned circuit is properly designed. An overtone crystal circuit should be adjusted so that there is no oscillation at or near one-third of the frequency marked on the holder, nor should there be energy detectable on the even multiples of the fundamental frequency.

It should be noted that the overtone is not necessarily an exact multiple of the fundamental. An $8000-\mathrm{kHz}$ fundamental frequency does not guaruntee overtone oscillation on 24.000 MHz , though it may work out that way in some circuits, with some crystals. Overtone crystals can also be made to oscillate on other overtones than the intended one. A third-overtone $24-\mathrm{MHz}$ crystal can be used for its fifth overtone, about 40 MHz , or its scventh, about 56 MHz , by use of a suitable tuned circuit and carcful adjustment of the feedback.

Variable-frequency oscillators are in great demand for vhf-transmitter frequency control, but except where heterodyning to a higher frequency is used, as opposed to frequency multiplication, the VFO is generally unsatisfactory. Small instabilities,
hardly noticeable in hf work, are multiplied to unacceptable proportions in the oscillatormultiplier type of transmitter. The fact that many such unstable VFO rigs are on the air, particularly on 6 meters, does not make them desirable, or even legal. Only careful attention to all the fine points of VFO design and use can result in satisfactory stability in vhf transmitters.

Frequency Multipliers

Frequency multiplication is treated in Chapter 6. The principal factor to keep in mind in multipliers for the vhf bands is the probability that frequencies other than the desired harmonics will be present in the output. These can be sources of TVI in vhf transmitters. Examples are the 9 th harmonic of 6 MHz and the 7th harmonic of 8 MHz , both falling in TV Channel 2. The 10th harmonic of $8-\mathrm{MHz}$ oscillators falling in Channel 6 is a similar problem. These unwanted multiples can be held down by the use of the highest practical degree of selectivity in interstage coupling circuits in the vhf transmitter, and by proper shielding and interstage impedance matching. This last is particularly important in transistor frequency multipliers and amplifiers. More on avoiding TVI will be found later in this chapter, and in the chapter on interference problems.

The varactor multiplier (see Chapter 4) is much used for developing power in the $420-\mathrm{MHz}$ band. Requiring no power supply, it uses only driving power from a previous stage, yet quite high orders of efficiency are possible. Two examples are shown later in this chapter. A $220-\mathrm{MHz}$ exciter tuned down to 216 MHz makes a good driver for a $432-\mathrm{MHz}$ varactor doubler. More commonly used is a tripler such as the one described in this chapter, using $144-\mathrm{MHz}$ drive. The output of a varactor multiplier tends to have appreciable amounts of power at other frequencies than the desired, so use of a strip-line or coaxial filter is recommended, whether the multiplier drives an amplifier or works into the antenna directly.

AMPLIFIER DESIGN AND OPERATION

Amplifiers in vhf transmitters all once ran Class C, or as near thereto as available drive levels would permit. This was mainly for highefficiency cw , and quality high-level amplitude modulation. Class C is now uscd mostly for cw or fm , and in either of these modes the drive level is completely uncritical, except as it affects the operating efficiency. The influence of ssb techniques is seen clearly in current amplifier trends. Today Class $A B_{1}$ is popular and most amplifiers are set up for linear amplification, for ssb and - to a lesser extent -$a-\mathrm{m}$. The latter is often used in connection with small amplitude-modulated vhf transmitters, having their own built-in audio equipment. Where a-m output is available from the ssb exciter, it is also useful with the Class AB_{1} lincar amplificr, for only a watt or two of driver output is required.

There is no essential circuit difference between the $A B_{1}$ linear amplifier and the Class-C amplifier;

Amplifier Design and Operation

only the operating conditions are changed for different classes of service. Though the plate efficiency of the $A B_{1}$ linear amplifier is low in a-m service, this type of operation makes switching modes a very simple matter. Moving toward the high efficiency of Class C from $A B_{1}$, for cw or fm service, is accomplished by merely raising the drive from the low $A B_{1}$ level. In $A B_{1}$ service the efficiency is typically 30 to 35 percent. No grid current is ever drawn. As the grid drive is increased, and grid current starts to flow, the efficiency rises rapidly. In a well-designed amplifier it may reach 60 percent, with only a small amount of grid cument flowing. Unless the drive is run well into the Class C region, the operating conditions in the amplifier can be left unchanged, other than the small increasing of the drive, to improve the efficiency available for cw or fm . No switching or major adjustments of any kind are required for near-optimum operation on ssb, a-m, fm or cw , if the amplifier is designed primarily for $A B_{1}$ service. If high-level a-m were to be used, there would have to be major operating-conditions changes, and very much higher available driving power.

Tank-Circuit Design

Except in compact low-powered transmitters, conventional coil-and-capacitor circuitry is seldom used in transmitter amplifiers for 144 MHz and higher frequencies. U-shaped loops of shect metal or copper tubing, or even copper-laminated circuit board, generally give higher Q and circuis efficiency at 144 and 220 MHz . At 420 MHz and higher, coaxial tank circuits are effectivc. Resonant cavities are used in some applications above 1000 MHz . Examples of all types of circuits are seen later in this chapter. Coil and capacitor circuits are common in $50-\mathrm{MHz}$ amplifiers, and in low-powered, mobile and portable equipment for 144 and even 220 MHz .

Stabilization

Most vhf amplifies, other than the groundedgrid variety, require neutralization if they are to be satisfactorily stable. This is particularly tne of AB_{1} amplifiers, which are characterized by very high power sensitivity. Conventional neutralization is discussed in Chapter 6. An example is shown in Fig. 7-1A.

A tetrode tube has some frequency where it is inherently neutralized. This is likely to be in the lower part of the vhf region, for tubes designed for hf service. Neutralization of the opposite sense may be required in such amplifiers, as in the example shown in Fig. 7-1B.

Conventional screen bypassing methods may be ineffective in the vhf range. Serics-tuning the screen to ground, as in 7-1C, may be useful in this situation. A critical combination of fixed capacitance and lead length may accomplish the same result. Neutralization of transistorized amplifiers is not generally practical, at least where bipolar transistors are used.

Parasitic oscillation can occur in vhf amplifiers, and, as with hf circuits, the oscillation is usually at a frequency considerably higher thar the operating

Fig. 7-1 - Representative circuits for neutralizing vhf single-ended amplifiers. The same techniques are applicable to stages that operate in push-pull. At $A, C 1$ is connected in the manner that is common to most vhf or uhf amplifiers. The circuits at B and C are required when the tube is operated above its natural self-neutralizing frequency. At B, C1 is connected between the grid and plate of the amplifier. Ordinarily, a short length of stiff wire can be soldered to the grid pin of the tube socket, then routed through the chassis and placed adjacent to the tube envelope, and parallel to the snode element. Neutralization is effected by varying the placement of the wire with respect to the anode of the tube, thus providing variable capacitance at C1. The circuit at C is a variation of the one shown at B. It too is useful when a tube is operated above its self-neutralizing frequency. In this instance, C1 provides a low-Z screen-to-ground path at the operating frequency. RFC.in all circuits shown are vhf types and should be selected for the operating frequency of the amplifier.
frequency, and it cannot be neutralized out. Usually it is damped out by methods illustrated in Fig. 7-2. Circuits A and B are commonly used in 6 -meter transmitters. Circuit A may absorb sufficient fundamental energy to burn up in all but low-power transmitters. A better approach is to use

Fig. 7-2 - Representative circuits for whf parasitic suppression are shown at A, B, and C. At A, 21 (for 6 -meter operation) would typically consist of 3 or 4 turns of No. 14 wire wound on a 100 -ohm 2 -watt non-inductive resistor. $\mathrm{Z1}$
 use, is more practical whare heating is concerned. $\mathbf{Z 2}$ is tuned to resonance at the parasitic frequency by C. Each winding of $\mathbf{Z 2}$ consists of two or more turns of No. 14 wire - determined experimentally - wound over the body of a 100 -ahm 2 -watt (or larger) noninductive resistor. At C, an illustration of uhf parasitic suppression as applied to a 2 -meter amplifier. Noninductive 56 -ohm 2-watt resistors are bridged across a short length of the connecting lead between the tube anode and the main element of the tank inductor, thus forming $\mathbf{Z 3}$ and 24.

The circuit at D illustrates how bypassing for both the operating frequency and lower frequancias is accomplished. Low-frequency oscillation is discouraged by the addition of the $0.1 \mu \mathrm{~F}$ disk ceramic capacitors. RFC1 and RFC2 are part of the decoupling network used to isolate the two stages. This technique is not required in vacuum-tube circuits.
the selective circuit illustrated at B . The circuit is coupled to the plate tank circuit and tuned to the parasitic frequency. Since a minimum amount of the fundamental energy will be absorbed by the trap, heating should no longer be a problem.

At 144 MHz and higher, it is difficult to construct a parasitic choke that will not be resonant at or near the operating frequency. Should uhf parasitics occur, an effective cure can often be realized by shunting a $56-$ ohm 2 -watt
resistor across a small section of the plate end of the tuned circuit as shown in Fig' 7-2, at C. The resistor should be attached as near the plate connector as practical. Such a trap can often be constructed by bridging the resistor across a portion of the flexible strap-connector that is used in some transmitters to join the anode fitting to the plate-tank inductor.

Instability in solid-state vhf and uhf amplifiers can often be traced to oscillations in the If and hf regions. Because the gain of the transistors is very high at the lower frequencies, instability is almost certain to occur unless proper bypassing and decoupling of stages is carried out. Low-frequency ascillation can usually be cured by selecting a bypass-capacitor value that is effective at the frequency of oscillation and connecting it in parallel with the vhf bypass capacitor in the same part of the circuit. It is not unusual, for example, to employ a $0.1-\mu \mathrm{F}$ disk ceramic in parallel with a $.001 \mu \mathrm{~F}$ disk capacitor in such circuits as the emitter, base, or collector retum. The actual values used will depend upon the frequencies involved. This techniquo is shown in Fig. 7-2D. For more on transmitter stabilization, see Chapter 6.

TIPS ON AB1 LINEAR AMPLIFIERS

As its name implies, the function of a lincar is to amplify an amplitude-modulated signal in a manner so that the result is an exact reproduction of the driving signal. (Remember, ssb is a form of amplitude modulation.) The nature of the a-m signal with carrier is such that linear amplification of it is inherently an inefficient process, in terms of power input to power output, which is the conventional way of looking at amplifier efficiency. But when all factors are considered, particularly the very small exciter power required and elimination of the cumbersome and expensive hightevel plate-modulation equipment, "efficiency" takes on a different meaning. Viewed in this way, the Class-AB ${ }_{1}$ a-m linear has only two disadvantages: it is incapable of providing as much power output (within the amateus power limit of 1 kW) as the high-level-modulated amplifier, and it requires considerable skill and care in adjustment.

The maximum plate efficiency possble with an AB_{1} a-m linear is about 35 percent. The power output in watts that is possible with a given amplifice tube is roughly half its rated plate dissipation. If the first factor is exceeded the result is poor quality and splatter. If the second is ignored, the qube life is shortened markedly.

Thare being no carrier to worry about in ssb operation, the linear amplifier can run considerably higher officiency in amplifying ssb signals, and the popularity of ssb has brought the advantages of the linear amplifier for all classes of service into focus. The difference between a-m with carrier and ssb without carrier, in the adjustment of a linear, is mainly a matter of the drive level. Drive can never be run up to the point where the stage begins to draw grid current, but it can run close with ssb, whereas it must be held well below the grid-current level when the cartier is present.

With a-m drive the plate and screen currents must remain steady during modulation. (Tho screen current may be negative in some amplifiers, so observation of it is simpler if the screen-current meter is the zero-center type.) The plate, screen and grid meters are the best simple indicator of safe $A B_{1}$ operation, but they do not show whether or not you are getting all you can out of the amplifier. The signal can be monitored in the station receiver, if the signal in the receiver can be held below the point at which the receiver is overloaded. Cutting the voltage from a converter amplifier stage is a good way to do this. But the only way to know for sure is to use an oscilloscope.

One that can be used conveniently is the Heath Monitor Scope, any version. Some modification of the connections to this instrument may be needed, to prevent excessive of pickup and resultant pattem distortion, when using it for vhf work. Normally a coupling loop within the scope, connected between two coaxial fittings on the rear of the instrument, is used. The line from the kransmitter to the antenna or dummy load runs through these two fittings. For whf service, a coaxial T fitting is connected to one of these terminals, and the line is run through it, only. With full power it may even be necessary to remove the center pin from the T fitting, to reduce the input to the scope still further, particularly in $144-\mathrm{MHz}$ service.

Really effective adjustment of the linear amplifier, whether with ssb or a-m drive, involves many factors. The amplifier must be loaded as heavily as possible. Its plate and grid circuits must be tuned carefully for maximum amplifier output. (DetunIng the grid circuit is not the way to cut down drive.) If the power leve! is changed, all operating conditions must be checked carefully again. Constant metering of the grid, screen and plate currents is very helpful. One meter, switched to the various circuits, is definitely not recommended. A relative-power indicator in the antenna line is a necessity.

All this makes it appear that adjustment of a linear is a very complex and difficult process, but with experience it becomes almost second nature. even with all the points that must be kept in mind. It boils down to keeping the amplifier adjusted for maximum power output, and the drive level low enough so that there is no distortion, but high enough so that maximum efficiency is obtained. Practice doing this with the amplifier running into a dummy load, and the process will soon become almost automatic. Your amateur neighbors (and perhaps TV viewers nearby, as well) will appreciate your cooperation!

Abous Driver Stages

If the amplifier is capable of reproducing the driving signal exactly, it follows that the driver quality must be above reproach. This is quite readily assured, in view of the low driving power required with the $A B_{1}$ lineas. Only about two watts exciter power is needed to drive a groundedcathode AB_{1} linear of good design, so it is possible to build excellent quality and modulation charac-

Fig. 7.3 - The 6-meter iransverter, with shield cover in place. Large knobs are for amplifier tuning and loading. Small knob, lower right is for a meter sensitivity control. The meter switch is just above it.
teristics into the a-m driver or ssb exciter. If this is done, and the amplifier is operated properly, the result can be a signal that will bring appreciative and complimentary reports from stations worked, on both a-m and ssb.

VHF TVI CAUSES AND CURES

The principal causes of TVI from vhf transmitters are as follows:

1) Adjacent-channel interference in Channels 2 and 3 from 50 MHz .
2) Fourth harmonic of 50 MHz in Channels 11 , 12 or 13, depending on the operating frequency.
3) Radiation of unused harmonics of the oscillator or multiplicr stages. Examples are 9th harmonic of 6 MHz , and 7th harmonic of 8 MHz in Channel 2 ; 10 th harmonic of 8 MHz in Channel 6 ; 7th hammonic of $25-\mathrm{MHz}$ stages in Channel 7; 4 th harmonic of $48-\mathrm{MHz}$ stages in Channel 9 or 10 ; and many other combinations. This may include i-f pickup, as in the cases of $24-\mathrm{MHz}$ interference in receivers having $21-\mathrm{MHz}$ i-I systems, and $48-\mathrm{MHz}$ trouble in $45-\mathrm{MHz} \mathrm{i}$-fs.
4) Fundamental blocking effects, including modulation bars, usually found only in the lower channels, from $50-\mathrm{MHz}$ cquipment.
5) Image interference in Channel 2 from 144 MHz , is recoivers having a $45-\mathrm{MHz}$ i-f.
6) Sound interference (picture clear in some cases) resulting from of pickup by the audio circuits of the TV receiver.

There are other possibilities, but ncarly all can be corrected completely, and the rest can be substantially reduced.

Items 1,4 and 5 are receiver faults, and nothing can be done at the transmitter to reduce them, except to lower the power or increase separation between the transmitting and TV antenna systems. Item 6 is also a receiver fault, but it can be alleviated at the transmitler by using fm or cw instead of $a-m$ phone.

Treatment of the various harmonic troubles, Items 2 and 3, follows the standard methods detailed elsewhere in this Handbook. It is suggested that the prospective builder of new vhf equipment familiarize himself with TVI prevention techniques, and incorporate them in new construction projects.

Use as high a starting frequency as possible, to reduce the number of hamonics that might cause trouble. Select crystal frequencies that do not have hamonics in TV channels in use locally. Example: The 10 th harmonic of $8-\mathrm{MHz}$ crystals used for operation in the low part of the $50-\mathrm{MHz}$ band falls in Channel 6, but 6-MHz crystals for the same band have no hamonic in that channel.

If TVI is a serious problem, use the lowest transmitter power that will do the job at hand. Keep the power in the multiptier and driver stages at the lowest practical level, and use link coupling in preference to capacitive coupling. Plan for complete shielding and filtcring of the rf sections of the transmitter, should these steps become necessary.

Use coaxial line to feed the antenna system, and locate the radiating portion of the antenna as far as possible from TV receivers and their antenna systems.

50-MHZ TRANSVERTER

With the increase in use of ssb on the vhf bands, there is much interest in adapting hf ssb gear to use on higher frequencics. The transverter of Fig. 7-3 will provide transceiver-style operation on 50 MHz , when used with a low-powered $28-\mathrm{MHz}$ transceiver. The output of the transmitter portion is about 40 watts, adequate for much interesting work. It can be used to drive an amplifier such as the groundedgrid 3-5002 unit described later in this chapter. The recciving converter combincs simplicity, adequate gain and noise figure, and freedom from overloading problems.

Circuit Details

The receiving front end uses a grounded-gate JFET rf amplifier, Q1 in Fig. 7-5, followed by a dual-gate MOSFET mixer, Q2. Its $22-\mathrm{MHz}$ injection voltage is taken from the oscillator and buffer stages that also supply injection for transmitter mixing. The difference frequency is 28 MHz , so the transceiver dial reading bears a direct $28-50$ relationship to the $50-\mathrm{MHz}$ signal being reccived. For more detail on the converter construction and adjustment, see Fig. 9-9 and associated text. The transverter uses the grounded-gate if amplifier circuit, while the converter referred to above has a grounded source, but they are quite similar otherwise.

The triode portion of a 6LN8, V1A, is a
$22-\mathrm{MHz}$ crystal oscillator. The pentode, V1B, is a buffer, for isolation of the oscillator, and increased stability. Injection voltage for the receiving mixer is taken from the buffer output circuit, L8, through a two-turn link, L9, and small-diameter coax, to gate 2 of the mixer, through a $10-\mathrm{pF}$ blocking capacitor.

The grid circuit of the 6EJ7 transmitting mixer, V2, is tuned to 22 MHz and is inductively coupled to the buffer plate circuit. The $28-\mathrm{MHz}$ input is applied to the grid circuit through a link around L11, and small-diameter coax. The mixer output, L 12 , is tuned to the sum frequency, 50 MHz , and coupled to a 6GK6 amplifier, V3, by a bandpass circuit, L12 and L13. The 6GK6 is bandpasscoupled to the grid of a 6146 output stage, V4. This amplifier employs a pi-network output stage.

The 6146 plate dissipation is held down during the receiving periods by fixed bias that is switched in by relay K1. The mixer and driver tubes have their screen voltage removed during receiving, by the same relay, which also switches the antenna and $28-\mathrm{MHz}$ input circuits for transmitting and receiving. The relay is energized by grounding pin 7 of P1 through an external switch, or by the VOX relay in the transceiver.

Construction

A $7 \times 9 \times 2$-inch aluminum chassis is used for the transverter, with a front panel 6 inches high, made of sheet aluminum. The top and sides are enclused by a one-picec cover of perforated aluminum. The output-stage tuning control, C5, is on the uppor left of the panel, 2 inches above the chassis. The loading control, C6, is immediately below, under the chassis. The meter, upper right, monitors either 6146 plate current or relative output, as selected by the switch, S1, immediately below it. A sensitivity control for calibrating the output-metering circuit completes the front-panel controls.

The output connector, $\mathbf{J} 2$, is centered on the rear apron of the chassis, which also has the input jack, J1, the 8 -pin connector, P1, and the biasadjusting control mounted on it.

The meter is a $1-\mathrm{mA}$ movement, with multiplier resistors to give a full-scale reading on a current of 200 mA . The front cover snaps off easily, to allow calibration marks to be put on as desired.

An enclosure of perforated aluminum, $31 / 4$ inches high, 4 inches wide and $43 / 4$ inches long shields the 6146 and its plate circuit. There is also an L-shaped shield around the 6146 socket, under the chassis.

The receiving converter is built on a $21 / 2 \times 41 / 4$-inch etched board, and mounted vertically in a three-sided shield of sheet aluminum. Before mounting the converter shield, be sure to check for clearance with the terminals on the meter. Remember, the meter has full plate voltage on it when the switch is set to read plate current, even when the transverter is in the receiving mode.

Testing of the transverter was done with the General-Purpose Supply for Transceivers, described in the power supply chapter. Separate provision

Fig. 7-4 - Top view of the transverter. The receiving converter is inside the shield at the left. The $22-\mathrm{MHz}$ crystal occillator and buffer are in the left rear portion of the chassis. In the right corner is the transmitting mixer. Above it is the first amplifier. The 6146 output amplifier is in the shielded compartment at the left front.
must be made for 12 volts dc for the receiving converter.

Injection voltage, signal input and i-f output connections to the converter are made with smalldiameter coax. These and the 12 -volt wiring are brought up through small holes in the chassis, under the converter. As scen in Fig. 9-11, the input JFET, Q1, is on the left. The mixer is near the center. The $28-\mathrm{MHz}$ output coils, $\mathrm{L5}$ and L6, are just to the right of Q2.

Note that there are two sets of relay contacts, K1D and K1F, in series in the receiver line. This guarantees high isolation of the receiver input, to protect the If amplifier transistor. Another protective device is the diode, CR1, across the coil of the relay. If there are other relays external to this unit that use the same 12 -volt supply, it is advisable to put diodes across their coils also. Spikes of several volts can be induced with making and breaking of the coil circuits.

Adjustment

A dip meter is very useful in the preliminary tuning. Be sure that L7 and L8 are tuned to 22 MHz and L12 and L13 are tuned to 50 MHz . The driver and output circuits should also be tuned to 50 MHz . Check to be sure that slug-tuned coils really tune through the desired frequency. Quite

often troubles are eventually traced to coils where the circuit is only approaching resonance as the core centers in the winding. Such a circuit will appear to work, but drive will be low, and spurious outputs will tend to be high. This is a common trouble in overtone oscillators, with slug-tused coils.

Once the circuits have been set approximately, apply heater and plate voltage to the oscillator, and tune $L 7$ for best oscillation, as checked with a wavemeter or a receiver tuned to 22 MHz . Connect
a $28-\mathrm{MHz}$ receiver to the input, J , and apply de to the converter. It should be possible to hear a strong local station or test signal immediately. Peak all coils for best reception, then stagger-tune LS and L6 for good response across the first 500 kHz of the band.

Before applying plate voltage to the 6146, it is advisable to protect the tube during tuneup by inserting a 1500 or 2000 -ohm 25 -watt resistor in series with the plate supply. Connect a 50 -ohm load to the output jack, and energize K1. Adjust

Fig. 7-5 - Schematic diagram and part information for the $50-\mathrm{MHz}$ transverter.
C1 - 10-pF subminiature variable (Hammarlund MAC-10).
C2 - 5-pF subminiature variable (Hammarlund MAC-5).
C3-2 1/2-inch length No. 14 wire, parallel to and $1 / 4$ inch away from tube envelope. Cover with insulating sleeve.
C4 - 500 -pF 3000 -voli disk ceramic.
C5 - 10-pF variable (Johnson 149-3, with one stator and one rotor plate removed.
C6-140-pF variable (Millen 22140).
CR1 - 1 N128 diode.
CR2 - 1N83A diode.
J1 - Phono jack.
J2 - Coaxial jack, SO-239.
K1 - 6-pole double-throw relay, 12-volt de coil.
Li - 2 turns small insulated wire over ground end of L2.
L2, L3, L4 - 10 turns No. 24 enamel closewound on J. W. Miller 4500-4 iron-slug form.
L5, L6 - 12 turns No. 24 enamal on J. W. Miller $4500-2$ iron-slug form.
L7. L8, L11 - Iron-slug coils adjusted for 4.1, 5.5 and $5.5 \mu \mathrm{H}$, respectively (Miller 4405).
L.9. L10-2 turns small insulated wire over ground ends of L8 and L11.
L12, L13-1- $\mu \mathrm{H}$ |ron-slug coil J. W. Miller 4403, 3 turns removed.
L14 - 7 turns No. 20, 1/2-inch dia, $1 / 2$ inch long (B \& W 3003).
L15 - Like L14, but 6 turns.
L16 - 6 turns No. 20, 5/8-inch dia, $3 / 4$ inch long (B \& W 3006).
Pi - 8-pin power connector.
RFC1 $-68-\mu \mathrm{H}$ rf choke (Millen 34300).
RFC2 $-8.2 \mu \mathrm{H}$ rf choke (Millen J-300).
RFC3 - 5 tums No. 22 on 47 -ohm 1/2-watt resistor.
RFCA -4 turns No. 15 on 47 -ohm 1 -watt resistor.
RFC5, RFC6, RFC7 - 8.2- $\mu \mathrm{H}$ if choke (Millen 34300).

Si - Dpdr toggle.
Y1 - $22-\mathrm{MHz}$ overtone crystal (International Crystal Co., Type EX).
the bias control for 25 to 30 mA plate current. Apply a small amount of $28-\mathrm{MHz}$ drive. A fraction of a watt, enough to produce a dim glow in a No. 47 pilot lamp load, will do. Some output should be indicated on the meter, with the sensitivity control fully clockwise. Adjust the amplificr tuning and loading for maximum output, and readjust all of the $50-\mathrm{MHz}$ circuits likewise.

After the circuits have been peaked up, adjust the bardpass cincuits by applying first a $28.1-\mathrm{MHz}$ input and then a $28.4-\mathrm{MHz}$ input, and peaking alternate coils until good operation is obtained over the range of 50.0 to 50.5 MHz . Most ssb operation currently is close to 50.1 MHz , so uniform response across a $500-\mathrm{kHz}$ range is not too important, if only this mode is used. If the 10 -meter transceiver is capable of $a-m$ operation, and you want to use this mode, coverage up to 50.5 with uniform output may be more desirable. Adjust the position of the neutralizing wire, C3, for minimum if in L16, with drive on, but no screen or plate voltage on the 6146.

Fig. 7-6 - Bottom of the transverter, with the 6146 socket inside the shisld compartment at the right. Three sets of inductively-coupled circuits are visible in the upper-right comer. The first two, near the top of the picture, are on 22 MHz . Next to the right and down, are the mixer plate and firsi-amplifier grid circuits. The self-supporting 6GK6 plate and 6146 grid coils are just outside the amplifier shield compartment. The large variable capacitor is the loading control.

Now apply full plate voltage. With oo drive, set the bias adjustment for a 6146 plate current of 25 to 30 mA . With the dummy load connected, experiment with the amount of drive needed to reach maximum plate current. Preferably, use a scope to check for flat-topping as the drive is increased. An output of 40 watts, cw , should be obtainable. The quality of the ssb signal is determined first by the equipment gencrating it, but it can be ruined by improper operation. Over driving the mixer or the 6146, and improper loading of the amplifier will cause distortion and splatter. Continuous monitoring with a scope is the best preventive measure.

Because of the frequencies mixed, and the bandpass coupling between stages, the output of the transverter is reasonably clean. Still, use of an antenna coupler or filter between the transverter and antenna is good insurance. The same treatment of the transverter output is desiable when driving a linear amplificr.

Fig. 7-7 - Panel viaw of the 2 -meter transverter. This version is patterned after a transmitting converter design by K9UIF. The on-off switches for $a c$ and de sections of the power supply are mounted on the front panel of the unit as are the pllot lamps and piate meter for the PA stage. The tuning controls for the various stages are accessible from the top of the chassis.

A 2-METER TRANSVERTER

This transverter is designed to be used with any 14 - or $28-\mathrm{MHz}$ ssb exciter capable of delivering approximately 20 watts peak output. It is stable both in terms of frequency and general operating conditions. It can provide up to 20 watts PEP output at 144 MHz - sufficient, say, for driving a pair of 4 CX 250 tubes in Class C for cw operation. or the same pair of tubes can be operated $A B_{1}$ to provide 1200 watts PEP input with this unit as a driver. The outpul signal is clean and TVI should not be experienced except where receiver faults are involved.

It is not recommended that beginners attempt this project since vhf ssb circuits require special care in their construction and operation, sometimes a requirement that is a bit beyond the inexperienced builder.

How II Operates

Starting with V1A, the oscillator, Fig. 7-8, a $43.333-\mathrm{MHz}$ or overtone crystal is used at Y 1 to provide the local-oscillator signal for the exciter. Output from V1A is amplified by V1B to a suitable level for driving the tripler, V2. $130-\mathrm{MHz}$ or $116-\mathrm{MHz}$ energy is fed to the grids of V 3 , a 6360 mixer, by means of a bandpass tuned circuit, L3,C1, and L4,C2. The selectivity of this circuit is high, thus reducing unwanted spurious energy at the mixer grids.

Output from the exciter is supplied through an attenuator pad at $\delta 1$ and is injected to the mixer, V3, at its cathode circuit, across a 270 -ohm resistor. The attenuator pad can be eliminated if a very low-power exciter is to be used. The values shown in Fig. 7-8 were chosen for operation with a Central Electionics 20A exciter operating at full input, or nearly so. The amount of driving powes needed at the cathode of V3 is approximately 4 or 5 watts PEP.

B1 - Small 15-volt battery.
C1 - 20-pF miniature variable (E. F. Johnson 160-110 suizable).
C2, C3, C5 - 10 -pF per section miniature butterfly (E. J. Johnson 167-21 suitabla).

C4 - 5-pF per section miniature butterfly (E. F. Johnson 160-205 suitable).
C6 - 20-pF miniature variable (same as C1).
$11,12-117$-Vac neon panel lamp assembly.
J1 J3, ind. - SO-239-style coax connector.
J3 - Closed-circuit phone jack.
L. -15 turns No. 28 enam. wire, close wound, on $1 / 4$-inch dia slug-tuned form (Millen 69058 form suitablel.
L2 - 12 turns No. 28 enam. wire, close-wound, on same type form as L1.
L3 - 5 turns No. 18 wire space-wound to 7/8-inch length, $1 / 2$-inch dia, center-tapped.
L4 - 3 turns No. 18 wire, $1 / 2$-inch dia, $3 / 8$-inch long, center-tapped.
L5 - 6 turns No. 18 wire, 1/2-inch dia, 5/8-inch long, center-tapped.
L6 - 3 turns No. 18 wire, 1/2-inch dia, $5 / 8$-inch long, center-tapped.
L7 - 4 turns No. 18 wire, 1/2-inch dia, 1/2-inch long, center-tapped.
L8 - 1-turn link of insulated hookup wire, $1 / 2$-inch dia, inserted in center of $L 7$.
L9-2 turns of insulated hookup wire over L3.
M1 - 0 to 200-mA dc metar.
P1-11-pin chossis-mouni male plug (Amphenod 86PM11).
R1 - 50,000 -hm linear-raper, 5 -watt contral.
RFC1-RFC3, ind. $-2.7 \cdot \mu \mathrm{H}$ of choke (Millen 34300-2.7).
S1, S2 - Spst rocker-type switch (Carling TIGK60).
Y1 - 43.333-MHz third-overtone erystal for $14-\mathrm{MHz}$ input. If a $28-\mathrm{MHz}$ transceiver will be used, a $38.667-\mathrm{MHz}$ crystal is required.

After the $130-\mathrm{MHz}$ and $14-\mathrm{MHz}$ signals are mixed at V3, the sum frequency of $144-\mathrm{MHz}$ is coupled to the grids of V4, the PA stage, by means of another bandpass tuned circuit - further reducing spurious output from the exciter. PA stage V4 operates in the $A B_{1}$ mode. Its idling plate current is approximately 25 mA . The plate current rises to approximately 100 mA at full input.

If cw operation is desired, the grid-block keying circuit in the mixer stage (J3) can be inctuded. If ssb operation is all that is contemplated, the minus 100 -volt bias line can be eliminated along with J3, R1, and the shaping network at 33. In that case the 15,000 -ohm grid resistor from the center tap of L4 would be grounded to the chassis.

The receiving section uses a low-noise uhf MOSFET as the If amplifier and a second dual-gate MOSFET as the mixer. See Fig. 7-10. The gate-1 and drain connections of the rf amplifier are tapped down on the tuned circuits so that unconditional stability is achicved without neutralization. Oscillator energy is sampled with a two-tum link wound over L3. A short length of RG-58A/U carries the injection energy to Q 2 . The converter is buitt in a $5 \times 21 / 4 \times 21 / 4$ inch box constructed from four pieces of double-sided circuit board that have been soldered on all abutting cdges. The unit is mounted on the transverter front panel.

Fig. 7.8 - Schematic diagram of the transmitting converter portion of the transverter. Fixed-value capacitors are disk ceramic unless noted differently. The polarized capacitor is electrolytic. Fixed-value resistors are $1 / 2$-watt carbon unless otherwise noted.

Fig. 7-9 - Inside view of the converter. Shields are used between the rt amplifier input and output circuits, and between the latter and the mixer input circuit. The cable entering the bottom side of the enclosure carries the oscillator injection energy. Outpur to the associated receiver or transceiver is taken through the jack to the lett.

Constnction Notes

The photographs show the construction techniques that should be followed for duplicating this equipment. The more seasoned builder should have no difficulty changing the prescribed layout to fit his particular needs, but the shielding and bypassing methods used here should be adhered to even if changes are made.

An $8 \times 12 \times 3$-inch aluminum chassis is used for this equipmest. An internal chassis, S inches
wide, 3 inches deep, and 12 inches long, is made from flashing copper and installed along one edge of the main chassis. This method makes it possible to solder directly to the chassis for making positive ground connections rather than rely on mechanical joints. Shield partitions are made of copper and are soldered in place as indicated on the schematic diagram and in the photo. An aluminum bottom plate is used to enclose the underside of the chassis for confining the rf.

Feedthrough capacitors are used to bring power leads into the copper compartment. Though this adds somewhat to the overall cost of the project, it provides excellent bypassing and decoupling, thus reducing unwanted interstage coupling. It also contributes to TVI reduction. Most surplus houses stock feedthrough capacitors, and offer them at reasonable cost.

Tune-Up

An antenna-changeover relay and a set of normally-open relay contacts, both operated by the exciter, must be provided. The remote control leads, from P2, should be connected to the relay contacts. With power applied to the converter, L12 should be set for maximum noise input to the transceiver. Then, using a signal generator or off-the-air weak signal, peak L9, L10 and L11 for best signal-to-roise ratio.

The transmitter section can be powered by the circuit of Fig. 7-12, or the builder can design a supply of his own choice. Regulated voltages are

Fig. 7-10 - Diagram of the converter section. Resistors are $1 / 4$-watt composition and capacitors are disk ceramic, except as noted otherwise.
C7-C9, incl. - Air variable, pc mount (Johnson 189-505-5).
C10 - Feedthrough type.
L9-4 9/2 turns, No. 18 tinned wire, 1/4-inch ID.
Tap at $11 / 2$ turns up from the ground end for the antenna connection, and at 3 turns for the Q1 gate.
110-41/2 tums, No. 18 tinned wire, $1 / 4$-inch

ID. Tap at 3 turns up from the cold end for the Q1 drain connection.
L11 - 5 furns No. 18 tinned wire, $1 / 4$-inch ID.
L12-1.99-2.42- $\mu \mathrm{H}$ slug-tuned coil, pe mount, for $28-\mathrm{MHz}$ output (J. W. Miller 46A226CPC); or, for $14-\mathrm{MHz}$ ouiput, 7.3-8.9- $\mu \mathrm{H}$ (J. W. Miller 46A826CPC).
J4-J6, íncl. - Phono type.
Q1, Q2 - RCA dual-gate MOSFET.
Z1 - 12-V miniature power supply, transistor radio type.

Fig. 7-11 - Looking into the bottom of the chassis, the of section is enclosed in a shield compartment made from flashing copper. Additional divider sections isolate the inpus and ourpur tuned circuits of the last three stages of the exciter. Feedthrough capacitors are mounted on one wall of the coppar compartment to provide decoupling of the power leads.

recommended for best operation.
With a dummy load connected to J2, apply operating voltage. Couple a wavemeter to Li and tune the oscillator plate for maximum output Then, detune the slug of LI slightly (toward mintmum inductance) to assure reliable oscillator starting. Couple the wavemeter to L 2 and tunc for peak output. With the wavemeter applied to LA, adjust C 1 and C 2 for maximum indicated outpul

The next step is to conncet the transceiver to Jl and supply fust enough drive to cause a rise in PA plate current of a few milliamperes. Tune C3
and C4 for maximum indicated phate current at M1, then adjust C5 and C6 for maximum power output to the dummy load. C1, C2, C3 and C4 should be readjusted at this point for maximum plate current of the PA stage. Use only enough drive to bring the PA plate current up to 100 mA at maximum dc inpus power.

A closed-circuit keying jack is used at J3 so that the mixer stage is not biased to culoff during voice operation. Inserting the key permits full bias to be applied, thus cutting off V3. RI should be adjusted for complete cutoff of V3 when the key is open.

Fig. 7.12 - Schamatic of the power supply section. On-off switches for the ac and de circuits are mountad in the rf deck along with the pilot lamps. Polarized capacitors are electrolytic, others are disk ceramic. CR1 and CR2 are 1000 -volt, 1 -ampere silicon diodes. CR3 is a 200-PRV 600 -mA silicon diode. T1 is a power transformer with a 540 vole ct secondary at 120 mA . Filament windings are 5 volts at 3 A, and 6.3 volts at 3.5 A . T2 is a 6.3 -volt, 1 -ampare filament transformer connectad back to back with the 5 -vole winding of TI. SI is an 11 -pin socket (female). A 10,000 -ohm resistor and a 01 - $\mu \mathrm{F}$ disk capacitor are connected in series between the center tap of T1's secondary and ground for transient suppression when S2 is switched to on. The suppressor is mounted at S2, in the rf deck.

A 500-WATT FM AND CW TRANSMITTER FOR 220 MHZ

This $220-\mathrm{MHz}$ transmitter was designed and built by R. B. Stevens, W1QWJ, and was first described in May 1969 QST. It is capable of 300 watts output, cw or fm , or the exciter portion can be used alone to deltiver approximately 8 watts output.

The RF Circuits

Looking at the schematic diagram, Fig. 7-15, it will be seen that the first three stages of the transmitter look very much like any vhf transmitter using vacuum tubes. A conventional 6CL6 crystal oscillator, V1, uses 6 -, 8 - or $12-\mathrm{MHz}$ crystals, multiplying in its plate circuit to 24 MHz (12 MHz crystals should be the fundamental type.) A 6BQ5, V2, triples to 73 MHz , and drives a 2 E 26 amplifier, V3, straight-through on this frequency. A variable capacitor, C 6 , across the crystal, permits a small adjustment of the frequency.

A varactor iripler, driven by the 2 E 26 , is used to get up to 220 . Requiring no power supply of its own, it is capable of more than enough power output at 220 to drive our 500 -watt amplifier.

The output of a varactor multiplier contains hammonics other than the desired one, so a stripline filter is connected betwoen the varactor output and the final amplifier grid circuit. The filter is a separate assembly mounted on the end of the chassis, visible in two of the photographs. Full details of the filter may be found in any edition of the VHF Manual, and in this Handbook.

The final amplifier is a 4 CX 250 series extemalanode tube, with a coaxial tank circuit. The B version is used here, but the R and F types have the same mechanical design.

The coaxial plate circuit follows a standard design. Such a tank has extremely high Q, and the

[^9]

Fig. 7-13 - The 220-MHz transmitter is set up for rack mounting on $83 / 4$-inch panel. Meters at the left can be switched to read driver plate, amplifier screen and amplifier plate currants, and amplifier plate voltage.
heavy copper (or brass) construction offers considerable heat sinking. Probably its only disadvantage is the necessity for feeding the high voltage in through some kind of rf bypassing device. This and the other mechanical features of a good coaxial tank are not readily made with the simpler tools. Details of the assembly are given in Fig. 7-19.

The final grid circuit, visible in the end view along with the varactor multiplier and the strip-line filter, is a half-wave strip-line. The fan blows cooling air into the grid compartment, up through the 4 CX 250 socket, and out through the end of the tank assembly, by way of the hollow inner conductor, L10. The coaxial output fitting, J6, the coupling loop, L11, and its series capacitor, C21, arc mounted on a small detachable plate bent to fit the curvature of the coaxial assembly, and mounted near the outer end. The varactor tripler is built into the top of the amplifier grid assembly, and is visible in the end view along with the final grid circuit and the strip-line filter.

Generating the Frequency Modulation

Where only a small swing at the control frequency is needed, as in a vhf or uhf transmitter having a high ordes of frequency multiplication, the modulation can be applied very easily. A voltage-variable capacitor, CR1, changes capacitance in relation to the audio voltage applied across it, and this changing capacitance is used to "pull" the frequency of the crystal oscillator slightly. A good $8-\mathrm{MHz}$ crystal can be pulled about 600 Hz in this way. With 27 -times frequency multiplication this gives a maximum deviation in excess of 16 kHz

Fig. 7.14 - Rear view of the $220-\mathrm{MHz}$ transmitter. The exciter stages are on a circuit board in the foreground. Chassis at the right side houses the varactor tripler and the amplifier grid circuit. Air blows into this compertment and out through the center conductor of the cosxial plate-circuit assembly.

Flg. 7-15 - Schematic diagram and parts information for the WIOWJ $220-\mathrm{MHz}$ exciter and frequency modulator. Capaciton with polarity marked are electrolytic. Components not specified below are marked for text referance purposes. C1 through C5 are dipped mica or silver mica.

C6 - 30-pF miniature irimmar (Johnson 160-130).
C7. CB - 20-pF miniature tulmmer (Johnson 160-110).
C9-15-pF variable, double-spaced (Hammarlund HF-15-X).
C10-140-pF variable (Hammarlund HF-140). CR1 - Varicap diode.

CR2. CR3 - Any sillcon diode (Motorola 2105 or similar).
11 - Closed-eircuit jack.
J2 - BNC chassis firting.
L1 - 10 tums No. 22 enamel, closowound on 1/4-inch slug-tuned form
L2-4 turns No. 22, 1/2-inch dia, 7/16 inch long.

L3 - 7 tums No. 22, $1 / 2$-inch dia, $3 / 8$ inch long. Tap 4 zurns from grid end.
L4 - 5 turns No. $16,1 / 2$-inch dia, 1 inch long.
Y 1 - $8150-\mathrm{kHz}$ crystal, $\mathrm{HC}-6 / \mathrm{U}$ holder preferred. 6112 kHz or $12223-\mathrm{kHz}$ fundamental crystal also usable. Frequencies given are for low-frequency end of the bend. Use C6 for slight frequency adjustment.

Fig. 7-16 - Circuit of the varactor multipiier, 73 to 220 MHz .

C11, C13, C14, C16 - 15-pF miniature variable (Johnson 160-107). Rotor of C11 musi be insulated from chassis.
C12 - 20-pF miniature variable (Johnson 160-110).
C15-5-pF ceramic.
L5 - 8 turns No. 16, 1/2-inch dia, 7/8 inch long.

L6 - 4 turns No. 16, 1/2-inch dia, $1 / 2$ inch long. L7 - 3 turns No. 16, 3/8-inch dia, $3 / 8$ inch long. L8 - 3 turns No. 16, 3/8-inch dia, $3 / 8$ inch long. tapped at 1 turn from grounded end.
CR8 - Varactor diode (Amperex H4A/1N4B85). J3, 14 - BNC fitting.

Fig. 7-17 - Schematic diagram and parts information for the $220-\mathrm{MHz}$ final amplifier. Decimal values of capacitance are in microfarads ($\mu \mathrm{F}$); others in pF.

C 17 - 20-pF miniature variable (Johnson 160-110). Stator supports end of L9.
C18-15-pF silver mica.
C19 - Capacitor built into socket assembly (Johnson 124-109-1 socket, with 124-113-1 bypass ring and 124-111-1 chimneyl.
C20 - Disk-rype tuning capacitor; see Fig. 7-19.
C21 - 15-pF miniature variable (Johnson 160-110).
C22 - Built-in bypass capacitor; see Fig. 7-19.
C23 - 500-pF, 5-kV or mare.
J6 - N-type fitting.
L9 - Brass strip, $1 / 16$ by $3 / 8$ by $61 / 2$ inches. Bolts to grid terminal on socket. Tap C18 7/8 Inch from grid.

L10 - Coaxial line inner conductor; see Fig. 7-19.
L11 - Output coupling loop made from $31 / 4$ inches No. 16. Cover with insulating sleeving and bend to $3 / 4$ inch high and $13 / 4$ inch long. See Fig. 7-1.
RFC4. RFC5 - $0.84 \mu \mathrm{H}$ rf choke (Onmite Z-235). J5 - BNC fitting.
at the operating frequency, close to the optimum for most of the fin receivers currently in use in fixed-frequency service on 6 and 2. Lesser deviation, for working into communications receivers, most of thern having about a $3-\mathrm{kHz}$ bandwidth today, is merely a matter of applying less audio.

Adjustment and Operation

This is not intended to be a beginner's project, so detailed discussion of the mechanical layout will be omitted. The mechanical arrangement of the
components could be altered to suit one's own requirements, since the complete transmitter is made up of many subassemblies. Adjustment for best results may be somewhat strange to anyone who has not had experience with varactor multipliers.

The first step is to get a good 52 -ohm load. For the present, it will have to handle a maximum of about 10 watts. A good SWR bridge is also needed for the tests. The first step is to adjust the exciter. Procedure here is like that for any similar lineup of tubes, but the 2E26 must be adjusted for optimum

Fig. 7.19 - Details of the coaxial -ine plate circuit of the $220-\mathrm{MHz}$ transmitter.
results when working into a 52 -ohm load. Once an output of 10 to 12 watts is obtained in this way, leave the tuning of the 2E26 and preceding stages alone thereafter.

Now connect the SWR bridge output to J3 of the varactor multiplier, and tune C11 and C12 for lowest SWR indication. Leave the 2E26 adjustments alone.

Now connect a coaxial cable from J 2 to J 3 , and connect the bridge or wattrater in a line from 34 to the dummy load. Adjust C13, C14 and C16 for

Fig. 7-18 - Circuit details of the built-in power supplies for amplifier bias (lower) and speech amplifiar-modulator (upper) for the $220-\mathrm{MHz}$ transmitter. Capacitors with polarity marked are electrolytic. All diodes are 200 -volt PRV, 1A. R1 and R2 are approximate values. Select for 12 and minus 50 volts output, respectively. Capecitance is in microfarack.
maximum output at 220 MHz . Adjustments in the multiplier intertock, and several passes through all adjustments may be needed for best output. But remember that the $2 E 26$ is set for a 52 -ohm load. Leave it alone, and make the multiplier adjustments do the job. An indication of some 8 watts or so of output should be obtained. Part of this will be harmonic energy, however, so the SWR bridge should now be connected between the strip-line filter and the amplifier grid circuit, and the filter adjusted for maximum forward power and the

Fig. 7-20 - Looking underneath the chassis of the $220-\mathrm{MHz}$ transmitter, we see the speech amplifierclipper at the lower left, the exciter circuits across the top. power supply components at the upper left, and meter switching, lower• right.
amplifier input circuit for minimum reflected. This should result in maximum grid cument in the final amplifier.

It is likely that getting enough grid current for the 4CX250B will not be difficult, as the lineup described gives more than ample drive. Up to 20 mA grid current has been obtained, but not this much is needed. In fact, with fim or cw operation, only a slight increase in efficiency is noted after the drive is raised beyond the point where grid current begins to flow.

Adjustment of the coupling loop, L11, and the loading capacitor, C21, will be fairly critical when striving for the absolute maximum output. Following the manufacturer's recommendations as to maximum plate voltage and current, 2000 volts at 250 mA , resulted in about 320 watts output. Raising the plate current to 300 mA , by increasing the screen voltage, netted 400 watts output. Even at this input the tube seemed to be operating well and the tank circuit did not indicate excessive heating.

Fig. 7-21 - Looking into the amplifier grid compartment. The varactor tripler is in the upper left portion. Below the compartment is the $220-\mathrm{MHz}$ strip-line filter.

220 MHz REPEATER AMPLIFIER

The crowded frequencics for $144-\mathrm{MHz}$. repeater service have caused some moves to 220 MHz . This band is providing very acceptable coverage to mobile users with moderate power. The amplifier to be described was developed to assist in increasing this coverage. In the majority of cases, the power source for the amplifier is not of major importance. Thereforc, the J \emptyset 2015, 28-volt transistor was selected for a power output of approximately 75 watts. In the following circuit configurntion the gain is 8.8 dB or 75 watts output for 10 watts input (Fig. 1).

Circuit Description

For repeater service, Class-C operation is used. The input retwork is a single L section with a series capacitance to tune out the reactance. Stripline inductors are used in the matching networks. Output matching is also accomplished with L sections, two in this case. Miero-strip lines are also used between the matching networks and the connectors. They were etched to provide a 50 -ohm characteristic impedance. The collector decoupling network uses four values of capacitors to provide isolation for over a wide frequency range.

Construction

As can be seen in the photographs, the heat sink is made of four pieces of aluminum. The pieces were formed individually and then bolted together. A liberal amount of silicone greasc. was applied between the pieces of aluminum before assembly. This heat sink has proved quite effective during extended amplifier operation.

The circuit board must have spacers inserted for support above the heat sink. Then, the transistor should be soldered to the circuit board after it is bolted to the heat sink. Spacers can then be inserted, insuring there isn't any upward pressure on the transistor cap.

Adjustment and Operation

The amplifier should be connected as illustrated in Fig. 2. The general procedure is to first adjust the input for minimum reflected power and then the output for maximum power output. To be more specific, apply a small amount of drive to the amplifier and adjust Cl and C 2 for minimum reflected power. Output adjustments are more difficult to align. All three adjustrnents interact and it can take longer to find the correct settings.

Fig. 1 - Schematic diagram of the 220 MHz repeater amplifier. Unless otherwise specified, capacitors are disk ceramic.
C1, C3 - Trimmer (Arco 402).
C2 - Trimmer (Arco 461).
C4. C5 - Trimmer (Arco 464).
L 1 - Microstrip inductor, 50 mm long. 0.205 inch wide.

L2. L3 - Micro-strip inductor, 25 mm long, 0.155 inch wide.
Q1 - Power transistor TRW 102015.
RFC 1 - Choke, $0.15 \mu \mathrm{H}$ with Ferrox. cube bead (56-590-65/3B) on ground lead.
RFC 2 - Choke, 2 turns of No. 22 wire on 330 -ohm 1 -watt resistor.

Fig. 2 - Test setup for adjusting the amplifier.

uniess the capacitors were set to the approximate values prior to the application of power. After finding the maximum output settings, increase the drive and readjust the input and output matching. For unattended or extended operation a small fan

Interior view of $220-\mathrm{MHz}$ Repeater amplifier.
can be placed near the heat sink. This will help kecp the amplifier cool and extend its life. There were no provisions made for antenna switching. It was intended that the amplificr be inserted between the exciter and the duplexer.

A VARACTOR TRIPLER FOR 420 MHZ

Ll is the input-coupling link and its reactance is tuned out by Cl. L2-C2 form a conventional series-resonant circuit tuned to the input frequency. The combination of these circuits, then, becomes the familiar tuned circuit with linkcoupled input. The link is coupled to the cold end of $L 2$ and the amount of coupling is adjustable by changing the position of LI. It is easier to visualize the end of L2 as being "cold" by remembering that the varactor diode is low impedance device.

L3-C3 is the serjes-tuned idler circuit that is necessary for efficient harmonic generation, and L4-C4 is a series-tuned circuit for the output frequency. L5 and C6 are resonant at the output frequency also, with a small capacitor, C5, to provide coupling to the diode output circuitry.

Fig. 1 - Schematic for the varactor tripler.
C1, C2 - 2.2- to 34-pF miniature variable (E.F. Johnson 190-0010-001).
C3, C4, C6 - 1.4- to 9.2-pF miniature variable (E.F. Johnson 189-563-001).

C5 - Copper strip $1-\mathrm{in}$. long $\times 1 / 4-\mathrm{in}$. wide. Bend one end up to form a tab $3 / 8-\mathrm{in}$. long. Spacing between tabs approx. $1 / 8$ inch.
CR1 - Varactor diode (Amperex H4A or equiv.) J1. J2 - Coaxial connector. Type BNC suitable.

L1 - 3 turns No. 16 enam., 3/8-in. $10 \times 3 / 8-\mathrm{in}$. long.
L2 - 6-1/2 turns No. 16 tinned bus wire, 3/8-in. $10 \times 7 / 8$-in. long.
L3-3-1/2 turns No. 16 tinned bus wire, 3/8-in. $10 \times 1 / 2-\mathrm{in}$. long.
L4 - Copper strip, $3-1 / 4-i n$. tong $\times 3 / 8-\mathrm{in}$. wide. Space 1/2-in. above ground.
L5 - Copper strip, $3-3 / 8-\mathrm{in}$. long $\times 3 / 8$-in. wide. Space $1 / 2$-in. above ground. Tap $1-3 / 8$ in. from ground end.

Increasing use of $50-\mathrm{MHz}$ transceivers and transmitters having outputs of 25 watts or more has created a demand for amplifiers to be used with such equipment as the driver. The groundedgrid amplifiet of Fig. 7-27 is designed for this use. With 30 watts or more of driving power it will deliver 600 watts cw output. As a Class-B lineas, single-tone conditions, its rated PEP output is 750 watts.

Circuit

The Eimac 3-500Z triode is designed for grounded-grid service. As may be seen from Fig. $7-30$, driving power is applied to the filament circuit, which must be kept above rf ground by means of high-current bifilar of chokes, RFC1 and RFC2. These are a central feature of the bottom view, Fig. 7-29. The input impedance is low, so the input circuit, $\mathrm{L1}, \mathrm{Cl}$, tunes broadly, and the 50 -ohm line from the exciter is tapped well up on Ll. The plate circuit is merely a coil of copper tubing, L2, inductively tuned by means of a "shorted um" of copper strip, rotated inside its cold end. See Fig. $7-28$. Tuning is smooth and the rotating loop avoids many problems commonly encountered in tuning high-powered amplifjers by conventional methods. Plate voltage is shant fed to the tube, to prevent the high dc voltage from accidentally appearing on the output coupling loop or on the antenna line.

Most of the lower part of the schematic diagram has to do with control and metering, and is largely selfexplanatory. The exciter voicecontrol relay shorts out R1, allowing grid current to flow, and making the amplifier operative, if the filament and primary-control switches, S1 and S2, have been closed. Fecding ac voltage to the plate-supply relay through $\mathrm{J4}, \mathrm{~J} 5$ and P1 makes application of plate voltage without the filamen and blower being on impossible.

Construction

The amplifier chassis is aluminum, $10 \times 12 \times 3$ inches in size, with the tube socket centered $31 / 8$ inches from the front edge. The sheet-aluminum pancl is 10 inches high. The decorative edging is "cove molding," used by cabinet makers for counter tops. Sides and back are also shect aluminum. Where they need not be removable, parts are fastened together by pop-riveting. Tools and rivets for this work can be found in most hardware stores. Perforated aluminum (cane metal) is used for the top, and for covering the parel viewing hole.

Stretch the wire for the bifilar rf chokes, before winding. Then, with the wires side by side, under tension, wind them on a form of wood or metal. This is left in until the choke ends are soldered in position. Then remove the form and coat the windings with coil cement, to help maintain tum alignment.

Fig. 7-27 - Tablertop $50-\mathrm{MHz}$ amplifier of grounded-grid design, only 10×12 inches in size. Grid and plate current are monirored simultaneous ly. Knobs at the right are for input tuning, bottom, amplifier loading, center, and plate tuning, top.

Connections to the grid terminals (on opposite sides of the socket) are made with short $1 / 4$-inch copper straps soldered to the pins and bolted to the chassis with No. 6 screws, nuts and lockwashers. Be sure that a clean, tight if ground results.

In Fig. 7-28 it will be seen that the hot end of L2 is supported on the top of the two blocking capacitors, C3 and C4, which in tum, are mounted on the Teflon rod that serves as the form for RFC3. The ground end of $\mathbf{L 2}$ is supported on a vertical post made of $3 / 8$-inch copper tubing, $13 / 8$ inches high. The end of the coil can be fitted with a heavy copper lug, or pounded flat. A hole is drilled in the flat partion and a 2 -inch brass bolt runs through it and the post and chassis. Be sure that there is a permanent solid If ground at this point.

The shunt-feed rf choke is effectively across the tuned circuit, so it must be a good one. Handwinding as described below is strongly recommended, as no ready-made choke is likely to be as good. Teflon is slippery, so a light thread cut in the form will help keep the winding in place. If this cannot be done, prepare and wind two wires, as for the filament chokes. Feed the wire ends through one hole in the form, and wind a bifilar coil. Pull the other ends through the finish hole, bending one

Fig. 7-28 - Interior view of the $50-\mathrm{MHz}$ amplifier shows the shorted-turn tuning system, plate coil and output coupling, upper right. The tuning and loading controls are mounted on a bracket to the right of the $3-5002$ tube and chimney. Meter shielding is partially visible in the left front corner.
back tightly at the hole edge. Remove the other winding, which should leave a tight evenly-spaced coid that makes an excellent vhf choke.

The blocking capacitors, C3 and C4, are mounted between brass plates, one of which is fastened to the top of the rf choke form with a sheet-metal screw. The other plate is connected to the hot end of L2 by means of a wrap-around clip of flashing copper. The lead to the tube plate cap is made with braid removed from a scrap of coax. A strip of flashing copper about $1 / 4$ inch wide is also good for this. Use a good heat-dissipating connector such as the Eimac HR6.

The shorted-turn tuning ring is centered between the first two turns of L2. The ring is attached to a ceramic pillar, and that to a $1 / 4$-inch shaft, the end of which is tapped for 8-32 thread. This shaft runs through a bcaring mounted in a bracket 4 inches high and $23 / 4$ inches wide, fastened to the chassis and the side of the enclosure. The output loading capacitor, C6, is also mounted on this bracket. It is one inch above the chassis, and the tuningring shaft is $31 / 4$ inches above the chassis. The input tuning capacitor, Cl , is mounted under the chassis, with equal spacing between the three, for symmetrical appearance.

The output coupling loop, L 3 , is just inside the cold end of L2. It can be adjusted for optimum coupling by "leaning" it slightly into or out of L2. Be sure that it clears the shorted turn throughout movement of the latter.

The coaxial output jack, J3, is on the rear wall of the enclosure. A small bracket of alumisum grounds it to the chassis, independent of the bonding between the chassis and the enclosure. Plate voltage enters through a Millen 37001 high-
voltage connector, 32 , on the rear wall, and is bypassed immediately inside the compartment with a TV "doorknob" high-voltage capacitor, C5.

The blower assembly in the left rear comer of the chassis draws air in through a hole in the back of the compartment, and forces it down into the enclosed chassis. The only air path is then back up through the socket and chimney (Eimac parts SK-410 and SK-406 recommended) and out through the top of the enclosure. The data shect for the $3-500 \mathrm{Z}$ specifies an air flow of at least 13 cubic feet per minute, when the tobe is operated at 500 watts plate dissipation. The ac leads for the blower motor come into the enclosure on feedthrough capacitors.

The meters are enclosed in a shield fastened to the front and side pasels. Meter terminals are bypassed for of inside the shield, and leads come through the chassis on feedthrough capacitors. The rocker-type switches just below the meters have built-in illumination. The high-voltage switch is not meant to control the plate supply directly, but rather through a relay, as in the 3000 -volt supply shown in Chapter 5. The plate meter is in the negative lead, so be sure that your supply is compatible with this arrangement. Do not use this system where a potential difference exists between the amplifier and power supply chassis. All power leads are made with shielded wire (Belden 8862) and all exposed points are bypassed to ground.

Adjustment and Use

Do not apply drive to the $3-500 \mathrm{Z}$ without the plate voltage being on. Also, it is recommended that initial testing be done with low drive, and with a plate voltage of 1500 or less. With a 50 -ohm load

Fig. 7-29 - With the bottom cover removed, a look into the chassis from the rear shows the input circuit, L1,C1, right, the bifilar filament chokes, foreground, filament transformer and control switches. Opening in the rear wall is for air intake.

Fig. 7-30 - Schamatic diagram and parts information for the $50-\mathrm{MHz}$ grounded-grid amplifier.

B1 - Blower, $15 \mathrm{ft}^{3} / \mathrm{min}$ or more.
C1 - 75-pF variable (Johnson 167-4).
C2 - 1000-pF dipped mica.
C3, C4 - 500 -pF $5-\mathrm{kV}$ transmitting ceramic (Centralab 8585-500).
C5 - 500-pF, 10 kV or more, TV "Doorknob."
C6 - 50-pF variable (Johnson 167-3).
J1 - BNC coaxial receptacle.
J2 - High-voltage connector (Millen 37001).
J3 - Type N coaxial receptacle.
s4 - 8-pin male power connector, chassis-mounting.
J5 - AC receptacle, chassis-mounting.
L1 - 4 tums No. 12 enam, 1 inch long, linch dia. Tap 2 1/2 turns from ground end.
L2 - $31 / 2$ turns 1/4-inch copper qubing, $31 / 2$-inch dia, $51 / 4$ inches long. Diameter is finished dimension, not that of form used for winding. See text and photo for turn spacing.

Tuning ring is closed loop of $1 / 2$-inch copper strip, $25 / 8$-inch dia.
L3 - 1 turn, 3 -inch dia, and leads, made from one piece of $1 / 8$-inch copper tubing or No. 8 wire. M1 - DC mater, 0-1 ampere (Simpson Wide-Vue, Model 1327).
M2 - 0-300 mA, like M1.
P1 - AC plug, on cable to power supply.
R1 - 47,000-ohm 2 -watt resistor.
RFC1, RFC2 - 21 turns each, No. 12 enam, 1/2-inch dia, bifilar.
RFC3 - 30 turns No. 20 enam, spaced wire dia, on 3/4-inch Toflon rad, $33 / 4$ inches long. Drill end holes $1 / 2$ and $23 / 4$ inches from top.
S1, S2 - Spst, rocker-type, neon-lighted (Carling LT1L, with snap-in bracket).
T1 - Filament transformer, 5 V, 15 A (Stancor P6433; check any electrical equivalent for fit under 3-inch chassis).
connected to J3, apply 1000 to 1500 volts through J2, and tum on the driver. Adjust the turing ring inside L2 for a dip in plate current. Tune C1 for maximum grid current. Tune C6 and adjust the position of L3 with respect to L2 for maximum output. If the amplifier seems to be running properly, connect an SWR bridge between the driver and JI , and check reflected power. It should be close to zero. If otherwise, adjust the tap position on L1.

Tuning range of the plate circuit can be checked with a grid-dip meter, with the power off the amplifier. The range is affected by tum spacing overall, and at the cold end. The closer the first two turns are together the greater the effect of the tuning ring. No other tuning device is used, so
some experimentation with diameter and length of L2 may be needed if you want other than the 49.8 to 52.7 MHz obtained with the graduated tum spacing visible in the interior view. The highest frequency is reached with the ring in a vertical plane. Dimensions that affect tuning range are as follows: Grounded support for L2 - $11 / 8$ inches from right side of chassis, and $31 / 4$ inches from rear. RFC3 mounting position - 4 inches from rear and $51 / 2$ inches from left. Shorted tum approximately centered between tums 1 and 2 of L2. The start of L3 bends from the stator of C6 to near the start of L2. The end toward J2 passes between the first two tums of L 2 , clearing the tuning ring in any position of the latter.

Once the amplifier seems to work normally at
moderate plate voltages, apply higher, up to the maximum of 3000 . Plate current, with no drive, should be about 160 mA . It can be lowered by inserting 0.1 to 0.4 ohm in series with R1 and the filament center-tap. A Zener diode, 2 to 9 volts, 10 watts, could do this job, as well.

Keep the amplifier tuned for maximum output. Do not decouple to reduce output; cut down drive and/or plate voltage instead. Adjustment for linear operation requires a scope. Maximum output, minimum plate cunent and maximum grid current should all occur at the same setting of the plate tuning. If they do not, the output loading is over coupled, or there is regeneration in the amplifier. The plate-cument dip at resonance is noticeable and smooth, but not of great magnitude.

Typical operating conditions given by the manufactures, and in the tube-data section of the Hondbook, are guides to good practice. The amplifier works well with as little as 1000 volts on the tube plate, so varying the ac voltage to the plate-supply transformer is a convenient way to control power level. It is seldom necessary to run the maximum legal power in vhf communication, so some provision for this voltage control is recommended. With just one high-voltage supply needed and no critical tuning adjustments, power variations from 100 to 600 watts output are quickly and easily made. This amplifier was built by Tom McMullen, W1SL, and first described in QST for November, 1970.

A 2-KW PEP AMPLIFIER FOR 144 MHz

Large extemal-anode triodes, in a cathodedriven configuration, offer outstanding reliability, stability and ease in obtaining high power at 144 MHz . The selection is somewhat limited and they are not inexpensive. Data on the recently introduced 3CX1500A7/8877, a high-mu, externalanode power triode, appeared very promising A reasonable heater requirement (5 V at 10 A) and an inexpensive socket and chimney combination made the tube even more attractive.

The techniques employed in the design and construction of the cathode-driven 3CX1500A7/ 8877 amplifier described here have removed many of the mechanical impositions of other designs. Those interested in obtaining complete constructional details should refer to the two part article appearing in December, 1973, and January, 1974 QST.

The plate tank operates with a loaded Q on the order of 40 at $2-\mathrm{kW}$ PEP and 80 at 1 kW . Typical loaded Q values of 10 to 15 are used in hf amplifiers. In comparison, we are dealing with a relatively high loaded Q, so losses in the strip-line tank-circuit components must be kept very low. To this end, small diameter Teflon rods are used as mechanical drive for the tuning capacitor and for physical support as well as mechanical drive for the output-coupling capacitor. The tuning vane or flapper capacitor is solidly grounded, through a
wide flexible strap of negligible inductance, directly to the chassis in close proximity to the grid-return point. A flexible-strap arrangement, similar to that of the tuning capacitor, is used to connect the output coupling capacitor to the center pir of a type N coaxial connector mourted in the chassis basc. Ceramic (or Teflion) pillars, used to support the air strip line, are located under the middle set of plate-line dc isolation bushings. This places these pillars well out of the intense rf Geld associated with the tube, or high-impedance end of the line. In operation, plate tuning and loading is quite smooth and stable, so a high-loaded Q is apparently not bothersome in this respect.

In this amplifier, output coupling is accomplished by the capacitive probe method. As pointed out by Knadle" "Major advantages of capacitive probe coupling are loading linearity and elimination of moving contact surfaces."

Capacitive-probe coupling is a form of "reactive transformation matching" whereby the fecd-line (load) impedance is transformed to the tube resonant-load impedance $\left(R_{0}\right)$ of 1800 ohms (at the $2-\mathrm{kW}$ level) by means of a series reactance (a capacitos in this case). At the $1-\mathrm{kW}$ level, R_{0} is approximately twice that at the $2-\mathrm{kW}$ PFP level. Therefore, the scrics coupling capacitor should be variable and of sufficient range to cover both power levels. Formulas to calculate the transformation values have been presented in QST. ${ }^{2}$

The electro-mechanical method of probe coupling used in this amplifier is casy to assemble and provides good electrical performance. Also, it has no movine-contact surfaces and enables placement of the output coupling, or loading, control on the front panel of the amplifier for ease in adjustment.

The grid- and cathode-metering circuits employed are conventional for cathode-driven amplifiers. The multimeter, a basic 0-1 mA movement, is switched to appropriate monitoring points.

An rfoutput monitor is a virtual necessity in

[^10]
2-kW PEP Amplifier for 144 MHz

The placemant of input-circuit components and supporting bracket may be seen in this bottom view. When the bottom cover is in place. the screened air inlet allows the blower to pull air in. pressurizing the entire under-chassis area. The Minibox on the rear apron is a housing for the input reflectometer circuit.
vhf amplifiers to assure maximum power transfer to the load while tuning Most capacitive-probe output coupling schemes presented to date do not lend themselves to built-in relativeoutput monjtoring circuits In this amplifier, one of these built-in circuits is achieved quite handily. The circuit consists of a $10: 1$ resistive voltage divider, diode rectifier, filter and adjustable indicating instrument. Two $7500-\mathrm{ohm}$, 2-watt carbon resistors are located in the plate compartment connected between the type N rf-output connector and a BNC connector. A small wire was soldered to the center pin of the BNC connector, inside a Minibox, with the 1500 -ohm, 1-watt composition resistor and the rectificr diode joined at this point. Relative output voltage is fed, via feedthrough capacitors, to the level-setting potentiometer and multimeter switch.

A calibrated string of 2 -watt composition resistors, totaling 5 megohms, was installed to facilitate "on-the-spot" determination of power input, and to attest to the presence or absence of high voltage in the plate tank circuit. A full-scale range of 5000 volts is obtained with the $0-1 \mathrm{~mA}$ meter. If desired, the builder may use ten $500-\mathrm{K}-\Omega$, 2 -watt, 1-percent resistors for the string and reasonable accuracy will be obtained. Of course this monitor feature may be eliminated if other means are used to measurc and monitor plate voltage.

The amplifier is unconditionally stable, with no parasitics. To verify this, a zero bias check for stability was made. This involved shorting out the Zener diode in the cathode return lead, reducing bias to essentially zero volts. Plate voltage was applicd, allowing the tube to dissipate sbout 885 watts. The input and output circuits were then tuned through their ranges with no loads attached. There was no sign of output on the relative output meter and no change in the plate and grid currents. As with most cathode-driven amplifiers, there is a

The tube and plate line is in place, with the top and side of the compartment removed for clerity. The plate-tuning vane is at bottom center. A bracket is attached to the side panel to support the rear of the Teflon rod supporting the tuning vane. The coll at the opposite end of the plate line is RFC1, connected between the high-vol tage-bypass plate and the top section of the platoline sandwich. Items outside the tube enclosure include the filament transformer, blower motor, relays, and a power supply to operate a VOX-controlled relay system.

slight interaction between grid and plate currents during normal tune-up under rf-applied conditions. This should not be misconstrued as amplifier instability.

Tolerances of the Zener diode used in the cathode return line will result in valucs of bias voltage and idling plate currents other than those listed in Table 1. The 1N3311, a 20-percent tolerance unit, is rated at 12 volts nominal but actually operates at 10 volts in this amplifier (within the 20-percent tolerance).

All testing and actual operation of this ampljfier was conducted with a Raytrack high-voltage power supply used in conjunction with the author's 6 -meter amplifier. The power supply control and output cable harness was moved from one amplifier to the other, depending on the desired frequency of operation.

Drive requirements were measured for plate power-input levels of 1000 and 1600 watts with a Bird Model 43 Thn Line Wattmeter and a plug of known accuracy. Outpui power was measured simultaneously with drive requirements at the 1000 and 1600 watt plate power input levels. A second Bird model 43 with a 1000 -watt plug was used to measure amplifier output into a Bird

1000-watt Termaline load A 2500-watt plug would be necessary to determine output power at the $2-\mathrm{kW}$ input level, so I stopped at the 1000 -watt output point and worked backwards to calculate apparent stage gain and efficiency.

Efficiency measurements also were made employing the "tube air-stream heat-differential" mothod. Several runs were made at 885 watts riatic dc and normal of input. Apparent efficiencies of 62 to 67 percent were noted. These values were about s-percent higher than the actual power output values given in Table I. Both efficiency measurement schemes serve to confirm that the amplifier is
operating at the upper limit of the theoretical $50-60$-percent efficiency range for typical Class AB2 amplifiers.

To commence routine operation, the variable capacitor in the input circuit should be set at the point where lowest input VSWR was obtained during the "cold-tube" initial tube-up. The ability of the plate tank to resonate at $144-145 \mathrm{MHz}$ with the top cover in place should be verified with a grid-dip meter, via a one-turn link attached to the if output connector. Top and bottom covers are then secured. As with all cathode diven amplifiers, excitation should never be applied when the fube

Fig. 1 - Schematic diagram of the amplifier. Included is information for the input reflectometer used es an aid to tuning the cathode cliccult for low SWR. C7, C8, and C9 are fabricated as describad in the text and Fig. 2.
B1 - Blower. Fasco 59752-IN or Dayion 2 C810. Wheel diameter is 3-13/16 inches.
C2 - 5- to $30-\mathrm{pF}$ air variable. Hammarlund HF-30-X or equiv.
C3, C4, C5, C6-0.1 μ F, 600-V, 20 A feedthrough capacitor. Sprague 80P3 or equiv.
J1. J2, 56 - Coaxial chassis-mount connectors. type BNC.
J3 - Coexial connector, type N.
14 - Coaxial panel jack, UG-22B/U (Amphenol $82-62$ or equiv.).
J5 - HV connector (James Millen 37001 or equiv.l.
L1 - Doubie-sided DC board, 1-1/4 \times 4-7/16 Inches.
L2 - 4-1/4 inches of No. 18 wire. L1 and L2 are part of the input reflectometer circuit described in the text under the heading of "Support Electronics."

L3 - 6 turns No. 18 enam., 5/8-in. long on $3 / 8$-in. dia form (white slug).
L4 - 3 turns No. 14 enam., 5/8-In. long $\times 9 / 16$-in. ID. Lead length to $L 3$ is $5 / 8$ - in. Load length to cathode bus is $3 / 4 \mathrm{in}$.
L5 - Alr-dielectric strip line. See text and Flg. 2.
P1 - Coexial cable connector, typa BNC.
P2 - Coaxial cable connector, type N.
R1 - Meter ranga multiplier. Ten $500-\mathrm{K} \Omega$, 2-watt composition resistors in ceries.
RFC1 -7 turns No. 16 tinned, $1 / 2$-in. ID $\times 1 / \mathrm{h}$. lona.
RFC2 - 18 turns No. 18 enam., close wound on 1-magohm, 2watt composition resistor.
RFC3, RFC4 - Each 2 ferrite beads on component leads.
RFC5, RFC6 - 10 turng No. 12 onam. bifilar wound, $5 / 8-\mathrm{in}$. dla.
S1 - Single-pole, three position rotary switch, non-shorting contacts.
T1 - 5-V, 10-A secondary, center tap not used. (Stancor P-6135 or equiv.).
VR1 - 12-V, 50 -watt Zener diode.

heater is activated and plate voltage is removed. Next, turn on the tube heater and blower simultaneously, allowing 90 seconds for warm-up. Plate potential between $2400-3000$ volts then may be applied and its presence verified on the multimeter. The power supply should be able to deliver 800 mA or so. With the VOX relay actuated, resting current should be indicated on the cathode meter. A small amount of drive is applied and the plate tank circuit tuned for an indication of maximum relative power output. The cathode circuit can now be resonated, tuning for minimum reffected power on the reflectometer, and not for maximum drive power transfer. Tuning and loading of the platetank circuit follows the standard sequence for any cathode driven amplifier. Resonance is accompanied by a moderate dip in plate/cathode current, a rise in grid current and a considerable increase in relative power output. Plate-current dip is not absolutely coincident with maximum power output but it is very close. Tuning and output-loading
adjustments should be for maximum efficiency and output as indicated on the output meter. Final adjustment for lowest VSWR at amplifier input should be done when the deisred plate input-power level has been reached.

Table I

Performance Data

Power input, watts	1000	1600
Plate voltage	2600	2450
Plate current (single tone)	385 mA	660 mA
Plate current (idling)	50 mA	50 mA
Grid bias	-10 V	-10 V
Grid current (single tone)	35 mA	54 mA
Drive power, watts	18	41
Efficiency (apparent)	59.5%	61.8%
Power gain (apparent)	15.2 dB	13.9 dB
Power output, watts	595	1000

SHORTING BAR $1 / 2 /$-THICK BRASS
(6.35 mm)
(c)

Fig. 2 - Dimensions and layout information for the plate line. The two brass plates and a Teflon sheet form a sandwich with the plate nearest the chassis being at dc ground potential. The top plate carries high voltage and is connected to the tube anode. The shorting bar (C) is parmanently attached between the bottom plate and the chassis, replacing the sliding short that is visible in the photographs.

A TRIPLER AMPLIFIER FOR 432 MHZ

Equipment for 432 MHz varics in style, size, complexity, and ancestry. Some stations use converted uhf fm transmitters that once saw duty in taxicabs or the like. Others have been able to build up-converters using tubes such as the 6939.1
lMoretti. "A Heterodyne Exciter for 432 MHz." OST. November 1973, (also see Feedback, QST, March, 1974 , page 83).

Others have pressed their $144-\mathrm{MHz}$ equipment into service by employing an active frequency tripler. ${ }^{2.3}$
${ }^{2}$ Knadle, "High Efficiency Parallel Kilowatt for $432 \mathrm{MHz}^{\prime \prime}$ QST. A pril, 1972.
${ }^{3} \mathrm{Knadfe}$, "Dual-Band Stripline AmplifierTripler for 144 and 432 MHz " Ham Radio, February. 1970.

The design criteria for a desirable amplifier were simple -. a table-top conduction-cooled (quict) unit that would deliver 100 -watts output at a drive level of less than 10 walts. The table-top configuration would be more attractive to many station owners than would the old reliable rack-and-pasel system of days gone by. The con-duction-cooling requirement was to get away from the blower/air-hose/insulated-box problems that follow the usual external-anode design. At the 100 -watt output level, some transmission-line loss could be tolerated and still allow the use of a modest antenna for satellite access.

Amplifier Circuitry

The amplifter draws heavily upon provious designs.that utilized the air-cooled, external-anode tubes, as shown in Fig. I and in the photographs. A half-wave grid line is fabricated from double-sided pc-board material. The input-coupling method departs slightly from previous examples, but only in the mechanics of adjustment. The plate line is similas to published information, with slight variations in the method of tuning.

Input coupling to the amplifier is by moans of a capacitive probe to the grid line. A small lab of copper is soldered to the grid line and forms one side of the capacitor. A disk on the center conductor of a coaxial section is the movable portion of the coupling. This coaxial section is fabricated from pieces of brass tubing that will slide together. telescope fashion. A BNC chassismount fitting with the threads filed down is soldered into the inner, movable piece of tubing to allow ease of connection from the exciter. A piece of copper wire and a couple of Teflon disks extend the center conductor for aftachment of the capacitor plate inside the grid compartment Once adjusted, the sliding portion is held in place by means of a small compression clamp.

[^11]The plate line is the familiar half-wavelength variety, with capacitive tuning provided by movable vanes os "happers." In earlier versions using this tuning scheme, the flappers were moved by means of string that was allowed to wind or unwind around a shaft, providing front-pancl control. After a few instances of loss of control, caused by the nylon fishing line melting or becoming untied, the writers decided that there had to be a better way. Accordingly, the cam-an-a-rod method was tried and found satisfactory. Both plate-tuning and output-coupling flappers are adjusted in this manner (Fig. 2).

Cooling

Several tests were performed to check the effectiveness of the thermal-link/heat-sink cooling system. With the aid of Temprobes, 4 it was determined that the tube would stay within maxImum temperature ratings while dissipating 100 to 200 watts of dc. A liberal coating of thermalconducting grease was used to aid heat transfer. More on this subject later.

A look at the bottom of the amplifier reveals the grid compartment (top center) and the ac and dc connection cables from the powar supply. A grid line is tuned by means of a butterfly type of capacitor mounted on phenolic so that the total capacitance is reduced. A small disk on the end of a coaxial section provides capecitive input coupling to the grid circuit. Tha flexible coupling shown hare has since been replaced by iwo universal-joint :ype of conneciors to remove some annoying backlash in the runing control. A high-watrage dropping resistor, part of the screen supply circuitry, is shown at the right.

Fig. 1 - Schemetic diagram of the 432-MHz amplifier.
C1 - 1.8 . to 5.9 -pF air variable, E. F. Johnson 160-0205-001. Mount on phenolic bracket.
C2 - 1/2-inch dia. disk on center conductor of coaxial extension. See text and photograph.
C3, C4 - Springbrass flapper type tuning capacitors. See text and Fig. 2.
C5 - 2-1/2 \times 4-inch pc board, single-sided, with .01 inch thick Teflon sheet for insulation to chassis. Copper-foll side mounted roward the chassis wall.
CR1 - $1 / 4$-inch dia. LED.
J1 - BNC chassis-mount connector with threads filed to fir inside brass sleeve.
J2 - Type " N " coaxial connector.
13. 14 - Tip jacks or binding posts.

J5 - Phono type connector. External relay contacts should be wired to short J 5 for "carrieron" condition.
J6 - High-volrage connector, James Millen 37001.
L1 - $1-3 / 4 \times 4$-inch double-sided pc board, spaced $7 / 8$-inch from chassis.
L2-3-1/2 $\times 6.1 / 4$-inch double-sided pc board or aluminum strip. Length from tip of line to tube center is 7.1/8 inches. See Fig. 2.
Heat Sink - Astrodyne No. 3216-0500-A0000, 5 $X 5$ inches. Can be painted flat black or anodized fop better dissipation.
R1 - 27 ohm, 1 -W resistor, 6 in parallel.
R2 - 100-k』 1 Wresistor, 3 in parallel.

Early tests with only de applied, and later ones with the full dc and ff voltages present, confirmed that at the 100 -watt output level no forced-air cooling was required. At higher output levels of 175 to 200 watts, the temperatures on the anode and heat sink were still below the maximum allowed by the manufacturer, but high enough that it was fell prudent to add a quiet "whisper" fan for safety. Operational tests proved that the added background noise was not distracting to the operator.

Construction

There are several configurations possibic for the package, and the constructor should feel frec to mold them to fit his idea of how things should be assembled. An LMB cabinet (CO-1) was selected for an enclosure because it matches many of the "gray boxes" found in a lot of shacks. Rather than mount the heat sink through an unsightly hole in the rear panel of the cabinet, it was decided to mount the amplifier parallel to the front panel.

Fig. 2 - Cutaway drawing from the side of the grid and plate compartments. The plate line may be made of two pieces, as shown here, or of one single piece of aluminum strip. C4 is shown from the end-on view. The arm that moves C4 and the eccentric that moves C3 are fastened to their insulated shafts by epoxy cement. Small Teflon buttons prevent accidental shorts between the capacitors and the plate line.

This places the heat sink inside, but there is adequate ventilation through the box to allow proper cooling. This mounting scheme also permits a fan to be mounted inside, so that there are no awkward protuberances to worry about behind the cabinet. A standard size chassis is used to fill the gap between the panel and the amplifier proper. and incidentally to provide a mounting space for peripheral electronics. As long as the parts placement within the amplifier grid and plate compartments is not changed from the design given here, it will not matter what is done externally.

The grid compartment is a $5 \times 7 \times 2$-inch aluminum chassis with captive nuts in the bottom lip to permit securing the bottom plate. For the plate compartment a $5 \times 10 \times 3$-inch aluminum chassis was modified to provide better mounting surfaces for the heat sink and to allow the plate-tuning flapper to be mounted on the end wall of the compartment. One end of the chassis was removed and pieces of aluminum angle stock were fastened around the open end. These pieces were drilled to accept No. 8-32 screws that thread into tapped holes in the heat sink. Tapped holes in the top surface of the heat sink and captive nuts in the top lips of the chassis permit a perforated top plate to be fastened securely for minimum rf leakage. Total dimensions are given in Fig. 2.

Tube Placement

An Eimac SK-630 socket and SK-1920 thermal link are used in mounting the tube and conducting
the heat away from the anode. The thermal link is made of toxic beryllium oxide (BeO). The manufacturer's caution against abrasion, fractures, or disposal should be heeded. Parts placement in the anode-block area is critical if efficient heat transfer and minumum strain on the tube are to be obtained. The tube socket must have sufficient clcarance in its mounting hole that some lateral movement toward or away from the leat sink is allowed. The socket is secured to the chassis with

The varactor tripler is assembled in a box made from double-sided pc board.

the usual toe clamps supplied. Because of the rim formed on the socke: by the integral screen-bypass capacitor, a spacer is needed between the thermal link and the heat sink. A piece of copper, $1 / 4$-inch thick and about 2-3/4 $\times 4-1 / 2$-inches, serves as the spacer, as well as providing excellent heat transfer to the inner face of the heat sink. This copper spacer and the BeO thernal link are both held in place between the tube anode and the heat sink by the pressure applied by the ceramic pillars. The anode end of the plate line is bent up to form a surface that will permit screws to thread into the insulators. In the early version of the amplifier this shaped and bent piece of aluminum was only lono enough to provide some mounting surface to which the plate line (double-sided pc board in this instance) was fastened by means of five No. 6-3? screws and nuts with lock washers. The photograph shows this particular scheme in the top view. A later version had the pc board replaced with an aluminum strip of the same size. A still later test was made with the anode-clamp/plate line all constructed from one piece of sluminum. No difference in plate-circuit performance could be noticed, which was the reason for the tests of different materials.

A moderate coating of thermal-conducting grease should be applied between the copper plate, the heat sink, the thermal link, and the anode block. Don't overdo it, however. In one test a glob of the material found its way down to the screen ring, and the combination of if and dc voltages between the screen and plate caused the material to break down.

The Tripler

The tripler is responsible for the "Tr" part of the name. The frequency tripler, using a varactor diode, is essentially a duplicate of the one de-

The amplifier chassis is mounted parallel to the front panel. A varactor-diode tripler is mounted on the subchassis, at the right. This view of the amplifier shows the ceramic insulators that provide pressure to hold the tube anode against the thermal link and the heat-sink assembly. A half-wavelength plate line occupies most of the length of the chassis, with a flapper type of tuning capacitor mounted on the left wall. The iwo VR tubes, center, are regulators for the screen voltage. Insulated shafts extend into the plate compartment, under the plate line, where they rotate eccentric disks to provide tuning control. Two tip jacks at the extreme right allow a cooling fan to be connected, if needed for higher power operation.
scribed in other ARRL publications. 5 A slight clange was made to permit casier adjustment; a 1000 -ohm resistor was added in series with the normal bias resistor across the diode. This permits the diode current to be monitored during the tune-up procedure. A rough approximation of correct adjustment can be obtained by tuning the input circuitry for maximum voltage across the 1000 -ohm resistor, and then adjusting the idlce circuit and the output circuits for a dip in this reading. These adjustments should be made with the varactor output connected to a suitable 50 -ohm load; reactive loads will cause the readings to be erratic and confusing. Final adjustments should be made with the aid of SWR meters and a sensitive wavemeter or other spectral-output indicating system. Once the tripler is adjusted for proper operation into a dummy load, don't touch it. Further adjustments should be done at the tube grid-input circuit.

Because the tripler construction and the peripheral electronics chassis layout were not carefully coordinated, there is a distressing lack of space to adjust the tripler input circuits while in place (as can be seen in the photograph). However, if the builder will move the location of the voltage regulator tubes an inch or two to the left, there should be no problem. The tripler is fastened to the chassis by means of spade lugs extending from the vertical members of the tripler box.

Power Supply

Most of the earlier testing of this unit was performed while using the Heath HP-23A to supply
${ }^{6}$ Radio Amateur's Handbook, ARRL, 52nd Edition. Chapter 7.

Fig. 3 - Schematic diagram of the varactor tripler.
all voltages. The amplifier can be operated at the 80 - to 100 -watt output level without unduly taxing the capability of this supply. Accordingly, the wiring and plug connections were made up with this feature in mind. When a larger supply was constructed for tests at the 200 -watt level, connections were made compatible with those on the Heath supply as far as practicable. When using the HP-23A, provision must be made to drop the filament potential to the nominal 6.0 V required by the 8560 A heater. A voltage-dropping resistor for this purpose is located under the support chassis. Heater voltage should be measured at the tube socket, not at the power supply. The newer power supply, HP-23B, can be used if the series resistance added is sufficient to drop the potential from 12 to 6 V as needed by the tube.

Adjustment and Operation

Initial testing should be performed while operating the amplifier at reduced plate and screen voltages, if possible. Output coupling should be at maximum, and the input-coupling probe should be near maximum. Again, do not adjust the tripler circuits to make up for misadjustment of the amplifier. Drive power should be adjusted by increasing or decreasing the $144-\mathrm{MHz}$ excitation to the tripler. An output power indicator should be used as an aid in adjustment of the amplifier.

TABLE I Operating Conditions		
144-MHz	432-MHz	432-MHz drive power watis
drive power	output power	
4	wetts	watts
8	2	30
10	4	50
15	5	80
18	7	100
$E p-1000 \mathrm{~V}$.	9	140
$I p-60 \mathrm{~mA}$, zero signal.		
$I p-300 \mathrm{~mA}$, single tone (cw), 140 W ouiput.		

Provisions ware made in the wiring to the multimeter switch to display a sample of rf energy, such as might be obtained from a directional coupler. ${ }^{6}$ The input-probe spacing and the grid-line tuning should be adjusted for maximum drive to the tube; this should be concurrent with minimum SWR as zeen by the tripler. Move the coupling probe in small increments - the proper position will tend to be somewhat difficult to find. Output coupling and plate tuning should be adjusted for maximum output. The reason for starting with maximum coupling is that with minimum coupling and reactive loads, the amplifier could be unstable. Loading should be decreased until there is a smooth, but not sharp, dip in plate current. A reading in the vicinity of 250 to 300 mA at resonance is about right, at a plate potential of 800 V. As with most tubes in this family, maximum output is seldom achieved at minimum plate current. Use the output power as an indication of proper operation, but be sure that the screen is not abused - small amounts of negative screen current are no cause for alam. In all cases, do not exceed the power dissipation rating of the tube element concerned.

It is not practical to operate this tube in this configuration at more than $1200-\mathrm{V}$ plate potential. Tests were made at 1500 V , with disastrous results. At that de level, with the added rf voltage, the stress across the BeO thermal link caused it to become very "unhappy." This caused it to produce frying sounds, which made the authors unhappy. The condition also caused a reduction of platecircuit efficiency and much unwanted heating of nearby metal parts. Investigation of the phenomenon showed that the high Q of the circuit caused the fault. Rather than do a complete redesign of the plate circuit, and because the initial goal was a 100 -watt unit, the decision was made to leave well enough alone and recommend a 1200 -volt limit. This unit was originally described by QST for January, 1976.

[^12]
A LOW-DRIVE 6-METER PA

Recently, there have been some excellent articles on 6 -meter amplifiers in the 1 - and $2-\mathrm{kW}$ PEP levels. Usually grounded-grid design is used and the amplifiers require exciters in the 100 -watt class. The new popular solid-state 6 -meter transceivers that develop approximately 10 -watts PEP fall short of the necessary drive for grounded-grid design. This amplifier can casily be driven to 500 -watts PEP input by transmetters in this power class.

The Circuit

A single 4 CX 250 B is used in a conventional grounded-cathode arrangement (Fig. 1). The tuned grid circuit and the pi-network in the output is a standasd design that works well on 6 meters Driving power is fed into the tuned grid circuit through a 50 -ohm T pad. Selection of the correct T-pad value will compensate for driving power of a watt or so up to 25 watts. R5 provides very heavy swamping and assures that the amplifier is completcly stable. If R5 resistor is omitted for drive of less than 1 watt, the amplifier will have to be neutralized. Another advantage of the T pad and resistive input is a more constant load to the driving stage.

In the plate circuit, heavy copper-strap conductors are used to provide low inductance leads. The outpu! capacitance of the 4 CX 250 B (4.4 pF) plus strays and the plate turing capacitance should be 10 to 12 pF for a reasonable circuit Q. The amplifier plate circuit should resonate at 50 MHz with the tuning capacitor (C1) as near minimum value as possible.

Top view of the amplifier (note paralleled ceramic capacitors for C4).

Designed and built by Dick Stevens, WIOWJ, this amplifier fills the need for a low-drive model usable with 10 watt exciters.

When drive is provided by a transceiver, a dpdi relay (K1) places the amplifier in the line in the transmit condition and consects the antenna to the transceiver in the receive condition. Cutoff hias is applied to the amplifier in the receive condition and is reduced to the operating value white transmitting by grounding one end of the bias potentioneter. R4. A double set of VOX send/ receive contacts is required to perform these two functions (K2).

Construction

An LMB CO-7 cabinct is used as the basic amplificr housing. It is necessary to add 4 small brackets to stiffen the front and back panels. Two pieces of $1 / 2 \times 1 / 2$-inch Reynoids aluminum angle stock are added to the sides of the built-in chassis to provide additional strength and provide an air

TABLE I

Pad Values for Input Attenuator

Alm (dB)	R1	$R 2$	$R 3$ (ohms)
0	none	-	-
6	18	18	68
10	27	27	39
20	43	43	11

seal between the bottora and top of the chassis. All the perforated holes above the top of the chassis must be covered with masking tape 10 make the top portion of the cabinet airtight. Directly beneath the 4CX250B tube socket, a large hole is punched in the bottom of the cabinct for an air entrance. The photograph of the amplifier shows that the 4 CX 250 B does not have a chimney. It was later found that the chimney must be used to provide adequate cooling. A 4 -inch diameter hole is cut in the back panel of the cabinet and a 5 -inch Roton Whisper fan is mounted over the hole to cxhaust air from the cabinet.

Air flow is through the bottom of the cabinet. through the socket of the 4CX250B, through the chimney into the anode and out of the cabinet through the exhaust fan. Very little blower noise is generated using this method of cooling as compared to the conventional squirrel-cage blower fan. The amplifier construction is quite simple as can be seen fron the photographs and can be duplicated easily.

Resuits

A suitable power supply is shown in Fig. 2. With 2000 volts on the anode and a plate current

Bottom view of the amplifier.
of 250 mA , the power output as measured by a Bird Thruline wattmeter into a Bird dummy load was 325 watts. This agrecs closely with the tube specification sheets.

Fig. 1 - Schematic diagram of the amplifier. Unless otherwise specified, capacitors are disk ceramic and resistors are carbon composition.
C1 - 50 pF , receive spacing.
C2 - $25 \mathrm{pF}, 3 \mathrm{kV}$ (surplus cap. in unit).
C3 - 140 pF , receive spacing.
C4 - Cer. cap. 2 paralleled 500 pF .5 kV .
K1 - Dpdi relay, $12-V$ coil (can have dc/power
type contacts but if design preferable).
K2 - Dpdt relay. Either T-R contacts in exciter or aux. relay if only sps: option available.
L1 - 6 tums No. 14 solid wire, $1 / 2$-inch dia, 1-1/4 inch long. Tap 1-1/2 turns from gnd end.
L2 - 5 turns No. 10 solld wire, 1-3/8 dia, 2 inch long (see sexi).
RFC1 - 35 turns No. 22 enam. wire on 5/8-inch dia cer. ins.

Fig. 2 - Power supply for the amplifier. B1 - Blower motor (see text).
CR1-CR4, incl. - Each leg consists of 2, series silicon diodes (1 A, 1000 PRV).
CR5, CR6, CR7 - Silicon diode, 1 A, 1000 PRV. CR8 - Silicon diode, 3 A. 100 PRV.

K3 - Power relay, dpdt 10 A , contacts 117-V ac coll.
T1 - Power transformer, $1400 \mathrm{Vac}, 500 \mathrm{~mA}$. T2 - Power transformer, 500 V at 100 mA sec. $12-\mathrm{V}, 1-\mathrm{A} \mathrm{sec}$. and 6.3-V,3-A sec.
T3-Filament transformer, 6.3 V, 1 A .

Receiving Systems

The performance of a communications receiver can be measured by its ability to pick up weak signals and separate them from the noise and interference while at the same time holding them steady at the same dial settings. The difference between a good receiver and a poor one can be the difference between copying a weak signal well, or perhaps not copying it at all.

Whether the receiver is of home-made or commercial origin, its performance can range from excellent to extremely poor, and high cost or circuit complexity cannot assure proper results. Some of the simplest of receivers can provide excellent results if carcful attention is given to their design and proper use. Conversely, the most expensive of receivers can provide poor results if not operated in a competent manner. Therefore, the operator's success at sorting the weak signals out of the noise and interference is dependent upon the correct use of a properly designed, correctly operated receiver.

Communications receivers are rated by their sensitivity (ability to pick up weak signals), their selectivity (the ability to distinguish between signals that are extremely close together in terms of frequency), and by their stability. The latter trait assures that once a stable signal is tuned in it will remain tuned without periodic retuning of the receiver controls (especially the main tuning and BFO controls).

A well-designed modern receiver must be able to receive all of the popular modes of emission if it is to be touly versatile. It should be capable of handling $\mathrm{cw}, \mathrm{ssb}, \mathrm{a}-\mathrm{m}, \mathrm{fm}$, and RTTY signals.

The type of detection to be used will depend on the job the receiver is called upon to do. Simple receivers consisting of a single stage of detection (regenerative detector) followed by a one- or two-stage audio amplifier are often adequate for portable and emergency use over short distances. This type of receiver can be quite compact and light weight and can provide many hours of operation from a dry-battery pack if transistorized circuitry is used. Similarly, superregenerative detectors can be used in the same way, but are

Fig. 8-1 - The success of amateur on-the-air operation is, in a large part, determined by a receiver. A good raceiver, mated with a good pair of ears, is an unbeatable combination.
suitable for copying only a-m and wide-band fro signals. Superheterodyne receivers are the most popular and are capable of better performance than the foregoing types. Heterodyne defectors are used for ssb and cw reception in the latter. If a regenerative detector is made to oscillate and provide a steady signal, it is known as an autodyne detector. A beat-frequency oscillator, or BFO, is used to generate a steady signal in the superheterodyne receiver. This signal is applied to the detector stage to permit the reception of ssb and cw signals.

Communications receivers should have a slow tuning rate and a smooth-operating tuning-dial mechanism if any reasonable degree of selectivity is used. Without these features cw and ssb signals aro extremely hard to tune in. In fact, one might easily tune past a weak signal without knowing it was there if a fast tuning rate were used.

RECEIVER CHARACTERISTICS

Sensitivity

In commercial circles "sensitivity" is defined as the signal at the input of the receiver required to give a signal-plus-noise output some stated ratio (generally 10 dB) above the noise output of the receiver. This is a useful sensitivity measure for the
amateur, since it indicates how well a weak signal will be heard. However, it is not an absolute method, because the bandwidth of the receiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small

Fig. 8-2 - Typical selectivity curve of a modern superheterodyne receiver, Relative response is plotted against deviations above and below the resonance frequency. The scale at the left is in terms of voltage ratios, the corresponding decibel steps are shown at the right.
voltages called thermal-agitation noise. Thermat agitation noise is independent of frequency and is proportional to the (absolute) temperature, the resistive component of the impedance acros; which the thermal agitation is produced, and the bandwidth. Noise is generated in vacuum tubes and semiconductors by random irregularities in the current flow within them; it is convenient to express this shoteffect noise as an equivalent resistance in the grid circuit of a noise-free tube. This equivalent noise resistance is the resistance (at room temperature) that placed in the grid circuit of a noise-free tube will produce plate-circuil noise equal to that of the actual tube. The equivalent noise resistance of a vacuum tube increases with frequency.

An ideal receiver would generate no noise in its tubes or semiconductors and circuits, and the minimum detectable signal would be limited only by the thermal noise in the antenna. In a practical receiver, the limit is determined by how well the amplified antenna noise overrides the other noise of the input stage. (1 t is assumed that the first stage of any good recciver will be the determining factor, the noise contributions of subsequent stages should be insignificant by comparison.) At frequencies below 20 or 30 MHz the site noisc (atmospheric and man-made noise) is generally the limiting factor.

The degree to which a practical receiver approaches the quiet ideal receiver of the same bandwidth is given by the noise ingure of the receiver. Noise figure is defined as the ratio of the signal to noise power ratio of the ideal receiver to the signal-to-noise power ratio of the actual receiver output. Since the noise figure is a ratio, it
is usually given in decibels; it runs around 5 to 10 dB for a good communications receiver below 30 MHz . Although noise figures of 2 to 4 dB can be obtained, they are of little or no use below 30 MHz except in extremely quiet locations or when a very small antenna is used. The noise figure of a receiver is not modified by changes in bandwidth.

Selectivity

Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The overall selectivity will depend upon the selectivity and the number of the individual tuned circuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type is shown in liig. 8-2. The bandwidth is the width of the resonance curve (in Hz or kHz) of a receiver at a speciffed ratio; in the typical curve of Fig. 8-2 the bandwidths for response ratios of 2 and 1000 (described as "-6 dB" and " -60 dB ") are 2.4 and 12.2 kHz respectively.

The bandwidth at 6 dB down must be sufficient to pass the signal and its sidebands if faithful reproduction of the signal is desired. However, in the crowded amateur bands, it is generally advisable to sacrifice fidelity for intelligibility. The ability to reject adjacent-channel signals depends upon the skirt selectivity of the receiver, which is determined by the bandwidth at high attenuation. In a receiver with excellent skirt selectivity, the ratio of the $6-\mathrm{dB}$ bandwidth to the $60-\mathrm{dB}$ bandwidth witl be about 0.2 for code and 0.3 for phone. The minimum usable bandwidth at 6 dB down is approximatcly 150 Hz for code reception and approximately 2000 Hz for phone.

Fig. 8-3 - Block diagrams of three simple receivers.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varying conditions of gain-control setting, temperature, supply-voltage changes and mechanical shock. The term "unstable ${ }^{\text {c }}$ is also applied to a receiver that breaks into oscillation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition.

SIMPLE RECEIVERS

The simplest receiver design consists of a detector followed by an audio amplifier, as shown in Fig. 8-3A. Obviously, the sensitivity of the detector determines how well this receiver will work. Various schemes have been developed to increase detector sensitivity, including the regenerative and superregenerative detectors described
later in this chapter. Another way to increase receiver sensitivity is to add one or more ff-amplifier stages before the detector. This approach is called the tuned-radio-frequency, or TRF receiver, Fig. 8-3B.

Another design which has become popular for use in battery-powered equipment is the directconversion receiver, Fig. 8-3C. Here, a detector is employed along with a variable-frequency oscillator which is tuned just slightly off the frequency of the incoming signal to produce a beat note. A narrow-bandwidth audio filter located between the detector and the aduio amplifier provides selectivity. However, the lack of automatic gain control limits the range over which the receiver can handle strong signals unless a manual rf-gain control is employed. FETs and ICs can be used as detectors to provide up to 90 dB of dynamic sange typically $3 \mu \mathrm{~V}$ to 100 mV of input signal.

DETECTION AND DETECTORS

Detection (demodulation) is the process of extracting the signal information from a modulated carrier wave. When dealing with an a-m signal, detection involves only the rectification of the of signal. During fm reception, the incoming signal must be converted to an $a-m$ signal for detection. See Chapter 14.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is connected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a-m is the diode. A germanium or silicon crystal is an imperfect form of diode (a small current can usually pass in the reverse direction), but the principle of detection in a semiconductor diode is similar to that in a vacuum-tube diode.

Circuits for both salf-wave and full-wave diodes are given in Fig. 8-4. The simplified half-wave

Fig. 8-4 - Simplified and practical diode detector circuits. A, the elementary half-wave diode detector; B, a practical circuit, with rf filtering and audio output coupling; C, full-wave diode detector. with output coupling indicated. The circuit, L2C1, is tuned to the signal frequency; typical values for $C 2$ and $R 1$ in A and C are 250 pF and 250,000 ohms, respectively: in B, C2 and C3 are 100 pF each; R1, 50,000 ohms; and R2, 250,000 ohms. CA is $0.1 \mu \mathrm{~F}$ and R3 may be 0.5 to 1 megohm.
circuit at Fig. 8-4 A includes the of tuned circuit, L2C1, a coupling coil, Ll , from which the rf energy is fed to L2C1, and the diode, CR 1, with its load resistance, R1. and bypass capacitor, C2.

Fig. 8-5 - Diagrams showing the detection process.

The progress of the signal through the detector or rectifier is shown in Fig. 8-5. A typical modulated signal as it exists in the tuned circuit is shown at A. When this signal is applied to the rectifier, current will flow only during the part of the ff cycle when the anode is positive with respect to cathode, so that the output of the rectifier consists of half-cycles of rf. These current pulses flow in the load circuit comprised of R1 and C2, the resistance of R1 and the capacitance of C2 being so proportioned that C2 charges to the peak value of the rectified voltage on each pulsc and retains enough charge between pulses so that the voltage across R1 is smoothed out, as shown in C. C2 thus acts as a filter for the radio-frequency component of the output of the rectifier, leaving a dc component that varies in the same way as the modulation on the original signal. When this varying dc voltage is applied to a following amplifier through a coupling capacitor (C4 in Fig. 8-4), only the variations in voltage are transferred, so that the final output signal is ac , as shown in D .

In the circuit at 8-4B, R1 and C2 have been divided for the purpose of providing a more effective filter for rf. It is important to prevent the appearance of any if voltage in the output of the detector, because it may cause overloading of a succeeding amplifier stage. The audio-frequency variations can be transferred to another circuit through a coupling capacitor, C4. R2 is usually a "potentiometer" so that the audio volume can be adjusted to a desired level.

Coupling from the potentiometer (volume control) through a capacitor also avoids any flow of dc through the moving contact of control. The flow of dc through a high-resistance volume control often tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at $8-4 \mathrm{C}$ differs in operation from the half-wave circuit only in that
both halves of the of cycle are utilized. The full-wave circuit has the advantage that if filtering is easier than in the half-wave circuit. As a result, less attenuation of the higher audio frequencies will be obtained for any given degree of If filtering.

The reactance of C 2 must be small compared to the resistance of R1 at the radio frequency being rectified, but at audio frequencies must be relatively large compared to R1. If the capacitance of C2 is too large, response at the higher audio frequencies will be lowered.

Compared with most other detectors, the gain of the diode is low, normally running around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The loading effect of the diode is close to one half the load resistance. The detector linearity is good, and the signal-handling capability is high.

Plate Detectors

The plate detector is arranged so that rectification of the rf signal takes place in the plate circuit of the tube or the collector of an FET. Sufficient negative bias is applied to the grid to bring the plate current nearly to the cutoff point, so that application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in the signal in a fashion similar to the rectified current in a diode detector.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance of any tube is very high when the bias is near the plate-current cutoff point. The same is true of a JFET or MOSFET. Impedance coupling may be used in place of the

Fig. 8-6 - Circuits for plate detection. A, triode; B, FET. The input circuit, L2C1, is tuned to the signal frequency. Typical values for Ri are 22,000 to $\mathbf{1 5 0 , 0 0 0}$ ohms for the circuit at A, and 4700 to 22,000 ohms for B.
resistance coupling shown in Fig. 8-6. Usually 100 henrys or more of inductance are required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube or transistor. It will handle large signals, but is not so tolerant in this respect as the diode. Linearity, with the self-biased circuits shown, is good. Up to the overload point the detector takes no power from the tuned circuit, and so does not affect its Q and selectivity.

Infinite-Impedance Detector

The circuit of Fig. 8-7 combines the high signal-handling capabilities of the diode detector with low distortion and, like the plate detector, does not load the tuned circuit it connects to. The circuit resembles that of the plate detector, except that the load resistance, $27 \mathrm{k} \Omega$, is connected between source and ground and thus is common to both gate and drain circuits, giving negative feedback for the audio frequencies. The source resistor is bypassed for of but not for audio, while the drain circuit is bypassed to ground for both audio and radio frequencies. An ff filter can be connected between the cathode and the output coupling capacitor to eliminate any rf that might otherwise appear in the output.

The drain current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across the source resistor consequently increases with signal. Because of this and the large initial drop across this resistor, the gate usually cannot be driven positive by the signal.

HETERODYNE AND PRODUCT DETECTORS

Any of the foregoing a-m detectors becomes a heterodyne detector when a local-oscillator (BFO) is added to it. The BFO signal amplitude should be 5 to 20 times greater than that of the strongest incoming cw or ssb signal if distortion is to be minimized. These heterodyne detectors are frequently used in receivers that are intended for $a-m$ as well as cw and ssb reception. A single detector can thus be used for all three modes, and elaborate switching techniques are not required. To receive $\mathrm{a} \cdot \mathrm{m}$ it is merely necessary to disable the BFO circuit.

The name product detector has been given to heterodyne detectors in which special attention has

Fig. 8-7 - The infinite-impedance detector. The input circuis, L2C1, is tuned to the signal frequency.
been paid to minimizing distortion and intermodulation (IM) products. Product detectors have been thought of by some as a type of detector whose output signal vanishes when the BFO signal is removed. Although some product detectors function that way, such operation is not a criterion. A product is something that results from the combination of two or more things, hence any heterodyne detector can rightfully be regarded as a product detector. The two input signals (i-f and BFO) are fed into what is essentially a mixer stage. The difference in frequency (after filtering out and removing the $i-f$ and BFO signals from the mixer output) is fed to the audio amplifier stages and increased to speaker or headphone level. Although product detectors are intended primarily for use with cw and ssb signals, a-m signals can be copied satisfactorily on receivers which have good i-f selectivity. The a-m signal is tuned in as though it were an ssb signal. When properly tuned, the heterodyne from the $\mathrm{a}-\mathrm{m}$ carrier is not audible.

A triode product-detector circuit is given in Fig. 8-8A. The i-f signal is fed to the grid of the tube, while the BFO energy is supplied to the cathode. The two signals mix to produce audio-frequency output from the plate circuit of the tube. The BFO voltage should be about 2 V rms and the signal should not exceed 0.3 V ms for linear detection. The degree of plate filtering required will depend on the frequency of operation. The values shown in Fig. 8-8A are sufficient for $450-\mathrm{kHz}$ operation. At low frequencies more elaboratc filtering is needed. A similar circuit using a JFET is shown at B.

In the circuit of Fig. 8-8C, two germanium diodes are used, though a 6AL5 tube could be substituted. The high back resistance of the diodes is used as a dc return; if a 6AL5 is used the diodes must be shunted by 1 -megohm resistors. The BFO signal should be at least 10 or 20 times the amplitude of the incoming signal.

At Fig. 8-8D a two-diode circuit, plus one transistor, provides both $\mathrm{a}-\mathrm{m}$ and product detection. This circuit is used in the Drake SPR-4 receiver. Balanced output is required from the BFO. The $a-m$ detector is forward biased to prevent the self-squelching effect common to single-diode detectors (caused by signals of low level not exceeding the forward voltage drop of the diode). The IC detector given in Fig. 8-8E has several advantages. First, the BFO injection only needs to be equal to the input signal, because of the additional amplification of the BFO energy which takes place within the IC. Also, output filtering is quite simple, as the double-balanced design reduces the level of i-f signal and BFO voltage appearing in the output circuit. Motorola's MC1496G has a dynamic range of 90 dB and a conversion gain of about 12 dB , making it a good choice for use in a direct-conversion receiver.

A multipurpose IC i-f amplifier/detector/agc system, the National Semiconductor LM373, is shown in Fig. $8-8 \mathrm{~F}$. A choice of $\mathrm{a}-\mathrm{m}, \mathrm{ssb}, \mathrm{cw}$, and fm detection is available, as well as a $60-\mathrm{dB}$-range agc system and i-f amplification of 70 dB . Recovered audio is typically 120 mV . LICl tune to the i-f frequency.

REGENERATIVE DETECTORS

By providing controllable rf feedback (regeneration) in a triode, pentode, or transistorized-detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effective Q of the circuit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuit of Fig. 8-9A, the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The dc voltage from rectified-current flow through the grid leak. RI, biases the grid negatively, and the audio-frequency variations in voltage across R1 are amplificd through the tube as in a normal af amplifier. In the plate circuit, R2 is the plate-load resistance and C3 and RFC a filter to eliminate of in the output circuit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further increased by using a screen-grid tube instead of a triode. The operation is equivalent to that of the triode circuit. The screen bypass capacitor should have low reactance for both radio and audio frequencies.

The circuit in Fig. 8-9B is regenerative, the fcedback being obtained by feeding some signal from the drain circuit back to the gate by inductive coupling. The amount of regeneration must be controllable, because maximum regenerative amplification is secured at the critical point where the cincuit is just about to oscillate. The ciritical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned. An oscillating detector can be detuned slightly from an incoming cw signal to give aufodyne reception. The circuit of Fig, 8-9B uses a control which varies the supply voltage to control regeneration. If L2 and L3 are wound end to end in the same direction, the drain connection is to the outside of the "tickler" coil, L3, when the gate connection is to the outside end of L2.

Although the regenerative detector is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handling capability is limited. The signalhandling capability can be improved by reducing R1 to 0.1 megohm, but the sensitivity will be decreased. The degree of antenna coupling is often critical.

A bipolar transistor is used in a regenerative detector hookup at C. The emitter is returned to dc ground through a 1000 -ohm resistor and a $50,000-\mathrm{ohm}$ regencration control. The $1000-\mathrm{ohm}$ resistor keeps the emitter above ground at rf to permit feedback between the emitter and collector. A 5-pF capacitor (more capacitance might be required) provides the feedback path. C1 and L2 comprise the tuned circuit, and the detected signal is taken from the collector return through T1. A transistor with medium or high beta works best in
circuits of this type and should have a frequency rating which is well above the desired operating frequency. The same is true of the frequency rating of any FET used in the circuit at B.

Superregenerative detectors are somewhat more sensitive than straight regenerative detectors and can employ either tubes or transistors. An in-depth discussion of superregenerative detectors is given in Chapter 9.

(A)

Fig. 8-9-(A) Triode grid-leak detector combines diode derection with triode amplification. Although shown here with resistive plate load, R2, an audio choke coil or transformer could be used.
(B) Feeding some signal from the drain circuit back to the gate makes the circuit regenerative. When feedback is sufficient, the circuit will oscillate. The regeneration is adjusted by a 10,000 -ohm control which varies the drain voltage.
(C) An npn bipolar transistor can be used as a regenerative detector too. Feedback occurs between collector and emitter through the 5-pF capacitor. A 50,000 -ohm control in the emitter retum sets the regeneration. Pnp transistors can also be used in this circuit, but the battery polarity must be revarsed.

Tuning

For cw reception, the regeneration control is advanced until the detector breaks into a "hiss" which indicates that the detector is oscillating. Further advancing of the regeneration control will result in a slight decrease in the hiss.

Code signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. A low-pitched beat note cannot be obtained from a strong signal because the detector "pulls in" or "blocks."

The point just after the detector starts
oscillating is the most sensitive condition for code reception. Further advancing the regeneration control makes the receiver less prone to blocking, but also less sensitive to weak signals.

If the detector is in the oscillating condition and an amphone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to phone if the receiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

TUNING METHODS

Tuning

The resonant frequency of a circuit can be shifted by changing either the inductance or the capacitance in the circuit. Parel control of inductance (perneability-tuned oscillator, or PTO) is used to tunc a few commercial receivers, but most receivers depend upon panel-mounted variable capacitors for tuning.

Tuning Rate

For ease in tuning a signal, it is desirable that the receiver have a tuning rate in keeping with the type of signal being received and also with the selectivity of the receiver. A tuning rate of 500 kHz per knob revolution is normally satisfactory for a broadcast receiver, but 100 kHz per revolution is almost too fast for easy ssb reception - around 25 to 50 kHz being more desirable.

Band Changing

The same coil and tuning capacitor cannot be used for, say, 3.5 to 14 MHz because of the impracticable maximum-to-minimum capcitance ratio required. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of convenience the same turing capacitor usually is retained, but new coils are inserted in the circuit for each band.

One method of changing inductances is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnects the others. The unused coils are sometimes short-circuited by the switch, to avoid undesirable self-rcsonances.

Another method is to use coils wound on forms that can be plugged into suitable sockets. These plug-in coils are advantageous when space is at a premium, and they are also very useful when considerable experimental work is involved.

Bandspreading

The tuning range of a given coil and variable capacitor will depend upon the inductance of the coil and the change in tuning capacitance. To cover a wide frequency range and still retain a suitable tuning rate over a relatively narrow frequency range requires the use of bandspreading. Mechanical bandspreading atilizes some mechanical means to reduce the tuning ratc; a typical example is the two-speed planetary drive to be found in some receivers. Electrical bandspreading is obtained by using a suitable circuit conñguration. Several of these methods are shown in Fig. 8-10.

In A, a small bandspread capacitor, C1 (15- to $25-\mathrm{pF}$ maximum), is used in parallel with capacitor C2, which is usually large enough (100 to 140 pF) to cover a 2 -to-1 frequency range. The setting of C2 will determine the minimum capacitance of the circuit, and the maximum capacitance for bandspread tuning will be the maximum capacitance of C 1 plus the setting of C 2 . The inductance of the coil can be adjusted so that the maximum-minimum ratio will give adequate bandspread. It is almost impossible, because of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of capacitors. C2 is variously called the bandsetting or main-tuning capacitor. It must be reset each time the band is changed.

If the capacitance change of a tuning capacitor is known, the total fixed shunt capacitance (Fig. 8-10A) for covering a band of frequencies can be found from Fig. 8-11.

[^13]Figom Fig. 日-11. the capacilance ration is 0.38, and hence the minimum capecimance is $(30-5) \oplus 0.38=66 \mathrm{pF}$. The S-p ${ }^{\mathrm{F}}$ minimum of the toning capacitor, the tube caproitance and arry stray capacitance must be included in the 66 pF .

Fig. 8-10 - Essentials of the three basic bandspread tuning systams.

Fig 8-11 - Minimum circuit capacitance required in the circuit of Fig. 8-10A as a function of the capacitance change and the frequency change. Note that maximum frequency and minimum capacitance are used.

The method shown at Fig. 8-108 makes use of capacitors in series. The tuming capacitor, C1, may have a maximum capacitance of 100 pF or more. The minimum capacitance is determined principalty by the setting of C3, which usually has low capacitance, and the maximum capacitance by the setting of C2, which is in the order of 25 to 50 pF . This method is capable of close adjustment to practically any desired degree of bandspread. Either C2 or C3 must be adjusted for each band or separate preadjusted capacitors must be switched in.

The circuit at Fig. 8-10C also gives complete spread on each band. Cl, the bandspread capacitor, may have any convenient value; 50 pF is satisfactory. C2 may be used for consinuous frequency coverage ("general coverage") and as a bandsetting capacitor. The effective maximumminimum capacitance ratio depends on C 2 and the
point at which C1 is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if $\mathbf{C} 2$ ts set at higher capacitance. C2 may be connected permanently across the individual inductor and preset, if desired. This requires a separate capacitor for each band, but eliminates the necessity for resetting C2 each time.

Ganged Tuning

The tuning capacitors of the several rf circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and mechanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency for a given setting of the turing control.

True tracking car be obtained only when the inductance, turing capacitors, and circuit inductances and minimum and maximum capacitances are identical in all "ganged" stages. A small trimmer or padding capacitor may be connected across the coil, so that various minimum capacitances can be compensated. The use of the trimmer necessarily increases the minimum circuit capacitance but is a necessity for satisfactory tracking. Midget capacitors having maximum capacitances of 15 to 30 pF are commonly used.

The same methods are applicd to bandspread circuits that must be traciced. The inductance can be trimmed by using a coil form with an adjustable brass (or copper) core. This core material will reduce the inductance of the coil, raising the resonant frequency of the circuit. Powdered-iron or ferrite core material can also be used, but will lower the resonant frequency of the tuned circuit because it increases the inductance of the coll. Ferrite and powdered-iron cores will raise the Q of the coil provided the core material is suitable for the frequency being used. Core material is now available for frequencies well into the vhf region.

The Superheterodyne

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i-f"), then amplified, and finally detected. The frequency is changed by modulating the output of a tunable oscillator (the high-frequency. or local oscillator) by the incoming signal in a mixer or converter stage to producc a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective circuits. The audio-frequency signal is obtained at the detector. Code signals are made audible by heterodyne reception at the detector stage; this oscillator is called the "beat-frequency oscillator" or BFO. Block diagrams of typical single- and double-conversion receivers are shown in Fig. 8-12.

As a numerical example, assume that an intermediate frequency of 455 kHz ts chosen and
that the incoming signal is at 7000 kHz . Then the high-frequency oscillator frequency may be set to 7455 kHz in order that one side frequency (7455 minus 7000) will be at 455 kHz . The high-frequency oscillator could also be set to 6545 kHz and give the same difference frequency. To produce an andible code signal at the detector of, say, 1000 Hz, the heterodyning oscillator would be set to either 454 or 456 kHz .

The frequency-conversion process permits if amplification at a relatively low frequency, the i-f. High selectivity and gain can be obtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for good stability and, since they are working at frequencles considerably removed from the signal frequencies, they are not normally "pulled" by the incoming signal.

Fig. 8-12 - Block diagrams of a (A) single- and (B) double-conversion superheterodyne receiver.

Images

Each hf oscillator frequency will cause iff response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 7455 kHz to tune to a 7000 kHz signal, for example, the receiver can respond also to a signal on 7910 kHz , which likewise gives a 455 kHz beat. The undesired signal is called the image. It can cause unnecessary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those ased before the signal is heterodyned to the i-f) normally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the of tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i-f increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input circuits.

The Double-Conversion Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of 455 kHz . To reduce image response the signal frequently is converted first to a rather high (1500, 5000, or even $10,000 \mathrm{kHz}$) intermediate (requency, and then - sometimes after further amplification converted to a lower j-f where higher adjacentchannel selectivity can be obtained. Such a receiver is called a double-conversion superhe terodyne (Fig. 8-1 2B).

Other Spurious Responses

In addition to images, other signals to which the receiver is not tuned may be heard. Harmonics
of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency: such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pickup by any means other than the antenna. When a strong signal is received, the harmonics gencrated by rectification in the detector may, by stray coupling, be introduced into the rf or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the intermediate, frequency. The cure is proper circuit isolation and shielding.

Harmonics of the beat oscillator also may be converted in similar fashion and amplified through the receiver; thesc responses can be reduced by shielding the beat oscillator and by careful mechanical design.

MIXER PRODUCTS

Additional spurious products are generated during the mixing process, and these products are the most troublesome of all, as it is difficult indeed to eliminate them unless the frequencies chosen for the mixing scheme are changed. The tables and chart given in Fig. 8-13 will aid in the choice of spurious-free frequency combinations, and they can be used to determine how receiver "birdies" are being generated. Only mixer products that fall close to the desired frequency are considered, as they are the ones that normally cause trouble. The horizontal axis of the chart is marked off in steps from 3 to 20, and the vertical axes from 0 to 14. These numbers can be taken to mean either kilohertz or megahertz, depending on the frequency range used. Both axes must use the same reference; one cannot be in kHz and the other in MHz .

Spurious Response Chart

TABLE 1

$F_{2} \sim F_{1}$									
ORDER	1	2	3	4	5	6	7	${ }^{8}$	9
1/1		\% 20		831		824		815	
1/2	10		${ }^{1} 12$	31	32	-8,	52	53	$\begin{array}{r} \\ \hline 54 \\ \hline 72 \\ \hline\end{array}$
1/3		20		\$22		हैं		853	
1/4			30		:32		52	71	
1/5				40		888		62	
1/6					50		-85		72
1/7						60		8	
1/8							70		8
1/9								80	
$1 / 10$									90
2/3			21		80_{4}^{23}		43	53	

TABLE 2

Fig. 8-13 - Chant to aid in the calculation of spurious frequencies generated during the mixing process.

To demanstrate the use of the chart, suppore an amateur wanted to mix a 6- to 6. GHHz VFO output with a $10-\mathrm{MHz}$ sib gigmal to obtain output in the 80 -meter band (the game problem as with a receiver that wines 3.5 to 4 MHz , using 6 - to that tungs 3.5 to 4 MHz , using $06-\mathrm{MHz}^{20}$ fi). Thus, $F 1$ is 10 MHz and $F 2$ is 6 to 6. . Mtiz. Examination of the chart shows the intemection of these frequencies to be near the lines marked $2 / 3$ and $3 / 5$. In the cose of the transmitter, difference (subtrective) mixtag is to be used. The order of the mixing is tho be used. cine order ol best products that will be close to the desired
mixer output frequency is given on each line in parentheses, A plus sign in front of the parentheses indicates the product order in a sum (additive) mix, and a minus gign the order of a diflerence mix. For this example, the chart indicates the 3rd-. 7th- and 8 th-order products in a $2 / 3$ relationship are
going to be near the 80 -mater band, plus the 6 th-order product of the $3 / 5$ relationshito. The eract frequencies of these products can be found with the help of the two small tahles in Fig 8-13. The product orders from 1 to 9 are given for all the prochuct lines on the chart. The first dided of each proup in a box is the hamonic of the lower frequency. F2, and the second digit is the hamonic of the larger frequency, F1. The dot indicates sum mixing and no dot indicates products in a difference mix. in the example, the chart shows that the $2 / 3$ relationship will yield a 3rd-order product 2F2-F1, a 7 th-order product 4F2-3F1, and an 8 th-order product SF2-3F1.
(Continued on next page)

$(2 \times 6)-10$ $=2$ $(2 \times 6.5)-10$ $=3$$\quad$ (3rd order)		
$(4 \times 6)-(3 \times 10)$	$=-6$	
$(4 \times 6.5)-(3 \times 10)$	$=-4$	
$(5 \times 6)-(3 \times 10)$	$=0$	
$(5 \times 6.5)-(3 \times 10)$	$=2.5$	
(8)		

The $8 / 4$ relationship produces a 6 th-order product 4F2-2F1.

$$
\begin{aligned}
& (4 \times 6)-(2 \times 10)=4 \\
& (4 \times 6.6)-(2 \times 10)=8
\end{aligned}
$$

Thus, the ranges of spurigus signals near the desired output band are 2 to 3 MHz 6 to 4 $\mathrm{MHz}, 0$ to 2.5 MHz and 4 to 6 MHz . The negative sign indicates that the 7 th-order product moves in the opposite direction to the normal output frequency, as the VFO is tuned. In this example proper mixer operation and sufficient selectulty fodlowing the mixer should keep the unwanted products sufficiently down in level without the use of filters or traps. Even-order products can be reduced by employing a balanced or doubly balanced mixer circuit. such as shown in Fig. 8-16.

The level of spurious products to be found in the output of a 12 AU 7 have been calculated by V . W. Bolie, using the assumption that the oscillatos injection voltage will be 10 times (20 dB) greatet than the input signal. This information is given in Fig. 8-14 for 1 st- to 5 th-order products. It is

Fig. 8-14 - Chart showing the relative levels of spurious signals generated by a 12AU7A mixer.
evident from the chart that multiples of the oscillator voltage produce the strongest of the undesired products. Thus, it follows that using a balanced-mixer design which reduces the level of oscillator signal in the output circuit will decrease the strength of the unwanted products.

MIXERS

A circuit tuned to the output frequency is placed in the plate circuit of the mixer, to offer a high impedarce load for the output current that is developed. The signal- and oscillator-frequency voltages appearing in the plate circuit are rejected by the selectivity of this circuit. The output tuned circuit should have low impedance for these frequencies, a condition easily met if neither is close to the output frequency.

The conversion efficiency of the mixer is the ratio of output voltage from the plate circuit to if signal voltage applied to the grid. High conversion efficiency is desirable. The device used as a mixer also should be low noise if a good signal-to-noise ratio is wanted, particularly if the mixer is the first active device in the receiver.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. Pulling should be minimized, because tho stability of the whole receiver or transmitter dependi critically upon the stability of the hf oscillator. Pulling decreases with separation of the signal and hf-oscillator frequencies, being less with higher output frequencies. Another type of pulling is caused by lack of regulation in the power supply. Strong signals cause the voltage to change, which in turn shifts the oscillator frequency.

Circuits

If the mixer and high-frequency oscillator are separate tubes or transistors, the converter portion is called a "mixer." If the two are combined in one tube envelope (as is often donc for reasons of cconomy or efficiency), the stage is called a
"converter." In either case the function is the same.

Typical mixer circuits are shown in Figs. 8-15 and $8-16$. The variations are chiefly in the way in which the oscillator voltage is introduced. In $8-15 \mathrm{~A}$, a pentode functions as a plate detector at the output frequency; the oscillator voltage is capacitance-coupled to the grid of the tube through C2. Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. The circuit is a sensitive one and makes a good mixer, particularly with high-transconductance tubes like the 6CY5, 6EJ7 or 6U8A (pentode section). Triode tubes can be used as mixers in grid-injection circuits, but they are commonly used at 50 MHz and higher, where mixer noise may become a significant factor. The triode mixer has the lowest inherent noise, the pentode is next, and the multigrid converter tubes are the noisiest.

In the circuit of Fig. 8-15A the oscillator voltage could be introduced at the cathode rather than at the control grid If this were done, C3 would have to be removed, and output from the oscillator would be coupled to the cathode of the mixer through a $.001-\mu \mathrm{F}$ capacitor. C 2 would also be discarded. Generally, the same rules apply as when the tube uses grid injection.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid mixer tube
provides much better isolation. A typical circuit is shown in Fig. 8-15B, and tubes like the 6BA7 or 6BE6 are commonly used. The oscillator voltage is introduced through an "injection" grid. Measurement of the rectified current flowing in R 2 is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit can have little effect on the oscillator frequency because the injection grid is isolated from the signal grid by a screen grid that is at rf ground potential. The pentagrid mixer is much noisicr than a triode or pentode mixer, but its isolating characteristics make it a very useful device.

Penagrid tubes like the 6BE6 or 6BA7 are somtimes used as "converters" performing the dual function of mixer and oscillator. The usual circuit resembles Fig. 8-15B except that the No. 1 grid connects to the top of a grounded parallel-tuned circuit by means of a larger grid-blocking capacitor, and the cathode (without RI and C3) connects to a tap near the grounded end of the coil. This forms a Hartley oscillator circuit. Correct location of the cathode tap is indicated by the grid current; raising the tap increases the grid current because the strength of oscillation is increased.

The effectiveness of converter tubes of the type just described becomes less as the signal frequency is increased. Some oscillator voltage will be coupled to the sigral grid through "space-charge" coupling, an effect that increases with frequency. If there is rclatively tittle frequency difference between oscillator and signal, as for example a 14 or $28-\mathrm{MHz}$ signal and an i-f of 455 kHz , this voltage can become considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not retumed directiy to ground, but instead is retumed through a resistor or part of an agc system, considerable bias can be developed which will cut down the gain. For this reason, and to reduce image response, the i-f following the first converter of a receiver should be not less than 5 or 10 percent of the signal frequency.

Diodes, FETs, ICs, and bipolar transistors can be used as mixers. Examples are given in Figs. 8-15 and $8-16$. A single-diode mixer is not shown here since its application is usually limited to circuits operating in the uhf region and higher. A discussion of diode mixers, plus a typical circuit, is given in Chapter 9.

Oscillator injection can be fed to the base or emitter elements of bipolar-transistor mixers, Fig. 8 -15C. If emitter injection is used, the usual emitter bypass capacitor must be removed. Because the dynamic characteristics of bipolar transistors prevent them from handling high signal levels, FETs are usually preferred in mixer circuits, although they do not provide the high conversion gain available with bipolar mixers. FETs (Fig. 8-15D and E) have greater immunity to crossmodulation and overload than bipolar transistors. and offer nearly square-law performance. The circuit at D uses a junction FET, N-channel type, with oscillator injection being supplied to the source. The value of the source resistor should be adjusted to provide a bias of approximately 0.8 volts. This value offers a good compromise
between conversion gain and good intermodula-tion-distortion characteristics. At this bias level a local-oscillator injection of approximately 1.5 volts is desirable for good conversion gain. The lower the oscillator-injection level, the lower the gain. High injection levels improve the mixers immunity to cross-modulation.

A dual-gate MOSFET is used as a mixer at E. Gate 2 is used for injecting the local-oscillator signal while gate 1 is supplied with signal voltage.

Fig. 8-15 - Typical single-ended mixer circuits.

This type of mixer has excellent immunity to cross-modulation and overload. It offers better isolation between the oscillator and input stages than is possible with a JFET mixer. The mixers at D and E have high-Z input terminals, while the circuit at C has a relatively low- Z input impedance. The latter requires tapping the basc down on the input tuned circuit for a suitable impedance match.

BALANCED MIXERS

The level of input and spurious signals contained in the output of a mixer may be decreased by using a balanced or doubly balanced circuit. The balanced mixer reduces leakthrough and even-order harmonics of one input (usually the local oscillator) while the doubly balanced designs lower the fevel of spurious signals caused by both the signal and oscillator inputs. One type of balanced mixer uses a 7360 beam-deflection tube, connected as shown in Fig. 8-16A. The signal is introduced at the No. I grid, to modulate the electron stream running from cathode to plates. The beam is deflected from onc plate to the other and back again by the BFO voltage applied to onc of the deflection plates. (If oscillator radiation is a problem, push-pull deflection by both deflection plates should be used.) At B, two CP625 FETs are used; these devices have a large dynamic range, about 130 dB , making them an excellent choice for either a transmitting or receiving mixer. Dc balance is set with a control in the source leads. The oscillator energy is introduced at the center tap of
the input transformer.
In the circuit of Fig. 8-16C, hot-carrier diodes are employed as a broad-band balanced mixer. With careful winding of the toroid-core input and output transformers, the inherent balance of the mixer will provide $40-$ to $50-\mathrm{dB}$ attenuation of the oscillator signal. The transformers, T 1 and T 2 , having trifilar windings - using No. 32 enamel wire, 12 turns on a $1 / 2$-inch core will provide operation on any frequency between 500 kHz and 100 MHz . Using Q3 cores the upper-frequency range can be extended to 300 MHz . CR1 to CR4, inc, comprise a matched quad of Hewlett-Packard HPA 5082-2805 diodes. Conversion loss in the mixer will be 6 to 8 dB .

Special doubly balanced mixer ICs are now available which can simplify circuit construction, as special balanced transformers are not required. Also, the ICs produce high conversion gain. A typical circuit using the Signetics S 5596 K is shown in Fig. 8-16D. The upper frequency limit of this device is approximately 130 MHz .

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the tunable hf oscillator, and particular care should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanical slrock and changes in voltage and loading. Thermal effects (slow change in frequency because of tube, transistor, or circuit heating) should be minimized. See Chapter 6 for sample circuits and construction details.

THE INTERMEDIATE-FREQUENCY AMPLIFIER

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i-f amplifier. This can be a one-stage affair in simple receivers, or two or three stages in the more claborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflicting factors. The lower the i-f, the higher the selectivity and gain, but a low iff brings the image nearer the desired signal and hence decreases the image ratio. A low i-f also increases pulling of the oscillator frequency. On the other hand, a high i-f is beneficial to both image ratio and pulling, but the gain is lowered and selectivity is harder to obtain by simple means.

An if of the order of 455 kHz gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies up to 7 MHz . The image ratio is poor at 14 MHz when the mixer is connected to the antenna, but adequate when there is a tuned rf amplifier between antenna and mixer. At 28 MHz and on the very high frequencies, the image ratio is very poor unless several rf stages are used. Above 14 MHz , pulling is likely to be bad without very loose coupling between mixer and oscillator. Tunedcircuit shielding also helps.

With an i-f of about 1600 kHz , satisfactory image ratios can be secured on 14.21 and 28 MHz with one of stage of good design. For frequencies of 28 MHz and higher, a common solution is to use double conversion, choosing one high $\mathrm{i}-\mathrm{f}$ for image reduction (5 and 10 MHz ase frequently used) and a lower one for gain and selectivity.

In choosing an i-f it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such signals may be picked up directly by the i-f wiring. Shifting the i-f or better shiclding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Amplitude modulation of a carrier generates sideband frequencies numerically equal to the carrier frequency plus and minus the modulation frequencies present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 Hz , it most at least be capable of amplifying cqually all frequencies contained is a band extending from 5000 Hz above or below the camier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, the i-f amplification must be uniform over a band $5-\mathrm{kHz}$ wide, when the carricr is set at one edge. If the carricr is set in the center, at $10-\mathrm{kHz}$ band is required. The signal-frequency circuits usually do not have enough overall selectivity to affect materially the "adjacent-channel" selectivity, so that only the i-f-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the sidebands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.

The selectivity of an i-f-amplifier, and hence the tendency to cut sidebands increases with the number of tuned circuits and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as 455 kHz . A two-stage i-f-amplifier at 85 or 100 kHz will be sharp enough io cut some of the higher frequency sidebands, if good transformers ase used. However, the cutting is not at all serious, and the gain in selectivity is worthwhile in crowded amateur bands as an aid to QRM reduction.

Cincuits

I-f amplifiers usually consist of one or more stages. The more stages employed, the greater the selectivity and overall gain of the system. In double-conversion receivers there is usually one stage at the first $i \cdot f$, and sometimes as many as three or four stages at the second, or last, $\mathrm{i}-\mathrm{f}$. Most single-conversion receivers use no more than three stages of j-f amplification.

A typical vacuum-tube i-f stage is shown in Fig. $8-17$ at A. The second or third stages would simply be duplicates of the stage shown. Remote cutoff pentodes are almost always used for i-f amplifiers. and such tubes are operated as Class-A amplifiers. For maximum selectivity, double-funed transformers are used for interstage coupling, though single-tuned inductors and capacitive coupling can be used, but at a marked reduction in selectivity.

Age voltage can be used to reduce the gain of the stage, or stages, by applying it to the terminal marked AGC. The age voltage should be negative. Manual control of the gain can be effected by lifting the 100 -ohm cathode resistor from ground and inserting a potentiometer between it and ground. A 10,000-ohm control can be used for this purpose. A small amount of B-plus voltage can be fed through a dropping resistor (about 56,000 ohms from a 250 -volt bus) to the junction of the gain control and the 100 -ohm cathode resistor to provide an increase in tube bias in tum reducing the mutual conduction of the tube for gain reduction.

An integrated-circuit i-f amplifier is shown at B. A positive-polarity agc voltage is required for this circuit to control the stage gain. If manual gain control provisions are desired, a potentiometer can be used to vary the plus yoltage to the age terminal of the IC. The control would be consected between the 9 -volt bus and ground, its movable contact wired to the age terminal of the IC.

A dualgate MOSFET i-f amplifier is shown at B. Application of negative voltage to gate 2 of the

device reduces the gain of the stage. To realize maximum gain when no agc voltage is present, it is necessary to apply approximately 3 volts of positive dc to gate 2. Neutralization is usually not required with a MOSFET in i-f amplifiers operating up to 20 MHz . Should instability occur, however, gate ! and the drain may be tapped down on the i-f transformer windings.

High-gain linear ICs have been developed specifically for use as receiver i-f amplifiers. A typical circuit which uses the Motorola MC1590G is shown at $\mathrm{D}: 70 \mathrm{~dB}$ of gain may be achieved using this device. Agc characteristics of the IC are excellent. A 4 -volt change at the age terminal produces $60-\mathrm{dB}$ change in the gain of the stage. Agc action starts at 5 volts, so a positive agc system with a fixed dc level must be employed.

Tubes for I- ℓ A mplifiers

Variable μ (remote cutoff) pentodes are almost invariably used in i-f amplifier stages, since grid-bias gain control is practically always applied to the i-f amplifier. Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i-f tubes normally has no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and of amplifier.

The 6BA6, 6BJ6 and 6BZ6 are recommended for i-f work because they have desirable remote cutoff characteristics.

When two or more stages ase used the high gain may tend to cause troublesome instability and oscillation, so that good shielding, bypassing, and
careful circuit arrangement to prevent stray coupling between input and output circuits are necessary.

When vacuum tubes are used, the plate and grid leads should be well separated. When transistors are used, the base and collector circuits should be well isolated. With tubes it is advisable to mount the screen-bypass capacitor directly on the bottom of the socket, crosswise between the plate and grid pins, to provide additional shielding. As a further precaution against capacitive coupling, the grid and plate leads should be "dressed" close to the chassis.

1.f Transformera

The tuned circuits of $\mathrm{i}-\mathrm{f}$ amplifices are built up as transfomer units consisting of a metal shield container in which the coils and tuning capacitors are mounted. Both air-core and powered-iron-core universal-wound coils are used, the latter having somewhat higher Q_{s} and hence greater selectivity and gain. In universal windings the coil is wound in layers with each tum traversing the length of the coil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large capacitance can exist between layers. Universal winding, with its "criss-crossed" turns, tends to reduce distributed-capacitance effects.

For tuning, air-dielectric tuning capacitors are preferable to mica compression types because their capacitance is practically unaffected by changes in temperature and humidity. Iron-core transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variable air-capacitor tuning can be obtained by use of hightstability fixed mica or ceramic capacitors. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and selectivity of the amplifier.

The normal interstage i-f transformer is loosely coupled, to give good selectivity consistent with adequate gain. A so-called diode tranaformer is similar, but the coupling is tighter, to give sufficient transfer when working into the finite load presented by a diode detector. Using a diode transformes in place of an interstage transformer would result in loss of selectivity; using an interstage transformer to couple to the diode would result in loss of gain.

Besides the conventional 1 -f transformers Just mentioned, special units to give desired selectivity characteristics have been used. For higher-thanordinary adjacent-channel selectivity, triple-tuned transformers, with a third tuned circuit inserted between the input and output windings, have been madc. The energy is transferred from the input to the output windings via this tertiary winding, thus adding iss selectivity to the over-all selectivity of the transformer.

Selectivity

The overall selectivity of the $i-f$ amplificr will depend on the frequency and the number of stages. The following figures are indicative of the bandwidths to be expected with good-quality
circuits in amplifiers so constructed as to keep regeneration at a minimum:

Tuned		Circuir	Bandwidih, kHz		
Ckts	Freq.	Q	-6 dB	-20 dB	-60 dB
4	50 kHz	60	0.5	0.95	2.16
4	455 kHz	75	3.6	6.9	16
6	1000 kHz	90	8.2	15	34

THE BEAT OSCILLATOR AND DETECTOR

The detector in a superheterodyne receiver functions the same way as do the simple detectors described earlier in this chapter (Fig 8-4), but usually operates at a higher input level because of the amplification ahead of it. The detectors of Fig $8-4$ are satisfactory for the reception of $a-m$ signals. When copying cW and ssb signals it becomes necessary to supply a beat-oscillator (BFO) signal to the detector stage as described in the eadier section on product detectors. Suitable circuits for variable-frequency and crystal-controlled BFOs are given in Chapter 6.

AUTOMATIC GAIN CONTROL

Automatic regulation of the galn of the receiver in inverse proportion to the signal strength is an operating convenience in phone reception, since it tends to keep the ousput level of the receiver constant regardless of input-signal strength. The average rectified dc voltage, developed by the received signal across a resistance in a detector circuit, is used to vary the bias on the rf and i-f amplifier stages. Since this voltage is proportional to the average amplitude of the signal, the gin is reduced as the signal strength becomes greater. The control will be more complete and the output more constant as the number of stages to which the agc bias is applied is increased. Controt of at least two stages is advisable.

Carrier-Derived Circuits

A basic diode-detector/age-rectificr circuit is given at Fig. 8-18A. Here a single germanium diode serves both as a detector and an agc rectifier, producing a negative-polarity age voltage. Audio is taken from the retum end of the i -f transformer secondary and is intered by means of a $47,000-\mathrm{ohm}$ resistor and two $470-\mathrm{pF}$ capacitors.

At B, CRI (also a germanium diode) functions as a detector while CR2 (germanium) operates as an agc rectifier. CR2 fumishes a negative age voltage to the controlled stages of the receiver. Though solid-stage rectiflers are shown at A and B. vacuum-tube diodes can be used in thege circuits. A 6ALS tube is commonly used in circuits calling for two diodes (B), but a I-megohm resistor should be shunted across the right-hand diode If a tube tis used.

The circuit at C shows a typical hookup for agc feed to the controlled stages. Sl can be used to disable the agc when this is desired. For tube and FET circuits the value of R1 and R2 can be 100,000 ohms, and R3 can be 470,000 ohms. If bipolar transistors are used for the If and i-f stages being controlled, R1 and R2 will usually be

Fig. 8-18 - Methods for obtaining rectified voltage. At A the detector furnishes age voltage. B shows separate diodes being used for the detactor and agc circuits. C illustrates how negative age voltage is fed to the if and $i-f$ stages of a typical receiver. D shows an audio-derived agc scheme. $S i$ is used to disable the agc when desired. R1, R2 and R3 in combination with C1. C2, and C3, are used for of decoupling. Their values are dependent upon the device being used - tube or transistor. CR1 and CR2 at A and B are germanium diodes.
between 1000 and 10,000 ohms, depending upon the bias network required for the transistors used. R3 will also be determined by the bias value required in the circuit.

Agc Time Constant

The time constant of the resistor-capacitor combinations in the age circuit is an important part of the system. It must be long enough so that the modulation on the signal is completely filtered from the dc output, leaving only an average dc component which follows the relatively slow carrier variations with fading. Audio-frequency variations in the age voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too long or the agc will be unable to follow rapid fading. The capacitance and resistance values indicated in 8-18A will give a time constant that is satisfactory for average reception.

Fig. 8-19 - An IC age system.

Cw and Ssb

Agc can be used for cw and ssb reception but the circuit is usually more complicated. The age voltage must be derived from a rectifier that is isolated from the beat-frequency oscillator (otherwise the rectified BFO valtage will reduce the receiver gain even with no signal coming through). This is done by using a separate agc channel connected to an i-f amplifier stage ahead of the second detector (and BFO) or by rectifying the audio output of the detector. If the selectivity ahead of the agc rectifier isn't good, strong adjacent-channel signals may develop age voltages that will reduce the receiver gain. When clear channels are available, however, cw and ssb age will hold the receiver output constant over a wide range of signal inputs. Agc systems designed to work on these signals should have fast-attack and slowdecay characteristics to work satisfactorily, and often a selection of time constants is made available.

Audio-Derived Agc

Agc potential for use in a $\mathrm{cw} / \mathrm{ssb}$ receiver may also be obtained by sampling the audio output of the detector and rectifying this signal. A typical circuit is shown in Fig. 8-18D. The JFET stage amplifies the andio signal; the output of the HEP801 is coupled to the secondary of an audio transformer, Ll. The time constant of the agc line is established by R1C1. Manual gain control can be accomplished by adding a variable negative voltage to the common lead of the audio rectifier.

An improved audio-derived agc circuit is shown in Fig. 8-19, using the Plessey Microelectronics SL-621 integrated circuit. This design provides the fast-attack, slow-decay time constant required for ssb reception. High-level pulse signals that might
"hang up" the age system are sampled by the IC input circuit, activating a trigger which provides a fast-discharge path for the time-constant capacitor. Thus, noise bursts will not produce a change in the level of agc output voltage.

NOISE REDUCTION

Types of Noise

In addition to tube and circuit noisc, much of the noise interference experienced in reception of high-frequency signals is caused by domestic or industrial electrical equipment and by automobile ignition systems. The interference is of two types in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the receiver noise. It is largely reduced by high selectivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is caused by commutator sparking in dc and series-wound ac motors, whilc the "shot" type results from separated spark discharges (ac power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit noise is through the choice of low-noise frontend active components and through more overall selectivity.

Impulse Noise

Impulse noise, because of the short duration of the pulses compared with the time between them, must have high amplitudc to contain much average energy. Hence, noise of this type strong enough to cause much interference generally has an instantaneous amplitude much higher than that of the signal being received. The general principle of devices intended to reduce such noise is to allow the desired signal to pass through the receiver unaffected, but to make the receiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the recciver during the short duration time of any individual pulse. The listener will not hear the "hole" because of its short duration, and very effective noise reduction is obtained. Such devices are called "blankers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, because of the Q of the circuits. Thus, the more selectivity ahead of the noise-reducing device, the more difficult it becomes to secure good pulse-type noise suppression. See Fig. 8-22.

Audio Limiting

A considerable degree of noise reduction in code reception can be accomplished by amplitudelimiting arrangements applied to the audio-output

Fig. 8-20 - Circuit of a simple audio limiter/clipper. It can be plugged into the headphone jack of the receiver. R1 sets the bias on the diodes, CR1 and CR2, for the desired limiting level. S1 opens the battery leads when the circuit is not being used. The diodes can be 1N34As or similar.
circuit of a receiver. Such limiters also maintain the signal output nearly constant during fading. These output-limiter systems are simple, and they are readily adaptable to most receivers without any modification of the receiver itself. However, they cannot prevent noise peaks from overloading previous stages.

NOISE-LIMITER CIRCUITS

Pulse-type noise can be climinated to an extent which makes the reception of even the weakest of signals possible. The noise pulses can be clipped, or limited in amplitude, at either an rf or af point in the receiver circuit. Both methods are used by receiver manufacturers; both are effective.

A simple audio noise limiter is shown at Fig. 9-20. It can be plugged into the headphone jack of the receiver and a pair of headphones connected to the output of the limiter. CR1 and CR2 are wired to clip both the positive and negative peaks of the audio signal, thus removing the high spikes of pulse noise. The diodes are back-biased by 1.5 -volt batteries to permit R1 to serve as a clipping-level sontrol. This circuit also limits the amount of audio reaching the headphones. When tuning across the band, strong signals will not be ear-shattering and will appear to be the same strength as the weaker ones. Sl is open when the circuit is not in use to prevent battery drain. CR1 and CR2 can be germanium or silicon diodes, but 1 N34As are generally used. This circuit is usable only with high-impedance headphones.

The usual practice in communications receivers is to use low-level limiting, Fig 8-21. The limiting can be carricd out at if or af points in the receiver, as shown. Limiting at If does not cause poor audio quality as is sometimes experienced when using series or shunt af limiters. The latter limits the normal af signal peaks as well as the noise pulses.

A. F. SHUNT

R.F. SHUNT

Fig. 8.21 - Typical rf and af anl circuits. A shows the circuit of a self-adjusting af noise limiter. CR1 and CR2 are self-biased silicon diodes which limit both the positive and negative audio and noise-pulse peaks. S1 turns the limiter on or off; B shows an if limiter of the same type as A, but this circuit clips the positive and negative if peaks and is connected to the last i-f stage. This circuit does not degrade the audio quality of the signal as does the circuit of A.

(C)

Fig. 8-22 - The delay and lengthening of a noise pulse when passed through a $2-\mathrm{kHz}$ wide amplifier with good skirt selectivity $\{4 \mathrm{kHz}$ at -60 dB). (B) a $3.75-\mathrm{MHz}$ carrier modulated 30 percent, interfered with by noise pulses. The noise pulses were originally 1000 times the amplitude of the signal; they have been reducad (and lengthened) by overload in the i-f. The i-f bandwidth is 5 kHz . Sweep speed $=1$ millisecond/cm. (C) Same as B but with a noise blanker on.
giving an unpleasant audio quality to strong signals.
In a series-limiting circuit, a normally conducting element (or elements) is connected in the circuit in series and operated in such a manner that it becomes nonconductive above a given signal level. In a shunt limiting circuit, a nonconducting element is connected in shunt across the circuit and operated so that it becomes conductive above a given signal level, thus short-circuiting the signal and preventing its being transmitted to the remainder of the amplifier. The usual conducting element will be a forward-biased diode, and the usual nonconducting element will be a back-biased diode. In many applications the value of bias is set manually by the operator; usually the clipping leve! will be set at about 1 to 10 volts.

The of shunt limiter at A, and the rf shunt limiter at B operate in the same manner. A pais of self-biased diodes are connected across the af line at A, and across an rf inductor at B. When a steady cw signal is present the diodes barely conduct, but when a noise pulse rides in on the incoming signal, it is heavily clipped because capacitors Cl and C2 tend to hold the diode bias constant for the duration of the noise pulse. For this reason the diodes conduct heavily in the presence of noise and maintain a fairly constant signal output level. Considerable clipping of cw sjenal peaks occurs with this type of limiter, but no apparent deterioration of the signal quality results. L1 at C is tuned to the $i-f$ of the receiver. An iff transformer with a conventional secondary winding could be used in place of i1, the clipper circuit being connected to the secondary winding; the plate of the 6BA6 would connect to the primary winding in the usual fashion.

I-F NOISE SILENCER

The i-f noise silencer circuit shown in Fig. 8-23 is designed to be used ahead of the high-selectivity section of the receiver. Noise pulses are amplified and rectified, and the resulting negative-going dc pulses are used to cut off an amplifier stage during the pulse. A manual "threshold" control is set by the operator to a level that only permits
rectification of the noise pulses that rise above the peak amplitude of the desired signal. The clamp transistor, Q3, short circuits the positive-going pulse "overshoots." Running the 40673 controlled i-f amplifier at zero gate 2 voltage allows the direct application of agc voltage. See July 1971 QST for additional details.

SIGNAL-STRENGTH AND TUNING INDICATORS

It is convenient to have some means by which to obtain relative readings of signal strength on a communications receiver. The actual meter readings in terms of S units, or decibels above S9, are of little consequence as far as a meaningful report to a distant station is concerned. Few signalstrength meters are accurate in terms of decibels, especially across their entire indicating range. Some manufacturers once established a standard in which a certain number of microvolts were cqual to S 9 on the meter face. Such calibration is difficult to maintain when a number of different receiver cincuits are to be used. At best, a meter can be calibrated for one receiver - the one in which it will be used. Therefore, mosi S meters are good only as relative indicating instruments for comparing the strength of signals at a given time, on a given amateur band. They are also useful for "on-the-nose-tuning" adjustments with selectuve receivers. If available, a signal generator with an accurate output attenuator can be used to calibrate an S meter in terms of microvoles, but a different calibration chart will probably be required for each band because of probable differences in receiver sensitivity from band to band. It is helpful to establish a $50-\mu \mathrm{V}$ reading at midscalc on the meter so that the very strong signals will crowd the high end of the meter scale. The weaker signals will then be spread over the lower half of the scale and will not be compressed at the low end. Midscalc on the meter can be called S9. If S units are desired across the scale, below S9, a marker can be established at every 6 dB point.

Fig. 8-23 - Diagram of the noise blanker. LI and Cl are chosen to resonate at the desired i-f.

S-METER CIRCUITS

A very simple meter indicator is shown at Fig. $8-24 \mathrm{~B}$. Rectified i -f is obtained by connecting CR1 to the take-off point for the detector. The dc is tiltered by means of a 560 -ohm resistor and a $.05-\mu \mathrm{F}$ capacitor. A $10,000-\mathrm{ohm}$ control sets the meter at zero reading in the absence of a signal and also serves as a "linearizing" resistor to help compensate for the nonlincar output from CR1. The meter is a $50-\mu \mathrm{A}$ unit, therefore consuming but a small amount of current from the output of the i-f.

Another simple approach is to meter the change in screen voltage of an i-f amplifier stage. The swing in screen potential is caused by changes in the agc voltage applied to the stage. A reference voltage is obtained from the cathode of the audio-output stage. A $1-\mathrm{mA}$ meter is suitable for the circuit shown in Fig. 8-24A. At C, a more complex design is employed which can operate directly from the agc line of a transistorized receiver. The sensitivity of the metering circuit is adjusted by changing the gain of the IC meter amplifier. An FET buffer is employed to insure that loading of the agc line will be negligible.

IMPROVING RECEIVER SELECTIVITY

INTERMEDIATE-FREQUENCY AMPLIFIERS

Onc of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i-f amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For normal a-m (double-sideband) reception, the limit to useful selectivity in the i-f amplifier is the point where too many of the high-frequency sidebands are lost. The limit to selectivity for a single-sideband signal, or a double-sideband a-m signal treated as an ssb signal, is about 2000 Hz , but reception is much more normal if the bandwidth is opened up to 2300 or 2500 Hz . The correct bandwidth for fm or pm reception is determined by the deviation of the received signal; sideband cutting of these signals
results in distortion. The limit to useful selectivity in code work is around 150 or 200 Hz for hand-key speeds, but this much selectivity requires excellent stability is both transmitter and receiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne cw (or ssb) reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 454 kHz (the i-f being 455 kHz) to give a $1000-\mathrm{Hz}$ beat note. Now, if an interfering signal appears at 453 kHz or if the receiver is tuned to heterodyne the incoming signal to 453 kHz , it will also be heterodyned by the beat oscillator to produce a $1000-\mathrm{Hz}$ beat. Hence every signal can be tuned in at two places that will give a $1000-\mathrm{Hz}$ beat
(or any other low audio frequency). The audio-frequency image effect can be reduced if the i-f selectivity is such that the incoming signal, when heterodyned to 453 kHz , is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beal characteristic of less-sclective reception, hence the name: single-signal reception.

The necessary selectivity is not obtained with nonregenerative amplifiers using ordinary tuned circuits unless a low $\mathrm{i}-\mathrm{f}$, or a large number of circuits, is used.

Regeneration

Regeneration can be used to give a single-signal effect, particularly when the i -f is 455 kHz or lower. The resonance curve of an i-f stage at critical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 kHz at 10 times down and 5 kHz at 100 times down bcing obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a $1000-\mathrm{Hz}$ beat note (image 2000 Hz_{2} from resonance).

Regeneration is easily introduced into an i-f amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, connected to the grid, into the vicinity of the plate lead usually will suffice. The feedback may be controlled by a cathode-resistor gain control. When the i-f is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.

The higher selectivity with regeneration reduces the over-all responsc to noise gencrated in the earlier stages of the receiver, just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. However, the regenerative gain varies with signal strength, being less on strong signals.

Crystal Filters; Phasing

A simple means for obtaining high selectivity is by the use of a piezoelectric quartz crystal as a selective filter in the i-f amplifier. Compared to a good tuned circuit, the Q of such a crystal is extremely high. The crystal is ground resonant at the i-f and used as a selective coupler between i-f stages. For single-signal reception, the audio-frequency image can be reduced by 50 dB or more. Besides practically eliminating the af image, the high selectivity of the crystal filter provides good discrimination against adjacent signals and also reduces the broadband noise.

BAND-PASS FILTERS

A single high Q circuit (e.g., a quartz crystal or regenerative stage) will give adequate single-signal cw reception under most circumstances. For phone reception, howevcr, cither single-sideband or $a-m$, a
band-pass characteristic is more desirable. A band-pass filter is one that passes without unusual attenuation a desired band of frequencies and rejects signals outside this band. A good band-pass filter for single-sideband reception might have a bandwidth of 2500 Hz at -6 dB and 4 kHz at -60 dB ; a filter for $\mathrm{a}-\mathrm{m}$ would require twice these bandwidths if both sidebands were to be accommodated, thus assuring suitable fidelity.

The simplest band-pass crystal filter is one using two crystals, as in Fig. 8-25A. The two crystals are separated slightly in frequency. If the frequencies are only a few hundred Hz apart the characteristic is a good one for cw reception. With crystals about 2 kHz apart, a reasonable phone characteristic is obtained. Fig. $8-2$ shows a selectivity characteristic of an amplifier with a bandpass (at -6 dB) of 2.4 kHz , which is typical of what can be expected from a two-crystal bandpass filter.

More elaborate crystal filters, using four and six crystals, will give reduced bandwidth at -60 dB without decreasing the bandwidth at -6 dB . The resulting increased "skirt selectivity" gives better rejection of adjacent-channel signals. "Crystallattice" filters of thus type are available commercially for frequencies up to 40 MHz or so, and they have also been built by amateurs from inexpensive transmitting-type crystals. (See Vester, "SurplusCrystal High-Frequency Filters," QST, January, 1959; Healey, "High-Frequency Crystal Filters for SSB," QST, October, 1960.)

Two halflattice filters of the type shown at Fig. 8-25A can be connected back to back as shown at B. The channel spacing of $Y 1$ and $Y 2$ will depend upon the receiving requirements as discussed in the foregoing text. Ordinarily, for ssb reception (and nonstringent cw reception) a frequency separation of approximately 1.5 kHz is suitable. The overall i-f strip of the receiver is tuned to a frequency which is midway between YI and Y2. C1 is tuned to hetp give the desired shape to the passband. L] is a bifilar-wound toroidal inductor which tunes to the i-f frequency by means of C1. The values of R1 and R2 are identical and are determined by the filter response desired. Ordinarily the ohmic valuc is on the order of 600 ohms, but values as high as 5000 ohms are, sometimes used. The lower the value of resistance, the broader and flatter will be the response of the filter. Though the circuit at B is shown in a transistorized circuit, it can be used with vacuum tubes or integrated circuits as well. The circuit shows an i-f frequency of 9 MHz , but the filter can be used at any desired frequency below 9 MHz by altering the crystal frequencies and the tuned circuits. Commercial versions of the $9-\mathrm{MHz}$ lattice filter are available at moderate cost. 1 War-surplus FT-241 crystals in the $455-\mathrm{kHz}$ range are inexpensive and lend themselves nicely to this type of circuit.

Mechanical Iilters can be built at frequencies below 1 MHz . They are made up of three sections; an input transducer, a mechanically resonant filter

[^14]

Fig. 8-25 - A half-lattice bandpass filter at A; B shows two half-lattice filters in cascade; C shows a mechanical filter.
section, and an output transducer. The transducers use the principle of magneto-striction to convert the electrical signal to mechanical energy, then back again. The mechanically resonant section consists of carefully machined metal disks supported and coupled by thin rods. Each disk has a resonant frequency dependent upon the material and its dimensions, and the effective Q of a single disk may be in excess of 2000 . Consequently, a mechanical filter can be built for either narrow or broad passband with a nearly rectangular curve. Mechanical filters are available commercially and are used in both receivers and single-sideband transmitters. They are moderately priced.

The signal-handling capability of a mechanical filter is limited by the magnetic circuits to from 2 to 15 volts rms, a limitation that is of no practical importance provided it is recognized and provided for. Crystal filters are limited in their signal-handling ability only by the voltage breakdown limits, which normally would not be reached before the preceding amplifier tube was overloaded. A more
serious practical consideration in the use of any high-selectivity component is the prevention of coupling "around" the filter, externally, which can only degrade the action of the filter.

The circuit at Fig. 8-25C shows a typical hookup for a mechanical filter. FLl is a Collins 455-FB-21, which has an ssb band-pass characteristic of 2.1 kHz . It is shown in a typical solid-state receiver circuit, but can be used equally as well in a tube-type application.

Placement of the BFO signal with respect to the passbands of the three circuits at A, B, and C_{0} is the same. Either a crystal-controlled or self-excited oscillator can be used to generate the BFO signal and the usual practice is to place the BFO signal at a frequency that falls at the two points which are approximately 20 dB down on the filter curve dependent upon which sideband is desired. Typically, with the filter specificed at C , the center frequency of FL1 is 455 kHz . To place the BFO at the $20-\mathrm{dB}$ points (down from the center-frequency peak) a signal at 453 and 456 kHz is required.

Q Multiplier

The " Q Multiplier" is a stable regencrative stage that is connected in parallel with one of the j-f stages of a receiver. In one condition it narrows the bandwidth and in the other condition it produces a sharp "null" or rejection notch. A "tuning" adjustment controls the frequency of the peak or null, moving it across the normal passband of the receiver i-f amplifier. The shape of the peak or null is always that of a single tuned circuit (Fig. 2-42) but the effective Q is adjustable over a wide range. A Q Multiplier is most effective at an i-f of 500 kHz or less; at higher frequencies the rejection notch becomes wide enough (mcasured in Hz) to reject a major portion of a phone signal. Within its useful range, however, the Q Multiplier will reject an interfering carrier without degrading the quality of the desired signal.

In the "peak" condition the Q Multiplics can be made to oscillate by advancing the "peak" (rcgencration) control far enough and in this condition it can be made to serve as a beat-frequency oscillator. However, it cannot be made to serve as a selective element and as a BFO at the same time. Some inexpensive receivers may combinc either a Q Multiplier or some other form of regeneration with the BFO function, and the reader is advised to check carefully any inexpensive receiver he intends to buy that offers a regenerative type of selectivity, in order to make sure that the selectivity is available when the BFO is turned on.

A ropresentative circuit for a transistorized Q-multiplicr is given in Fig. 8-26A. The constants given are typical for i-f operation at 455 kHz . Ll can be a J. W. Miller 9002 or 9102 slug-tuned inductor. A 25,000 -ohm control, R1, permits adjustment of the regeneration. Cl is used to tune the Q-multiplier frequency back and forth across the i-f passband for peaking or notching adjustments. With circuits of this type there is usually a need to adjust both R1 and Cl alternately for a peaking or notching effect, becausc the controls tend to interlock as far as the frequency of oscillation is concerned. A Q-multiplier should be solidly built in a shielded enclosure to assure maximum stability.
Q multipliers can be used at the front end of a
receiver also, as shown at B in Fig. 8-26. The enhancement of the Q at that point in a receiver greatly reduces image problems because the selectivity of the input tuned circuit is increased markedly. The antenna coil, $L 1$, is used as a feedback winding to make V1 regenerative. This in cffect adds "negative resistance" to L2, increasing its Q. A $20,000-\mathrm{ohm}$ control sets the regencration of V1, and should be adjusted to a point just under regeneration for best results. Rf Q multiplication is not a cure for a poor-quality inductor at L2, however.

T-Notch Filler

At low intermediate frequencies $(50-100$ kHz) the T-notch filter of Fig. 8-27 will provide a sharp tunable null.

The inductor L resonates with C at the rejection frequency, and when $R=Q X L / 4$ the rejection is maximum. (XL is the coil-reactance and Q is the coil Q.) In a typical $50-\mathrm{kHz}$ circuit, C might be 3900 pF making L approximately 2.6 mH . When R is greater than the maximum-attenuation value, the circuit still provides some rejection, and in use the inductor is detuned or shorted out when the rejection is not desired.

At higher frequencies, the T-notch filter is not sharp enough with available components to reject only a narrow band of frequencies.
T-NOTCH

Fig. 8-27 - Typical T-notch (bridged-T) filter, to provide a sharp notch at a low i-f. Adjustment of L changes the frequency of the notch; adjustment of R controls the notch depth.

SOME RECEIVER DESIGN NOTES

The receiver to be discussed in these notes incorporates some advanced ideas and has been included for its valuc as a theory article rather than a construction project. Consequently, templates will not be available. For further information, see arlicle by WICER in June and July QST for 1976. Also, a set of converters has been designed by W7ZOI and the article appears in QST for June, 1976. The basic receiver covers the $1.8-\mathrm{MHz}$ band.

Front-End Features

Although the circuit treated here is for a one-band recciver (1.8 to 2.0 MHz), the design procedures are applicable to any amatcur band in the hf spectrum. Down converters to cover 80 through 10 meters can be employed and they are founded on the saine concepts to be discussed here.

Fig. 1 shows the rf amplifier mixer, and post-mixer amplifier. What may scem like excessive elaboration in design is a matter of personal whim, but the features are uscful, nevertheless. For example, the two front-end attenuators aren't essential to good performance, but are useful in making accurate measurements (6,12 or 18 dB) of

Top-chassis view of the receiver. The R-C active filter and audio preamplifier are built on the pc board at the upper left. To the right is the BFO module in a shield box. The agc circuit is seen at the lower left, and to its right is the i-f strip in a shield enclosure. The large shield box at the upper center contains the VFO. To its right is the tunable frontend filter. The three-section variable capacitor is inside the rectangular shield box. The audio amplifier module is seen at the lower right. The small board (mounted vertically) at the left center contains the product detector. Homemade end brackets add mechanical stability between the panel and chassis, and serve as a support for the receiver top cover.

signal levels during on-the-air experiments with other stations (antennas, amplifiers and such). Also, FL2, a fixed-tuned $1.8-102-\mathrm{MHz}$ bandpass filter, need not be included if the operator is willing to repeak the three-pole tracking filter (FL1) when tuning about in the band. The fixed-tuned filter is useful when the down conve ters are in use.

The benefits obtained from a highly selective tunable filter like YLl are seen when strong signals are elsewhere in (or near) the 160 -meter band. Insertion loss was set at 5 dB in order to narrow the filter response. In this example the high- Q slug-tuned inductors are isolated in aluminum shields. and the three-section variable capacitor which tunes them is enclosed in a shield made from pc-board sections. Bottom coupling is accomplished with small toroidal coils.

Rf amplifier Q1 was added to compensate for the filter loss. It is mismatched intentionally by means of L10 and L11 to restrict the gain to $6-\mathrm{dB}$ maximum. Some additional mismatching is seen at L.12, and the mixer is overcoupled to the IVLTtuncd output tank to broaden the response (1.8 to 2 MHz .). The design tradeofts do not impair performance. The common-gate rf stage lias good dynamic range and IMD characteristics.

The doubly balanced diode-ring mixer (UI) was chosen for its excellent reputation in handling high signal levels, having superb port-to-port signal isolation, and because of its good IMI) performance. The module used in this design is a commercial one which contains two broadband transformers and four hot-carrier diodes with matched characteristics. The amatcur can build his own mixer assembly in the interest of reduced expense. At the frequencies involved in this example, it should not be difficult to obtain performance equal to that of a commercial mixer.

A diplexer is included at the mixer output (L13 and the related .002 capacitors). The addition was worthwhile, as it provided an improvement in the noise floor and IMD characteristics of the receiver. The diplexer works in combination with matching
network L14, a low-pass L-type circuit. (The diplexer is a high-pass network which permits the 56 -ohm terminating resistor to be seen by the mixer without degrading the $455-\mathrm{kHz}$ i-f. The low-pass portion of the diplexer helps reject all frequencies above 455 kHz so that the post-mixer amplifier receives only the desired information.) The high-pass section of the diplexer starts rolling off at 1.2 MHz . A reactance of 66 ohms was chosen to permit use of standard-value capacitors in the low- Q network.

A pair of source-coupled JFETs is used in the post-mixer i-f preammplifier. The 10,000 -ohm gate resistor of Q 2 sets the transformation ratio of the L. network at $200: 1$ (50 ohms to $10 \mathrm{~K}-\Omega$). An L network is used to couple the preamplifier to a diode-switched pair of Collins mechanical filters which have a characteristic impedance of 2000 ohms. The terminations arc built into the filters.

Gain distribution to the mixer is held to near unity in the interest of good IMD performance. The preamplifier gain is approximately 25 dB . The choice was made to compensate for the relatively high insertion loss of the mechanical filters - 10 dB . Without the high gain of Q2 and Q3, there would be a deterioration in noise figure.

Local Oscitlator

A low noise floor and good stability are essential traits of the local oscillator in a quality receiver. The requirements are met by the circuit of Fig. 2. Within the capabilities of the ARRL lab measuring procedures, it was determined that VFO noise was at least 90 dB below fundamental output. Furthermore, stability at $25^{\circ} \mathrm{C}$ ambient temperature was such that no drift could be measured from a cold start to a period three hours later. Mechanical stability is excellent: Several sharp blows to the VFO shield box caused no discernible shift in a cw beat note while the $400-\mathrm{Hz}$ i-f filter was actuated. VFO amplifier Q14 is designed to provide the recommended $+7-\mathrm{dBm}$ mixer injection. Furthermore, the output pi tank of Q14 is of $50-$ ohms characteristic impedance. Though not of special significance in this application, the measured harmonic output across 50 ohms is -36 dB at the second order and -47 dB at the third order.

Filter Module

In the interest of minimizing leakage between the filter input to output ports, diode switching (Fig. 3) was used. The advantage of this method is that only dc switching is required, thereby avoiding the occasion for unwanted rf coupling across the contacts and wafers of a mechanical switch. IN914 diodes are used to select $\mathrm{FL} 3(400-\mathrm{Hz}$ bandwidth) or FL4 $(2.5-\mathrm{kHz}$ bandwidth). Reverse bias is applied to the nonconducting diodes. This lessens the possibility of leakage through the switching diodes. Because the Collins filters have a characteristic impedance of 2000 ohms, the output coupling capacitors from cach arc 120 pF rather than low-reactance $.01-\mu \mathrm{F}$ units, as used at the filter inputs. Without the smaller value of capaci-

Considerable space remains beneath the chassis for the addition of accessory circuits or a set of down converters. At the lower right are the adjustment screws for the tunable filter, plus the bottomcoupling toroids. At the right center is the fixedtuned front-end filter. To the left is the rf-amplifier module. A $100-\mathrm{kHz}$ MFJ Enterprises calibrator is seen at the far upper right. Immediately to its left is the mixer/amplifier assembly. The large board at the upper center contains the i-f filters and post-filter amplifier. Most of the amplifier components have been tacked beneath the pc board because of design changes which occurred during development.
tance, the filters would see the low base impedance of Q4, the post-filter i-f amplifier. The result would be one of double termination in this case, leading to a loss in signal level. Additionally, the $120-\mathrm{pF}$ capacitors help to divorce the input capacitance of the amplifier stage. The added capacitance would have to be subtracted from the 350 - and $510-\mathrm{pF}$ resonating capacitors at the output ends of the filters.

The apparent overall receiver gain is greatest during cw reception, owing to the selectivity of cw filter FL3. To keep the S-meter readings constant for a given signal level in the ssb and cw modes, R7 has been included in the filter/amplifier module. In the cw mode, R7 is adjusted to bias Q4 for an S-meter reading equal to that obtained in the ssb mode. Voltage for the biasing is obtained from the diode switching linc during cw reception.

Although a 2 N 2222 A is not a low-noise device, the performance characteristics are suitable for this circuit. A slight improvement in noise figure would probably result from the use of an MPF 102, 40673 or low-noise bipolar transistor in that part of the circuit.

Performance Notes

The tuning range of the receiver is 200 kliz . This means that for use with converters the builder will have to satisfy himself with the cw or ssb band

segments. The alternatives are to increase the local oscillator tuning range to 500 kHz , or use a multiplicity of converters to cover the cw and ssb portions of each band.

Some severe lab tesis were undertaken with the completed receiver, aimed at learning how "crunchproof" the front end really was. A quarter-wavelength end-led wire (inverted L) was matched to the receiver 50 -ohm input port. The far end of the antenna was situated three feet away from the WIAW end-fed Zepp antenna. A pk-pk voltage of IS was measured across the 50 -ohm recciver input jack by means of a Tektronix model 453 scope while WIAW was operating. Now, that's a lot of rf energy! With that high level of rf voltage present, a $10-\mu \mathrm{V}$ signal was fed into the receiver and spotted 2 kHz away from the WIAW operating frequency. No evidence of cross modulation could be observed, and desensitization of the receiver could not be discerned by ear. The spread from 1.8 to 2 MHz was tuned, and no IM products were heard.

Dynamic range tests were performed in accordance with the Hayward paper in QST for July, 1975. Noise floor was -135 dBm , IMD was 95 dB and 1 dB of blocking occurred at some (undetermined) point greater than 123 dB above the noise floor. The latter measurement is inconclusive because blocking did not become manifest within the output capability of the model 80 generators used in the ARRL lab. The resultant receiver noise figure at $1.8 \mathrm{MH}_{2}$ is 13 dB , which is more than adequate for the high atmospheric noise level on 160 meters.

A receiver i-f system should be capable of providing a specific gain, have an acceptable noise figure and respond satisfactorily to the applied age. Two of the more serious shortcomings in some designs are poor agc (clicky, pumping or inadequate range) and insufficient i-f gain.

Because of past successes, it was elected to use a pair of RCA CA3028A ICs in the i-f strip. Somewhat greater i-f dynamic range is possible with MC1590G ICs, and they are the choice of many builders. However, the CA3028As, configured as differential amplifiers, will provide approximately 70 dB of gain per pair when operated at 455 kHz . This gives an agc characteristic from maximum gain to full cutoff which is entirely acceptable for most amateur work.

Fig. 4 shows the i-f amplifiers, product detector and Varicap-tuned BFO. Transformer coupling is used between U2 and U3 and also between U3 and the product detector. The $6800-\mathrm{ohm}$ resistors used across the primaries of T2 and T3 were chosen to force an impedance transformation which the transfomers can't by themselves provide: Available Miller transformers with a 30,000 -ohm primary to 500 -ohm secondary characteristic are used. U2 and U3 have 10 and 220 -ohm series resistors in the signal tines. These were added to discourage vhf parasitic oscillations.

Agc is applied to pin 7 of each IC. Maximum gain occurs at +9 V , and minimum gain results when the age voliage drops to its low value -+2 V . The age is ri-derived, with i-f sampling for the age

Fig. 2 - Circuit diagram of the local oscillator. Capacitors are disk ceramic unless specified differently. Resistors are $1 / 2-\mathrm{W}$ composition. Entire assembly is enclosed in a shield box made from pc-board sections.
C2 - Double-bearing variable capacitor, 50 pF.
C3 - Miniature 30-pF air variable.
CR1 - High-speed switching diode, silicon type 1N914A.
amplifier being done at pin 6 of U3 through a $100-\mathrm{pF}$ blocking capacitor.

The 1000 -ohm decoupling resistors in the $12-\mathrm{V}$ feed to U 2 and U 3 drop the operating voltage to +9 . This aids stability and reduces i-f system noise. The amplifier strip operates with unconditionel stability.

Product Detector

A quad of 1N914A diodes is used in the product detector. Hot-carrier diodes may be preferred by some, and they may lead to slightly better performance than the silicon units chosen. A trifilar broadband toroidal transformer, T4, couples the i-f amplifier to the detector at a 50 -ohm impedance level. BFO injection is supplied at $0.7-\mathrm{V}$ rms.

BFO Circuit

In the interest of lowering the cost of this project, a Varicap (CR10 of Fig. 4) is used to control the BFO frequency. Had a conventional system been utilized, three expensive crystals would have been needed to handle upper sidebanc, lower sideband and cw . The voltage-variable capacitor tuning method shown in Fig. 4 is satisfactory if the operator is willing to change the operating frequency of the BFO when changing receive modes. Adjustment is done by means of frontpancl control R1. Maximum drift with this circuit was measured as 5 Hz from a cold start to a time

L18-17. to $41-\mu \mathrm{H}$ slug-tuned inductor, Q_{u} of 175 (J. W. Miller 43A335CBI in Miller S.74 shield can).
L19 - 10- to $18.7-\mu \mathrm{H}$ slug-tuned pc-board inductor (J. W. Miller 23A 155 RPC).

RFC13, RFC14-Miniature $1-\mathrm{mH}$ rf choke (J. W. Miller 70F103A1).
VR2 - 8.6-V, 1-W Zener diode.
three hours later. A Motorola MV-104 tuning diode is used at CR10.

To vary the BFO frequency from 453 to 457 kHz , the diode is subjected to various amounts of back bias, applied by means of R1. Regulated voltage (VR1) is applied to the oscillator and tuning diode.

Q6 functions as a Class A BFO amplifier/buffer. It contains a pi-network output circuit and has a 50 -ohm output characteristic. The main purpose of the amplifier stage is to increase the BFO injection power without loading down the oscillator.

AGC Circuit

Fig. 5 shows the agc amplifier, rectifies, dc source follower and op-amp difference amplifier. An FET is used at Q10 because it exhibits a high-input impedance, and will not, therefore, load down the primary of T3 in Fig. 4. Q1 is direct coupled to a pnp transistor, Q11. Assuming that Rs and R2 are treated as a single resistance, Rs, the Q10/Q11 gain is determined as: Gain $(\mathrm{dB})=20 \log$ $\mathrm{Rc}_{\mathrm{c}} \div \mathrm{Rs}$. Control R 2 has been included as part of Rs to permit adjustment of the agc loop gain. Each operator may have a preference in this zegard. The writer has the agc set so it is fully actuated at a signal-inpul level of $10 \mu \mathrm{~V}$. Agc action commences at $0.2 \mu \mathrm{~V}$ (1 dB of gain compression).

Agc disabling is effected by removing the operating voltage from Q10 and Q11 by means of S5. Manual i-f gain control is made possible by

Fig. 3 - Schematic diagram of the filter and i-f post-filter amplifier. Capacitors are disk ceramic. Resistors are 1/2-W composition.
CR2-CR5, incl. - High-speed silicon switching diode, 1 N 914 A .
FL3 - Collins mechanical filter F455FD-04. FL4 - Collins mechanical filter F455FD-25.

RFC3-RFC10, incl. $-10-\mathrm{mH}$ miniature of choke (J. W. Miller 70F 102A1).

R7 - Pcboard control, 10,000 ohms, linear taper.
S4 - Double-pole, double-throw toggle or wafer.
T1 - Miniature $455-\mathrm{kHz}$ i-f transformer (J. W. Miller 2067, 30,000 to 500 ohms).

Fig. 4 - Circuit of the i.f amplifier, BFO, and product detector. Capacirors are disk ceramic unless noted differently. Fixed-value resistors are 1/2-W composition. Dashed lines show shield enclosures. The BFO and i-f circuits are installed in separate shield boxes. The R-C active filter and af preamplifier are on a common circuir board which is not shielded.
CR6-CR9, incl. - High-speed silicon, 1N914A or equiv.
CR10 - Motorola MV-104 Varicap zuning diode. L16 - Nominal $640-\mu \mathrm{H}$ slug-tuned Inductor (J. W.

Miller 9057).
L17 - Nominal 60-ヶH slug-tuned inductor (J. W.

Miller 9054).
R1 - 100,000-shm linear-saper composition contral (panel mount).
RFC11 - 2.5 mH miniature choke (J. W. Miller 70F253A11.
RFC12 - $10-\mathrm{mH}$ miniature choke (J. W. Miller 70F102A11.
T2, T3 - 455-kHz i-f transformer. See text. (J. W. Miller 2067).
T4 - Trifilar broadband transformer. 15 irifilar turns of No. 26 enam. wire on Amidon T-50-61 toroid core.
U2, U3 - RCA IC.
VR1-9.1-V.1-W Zener diode.
adjusting R3 of Fig. 5. Agc delay is approximately one second. Longer or shorter delay periods can be established by altering the values of the Q14 gate resistor and capacitor. Age amplifier gain is variable from six to 40 dB by adjusting R 2 . The arrangement at Q14 and U4 was adapted from a design by W7ZOI. Agc action is smooth, and there is no evidence of clicks on the attack during strong signal periods. At no time has age "pumping" been observed.

Audio System

A major failing of many receivers is poorquality audio. For the most part this malady is manifest as cross-over distortion in the af-output amplifier. Moreover, some receivers have marginal audio-power capability for normal room volume when a loudspeaker is used. Some transformerless singie-chip audio ICs (0.25 - to $2-\mathrm{W}$ class) exhibit a prohibitive distortion characteristic, and this is especially prominent at low signal levels. The unpleasant effect is one of "fuzziness" when listening to low-jevel signals. Unfortunately, external access to the biasing circuit of such ICs is
not typical, owing to the unitized construction of the chips.

Since "sanitary" audio is an important feature of a quality communications receiver, a circuit containing discrete devices was used. The complimentary-symmetry output transistors and the op-amp driver are configured in a manner similar to that used by Jung in his Op Amp Cookbook by Howard Sams. Maximum output capability is 3.5 W into an 8 -ohm load. An LM-301A driver was chosen because of its lownoise profile. There has been no aural evidence of distortion at any signal level while using the circuit of Fig. 6. The game played in this situation is one of having considerably more audio power available than is ever needed - a rationale used in hiffi work.

R-C Active CW Filter

A worthwhile improvement in signal-to-noise ratio can be realized during weak-signal reception by employing an $R-C$ active bandpass filter. A two-pole version (FL5) is shown in Fig. 6. A peak frequency of 800 Hz results from the R and C values given.

Fig. 5 - Schematic diagram of the age system. Capacitors are disk ceramic except when polarity is indicated, which signifies electrolytic. Fixed-value resistors are $1 / 2-\mathrm{W}$ composition. This module is not enclosed in a shield compartment.
CR12, CR13 - High-speed silicon. 1N914A or equiv.
M1 - 0 to 1 mA meter.
Q10, Q11, Q14 - Motorola transistor.

R2, R4, R5 - Linear-taper composition pc-board mount contral.
R3 - 10,000 -ohm linear-taper control, panel mounted.
RFC15 - $2.5-\mathrm{mH}$ miniature choke (J. W. Miller 70F253A1).
S5 - Single-pole, single-throw toggle.
U4 - Dual-in-line 8-pin 741 op amp.

Fig. 6 - Diagram of the audio amplifier and R-C active filter. Capacitors are disk ceramic unless otherwise noted. Polarized capacitors are electrolytic or tantalum. Fixed-value resistors ara $1 / 2-\mathrm{W}$ composition. This circuit is not contained in a shield box. Heat sinks are used with 08 and 09 . C4-C7, incl. - See text.

CR11 - High-speed silicon, 1N914A or equiv.
J3 - Phone jack.
R6 - 10,000-ohm audio-taper composition control, panel mounted.
S6 - Double-throw, double-pole toggle.
U4 - National Semiconductor LM-301A IC.
U5 - Signetics N5558 dual op-amp IC.

The benefits of FLS are similar to those described by Hayward in his "Competition-Grade CW Receiver" articte. He used a second i-f filler (at the i-f strip output) to reduce wide-band noise from the system. The R-C active filter serves in a similar manner, but performs the signal "laundering" at audio rather than at rf. The technique has one limitation - monotony in listening to a fixed-frequency beat note, which is dictated by the center frequency of the filter. The R.C filter should be designed to have a peak frequency which matches the cw beat-note frequency preferred by the operator. That is, if the BFO is adjusted to provide an $800-\mathrm{H} \%$ cw note, the center frequency
of FLS should also be 800 liz
Experience with FLS in this receiver has proved in many instances that weak DX signals on 160 meters could be elevated above the noise 10 a Q5 copy level, while without the fiiter solid copy was impossible. It should be stressed that high- Q capacitors be used from C4 to C 7 . inclusive, to assure a sharp peak response. Polystyrene capacitors satisfy the requirement. To ensure a welldefined (minimum ripple) center frequency, the capacitors should be matched closely in value (5 percent or less). Resistors of 5 -percent tolerance should be employed in the circuil, where indicated in Fig. 6.

NBS EARS FOR YOUR HAM-BAND RECEIVERS

Radio amateurs are becoming worshipers of the sun, constantly peering at projections of the surface for signs of black spots; "sun spots," they call them.

Why has interest in sun spots suddenly turned many amateurs into solar astronomers? The answer is becoming more obvious each day. The state of the carth's ionosphere and geomagnetic field, and therefore radio propagation for a given time, is directly related to conditions on the sun. Sun-spot activity will soon be on the increase. and geomagnetic activity is constantly changing. As a result, unexpected, often undetected, band openings are occurring. But clouds and other weather phenomena can make it impossible for observers to sec the sun, much less any spots that might otherwise be visible. That geomagnetic disturbance business - how can one tell when such an event will occur? Well, one way is to consult the "DXer's Crystal Ball."1

If you don't have a Ouija board at your disposal, the National Burcau of Standards (NBS) stations WWV and WWVH offer an altemative source of information on solar and geomagnetic activity. Propagation bulletins are broadcast hourly by these stations, and articles in QST and this Handbook have shown several ways in which this information can be put to work in helping amateurs make better use of their air time.

Some amateurs may have a problem using this information source because a large portion of amateur gear manufactured in recent years is for ham-bands-only reception. Some receivers do offer an "extra" band, usually 15 MHz , which is useful sometimes, in some arcas of the world, but not in others. An inexpensive solution to the problem for

[^15]

WWV converter as nested in the chassis. The shield shown in the photograph was found to be unnecessary since stray coupling between the input and output of the if amplifier proved not to be a problem.
those who want to receive the NBS stations' transmissions. but don't want to spend the money for a general-coverage receiver, is a converter which uses one of the amateur frequencies for an i-f output. Selection of the proper component values allows the potential user to build a converter that will cover the WWV or WWVH frequency most usable at his location.

The converter described bere, when used with an amateur-bands-only receiver, provides for reception of 10 , $15-$ or $25-\mathrm{MHz}$ NBS stations WWV or WWVH. The receiver, when tuned to 4, 14 or 21 MHz , serves as the i-f amplifier, detector and audio stages. The low current drain of the conver-

Fig. 1 - Schematic diagram, of the WWV-to-ham bands converter. The oscillator output frequency of 11 MHz was chosen 10 provide the reception of the three most commonly used WWV frequencies 110 , 15 and 25 MHz , without the need to change the oscillator frequency.
ter (15 mA typical) lends itself to operation from a 9-volt transistor-radio battery and to use with QRP equipment.

The Circuit

The schematic diagram of the converter is given in Fig. I. With the exception of tire Miller coil forms, nearly all of the components used can be purchased from Radio Shack or Lafayctte Rudio Electronic stores. For coverage of the 10,15 -and $25-\mathrm{MHz}$ WWV frequencies, component values of the three tuned circuits in the rf-amplifier and mixer slages must be selected from Table I. This approach reduces the complexity of the converter
by climinating band-switching circuitry, but restricts the converter to use on only one NBS frequency at a time.

A comınon-gate Jl'ET ri amplifier provides 8 dB of gain in this converter and has good IMD and overload immunity. A 40673 MOSFET is used as the mixer in the converter. The output circuit of the mixer uses a low value of coupling capacitor as an altemative to an rf voltage divider or other outpul-coupling technique. This was done as a parts-saving step and does not seem to degrade the performance of the convertis significantly.

VRI provides adequate regulation of the $\mathrm{V}+$ to the converter pe board. The regulator diode is

TABLE I

	$C l-C 2$	$C 3$
10 MHz	90 pF	22 pl
15 MHz	43 pF	300 pF
25 MHz	22 pF	48 pF

1.1

2- $3 / 2$ turns No. 34 cnamel over L?
1-1/2 turns Sameas L.5* $5.5 \mu \mathrm{H}$ (nom.) No. 24 enamel over L?
1-1/2 Iuras No. 24 cnamel over L2

$$
L 2-L 3
$$

Same as L5*

Same as L.5*
$1.8 \mu \mathrm{H}$ (nот.) Miller 46A186C.PC.

14
Same as L5*
$5.5 \mu \mathrm{H}$ (nom.)
Millet 46A566CPC
Same as L5 *
*LS - 2.42-2.96 $\mu \mathrm{H}$, Miller 46A 276СРС

Fig. 2 - Etching pattern and parts-placement guide for the converter circuit board. $\mathbf{3 / 2}$-watl resistors were used throughout, but $1 / 4$ watt resistors may also be used if preferred.
placed on the $\mathrm{V}+$ line for the entire circuit of the converter; the converter, therefore, is operating at 7.1 volts. Any voltage from 9 to 18 voits will power the converter.

The converter is housed in an aluminum Minibox: dimensions of the box are $4 \times 2-1 / 8 \times 1-5 / 8$ inches. Radio Shack part number 270-239 is suitable. As can be noted from the photograph, the
converter $p \mathrm{c}$ board was laid out to tacilitate 1/2-watt resistors, but $1 / 4$-watt resistors are accept able since power consumption for the converter is very low. Silver-mica or polystyrene capacitors should be used for C7, C13, C14 and C15 because they aid stability in the oscillator circuit. Discceramic capacitors are suitable for use in the remainder of the converter circuit.

A BAND-PASS TUNER FOR ADJUSTABLE SELECTIVITY

Many modern receivers have fixed-frequency oscillator circuits for injection at the product detector during ssb and cw operation. The frequency of the fixed-frequency oscillator determines the characteristic range of the received signal. For cw operation, it determines the BFO offset frequency and accordingly the pitch of the signals heard. A receiver which has a variable BFO (sometimes called a pitch control) allows the operator to select the pitch at which the cw signals are centered in the filter response. During ssb reception, the control may be used to select a pleasing quality for tho incoming signal. A pitch control is undesirable, however, if the BIO in the receiver is to act as a carricr oscillator in the transmitter for transceive operation. In this case, the BFO must be on exactly the same frequency for both receive and transmit periods; indeed many times the same oscillator is used. Transceive operation is not compatible with a pitch control, and unfortunately the operator is required to accept the resultant BFO offset. While it is possible to shift a BFO/carrier oscillator to obsain a desirable receiver response characteristic, the affect to the transmitted signal could be detrimental. These disadvantages can be overcome by incorparating the circuit shown in Fije 1 into the station receiver or transceiver. It may be used with any apparatus

having an $\mathrm{i}-\mathrm{f}$ of 3.395 MHz . Other i -f ranges could be used if appropriate changes are made to the Band-Pass Tuncr VFO input and output circuits. The experienced builder should not encounter any difficulty.

The purpose of the Band-Pass Tuner is to allow the operator to adjust the range of frequencies

which pass through the filter without changing the frequency of the receiver or the transmit offset frequency. The unit could be built for cw or ssb operation only. Several filters, however, may be included in the circuit and switched to coincide with the desired mode of transmission. When the Band-Pass Tuner is interconnected to atransceiver. one needs to assure that the transmit signal does not pass through the Band-Pass Tuner system. This could be accomplished with either a double-pole relay or a diode switching array as shown in the circuit diagram. Generally speaking, the latter provides more isolation than the mechanical relay and is recommended.

Circuit Functions

The main function of the Band-Pass Tuner is to convert the if signal to a different frequency where sharp-skirt filters may be used to increase the selectivity of a receiving system. After the signal is filtered, it is then converted back to the receiver (or transceiver) if. The technique used to obtain variable band-pass response is to employ a VFO for the conversion oscillator and use this energy not only to convert the signal from 3.395

MHz down to 455 kHz , but also to convert the signal back to the receiver i-f range. Since the down conversion is equal to the up conversion (the same oscillator is used for both), changing the VFO frequency does not change the frequency of the received signal The output frequency is always cqual to the input frequency: the VFO only changes the position of the signal around the 455 kHz filter system.

A Circuit diagram for the Band-Pass Tuner is given in Fig. 1. Dual-gate MOSFETs are used to accomplish both the down and the up conversion. Since the phone-band mechanical filter has considerable insertion loss (about 10 dB), an RCA 40673 amplifier is included to bring the signal up to the proper level for re-entering the receiver i-f system. The 40673 could be controlled by voltage supplied from the receiver age bus; however, it was not necessary. Normal age action of the receiver seemed unaffected by the inclusion of the BandPass Tuncr.

The VFO must be capable of reaching stability from a cold start in just a few minutes. A VFO which drifts more than a kilohertz during warmup will cause the operator to have to readjust the

Fig. 1 - Circuit diagram for the Band-Pass Tuner. All resistors are $1 / 2$ watt composition. FL1 and FL2 are Collins types. RFC's are from Millen. All capacitors are disc ceramic. The output of the Pass-Band Tuner should be connected in the receiver at a point before the receiver i-f filter system. The i-f control should be adjusted to give suitable gain when the unit is placed in operation as outlined in the text.
tuning during this period. Since the tuning is accomplished with a varactor diode which has a limited range, drift must be held to within a few hundred Hertz for warmup and within about 25 Hz for nomnal operation. The voltage source for the VFO must be regulated. CR1 in Fig. 1 serves that function.

Most receivers with a 3.395 MHz second i-f have a first j -f in the range of 8 MHz . Since the third harmonic of the VFO falls in that range, a low-pass filter was incorporated to eliminate any receiver spurious response. The tenth harmonic of the VFO is the only one to fall in an hf amateur band It was not detectable on the receiver shown in the photographs.

A pair of emitter followers are incorporated in the VIOO injection line; cach one offers isolation between the VFO and the associated mixer. Additionally, isolation is provided between the input mixer, Ul and the output mixer, U3. Insufficient isolation on this line could cause poor selectivity characteristics (parallel path to the filters) and instability.

Construction

Several methods may be used to enclose the Band-Pass Tuner. If sufficient space is available in the receiver or Hansceiver, and if the control furctions can be made part of the front-panel layout (without drilting holes!), then mounting the circuit boards internally would be desirable. The
other option is to fabricate a cabinet or obtain a sufficiently large Minibox to house the circuit boards and contro's.

All of the components for the VFO, converters, and amplifiers are included on one board. The filter switching network and the filters are mounted on the same circuit board.

Shielded leads should be used between the input and output points on the circuit board and the station receiver.

Receiver Interconnection and Alignment

The input terminal of the Band-Pass Tuner should be connected to the output of the second mixer in the receiver. The output of the Band-Pass Tuner connects directly to the input of the receiver crystal filter.

Alignment is simple. Before the Band-Pass Tuner is installed in the receiver, tunc in the receiver crystal calibrator and log the S-metor reading. Install the Band-Pass Tuner. Set the ViO for 2.940 MHz . A frequency counter is handy for this step, however a general-coverage receiver is suitable. The band-pass tuning control R5, should cause a frequency change of approximately three kilohertz either side of 2.940 MHz .

With the receiver and the Band-Pass Tuner turned on, and the calibrator tuned in, the bandpass control (VFO) should be adjusted to show a peak reading on the S -Meter. Then the gain

Top view of the Band-Pass Tuner
control, RI, should be set so that the receiver S-meter reading under the above conditions is the same as the reading taken before the Band-Pass Tuner was installed. The gain control will no doubt have to be changed during normal operation if more than one filter is used.

Opcration

The incorporation of the Band-Pass Tuner does not change the normal operation of the receiver. S1 may be used to select an out condition (Band-Pass Tuner out of the circuit), the ssh filter, or a sharper cw filter. The band-pass tuning control may be adjusted to give the desired filter response in relation to the signal being received.

With most receivers, the change from onc sideband to the other at the receiver mode switch will not require a change in the position of the band-pass tuning control. It will, however, change the tuning direction of the response. For instance, if the tuning control is rotated in one direction to favor a higher pitch with usb operation, when used on lower sideband, the same direction of rotation will cause the favared pitch to becone lower.

A COMMUNICATIONS RECEIVER WITH DIGITAL FREOUENCY READOUT

Front view of the communications receiver built by WAIJZC. The receiver controls are grouped at the right side of the front panel, with the digital readour occupying the left side.

This solid-state receiver will enable the operator to tune the amateur bands from 160 to 10 meters in 500 kHz segments. An integral part of the unit is a digital frequency counter that may be used to display the received frequency directly to the nearest 100 Hz . The basic receiver consists of a single-conversion tunable i-f which covers a range that includes the 160 -meter band. Converters for each additional desired band are placed ahead of the tunable if and may be built into the same enclosure. This approach combines the virtues of high performance, moderate complexity, and reasonable cost with plenty of flexibility.

Circuit Overview

The design objectives incorporated in this receiver include optional coverage of all of the amateur bands below 30 MHz , ability to withstand strong signals without cross modulation or overloading, sclectable phone or cw bandwidth i-f filters, extensive use of diode switching, and direct display of the frequency of incoming signals. The signal path through the receiver may be traced with the aid of the block diagram, Fig, 1.

Band switch S1 connects the if input, if input, and positive supply voltage to the desired converter board. The circuits used in the 40-, 20-, $15-$, and 10 -meter converters are of similar design. Each one consists of an FET rf amplifier, a crystal-controlled heterodyne oscillator (HFO), and a duas-gate MOSFET mixer stage. No of amplifier is included in the 80 -meter design; an input bandpass network takes its place. The HFO and mixer in the 80 -meter circuit are similar to those of the other converters. In each case, the desired output from the mixer is the difference between the incoming signal frequency and the HFO frequency. This difference frequency will fall within the range covered by the turable $\mathrm{i} f, 1800$ to 2300 kHz . For 160 -meter operation, Sl connects the antenna lead straight
through to the input of the tunable iff, bypassing the converters. No rf amplitier is needed (or used) on 160 meters. In the tunable $i-f$, a bandpass filter, FL1, is used ahead of a dual-gate MOFSET mixer, Q1. Oscillator injection to Q1, supplied by a three-stage variable frequency oscillator assembly (Q2, Q3, and Q5), may be tuned over a $500-\mathrm{kHz}$ wide range. In this case, the desired mixer output is at 455 kHz . I-f selectivity following the mixer is established by means of a narrow-bandwidth crystal filter, FL2, for cw operation, or by a mechanical filter with a somewhat broader response, FL3, for use with ssb. A diode-switching network permits either filter to be chosen. An i-f preamplifier (Q4) following the filters compensates for filter insertion loss. Two stages of $j-f$ amplifica-

View of the receiver compartment prior to installation of the converter boards.
tion (U1 and U2) after the preamplifter provide ample gain and dynamic range. A passive product detector (CR2, CR3) at the i-f output receives injection from a crystal-controlled BFO, (Q6). The BFO incorporates diode switching of three crystals, one for cw, one for lower sideband reception, and one for upper sideband reception. The audio output from the product detector is split into two independent paths. One path leads to an a-f preamplifier (Q10) followed by an integrated audio power amplifier (U4) which drives a speaker or headphones. The other path runs to an audioderived agc circuit consisting of U3, CR4 and CR5, Q7, and Q8 plus associated components. The age is applied to U1 and U2, and additionally provides an S-meter indication on M1.

Tunable I-F Section

A tuning range of 1800 to 2300 kHz was chosen for this portion of the recciver (Fig. 2A). A front-end filter, peaked by means of a front-panel mounted variable capacitor, is used to assure rejection of potentially troublesome out-of-band signals on 160-meters, particularly those of local be stations. !nexpensive loupstick inductors are used at L2 and L3. It was necessary to remove 125 turns of wire from each so that they would be suitable for tuning from 1800 to 2300 kHz with the split-stator variable capacitor used in the filter. The unloaded Q of each, after modification, is 125 at 1.9 MHz . An active mixer was chosen for the first stage of the tunable i-f section to limit the number of recciver stages required for suitable overall gain. Q1, the dual-gate MOSFET, operates with the signal gate tapped down on FL1 to reduce the possibility of over-loading and cross modulation. The conversion gain is roughly 10 dB , and that more than compensates for the insertion loss of the tunable filter, FLl. It is wise to keep the signal voltage at gate 1 as low as practicable to assure good mixer performance. A small amount of forward bias is applied to both gates of the 40673 mixer to increase the linearity and conversion gain of that stage. A 33 -ohm resistor is used in the drain to prevent vlef parasitic oscillations.

Local Oscillator

Perhaps the most important consideration when choosing a vfo circuit is its freedom from drift. The incorporation of narrow-bandwidth filters (FL2, FL3) in this receiver makes local oscillator stability a must, as any change in the LO frequency can be easily detected. The local oscillator depicted in Fig. 2B is unconditionally stable, from both a mechanical and an electrical standpoint. Oscillator drift, measured from a cold start, was less than 75 Hz after 30 minutes of operation. VFOs patterned after this circuit have been used in several different applications, and comparable stability has been achieved in every case.

With the circuit constants shown in Fig. 2B, the vfo covers the desired frequency range of 2255 kHz to 2755 kHz , with an additional 15 kHz on either side of that range. VFO linearity across the entire tuning range is not as exacting a requirement when an "clectronic dial" is used to display the receiver frequency as it is when some type of mechanical readout is used. Using a $10: 1$ ratio ball bearing drive to tum the shaft of C 2 , a tuning rate of 80 kHz per main-tuning-knob revolution is obtained at the low frequency end of the range, and 125 kHz per revolution at the high frequency end of the range. If personal preference dictates a slower tuning rate, dual ratio $36: 1$ and $6: 1$ drives are available.

Referring to the circuit diagram, Q2 is used in a scrics-tuned Colpitts oscillator configuration. Polystyrene capacitors were chosen for their temperature stability at C9 and C10 because these components are part of the frequency-determining network. If the inductor specified for L6 is not available, its replacement must exhibit a similarly high Q (approximately 150 measured at 2.5 MHz) to assure proper oscillation. With the exception of C2, C3, C4, and 26, all VFO components are mounted on a single printed-circuit board. C3 and C4 are soldered directly between the C2 stator terminal and the (grounded) capacitor body to minimize lead inductance effects. Inasmuch as the position of the powdered iron core of 16 is variable, the added inductance of the wire from C2 to L6, and from L6 to the pe board is taken into account during the initial VFO alignment. Nevertheless, from the standpoint of mechanical and thermal stability, it is desirable to kecp the connecting leads short and ditect, using a stiff gauge of wire.

Q3 is connected as a source follower, and is intended to act as a buffer in order to isolate the oscillator circuit from later stages. The buffer drives a single-transistor amplifier stage, Q5. Output from the VFO is taken off of the Q5 collector through a pi-network tank circuit, composed of C11, L5, C12, and C13. Operating voltages for the three transistorized vfo stages are derived from a Zener regulated 8.2 -volt bus which is, in turn, derived from the 12 -volt receiver power supply. A variation of plus or minus 15% in the receiver supply voltage results in less than a 5 Hz change in the VFO frequency. Additional details concerning the design of the VFO appear in the November, 1974 issue of QST, page 22.

Fig. 2 - Schematic diagram of the 160 -meter front-end mixer and local oscillator. The mixer is at A, and the oscillator and buffer are at B. Fixed-value capacitors are disk ceramic unless otherwise indicated. Resistors can be $1 / 4$ - or 1/2-watt composition types unless specified differently.
C1 - Dual-section 50-pF variable.
C2 - Single-section $100-\mathrm{pF}$ variable (J.W. Miller 2101 or equiv.).
L1 - 3 iurns small-diameter insulated wire wound over ground end of L2.
L2, L3 - Radio Shack No. 270-376 \{errite bc antenna with 125 turns of wire removed (ses
text).
L5 - Pc-mount slug-tuned coil, 10.0-18.7 $\mu \mathrm{H}$ (J.W. Miller 23A155RPC).

L6 - Slug-tuned coil - 3/8-inch diametar ceramic form, red core, $18.8-41.0 \mu \mathrm{H}$ (Miller 42A335CBI).
RFC1 - $10-\mathrm{mH}$ miniature encapsulated inductor (Millen Mfg. Co. J302-10,000).
RFC2, RFC3 - $1-\mathrm{mH}$ miniature encapsulated inductor (Millen J302-1000).
RFC4 - $2.5-\mathrm{mH}$ miniature encapsulated inductor (Millen J302-2500).
S1 - Four-pole, six-pasition rotary switch.
VR1-8.2-V, 1-W Zener diode.

I-F Strip

The output of the mixer, Q1, contains not only the desired difference between the VFO and the (post-conversion) incoming signal frequencies, but the sum of these frequencies and higher order products of these frequencies as well. I-f selectivity is developed at the output of the mixer by means of sharp filters resonant at 455 kHz , which both reject the unwanted mixing products and establish the skirt selectivity of the receiver. A choice of j-f bandwidths, one suitable for cw reception and the other tailored for ssb, is made available by the use of two separate filters, FL2 and FL3: FL2 is a
crystal filter with a bandwidth of 300 Hz measured at -6 dB from the peak response. FL 3 is a 2.1 kHz bandwidth mechanical filter.

A diode switching arrangement, shown schematically in Fig. 4, is used to choose the appropriate Enlter. When the mode switch (S3) is set to cw , a dc path is created from the positive supply bus through R8, RFC5, CR11, RFC7, RFC8, RFC10, CR12, RFC11, and R9 to ground. Simu!taneously, CR9 and CR10 become reverse biased, so that they look like very high impedances. When diodes CR11 and CR12 are forward biased, they appear as very low impedances, thereby opening an rf path from the drain of Q1, through C14, CR11. C15, FL2, C16, CR12, and C17, to the gate of the

Fig. 3 - Schematic diagram of the i-f, agc, and audio preamplifier circuits. Capacitors are disk ceramic except those with polarity marked, which are electralytic. Fixed-value resistors can be 1/4-or 1/2-watt composition unless otherwise noted. Numbered components not appearing in the parts list are so numbered for cext discussion.

CR2-CR6, incl. - High-speed silicon switching diode, 1 N3063, 1 N914, or equiv. J5 - Phono jack, single-hole mount. M1 - 0 to $1-\mathrm{mA}$ meter (Simpson No. 2121).

R2, R8 - 10,000-ohm linear-taper control.
R5 - 100 -ohm pc-board-mount control \{Mallory MTC-12L1 or equiv.).
S2 - Two-pole, single-throw toggle. Subminiature type used in this example.
T1-T3, incl.- Single-tuned minlature $465-\mathrm{kHz}$ i-f transformer, 30,000-ohm primary to 500-ohm secondary (Radio Shack No. 273-1383). Use the black core at T1, yellow core at T2, and white core at T3.
U1. U2 - RCA integrated circuit.
U3 - Motorola Integrated circuit.
i-f preamp (Q 4). When the mode switch is placed in the lower sideband or upper sideband position, CR11 and CR 12 become reverse biased, while CR9 and CR10 become forward biased, opening an rf path through FL3, and closing off the path through FL2. With this system, isolation between the filter inputs and outputs as well as between the filters is good, and since the mode switch carries dc only, no special precautions need be taken with the switching lead dress. If insufficient isolation exists between the filters, the characteristics of the narrower filter will be degraded by the wider filter. If this is the case, the use of two series-connected diodes in place of the single diodes on either side of the wider filter (and the possible addition of a small capacitor from the junction of those diodes to ground) should improve the isolation. However, no such degradation was observed when the circuit, as depicted in Fig. 4, was used. The values for C18 and the series combination of C19 and C20 are chosen to resonate with the inductance of the mechanical filter input and output transducers at 455 kHz .

An FET preamplifier stage follows the i-f filter assembly to compensate for the insertion loss of the filters, and establishes the noise figure of the i-f strip. An MPF 102 was used at Q4 because of its low noise characteristics. A single-tuned $455-\mathrm{kHz}$ i-f transformer is used to couple the output from Q4 to the input of U 1 .

Two stages of $\mathrm{i}-\mathrm{f}$ amplification are provided by U1 and U2 (Fig. 3). RCA CA3028A integrated circuits were chosen for use in the i-f chain because they are inexpensive and easy to work with. In this circuit they are connected as differential amplifiers. Audio-derived age is applied to terminai 7 of each IC (+2.5 to +9 volts), the constant-current-source bases. The dynamic range of the i-f system is approximately 60 dB .

A passive product detector was chosen over an active one because of its simplicity and good signathandling capability. A pair of high-speed switching diodes (iN3063) were chosen because of their low cost and easy availibility.

BFO

An MPF102 JFET (Q6) functions in a Pierce crystal controlled BFO (Fig 5). Separate crystals are used for cw , lower sideband, and upper sideband Diode switching is used to select the proper crystal, with one section of the mode switch, S3C, performing the function. Again, lead dress to the mode switch is not critical, because only dc is being carried by those leads. The BFO crystal frequency chosen for cw operation is 454.3 $\mathrm{kHz}, 700 \mathrm{~Hz}$ below the center frequency of the i-f. This results in an audio beat note of 700 Hz when a cw signal is peaked in the passband. The lower sideband crystal frequency is 453.650 kHz , and the upper sideband crystal frequency is 456.350 kHz . Note the (suppressed) carrier frequency that the receiver is tuned to changes by 2.7 kHz when the mode switch is changed to the opposite sideband. BFO injection to the product detector is 7 volts peak to peak.

Audio-Derived AGC

Audio output from the product detector is split into two channels, one line feeding the age strip and the other running to the audio amplifier circuit. An MFC4010A low-cost IC provides 60 dB of gain and serves as the agc amplifier (U3 of Fig. 3). Output from U3 is rectified by means of a voltage doubler consisting of two 1 N914 diodes. Because of the high-gain capability of U3 it tends to be unstable at frequencies above the audio range. Addition of the $.01-\mu \mathrm{F}$ bypass capacitor

Fig. 4 - Circuit diagram of the i-f filter diode switching network. Numbered components not appearing in the parts list are so numbered for text reference purposes.
FL3 - $2.1-\mathrm{kHz}$ bandwidth mechanical filter, $455-\mathrm{kHz}$ center frequency (Collins F455FA21. Collins Radio Company, 4311 Jamboree Blvd.,

Newport Beach, CA 92663).
FL2 - 300-Hz bandwidth erystal filter. $455-\mathrm{kHz}$ center frequency (Collins X455KF300, see QST Ham-Ads to obtain the names of suppliers).
RFC5 - RFC11 - incl. $10-\mathrm{mH}$ miniature encapsulated inductor (Millen J302-10,000).
S3 - Four pole, three position rotary switch.

from terminal 2 to ground cured all signs of unstable operation in this circuit. Stubborn cases may require some additional bypassing at terminal 4 of U3. If so, use only that amount necessary to assure stability.

Rectified audio voltage from CR4 and CR 5 is supplied to a two-transistor de amplifier, Q7 and Q8. Age voltage is taken from the emitter of Q8. Its amount varies with the incoming signal level, and changes as the current-caused voltage drop across the 1500 -ohm emitter resistor, R6, shifts in value. S-meter Ml follows the same excursions in current at Q8.

Manual if gain control is possible by means of potentiometer R2. It supplies dc voltage to the base of Q7, thereby causing a voltage drop across R7, which causes Q8 to conduct more heavily. As a result, the voltage drop across R 6 increases and reduces the age voltage to lower the gain of the if system. The same action takes place during normal agc action. Diode CR6 acts as a gate to prevent the dc voltage provided by CR4 and CR5 from being disturbed by the presence of R2. Maximum i-f gain occurs when the arm of R2 is closest to ground. R3 and C5 establish the agc time constant. The value of R4 can be tailored to provide the attack-time characteristics one prefers. Slower or faster agc time constants can be obtained by changing the

Fig. 5 - Diagram of the receiver beat frequency oscillator showing the use of diode switching of BFO crystals.
CR13-CR15, incl. - High-speed silicon switching diode, 1N3063. 1 N914, or equiv.
RFC 12-15, incl. $=10-\mathrm{mH}$ miniature encapsulated inductor (Millen J302-10,000).
Y1 $-456.350 \cdot \mathrm{kHz}$ crystal in HC-6/U holder Internasional Crystal Mfg. Co. type CS, 10 North Lee, Oklahoma City, OK 73102).
Y2 - 453.650-kHz crystal in HC-6/U holder (International type CS).
Y3 - 454.300-kHz crystal in HC-6/U holder (International ivpe CS).
values of R3 and C5. The final values will be a matter of operator preference; no two people seem to agree on which time constant is best.

Audio System

Low-cost components are used in the audio system of Fig. 3 and Fig, 6. The circuit performs well and delivers undistorted af output up to one watt in level. An MPSA10 transistor is employed as an audio preamplifier. Muting is provided for by means of another MPSA10, Q9. A positive-polarity voltage is fed to the base of Q9 from the transmitter changeover system to saturate the muting transistor. When in the saturated mode, Q9 shorts out the base of Q10 to silence the receiver. The audio output circuit, U4 of Fig. 6, was borrowed from MFJ Fnterprises and is that used in their l-watt module, No. 1000. Those wishing to do so may order the assembly direct from MFJ.

Provisions are made for fceding a side-tone signal into terminal 3 of U4. This will permit monitoring one's sending even though the receiver is muted by means of Q9. U4 remains operative at all times.

HF-Band Converters

The same pattern is followed for the individual crystal-controlled converters used from 40 through 10 meters (Fig. 7). The 80 -meter design is slightly different and is seen in Fig. 8. Separate converters were incorporated to eliminate the need for complicated band switching, and also to permit

AF AMPLIFIER

Fig. 6 - Schematic diagram of the MFJ Enterprises 1-watt audio module used in the receiver.

Fig. 7 - Schematic diagram of the 40 -meter converter at A, with 10 -meter oscillator modification at B. Capacitors are disc ceramic (fixedvalue types). Resistors can be $1 / 4$ - or $1 / 2$-watt composition types.
C7, C8 - Miniature ceramic or compression trimmer, 5- to $20-\mathrm{pF}$ range.
CF -39 pF for 20 - 15 - and 10 -meter converters. 31 - Coax connector of builder's choíce.
L7-2 turns of No. 28 enam. wire over grounded end of L8.
L8 - 40 meters, 50 turns of No. 28 enam. on Amidon T-50-2 toroid core. Tap 8 turns above ground ($13 \mu \mathrm{H}, Q_{\mathrm{u}}=180$). 20 meters, 44 turns No. 28 enam. on Amidon T-50-6 torbid core. Tap 6 turns above ground ($8 \mu \mathrm{H}, Q \mathbf{u}=180$). 15 meters, 25 turns No. 28 enam. on Amidon T.50-6 toroid core. Tap 4 turns above ground $\{4 \mu \mathrm{H}, Q u=150) .10$ meters, 20 turns No. 28
enam, on Amidon T-50-6 toroid core. Tap 3 turns above ground ($3.5 \mu \mathrm{H} Q u=150$)
L9 - 40 meters, same as L8, but tap at 25 turns. 20 Meters, same as L8, but tap at 22 turns. 15 meters, same as L8, but tap at 12 turns. 10 meters, same as L8, but tap at 10 turns.
RFC16 - $500-\mu \mathrm{H}$ miniature encapsulated Inductor (Millen J302-500).
Y5 - International Crystal type CS crystal in type FM-1 holder; 40 meters, 5.2 MHz , fundamental mode; 20 meters, 12.2 MHz , fundamental mode; 15 meters, 19.2 MHz , fundamental mode; 10 meters (28.0 - to $28.5-\mathrm{MHz}$ coverage) 26.2 MHz , (28.5 -to $29.0-\mathrm{MHz}$ coveragel 26.7 MHz , (29.0-to $29.5-\mathrm{MHz}$ coverage) 27.2 MHz \{29.5-to $30-\mathrm{MHz}$ coverage\} 27.7 MHz , all third overtone.
L.15-Pc mount slug-tuned cail, $1.5 \mu \mathrm{H}$ nominal. Miller 46A156CPC or equiv.
RFC18-2.2 $\mu \mathrm{H}$ rf choke.

optimization of circuit values for each band of interest. The system used in this receiver calls for switching of only de and $50-\mathrm{ohm}$ circuitry. Lowimpedance switching eliminates problems caused by long switch leads. Switching at high-impedance points, which is the usual technique in multiband receivers, can impair the quality of the tuned circuits and makes isolation of critical circuits more difficult.

A common-gate JFET rf amplifier provides 10 dB of gain in these converters and has good IMD and overload immunity. A 40673 MOSFET is used as the mixer in each converter. Output is taken at the i-f from a broadly resonant circuit formed by a $500-\mu \mathrm{H}$ rf choke and an rf voltage divider which uses a series capacitor combination (25 and 50 pF). The divider provides a low-impedance pickoff point for the i -f output line to the tunable i-f receiver section.

The 40 - through 15 -meter converters employ simple Colpitts oscillators. A high-beta transistor is used for the oscillator. It has an f T of approximately 200 MHz . The circuit for the 10 -meter converter oscillator differs slightly from the others in that the HFO uses third overtone rather than
fundamental mode crystals, necessitating the insertion of a collector tank circuit tuned to the overtone frequency.

A different design is used in the 80 -meter converter, wherein a bandpass filter is used as the input fixed-tuned circuit. This technique was necessary to assure ample bandwidth from 3.5 to 4.0 MHz without the need to have a panelmounted peaking control. The bandwidth is usable for an 80 - and 75 -meter frequency spread of 1 MHz .

A Pierce oscillator is used in the 80 -meter front-end module to assure plenty of feedback for the $1700-\mathrm{kHz}$ crystal.

Frequency Display Design Approach

The operation of the frequency display may be followed with the aid of the simplified block diagram, Fig 9. With the conversion scheme utilized in the receiver, the received zero-beat frequency is equal to the sum of the VFO and HFO frequencies minus the BFO frequency, or in the special case of 160 -meter operation, the difference between the VFO and BFO frequencies. Accordingly, the display has three identical input

Fig. 8 - Schematic diagram of the 80 -mater converter. Capacitors are disc ceramic. Resistors can be $1 / 4$ - or $1 / 2$ watt camposition types.
L11-4 turns No. 28 enam. wire over grounded end of L12.
L12 - 36 turns No. 28 enam. wire on Amidon T-50-2 toroid core ($5.5 \mu \mathrm{H}, Q \mathrm{u}=175$). Tap at 18 turns.

L13 - 68- $\mu \mathrm{H}$ miniature if choke QQv of 50 or greaterl. Millen $34300-68$ used in this example.
L14 - Same as L12.
RFC17 - $500-\mu \mathrm{H}$ miniature encapsulated inductor (Millen J302-500).
Y4 - International type CS erystal in F-700 holder, 1.7 MHz .
networks - one for each oscillator - which amplify and square the incoming waveforms. The outputs of these preconditioning networks are sequentially gated into a chain of seven type SN74192 presettable up/down decade counters, U12-U18. The oscillator frequency addition and subtraction functions are performed by this counter chain. The events in a standard count sequence occur in this order: The counter chain is reset to zero and then placed in the count-up
mode. The VFO signal is gated in and counted for 100 milliseconds. The counter is then placed in the count-down mode and the BHO signal is gated in and counted for 100 milliseconds (effectively subtracting the BFO frequency from the VFO frequency digitally). During the next 100 millisecond period, the counter is again placed in the count-up mode and the HFO signal is gated in and counted. At this point, the output of the counter chain ICs represents the receiver zero beat fre-

Fig. 9 - Simplified block diagram of the receiver frequency display.
quency. This output is in Binary Coded Decimal (BCD) form. The information from the last six SN74192s in the chain, U13-U18, is stored in six type SN7475 latches (in BCD form) and the entire counter chain is reset to zero during the ensuing 100 millisecond period. The standard count sequence is then repeated. Each of the latches is followed by a type SN7447 IC which decodes the BCD input and provides an output suitable for driving a seven-segment readout. Thus, the display is updated every 400 milliseconds. The output of U 12 is not displayed, in order to avoid a distracting last-digit flicker. Accordingly, the 6-digit frequency display reads accurately to the nearest $100-\mathrm{Hz}$. The timing of the oscillator gating, the latch pulse, and the counter reset pulse is determined by a crystalcontrolled oscillator/divider chain consisting of U5D, U5E, and U6-U11.

Although this system is satisfactory for ssb reception, it has the drawback that it is necessary for the operator to zero beat an incoming cw signal to read its exact frequency. By taking advantage of the presettable input feature of the SN74192 ICs, the display can be altered during cw reception to read the signal's zero beat frequency while the signal is peaked in the crystal filter passband. Inasmuch as the BFO frequency is 700 Hz below the passband center frequency, in order to obtain the desired readout it is necessary to start counting from "negative 700 Hz " rather than from zero by presctting the counter chain to 999930 every time a count sequence is begun.

Frequency Display Operation

Fig. 10 is a complete schematic diagram of the frequency display. The design of each of the input preconditioning networks is identical to that used by Blakeslee ($Q S T$ for June, 1972, pages 31-32). In the HFO shaping network, protection against possible damage to Q16 caused by the application

Top view of frequency display circuit board. Visible in the foreground are the three shielded input wave-shaping networks.
of too great an input voltage is accorded by CR16 and CR17, which conduct if the absolute value of the input signal exceeds approximately 0.6 volts. Q16 and Q19 form a two-stage amplifier that presents a high impedance to the input signal and a low impedance to the succeeding stage. Fous sections of a type SN74HO4 high-speed TTL hex inverter are used to convert the incoming sinusoidal HFO signal to a square wave. U33F, operating as an ampliffer, drives a Schmitt Trigger composed of U33E and U33D. U33C acts as an output buffer. A lype SN7404 can be used in place of the SN74HO4 in the VFO and BFO shaping networks inasmuch as they operate at relatively low frequen-

Fig. 10 - Schematic diagram of the receiver Irequency display. U5-U30 are Texas Instruments SN7400 series TTL integrated circuits, or equiv.
cies. Each input network is connected to its appropriate oscillator through a short length of RG-174 miniature coaxial cable and a small value coupling capacitor. The smallest value of capacitance that will provide reliabic counting should be employed. For example, 27 pF was used to couple from the VFO. Each heterodyse oscillator crystal will require lits own coupling capacitor, and one of the receiver band-switch decks may be used to select the proper capacitor for each band. For use of the counter to display an external signal, such as a transmitter's frequency, the HFO input network is switched to receive signals from a front-panel
mounted BNC jack, by means of S4C. The typical input circuit sensitivity is 50 to 100 mV .

The three preconditioning networks operate continuously and independently of each other. The shaped oscillator signals are gated sequentially to the input of the counter chain, each for a 100 millisecond interval. Both the duration of the interval and the order in which the receiver oscillators are sampled are governed by a crystalcontrolled time base. Two sections of a type SN7404 hex inverter (USD and U5E), a $1-\mathrm{MHz}$ crystal (Y6), plus a handful of other parts constitute the master oscillator. C23 is a pc-mount air

variable capacitor that permits an incremental adjustment of the oscilator frequency.

The master oscillator is followed by a frequency divider network, U6-Ull. U6-U10 are type SN7490 decade counters. Each SN7490 is composed of a divide-by-two section and a divide-byfive section. In this application, the sections are cascaded resulting in divide-by-ten operation. Four outputs are available from each SN7490 connected in this configuration, corresponding to a BCD representation of the number of input pulses previously applied to the IC, from zero to nine and then back to zero again. These outputs are labeled "A" (pin 12), "B" (pin 9), "C" (pin 8), and "D" (pin 11) representing the $2^{0}, 2^{1}, 2^{2}$, and 2^{3} bits respectively. For every ien pulses applied to the input (pin 14), one pulse appears at the "D" output, giving the effect of dividing the input
frequẹncy by ten (see Fig. 11). Five such divide-by-ten stages are cascaded in the time base resulting in division by 100,000 - with an input frequency of 1 MHz from the master oscillator, the frequency of the square wave appearing at the " D " output of U10 is 10 Hz . A slight shift of the master-oscillator frequency away from 1 MHz , due to perhaps temperature or voltage fluctuations, will also show up at U10, but divided by 100,000 - a good reason for starting with a high crystal frequency. It is obvious that with large-amplitude harmonic-rich square waves of several different frequencies present in the time base, the frequency display must be well shielded from the receiver in order to prevent the appearance of strong birdies all across the dial.

The output pulses from U10 are asymmetric low for $\mathbf{8 0}$ milliseconds and high for $\mathbf{2 0}$ milli-
seconds. Ull is a type SN7473 dual flip-flop with both sections connected for divide-by-two operation and cascaded. Each time a negative-going pulse edge from U10 appears at the clock input of the first section of U11 (pin 1), the Q1 output (along with its complement, Q1) changes state. Since U11 encounters a negative-going pulse edge once every 100 milliseconds, the Q1 output is alternately low for 100 milliseconds and high for 100 milliseconds. The Q1 output is used to establish the duration of the receiver-oscillator sampling interval.

Four distinct 100 millisecond intervals are necessary (VFO count, BFO count, HFO count, latch and reset). A means for distinguishing between these four intervals is provided by dividing the time base frequency (at Q1) by two in the second section of U11. Thus the Q2 output of U11 (along with its complement Q2) is alternately low for $\mathbf{2 0 0}$ milliseconds and high for $\mathbf{2 0 0}$ milliseconds. The four distinct states occur with Q1 low and Q2 low, Q1 high and Q2 low, Q1 low and Q2 high, and Q1 high and Q2 high. An equivalent description of these states is that Q1 and Q2 are high, Q1 and Q2 are high, Q1 and Q2 are high, and Q1 and Q2 are high respectively. The sequential gating to the counter of the preconditioned VFO, BFO, and HFO signals is performed by U34, a type SN74H10 triple three-input NAND gate. The output of a three-input positive logic NAND gate is high under all input conditions except when all three inputs are in a high state simultaneously, when the output is forced low. The preconditioned VFO signal is applied continuously to vie of the inputs of U34C. The other two inputs are tied to the $\overline{\mathrm{Q} 1}$ and $\overline{\mathrm{Q} 2}$ outputs respectively of U11. Whenever either Q1 or $\overline{\mathrm{Q} 2}$ or both $\overline{\mathrm{Q} 1}$ and $\overline{\mathrm{Q} 2}$ are low, the output of U34C is held high. During the 100 millisecond long interval when both $\overline{\mathrm{Q} 1}$ and $\overline{\mathrm{Q} 2}$ are simultancously high, however, the output of U34C follows the excursions of the VFO imput, going low when the
square wave VFO input is high and vice versa. Similarly, there are inputs to U34B from Q1, $\overline{\mathrm{Q} 2}$, and the BFO; to U34A from $\bar{Q} 1, \mathrm{Q} 2$, and the HFO. In each case, when a signal is not being gated by a section of U34, the output of that section is held high.

The ICs used in the counter chain are SN 74192 presettable up/down decade counters. Like the SN7490, each SN74192 has four terminals, "A" (pin 3), "B" (pin 2), "C" (pin 6), and " B " (pin 7) for BCD output. Additionally, the IC has "A" input, "B" input, "C" input", and "D input" terminals (pins $15,1,10$, and 9 respectively) which may be used to initialize or preset the BCD output of the counter to some particular desired nonzero state from which point the count begins. For example, to load the preset inputs with the count of nine (the BCD representation of nine is 1001) the A and D inputs would be tied to +5 volts and the B and C inputs would be grounded. The information at the preset inputs is transferred to the output terminals when a negative-going pulse is applied to the counter reset or load terminal (pin 11), and as long as this terminal is held low, the counter is inhibited from counting pulses applied to either of its clock inputs. Each SN74192 has two clock inputs, one labeled count up (pin 5) and the other labeled count down (pin 4). When pin 4 is held at +5 volts and pulses are applied to pin 5 , each incoming pulse increases the BCD output by 1 count. Likewise, when pin 5 is at a high logic level and pulses are applied to pin 4, each incoming pulsc decreases the BCD output by 1 count. A single SN74192 can count from 0 to 9 . If a greater number of pulses is to be counted, several of the ICs may be cascaded. Borrow and carry output terminals (pins 13 and 12 respectively) are provided for this purpose. To cascade several counters, the borrow output of the first IC is connected to the count down input of the next IC in line and

Fig. 11 - Chart showing waveforms associated with a standard count sequence.
the carry output is connected to the count up input of the next IC. In this configuration, if the output of a counter is nine and one pulse is applied to the count up input, the output of the first counter will go to zero and one pulse will be transferred to the count up input of the next counter in line. The case of the count down and borrow temninals is analogous.

In this frequency display, seven counters are cascaded with the result that a maximum of $9,999,999$ counts can be registered before the chain resets to zero. If a $10-\mathrm{MHz}$ signal was gated into the counter chain for 100 milliseconds, one million counts would be registercd. The output of the last counter in the chain would be 1 , while the other counter outputs would be zero. Thus, with a 100 millisecond sampling interval, the last counter indicates the tens of Megahertz, the counter immediately before indicates the units of Megahertz, the counter before that indicates the number of handreds of kilohertz, and so on up to the first counter which indicates the number of tens of Hertz. Because of the plus-or-minus one count accuracy in the sampling process, which takes place three times in the making of each combined count, there is a tendency for the first counter in the chain to reflect this uncertainty by taking on several different nearby values even though the input frequency is kept constant. For this reason, only the outputs of U13-U18 are displayed on the seven-segment readouts (the display reads to the nearest 100 Hz rather than to the nearest 10 Hz). The maximum rated clock input frequency of the SN74192 is at least 20 MHz , but it is listed in the data books as typically 30 MHz , so it may be necessary to hand pick the first IC in the chain for proper high frequency operation.

The outputs of the VFO and HFO gates (U34C and U34A) are combined by U35B and U5F, and applied to the count up input of U12, while the output of the BFO gate (U34B) is applied directly to the count down input of U12, so that during the first 100 milliseconds of a count sequence the counter chain counts up the VFO frequency, during the second 100 ms period the BFO frequency is counted down, and during the third 100 ms period the HFO frequency is counted up. The result of this activity is that at the end of 300 ms , the outputs of the counter chain represent the receiver zero beat frequency. During the fourth 100 ms period, the ou!puts of the SN74192s are stored in six SN7475 latches, and then after 80 ms of this period have passed, the counter ICs are reset to zero (or to their preset values) by a 20 ms long reset pulse applied to pin 11 . The entire sequence then repeats. The reset pulse is derived from the time basc. U3SC is one section of a SN74H10 triple three-input NAND gate. The inputs to U35C come from the "D" output of U10, and the Q1 and Q2 outputs of U11. By referring to Fig. II, it can be seen that the only time that these three inputs are simultaneausly high is during this 20 ms interval, forcing the output of U35C and the reset inputs of U12-U18 low.

When the receiver mode switch (S3) is in the cw position, the preset inputs of Ul3-U18 are set to

999930, while for ssb operation all of the preset inputs are sel to 0 . S4 chooscs either recoiver frequency display or external frequency count operation. When set to external, the counter preset inputs are set to 000000 regardless of the receiver mode switch position, the input to the HFO preconditioning network is removed from the HFO and connected to the front pancl BNC jack, and U 34 B and U34C are disabled so that only the external signal source is counted up. The rest of the counter functions are unchanged for external operation.

The action of the SN7475 quad latches (U19-U24) is straightforward. Each SN7475 has four one-bit latches, each with an input and output terminal plus two clock lines (one for each pair of latches). When the clock line is at a high logic level, the logic level applied to each input will appear at its own output, and the output will follow any changes in the input. When the clock line is at a low logic level, the level that was present at each output at the time of the high to low transition of the clock pulse remains at that level regardless of the state of the input. In this application, the BCD output from each of the counter ICs, U13-U18, is applied to the inputs of a SN7475 latch. During the 300 ms long counting period, the clock line is kept at a low level. About midway into the fourth 100 ms period in the standard sequence, the clock line goes positive for 20 ms , transferring the BCD information present at the counter outputs to the latch outputs, and then the clock line goes negative again before the reset pulse occurs. The latching pulse is derived from the time base. Referring to Fig. 11, the pulse labeled LATCH is the output from U35A when the "C" output of U10, the Q1 and Q2 outputs of U11, and the complement of the "B" output of U10 are at a high logic level simultaneously. Note that in order to "synthesize" a four-input NAND gate from a three-input NAND gate, diodes CR 22 and CR 23 were added in front of one of the SN74H10 inputs. The LATCH pulse is obtained by inverting the LATCH pulsc. U5A drives the clock lines of threc of the SN7475s, while U5B drives the other three.

Each of the SN7475s drives a type SN7447 BCD to seven segment decoder/driver. The function of these ICs ($\mathrm{U} 25-\mathrm{U} 30$) is to convert the BCD code from the latches into a form suitable for driving seven segment display deviccs.

Construction Details

The completed receiver was assembled inside a "wrap around" style cabinet (LMB CO-1) measusing $6-1 / 2 \times 14-1 / 2 \times 13$-inches (HWD). A homemade aluminum inner enclosure, attached to the front pancl, was partitioned with an aluminum shicld into two equal-size compartments - onc side to house the receiver boards and the other to house the frequency display. The liberal use of perforated aluminum screening in the top and outside walls of the frequency counter compartment allows for adequate ventilation of that subsystem. No ventilation of the receiver section was deemed necessary as no heat-gencrating components are involved there.

The physical location of the front-panel controls was dictated as much by functional requirements as by operational considerations. The layout depicted in the photograph of the front panel is compact yet uncluttered. As far as possible, cach individual control is placed near the circuit being controlled. A "commercial look" is imparted to the unit by the use of Kurz-Kasch series 1657 and 700 knobs. A Digbezel model 930-70 (Nobex Components, 1027 California Drive. Burlingame, CA 94010) filter/bezel assembly measuring approximately $5-1 / 4 \times 1-3 / 4$-inches is used to frame the seven-segment readouts. A red filter was chosen for this application, but filters are available for the bezel in amber, green, and neutral tints as well.

Printed circuit boards are used extensively in the construction of this receiver. The pattern used for interconnecting the twenty-five ICs on the main frequency-display board is sufficiently complex to warrant the use of photosensitive resist or silkscreening techniques in the preparation of the board. While the less complex layout of the recciver boards does not require the use of such methods of pe fabrication, the high quality of the results that may be obtained more than justify the slight additional costs involved. G10 glass-epoxy board, 1/16-inch thick, with 1-02 (per square foot) copper is used in all cases.

With the exception of U2S through U30 and the sever-segment displays, all of the frequency counter components are mounted on a 6×6-inch double-sided pc board. The pattern of interconnecting copper paths is etched on the underside of the board, while the top side is left as a solid ground plane, broken only at the places where component leads project through the board. If sockets are used, short bus-wire jumpers from the donut pads provided on the underside of the board to the top foil may be used to ground the necessary IC pins. Alternatively, individual component leads may be grounded by directly soldering them to the foil. A No. 65 drill was used for the IC and transistor pins, while the remaining holes were drilled with a No. 60 bit. The removal of copper foil from around the ungrounded leads is best accomplished by drilling those holes furst, and then scraping away the top ground foil around each hole with a hand-held large-diameter dril! bit (1-4-inch is satisfactory for the purpose). This process may be specded up by the use of a drill press, although extreme caution must be exercised in order to prevent the drill bit from going completely through the board. The holes for grounded leads may then be drilled.

The liberal use of bypass capacitors in combination with a low-impedance ground return is vital in order to prevent clock pulses, switching transients, and other "garbage" from travelling along the de supply lines to the sensitive counter input wave-shaping networks, resulting in improper operation. The configuration of the +5 -volt de supply bus resembles a five-foothed comb of jumper wires, laid across the board's upper side. The far end of each of the "tceth" is bypassed with a $.022 \mu \mathrm{~F}$ disc ceramic capacitor. Shield compart-
ments made from inch-high strips of doublesided pc board isolate the three input-shaping networks from each other and from the rest of the counter. Signal leads from the three recciver oscillators are carried to the input networks via short lengths of miniature coaxial cable (RG-174 or equiv.), and the dc supply line to each compartment passes through a $.001-\mu \mathrm{F}$ feedthrough capacitor.

Space is at a premium inside the input compartments, requiring the use of miniature verticalmount electrolytics and $1 / 4$-watt resistors. Lowprofile sockets (Texas Instruments type C93) were used with all of the ICs on the counter board. The clock oscillator crystal, Y6, was soldered directly into the circuit with its case grounded to the top foil. A threc-section, two-position rotary switch (S4), mounted with an "L" bracket to the chassis bottom to the rear of the counter board, serves as the external count/recciver count switch. Input signals from external sources are routed from the front-panel-mounted BNC jack to S 4 via a length of RG-174. Standoff insulators, $1-1 / 2$-inch high. arc used to support the counter board at its corners.

The display board containing U2S through U30, as well as the scven-segment readout devices. is mounted vertically behind the front panel in such a manner that only the readouts are visible through the bezel. This board is supported partly by the stiffness of the leads that interface it with the main board, and partly by means of two No. 6 screws and metal spacers affixed to the panel. No circuit board pattern is supplied for the display board becausc of the wide variety of display devices and BCD decoder/driver ICs available to the builder at modest cost. LED readouts, fluo rescent readouts and gas-discharge devices, to name a few, are competitive in price to the incardescent seven-segment displays that were used here, and each type has its own pin-numbering scheme and driver requirements, as well as physical mounting requirements.

The receiver is built from a number of subassemblies, with the principal one incorporating the better part of the tunable i-f. This 6×6-inch pc board contains the front-end mixer stage, the i-f filters and amplifiers, the product detector, and the BFO. Additionally, it supports the local oscillator module. Separate and smatler boards are used for the age and audio circuits and each of the converters. A complete set of templates for the boards used in the receiver and in the frequency display is available from ARRL for $\$ 2$ and 3 self-addressed, stamped business size envelope.

Physically small components are employed wherever possible. resulting in compact board layouts. Vertical format low voltage electrolytics such as the Sprague 503D series are to be preferted over axial lead types, which must be mounted upright to fit on the board. Sprague Hypercon low-voltage ceramic disc capacitors are idcally suited due to their miniature size for use wherever a $0.1-$ or $.01-\mu 5$ value is called for. Millen J 302 series encapsulated inductors are used liberally. They are compact and are designed for highdensity pe mounting. Either quarter-watl or half-
watt resistors can be used, although with the larger size it may be necessary to stand some of the resistors on end. T1-T3 are inexpensive imported $455-\mathrm{kHz}$ i-f transformers that come four to a package. International Crystal type F-605 nylon sockets were used for Yl-Y3, which are not available with wire leads. All of the semiconductor devices used in the receiver are soldered directly into the circuit board, although sockets are available for U1 and U2 if desired.

An outboard power supply capable of providing 12 volts at 150 mA maximum for the receiver and 5.0 volts at 1.5 A for the frequency display is required. It is adviscable to use separate receiver and display supplies rather than a common transformer and rectifier feeding two voltage regulators in order to minimize the chances of coupling counter "hash" into the receiver via the +12 -volt supply line A front-pancl-mounted miniature toggle switch is used to apply $117-v$ ac to the remote supply tansformer primaries. Proper bypassing of all supply leads entering the cabinet will aid in rejection of extrancous signals. A loudspeaker may be installed in the same cabinet as the power supply for operating convenience.

The local oscillator enclosure is made from four pieces of double-sided circuit board material soldered together at the edges. The assembly measures approximatcly $2-1 / 4 \times 1-3 / 4 \times 4-1 / 8$ inches (HWD), and is bolted down to the main receiver board by four spade lugs. The main tuning capacitor, C2, is first attacled to one of the side walls of the compartment with the two specially threaded machinc screws provided with the capacitor. A $3 / 8$-inch diameter fole drilled in the front compartment wall provides adequate clearance for the capacitor shaft. 16 is mounted on the same wall as C2, centered in the enclosure and directly above the VFO printed-circuit board which is affixed by soldering its ground foil along three edges to the enclosure walls. A $10: 1$ reduction epicyclic drive. Jackson Brothers number 5857 (available from M. Swedgal, 258 Broadway, New York. NY 10007) is used to turn the main-tuning capacitor shaft. This drive unit requires $1-1 / 8$-inch clearance behind the front panel. A one-piece nickel-plated brass coupling is used between the drive and the capacitar shaft. Four 2 -inch long No. 6 machine screws are used to support the large receiver board, which must be installed at the height that permits precise alignment between these shafts.

The main receiver board and the agc/audio preamp boards are fabricated from double-sided copper clad material. All of the other receiver boards usc single-sided stock. The agc/audio preamp board and the MFJ audio board (available from MFI Enterprises, P.O. Box 494, Mississippi State, MS 39762) are nounted with No. 6 hardware and half-inch spacers on one of the aluminum enclosure walls. The input bandpass filter, FL1, is enclosed in an alumimum Minibox measuring 1-1/8 $\times 2-1 / 8 \times 3-1 / 4$-inches HWD (Bud CU-2117A) which is mounted to the opposite enclosure wall. All interconnections between boards are made with RG-174 miniature coaxial cable. Spade lugs
support the converter boards from the rear wall of the receiver compartment.

The only adjustment that should be necessary with the frequency display is the setting of the time base crystal oscillator frequency to 1 MHz . A clip lead from the antenna input jack of a general-coverage receiver loosely coupled to the oscillator will pick up enough harmonic energy to sllow for precise zero beating of the oscillator frequency to WWV at 10 MHz . A nonmetallic alignment tool should be used to turn the shaft of C23, which should provide a wide enough incremental frequency adjustment.

The 160 -meter tunable i-f should be adjusted before the converters are checked out. After verifying with an oscilloscope or a gencral-coverage ecciver that the VFO is indeed oscillating, the VFO tuning range may be set properly with the aid of the frequency display (set to external count). With the plates of C2 fully meshed, the core of L 6 should be moved in or out until the frequency display reads approximately 2240 kHz . Then note he displayed frequency with C2 rotated to minimum capacitance, which should be close to 2770 kHz . If the upper frequency obtained departs significantly from the above reading, the slug of 16 should be moved to a point that provides approximately equal amounts of overlap on either side of the desired $2255-2755 \mathrm{kH}$. range.

The BFO should be cliecked for proper nperation. At this point, the display may be connected in the recciver count mode. If all is well it will indicaic a received frequency between 1800 and 2300 kHz . With a signal generstor set to $\$ 800$ kHz connected to the input of FL1 and the plates of Cl fully meshed, a beat note should be heard in the speaker or headphones as the recciver is tuned to the signal generator frequency. L2 and L3 may now be adjusted to peak the signal on the S-meter or in the loudspeaker. If these coils are not carefully tuned the two filter sections will not track well, resulting in an undesirable broad responsc or perhaps even a double peak. Now, tune T1, T2, and T3 for maximum signal output. Spot checks across the 1800 to 2300 kHz range can be made to assure that the input bandpass filter is optimized and is tunable across the entire frequency spread. Check lo see that the mode switch selects both the proper crystals in the BFO and the correct iff filter. All that remains to be adjusted now is the S-meter control, R5. With the age on, but with the i-f gain (R2) set at minimum sensitivity, adjust RS to give fultscale deflection of M1. This procedure will complete the tunc-up of the main portion of the receiver.

Checkout of the converters is similarly easy. The trimmers should be adjusted for peak response at the center of each frequency band of interest. A signal generator is useful for this procedure, although on-the-air signals, preferably weak ones, will suffice.

Alignment of the receiver is complete at this point. The frequency display should be operative and accurate on cach band.

Chapter 9

VHF and UHF Receiving Techniques

Adequate receiving capability is essential in vhif and uhf communication, whether the station is a transceiver or a combination of separate transmitting and receiving units, and regardless of the modulation system used. Transccivers and fm receivers are treated scparately in this Handbook, but their performance involves basic principles that apply to all receivers for frequencies above 30 MHz . Important attributes are good signal-to-noise ratio (low noise figure), adequate gain, stability, and freedom from ovcrloading and other spurious responses.

Except where a transceiver is used, the vhf station often has a communications receiver for lower bands, with a crystal-controlled converter for the vlff band in question ahead of it. The receiver scrves as a tunable i-f system, complete with detector, noise limiter, BFO and audio amplifier. Unless one enjoys work with communications receivers, there may be little point in building this part of the station. Thus our concern here will be mainly with converter design and construction.

Choice of a suitable communications recciver for use with converters should not be made lightly, however. Several degrees of selectivity are desirable: 500 Hz or less for $\mathrm{cw}, 2$ to 3 kHz for ssb, 4 to 8 kHz for $\mathrm{a}-\mathrm{m}$ phone and 12 to 36 kHz for fm phone are useful. The special requirements of im phone are discussed in Chapter 14. Good mechanical design and frequency stability are important. Image rejection should be high in the range tuned for the converter output. This may rule out 28 MHz with receivers of the singleconversion type having $455-\mathrm{kHz}$ i-f systems.

Broad-band receiving gear of the surplus variety is a poor investment at any price, unless one is interested only in local work. The superregencrative receiver, though simple to build and economical to use, is inherently lacking in selectivity. With this general information in mind, this section will cover vhf and uhf receiver "front ends" stage by stage.

RF AMPLIFIERS

Signal-to-Noise Ratio: Noise of one kind or another limits the ability of any receiving system to provide readable signals, in the absence of other kinds of interference. The noise problem varics greatly with frequency of reception. In the hf range man-made, galactic and atmospheric noise picked up by the antenna and amplified by all stages of the receiver excceds noise generated in the receiver itself. Thus the noise figure of the receiver is not of major importance in weak-signal reception, up to at least 30 MHz .

At 50 MHz , external noise still overrides receiver noise in any well-designed system, even in a supposedly "quiet" location. The ratio of external to internal noise then drops rapidly with increasing signal frequency. Above 100 MHz or so external noise other than man-made is seldom a problem in weak-signal reception. Noise characteristics of transistors and tubes thus become very important in receivers for 144 MHz and higher bands, and circuit design and adjustment are more critical than on lower frequencies.

The noise figure of receivers using if amplifiers is determined mainly by the first stage, so solving the internal-noise problem is fairly simple. Subsequent stages can be designed for selectivity, freedom from overloading, and rejection of spurious signals, when a good rf amplifier is used.

Gain: It might seem that the more gain an rf amplifier has, the better the reception, but this is
not necessarily true. The primary function of an rf amplifier in a vhf receiver is to establish the noise figure of the system; that is, to override noise generated in later stages. One good rf stage is usually enough, and two is the usual maximum requirement.

Once the system noise figure is established, any further gain required may be more readily obtained in the intermediate frequency stages, or even in the audio amplifier. Using the minimum rf gain needed to set the overall noisc figure of the receiver is helpful in avoiding overloading and spurious responses in later circuits. For more on rf gain requirements, sec the following section on mixers.

Stability: Neutralization or unilaterialization (see chapter on semiconductors) may be required in rf amplifiers, except where the grounded-gate circuit or its tube equivalent is used. Amplifier neutralization is accomplished by feeding the energy from the output circuit back into the input. in such amount and phase as to cancel out the effects of device capacitance and other unwanted input-output coupling that might cause oscillation or other regenerative effects. Inductive neutralization is shown in Fig. 9-1B and C. Capacitive arrangements arc also usable. Examples of both will be seen later in this chapter.

An rf amplifier may not actually oscillate if operated without neutralization, but noise figure and bandwidth of the amplifier may be better with

Fig. 9-1 - Typical grounded-source if amplifiers. The dual-gate MOSFET, A, is useful below 500 MHz . The junction FET,B, and neutralized MOSFET.C, work well on all vhi bands. Except where given, component values depend on frequency.
it. Any neutralization adjustment reacts on the tuncd circuits of the stage, so the process is a repetitive cut-and-try one. The objective should be greatest margin of signal over noise, rather than maximum gain without oscillation. A noise generator is a great aid in neutralization, but a weak signal can be used if the job is done with carc.
Overloading and Spurious Signals: Except when some bipolar transistors are used, the If amplifier is not normally a major contributor to overloading problems in whf receivers, though excessive of gain can cause the mixer to overload more readily. Overloading is usually a matter of mixer design, with either transistors or tubes. Images and other spurious responses to out-of-band signals can be kept down by the use of double-tuned circuits between the rf and mixer stages, and in the if amplifior input circuit. In extreme cases, such as operation near 10 fm or TV stations, coaxial or other high- Q input circuits are helpful in rejecting unwanted frequencies.

Using RF Preamplifiess

It is important to design the front-end stages of a vhf receiver for optimum performance, but we often want to improve reception with equipment already built. Thousands of fm receivers fomerly in commercial service, now revamped for amateur work in the $50-144$ - and $420-\mathrm{MHz}$ bands, were built before modern low-noise tubes and transistors were available. Though otherwise useful, these receivers have excessively-high noise figure. Many other commercial and home-built viff converters and receivers arc also not as sensitive as they might be.

Though it would be better to replace the if stages of such equipment with more modern devices, the simpler approach is usually to add an outboard if amplificr using a low-noise tube or transistor. In the fm example, the quicting level of some receivers can be improved by as much as 10 dB by addition of a simple transistor amplifier. Similar improvement in noise figure of some reccivers for other modes is also possible; particularly band-switching communications receivers that have vhf coverage.

Common circuits for if preamplifier service are shown in Figs. 9-1, 2 and 3. Examples of amplifier construction are given later in this chapter. Circuits shown in the vhf converters described can also be adapted to preamplifice service.

Circuit discussion is cumbersome if we use strictly-correct terms for all tube and transistor amplifiers, so tube terminology will be used here for simplification. The reader is asked to remember

Amplifier Circuitry

Fig. 9-2 - Grounded-gate FET preamplifier tends to have lower gain and broader frequency response than other amplifiers described.

Fig. 9-3 - (A) Cascode amplifier circuir combines grounded-source and grounded-gate stages, for high gain and low noise figure. Though JFETs ase shown, the cascode principle is usable with MOSFETs as well. IB and Cl Examples of uhf preamplifier construction using bipolar transistors.
that "gate" may also imply "base" for bipolar transistors, or "grid" for tubes. "Source" should be read as "emitter" for the bipolar, and as "cathode" for the FET.

Amplifiers may be the grounded-source type, 17ig. 9-1; grounded-gate, 9-2; or a combination of both, 9-3. The dual-gate MOSFET circuit, 9-1A, works well up to 300 MHz , but JFET and bipolar devices are superior for 420 MHz and higher. The gain and noise figure of a dual-gate MOSFET are adequate at 300 MHz , and it is simple and readily adapted to automatic gain control.

Triode tubes and FET transistors usually re quire neutralization for optimum noise ligure with the grounded-cathode circuit. Inductive neutralization is shown in Fig. 9-18, and the capacitive method shown at C works equally well. Examples will be seen later in this chapter. The $58-\mathrm{MHz}$ trap circuit in Fig. 9-1A is discussed in the following section on mixers.

An alternative to neurralization lies in use of the grounded-gate circuit, Fige 9-2. Its stage gain is lower and its bandwidth generally greater than with the grounded-athode circuit. The input impedance is low, and the input circuit is tapped to provide a proper impedance match. A broad-band amplifier may be made with a low-impedance line connected directly to the input element, if selectivity is not required at this point for other reasons. Tubes designed for grounded-grid service include the $417 \mathrm{~A} / 5842,416 \mathrm{~B}, 7768$ and the various "lighthouse" types, though almost any
triode or iriode-conncted tetrode can be used. JFETs work well in grounded-gate circuits. In the grounded-grid amplifier, the tube heater becomes effectively a part of the tuned circuit, so sume form of high-current rf choke is required. Ferritebead chokes work well.

The cascode circuit, Fig. 9-3, combined grounded-source and grounded-gate stages. securing some of the advantages of both. Fig. 9-3B shows a grounded-base bipolar transistor amplifer. The value of R1 should be chosen experimentally to achieve best sensitivity.

Front-End Protection

The first amplifier of a receiver is susceptible to damage or complete burnout through application of excessive voltage to its input element by way of the antenna. This can be the result of lighening discharges (not necessarily in the immediate vicinity), of leakage from the station transmitter through a faulty send-seceive relay or switch, or if power from a neasby transmitter and antenna system. Bipolar transistors often used in low-noise uhf amplifiers are particularly sensitive to this trouble. The degradation may be gradual, going unnoticed until the receiving sensitivity has become very poor.

No equipment is likely to survive a direct hit from lightning, but casual damage can be prevented by connecting diodes back-to-back across the inpu1 circuit. Either germanium or silicon vhf diodes can
be used. Both have thresholds of conduction well above any normal signal level, about 0.2 volt for germanium and 0.6 volt for silicon. The diodes used should have fast switching times. Computer
diodes such as the $1 \mathbf{N} 914$ and hot-carrier types are suitable. A check on weak-signal reception should be made before and after connection of the diodes.

RF SELECTIVITY

The weakest point in any vhf or uhf receiver is the front-end circuit. Solid-state devices with high sensitivity, wide dynamic range and freedom from overioad are now available. Thus, the quality of a front-end circuit is usually determined by how the active devices are used and the degree of rf selectivity included. High selectivity at vhf and uhf is not easy to achieve. Many lumped-constant tuned circuits are needed for even a moderate degree of selectivity at the signal frequency. Several tuned circuits before the first active stage (rf amplifier or mixer) will have sufficient loss to limit the sensitivity of the receiver. If lumpedconstant circuits are employed, if amplifiers can be interspaced between the $L C$ elements to make up losses. High gain is not needed or desirable, so FETs operated grounded-gate are preferred.

For improved rf selectivity a helical resonator, a device which consists of a shield and a coil may be employed. One end of the coil is attached to the shield, as shown in Fig. 9-4, and the other end is open-circulted, except for a funing capacitor. Helical resonators are eiectrically equivalent to a

Fig. 94 - Outline sketch of resonator.

Fig. 9-5 - Design chart for quarter-wave helical resonators.

Fig. 9-6 - Schematic diagram of the Johnson 504 front-end circuit.
quarter-wave transmission-line resonator but are physically much smallter. Resonators can be built exhibiting Q of 1000 or more at vhf and uhi. Because the Q is so high, front-end circuits can be designed using helical resonators which provide a high degree of selectivity without high losses, at least a low and moderate power levels.

The inductance element in a helical resonator should be made as large as possible and capacitance kept to a minimum for best performance. Probe. tap or aperture coupling may be employed. The basic form of a helical resonator is shown in Fig. 9-4. A low-loss air-insulated trimmer or disk plunger may be used to tune the resonator. The capacitor must be much higher Q than the resona tor to be useable. The usual precautions for fabricating high-Q coils must be observed when building a helical resonator. A protective silver plating is recommended for the coil and shield for units to be used above 100 MHz . The shield should be seamless and all joints should be effectively soldered to keep resistance to a minimum. The coil and shield should be made using heavy stock to assure mechanical stability.

Fig. 9-5 can be used to obtain approximate design information accurate to plus or minus ten percent. Complete design equations for helical resonators are beyond the scope of this text, but they may be found in Macapline and Schildknecht, "Coaxial Resonators with Helical Inner Conductor," Proceeding of the IRE, December. 1959.

Fig. 9-7 - Close-up view of the helical resonators with the covers removed. The rf amplifier stage is constructed on the outside wall of the upper-righthand resonator. Details are given in the text.

An application of helical resonators in a $146-\mathrm{MHz}$ frontend circuit is shown in Figs. 9-6 and 9-7. This circuit is used in the Johnson 504 transceiver. The helical resonators consist of 5-3/4 turns of No. 12 wire contained in a rectangular 1 $\times 1 \times 2$-inch cavity. Both the coil and enclosure are silver plated. The coil is $5 / 8$ inch inside diameter and $5 / 8$ inch long, tuned with a $7-\mathrm{pr}$ miniature air-variable capacitor. The 50 -ohm input tap is at $1 / 4$ tum from the ground end of the coil, an indication of the high impedance achieved. Coupling between individual resonators is through a $1 / 2 \times 1 / 4$-inch aperture. or "window." Layout details can be seen in l-ig. 9-7.

MIXERS

Conversion of the received encrgy to a lower frequency, so that it can be amplified more efficiently than would be possible at the signal frequency, is a basic principle of the superheterodyne receiver. The stage in which this is done may be called a "converter," or "frequency converter," but we will use the more common term, mixer, to avoid confusion with converter, as applied to a complete vhf receiving accessory. Mixers perform similar functions in both transmitting and receiving circuits, and mixer theory and practice are treated in considerable detail elsewhere in this Handbook.

A receiver for 50 MHz or higher usually has at least two such stages; one in the vhf or uhf converter, and usually two or more in the
communications receiver that follows it. We are concerned here with the first mixer.
Diode Mixer: There are many types of mixers, the simplest being merely a diode with the signal and energy on the helerodyning frequency fed into it, somewhat in the manner of the $1296-\mathrm{MHz}$ example, Fig. $9-8 \mathrm{~A}$. The mixer output includes both the sum and difference frequencies. Either can be used, but in this application it is the difference, since we are interested in going lower in frequency.

With a good uhf diode in a suitable circuit, a diode mixer can have a fairly low noise figure, and this is almost independent of trequency. well into the microwave region. The effectiveness of most
active mixers falls off rapidly above 400 MHz , so the diode mixer is almost standard practice in amateur microwave communicatioh. All diode mixers have some conversion loss. This must be added to the noise figure of the i-f amplifier following, to determine the overall system noise〔igure. Low-noise design in the first j - f stage is thus mandatory, for good weak-signal reception with a diode mixer having no rf amplifier preceding it. Purity of the heterodyning energy and the level of injection to the mixer are other factors in the performance of diode mixers.

Balanced mixers using hot-carrier diodes are capable of noise figures 1 to 2 dB lower than the best point-contact diodes. Hot-carrier diodes are normally quite uniform, so tedious selection of matched pairs (necessary with other types of diodes) is eliminated. They are also rugged, and superior in the matter of overloading.

The i-f impedance of a balanced hot-carrier diode mixer (Fig. 9-8B) is on the order of 90 ohms, when the oscillator injection is about one milliwatt. Thus the mixer and a transistorized i-f amplifier can be separated physically, and connected by means of 93 -ohm coax, without an output transformer.

Conversion loss, around 7 dB , must be added to the noise figure of the i-f system to determine the overall system noise figure. Unless a low-noise preamplifier is used ahead of it, a communications receiver may have a noise figure of about 10 dB , resulting in an overall noise figure of 17 dB or worse for a vhf system with any diode mixer. A good i-f preamplifier could bring the receiver noise figure down to 2 dB or even less, but the system noise figure would still be about 9 dB ; too high for good reception.

An amplifier at the signal frequency is thus seen to be required, regardless of mixer design, for optimum reception above 50 MHz . The rf gain, to override noise in the rest of the receiver, should be greater than the sum of noise figures of the mixer and the i-f system. Since the noise figure of the better rf amplifiers will be around 3 dB , the gain should be at least 20 dB for the first example in the previous paragraph, and 12 dB for the second.
Tube and Transistor Mixers: Any mixer is prone to overloading and spurious responses, so a prime design objective should be to minimize these problems. FET mixers have become standard practice at vhf. JFETs are slightly better than MOSFETs, although the junction types require

(D)

except as indicated, decunal values of CAPACITANCE ARE IN microfarads I hF I: OTMERS ARE IN PICOFARADS I DF Of y yff: resistances are in ohms;
$\mathrm{H}=1000$, M-1000 000.

Fig. 9-8 - Vhf and uhf mixer circuits. A diode mixer for 1296 MHz , with a coaxial circuit for the signal frequency, is shown in A. CR1 is a uhf diode, such as the 1 N21 series. A balanced mixer, as in B, gives improved rejection of the signal and injection frequencies. If hot-carrier diodes are used for CR2, sorting for matched characteristics is eliminated. Gate and source injection of a JFET mixer are shown at C and D, respectively.

Fig. 9-9 - A simple overtone crystal oscillator for vhf converters, (A) has Zener voltage regulation. An FET overtone oscillator and diode multiplier, (B) supply injection for a $144-\mathrm{MHz}$ converter with a $14-\mathrm{MHzi}-\mathrm{F}$. Series trap absorbs unwanted second harmonic at 86 MHz . A triode oscillator would use essentially the same circuit. A tunable oscillator, as shown at C, would be suitable for a simple $50 \cdot \mathrm{MHz}$ receiver with a broad i-f system.
more power from the injection source. When the local-oscillator frequency is far removed from the input frequency, the scheme of Fig. 9-8C can be used. The diagram at $9-8 \mathrm{D}$ is needed if the oscillator frequency is within 20 percent of the signal frequency.

The injection level from the oscillator affects mixer performance. Until it affects the mixer adversely in other ways, raising the injection level raises the mixer conversion gain. A simple check is made by observing the effect on signal-to-noise ratio as the injection is varied. At preferred injection levels, the gain will vary but the signat to-noise ratio will not change. The injection should then be set for conversion gain a few decibels above that at which lower injection causes a drop in signal-to-noise ratio.

Double-tuned circuits in the mixer and the if amplifier, as shown in several of the schematic diagrams in this chapter, help to keep down mixer response to signals outside the intended tuning range.

The insulated-gate FET is superior to othes transistors for mixes service in the matter of overloading. An example is given in Fig. 9-8E. Ar: objection to the MOSFET, the ease with which it can be damaged in handling, has been taken care of by building-in protective diodes in devices such as the MPF122, 40673, and 3N187. Units so designed require no special care in handling, and they work as well as their more fragile prodeccessors. Insulated-gate MOSFETs have resistance to over-
loading which, while superior to most tubes, is not as good as the best JFETs.

Pentode or tetrode tubes make simple and effective mixers, up to 150 MHz or so. Triodes work well at any frequency, and are preferred in the high vhf range. Diode mixers are common in the $420-\mathrm{MHz}$ band and higher.

INJECTION STAGES

Oscillator and multiplier stages that supply heterodyning energy to the mixer should be as stable and free of unwanted frequencies as possible. Stability is no great problem in crystal-controlled converters, if the oscillator is run at low input and its supply voltage is regulated. Simple Zener regulation, as in Fig. 9-9A, is adequate for a transistorized overtone oscillator. A higher order of regulation is needed for tunable oscillators. See Chapter 5 for suitable regulated power supplies.

Unwanted frequencies generated in the injection stages can beat with signals that are outside the intended tuning range. In a typical example, Fig. 9-9B, an FET overtone oscillator on 43.333 MH 2 feeds a diode tripler to 130 MHz . This frequency beats with signals between 144 and 148 MHz , to give desired responses at 14 to 18 MHz . The multiplier stage also has some output at twice the crystal frequency, 86.666 MHz . If allowed to reach the mixcr, this can beat with fm broadcast signals in the $100-\mathrm{MHz}$ region that leak through the If circuits of the converter. There are many such
annoying possibilities, as any vhf enthusiast living near high-powered fm and TV stations has found out.

Spurious frequencies can be kepl down by using the highest practical oscillator frequency, no multiplier in a $50-\mathrm{MHz}$ converter, and as few as possible for higher bands. Some unwanted harmonics are unavoidable, so circuit precautions are often needed to prevent both these harmonics and the unwanted signals from reaching the mixer. Selective coaxial or helical-resonator circuits are practical aids in uhf receivers Trap circuits of various kinds may be needed to "suck out" energy on troublesome frequencies.

The scries trap in Fig. 9-5B reduces the level of the $86-\mathrm{MHz}$ second harmonic of the crystal frequency. A $58-\mathrm{MHz}$ parallel-tuned trap. Fig. 9-I A. prevents the entry of Channel 2 TV signals that could otherwise beat with the second harmonic of a $36-\mathrm{MHz}$ oscillator in a $50-\mathrm{MHz}$ converter that works into a $14-\mathrm{MHz}$ i-f $(36 \times 2$ $14=58$).

Unwanted frequencies also increase the noise output of the mixer. This degrades performance in a receiver having no rf amplifier, and makes the job of an amplifier, if used, more difficult.

Frequency multipliers in vhf receivers generally follow transmitting practice, except for their low power level. The simple diode multiplier of Fig. 9-9B will often suffice. Its parallel-tuned $130-\mathrm{MHz}$ circuit emphasizes the desired third harmonic, while the series circuit suppresses the unwanted second hamonic. The trap is tuned by listening to a spurious fin broadcast signal and tuning the scrics capacitor for minimum interference. The tripler circuit should be peaked for maximum response to a 2 -meter signal. Do not detune this circuit to lower injection level. This should be controlled by the voltage on the oscillator, the coupling between the oscillator and multiplier, or by the coupling to the mixer from the $130-\mathrm{MHz}$ circuit.

Tunable Oscillators

Any tunable vhf receiver must employ a variable oscillator. At this point the intermediate frequency is fixed, and the oscillator tunes a range higher or lower than the signal frequency by the amount of the $\mathrm{i}-\mathrm{f}$. In the interest of stability, it is usually
lower. In Fig. 9-9C a simple JFET oscillator tunes 36 to 40 MHz , for reception of the $50-\mathrm{MHz}$ band with a fixed $14-\mathrm{MHz}$ i-f. Its stability should be adequate for $\mathrm{a}-\mathrm{m}$ of fm reception with a relatively broad i-f, but it is unlikely to meet the requirements for ssb or cw reception, even for 50 MHz , and certainly not for higher bands.

Practically all vhi reception with high selectivity uses double-conversion schemes, with the tunable oscillator serving the second conversion. Such hf oscillators are treated in Chapter 6. They should run at the lowest practical input level, to minimize drift caused by heating. The supply should be well-regulated pure dc. Mechanically. rugged components and construction are mandatory. The circuits should be shielded from the rest of the receiver, and coupling to the mixer should be as light as practical. Drift cycling due to heating can be minimized if the oscillator is kept running continuously.

THE SUPERREGENERATIVE RECEIVER

Though the newcomer may not be too familiar with the superregenerative detector, the simple "rushbox" was widely used in carly vhf work. Nothing of comparable simplicity has been found to equal its weak-signal reception, inherent noiselimiting and agc action, and freedom from ovenloading and spurious responses. But like all simple devices the superregenerator has limitations. It has little selectivity. It makes a ligh and unpleasant hissing noisc, and it radiates a broad interfering signal around its recciving frequency.

Adding an rf amplifier will improve selectivity and reduce detector radiation. High $-Q$ tuned circuits aid selectivity and improve stability. Use of superregeneration at 14 to 18,26 to 30 MHz , or some similar hf range, in the tunable element of a simple superhetcrodyne receiver, works fairly well as a simple tuner for whf converters. None of these steps corrects the basic weaknesses entirely, so the superregenerator is used today mainly where simplicity, low cost and battery economy are majur considerations. Cw and narrow-band fm signals cannot be received using a superregenerative receiver.

(B)

Fig. 9-10 - Circuits of typical superregenerative detectors using a fiedd-effect transistor, A, and a tetrode tube, B. Regeneration is controlled by varying the drain voltage on the detector in the transistor circuit. and the screen voltage in the tetrode or pentode. Values of L1 and C1 should be adjusted far the frequency involved, as should the size of the if choke, RFC1.
C 2 . $\mathrm{C} 3-.001-\mu \mathrm{F}$ disk ceramic. Try different L 2 - Small audio or filter choke; not critical. values up to . 005 for desired audio quality. R1 - 2 to 10 megohms.
*. Typical superregenerative detector circuits are shown in Fig. 9-10. High-transconductance FETe and high-beta vhf transistors are favored. The power source should be well-filtered and of low
impedance. Fresh or well-charged batteries are ideal. Regeneration is controlled by varying the gain of the stage.

SERIES-RESONANT BYPASSING

Inexpensive disk-ceramic and "dog-bone" types of capacitors are relatively ineffective for bypassing above approximately 100 MHz . This is because of their considerable lead inductance, even when they are connected as close to the elements to be bypassed as possible. Actually this lead inductance can be used to advantage by selecting lead lengths that make the capacitor series-resonant at the frequency to be bypassed.

This approach is recommended by WA2KYF, who supplied the information in Table 9-I, showing capacitor and lead-length combinations for effective bypassing of $\overline{\text { f }}$ energy at frequencies commonly encountered in vhf work. The values are not particularly critical, as a series-resonant circuit is broad by nature. The impedance of a serics-resonant bypass is very close to zero ohms at the frequency of resonance, and it will be lower than most conventional capacitors for a considerable range of frequency either side of resonance.

A high-capacitance short-lead combination is preferable to a lower value with longer leads, because the former will be less likely to allow unwanted coupling to other circuits. For example,

TABLE 9-I			
Values of capacitance in pF required for reso-			
nance of frequencies commonly encountered in			
amateur-band vhf work, for leads of $1 / 4,1 / 2$ and			
I inch in length.			
Frequency	1/4-Inch	1/2-Inch	1-Inch
MHz	Leads	Leads	Leads
$48-50$	800	400	200
72	390	180	91
96	220	100	56
144	100	47	25
220	39	20	10

a 100 pF capacitor with $1 / 4$-inch leads is a better bet than a $25-\mathrm{pF}$ with 1 -inch leads, for bypassing at 144 MHz . The series-resonant bypass is worth a try in any circuit where instability is troublesome, and conventional bypassing has been shown to be ineffective.

MOSFET PREAMPLIFIERS FOR 10, 6, AND 2 METERS

Where an hf or vhf receiver lacks gain, or has a poor noise figure, an external preamplifier can improve its ability to detect weak signals. This preamplifier uses an RCA 40673 dual-gate MOSFET. Designs for using this device as a mixer or as a preamplifier abound and many of them are excellent.

When it comes to simplicity, small size, good performance, low cost, and flexibility, a design by Gerald C. Jenkins, W4CAH, certainly qualifies.

Where the preamplifier really shines is in pepping up the performance of some of the older

ten-meter receivers that many have pressed into service. A six-meter version is also very useful for any of the modes of communication available on that band.

The voltage dropping resistor, R4, and the Zencr diode, VRI, may be of the value necessary to obtain 9 to 12 V dc for operation of the unit. By increasing the resistance and dissipation rating of R4 and VR1, the preamplifier may be operated from the 150 - to $200-\mathrm{V}$ supply found in many qube-type receivers.

The layout of the board is so simple that it is hardly worth the effort of making a negative for the photo-etch process. A Kepro resist-marking pen was used with success on several boards. Another approach - and one that is highly recommended -

[^16]Fig. 1 - Schematic diagram for the preamplifier. Part designations not listed below are for pc board placement purposes. Alternative input circuit for use with microwave diode mixer is shown at B . C1, CA - See Table I.
C2, C3, C5, C6, C7, C9 - Disk ceramic.
C8 - . 001 feedthrough capacitor.
J1, J2 - Coaxial connectors. Phono-type, BNC or SO-239 acceptable.
LY, L2 - See Table I.
R4 - 3 turns No. 28 enam. on ferrite bead. A 220-ohm, $1 / 2$-watt resistor may be substituted.
RFC2 - $33 \mu \mathrm{H}$, iron-care inductor. Millen J300-33 or J. W. Miller 70F335A1.

is to cover the copper with masking tape, transfer the pattern with carbon paper, then cut away the tape to expose the part to be etched. On small, simple boards the masking-tape method is hard to beat.

The pc board may be mounted in almost any small enclosure. Construction is not tricky or difficult. It should take only a few minutes to complete the unit after the board is prepared. The board is fastened in the enclosure by means of one metal standoff post and a No. 4 screw and nut. Input and output connectors are not critical; phono-type jacks may be used in the interest of low cost.

Adjustment is so easy that it almost needs no description. After connecting the amplifier to a receiver, simply tune the input (C1) and the output (C4) for maximum indication on a weak signal. One possible area of concern might be that the toroids used in the ten- and six-meter versions are not always uniform in permeability, as purchased from various suppliers. However, it is an easy matter to add capacitance or remove a turn as required to make the circuits resonate at the correct frequency.

Fig. 2 - Full-scale layout and parts placement guide for the pc board. Foil side shawn.

Table I

28 MHz

L1 17 turns No. 28 enam. on Amidon T-50-6 core. Tap at 6 turns from ground end
L2 Same as L1, without tap.
C1. 15 to 60 pF ceramic
C4, trimmer. Erie 538-002F.

50 MHz

12 turns No. 26 enam. on Amidon T-37-10 core. Tap at 5 turns from ground end.
Same as L1, without tap.
1.8- to 16.7 -pF air variable. E. F. Johnson 189-506-005.

144 MHz

5 turns No. 20 tinned 1/2-inch ID $\times 1 / 2$-inch long. Tap at turns from ground end. 4 turns No. 20 tinned like L1, withous tap.
1.5- to $11.6-\mathrm{pF}$ air variable. E. F. Johnson 189-504-005.

Fig. 1 - Completed six- and two-meter converters (laft and center) with power supply.

CONVERTERS FOR 50 AND 144 MHz

The converters described here are designed by the Rochester VHF Group and details are presented by W2DUC and K2YCO.

Because of the nature of the project, a universal circuit-board design is used. One circuit board serves for either band, with only slight modification. Other specific design goals were:

1) Low noise figure, less than 3 dB .
2) State-of-the-art freedom from cross modulation.
3) Sufficient gain to override the front-end noise of most receivers.
4) Double-tuned bandpass interstage and output circuizs to achieve a flat response over a two-MHz portion of either band.
5) Filtering of the local oscillator chain in the two-meter model to reduce spurious responses.
6) Small size and low power consumption.
7) Freedom from accidental mistuning during the life of the converter.

Fig. 2 - Schematic diagram of the six-meter converter. All resistors are $1 / 4$-watt composition. C2, C8, C10 and C15 are . $001 \mu \mathrm{~F}$ disk ceramic. C4 is $.01-\mu \mathrm{F}$ disk ceramic. All other capacitors are dipped mice.
L1-L6, incl. - All No. 28 enem. wire wound on
Amidon T-30-6 cores as follows: L1, 14 turns
tapped at 4 turns and 6 turns; L2, 13 turns; L3, 12 turns; L4, 18 turns; L5, 18 turns tapped at 4 turns from cold end; L6, 26 turns tapped at 6 turns from hot end.
Y1 - 22-MHz erystals. International Crysial Mfg. Co. type EX.

Fig. 3 - Schematic diagram of the two-meter converter. All resistors are $1 / 4$ watt composition. C8, C10, C15 and C18 are . $001-\mu \mathrm{F}$ disk ceramic. All other capacitors are dipped mica units.
L1, L2, L3, L7. L8 - All No. 20 enam. wire formed by using the threads of a $1 / 4-20$ bolt as a guide. L1, 5 turns tapped at $1-3 / 4$ turns and $3 / 4$ turn from cold end; L2, 5 turns; L3, 4 turns: L7, and L8, 5 turns tapped at 2 turns from hot end.

Other points considered were such things as freedom from the necessity of neutralization and the use of moderately priced transistors.

Several breadboard models were constructed and tested as the design evolved. Fig. 1 shows two completed converters and a power supply.

Circuit Design

A schematic diagram for the six-meter converter is shown in Fig. 2, and for the iwo-meter model in Fig. 3. The configuration of the if and mixer portions of the circuit are virtually identical for six and two meters, with the values of the frequency-determining components being scaled appropriately. The major difference between the two converters is a change in the local oscillator chain. A minor change in the method of interstage coupling was necessary to prevent straycapacitance effects from making the aligament critical on the six-meter converter.

All inductors in the six-meter model and the two-meter output circuit are wound on Araidon T-30-6 toroid cores. The tuned circuits are aligned by spreading ox compressing the turns around the

L4 - 18 turns No. 28 enam. wound on Amidon T-30-6 core.
L5 - 18 turns like L4, tapped at 4 turns from cold end.
L6 - $0.68 \mu \mathrm{H}$ miniature inductor. Delevan 1025 series or J. W. Miller 9230-16.
Y1 - 38.666-MHz crystal. International Crystal Mfg. Co. type EX.
toroid core. After alignment the coils are glued in place with Silastic compound (sold as bathtub caulk).

The rf amplifier, Q1, is used in a grounded-gate configuration. The input circuit is tapped to provide a proper match between the antenna and source of the ГFET while maintaining a reasonable Q. The six-meter interstage coupling network consists of C3, C5, L2, and L3. Band-pass coupling is controlled by the capacitive T network of C3 and C5 in ratio with C6. A 40673 dual-gate MOSFET is used in the mixer circuit (Q2). Gate 1 receives the signal, while gate 2 has the local -oscillator injection voltage applied to it through C7. A slight amount of positive bias is applied to gate 2 through R2. A top-coupled configuration, using toroid inductors, serves as the $28-\mathrm{MHz}$ output circuit of both converters.

The oscillator circuit in the six-meter model is straightforward, relying on the drain-to-gate capacitance of the FET for feedback. A tap at four turns from the hot end of the toroid winding provides the injection to the mixer through capacitor C7. In the Iwo-meter converter, Fig. 3, the rf stage is identical to the six-meter version except for

Fig. 4 - Parts-placement guide for the six-meter converter, A, and the two-meter converter, B. View is from the foil side of the board. Dashed linfes show the location of shields that are soldered to short pieces of wire which project through holes in the pc board. The shields may be fabricated from sheet brass or copper, or scraps of copper-clad board material.
the tuning networks. L1, L2, and L3 are air wound, self-supporting, and are formed initially by winding wire around the threads of a $1 / 4-20$ bolt. The turns of Ll are spread to permit adding taps prior to mounting on the board. The degree of interstage coupling in the two-meter model is controlled by the positions of L2 and L3. Since they are mounted at right angles, the coupling is very light. By changing the angle between these two coils, the passiand may be optimized.

In the two-meter oscillator stage, Q3 is changed to an oscillator/tripler by replacing the source bias resistor with L6. Replace bypass capacitor, C13.

Fig. 5 - An i-f attenuator may be necessary if the receiver following the converter is exceptionally hot. Values for 6 dB: R1, R2 - 18 ohms; R3 - 68 ohms. For 10 dB : R1, R2 - 27 ohms; R3-39 ohms.
with a $30-\mathrm{pF}$ value to resonate L 6 near the crystal frequency. Source-to-gate capacitance provides the feedback in this case. The drain tank is modified to provide output at the third harmonic, thus eliminating the nced for a separate tripler stage. Q4 is used as an isolation amplifier running at very low current level (as controlled by R9) to provide attenuation of the adjacent harmonics. This stage is not needed for amplification of the oscillator signal but without the additional filtering, severe "birdies" may result from nearby fm or TV stations. In both the six- and two-meter versions, a number of printed-circuit pads will be left over when construction is completed. These are the result of providing both bands on a common pe layout. For example, the isolation amplifier following the oscillator is not used on six meters. Therefore, this stage is bypassed by a jumper wire from L6 to C7. Five additional holes are located in the ground arca along the centerline of the board and between of and mixer siages. Component lead clippings are soldered into these holes to provide a mounting for the shield partitions, which are soldered to the wires where they extend through the board. Fig. 4 shows the parts layout for the sixand iwo-meter converters. Notice that one lead of

Fig. 6 - Scale-size layout for the pe board. The same pattern is used for either band. Foil side shown here.

Table I - PerPormance Specifications

Parameter
Noise figure, dB
Conversion gain, dB
Spurious responses, dB

Freq. response,
$\pm 1 \mathrm{~dB}$
Current at 12 V dc

6 Meters

$1.8-2.3$
22-28
-80

- Has a response
at 6 MHz
$49.8-51.5 \mathrm{MHz}$
12-18mA

2 Meters
2.0-2.4
$17-24$
-60°

- Responses at

107 \& 181 MHz
$143.9-146.4 \mathrm{MHz}$
$14 \sim 20 \mathrm{~mA}$

Fig. 7 - Schematic diagram and parts-placement guide for the power supply to the converters. The transformer is mounted external to the board. Pc board size is identical to the one used for the converters.

C3 must reach past the ground hole and connect to the foil. R3 is not used on the six-meter converter.

Abstract

\section*{Alignment and Test}

Perhaps the most difficult task in the project was the test and tune-up of the finished converter. A single test setup using a sweep generator, diode probe, and oscilloscope was a necessity to assure the flat response over the tuning range. Commercial aftenuators were used to calibrate each converter by the substitution method.

Tuning of the air-wound rf circuit for two meters was accomplished by spreading or compressing the turns of the coils. After alignment, the windings were secured by a bead of Silastic compound along the oil to hold the turns in place. The noise figure of each converter was checked using the Monode noise-generator technique. ${ }^{1}$ A final sensitivity check using a receiver (NC300) and a model 80 calibrated signal generator completed the checkout. ${ }^{1}$ Guentzler, "The Monode Noise Generator," QST, April 1967.

The transistors used in the rf stage were also subject to some variation in noise figure. When this occurred, an If FET was carefully traded with an oscillator FET, since performance of the FET as an oscillator was always satisfactory.

The performance specification range for the converters is seen in Table I.

Small ceramic trimmers can be used in place of the fixed-value mica capacitors in the tuned circuits of these converters. The midrange of the trimmer should be approximately the value of the mica capacitors replaced. This procedure may simplify the tuning process of the converters where a sweep generator setup is not available. A little careful tweaking should give a reasonably flat response.

If trimmers are used, the if input circuit should be tuned to the center of the desired response, 50.5 MHz as an example. This circuit tunes broadly and is not 100 critical. The rf interstage circuits should be stagger tuned, one al 50.0 MHz and the other at 51.0 MHz , as an example, the output $\mathrm{i}-\mathrm{f}$ circuits can be tuned in a manner similar to the interstage circuits.

DOUBLE BALANCED MIXER

Advances in technology have, in recent years, provided the amatcur builder with many new choices of hardware to use in the building of receivers, converters, or preamplifiers. The broadband double-balanced mixer package is a fine example of this type of progress, and as amateurs gain an understanding of the capabilities of this device, they are incorporating this type of mixer in meny pieces of equipment, especially receiving mixers. The combined mixer/amplifier described here was presented originally in QST for March, 1975, by KıAGB,

Mixer Comparisons

Is a DBM really better than other types? What does it offer, and what are its disadvantages? To answer these questions, a look at more conventional "active" (voltages applied) mixing tectniques and some of their problems is in order. The reader is referred to a recent article in QST ${ }^{3}$ dcaling with mixers. Briefly reiterated, common single-device active mixers with gain at whf and uhf are beset with problems of noise, descrssitization and small local-oscillator (LO) isolation from the off and if "ports." As mixers, most devices have noise figures in excess of those published for them as rf amplifiers and will not provide sufficient sensitivity for weak-signal work. To minimize noise, mixer-device current is gencrally maintained at a low level. This can reduce dynamic range, increasing overload potential, as defined in the terminology appendix. Gain contributions of rf amplifiers (used to establish a low system noise figure) further complicate the overload problem. LO-noise leakage to the rf and i-f ports adversely affects system performance. Mixer dynamic range can be limited by conversion of this noise to $\mathrm{j}-\mathrm{f}$,
placing a lower limit on mixer system sensitivity. Generally 20 dB of mixer midband, inter-port, isolation is required, and most passive DBM can offer greater than 40 dB .

A commercially inanufactured double-balanced diode mixer offers performance predictability, circuit simplicity and ficxibility. Closely matched Schottky-barrjer hot-carrier diodes, commonly used in most inexpensive mixers of this type, provide outstanding strong-signal mixer performance (up to about 0 dBm at the rf input port) and add little (0.5 dB or so) to the mixer noise figure. Essentially, diode conversion loss from rf to $i-f$, listed in Table I, sepresents most of the mixer

Fig. 1 - The I-f porf of a double-balanced mixer is maiched at $\Omega \mathrm{O}$ - frf and reactive at $\Omega \mathrm{O}+\mathrm{frf}$. In this configuration conversion loss, rf compression and desenstitization levels can vary $\pm 3 \mathrm{~dB}$ while harmonic modulation and third-order IMO products can vary $\pm 20 \mathrm{~dB}$.

Fig. 2 - A schematic diagram for the double-balanced mixer and i-f post amplifier. The i-f can be elther 14 or 28 MHz . Parts values are given in Table II.
contribution to system noise figure.' Midband isolation between the LO port and the rf and i-f ports of a DBM is typically $>35 \mathrm{~dB}$ - far greater than that achievable with conventional singledevice active-mixing schemes. This isolation is particularly advantiageuus in dealing with low-level local-oscillator harmonic and noisc content. Or course, selection of LO devices with low audio noise figures, and proper rf filtering in the LO output, will reduce problems from this source.

Often listed disadvantages of a diode DBM are (a) conversion loss, (b) LO power requirements. and (c) i-f-interface problems. The first two points are closely interrelated. Conversion loss necessitates some low-noise r-f amplification to establish a useful weak-signal system noise figure. Active mixers also have this requirement, as will be demonstrated later. Additional LO power is fairly casy to gencrate, filter, and measure. If we accept the fact that more LO power is necessary for the DBM than is used in conventional single-device active mixing circuits, we leave only two real obstacles to be overcome in the DBM, those of conversion loss and i-f output interfacing.

To minimize conversion loss in a DBM, the diodes are driven by the LO beyond their squarelaw region, producing an output spectrum which in general includes the terms:

- Fundamental frequencies fLO and frf
- All of their harmonics
- The desired i-f output, f LO $\pm f$ rf
\bullet All higher order products of $n f L O \pm m f r f$ where n and m are integers. ${ }^{\ddagger}$

The DBM, by virtue of its symmetry and

[^17]internal transformer balance, suppresses a large number of the harmonic modulation products. In the system described here, תLO is on the low side of frf; therefore, numerically, the desired i-f output is $\mathrm{frf}-\mathrm{fLO}$. Nonetheless, the term $\Omega \mathrm{O} \pm \mathrm{frf}$ appears at the i-f-output port equal in amplitude to the desired j-f signal, and this unused energy must be effectively terminated to obtain no more than the specified mixer-conversion loss. This is not the image frequency, flO - $f-f$, which will be discussed later.

In any mixer design, all rf port signal components must be bypassed effectively for best conversion efficiency (minimum loss). Energy not "converted" by mixing action will reduce conversion gain in active systems, and increase conversion loss in passive systems such as the diode DBM. Rf bypassing also prevents spurious resonances and other undesired phenomena from affecting mixer performance. In this system, if bypassing at the i-f-output port will be provided by the input capacitance of the i-f interface. The DBM is not a panacea for mixing ills, and its effectiveness can be reduced drastically if all ports are not properly terminated.

DBM Port Terminations

Most DBM-performance inconsistencies occur because system source and load impedances presented to the mixer are not matched at all frequencies encountered in normal operation. The terminations (attenuator pads) used in conjunction with test equipment by manufacturers to measure published performance characteristics are indeed "broadband" matched. Reactive mixer terminations can cause system problems, and multiple reactive terminations can usually compound these problems to the point where performance is very

Mornujecturep:	TABLE					MCL
	Retcom	Antar	mfl	MCL	NCI	
Madel	M6F*	MD-108	SRA-1	SRA-3H	RAY-1	MA.1***
Frequency iange. 10	2.500	S-500	. 5500	. 3500	S-500	$1-2500$
MHz (f)	2.500	S500	. 5 -500	\$.300	3-500	1-2500
	DC. 500	DC. $\mathbf{5 0 0}$	DC-500	DC. 300	DC-S00	1-1000
Comversion lose	98 CB Max.	7.5 dB Maz	6.5 dB Typ.	6.5 d8 Typ.	7.5 dB Typ.	B.04B Typ.
Mld-range						1.2 .5 GHz
Isolation, $\mathbf{L O - R F}$	15.40 dB Min.	40 dB Min.	45 dB Typ.	43 dB Typ.	40 dB Typ.	40 dB Tyo.
midrange LO->p	25-35 dB Min.	35 dB Min.	40 dB Typ.	40 d8 Ty.	40 dB Typ	40 AB Typ.
Total input poeas	50 mW	400 mW	500 mw	500 mw	d $\mathbf{}$ \%	50 mm
LO powes requitoment	$\bullet 9 \mathrm{dBm}(5 \mathrm{mw})$	- 788 m (5 mm)	-7 48m(5 mw	+17 4Bra (50 sow)	- 23 dBm 1200 mm	-10 dHm l10 mw
Sisnal I-d8 compies ston leve:	Not spec.	Nol tpec.	+1 88 mm	$\cdot 10 \mathrm{dBm}$	+15 dBm	$+788 \mathrm{~m}$
Impedance, all poris:	50 ahms	S0 ohms	50 otras	50 obms	50 ohms	50 ohm
Pice clam:	\bullet	57 Singete unis	89.95 Songle uril	$\begin{aligned} & \text { s } 15.95 \\ & \text { So undls } \end{aligned}$	$\begin{aligned} & \$ 31.95 \\ & \text { 40 units } \end{aligned}$	$\$ 99.95$ Smigle unit
All apecificariona apply only it arated LO power lovel.						
- 1968 dall - Uuits provided by -s. SMA coanectors s Melcom. Division of Wis Anzac Electronks 19 G MCL - Minterates Lab	sexand suure nderd ne-I Dhnson, 3333 Sirset, Waltham catory, 837-843	ilviow Ave. Palo MA 02154. dea Ave, Brooilyz	Alto, CA 94304. *. NY II203.			

difficult to predicl Let's see how we can deal with reactive terminations.

The I-F Port

The if port is very sensitive to mismatch conditions. Reflections from the mixer/if amplifier interface (the pi network in Fig, 2) can cause the conversion loss to vary as much as 6 dB . Also greatly affected are third-order inter-modulation-product ratio and the suppression of spurious signals, both of which may vary $\pm 10 \mathrm{~dB}$ or more. It is ironic that the $i-\mathrm{f}$ port is the most sensitive to a reactive termination, as this is a receiving system point where sharp-skirted filters are often desired.

Briefly, here is what happens with a reactive if-port termination. Fig 1 shows a DBM with "high side" LO injection and an i-f termination matched at $\Omega \mathrm{O}-\mathrm{frf}$ but reactive to $\mathrm{fO}+\mathrm{fff}$. The latter term re-enters the mixer, again combines with the LO and produces terms that exit at the rf port, namely $2 \mathrm{LLO}+\mathrm{frf}$, a dc term, and $\mathrm{JOO}+\mathrm{frf}$ - flO (the original rf-port input frequency). This condition affects conversion loss, as mentioned earlier, in addition to if-port VSWR, depending on the phase of the reflected signal. The term $2 / 20+$ fff also affects the harmonic modulation-products spectrum resulting in spurious responses.

One solution to the i-f-interface problem is the use of a broadband 50 -ohm resistive termination, like a pad, to minimize reflections. In deference to increased post-conversion system noise figure, it seemed impractical to place such a termination at the mixer if output port. While a complimentary filter or diplexer (high-pass/low-pass filters appropriately terminated) can be used to terminate both

[^18]frf $+\Omega \mathrm{O}$ and $\mathrm{frf}-\mathrm{fLO}$, a simpler method can be used if $f \mathrm{ff}+f \mathrm{LO}$ is less than 1 GHz and ($f \mathrm{ff}+f \mathrm{fO}$) /(orf -fO$) \geqslant 10$. Place a short-circuit termjnation to $\mathrm{ff}+\mathrm{hl}$, like a simple lumped capacitance, directly at the mixer i-f terminal. This approach is easiest for the amateur to implement and duplicate, so a form of it was tried - with success. In our circuit, C1 serves a dual purpose. Its reactance at frf +flO is small enough to provide a low-impedance "short-circuit" condition to this term for proper mixer operation. Additionally, it is part of the input reactance of the mixer i-famplifier interface. Fortunately the network impedance-transformation ratio is large enough, and in the proper direction, to permit a fairly large amount of capacitance (low reactance) at the mixer i-f-outpul port. The capacitor, in its dual role, must be of good quality at vhf/uhf (specifically $f r f+f L O)$, with short leads, to be effective. The mixer condition $(f \mathrm{rf}+\mathrm{fLO}) /(\mathrm{frf}-\mathrm{flO}) \geqslant 10$ is met at 432 and 220 MHz with a $404 / 192-\mathrm{MHz}$ LO ($28-\mathrm{MHz} \mathrm{i}$) and on 14 MHz with a $130-\mathrm{MHz}$ LO ($14-\mathrm{MHz} \mathrm{j}-\mathrm{f}$). At 50 MHz , with a 36 MHz LO, we are slightly shy of the requirement, but no problems were encountered in an operating unit. The pi-type interface circuit assures a decreasing impedance as if operation departs from midband. thereby lessening IMD problems.

The LO Port

The primary effect of a reactive LO source is an increasc in harmonic modulation and third-order IMD products. If the drive level is adequate, no effect is noted on conversion loss, rf compression and desensitization levels. A reactive LO source can be mitigated by simply padding the LO port with a 3- or $6-\mathrm{dB}$ pad and increasing the $L \mathrm{LO}$ drive a like amount. If excess LO power is not available. matching the LO source to the mixer will improve
performance. This method is acceptable for singlefrequency LO applications, when appropriate test equipment is available to evaluate matching results. For simplicity, a $3-\mathrm{db}$ pad was incorporated at the LO-input port as an interface in both versions of the mixer. Thus the LO port is presented with a reasonably broadband termination, and is relatively insensitive to applied frequency, as long as it is below about 500 MHz . This implies that frequencies other than amateur assignments may be covered - and such is indeed the case when appropriate 10 frequencies and rf amplifiers are used. Remotely located LOs, when adjusted for a 50-ohm load, can be connected to the mixer without severe SWR and reflective-loss problems in the transmission line.

Broadband mixers exhibit different characteristics at different frequencies, due to circuit resonances and changes in diode impedances resulting from LO power-level changes. Input impedances of the various ports are load dependent, even though they are isolated from each other physically, and by at least 35 dB electrically. At higher frequencies, this effect is more noticeable, since isolation tends to drop as frequency increases. For this reason, it is important to maintain the LO power at its appropriate level, once other ports are matched.

The RF Pors

A reactive rf source is not too detrimental to system performance. This is good, since the output impedance of most amateur preamplifiers is seldom 50 ohms resistive. A $3-\mathrm{dB}$ pad is used at the ff port in the 50 - and $144-\mathrm{MHz}$ mixer to 14 MHz , and a $2-\mathrm{dB}$ pad is used in the $220 / 432 \mathrm{MHz}$ mixer to 28 MHz , although they add directly to mixer noise figure. Rf inputs between about 80 and 200 MHz are practical in the $14-\mathrm{MHz}$ i-f-output model, while the $28-\mathrm{MHz}$-output unit is most useful from 175 to 500 MHz . Mixer contribution to system noise figure will be almost completely overcome by a low-noise of amplifier with sufficient gain and adequate image rejection.

Image Response

Any broadband mixing scheme will have a potential image-response problem. In most amateur vhf/uhf receiver systems (as in these units) singleconversion techniques are employed, with the LO placed below the desired rf channel for noninverting down-conversion to i-f. Conversion is related to both i -f and LO frequencies and, because of the broadband nature of the DBM, input signals

This top view of the DBM/i-f amplifier shows the plastic mixer package plus rf/LO Inputs and i-f output Jacks clearly marked for cabling. The unit is mounted on the open face of a standard $6 \times 4 \times$ 2 -inch aluminum chassis. This shielding is nacessary to prevent the 3N140 from picking up external signals in the $14-\mathrm{MHz}$ region.
at the if image frequency (numerically flO - fi-f in our case) will legitimately appear inverted at the i-f-output port, unless proper filtering is used to reduce them at the mixer ffinput port. For example, a $144-\mathrm{MHz}$ converter with a $28-\mathrm{MHz}$-f output ($116-\mathrm{MHz}$ LO) will have rf image-response potential in the 84 to $88-\mathrm{MHz}$ range. TV channel 6 wideband-fm audio will indeed appear at the i-f-output port near 28 MHz unless appropriate rf-input filtering is used to eliminate it. While octave-bandwidth vhf/uhf "imageless mixer" techniques can improve system noise performance by about 3 dB (image noise reduction), and image signal rejection by 20 dB - and much greater with the use of a simple gating scheme - such a system is a bit esoteric for our application. Double or multiple-conversion techniques can be used to advantage, but they further complicate an otherwise simple system. Image noise and signal rejection will depend on the effectiveness of the filtering provided in the rf-amplifier chain.

Mixer Selection

The mixer used in this system is a Relcom M6F, with specifications given in Table I. Suitable substitute units arc also presented. The M6F is designed for printed-circuit applications (as are the recommended substitutes), and the lead pins are rather short. While mixers are available with connectors attached, they are more expensive. The simple package is suggested as, aside from less expense, improved interface between mixer and i-f amplifier is possible because of the short leads. The combining of mixer and i-f amplificr in one converter package was done for that reason. Along these lines, the modular-construction approach

permits good signal isolation and enables the mixer-amplifier/i-f system to be used at a varicty of rf and LO-input frequencics, as mentioned carlier.

Most commonly available, inexpensive DBM are not constructed to take advantage of LO powers much above $+10 \mathrm{dBm}(10 \mathrm{~mW})$. To do so requires additional circuitry which could degradc other mixer characteristics, specifically conversion loss and inter-port isolation. The advantage of higher LO power is primarily one of improved strong-signal-handling performance. At least one manufacturer advertises moderatcly priced "high-lcvel" receiving DBM which can use up to $+23 \mathrm{dBm}(200$ mW) LO power, and still retain excellent conversion loss and isolation characteristics, shown in Table l. The usefulness of mixers with LO power requirements above the commonly available +7 $\mathrm{dBm}(5 \mathrm{~mW})$ level in amateur receiving applications may be a bit moot, as succeeding stages in most amateur receivers will likely overload before the DBM. Excessive overdesign is not necessary.

In general, mixer selection is based on the lowest practical LO level requirement that will meet the application, as it is more economical and resalts in the least LO leakage within the system. As a first-order approximation, LO power should be 10 dB greater than the highest anticipated input-signal level at the rf port. Mixers with LO requirements of +7 dBm are quite adequate for amateur receiving applications.

The bottom view of the DBM/i-f amplifier shows component and shielding layout. L.1, the mixeramplifier interface inductance and assaciated components are indicated. C 1 , with its wide silver-strap leads, is connected directly between the mixer l-f output pin and the copper-clad ground plane with essentially zero lead length. Connection between the mixer output pin and other components \{L\}, C2 and the rf choke for d-c return) is made by using axcess lead from C1. The 43 -ohm, $1 / 4 \mathrm{~W}$ resistor in the 3N140 gate 1 lead is connected between the high-impedance end of L1 and a spare terminal on the coil form. The device gate No. 1 lead and resistor are joined at this point. It is important that input/output isolation of the 3Ni40 be maintained as it is operating at high gain. Mixer packages other than the M6F may have different pin connections and require slightly different input-circuit layout and shialding. Double-sided copper-clad board was used throughout.

Application Design Guidelines

While the material just presented only scratches the surface in terms of DBM theory and utilization in amateur vhf/uhf receiving systems, some practical solutions to the non-ideal mixer-porttermination problem have been offered. To achieve best performance from most commercially manufactured broadband DBM in amatcur receiver service, the following guidelines are suggested:

- Choose if, and LO frequencies that will provide maximum freedom from interference problems Don't "guesstimate," go through the numbers!
- Provide a proper i-f-output termination (most critical).
- Increase the LO-input power to rf-input power ratio to a value that will provide the required suppression of any in-band interfering products. The specified LO power (+7 dBm) will generally accomplish this.
- Provide as good an LO match as possible.

Include adequate pre-mixer rf-image filtering at the rf port.

When the mixer ports are terminated properly performance usually in excess of published specifications will be achicved - and this is more than adequate for most amateur vlif/uhf receiver mixing applications.

This is a side view showing construction details for the doubletuned i-f output circuit. The 3N140 drain lead passes through the shield wall via a small Teflon press-fit bushing and is connected directly to L.2. A dc-input isolation compartment along with device gate 2 biasing components (bias configuration modified slightly after photograph was taken), can be seen to the leff of the i-f-output components. L2 and L3 are spaced $1-1 / 8$-inch $(2.9 \mathrm{~cm})$ center-to-center in the 14 MHz model shown, and 1 inch $(2.5 \mathrm{~cm}$) apart in the $28-\mathrm{MHz}$ unit.

Fig. 6 - A test setup used to measure IMD. The first attenuator adjusts the input level to the unit under test. The second one provides a means of staying within the linear range or the spectrum analyzer.

The Combined DBM/I-F Amplifier

A low-noise j-f amplifier (2 dB or less) following the DBM helps ensure an acceptable system noise figure when the mixer is preceeded by a low-noise of amplifier. A pi-network matching system used between the mixer i-f-output port and gate 1 of the 3N140 transforms the nominal 50 -ohm mixer-output impedance to a 1500 -ohm gate-input impedance (at 28 MHz) specifically for best noise performance. The network forms a narrow-band mixer/i-f-output circuit which serves two other important functions: It helps achieve the necessary isolation between rf-and i-f signal components, and serves as a 3 -pole filter, resulting in a monotonic decrease in match imperances as the operating i-f departs from mid-band. This action aids in suppression of harmonic-distortion products.

The combined DBM/-f amplifier is shown schematically in Fig. 2 and pictorially in the photographs. In the $14-\mathrm{MHz}$ model, the 3 N 140 drain is tapped down on its associated inductance to provide a lower impedance for better strong-signal-handling ability. The 3N140 produces about 19 dB gain across a $700-\mathrm{kHz}$ passband, flat within 1 dB between 13.8 and 14.5 MHz . A $2-\mathrm{MHz}$ passband is used for the $28-\mathrm{MHz}$ model, and the device drain is connected directly to the highimpedance end of its associated inductance. Both amplifiers were tuned independently of their respective mixers, and checked for noise figure as

well as gain. With each i-f amplitier pretuned and connected to its mixer, signals were applied to the LO and rf-input ports. The pi-network inductance in the $i-f$ interface was adjusted carefully to see if performance had been altered No change was noted. I-f gain is controlled by the externally accessable potentiometer. Passband tuning adjustments in the drain circuit are best made with a sweep generator, but single-signal tuning techniques will be adequate. While there should be no difficulty with the non-gate-protected 3 N140, a 40673 may be substituted directly if desired.

DBM/I-F Amplifier IMD Evaluation

Classical laboratory IMD measurements made on the DBM/i-f amplifier, using the test sctup shown in Fig. 6, from both tones of a two-equal-tone rf-input test signal consisting of -10 dBm each tone. The tones were closely spaced in the 144 MHz range, and converted to 14 MHz LO. Close spacing was necessary to ensure third-order products would appear essentially unattenuated within the relatively narrow i-f-output passband. In operation, as simulated by these test conditions, equivalent output signal levels at J3 would be strong enough to severely overload most amateur receivers. Perhaps the early Collins 75A series, R390A and those systems described by Sabin ${ }^{4}$ and Hayward ${ }^{\text {s }}$ would still be functioning well.

A high-performance, small-signal, vhf/uhf receiving amplifier optimized for IMD reduction and useful noise figure is only as good as any succeeding receiving-system stage, in terms of overload. The DBM/i-f-amplifier combination presented significantly reduces common first-mixer overload problems, leaving the station receiver as the potentially weak link in the system. When properly understood and employed, the broadband DBM followed by a selective low-noise i-f amplifier can

Fig. 7 - A third-order intercept point is determined by extrapolating the desired product curve beyond the mixer compression point and intersecting with the third-order IM-product curve. In this case LO power is +7 dBm . conversion loss is 5 dB.

be a useful tool for the amateur vhf/uhf receiver experimenter.

Mixer Terminology

frf - rf input frequency
几O - local-oscillator input frequency
f-f -1 -f output frequency
By convention, mixing signals and their products are referred to the LO frequency for calculations. In the mixer system presented, fif is always above תLO, so we will refer our signals to frf, with the exception of Fig 1 which uses the ΩO reference.

Oyerload

A generic term covering most undesired operating phenomena associated with device nonlinearity.

Harmonic Modulation Products

Output responses caused by harmonics of $\Omega \mathrm{LO}$ and frf and their mixing products.

RF Compression Level

The absolute single-signal rf input-power tevel that causes conversion loss to increase by 1 dB .

RF Desensitization Level

The if input power of an interfering signal that causes the small-signal conversion loss to increase
by 1 dB , ie. reducing a weak received signal by 1 dB.

Intermodulation Products

Distortion products caused by multiple if signals and their harmonics mixing with each other and the LO, producing new output frequencies.

Mixer Intermodulation Intercept Point

Because mixers are nonlinear devices, all signals applied will generate others. When two signals (or tones), $F 1$ and $F 2$, are applied simultaneously to the rf-input port, additional signals are generated and appear in the output as $\int \mathrm{LO} \pm(n \mathrm{~F} 1+m \mathrm{~F} 2)$. These signals are most troublesome when $n \pm m$ is a low odd number, as the resulting product will lie close to the desired output. For $\pi-1$ (or 2) and $m-2$ (or 1), the result is three (3), and is called the two-tone/third-order intermodulation products When $F 1$ and $F 2$ are separated by 1 MHz , the third-order products will lie I MHz above and below the desired outputs. Intermodulation is generally specified under anticipated operating conditions since performance varies over the broad mixer-frequency ranges. Intermodulation products may be specified at levels required (i.e. 50 dB below the desired outputs for two $0-\mathrm{dBm}$ input signals) or by the intercept point.

The intercept point is a fictitious point determined by the fact that an increase of level of two input tones by 10 dB will cause the desired outpút to increase by 10 dB , but the third-order output will increase by 30 dB . If the mixer exhibited no compression, there would be a point at which the level of the desired output would be equal to that of the third-order product. This is called the third-order intercept point and is the point where the desired-output slopes and third-order slopes intersect (Fig. 7).

Noise Figure

Noise figure is a relative measurement based on excess noise power available from a termination (input resistor) at a particular temperature (290 degrees K). When measuring the NF of a double balanced mixer with an automatic system, such as the HP 342A, a correction may be necessary to make the meter reading consistant with the accepted definition of receiver noise figure.

In a broadband DBM, the actual nolse bandwidth consists of two i-f passbands, one on each side of the local-oscillator frequency ($\mathrm{fLO}+\int \mathrm{l}-\mathrm{f}$ and fLO - f -f). This double sideband (dsb) i-f response includes the rf channel and its image. In general, only the fif channel is desired for further amplification. The image contributes nothing but receiver and background noise.

When making an automatic noise-figure measurement using a wideband noise source, the excess noise is applicd through both sidebands in a broadband DBM. Thus the instrument meter indicates NF as based on both sidebands. This means that the noise in the of and image sidebands is combined in the mixer i-f-output port to give a
double contribution (3 dB greater than under ssb conditions). For equal rf-sideband responses, which is a reasonable assumption, and in the absence of preselectors, filters, or other image rejection elements, the automatic NF meter readings are 3 dB lower than the actual NF for DBM measurements.

The noise figure for receivers (and most DBM) is generally specified with only one sideband for the useful signal. As mentioned in the text, most DBM diodes add no more than 0.5 dB (in the form of NF) to conversion loss, which is generally measured under single-signal rf-input (ssb) conditions. Assuming DBM conversion efficiency (or loss) to be within specifications, there is an excellent probability that the ssb NF is also satisfactory. Noise figure calculations in the text were made using a graphical solution of the well known noise-figure formula:

$$
f \mathrm{~T}=f_{1}+\frac{f_{2}-1}{g_{1}}
$$

converted to dB .

Improved Wide Band I-F Reaponses

The following information was developed in achieving broad-band performance in the mixer-toamplifier circuitry. In cases where only a small portion of a band is of interest the original circuit values are adequate. For those who need to receive over a considerable portion of a band, say one to two MHz , a change of some component will provide improved performance over a broad range while maintaining an acceptable noise figure.

The term "nominal 50 -ohm impedance" applied to diode DBM ports is truly a misnomer, as their reflective impedance is rarely 50 ohms $+j 0$ and a VSWR of 1 is almost never achieved. Mixer performance specified by the manufacturer is measured in a 50 -ohm broadband system, and it is
up to the designer to provide an equivalent termination to ensure that the unit will meet specifications. Appropriate matching techniques at the if and LO ports will reduce conversion loss and low-power requirements. Complex filter synthesis can improve the if output match. However, if one does not have the necessary equipment to evaluate his efforts, they may be wasted Simple, effective, easily reproduced circuitry was desired as long as the trade-offs were acceptable, and measurements indicate this to be the case.

The most critical circuit in the combined unit is the interface between mixer and i-f amplifier. It must be low-pass in nature to satisfy vhf signal component bypassing requirements at the mixer if port For best mixer IMD characteristics and low conversion loss, it must present to the if port a nominal 50 -ohm impedance at the desired frequency, and this impedance value must not be allowed to increase as i-f operation departs from midband. The impedance at the i-f amplifier end of the interface network must be in the optimum region for minimum cross-modulation and low noise. A dual-gate device offers two important advantages over most bi-polars. Very little, if any, power gain is sacrificed in achieving best noise figure, and both parameters (gain and NF) are relatively independent of source resistance in the optimum region. As a result, the designer has a great deal of flexibility in choosing a source impedance. In general, a $3: 1$ change in source resistance results in only a $1-\mathrm{dB}$ change in NF. With mininum cross-modulation as a prime system consideration, this $3: 1$ change (reduction) in source resistance implics a $3: 1$ improvement in cross-modulation and total harmonic distortion.

Tests on the 3N201 dual-gate MOSFET have shown device noise performance to be excellont for source impedances in the $1-k \bar{\Omega}$ to $2-k \bar{\Omega}$ region. For optimum noise and good cross-modulation

14 MHz
28 MHz
C1 - 300 pF (JFD 301).
C2-51 pF S.M.
C3-68 pF S.M.
L1 - 15\% No. 24 enameled on $3 / 8$-inch dia red-slug form. 1.5-2.5 $\mu \mathrm{H}$ range, $1.95 \mu \mathrm{H}$ for network.

100 pF (JFD 101).
Not used
7.5 pF S.M.

19t No. 26 enameled on $1 / 4$-inch diared-slug form.

Fig. 1 - Suggested changes in the mixer-to 3 N 140 pi-network interface circuit, producing lower Q_{L} and better performance. See the original article for additional circuit details.
performance, the nominal 50 -ohm mixer iff output impedance is stepped up to about 1500 ohms for if amplifier gate 1, using the familiar low-pass pi network. This is a mismatched condition for gate 1 , as the device input impedance for best gain in the hf region is on the order of $10 \mathrm{k} \Omega$ network loaded- Q values in the article are a bit higher than necessary, and a design for lower Q_{L} is preferred. Suggested modificd component values are listed in Fig. 8. High-frequency attenuation is reduced somewhat, but satisfactory noise and bandwidth performance is more easily obtained Coil-form size is the same, so no layout changes are required for the modification. Components in the interface must be of high Q and few in number to limit their noise contribution through losses. The $28-\mathrm{MHz}$ values provide satisfactory interface network performance over a $2-\mathrm{MHz}$ bandwidth. A higher Q_{L} in the $28-\mathrm{MHz}$ interface can be useful if one narrows the output network and covers only a few hundred kilohertz bandwidth, as is commonly done in $432-\mathrm{MHz}$ weak-signal work.

Device biasing and gain control methods were chosen for simplicity and adequate performance. Some sort of gain adjustment is desirable for drain-circuit overload protection. It is also a handy
way to "set" the receiver S meter. A good method for gain adjustment is reduction of the gate-2 bias voltage from its initial optimum-gain bias point (greater than +4 V dc), producing a remote-cutoff characteristic (a gradual reduction in drain current with decreasing gate bias). The initial gain-reduction rate is higher with a slight forward bias on gate 1 , than for $V_{1} s=0$. Input and output circuit detuning resulting from gain reduction (Miller effect) is inconsequential as the gate-1 and drain susceptances change very little over a wide range of $V g_{2}$ s and I_{D} at both choices of i-f. Best intermodulation figure for the 3 N 201 was obtained with a small forward bias on gate 1, and the biascircuit modification shown may be tried, if desired.

References

[^19]
AN OSCAR UP-CONVERTER

Many amateur operators who wish to receive the 10 -meter signals from the Oscar satellites do so with an average receiver that is alrcady "at hand" in the shack, sometimes adding a preamplifier for improved performance. Others use a converter to translate the signals to a lower frequency where the station receiver is more stable or more sensitive.

However, there is another approach that should be explored - that of converting the 10 -meter signals $u p$ to a higher band. Just a very short time ago this system would have been impractical, if not ridiculous, because of the complexity and size of the equipment involved. Recent developments in two-meter tansceivers make the up-conversion scheme practical and attractive. A nearly "ideal" Oscar package can be obtained by the addition of a small converter which allows a normal transccive style of operation with the vhf equipment.

There are several makes of $144-\mathrm{MHz}$ ssb transceivers available, but only a few are beginning to appear on the market in the Western Hemisphere. The KLM Echo [! was used here to cvaluate the technique and test the performance of the converter that was assembled. This particular transceiver had been modified to permit cw operation as well as the usual ssb - a desirable feature to look for in any equipment being contemplated.

In some instances it may seem a bit redundant to convert a $28-\mathrm{MHz}$ signal to 144 MHz , only to have it converted back down to 28 MHz in the receiver first mixcr. However, there are reasons why this scheme is not all that bad, and a chief one is that the frequencies do not translate directly in all cases. A secondary, but important, considera-
tion is that it may not be desirable or possible to modify the equipment to accept a $28-\mathrm{MHz}$ input. And of course not all transceivers have 28 MHz as a first if.

The Converter

If the pc board and parts-placement layout appears familiar, it is because an existing design was modified to serve our purpose. Rather than go through the entire process of developing a new board the "Rochester" converter was rehabilitated for this project. Sec pages 300-304 for more details of these converters. Most suppliers of amateur radio pc boards have this pattern on hand, and many have etched and drilled boards in stock. There have been a few changes to some parts of the circuit, necessitating the placing of one capacitor on the foil side of the board. In operation the converter reverses the process of the original in that it first amplifies the 10 -meter signals in Q1 (Fig. 1), then mixes them with $116.45-\mathrm{MHz}$. energy in Q2, to provide an output between 145.85 and 145.95 MHz . The original oscillator and harmonic-generator circuit proved adequate with a slight modification; a third-overtone crystal with a frequency of 58.225 was used instead of the $38.6-\mathrm{MHz}$ unit specified carlicr. A buffer stage (Q4) is necessary to allow some rejection of unwanted harmonics while maintaining a suitable injection voltage for the mixer.

Construction

The assembly of the converter is greatly simpli-

Fig. 1 - The schematic diagram of the "Rochester" convarter as modified for up-conversion.

C11 - Two $1 / 2$-inch píeces No. 18 insulated hookup wire, twisted together $1 / 2$ turn.
L1, L2, L3 - 18 turns No. 28 enam. wound on Amidon T.30-6 core. L1 tapped at 6 iurns and 11 turns from ground end.
L4, L5 - 5 turns No. 20 enam., formed by using threads of $1 / 4-20$ bolt as a guide. L5 is tapped 2 turns from the ground end.

L6 - 10 turns No. 24 enam. close wound on the body of a 1000 -ohm $1 / 2$-watt resistor.
L7, L8 - 5 turns No. 20 enam., formed the same as L4. Both are tapped 2 turns from the hot end.
Y1 - $58.225-\mathrm{MHz}$ crystal. International Crystal third-overtone type in FM-1 (wire leads) or FM-2 (pins) holder. Calibration tolerance of $.0025 \%$ at a load capacitance of 20 pF used here. General-purpose (. 01%) tolerance may be adequate in most instances.
fied by the use of a ready-made board, since for the most part the work consists of placing the component leads through the holes and soldering them in place.

Because of slight differences in materials used in toroids, it will be necessary to adjust the input and interstage tuncd circuits to resonance after the converter is completed. This was done by the substitution method, placing different values of capacitance across the windings while monitoring the signal on a receiver. There are miniature trimmers available that would fit into the space, but the cost of these devices is a bit high. Alternatively, larger trimmers could be mounted below the pe board, if the builder allows enough space between the board and the enclosure to which it is fastened. Proper operation of the oscillator and buffer stages can be ascertained by using a grid-dip meter to indicate output on the correct harmonic of YI.

There is sufficient space in some transceivers to allow the converter to be mounted intemally, as was the case in the Echo II unit shown in the
photographs. A small bracket was fastened to the rear apron of the equipment to provide a mount for the $28-\mathrm{MHz}$ input connector. Where a transceiver is too compact to allow this style of assembly, the converter could be fastened in a small Minibox for shielding. A source of +12 V . and a small-diameter coax for input and output connections makes the wiring job simple. In some equipment it may be necessary to disconnect the receiver input wiring from the T / R relay but this was not done in the Echo II. The output from the converter was wired in parallel with the receiver imput lead. Any small amount of noise picked up by the receiver was masked by the output from the converter. However, in areas of high local activity or high ambient noise levels, it will be necessary to disable the nomnal receiver input.

Performance

Sensitivity of the converter was sufficient that the residual output of a Model 80 signal generator

could be heard clearly. A $1-\mu \mathrm{V}$ signal was loud enough that it evoked the immediate reaction of turning down the audio gain control on the transceiver. Ignition noise picked up by the variety of antennas tried was strong enough to be bothersome at times, further attesting to the sensitivity of the converter - it also pointed out the usefulness of the noise blanker in the Echo L . Considering the performance of the converter/transceiver combination, the addition of a preamplifier or an i-f post amplifier was not considered necessary. Additional gain could even be detrimental by causing overloading or intermodulation problems - there was no evidence of these problems during several tests.

Since the first i-f in the transceiver is at 28 MHz , the question of possible "leak-through" of local signals was raised. No indication of this type of interference was found during receiving tests, but admittedly it could happen. The output circuit of the mixer (L4, L5, C11) has a band-pass characteristic centered on 146 MHz and should

In this parsicular model transceiver, room was available to mount the converter in an inverted position just below the speaker. A small bracket is fastened under one of the bolts that also holds a transformer to the bottom sidewall. Cables are routed along with existing wiring harnesses and tied in place. The $28-\mathrm{MHz}$ input connector is fastened to the rear apron of the equipment.
provide a high degrec of attenuation to hf-band signals.

In areas where strong local operation does cause such leakage of signals through the converter it will be necessary to install a high-pass filter between the converter output and the receiver input. Designs for such filters can be found in the ARRL Hondbook. Because the filter will be used at essentially zero power level, it can be made physically quite compact Of course good shielding and high-quality coaxial cable is a must in any effort to keep unwanted signals out - the best filters in the world will do no good if there is a path around them.
[EDITOR'S NOTE: The parts placement for this up-converter is virtually identical to that used in the "Rochester" converters, found elsewhere in this chapter. The reader can follow that layout. keeping in mind the differences in tuned-circuit frequencies throughout.]

Top view of the modified Rochester Converter. A mounting bracket has been fastened to the lower right corner. The $28-\mathrm{MHz}$ input is to the upper right, with the rf amplifier along the top of the board. Oscillator and buffer stages are located along the bottom portion. The i-f output coils, L4 and L5, are ot the upper left with C11 (twisted wires) just below L4, adjacent to the resistor. The shields between stages have been omitted for a better view.

INTERDIGITAL CONVERTER
 FOR 1296 OR 2304 MHz

In a world where of spectrum pollution is becoming more serious, even into the microwave region, it is almost as important to keep unwanted signals out of a receiver as it is to prevent radiation of spurious energy. An interdigital filter was described some years ago, featuring low insertion loss, simplicity of construction, and reasonable rejection to out-of-band signals.' It could be used in either transmitters or receivers.

This twice-useful principle has now been put to work again - as a mixer. Again, the ease of construction and adaptation leads many to wonder that it had not been thought of before. It was first described by W2CQH in QST for January, 1974.

A Filter and Mixer

A layout of the microwave portions of both converters is shown in Fig. 1. The structure consists of five interdigitated round rods, made of $3 / 8$-inch OD brass or copper tubing They are soldered to two sidewalls and centrally located between two ground-planes made of $1 / 16$-inch sheet brass or copper-clad epoxy fiber glass. One ground plane is made larger than the microwave assembly and thus provides a convenient mounting plate for the remainder of the converter components.

The sidewalls are bent from . 032 -inch thick sheet brass or they can be made from $1 / 4 \times$ $3 / 4$-inch brass rod. One edge of each sidewall is soldered to the larger ground plane. The other edge is fastened to the smaller ground plane by 4-40 machine or self-tapping screws, each located over the centerline of a rod The sidewall edges should be sanded flat, before the ground plane is attached, to assure continuous electrical contact. Note that no end walls are required since there are no electric fields in these regions.

Electrically, rods A, B, and C comprise a one-stage, high-loaded- $Q\left(Q_{\mathrm{L}}=100\right)$, interdigital filter' which is tuned to the incoming signal

[^20]frequency near 1296 or 2304 MHz . The ungrounded end of $\operatorname{rod} A$ is connected to a BNC coaxial connector and serves as the coupling section to the filter input. Rod B is the high- Q

Fig. 1 - Dimensions and layout for the filter and mixer portions of the interdigital converters. The signal input is to the left rod, labelled "A." Local-oscillator injection is through the diode to rod "E." CR 1 is the mixer diode, connected to the center rod in the assembly.

The converter for 1296 MHz . This unit was built by R.E. Fisher, W2COH. While the mixer assembly (top center) in this model has solid brass walls, it can be made from lighter material as explained in the text and shown in Fig. 1. The i-f amplifier is near the center, just above the mixer-current-monitoring jack, J1. A BNC connector at the lower left is for $28-\mathrm{MHz}$ output. The local oscillator and multiplier circuits are to the lower right. Note that L6 is very close to the chassis, just above the crystal. The variable capacitor near the crystal is an optional trimmer to adjust the oscillator to the correct frequency.

Fig. 2 - Schematic diagram of the $1296 \cdot \mathrm{MHz}$ converter with oscillator and multiplier sections included. Dimensions for the filter and mixer assembly are given in Fig. 1.
C1. C2 - 30-pF homemade capacitor. See text and Fig. 1.
C3, C4-0.8- to $10-\mathrm{pF}$ glass trimmer, Johanson 2945 or equiv.
$\mathrm{C} 5-.001 \mu \mathrm{~F}$ button mica
C6 - 2- to 20-pF air variable, E. F. Johnson 189-507-004 or equiv.
CR1 - Hewlett Packard 5082-2577 or 5082-2835.

CR2 - Hewlett Packard 5082-2811 or 5082-2835 J1 - Closed-circuit jack.
J2 - Coaxial connector, chassis mount. Type BNC acceptable.
L1. L2 - 18 turns No. 24 enam. on $1 / 4$-inch OD slug-tuned form \{ $1.5 \mu \mathrm{H}$ nominal).
$\mathrm{L} 3-10$ turns like $\mathrm{L} 1(0.5 \mu \mathrm{H}$).
L4, L5 - 6 turns like Li $(0.2 \mu \mathrm{H})$.
L6 - Copper strip, $1 / 2$-inch wide $\times 2-1 / 2$-inches $(1.27 \times 6.35 \mathrm{~cm})$ long. See text and photographs.
RFCT $-33 \mu \mathrm{H}$, J. W. Miller 74F33SAI or equiv.
resonator and is tuned by a $10-32$ machine screw. Rod C provides the filter output-coupling section to the mixer diode, CR 1 .

The mixer diode is a Hewlett-Packard 5082-2577 Schottkey-barrier type which is available from distributors for about $\$ 4$. The cheaper 5082-2835, selling for 90 cents, can be used instead, but this substitution wilk increase the $2304-\mathrm{MHz}$ mixer noise figure by approximately 3 dB.

One pigtail lead of the mixer diode is tacksoldered to a copper disk on the ungrounded end of rod C. Care should be taken to keep the pigtail lead as short as possiblc. If rod C is machined from solid brass stock, then it is feasible to clamp one of the mixer-diode leads to the rod end with a small
setscrew. 'This alternative method facilitates dinde substitution and was used in the mixer models shown in the photographs.

Fig. 1 also shows that the other end of CR 1 is connected to a homemade $30-\mathrm{pF}$ bypass capacitor, Cl , which consists of a $1 / 2$-inchrsquare copper or brass plate clamped to the sidewall with a 4-40 machine screw. The dielectric material is a small screw passes through an oversize hole and is insulated from the other side of the wall by a small plastic shoulder washer.

In the first converter modes constructed by the author and shown in the photographs, Cl was a $30-\mathrm{pF}$ button mica unit soldered to the flange of a $3 / 8$-inch diameter threaded panel bearing (H.H. Smith No. 119). The bearing was then screwed into
a threaded hole in the sidewall This provision madc it convenient to measure the insertion loss and bandwidth of the interdigital filters since the capacitor assembly could be removed and replaced with a BNC connector.

Rods C, D, and E comprise another high loaded Q ($Q_{\mathrm{L}}=100$) interdigital filter tuned to the local oscillator (LO) frequency. This filter passes only the fourth harmonic (1268 or 2160 MHz) from the multiplier diode, CR2. The two filters have a common output-coupling section (rod C) and their loaded Qs are high enough to prevent much unwanted coupling of signal power from the antenna to the multiplier diode and Lo power back out to the anterna.

The multiplier diode is connected to the driver circuitry through C 2 , a 30 pF bypass capacitor identical to C1. CR2 is a Hewlett-Packard 5082-2811 although the 5082-2835 works nearly as well. Fifty milliwatts drive at one quarter of the LO frequency is sufficient to produce 2 mA of mixer diode current, which represents about 1 milliwatt of the local-oscillator injection. A Schottkey-barrier was chosen over the more

Table I		
Converter Specifications		
	1296 MHz	2304 MHz
Noise figure	5.5 dB	6.5 dB
Conversion gain	20 dB	14 dB
3-d8 bandwidth	2 MHz	7 MHz
Image rejection	18 dB	30 dB
1-4 output	28 MHz	144 MHz

farmiliar varactor diode for the multiplier because it is cheaper, more stable, and requires no idler circuit.

Fig. 2 shows the schematic diagram of the 1296 to 28 MHz converter. All components are mounted on a 7×9-inch ($17.8 \times 22.9 \mathrm{~cm}$) sheet of brass or copper-clad epoxy-fiber glass board. As mentioned carlier, this mounting plate also serves as one ground plane for the microwave mixer. When completed, the mounting plate is fastened to an inverted aluminum chassis which provides a shielded housing

Oscillator and Multipliets

The nonmicrowave portion of the converter is rather conventional. Q1, id dual-gate MOSFET, was chosen as the $28-\mathrm{MHz}$ i-f amplifier since it can provide 25 dB of gain with a $1.5-\mathrm{dB}$ noise figure. The mixer diode is coupled to the first gate of Q1 by a pi-network matching section. It is most important that the proper impedance match be achieved between the mixer and if amplificr if a low noise figure is to be obtained. In this case, the
approximately 30 -ohm output impedance of the mixer must be stepped up to about 1500 if Q1 is to yield its rated noise figure of 1.5 dB . It is for this reason that a remote i-f amplifier was not employed as is the case with many contemporary uhf converters.

Q2 functions in a oscillator-tripler circuit which delivers abou! 10 milliwatts of $158.5-\mathrm{MHz}$ drive to the base of Q3. The emitter coil, L3, serves mainly as a choke to prevent the crystal from oscillating at its fundamental frequency. Coils L4 and L5, which are identical, should be spaced closely such that their windings almost touch.

Q3 doubles the frequency to 317 MHz , providing about 50 milliwatts drive to the multiplier diode. It is important that the emitter lead of Q3 be kept extremely short; $1 / 4$-inch (6.36 mm) is probably too long. L6, the strip-line inductor in the collector circuit of Q 3 , consists of a $1 / 2 \times$ $2-1 / 2$-inch ($1.27 \times 6.35 \mathrm{~cm}$) piece of flashing copper spaced $1 / 8$-inch (3.18 mm) above the ground plane. The cold end of L6 is bypassed to ground by C 5, a $.001-\mu \mathrm{F}$ button mica capacitor.

The multiplier circuits are tuned to resonance in the usual manner by holding a wavemeter near each inductor being tuned. Resonance in the Q3 collector circuit is found by touching a VTVM probe (a resistor must be in the probe) to C2 and adjusting the Johanson capacitors until about - 1.5 volts of bias is obtained. The $317-$ to $1268-\mathrm{MHz}$ multiplier cavity is then resonated by adjusting the 10-32 machine screw until maximum mixer current is measured at Jl . When resonance is found, R1 should be adjusted so that about 2 mA of mixer current is obtained. As an alternative to mounting a potentiometer in the converter, once a value of resistance has been found that provides correct performance it can be measured and the nearest standard fixed-value resistor substituted. Some means of adjusting the collector voltage on the multiplier stage must be provided initially to allow for the nonuniformity of transistors.

A $2304-\mathrm{MHz}$ Version

Fig. 3 and 4 show the schematic diagrams of the $2304-\mathrm{MH}$. converter and multiplier. The mixer and $i-f$ preamplificr was built on a separate chassis since, at the time of their construction, a multiplier chain from another project was available. An i-f of 144 MHz was chosen although 50 MHz would work as well. An \mathfrak{j} f uutput of 28 MHz , or lower, should nol be used since this would result in undesirable interaction between the mixer and multiplier interdigital filters.

The $2304-\mathrm{MHz}$ mixer and i-f amplificr section, shown in Fig. 3, is very similar to its $1296-\mathrm{MHz}$ counterpart. Q1, the dual-gate MOSFET, uperates at 144 MHz and thus has a noise figure about 1 dB higher than that obtainable at 28 MIfz .

The multiplier chain, I-ig. 4, has a separate uscillator for improved drive to the 2N3866 output stage. Otherwise the circuitry is similar to the $1296-\mathrm{MHz}$ version.

Fig. 3 - Schematic diagram of the $2304 \cdot \mathrm{MHz}$ version of the converter, with the i-f amplifier. The oscillator and rmultiplier circuits are constructed separately.
C1, C2 - 30-pF homemade capacitor. See text.
C3, C4, C5 - 0.8 - to $10-\mathrm{pF}$ glass trimmer. Johanson 2945 or equiv.
CR1 - Hewlett Packard 5082-2577 or 5082-2835. CR2 - Hewlett Packard 5082-2811 or 5082-2835. J1 - Closed-circuit jack.

J2, J3, J4 - Coaxial connector, chāssis mount. Type BNC.
L1 - 5 turns No. 20 enam., $1 / 4$-inch ID $\times 1 / 2$-inch long. $\{6.35 \times 12.7 \mathrm{~mm}$).
$12-6$ turns No. 24 enam., on $1 / 4$-inch $O D$ slug runed form $(0.25 \mu \mathrm{H})$.
L3 - Copper strip $1 / 2$-inch wide \times 2-11/16 inches $\{1.27 \times 6.86 \mathrm{~cm}\}$ long. See text and photographs.
RFC - Ohmite $\mathbf{Z} \cdot 144$ or equiv.
RFC2 - Ohmite Z .460 or equiv.

Fig. 4 - Schematic diagram of the oscillator and multiplier for the 2304 MHz converter. As explained in the text and shown in the photographs, a fixed-value resistor may be substituted for Ri after the value that provides proper performance has been found.
$\mathrm{C} 1, \mathrm{C} 2$. $\mathrm{C} 3-0.8$ - to $10-\mathrm{pF}$ glass trimmer, Johanson 2945 or equiv.
CA - .001- H F button mica.

J1 - Coaxial connector, chassis mount, type BNC or equiv.
11 - 10 rupns No. 24 enam. on $1 / 4$-inch 00 slug-tuned form.
L2, L3-3 turns like L1.
L4 - Copper strip $1 / 2$-inch wide \times 1-1/2 inches $(1.27 \times 3.81 \mathrm{~cm})$ long. Space $1 / 8$ inch $\{3.18$ mm) from chassis.
RFC1 - 10 turns No. 24 enam. 1/8-inch 10, closewound.

Mobile and
 Portable/Emergency Equipment and Practices

MOBILE AND PORTABLE EQUIPMENT

Amateur mobile and portable operation provides many opportunities for one to exercise his skill under less than ideal conditions. Additionally, the user of such equipment is available for public-service work when emergencies arise in his community - an important facet of amatcur-radio operation. Operating skill must be better than that used at most fixed locations because the mobile/portable operator must utilize inferior antennas, and must work with low-power transmitters in many instances.

Most modern-day hf-band mobilc work is done whilc using the ssb mode. Conversely, the fro mode is favored by mobile and portable vhf operators, though ssb is fully practical for vhf service. Some amateurs operate cw mobile, much to the constemation of local highway patrolmen, but cw operation from a parked car should not be overlooked during emergency operations.

High-power mobile operation has become practical on ssb because of the low duty cycle of voice operation, and because low-drain solid-state mobile power supplies lessen battery drain over that of dynamotors or vibrator packs. Most mobile $a-m$ and fm operation is limited to 60 watts for reasons of battery drain.

Portable operation is popular on ssb, cw and fm while using battery-powered equipment. Ordinarily, the power of the transmitter is limited to less than five-watts de input for practical reasons. Solid-state equipment is the choice of most modern amateurs because of its compactness, reliability, and low power consumption. Highpower portable operation is practical and desirable when a gasoline-powered ac generator is employed.

The secret of successful operation from portable siles is much the same as that from a fixed station - a good antenna, properly installed. Power levels as low as 0.5 watt are sufficient for covering thousands of miles during hf-band ssb and cw operation. In the vhf and uhf region of operation it is common to work distances in excess of 100 miles - line of sight - with less than one watt of transmitter output power. Of course it is important to select a high, clear location for such operation on vhf, and it is beneficial to use an antenna with as much gain as is practical. Low-noise receiving equipment is the ever-constant companion of any low-power portable transmitter that provides successful long-distance communications. Careful matching of the portable or mobile antenna to obtain the lowest possible SWR is another secret of the successful operator.

All portable and mobile equipment should be assembled with more than ordinary care, assuring that maximum reliability under rough-and-tumble conditions will prevail. All solder joints should be made well, stranded hookup wire should be used for cabling (and in any part of the equipment subjected to stress). The cabinets for such gear should be rugged, and should be capable of protecting the components from dust, dirt, and moisture.

ELECTRICAL-NOISE ELIMINATION

One of the most significant deterrents to effective signal reception during mobile or portable operation is electrical impulse noise from the automotive ignition system. The problem also arises during the use of gasoline-powered portable ac generators. This form of interference can completely mask a wcak signal, thus rendering the station ineffective. Most electrical noise can be eliminated by taking logical steps toward suppress-

Fig. $10-1$ - Effective portable operation can be realized when using lofty locations for whf or uhf. Here, W1CKK is shown operating a batterypowered, $150-\mathrm{mW}$ output, 2 -meter transceiver. With only a quarter wavelength antenna it is possible to communicate with stations 25 miles or more away. Low-power transistor equipment like this unit will operate many hours from a dry-cell battery pack.

Fig. 10-2 - High-power portable/emergency operation can be made possible on all amateur bands by using vacuum-tube transmitters, and powering them from a gasoline-operated ac generator of one or more KW rating. (Shown here is VE7ARV/7 during a Field Day operation.)
ing it. The first step is to clean up the noise source itself, then utilize the receiver's built-in noisereducing circuit as a last measure to knock down any noise pulses from passing cars, or from other man-made sources.

Spark-Plug Noise

Spark-plug noise is perhaps the worst offender when it comes to ignition noise. There are three methods of eliminating this type of interference resistive spark-plug suppressors, resistor spark plugs, or resistance-wire cabling. By installing Autolite resistor plugs a great deal of the noise can be stopped. Tests have proved, however, that suppressor cable between the plugs and the distributor, and between the distributor and ignition coil, is the most effective means of curing the problem. Distributed-resistance cable has an approximate resistance of 5000 ohms per foot, and consists of a carbon-impregnated sheath followed by a layer of insulation, then an outer covering of protective plastic sheathing. Some cars come equipped with suppressor cable. Those which do not can be so equipped in just a matter of minutes. Automotive supply stores sell the cable, and it is not expensive. It is recommended that this wiring be used on all mobile units. The same type of cable can be installed on gasolinc-powered generators for field use. A further step in eliminating plug noise is the addition of shielding over each spark-plug wire, and over the coil lead. It should be remembered that each ignition cable is an antenna by itself, thus radiating those impulses passing through it. By fitting each spark-plug and coil lead with the shicld braid from a piece of RG-59/U coax line, grounding the braid at cach end to the engine block, the noise reduction will be even greater. An additional step is to encase the distributor in flashing copper, grounding the copper to the
engine block. This copper is quite soft and can be form-fit to the contour of the distributor. (Commercially-manufactured shielded ignition cable kits are also available.) The shield braid of the spark-plug wires should be soldered to the distributor shield if one is used. Also, the ignition coil should be enclosed in a metal shield since the top end of many of these coils is made of plastic. A small tin can can often be used as a top cover for the coil or distributor. It should be soldered to the existing metal housing of the coil. Additional reduction in spark-plug noise can be effected by making certain that the engine hood makes positive contact with the frame of the car when it is closed, thus offering an additional shield over the ignition systern The engine block should also be bonded to the frame at several points. This can be done with the shield braid from coax cable. Feedthrough (hi-pass) capacitors should be mounted on the coil shield as shown in Fig. 10-6 to filter the two small leads leaving the assembly.

Other Electrical Noise

The automotive generator system can create an annoying type of interference which manifests itself as a "whine" when heard in the receiver. This noise results from the brushes sparking as the commutator passes over them. A dirty commutator is frequently the cause of excessive sparking, and can be cleaned up by polishing its surface with a fine grade of emery cloth. The commutator grooves should be cleaned out with a small, pointed instrument. A coaxial feedthrough capacitor of 0.1- to $0.5-\mu \mathrm{F}$ capacitance should be mounted on the generator frame and used to filter the generator annature lead. In stubborn cases of generator noise a parallel L / C iuned trap can be used in place of the capacitor, or in addition to it, tuncd to the receiver's operating frequency. This is probably the most effective measure used for curing generator noise.

Fig. 10-3 - A typical homemade shielding kit for an automotive ignition system. Tin cans have been put to use as shields for the spark coil and distributor. Additional shields have been mounted on the plug ends of the wires for shilding the spark plugs. The shield braid of the cabling protrudes at each end of the wires and is grounded to the engine block.

Fig. 10-4 - A close-up view of the distributor shield can. The shield braid over each spark-plug wire is soldered to the top of the can, and the can is grounded to the engine block.

Voltage regulators are another cause of mobile interference. They contain relay contacts that jitter open and closed when the battery is fully charged. The noise shows up in the receiver as a ragged, "hashy" sound. Coaxial feedthrough capacitors can be mounted at the baffery and armature terminals of the regulator hox to filter those leads. The ficld terminal should have a small capacitor and resistor, series-connected, from it to chassis ground. The resistor prevents the regulator from commanding the generator to charge constantly in the event the bypass capacitor short-circuits. Such a condition would destroy the generator by causing overheating.

Alternators should be suppressed in a similar manner as dc generators. Their slip rings should be kept clean to minimize noisc. Make sure the brushes are making good contact inside the unit. A coaxial feedthrough capacitor and/or tuned trap should be connected to the output terminal of the alternator. Make certain that the capacitor is rated to handle the output current in the line. The same rule applies to dc generators. Do not connect a capacitor to the alternator or generator field terminals. Capacitor values as high as $0.5 \mu{ }^{\circ}$ are suitable for alternator filtering.

Some alternator regulator boxes contain solidstate circuits, while others use single or double contact relays. The single-contact units require a coaxial capacitor at the ignition terminal. The double-contact variety should have a second such capacitor at the boftery torminal. If noise still persists, try shielding the field wire between the regulator and the gencrator or alternator. Ground the shield at both ends.

Instrument Noise

Some automotive instruments are capable of creating noise. Among these gauges and senders are
the heat- and fuel-level indicators. Ordinarily, the addition of a $0.5-\mu \mathrm{F}$ coaxial capacitor at the sender element will cure the problem.

Other noise-gathering accessorics are turn signals, window-opener motors, heating-fan motors and electric windshield-wiper motors. The installation of a $0.25 \mu \mathrm{~F}$ capacitor will usually eliminate their interference noise.

Frame and Body Bonding

Sections of the automobile frame and body that come in contact with one another car create additional noise. Suspected arcas should be bonded together with flexible leads such as those made from the shield braid of RG-8/U coaxial cable. Trouble areas to be bonded are:

1 - Engine to frame.
2 - Air cleaner to engine block.
3 - Exhaust lines to car fame and engine block.
4 - Battery ground terminal to frame.
5 - Stecring column to frame.
6 - Hood to car body.
7 - Iront and rear bumpers to frame.
8 - Tail pipe to frame.
9 - Trunk lid to frame.

Wheel and Tire Static

Wheel noise produces a ragged sounding pulse in the mobile receiver. This condition can be cured by installing static-collector springs between the spindle bolt of the wheel and the grease-retainer cap. Insert springs of this kind are available at dutomotive supply stores.

Tire static has a ragged sound too, and can be detected when driving on hard-surface highways. If the noise docs not appear when driving on dirt roads it will be a sure indication that tire static exists. This problem can be resolved by putting

Fig. 10-5 - Gasoline-powered ac generators used for portable/emergency operation should be treated for ignition noise in the same manner as automobile engines are. The frame of the gas generator should be connected to an earth ground, and the entire unit should be situated as far from the operating position as possible. This will not only reduce ignition noise, but will minimize ambient noise from the power unit. (Shown here is K1GTK during Field Day operations.)

Fig. 10-6 - The automobile ignition coil should be shielded as shown here. A small tin can has been soldered to the metal coil case, and coaxial feed through capacitors have been soldered to the top of the can. The "hot" lead of the coil enters the shield can through a modified audio connector.
antistatic powder inside each tire. This substance is available at auto stores, and comes supplicd with an injector tool and instructions.

Corona-Discharge Noise

Some mobile antennas are prone to corona build-up and discharge. Whip antennas which come to a sharp point will sometimes create this kind of noise. This is why most mobile whips have steel or plastic balls at their tips. But, regardless of the structure of the mobile antenna, corona build-up will frequently occur during or just before a severe electrical storm. The symptoms are a high-pitched "screaming" noise in the mobile receiver, which comes in cycles of one or two minutes duration, then changes pitch and dies down as it discharges through the front end of the receiver. The condition will repeat itself as soon as the antenma system charges up again. There is no cure for this condition, but it is described here to show that it is not of origin within the electrical system of the automobile.

Electronic Noise Limiters

Many commercially built mobile transccivers have some type of built-in noise clipping or cancelling circuit. Those which do not can be modified to include such a circuit. The operator has a choice of using af or rf limiting. Circuits of this type are described in the theory section of the hf receiving chapter.

Simple superregencrative reccivers, by nature of their operation, provide noise-limiting fcatures, and no additional circuit is needed. Fm receivers, if operating properly, do not respond to noise pulses of normal amplitude; hence no additional circuitry is required.

THE MOBILE ANTENNA

The antenna is perhaps the most important item in the successful operation of the mobile installation. Mobile antennas, whe ther designed for single or multiband use, should be securely mounted to the automobile, as far from the engine compartment as possibe (for reducing noise pickup), and should be carefully matched to the coaxial feed line which connects them to the
transmitter and receiver. All antenna connections should be tight and weatherproof. Mobile loading coils should be protected from dirt, rain, and snow if they are to maintain their Q and resonant frequency. The greater the Q of the loading coil, the better the efficiency, but the narrower will be the bandwidth of the antenna system.

Though bumper-mounted mobile antennas are favored by some, it is better to place the antenna mount on the rear deck of the vehicle, near the rear window. This locates the antenna high and in the clear, assuring less detuning of the system when the antenna moves to and from the car body. Never use a hase-loaded antenna on a bumper mount if an efficient system is desired. Many operators avoid cutting holes in the car body for fear of devaluation when selling the automobile. Such holes are casily filled, and few car dealers, if any, lower the trade-in price because of the holes.

The choice of base or center loading a mobile antenna has been a matter of controversy for many years. In theory, the center-loaded whip presents a slightly higher base impedance than does the base-loaded antenna. However, with proper imped-ance-matching techniques employed there is no discernible difference in performance between the two methods. A base-foading coil requires fewer tums of wire than one for center loading, and this is an electrical advantage because of reduced coil

Fig. 10.7 - Here a mobile station is used as a portable/emergency station. As such, it can be connected to a full-size stationary antenna for maximum effectiveness. The engine should be noise-suppressed, and should be kept running during operation of the station to assure full battery power. (WA3EOK operating.)

Fig. $10-8$ - Details for making a home-built mobile loading coil. A breakdown view of the assembly is given at A. Brass end plugs are snug-fit into the ends of the phenolic tubing, and each is held in place by four $6-32$ brass screws. Center holes in the plugs are drilled and tapped for $3 / 8-24$ thread. The tubing can be any diameter from one to four inches. The larger diameters are recommended. lllustration B shows the completed coil. Resonance can be obtained by installing the coil, applying transmitter power, then pruning the turns until the lowest SWR is obtained. Pruning the coil for maximum field-strength-meter indication will also sorve as a resonance indication. The chart in Fig. $10-10$ will serve as a guide in determining the number of turns required for a given frequency of operation.
losses. A base-foaded antenna is more stable from the standpoint of wind loading and sway. If a homemade antenna system is contemplated, either system will provide good results, but the base-foaded antenna may be preferred for its mechanical advantages.

Loading Coils

There are many commercially built antenna systems available for mobile operation, and some manufacturers sell the coils as separate units. Air-wound coils of large wire diameter are excellent for use as loading inductors. Large Miniductor coils can be installed on a solid phenolic rod and used as loading coils. Miniductors, because of their turns spacing, are casy to adjust when resonating the mobile antenna, and provide excellent circuit Q. Phenolic-impregnated paper or fabric tubing of large diameter is suitable for making homemade loading coils. It should be
coated with liquid fiber glass, inside and out, to make it weather proof. Brass insert plugs can be installed in each end, their centers drilled and tapped for a $3 / 8 \times 24$ thread to accommodate the mobile antenna sections. After the coil winding is pruned to resonance it should be coated with a high-quality, low-loss compound to hold the turns securely in place, and to protect the coil from the weather. Liquid polystyrene is excellent for this. It can be made by dissolving chips of solid polystyrene in carbon-tetrachloride. Caution: Do not breathe the chemical fumes, and do not allow the liquid to come in contact with the skin. Carbon tetrachloride is hazardous to health. Dissolve sufficient polystyrene material in the liquid to make the remaining product the consistency of Q-dope or pancake syrup. Details for making a home-built loading coil are given in Fig 10-8.

Impedance Matching

Fig. 10-9 illustrates the shunt-feed method of obtaining a match between the antenna and the coaxial feed line. For operation on 75 meters with a center-loaded whip, L2 will have approximately 18 tums of No. 14 wire, spaced one wire thickness between tums, and wound on a l-inch diameter form. Initially, the tap will be approximately 5 turns above the ground end of L2. Coil L2 can be inside the car body, at the base of the antenna, or it can be located at the base of the whip, outside the car body. The latter method is preferred. Since L2 helps determine the resonance of the overall antenna, L1 should be tuned to resonance in the desired part of the band with L2 in the circuit. The

Fig. 10-9 - A mobile antenna using shunt-feed matching. Overall antenna resonance is determined by the combination of L1 and L2. Antenna resonance is set by pruning the turns of L1, or adjusting the top section of the whip, while observing the fieldstrength meter or SWR indicator. Then, adjust the tap on L2 for lowest SWR.

Approximate Values for 8-foot Mobile Whip						
Base Loading						
fkHz	Looding L μH	$\begin{gathered} R \mathrm{c}(Q 50) \\ \text { Ohms } \end{gathered}$	$\begin{gathered} R \mathrm{c}(Q 300) \\ \text { Ohms } \end{gathered}$	R_{R} Ohms	Feed R° Ohms	Marching $L \mu H^{*}$
1800	345	77	13	0.1	23	3
3800	77	37	6.1	0.35	16	1.2
7200	20	18	,	1.35	15	0.6
14.200	4.5	7.7	1.3	5.7	12	0.28
21.250	1.25	3.4	0.5	14.8	16	0.28
29.000		-	-	-	36	0.23
Center Loading						
1800	700	158	23	0.2	34	3.7
3800	150	72	12	0.8	22	1.4
7200	40	36	6	3	19	0.7
14,200	8.6	15	2.5	11	19	0.35
21,250	2.5	6.6	1.1	27	29	0.29
$R_{\mathbf{C}}=$ Loading-coil resistance $; R_{\mathbf{R}}=$ Radiation resistance. Assuming loading coil $Q=300$, and including estimated groundloss resistance. Suggested coll dimensions for the required loading inductance are shown in a following table.						

Fig. 10-10 - Chart showing inductance values used as a starting point for winding homemade loading coils. Values are based on an approximate basełoaded whip capacitance of 25 pF , and a capacitance of 12 pF for center-loaded whips. Large-diameter wire and coils, plus low-loss coil forms, are recommended for best Q.

TABLE 10-1				
Suggested Loading-Coil Dimensions				
Req'd L μH	Turns	Wine Size	$\begin{aligned} & \text { Dia } \\ & \text { In. } \end{aligned}$	Length In
700	190	22	3	10
345	135	18	3	10
150	100	16	2 1/2	10
77	75	14	$21 / 2$	10
77	29	12	5	$41 / 4$
40	28	16	21/2	2
40	34	12	$21 / 2$	$41 / 4$
20	17	16	$21 / 2$	$11 / 4$
20	22	12	$21 / 2$	$23 / 4$
8.6	16	14	2	2
8.6	15	12	$21 / 2$	3
4.5	10	14	2	$11 / 4$
4.5	12	12	21/2	4
2.5	8	12	2	2
2.5	8	6	$23 / 8$	$41 / 2$
1.25	6	12	$13 / 4$	2
1.25	6	6	$23 / 8$	$41 / 2$

adjustable top section of the whip can be telescoped until a maximum reading is noted on the field-strength meter. The tap is then adjusted on L2 for the lowest reflected-power reading on the SWR bridge. Repeat these two adjustments until no further increase in field strength can be obtained; this point should coincide with the Iowest SWR. The number of tums needed for L2 will have to be determined experimentally for 40 and 20 -meter operation. There will be proportionately fewer tums required.

MATCHING WITH AN L NETWORK

Any mobile antenna that has a feed-point impedance less than the characteristic impedance of the transmission line can be matched to the line by means of a simple L network, as shown in Fig. 10-11. The network is composed of C_{M} and L_{M}. The required valucs of C_{M} and L_{M} may be determined from the following:

$$
\begin{aligned}
& C_{\mathrm{M}}=\frac{\gamma R_{\mathrm{A}}\left(R_{\mathrm{O}}-R_{\mathrm{A}}\right) \times 10^{9}}{2 \pi f k \mathrm{H} z} R_{\mathrm{A}} R_{\mathbf{0}} \\
& \mathrm{pF} \text { and } \\
& L_{\mathrm{M}}=\frac{\left.\gamma R_{\mathrm{A}} / R_{0}-R_{\mathrm{A}}\right) \times 10^{9}}{2 \pi f \mathrm{kHz}} \mu \mathrm{H}
\end{aligned}
$$

where R_{A} is the antenna feed-point impedance and $\boldsymbol{R}_{\mathbf{0}}$ is the characteristic impedance of the transmission line.

As an example, if the antenna impedance is 20 ohms and the line is 50 -ohm coaxial cable, then at 4000 kHz ,

$$
\begin{aligned}
C_{\mathrm{M}} & =\frac{\gamma 20(50-20) \times 10^{9}}{(6.28)(4000)(20)(50)} \\
& =\frac{\gamma 600 \times 10^{4}}{(6.28)(4)(2)(5)} \\
& =\frac{24.1}{251.2} \times 10^{4}=974 \mathrm{pF} \\
L_{\mathrm{M}} & =\frac{\gamma 20(50-20) \times 10^{3}}{(6.28)(4000)} \\
& =\frac{\gamma 600}{25.12}=\frac{24.5}{25.12}=0.97 \mu \mathrm{H}
\end{aligned}
$$

The chart of Fig. 10-12 shows the capacitive reactance of C_{M}, and the inductive reactance of L_{M} necessary to match various antenna impedances to 50 -ohm coaxial cable.

In practice, L_{M} need not be a separate inductor. Its effect can be duplicated by adding an equivalent amount of inductance to the loading coil, regardless of whether the loading coil is at the base or at the center of the antenna.

Adjustment

In adjusting this system, at least part of C_{M} should be variable, the balance being made up of combinations of fixed mica capacitors in parallel as needed.

A small one-turn loop should be connected between C_{M} and the chassis of the car, and the loading coil should then be adjusted for resonance at the desired frequency as indicated by a GDO coupled to the loop at the base. Then the transmission line should be connected, and a check made with an SWR bridge connected at the transmitter end of the line.

With the line disconnected from the anterna again, C_{M} should be readjusted and the antenna returned to resonance by readjustment of the loading coil. The line should be connected again,

Fig. 10-11 - A whip antenna may also be matched to coax line by means of an L network. The inductive reactance of the L network can be combined in the loading coil, as indicated at the right.
and another check made with the SWR bridge. If the SWR is less than it was on the first trial, C_{M} should be readjusted in the same direction until the point of minimum SWR is found. Then the coupling between the line and the transmitter can be adjusted for proper loading. It will be noticed from Fig. 10-12 that the inductive reactance varies ondy slightly over the range of antenna resistances likely to be encountered in mobile work. Therefore, most of the necessary adjustment is in the capacitor.

The one-turn loop at the base should be removed at the conclusion of the adjustment and slight compensation made at the loading coil to maintain resonance.

Fig. 10-12 - Curves showing inductive and capacitive reactances required to match a 50 -ohm coax line to a variety of antenna resistances.

Fig. 10.13 - The resonant frequency of the antenna can be checked (A) with a grid-dip meter or (B) by finding the frequency at which minimum feed-line SWR occurs. The lateer method is more accurate at high frequencies because it eliminates the effect of the coupling loop required in A.

CONTINUOUSLY-LOADED HELICAL WHIPS

A continuously-loaded whip antenna of the type shown in Fig. $10-14$ is thought to be more efficient than a center- or base-loaded systern (QST, May 1958, W9KNK). The feed-point impedance of the helically-wound whip is somewhat greater than the previously described mobile antennas, and is on the order of 20 ohms, thus providing an SWR of only 2.5 when $50-\mathrm{ohm}$ coaxial feed line is used. The voltage and current distribution is more uniform than that of lumped-constant antennas. The low SWR and this featurc make the antenna more efficient than the center- or base-loaded types. Antennas of this varicty can be wound on a fiber glass fishing rod, then weatherproofed by coating them with liquid fiber glass, or by encapsulating them with shrinkablc vinyl-plastic tubing.

Tapered Pitch

On frequencies below 28 MHz the radiation resistance falls off so rapidly that for the desired 4and 6 -foot whip lengths the resistanco values are not suitable for direct operation with 50 -ohm lines. It is desirable to raise the feed-point R to a value, approaching 50 ohms so that a matched line condition will exist. Based on extensive experimentation, a rapered-pitch continuous-loading antenna is recommended. Since it is not feasible to wind the helix with continuously varying pitch, a

Abstract

"step-tapered" design is best. A typical step-tapering technique for a variable-pitch helical whip antenna is to divide the total length of the radiator. say 4 feet, into 6 equal parts of 8 inches each. The helix is then wound with a 2 -inch pitch for the first 8 inches, pitches of $1,1 / 2,1 / 4$ and $1 / 8$ inch. respectively, for the next four 8 -inch sections, and finished with close winding of the final section. The resonant frequency will depend upon the rod diameter, wire size and number of turns. However, the variable-pitch 6 -step taper approaches the ideal continuously-variable condition closely enough to give a good 50 -ohm match with a 4 -foot antenna at frequencies between 20 and 30 MHz .

Adjustment

With this design it is difficult to adjust the resonant frequency by changing the tums near the base; however, the frequency may be adjusted very readily by cutting off sections of the tightly-wound portion near the top of the whip. The technique to follow is to design for a frequency slightly lower than desired and then to bring the unit in on frequency by cutting small sections off the top until it resonates at the desired frequency. Resonance can be checked either by the use of a grid-dip meter or by the use of a transmitter and SWR bridge. Reflected power as low as 2 to 5 percent can easily be obtained with the units properly resonated even though it may mean cutting an inch or two off the top closely wound section to bring the unit in on frequency. Thesc values can be obtained in the $10-$ and 15 -meter band with overall lengths of 4 feet and in the 20 - and 40 -meter bands with a length of 6 feet. In the 75 -meter band it has been possible to obtain an SWR of 1.5 using a 6 -foot tapered-pitch helical winding, although the bandwidth is restricted to about 60 kHz . This affords operation comparable to the center coil loaded 12-foot whips. In gencral, the longer the radiator (in wavelengths), the greater the bandwidth. By arbitrarily restricting the physical length to 6 fect, or less, we obtain the following results:

Band	Lengsh	Resonant Firea.	SWR	Bandwidsh for $S W R=2.0$
10 meters	4 feet	29.00 MHz	1.3	800 kHz
15 meters	4 fcet	21.30 MHz	1.4	500 kHz
20 meters	6 feet	14.25 MHz	1.3	250 kHz
40 meters	6 fcet	7.25 MHz	1.5	100 kHz .
75 meters	6 feet	3.90 MHz	1.5	60 kHz

In the $15-, 20$ and 40 -meter bands the bandwidths of the taper-pitch designs are good enough to cover the entire phone portions of the bands. The bandwidths have been arbitrarily

Fig. 10-14 - Dimensions for a 15 -meter steppedpitch whip, wound with No. 20 enameted wire.

Fig. 10-15 - KIMET prunes a capacity hat for antenna resonance at the low end of the 160 -meter band. The Webster Big-K antenna is first tuned for the high segment of the band. The capacity hat is clipped on when operation on the "low end" is desired. Fine adjustments can be made by increasing or decreasing the spacing between the two No. 10 wires.
sclected as that frequency spread at which the SWR becomes 2 on a 50 -ohm line, although with most equipment SWR values up to 2.5 can be tolerated and loading accomplished with ease.

Top-Loading Capacitance

Because the coil resistance varies with the inductance of the loading coil, the resistance can be reduced, beneficially, by reducing the number of turns on the coil. This can be done by adding capacitance to that portion of the mobile antenna that is above the loading coil. To achieve resonance, the inductance of the coil is reduced proportionally. Capacity "hats," as they are often called, can consist of a single stiff wire, two wires or more, or a disk made up from several wires, like the spokes of a wheel. A solid metal disk can also be used. The larger the capacity hat, in terms of mass, the greater the capacitance. The greater the capacitance, the smaller the amount of inductance needed in the loading coil for a given resonant frequency.

There are two schools of thought concerning the attributes of center-loading and base-loading. It has not been established that one system is superior to the other, especially in the lower part of the hf spectrum. For this reason both the baseand center-loading schemes are popular. Capacityhat loading is applicable to either system. Since more inductance is required for center-loaded whips to make them resonant at a given frequency. capacity hats should be particularly useful in improving their efficiency.

REMOTE ANTENNA RESONATING

Fig. 10-17 shows circuits of two remote-control resonating systems for mobile antennas. As shown, they make use of surplus dc motors driving a

Fig. 10-16 - A capac. itance "hat" can be used to improve the performance of base- or center-loaded whips. A solid metal disk can be used in place of the skaleton disk shown here.
loading coil removed from a surplus ARC-5 transmitter. A standard coil and motor may be used in either installation at increased expense.

The control circuit shown in Fig. 10-17A is a three-wire system (the car frame is the fourth conductor) with a double-pole double-throw switch and a momentary (normally off) single-pole single-throw switch. S2 is the motor reversing switch. The motor runs so long as S1 is closed.

The circuit shown in Fig. 10-17B uses a latching relay, in conjunction with microswitches, to reverse automatically the motor when the roller reaches the end of the coil. S3 and S5 operate the relay, K1, which reverses the motor. S4 is the

Fig. 10-17 - Circuit of the remote mobile-whip tuning systems.
K1 - Dpdi latching relay.
S1. S3, S4, S5 - Momentary-contact spst, normally open.

S2 - Dpdt toggle.

S6, S7 - Spst momentary-contact microswitch, normally open.
motor on-off switch. When the tuning coil roller reaches one end or the other of the coil, it closes S6 or S7, as the case may be, operating the relay and reversing the motor.

The procedure in setting up the system is to prune the center-loading coil to resonate the antenna on the highest frequency used without the base-loading coil. Then, the basc-loading coil is used to resonate at the lower frequencies. When the circuit shown in Fig 10-17A is used for
control, S1 is uscd to start and stop the motor, and S2, set at the "up" or "down" position, will determine whether the resonant frequency is raised or lowered. In the circuit shown in Fig 10-17B, S4 is used to control the motor. S3 or SS is momentarily closed (to activate the latching relay) for raising or lowering the resonant frequency. The broadcast antenna is used with a wavemeter to indicate resonance, (Originally described in QST. December 1953.)

VHF MOBILE ANTENNAS

The three most popular vhf mobile antennas are the so-called halo. the turnstile, and the $1 / 4$-wavelengith vertical. The same rules apply to the installation and use of these antennas as for antennas operated in the hf bands - mounted as high and in the cleas as possible, and with good electrical connections throughout the system.

The polarization chosen - vertical or horizontal - will depend upon the application and the area of the USA where operation will take place. It is best to use whatever polarity is in vogue for your region, thus making the mobile signal compatible with those of other mobiles of fixed stations. Vertically polarized mobile antennas are more subject to pattern disturbance than horizontal types. That is to say, considerably more flutter will be inherent on the signal than with horizontal antennas. This is because such objects as trees and power poles. because of their vertical profile, tend to prosent a greater path obstacle to the vertical antenna. It is becoming common practice, however, to use omnidirectional, vertically polarized vhf mobile antennas in connection with $\mathrm{fm} /$ repeater mobile service, even in areas where horizontal antennas are favored.

Both the tumstile and halo antennas art horizontally polarized. The halo is physically small, but is less effective than a tumstile. It is a half-wavelength dipole bent into a circle, and because the ends are in close proximity to one another, some signal cancellation occurs. This renders the anterna less efficient than a straight center-fed dipole. Halos do not offer a perfectly circular radiation pattern, though this has been a popular belief. Tests indicate that there is definite directivity, though broad, when a halo is rotated 360 degrees over a uniform plane surface.

5/8-WAVELENGTH 220-MHz MOBILE ANTENNA

This antenna was developed to fill the gap between a homemade $1 / 4$-wavelength mobile antenno and a commercially made $5 / 8$-wavelength model. There lave been other antennas made using modified citizens band models. This still presents the problem of cost in acquiring the original antenna. The major cost in this setup is the whip portion. This can be any tempered rod that will not take a set easily.

Fig. 10-19 - Schematic representation of the Big Wheel at B. Three one-wavelength elements are connected in parallel. The resulting low fead impedance is raised to 52 ohms with an inductive stub. Illustration A shows the bend details of one element for $144 \cdot \mathrm{MHz}$ use.

Construction

The base insulator portion is constructed of $1 / 2$-inch Plexigles rod. A few minutes work on a lathe was sufficient to shape and drill the rod. The bottom $1 / 2$-inch of the rod is tumed down to a diameter of $3 / 8$-inch. This portion will now fit into a PL-259 uhf connector. A hole, $1 / 8$-inch diameter, is drilled through the center of the rod. This hole will contain the wires that make the connections between the center conductor of the connector and the coil tap. The connection between the whip and the top of the coil is also run through this opening. A stud was force-fitted into the top of the Plexiglas rod. This allows the whip to be detached from the insulator portion.

The coil should be initially wound on a form slightly smaller than the base insulator. When the coil is transferred to the Plexiglas rod it will keep its shape and will not readily move. After the tap

As can be seen in the photograph, the bottom end of the coll can be soldered directly to the connecior.
point has been determined, a longitudinal hole is drilled into the center of the rod. A No. 22 wirc can then be inserted through the center of the insulator into the connector. This method is also used to attach the whip to the top of the coil. After the whip has been fully assembled a coating of epoxy cement was applied. This sealed the entire assembly and provided some additional strength. During a full winter's use, there was not any sign of cracking or mechanical failure.

Adjustment

Prior to final assembly of the whip antenna, the correct tap point should be determined. The correct point will produce the least reflected power. The whip length should be cut initially for the desired operating frequency.

TWO-METER 5/8-WAVELENGTH VERTICAL

Probably the most popular antenna used by the fm group is the $5 / 8$-wavelength vertical. As stated previously, this antenna has some gain when compared to a dipole. The antenna can be used in either a fixed location with radials or in a mobile

Fig. $10-20$ - Diagram of $5 / 8$-wavelength 220 MHz mobile antenna.
installation. An inexpensive antenna of this type can be made from a modified CB whip. The antenna shown in Figs. 1 and 2 is a $5 / 8$-wavelength. 2-meter whip.

There are a number of different types of $C B$ mobile antennas available. This particular antenna to be modified consists of a clamp-on trunk mount, a base loading coil, and a 39 -inch springmounted, stainless-steel whip.

The modification consists of removing the loading-coil inductance, winding a new coil, and mounting a 3-30 pF trimmer in the bottom housing. The capacitor is used for obtaining a precise match in conjunction with the base coil tap.

The first step is to remove the weatherproof phenolic covering from the coil. Remove the base housing and clamp the whip side of the antenna in a vise. Insert a knife blade between the edge of the whip base and the phenolic covering. Gently tap the knife edge with a hammer to force the housing away from the whip section.

Next, remove the coil turns and wind a new coil using No. 12 wire. The new coil should have nine turns, equally spaced. The tap point is two turns up from the base (ground) end on the antenna as

Fig. 2 - Circuit diagram of the whip antenna. C1 is a 3- to $30-\mathrm{pF}$ trimmer.

Fig. 10-22 - Details for building a halo antenna for 6 - or 2 -meter use are shown at A. Other mechanical methods are possible, and the construction technique used will be up to the builder. The open end of the coax cable should be sealed against the weather. At B, a schematic representation of the halo. Dimension a is set for $1 / 2$ wavelength at the operating frequency. The chart gives approximate dimensions in inches, and will serve as a guide in building a halo.
modified. The trimmer capacitor is mounted on a terminal strip which is installed in the base housing. A hole must be drilled in the housing to allow access to the capacitor adjustment screw.

Initially, the tap on the coil was tried at three turns from the bottom. The antenna was mounted on the car, an SWR indicator was inserted in the feed line, and Cl and the whip height were adjusted for a match. A match was obtained, but when the phenolic sleeve was placed over the coil, it was impossible to obtain an adjustment that proved a match. Apparently the dielectric material used in the coil cover has an effect on the coil. After some experimenting it was found that with the tap two turns up from the bottom, and with the cover oves the coil, it was possible to get a good match with 50 -ohm line.

This antenna can be used in a fixed location by adding radials. The radials, three or four, should be slightly longer than $1 / 4$-wave and should be attached to the base mounting section.

THE QUARTER-WAVELENGTH VERTICAL

Ideally, the vhf vertical antenna should be installed over a perfectly flat plane refector to
assure uniform omnidirectional radiation. This suggests that the center of the automobile roof is the best place to mount it. Altematively, the flat portion of the auto's rear trunk deck can be used, but will result in a directional pattern because of car-body obstruction. Fig. 10-23 illustrates at A and B how a Millen high-voltage connector can be used as a roof mount for a $144-\mathrm{MHz}$ whip. The hole in the roof can be made over the dome light. thus providing accessability through the upholstery. RG-59/U and matching section L, Fig. $10-23 \mathrm{C}$, can be routed between the car roof and the ceiling upholstery and brought into the trunk compartment, or down to the dashboard of the car. Some operators install an SO-239-type coax connector on the roof for mounting the whip. The method is similar to that of drawing A.

VHF HALO ANTENNAS

The antenna of Fig. 10-22 can be built from aluminum tubing of nedium tensile strength. The one-half-wavelength dipole is bent into a circle and fed with a gamma match. Capacitor c is shown as a fixed value, but a variable capacitor mounted in a weatherproof box will afford more precise

Fig. 10-23 - At A and B, an illustration of how a quarter-wavelength vertical antenna can be mounted on a car roof. The whip section should be soldered into the cap portion of the Millen connector, then screwed to the base socker. This handy arrangement permits removing the antenna when desired. Epoxy cement should be used at the two mounting screws to prevent moisture from entering the car. Diagrams C and D are discussed in the text.

50 MHz	144 MHz
$\mathrm{Cl}=100 \mathrm{pF}$	35 pF
C2:25pF	15 pF
Lil $=2$ Ts NO.J6	2 Ts NO, 16
ENAM.,	
L2*5 Ts Na, 10 $1-1 / 2^{*} D I A$	$\begin{aligned} & 4 \text { Ts NQ. } 10 \\ & \text { i".DIA. } \end{aligned}$

Fig. 10-24 - Schematic diagram of the 6- or 2 -meter antenna-matching circuit for use at the base of the quarter-wavelength vertical antenna. It can be housed in a Minibox and mounted permanently at the antenna base, inside or outside the car. If used outside, it should be sealed against) dirt and moisture.
adjustment of the SWR. Or, a variable capacitor can be used initially for obtaining a $1: 1$ match, then its value can be measured at that setting to determine the requircd value for fixed capacitor c. Fixed-value capacitor c should be a dipped silver mica. A $75-\mathrm{pF}$ variable should be used for 6 -meter antennas, and a $35-\mathrm{pF}$ variable will suffice for 144 MHz .

The tubing of a can be flattened to provide a suitable mounting surface for attachment to the insulating block of Fig. 10-22A. Gamma rod $b \mathrm{can}$ be secured to the same block by flattening its end and bolting it in place with $4-40$ brass hardware. The spacing at d can be varied during final adjustment to secure the lowest SWR. Better physicas stability will result if a high-dielectric insulator is connected across area d. Steatite
material is recommended if an insulatoz/stabilizer is used.

If $75-\mathrm{ohm}$ transmission line is used for the vertical, a quarter-wavelength matching transformer, L, can be used to match the feed impedance of the whip - approximately 30 ohms - to that of the feed line. A section of 50 -ohm coax inserted as shown provides a close match to the antenna. Coax fittings can be used at junction a to assure a flat line, and to provide mechanical flexibility. BNC connectors are ideal for use with small coax lincs. Illustration D shows how a scrics capacitor can be used to tune the reactance out of the antenna when using 50 -ohm feed line. For $144-\mathrm{MHz}$ use it should be 35 pF . A $75-\mathrm{pF}$ variable will suffice for 6 -meter antennas. An SWR bridge should be connected in the line while c is tuned for minimum reflected-power indication.

A more precise method of matching the line to the antenna is shown in Fig. 10-24. This antenna coupler can match 50 or 75 -ohm lines to any antenna impedance from 20 ohms to several hundred ohms. It should be installed at the base of the vertical, and with an SWR bridge in the line C1 and C2 should be adjusted for the lowest SWR possible. The tap near the ground end of L2 should then be adjusted for the lowest SWR, readjusting C1 and C2 for minimum reflected power each time the tap is moved. A very compact tuner can be built by scaling down the coil dimensions appropriately. Trimmer capacitors can be used for C 1 and C 2 if power levels of less than 50 watts are used.

MOBILE POWER SUPPLIES

Most modern-day mobile installations utilize commercially-built equipment. This usually takes the form of a transceiver for ssb on the hf bands, and ssb or $\mathrm{a}-\mathrm{m}$ for vhf operation. For fm operation in the vhf bands, most transceivers are surplus units which were originally used by commercial land-mobile services. Some home-built equipment is still being used, and it is highly recommended that one consider building his own mobile installation for the technical experience and satisfaction such a project can afford.

Many mobile transceivers contain their own power supplics for $6-$ and 12 -volt dc operation. Some internal power supplies will also wark off the 117-V mains. Vibrator power supplics are quite popular for low and medium power levels, but solid-state supplies are more reliable and efficient. Dynamotors are still used by some operators, but are bulky, noisy, and inefficient. The latter imposes an extremely heavy drain on the car battery, and does not contribute to long-term mobile or emergency operation without having the engine running at fairly high rpm to maintain the charge level of the battery.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double armature
winding. One winding serves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated fromz 6-, 12-, 28 or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Commutator noise is a common cause of poor reception when dynamotors are used. It can usually be cured by installing $.002-\mu \mathrm{F}$ mica bypass capacitors from the dynamotor brushes (highvoltage end of amature) to the frame of the unit, preferably inside the cover. The high-voltage output lead from the dynamotor should be filtered by placing a . $01-\mu \mathrm{F}$ capacitor in shunt with the line (a $1000-\mathrm{V}$ disk), followed by a $2.5-\mathrm{mH}$ rf choke (in series with the line) of adequate current rating for the transmitter or receiver being powered by the dynamotor. This network should be followed by a smoothing filter consisting of two $8-\mu F$ electrolytic capacitors and a 15 - or $30-\mathrm{H}$ choke having a low dc resistance. The commutator and its grooves, at both crads of the arnature, should be kept clean to further minimize noise. Heavy, direct leads should be used for connecting the dynamotor to the storage battery.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a

Fig. 10-25 - Basic types of vibrator power supplies. A - Nonsynchronous. B - Synchronous.
vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting square-wave dc pulses in the primary of the transformer cause an alternating voltage to be developed in the secondary. This high-voltage ac in tum is rectified, either by silicon diode rectifiers or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating dc, which may be filtered by ordinary means. The smoothing filter can be a single-section affair, but the output capacitance should be fairly lange - 16 to $32 \mu \mathrm{~F}$.

Fig. 10-25 shows the two types of circuits. At A is shown the nonsynchronous type of vibrator. When the battery is disconnected the reed is midway between the two contacts, touching neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, causing cument to flow through the lower half of the transformer primary winding. Simultaneousiy, the magnet coil is short-circuited, de-energizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

The synchronous circuit of Fig. 10-25B is provided with an extra pair of contacts which rectifies the secondary output of the transformer, thus eliminating the need for a separate rectifier tubc. The secondary center tap furnishes the
positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connections may be determined by experiment.

The buffer capacitor, C2, across the secondary of T, absorbs spikes that occur on breaking the current, when the magnetic ficld collapses almost instantly and hence causes high voltages to be induced in the secondary. Without C2 excessive sparking occurs at the vibrator contacts, shortening the vibrator life. Resistor R1 is parl of the buffer and serves as a fuse if C 2 should short out, thus protecting the vibrator and transformer from damage. Values between 1000 and 5600 ohms, 1 watt, are commonly used. Correct values for C 2 lie between .005 and $.03 \mu \mathrm{~F}$, and for $220-350-\mathrm{V}$ supplies the capacitor should be rated at 2000 V or better, dc. The exact capacitance is critical, and should be determined experimentally while observing the output waveform on an oscilloscope for the least noise output. Alternatively, though not as effective a method, the capacitor can be selected for least sparking at the vibrator contacts.

Vibrator-transformer units are available in a variety of power and voltage ratings. Representative units vary from one delivering 125 to 200 volts at 100 mA to others that have a 400 -volt output rating at 150 mA . Most units come supplied with "hash" filters, but not all of them have built-in ripple silters. The requirements for ripple filters are similar to those for ac supplies. The usual efficiency of vibrator packs is in the vicinity of 70 percent, so a 300 -volt $200-\mathrm{mA}$ unit will draw approximately 15 amperes from a 6 -volt storage battery. Special vibrator transformers are aiso available from transformer manufacturers so that the amateur may build his own supply if he so desires. These have dc output ratings varying from 150 voits at 40 mA to 330 volts at 135 mA .

"Hash" Elimination

Sparking at the vibrator contacts causes if interference ("hash," which can be distinguished from hum by its harsh, sharper pitch) when used with a receiver. To minimize this, If filters are incorporated, consisting of RFC1 and C1 in the battery circuit, and RFC2 with C3 in the dc output circuit.

Equally as important as the hash filter is thorough shielding of the power supply and its connecting leads, since even a small piece of wire or metal will sadiate enough if to cause interference in a sensitive amateur receiver.

TRANSISTORIZED POWER SUPPLIES

Most present-day mobile equipment is powered by solid-state de-to-dc converters. They are somewhat similar to vibrator supplies in that they use power transistors to switch the primary voltage of the transformer. This technique eliminates sparking in the switching circuit, and offers greater reliability and efficiency. The switching transistors can be made to oscillate, by means of a fecdback winding on the transformer, and by application of forward bias on the bases of the switching
transistors. The switching rate can be set for any frequency between 50 Hz and several thousand Hz and depends to a great extent upon the inductance of the transformer windings. The switching waveform is a square wave. Therefore, the supply is capable of causing a buzzing sound in transmitter or receiver output in much the same fashion as with a vibrator supply. Rf filtering should be employed as a corrective measure. At higher switching rates the buzz becomes a whine which sounds like that from a dynamotor. High-frequency switching rates are preferred for de-to-de converters because smaller transformer cores can be used, and because less output filtering is required. The efficiency of a well-designed solid-state power suuply is on the order of 80 percent, an improvement over the usual 60 to 70 percent of vibrator supplies, or the miserable 30 to 40 percent of dynamotors.

A typical transistorized supply is shown in Fig $10-26$. The supply voltage is fed into the emitter circuit of Q1-Q2. A resistive divider is used to obtain forward bias for the transistors through base-fcedback-winding 1. The primary switching takes place between the emitter and collector of each transistor. Q1 and Q2 are connected in push-pull and conduct on alternate half cycles. As each transistor is driven into conduction it saturates, thus forming a closed contact in that leg of the circuit. The induced voltage is stepped up by T, and high-voltage appears across winding 3. Zener diodes CR1 and CR2 protect Q1 and Q2 from voltage spikes. They should be rated at a voltage slightly lower than the Vce of the transistors. Diodes CR3 through CR6 form a bridge rectifier to provide de output from winding 3. Some supplies operate at a switching rate of 2000 to 3000 Hz . It is possible to operate such units without using output rectificrs, but good filtering is needed to remove the ripple from the de outpul.

Transistor Selection

The switching transistors should be able to handle the primary current of the transformer. Since the feedback will diminish as the secondary load is increased, the beta of the transistors, plus

Fig. 10-26 - Typical de-to-dc converter. Ratings for CR3-CR6, and the $100-\mu \mathrm{F}$ filter capacitor can be selected from data in the power-supply chapter.
the design of the feedback circuit, must be sufficient to sustain oscillation under full-load conditions. During no-load conditions, the feedback voltage will reach its highest peak at the bases of Q1 and Q2. Therefore, the transistors must be rated for whatever base-emitter reverse voltage that occurs during the cutoff period. Since the transistors must be able to handle whatever peak voltage occurs during the switching process, it is wise to stay on the safe side. Choose transistors that have a Vceo rating of three or four times the supply voltage, keeping in mind that fulls charged automobile batteries can deliver as much as 14 volts. Heat sinks should be used on Q1 and Q2 to prevent damage from excessive heating. The larger the heat sink, the better. Under full-foad conditions the transistors should only be slightly warm to the touch. If they are running hot, this will indicate inadequate heat sinking, too great a secondary load, or too much feedback. Use onty enough feedback to sustain ascillation under full loading, and to assure rapid starting under the same conditions.

MOBILE POWER SUPPLY FOR TRANSCEIVERS

Transceivers, such as the Heath SB-102, and the Drake TR 4 require a separate power supply when operated from 12 -volts dc. Additionally, linear amplifiers can be run from a separate dc supply to allow increased power operation from relatively low-power transceivers. The unit described here, when operated from 12 -volts dc, will deliver approximately 900 -volts dc at $300 \mathrm{~mA}, 250$-volts dc at 200 mA , negative $150-v o l t s ~ d c$ at 40 mA , and an adjustable bias voltage from 10 to 150 volts of dc.

The Circuit

A common-emitter configuration is used with diodes to provide a return path for the fcedback
winding, as shown in Fig. 10-28. Assuming that Q2 conducts first, the base is driven negative by the feedback winding (connections 6 and 7 on Tl). CR15 then conducts, thereby protecting the base of Q1. CR14 is back-biased to an open circuit when Q2 is conducting. When T1 saturates producing a square wave, the voltage at pins 6 and 7 of T1 reverses turning on Q1. When Q2 conducts, current flows through the primary of $\mathbf{T} 2$ in one direction and as Q1 conducts, current flows through the primary of $T 2$ in the other direction. This reversal of current in the primary of $T 2$ provides an alternating square-wave voltage which is stepped up by the secondary winding. Full-wave rectification with current limiting is used with each secondary winding.

Fig. 10-27 - The heat sinks are mounted on an aluminum panel. When installing a power supply of this type, be sure to keep the heat sink fins in a vertical position to provide best air circulation. All of the filter capacitors are mounted in a row across the front of the chassis. RFC1 is located next to the transformer. Two sockets are mounted on the chassis side wall to accept an interconnecting cable from the transceiver. To the left of these sockets is the bias voltage adjustment control, R3. This model of the power supply was built by W8HS and assistance was given by W8DDO, W9IWJ \{of Delco Radio Corp.). and Jim Osborne (of Osborne Transformer Co.l.

The supply oscillates at about 1000 Hz and audible noise is low. The main power to the supply is applied through K1B. K1A can be connected in parallel with the filament supply in the transceiver.

Hash filtering is provided by RFCl and its associated bypass capacitors in the primary lead. Transient suppression is assured by CR13, CR16 and CR17. Bleeder resistors are used on each supply leg to provide a constant minimurn load for the circuit. The supply can be operated without being connected to its load without fear of damaging the diodes or transistors, although this is not considered good practice. Input and output connectors for interconnection to the battery and the transcciver can be selected to meet the needs of the particular installation.

Construction

This circuit requires that the transistors be insulated from the heat sink. Suitable insulators are included with the devices. Silicone grease should be used to help conduct the heat away from the transistors.

No attempt has been made to make the supply small. It is built on a $12 \times 6 \times 3$-inch chassis which allows plenty of room for the heavy conductors. The capacitors are mounted in a row along one side

Fig. 10.28 - Circuit diagram of the mobile power supply. Polarized capacitors are electrolytic, others are paper or mica. Resistances are in ohms. Component designations not listed below are for text reference.

CR1-CR13, incl. - 1000-PRV. 1.5-A silicen diode (Mallory MR 2.5 A or equiv.).
CR14, CR15 - 50-PRV, 3-A silicon diode (G.E. A15F).
CR16, CR17 - 18-volt, 1 -watt, Zener diode (Motorola 1 N4746).

K1 - Spst contactor relay, 60-A. 12-volt de coil (Potter and Brumfield MB3D).
Q1, Q2 - Delco 2N1523 transistar (substitutions not recommended). Delco insulator kits (No. 7274633) are required. The heat sinks are Delco part No. 7281366.
R3-100,000-ohm, 3 watt, linear-taper controi
RFC1 - 20 turns, No. 10 enam, wire on a $1 / 4$-inch dowel.
T1 - Feedback transformer, $1000-\mathrm{Hz}$ (Osborne 6784).

T2 - Hipersil transformer, $1000-\mathrm{Hz}$ (Osborne 21555).
of the chassis. The heat sinks, shown in the photograph, are mounted on a $1 / 8$-inch-thick aluminum back plate.

The leads from the battery to the relay, and from the relay to the transistors and T1, should be No. 6 or No. 8 conductors. All ground leads should be connected to one point on the chassis. The wiring layout is uncritical and no other special precautions are necessary.

Operation

The power supply should be mounted as close to the battery terminals as possible to minimize voltage drop. If the supply is trunk mounted, $1 / 4$-inch conductors should be used to connect it to the battery. A 300 -volt tap is available on the secondary of T2. If the transciever requires more than 250 volts for proper operation, this tap can be used.

AMATEUR RADIO AFLOAT

Many amateurs like to combine two hobbies . . . radio and boating. While operating an amatcur station from a boat is similar to other forms of portable operation, there are a few important differences. For one thing, equipment must be protected from occasional contact with salt water. Even in large boats with suitable cabins, it always secms an "accident" of some sort manages to occur. Someone handles a piece of equipment with wet hands or a hand-held transceiver is operated in an area of the boat subject to spray and spume. The combination of salt, air and time then do a job that experienced boaters might equate to the action of the most corrosive acid.

Since portable equipment is the most likely to encounter such hazards, protecting this kind of gear with a plastic bag is one measure that can be taken as shown in the photograph. Insert the transceiver into a suitable bag and securely tic the top opening around the whip antenna. Usually, the controls can still be manipulated with only minor inconvenience. While the method isn't waterproof, it docs provide adequatc protection for most purposes.

Low-voltage connectors, especially those subject to the weather, may benefit from a liberal coating of marine lube both inside and on the threads. (The same method is also useful for the sockets in trailer lights.) When possible, coaxial

Small inverters such as this one produce a squarewave output and electronic equipment may have to be modified accordingly.

Low-cost insurance is provided by weatherproofing portable gear in plastic bags. Be sure to remove bag when taken ashore and discard bags at first sign of wear.
cable should be looped so that a small section is above the connection to the antenna. This will prevent water from running down inside the cable jacket after a period of time.

De-toac inverters can be built and are available commercially, including a model that comes in kit form. However, the output of such inverters is usually a square wave. As a consequence, some noise or buzz may occur in electronic equipment and additional filtering may be required. Also, even though the rms voltage from a square-wave inverter is rated at the same value as an ordinary residential service, the peak values are different. The peak voltage from a square wave is equal to the rms value while the peak voltage of a sine wave is 1.707 times the rms value. Since the output of most power supplies lies between the rms and peak value, a lower de output voltage may occur when an inverter is used.

Mobile-like antennas such as whips are frcquently employed at hf and the question arises of a

Unless you intend to go "First Class," as in this U.S. Navy patrol craft, be prepared for some tough technical problems (WB2VYU//MMR2 operates his SB-102 into a 28 -foot whip and his "shack" would be the envy of many boaters).
ground return for the rf currents. In the case of a metal boat, or an antenna with a high feed-point impedance (such as a half-wavelength vertical whip), the problem is simple and cither a connection to the metal boat or a short conductor immersed in the water should suffice. A piece of metal sheet fastened to the bottom might be a suitable substitute for low-impedance types such as quarter-wavelength whips. If the sheet is large enough, paint and other coatings shouldn't cause ill effects since the capacitance between the plate and the water may be sufficient to provide adequate coupling.

Bands to Use

In most cases, excursions are limited to a few miles offshore and vhf operation should prove sufficient in regards to activity and range. Since many boaters tend to favor a certain area, a check on the local repeater situation might be in order if continued operation in one region is the rule. On the other hand, bands such as 10 meters are ideal if activity is sufficient. Getting antennas of electrical length such that efficiency is not a problem is relatively easy and "local" propagation on this band is excellent especially over salt watcr. Ranges are extended by a considerable margin over propagation distances on land. The lack of atmospheric noise and QRM means low power should prove effective.

Offshore cruising is ordinarily limited to larger craft. and the hf range from 40 meters might be considered for this type of work. If $117 \mathrm{~V} \mathrm{ac}, 60$ Hz . is available, fixed-station operation can be employed. Dicsel engines have no ignition system in the normal sense and electrical noise should not be a problem. However, if an auxiliary gasoline generator is to supply the power, adequate noisesuppression measures should be taken.

If the power source consists of some other type than 117 V ac. 60 Hz , one might as well be
resigned to the fact conversion problems may be practically insurmountable. Rotary converters are large, heavy, expensive and inefficient. Solid-state models are good for only low-power applications and ones suitable for high-power work are apt to be hard to obtain. In addition, if operation from lead-acid storage batteries is contemplated, another difficulty exists. While such cells are useful in delivering large amounts of current for short periods of time, the voltage drop becomes severe with moderate loads over longer periods. This is because bubbles tend to form on the plates and temporarily increase the internal resistance of the cell. As a consequence, inverters and other solidstate equipment do not function as efficiently since such gear is usually designed for a nominal voltage of 13.8. Unfortunately, there are no easy solutions to this particular problem and plans in such matters as purchasing equipment should be made accordingly.

Other Uses of Radio

Even if amateur operation from a small boat is not contemplated, there are other applications of radio that might be of interest. In many areas, continuous broadcast of weather is sent out over special fm slations on approximately 162.4 MHz . Receivers that cover this range could be built but they are also readily available commercially at low cost. The Coast Guard maintains a system of radio-direction-finding stations in the If range. Location and frequency of these stations are contained in charts and in lists published by the government. While such equipment is usually unnecessary for inshore excursions, having RDF equipment is handy for offshore trips. However, noise difficulties with gasoline engines are apt to be a problem unless adequate suppression is employed. Since RDI' gear is usually battery powered, the engine can be shut off while readings are taken.

Fig. 10-32 - A band-switched field-strength meter for tuning up the hf band mobile antenna. It should be assembled in a metal box. In use, it should be placed several feet from the antenna under test. C1 is tuned for a peak meter reading at the operating frequency. It can be detuned for varying the sensitivity.

A BAND-SWITCHING FIELD-STRENGTH METER

The circuit of Fig. 10-32 can be used for tuning the mobile antenna system to resonance. It covers a range from 1.8 to 30 MHz . A single toroidal inductor is used in the tuned circuit. The coil is tapped to provide band switching by means of SI. Cl is tuned for a peak meter reading at the transmitter's output frequency. The unit should be housed in a metal utility box. A banana jack can be used for attaching the short whip antenna.

An Amidon Associates E-core, No. T-68-2, is
wound with 50 tums of No. 26 enamel wire. It is tapped 10 tums from ground for 15 - and 10 -meter use, 18 turns from ground for 20 meters, and 36 turns above ground for 40 meters. The entire 50 turns are used for 80 and 160 meters. S2 adds a 330-pl: capacitor for 160 -meter operation. SI can be a single wafer, single-pole, 5-position rotary switch of phenolic or ceramic insulation. S2 can be a spst slide switch. Cl is a Hammarlund $\mathrm{HF}-100$ capacitor, or equivalent. (Amidon cores can be obtained from Amidon Associates, 12033 Otsego St., N. Hollywood, CA 91607.)

A DIRECT-CONVERSION KILOGRAM

FOR 20 AND 40 METERS

When portability, low current drain, and simplicity are required in a receiver, it is hard to beat the technique of direct conversion. The anit described here covers the cw portion of both 20 and 40 meters. As total power consumption is on the order of 0.6 watt, battery operiation is practical. Packaged in an aluminum box only $6 \times 7 \times 3$ inches (HWD), the receiver weighs in at about one kilogram (2.2 pounds) and fits easily inside a suitcase. The receiver is designed to be compatible with the low-power solid-state transmitier described in Chapter 6.

Circuit Overview

This approach to direct conversion uses an FET as a $\overline{\text { Ixed}}$-tuned ri amplifjer, switchable between 20 and 40 meters. An IC transistor array serves as the heart of a band-switched local oscillator. A differential amplifier IC functions as a product detector. The audio channel uses an FET to establish a low noise figure, followed by a high-gain
wide-band IC amplificr. Audio selectivity is achieved through the use of a two-stage active filter. A signal strength indication is obtained through the use of an audio-derived S-meter circuit.

Circuit Description

Q1 operates as a grounded-gate ri amplifier. C1, a front-panel mounted broadcast type variable capacitor, peaks the input of the stage for 40 or 20 -meter reception. The output of the stage is tuned to 20 meters by I.3-C3. Onc pole of S1 switches additional capacjtance in parallel with C3 for 40 -meter operation. $\mathbf{L 4}$ couples if energy to the input of the product detector, U1. Local-oscillator injection is applied to pin 2 of U 1 , the base of the internal constant-current source transistor. The local oscillator is built around a CA 3046 IC transistor array, and is identical to the VFO used in the companion transmitter described in Chapter 6.

The CA 3046 contains three independent NPN

C1 - 365-pF miniature variable,
C3, C4 - 60-pF trimmer (Erie 538-011F-15-60 or equiv.).
C16, C17, C18, C19, C42, C43-1000-pF polystyrene.
C21 - 47-pF NPO.
C24 - three-section, 20-pF-per-section variable, two sections used (J.W. Miller 1460 or similar).
CR1 - Silicon diode
J1 - Phorie jack.
J2 - Miniature phone jack
J3, J4, J6 - Phono jack.
J5 - SO-239 connector.
L1 - 2 turns small diameter hookup wire over L2. L2 - 18 turns No. 22 enam. wound on Amidon T50-6 core (tap 4 turns above ground)
L3 - 25 turns No. 24 enam. wound on T50-6 core.
L4 - 6 turns small diameter hookup wire, center tapped, over L3.
L5 - 3.0-7.0 $\mu \mathrm{H}$ shielded variable inductor (J.W.

while the CA3045 is packaged in a plastic case.
In this application, one transistor is used that the CA3046 is packaged in a ceramic case, identical pin connections and electrical character available surplus very inexpensively. The ICs have inline package. The RCA CA3045 is directly
interchangeable with the CA3046, and they are silicon transistors plus one differentially connected
transistor pair, and is available in a 14 pin dual

Miller 9051 or equiv.).
L6 - 1.5-3.0 $\mu \mathrm{H}$ shielded variable inductor. (J.1N. Miller 9050 or equiv.).
M1 - 100 microampires full scale.
Q1, O2 - MPF. 102.
Q3 - 2N2222 or equiv,
S1 - 4pdt slide switch (Radio Shack 275-405).
S2 - spdt toggle switch.
T1 - Miniature interstage transformer, 2000 -ohm ct to 10,000 ohms (Radio Shack 273-1378).
U1 - CA3028A.
U2 - CA3046 or CA3045.
U3 - HEP C6010 or MFC 4010A.
U4 - Dual 741 op amp (Radio Shack 276-038 or equiv.).
U5 - LM301 A op amp.
U6 - CA3600E.
VR1 - 8.2-volt, 1-watt Zener diode.

Fig. 2 - Inside view of the receiver. Most of the components are mounted on a 4×6-inch printedcircuit board. The ri amplifier and product dgtector components are grouped together at the upper laft corner of the board, while the audio channel occupies the left foreground. The VFO main-tuning capacitor. C24, is centered in the cabinet, and is positioned directly over the VFO. The S-meter amplifier circuitry is visible at the right.

CA3046 have a rated F_{T} of 550 MHz . R30, R37, and R45 are used to prevent vhf parasitic oscillations from occurring. S1B may be used to select either 40 or 20 -meter output from the local oscillator, and SIC applies 12 volts dc to the frequency doubler portion of the oscillator for 20 -meter operation. With the component values shown, the receiver covers 7.0 to 7.15 MHz and 14.0 to 14.3 MHz A miniature interstage transformer, T 1 , is used to couple the output of the product detector to the audio channel. Q2 functions as a moderate-gain, low-noise audio preamplifier, which is followed by the integrated high-gain amplifier U3. Q3 has been included to allow for muting of the receiver during transmitting periods by the application of 12 volts de to R 19 (in series with the base of Q3) by means of a contact on the transmitter's T-R relay. This biases Q3 into conduction and effectively breaks the circuit path between Q2 and U3. A miniature pot is used at R45, which serves as the af gain control. The setting of R45 detcrmines the input level to U4A-U4B. A small part of the output of U3 (taken off before the af gain control) is used to drive the S-meter ctrcuitry. Audio selectivity for the receiver is provided by two cascaded active filter sections consisting of a dual 741 op amp, U4A-U4B, plus associated passive components. With the values
shown in the schematic each individual filter section will have a peak response at 840 Hz and a bandwidth of 375 Hz (measured at 6 dB below peak response). When two sections are cascaded, a narrower filter with a bandwidth of 200 Hz results. It is advantageous to match the peak frequency response of each filter section closely by hand picking component valucs' to achieve optimum filter performance. Provision is made for using either a broad or a narrow response by using S2 to switch the headphones to either the output of U4A or U4B, respectively. The active filter dsives a pair of high-impedance headphones directly. Provision for monitoring the transmitter sidetone is included by introducing the tone into the audio channel beyond the muting transistor, Q3. The audioderived S-meter circuit uses a single-stage audio filter, followed by a meter amplifier. The filter is simiar to one section of the audio channel filter and is necessary to assure that the meter indication is a function of the signal being monitored and not the result of extraneous signals at the output of U3. Thus, the S-meter reading does not vary with the setting of the af gain control, and does not operate while the sidetone is being monitored. The output of the S-meter filter drives a three-section integrated-circuit amplifier, U6. The rectified amplifier output drives a 100 micoramperc fuil-scale meter for the signal strength indication. Pc mounted pots are used at R52 and R60 for S-meter adjustment (sensitivity and zero).

Construction

Construction of the receiver is greatly simplified by the use of an etched printed-circuit board for mounting most of the parts. A template is availabic from ARRL for 50 cents and an s.a.s.e. The entire receiver fits on a $4-\times 6$-inch board. If no S -meter is desired, it is a simple matter to adjust the layout to fit on a $4-\times 4$-1/2-inch board leaving out U5, U6, and their associated components. A

[^21]Fig. 3 - Front view of the direct-conversion receiver. The cabinet is homemade from two U-shaped pieces of .040 -inch thick sheer aluminum. The front panel is painted battleship gray, and whits "press-on" labels mark the function of the controls.

photo-etch process was used to produce the original board although it may be duplicated by other methods as long as sufficient care is taken in the vicinity of the IC pins and other high-density areas of the pattern to avoid the appearance of unwanted foil bridges. The prototype receiver was built on double-sided G-10 giass cpoxy board, $1 / 16$-inch thick. The circuit pattern is etched on the bottom of the board while the top is left as a continuous ground plane broken only where component leads project through the board. The ground plane is an aid to stability and interstage isolation. An easy technique for removing the ground plane around the component leads (after
the bottom of the board has been drilled) is to use a large diameter drill ($1 / 4$-inch is satisfactory) and make a shallow hole in the top side of the board at every lead location. This may be done by hand, or very carefully with a drill press. The prototype receiver board was silver plated before component assembly, a step which while not required, makes soldering easicr, and improves the appearance of the final product. Part of the key to building a compact receiver is the use of parts which are physically small. The use of small 50 -volt disk ceramic capacitors can go a long way towasd increasing packing density. Using miniature lowvoltage elcetrolytic capacitors, toroidal inductors,

Fig. 4 - Parts placement and board layout for the recaiver. R34, C8 and C26 are mounted on the foil side.

and $1 / 4$ watt instead of $1 / 2$-watt resistors where applicable will make construction much easier fer the builder of portable equipment.

The placement of the front- and rear-panelmounted parts is determined as much by symmetry as by the criterion of short leads. In the author's receiver, the S-meter, controls for af and if gain, the band switch, input trimner capacitor, selectivity switch, and the main tuning knob are located on the front panel. The rear panel includes banana jacks for the 12 -volt de input, phono jacks for sidetone and muting inputs from the transmitter, and a phone jack for headphones. For operating convenience, an SO-239 coax receptacle and a female phono jack wised in parallel were used as anterna connectors. The VFO luning capacitor, C24, is mounted on an aluminum bracket from the front pancl to achieve mechanical stability. The capacitor drive is a modified imported vemier dial. The original escutcheon, calibrated $0-100$, was replaced with a homemade plastic dial. Fifty- and $25-\mathrm{kHz}$ markers on the dial are made with thin black tape of the type usually used for printedcircuit artwork. The homemade U-slaaped cabinet is spray painted with battleship gray enamel and white pressure-sensitive labels were added to identify the controls. The top cover is painted flat black. Professional-looking front-panel knobs conplete the mechanical assembly.

Initial Adjustment

The local oscillator should be checked first for proper operation on 40 meters. With C24 almost fully meshed, L5 may be adjusted with a nonmetallic tool to set the output frequency to 7.000 MHz . A drop of melted wax will be sufficient to hold the slug in place. The frequency doubler portion of the local oscillator should be checked with an oscilloscope. 1.6 may be adjusted 10 provide the cleanest $\{4-\mathrm{MHz}$. waveform. A signal generator and an oscilloscope may be used to verify that the audio channel is functioning. Assuming that parts tolerances were adhered to closely, the audio filter width and center frequency in both the broad and narrow positions should be comparable to the results mentioned above. With the aid of a signal generator or a weak on-the-air signal, the frontend response should be peaked first on 20 meters by adjusting Cl and C 3 , and then on 40 meters by adjusting Cl and (4. In actual operation, Cl is a front-panel control, and is tuned to the frequency band of interest. After C3 and C 4 are set, it should not be necessary to repeak them. If the product detector is working correctly it should be possible to hook a pair of headphones to JI or J 2 and make these adjustments by ear. The S-meter zero and sensitivity controls can be adjusted according to operator preference.

THE MINI-MISER'S DREAM RECEIVER

A receiver that featured good pertornance with a modest outlay of building time and components appeared in the Forty-Fifth Edition of The Radio Amaleur's Handbook. The original design was that of Byron Goodman, W1DX, and incorporated vacuum tubes in the construction.

This updated version by Doug DeMaw, WICER, utilizes the same principle of going directly into a mixer in the front end which is followed by a simple crystal filter. Solid-state construction is used throughout the design and audio output is sufficient to drive a small speaker. This receives should fill the need for a simple, compact unit where low current drain is also a requirement.

Circuit Description

There are some departures from the WIDX design, mainly to minimize cost and package size.

The major compromise was the elimination of age and multiband coverage. There is ample room inside the cabinet of this seceiver to accommodate one or two small converters for reception of bands other than 40 meters. This main frame is designed for $7-$ to $7.175-\mathrm{MHz}$ coverage.

Fig. I shows an IC being used as the receiver front end - a CA3028A which is configured as a balanced mixer. The input tuned circuit, T1, is designed to match a 50 -ohm antenna to the $2000-\mathrm{ohm}$ base-to-base impedance of the mixer IC. The transformer is broadbanded in nature (300 kHz at the 3 -dB points), and has a loaded Q of 23. This eliminates the need for a front-panel peaking control - a cost-cutting aid to simplicity.

The output cuned circuil, L , is a bifilar-wound toroid which is tuned approximately to resonance by means of a mica trimmer, C2. The actual seting of C2 will depend upon the degree of j-f selectivity desired, and typically the point of resonance will not be exactly af 3300.5 . the i-f center frequency.

Goodman used a half-lattice filter (two crystals) in his design, but this requires two crystals which are related properly in addition to a BFO crystal. For this reason, an older circuit was employed - a single crystal filter with a phasing capacitor, C3. The latter approach provides reasonably good single-signal reception (at least 30 dB rejection of the unwanted response), and assures much better performance than is possible with simpler directconversion receivers.

A single i-f amplifier. U2, is used to provide up to 40 dB of gain. RI serves as a manual j-f gain
control. and will completely cut off the signal output when set for minimum i-f gain. No audio gain control is used. T2 is designed to transform the $8000-\mathrm{ohm}$ collector-to-collector impedance of U2 down to 500 ohms, and has a bandwidth of 100 kHz . The loaded Q is 33 .

A two-diode product detector converts the j-f energy to audio. BFO injection voltage is obtained by means of a crystal-controlled oscillator, Q2. RFC2 and the $1-\mu[$: bypass capacitor filter the if, keeping it out of the audio line to U3.

Audio-output IC U3 contains a preamplifier and power-output system. It will deliver approximately 300 mW of af energy into an 8 -ahm load. RFCS is used to prevent if oscillations from occurring and being radiated to the front end and j-f system of the receiver. The $0.1-\mu \mathrm{F}$ bypass at RFC5 also helps prevent oscillations.

A three-terminal voltage regulator, VRI, supplies the required operating voltage to U3. It also provides regulated voltage for the VFO and buffer stages of the local oscillator (Q2 and Q3). The latter consists of a stable series-tuned Clapp VFO and in emitter-follower buffer stage. A singlesection pi network is placed between the emitter of Q3 and the injection terminal of U1. It has a loaded Q of 1 , and serves as a filter for the VFO output energy. It is designed for a bilateral impedance of approximately 500 ohms. The recommended injection-voltage level for a CA3028A mixer is 1.5 rms. Good performance will result with as little as 0.5 volt rms. A 1 -volt level is available with the circuit shown in Fig. 1.

A red LED is used at DSI as an on-off indicator. Since it serves mainly as "window dressing," it need not be included in the circuit.

Construction Notes

Front panel, rear panel, side brackets, and chassis are made from double-sided circuit-board material. The chassis is an etched circuit board, the pattern for which is given in Fig. 2. There is no reason why the top and bottom covers for the receiver can not be made of the same material by soldering six pieces of pc board together to form two U-shaped covers.

The local oscillator is housed in a compartment made from pe-board scetions. It measures (HWD) $1-3 / 8 \times 1-5 / 8 \times 2-3 / 4$ inches. A $1 / 4$-inch high pcboard fence of the same width and depth is soldered to the bottom side of the pc board (opposite the top partition) to attenuate rf energy from entering or leaving the local oscillator section of the receiver. Employment of the top and bottom shields stiffens the main pc board, and that helps prevent mechanical instability of the oscillator, which can result from stress on the main assembly.

Silver plating has been applied to the main pc board, and to the front and rear panels. This was done to enliance the appearance and discourage tarnishing of the copper. It is not a necessary step in bujlding the receiver. The front panel has been sprayed with green paint, then baked for 30 minutes by means of a heat lamp. A coarse grade of sandpaper was used to abrade the front panel before application of the paint. The technique will

Interior view of the receiver. The front end is at the lower right. The leads of $U 1$ are bent to align with an 8 -pin dual-in-line IC socket. The rim of the speaker is tack-soldered to the pc-board side wall at two points. The 20 -meter converter mounts on the rear wall inside the receiver (upper left corner).
prevent the paint from coming off easily when the panel is bumped or scratched. Green Dymo tape labels are used to identify the panel controls.

There is ample room inside the cabinet, along the rear inner panel surface, to install a small crystal-controlled converter for some other hf band. A switch, S1, is located on the front panel to accommodate a planned 20 -meter converter. A suitable circuit is given in Fig. 3.

All of the toroidal inductors are coated several times with Q dope after they are installed in the circuit. The VFO coil is treated in a like manner. The polystyrene VFO capacitors should be cemented to the pc board after a circuit is tested. This will help prevent mechanical instability. Hobby cement or epoxy glue is OK for the job. Use only a drop or two of cement at each capacitos - just enough to affix it to the pe board.

Alignment and Operation

The VFO should be aligned first. This can be done by attaching a frequency counter to pin 2 of Ul. Caverage should be from 3699.5 to 3874.5 kHz for reception from 7.0 to 7.175 MHz . Actual coverage may be more or less than the spread indicated. depending on the absolute values of the VFO capacitors and stray cícuit inductance and capacitance. Greater coverage can be had by using a larger capacitance value at C 5 , the main tuning control. Those individuals interested only in phone-band coverage can align the VFO accordingly and change Y2 to 3400.8 kHz .

Final tweaking is effected by attaching an antenna and peaking C1, C2 and C4 for maximum signal response at 7085 kHz . To obtain the selectivity characteristics desired (within the ca-

Fig. 1 - Schematic diagram of the 40 -meter receiver. Fixed-value capacitors are chip or disk ceramic unless noted otherwise. Capacitors with polarity marked are electrolytic. S.M. indicates silver mica, and P is for polystyrene. Fixed-value resistors are $1 / 4$ - or $1 / 2-\mathrm{W}$ composition.
C1, C2, C4 - 170- to 600-pF mica trimmer (Arco 4213).

C3 - 10-pF subminiature trimmer. Ceramic or pc-mount air variable suitable.
C 5 - Miniature air variable, 30 pF maximum (Millen 25030E or similar).
CR1-CR3, incl. - High-speed silicon switching diode.

J1, J3 - Single-hole-mount phono jack.
J2 - Closed-circuit phone jack.
L1 - Toroidal bifilar-wound inductor. $L=5.8 \mu \mathrm{H}$. 8 turns No. 28 enam., bifilar wound on Amidon FT-37-61 ferrite core. Note polarity marks.
L2 - Slug-tuned inductor (see text), $11 \mu \mathrm{H}$ nominal. J. W. Miller 42A105CBI or equiv. O_{u} $=125$.
L3 - Toroidal inductor, $17 \mu \mathrm{H}, 19$ turns No. 26 enam. wire on Amidon FT-50-61 ferrite core. R1 - 10,000-ohm miniature composition control, linear taper.
RFC1, RFC2 - Miniature $1-\mathrm{mH}$ if choke (Millen

J302-1000 or equiv.).
RFC3, RFC4 - Miniature $330 \mu \mathrm{H}$ if choke (Millen J302-330 or equiv.).
RFC5 - Miniature if choke, $33 \mu \mathrm{H}$ (Millen J302-33 or equiv.).
S1 - Miniature dpde toggle.
T1 - Toroidal transformer. Primary has 2 turns
No. 24 enam. wire. Secondary has 14 turns No.
24 enam. wire on Amidon T-50-2 core.
T2 - Toroidal transformer. Primary has 9 turns No.
26 enam, wire on Amidon FT-37-61 core.

Secondary has 3 turns No. 26 enam. wire. Primary winding has center tap.
U1 - RCA IC. Bend pins to fit 8-pin dual-in-line IC socke
U2, U3 - Motorola IC.
VR1 - Three-terminal 8-volt regulator IC (Narional Semiconductor).
Y1. Y2 - Surplus crystal in HC-6/U case or International Crystal Co. iype GP with 32-pF load capacitance.

Fig. 2 - Foil-ride scale pattern of the pc board. Circuit board is double-sided glassepoxy material. Ground-plane copper should be removed directly opposite Q2 and related components (oscillator) for an area of 1-1/2 $\times 1-1 / 2$ inches. Remove copper in similar manner on ground-plane side of board opposite L1, C3 and Y1 (1 X 1-1/4 inch area). Removal of foil will prevent unwanted capacitive effects in those critical parts of the circuit. Ground-plane side of board should be electrically common to the ground foils on opposite side of board at several points.

Fig. 3 - Schematic diagram of the 20 -meter converter. Fixed-value capacitors are disk ceramic unless noted atherwise. Resistors are $1 / 4$ - or $1 / 2$-W composition. Rough pc template and layout available for $25 d$ and an s.a.s.e.
C6, C7-40-pF subminiature ceramic trimmer.
J4 - Single-hole-mount phono jack on rear panel of main receiver.
L4 - Toroidal inductor. 12 turns No. 26 enam. wire on Amidon FT-37-61 core. $\mathrm{L}=8 \mu \mathrm{H}$.
L5 - Toroidal inductor. 24 turns No. 26 enam.
wire on Amidon T-50-6 core. $L=2.4 \mu \mathrm{H}$.
O4 - RCA transistor.
05 - Motorola transistor, MPF102, 2N4416, or HEP 802.
T3 - Toroidal transformar, 10:1 iurns ratio. $L=$ $1.85 \mu \mathrm{H}$. Pri. has 2 turns No. 26 enam. wire. Sec. contains 21 turns No. 26 enam. wire on Amidon T-50.6 core.
 case IInternational Crystal Co. type GP with 32-pF load capacitance).
pability of the circuit), adjust C2 and C3 experimentally'. C2 will provide the major effect. C3 should be set for minimum response on the unwanted side of zero beat. A fairly strong signal will be needed to hear the unwanted response.

For reception of lower sideband, it will be necessary to use a different BFO frequency 3400.5 kHz . The crystal indicated in Fig. 1 was used because it was the only one available at the time of construction. Those wishing to shift the BHO frequency a few hundred Hz can place a trimmer in series with Y2 rather than use the $100-\mathrm{pr}$ capacitor shown.

Becausc there is no agc in this seceiver, the i-f gain should be set low, for comfortable listening. Too much gain will cause the audio circuit to be overdriven, and distortion will result. To prevent earsplitting signal levels, one can install a pair of I N34 A diodes (back to back) across the output jack, J2.

Bits and Pieces

The photograph shows some fancy looking components on the circuit board. Tantalum capacitors are seen where electrolytics are indicated on the diagram. Either type will work nicely. Tantalums were found at a flea markel for 10 cents each, so they were used. Similarly, the $0.1-\mu \mathrm{F}$ capacitors used are the high-class kind (Aerovox CKOSBX), which sell for rougidy 70 cents each. Mylar or disk ceramic $0.1-\mu \mathrm{F}$ units will be fine as substitutes.

The polystyrere capacitors were obtained from Radio Shack in an assortment pack. New units are made by Centralab, and they sell for less than 20
cents each in single lots. Since they are more stable than silver micas. they are recommended for the VFO circuit.

All of the toroid cores were purchased by mait from Amidon Associates. A J. W. Miller 42 -series coil is used in the VFO, but any slug-tuned ceramic form can be used if it has good high-irequency core matcrial. The unloaded Q of the inductor should be at least 150 at 3.5 MHz . L 2 in this design has $3 / 8$-inch diameter body. The winding area is $5 / 8$ inch long.

The metal cases of both crystals should be connected to ground by means of short lengths of wirc. This will prevent unwanted radiation from the BFO crystal, and will hetp keep the filter crystal from picking up stray energy. A metal cover should be placed on the VFO compartment for reasons of isolation.

James Millen encapsulated rf chokes are used in the receiver. Any subminiature choke of the approximate inductance indicated will be suitable and it need not be encapsulated. The VFO tuning capacitor is also a Millen part. Ample room exists between the VFO box and the front panel to allow making the box longer. That will permit use of a larger variable capacitor. A double-bearing capacitor is recommended for best mechanical stability of the VHO .

The i-f system and BFO can be tailored to frequencies other than those indicated. The VFO, mixer, and i-f amplifier tuned circuits will have to be altered accordingly, if crystals of other frequencies in the 2 - to $3-\mathrm{MHz}$ sange are chosen.

Performance of this receiver is quite good. A $0.1-\mu \mathrm{V}$ signal from u generator is plainly audible. No hum or distortion is heard in the output of the
receiver at normal listening levels. VFO drift is 45 Hz from a cold start to stabilization, and strong signals do not pull the oscillator.

Extremely strong local signals ($1000 \mu \mathrm{~V}$ or greater) will cause desensitization of the receiver when they appear off frequency from where the operator is listening. Under ordinary conditions this will nol be a problem. At some sacrifice in noise figure and sensitivity, those living in areas where other amateurs are nearby can modify Tl to aid the situation. C1 should remain across all of the T1 secondary, and a $2200 \cdot \mathrm{ohm}$ resistor should be connected across Cl. Pins 1 and 5 of Ul should be connected to two turns each side of the center tap of the secondary. This will require cutting the pc board elements to divorce pins 1 and 5 from Cl. This design trade-off is quite acceptable at 40 meters, as the atmospheric noise level will mask the reduction in receiver noise performance. With the circuit change there was no desensing evident
below approximately $8000 \mu \mathrm{~V}$.
Age could be used in this receiver by applying the audio-derived "hang" type used by Goodman in his Handbook design. If the feature was adopted, age voltage would be applied to pin 5 of U2 and the manual gain control would be eliminated. In such a casc, it would be necessary to add an af gain control between the product detector and U3. It should be remembered that minimum gain results when 13 volts are applied to pin 5 of U2. The lower the voltage at that point, the greater the gain.

This Mini Miser's Dream may be just what you've been wanting for that next camping trip. Since it measures only $2.5 / 8 \times 4.3 / 4 \times 5$ inches, it should fit easily into a rucksack. along with a battery pack (maximum current is 120 mA). Or, maybe you're trying to get that code speed peaked for a higher license class. If so, this little fella might be the right size for the night stand by the bed assumine the XYL docsn't object!

A SOLID STATE RECEIVER FOR PORTABLE USE

This design is based on the series Learning to Work With Semiconductors in April through September QST, 1974. The model shown hese uses printed-circuit construction and sight alteration of components in the rf and mixer stages. Converters for the higher bands are also featured.

Circuitry

Toroids are used at the inputs of both the rf and mixer stages of the main receiver. Alignment and tracking problems are eliminated by winding an equal number of turns on L2 and L3 and using a dual capacitor (variable) with the same maximum capacitance in each section. The Miller unit specified here has sections of 170 pF and 365 pF . Plates must be removed from the 365 pF section to bring it down to 170 pF . Actually any dual capacitor above 100 pF will suffice as long as each section has approximately the same value. Be sure leads to CIA and CIB are kept short and at right angles to each other to prevent unwanted coupling. If instability becomes a problem, the gain of Q1 should be reduced by lowering the bias voltage on gate 2.

In the original design, a single-gate FET was used for the mixer. Unfortunately, pulling of the VFO on strong signals was experjenced. A dualgate MOSFET is used herc; isolation between gates 1 and 2 is 40 dB .

The output of the mixer is fed to a Miller crystal filter/ji-f transformer, At the cost of reduced selectivity, the yellow core i-f transformer used for the BFO circuit could be directly substituted.

The VFO should lune from 3950 kHz to 4455 kHz which corresponds to a receive frequency of 3500 kHz to 4000 kHz with an j-f of 455 kHz . To assure undistorted output from the VFO, the de collector voltage should be one half of the supply voltage (6 volts). Some adjustment of the 8200 ohm resistor at the base of (14 may be required.

The BFO circuit was selected because it lends itself to an inexpensive i- \int transformer for the tuning coil. Be sure to wire the coil as shown here
(exactly the opposite as done in the QST version), otherwise the windings will be out of phase and the unit will not oscillate. The coupling capacitor in the output of the BFO should not be larger than 68 pF . In some cases this value may have to be reduced to provide stable operation.

The audio amplifier is capable of a voltage gain of 100 which should easily drive a high-impedance headsct. The $100-\mu \mathrm{F}$ capacitor and 100 -ohm resistor in the $\mathrm{B}+$ line form a decoupling network to prevent audio feedback to the defector (motorboating and howl).

Converter Section

The converter circuit for covering the higher amateur bands is simple yet effective. The oscillator coil (L5) should be adjusted to the frequency specified in the Table (listening for the note on a generad-coverage receiver). The input and output coils are adjusted for maximum gain on a signal heard at the middle of the band. On 40 meters receiver tuning is backwards. On the dial, 7 MH ? will read 4 MHz and 7.5 MHz will read 3.5 MHz . The other bands will tune normally (the lower end is at 3.5 MHz).

MOBILE PORTABLE/EMERGENCY

Fig. 1 - Circuit diagram of 80-15 meter receiver. Resistors are $1 / 4$ - or $1 / 2$-watt composition, Unless otherwise specified capacitors are disc ceramic. Capacitors marked with polarity are electrolytic.
C1, C2, C3 - See converter coil/capacitor table.
C4 - Dual $170-\mathrm{pF}$ air variable. (J. W. Miller 555-27, see text).
C5 - 140 pF variable (Radio Shack 273-1344, 365 DF with 6 plates removed from the rotor). L1, L2, L4 - See converter coil/capacitor table. L3 $-19.5 \mu \mathrm{H}$ (J. W. Miller 46A225CPC).
L5 - 4 turns No. 30 wire over L6.
L6, L7 - 70 turns of No. 30 enam wire over Amidon T-80-2 core tapped 47 turns from the cold end.
L8 $-2.42 \mu \mathrm{H}-2.96 \mu \mathrm{H}$ (J. W. Miller 46A276CPC).
L9 - $6 \mu \mathrm{H}$; 48 turns No. 30 enam. wire close wound on $1 / 4$-inch dia. form. Wooden or polystyrene rod suitable for form.
Q1, O3, O4 - 40673 RCA dual-gate MOSFET.

Q2- MPF102 or HEP802.
05. O6, O9-2N1124 or HEP53.

Q7. O8, Q10 - 2N3641. HEP736, 2N2222, 2N41 24, or HEP53.
Q11-2N4126 or HEP57.
RFC1 $-1000 \mu \mathrm{H}$ (Millen J302-1000).
T1 - 455 kHz i-f transformer/filter (J.W. Miller 8814).

T2 - Miniature 455 kHz i-f transformer (Radio Shack 273-1383; use white corel.
T3 - Miniature 455 kHz i-f transformer (Radio Shack 273-1383; use vellow core).
T4 - Miniature audio transformer 10,000 -ohm primary to 2000 -ohm secondary (Radio Shack 273-1378, or Calectro D1-711).
T5 - 18 Vac, 2-ampare transformer (Poly Paks).
U1 - 50 PRV rectifier bridge.
U2 - Voltage regulator (National Semiconductor LM3407-12 or Motoroia MC7812CP).

Construction

Five circuit boards are used allowing the buisder to test each one separately if desired. This method also permits the builder to easily modify or redo a portion of the circuit. The VFO board is enclosed on all four sides by soldering pc material to its edges. The entire assembly is then fastened to the

Top view of the basic receiver. The power supply is shown at the lower right. One of the converter boards is mounted at the top left.
main chassis with spade bolts. The tuning dial consists of an inexpensive vernier drive with the 9-100 faceplate removed. It is replaced by a plastic dial which has $25-\mathrm{kHz}$ increments.

Alignment and Use

Fully mesh the VFO capacitor plates and tune L4 until a note is heard at 3950 kHz on another receiver. This sets the VFO 455 kHz above the receiver tuned frequency. Then connect an antenna and tune the if and BFO coils for maximum noise in the headphones. Do likewise with the audio bias adjustment. Tune in a signal and peak the preselector control on the front panel. The BFO coil in conjunction with the main tuning dial should be set for best reception of ssb or cw signals. The rf attenuator control should be used to reduce the receiver gain to prevent distortion and overloading by very strong signals.

Converter Coil and Capacitor Table

Band L1	L2	C1	L4	C2	C3	Oscillator Frequency
40 Meters 7 turns over 12	$13.2 \mu \mathrm{H}-16.5 \mu \mathrm{H}$ Miller 46A155 CPC	25 pF	$2.42 \mu \mathrm{H}-2.96 \mu \mathrm{H}$ Miller 46A 276CPC	220 pF	150 pF	11 MHz
20 Meters 3 turns over L2	$6.1 \mu \mathrm{H}-7.5 \mu \mathrm{H}$ Milier 46A686CPC	15 pF	$\begin{aligned} & 2.42 \mu \mathrm{H}-2.96 \mu \mathrm{H} \\ & \text { Miller } 46 \mathrm{~A} 276 \mathrm{CPC} \end{aligned}$	220 pF	150 pF	10.5 MHz
15 Meters 3 turns over L2	$3.5 \mu \mathrm{H}-4.27 \mu \mathrm{H}$ Miller 46A396CPC	10 pF	$\begin{aligned} & 1.42 \mu \mathrm{H}-1.58 \mu \mathrm{H} \\ & \text { Miller } 46 \mathrm{~A} 156 \mathrm{CPC} \end{aligned}$	100 pF	100 pF	7.5 MHz

A TRANSMATCH FOR QRP RIGS

This equipment permits matching low-power (five watts) transmitters to a wide range of impedances encountered when using randomlength, single-wire antennas of the type common to portable and emergency operation. The unit will also match the transmitter to any coax line regardiess of the mismatch reflected from the antenna to the feed end of the line.

Exterior view of the QRP Transmatch. The cabinet is homemade from solid sheet and perforated aluminum stock. The two controls at the far left are $365-\mathrm{pF}$ variables, as is the one at the lower left of the Simpson meter. At the upper left of the meter is the variable-inductance control. Directly under the meter is the meter-sensitivity potentiometer. The bridge function switch is visible at the upper righz of the panel. Kurz-Kasch aluminum knobs are used on the controls.

Construction

The use of separate capacitors at $C 1$ and $C 2$, Fig. 1, requires slightly more manipulation during tune-up than would be the case with ganged capacitors, but once ball-park settings are found

Interior view of the Transmaich. The three variable capacitors are grouped at the right. Note that two of them are mounted on insulating board. Just to the right of the meter one can see the inductance switch on which three toroids and one air-wound coil are mounted. The resistance bridge and function switch are located at the far left of the chassis.
for each operating band it is a simple matter to log them for future use, C2 and C3 must be mounted so that their rotor and stator sections are above chassis ground. This is accomplished easily by assembling them on a small piece of phenolic insulating board and using insulating shaft couplers (Allied Electronics No. 920-0120).

Three small toroidal inductors and one airwound coil comprise the variable-inductor leg of the circuit, L1-L4, inclusive, and S2. With the constants specified for the circuit of Fig. 1 the tuner will give good performance from 80 through 10 meters. S 2 is a low-cost imported component.

Mi can be any $1-m A$ instrument. A Simpson No. 2121 is shown in the photos, but may be a trifle too dear in terms of cost for those wishing to do the job at minimum investment. Many imported meters (Radio Shack No. 22-018 for one) can be purchased at a fraction of the cost common to high-quality American made instruments.

Sl, in the unit pictured, is a double-pole, four-position, two-section ceramic wafer switch of the subminiature species. A piece of double-ctad pr
building housings for Transmatches.
board is visible between the wafer sections, It was added to function as an rf shield between the two sections of Sl , thereby helping to isolate the input and output ports of the resistance bridge. Any shorting-type double-pole, three-position switch should be suitable, ceramic or phenolic insulation. S1 and S2 are the shorting variety, thus preventing momentary no-load conditions from being seen by the iransmitter. The package dimensions are $7-1 / 2$ $\times 2-3 / 4 \times 2-3 / 4$ inches $(18 \times 6-1 / 2 \times 6-1 / 2 \mathrm{~cm})$. A
cover was made from a section of surplus per$\times 2-3 / 4 \times 2-3 / 4$ inches ($18 \times 6-1 / 2 \times 6-1 / 2 \mathrm{~cm}$). A
cover was made from a section of surplus per-forated-aluminum stock. Solid aluminum stock
would be just as good. In fact, the entire enclosure forated-aluminum stock. Solid aluminum stock
would be just as good. In fact, the entire enclosure could be constructed from galvanized furnace could be constructed from galvanized furnace
ducting, often available in scrap sizes from furnace repair shops. Rf shielding is not imperative when

EXCEPT AS Indicated, decimal Values dr capacitance are in microfarads (yF); others ARE IN PICOFARAQS (DF OR עyF): RESISTANCES ARE IN ONMS:
$k=1000 . m=1000000$

Code Transmission

Keying a transmitter properly involves much more than merely turning it on and off with a fast manually operated switch (the key). If the output is permitted to go from zero to full instantaneously (zero "rise" time), side frequencies, or key clicks, will be generated for many kilohertz either side of the transmitter frequency, at the instant the key is closed. Similarly, if the output drops from full to zero instantaneously (zero "decay" time), side frequencies will be generated at the instant of opening the key. The amplitude of the side-frequency energy decreases with the frequency separation from the transmitter frequency. To avoid kcy clicks and thus to consply with the FCC regulations covering spurious radiations, the transmitter output must be "shaped" to provide finite rise and decay times for the envelope. The longer the rise and decay times, the less will be the side-frequency energy and extent.

Since the FCC regulations require that ". . . the frequency of the emitted wave shall be as constant as the state of the art permits," there should be no appreciable change in the transmitter frequency while energy is being radiated. A slow change in frequency is called a frequency drift; it is usually the result of thermal effects on the oscillator. A fast frequency change, observable during each dit or dah of the transmission, is called a chirp. Chirp is usually caused by a nonconstant load on the oscillator or by dc voltage changes on

Fig. 11-1 - Typical oscilloscope displays of a code transmitter. The rectangular-shaped dots or dashes (A) have serious key clicks extending many kHz either side of the transmitter frequency. Using proper shaping circuits increases the rise and decay times to give, signals with the envelope form of \mathbf{B}. This signal would have practically no key clicks. Carrying the shaping process too far, as in \mathbf{C}. results in a signal that is too "soft" and is not quite as easy to copy as B.

Oscilloscope displays of this type are obtained by coupling the transmitter if to the vertical plates and using a slow sweep speed synchronized to the dot speed of an automatic key.
the oscillator during the keying cycle. Chirp may or may not be accompanied by drift.

If the transmitter output is not reduced to zero when the key is up, a backwave (sometimes called a "spacing wave") will be radiated. A backwave is objectionable to the receiving operator if it is readily apparent; it makes the signal slightly harder to copy. However, a slight backwave, 40 dB or more below the key-down signal, will be discernible only when the signal-to-noise ratio is quite high. Some operators listening in the shack to their own signals and hearing a backwave think that the backwave can be heard on the air. It isn't necessarily so, and the best way to check is with an amateur a mile or so away. If he doesn't find the backwave objectionable on the S94 signal, you can be sure that it won't be when the signal is weaker.

When any circuit carrying dc or ac is clased or opened, the small or large spark (depending upon the voltage and current) generates rf during the instant of make or break. This rf click covers a frequency range of many megahertz. When a transmitter is keyed, the spark at the key (and relay, if one is used) causes a click in the receiver. This click has no effect on the transmitted signal. Since it occurs at the same time that a click (if any) appears on the transmitter output, it must be eliminated if one is to listen critically to his own signal within the shack. A small rf filter is required at the contacts of the key (and relay); typical circuits and values are shown in Fig. 11-2. To check the effectiveness of the rf filter, listen on a band lower in frequency than the one the transmitter is tuned to, with a short receiving antenna and the receiver gain backed off.

What Transmitter Stage To Key

A satisfactory code signal, free from chirp and key clicks, can be amplified by a linear amplifier without affecting the keying characteristics in any way. If, however, the satisfactory signal is amplified by one or more nonlinear stages (e.g., a Class C multiplier or amplifser), the signal envelope will be modified. The rise and decay times will be decreased, possibly introducing significant key clicks that were not present on the signal before amplificat tion. It is possible to compensate for the effect by using longer-than-normal rise and decay times in the excitation and letling the amplifier(s) modify the signal to an acceptable one.

Many two. three- and even four-stage VFOcontrolled transmitters are incapable of chirp-frec output-amplifier keying because keying the output stage has an cffect on the oscillator frequency and "pulls" it. Keying the amplifier presents a variable load to its driver stage, which in turn is felt as a variable load on the previous stage, and so on back

Fig. 11-2 - Typical filter circuits to apply at the key (and relay, if usedl to minimize of clicks. The simplest circuit (A) is a small capacitor mounted at the key. If this proves insufficient, an of choke can be added to the ungrounded lead (B). The value of C 1 is .001 to $.01 \mu \mathrm{~F}: \mathrm{RFC1}$ can be 0.5 to 2.5 mH , with a current-carrying ablity sufficient for the current in the keyed circuit. In difficult cases another small capacitor may be required on the other side of the if choke. In all cases the rf filter should be mounted right at the key or relay terminals; sometimes the filter can be concealed under the key. When cathode or center-tap keying is used, the resistance of the of choke or chokes will add cathode bias to the keyed stage, and in this case a high-current low-resistance choke may be required, or compensating reduction of the grid-leak bias (if it is used) may be needed. Shialded wire or coaxial cable makes a good keying lead.

A visible spark on "make" can often be reduced by the addition of a small (10 to 100 ohms) resistor in series with C1 (inserted at point " x "). Too high a value of resistance reduces the arc-suppressing effect on "break."
to the oscillator. Chances of pulling are especially high when the oscillator is on the same frequency as the keyed output stage, but frequency multiplication is no guarantee against pulling. Another source of reaction is the variation in oscillator supply voltage under keying conditions, but this can usually be handled by stabilizing the oscillator supply with a VR tube. If the objective is a completely chirp-free transmitter, the first step is to make sure that kcying the amplifier stage (or stages) has no effect on the frequency. This can be checked by listening on the oscillator frequency white the amplifier stage is keyed. Listen for chirp on either side of zero beat, to eliminate the passibility of a chispy receiver (caused by linevollage changes or BFO pulling).

An amplifier can be keyed by any method that reduces the output to zero. Neutralized stages can be keyed in the cathode circuit, although where powers over 50 or 75 watts are involved it is often desirable to uso a keying relay or vacuum tube keyer, to minimize the chances for electrical shock. Tube keying drops the supply voltages and adds cathode bias, points to be considered where maximum output is required. Blocked-grid keying is applicable to many ncutralized stages, but it presents problems in high-powered amplifies and
requires a source of negative voltage. Output stages that aren't neutralized, such as many of the tetrodes and pentodes in widespread use, will usually leak a little and show some backwave regardless of how they are keyed. In a case like this it may be necessary to key two stages to eliminate backwave. They can be keyed in the cathodes, with blocked-grid keying, or in the screens. When screen keying is used, it is not always sufficient to reduce the screen voltage to zero; it may have to be taken to some negative value to bring the key-up plate current to zero, unless fixed negative control-grid bias is used. It should be apparent that where two stages are keycd, keying the earlicr stage must have no effect on the oscillator frequency if completely chirp-free output is the goal.

Fig. 11-3 - The basic cathode (A) and center-tap (3) keying circuits. In either case Cl is the if return to ground, shunted by a larger capacitor, C2, for shaping. Voltage ratings at least equal to the cutoff voltaga of the tube are requirad. T1 is the normal filament transformer. C1 and C3 can be about $01 \mu \mathrm{~F}$.

The shaping of the signal is controlled by the values of R2 and C2. Increased capacitance at C2 will make the signal softer on braak; increased resistance at R2 will make the signal softer on make.

Values at C2 will range from 0.5 to $10 \mu \mathrm{~F}$. depending upon the tube type and operating conditions. The value of R2 will also vary with tube type and conditions, and may range from a few to one hundred ohms. When tetrodes or pentodes are keyed in this manner, a smaller value can sometimes be used at C2 if the screen-voltage supply is fixed and not obtained from the plate supply through a dropping resistor. If the resistor decreases the output (by adding too much cathode bias) the value of R1 should be reduced.

Oscillators keyed in the cathode can't be softened on break indefinitely by increasing the value of C2 because the grid-circuit time constant enters into the action,

Fig. 11-4 - The basic circuit for blocked-grid keying is shown at A. A1 is the normal grid leak, and the blocking voltage must be at least several times the normal grid bias. The click on make can be reduced by making C1 larger, and the click on break can be reduced by making R2 larger. Usually the value of $R 2$ will be 5 to 20 times the resistance of R1. The power supply current requirement depends upon the value of R2, since closing the key circuit places R2 across the blocking voltage supply.

An allied circuit is the vacuum-tube keyer of B. The tube V 1 is connected in the cathode circuit of the stage to be keyed. The values of C1, R1 and R2 determine the keying envelope in the same way that they do for blocked-grid keying. Values to start with might be 0.47 megohm for R1, 4.7 megohms for R2 and $.0047 \mu \mathrm{~F}$ for C 1 .

The blocking voltage supply must deliver several hundred volts, but the current drain is very low. A 6 Y6 or other low plare-resistance tube is suitable for VI. To increase the currene-carrying ability of a tube keyer, several iubes can be connected in parallel.

A vacuum-rube keyer adds cathode bias and drops the supply voltages to the keyed stage and will reduce the output of the stage. In oscillator keying it may be impossible to use a VT keyer without changing the oscillator de grid return from ground to cathode.

Shaping of the keying is obtained in several ways. Vacuum-tube keyers, blocked-grid and cath-ode-keyed systems get suitable shaping with proper choice of resistor and capacitor values, while screen-grid keying can be shaped by using inductors or resistors and capacitors. Sample circuits are shown in Figs. 11-3, 11-4, and 11-5, together with

Fig. 11-5 - When the driver-stage plate voltage is roughly the same as the screen voltage of a terrode final amplifier, combined screen and driver keying is an excellent system. The envelope shaping is determined by the values of L1, C4, and R3, although the if bypass capacitors C1, C2 and C3 also have a slight effect. R1 serves as an excitation control for the final amplifier, by controlling the screen voltage of the driver stage. If a triode driver is used, its plate voltage can be varied for excitation control.

The inductor L1 will not be too critical, and the secondary of a spare filament transformer can be used if a low-inducrance choke is not available. The values of C4 and R3 will depend upon the inductance and the voltage and current levels, but good starting values are $0.1 \mu \mathrm{~F}$ and 50 ohms.

To minimize the possibility of electrical shock, it is recommended that a keying relay be used in this circuit, since both sides of the circuit are "hot." As in any transmitter, the signal will be chirp-free only if keying the driver stage has no effect on the oscillator frequency. (The Sigma 41 FZ-35-ACS-SIL 6-volt ac relay is well-suited for keying applications.)

instructions for their adjustment. There is no "best" adjusiment, since this is a matter of personal preference and what you want your signal to sound like. Most operators seem to like the make to be heavier than the break. All of the circuits shown here are capable of a wide range of adjustment.

If the nogative supply in a grid-block keyed stage fails, the tube will draw excessive key-up current. To protect against tube damage in this eventuality, an overload relay can be used or, more simply, a fast-acting fuse can be included in the cathode circuit.

OSCILLATOR KEYING

One may wonder why oscillator keying hasn't becn mentioned earlier, since it is widely used. A sad fact of life is that excelient oscillator keying is infinitely more difficult to obtain than is excellent amplifier keying. If the objective is no detectable chirp, it is probably impossible to obtain with oscillator keying, particulary on the higher frequencics. The reasons are simple. Any keyed-oscillator transmitter requires shaping at the oscillator, which involves changing the operating conditions of the oscillator over a significant period of time.

The output of the oscillator doesn't rise to full value immediately so the drive on the following stage is changing, which in turn may reflect a variable load on the oscillator. No oscillator has been devised that has no change in frequency over its entire operating voltage range and with a changing load. Furthermore, the shaping of the keyed-oscillator envelope usually has to be exaggerated, because the following stages will tend to sharpen up the keying and introduce clicks unless they are operated as linear amplifiers.

Fig. 11-6 - Simple differential-keying circuit for a crystal-controlled oscillator and power-amplifiar transmitter.

Most simple crystal-controlled transmitters, commercial or home-built, return the ascillator grid-feak resistor, R1, to chassis, and "cathode kaying" is used on the oscillator and amplifier stages. By returning the oscillator grid leak to the cathode, as shown here, negative power-supply-lead keying is used on the oscillator. A good crystal oscillator will operate with only 5 to 10 volts applied to it.

Using the above circuit, the signal is controlled by the shaping circuit, C4-R3. Increasing the value of R3 will make the signal "softer" on make; increasing the capacitance of C4 will make the signal softer on make and break. The oscillator will continue to operate after the amplifier has cu? off, unzil the charge in $C 4$ falls below the minimum operating voltage for the oscillator.

The . $01-\mu \mathrm{F}$ capacitor and 47 -ohm resistor reduce the spark at the key contacts and minimize "key clicks" heard in the receiver and other nearby receivers. They do not control the kay clicks associated with the signal miles away; these clicks are reduced by increasing the values of 月3 and C4.

Since the oscillator may hold in between dots and dashes, a back wave may be present if the amplifier stage is not neutralized.
C1, C2 - Normal oscillator capacitors.
C3 - Amplifier of cathode bypass capacitor.
C4 - Shaping capacitor, typically 1 to $10 \mu \mathrm{~F}, 250$ volts, electralytic
R1 - Oscillator grid leak; return to cathode instead of chassis ground.
R2 - Normal amplifier grid leak; no change. R3 - Typically 47 to 100 ohms. RFC1, RFC2 - As in transmitter, no change.

Break-in Keying

The usual angument for oscillator keying is that it permits break-in operation (see subsequent sections, also Chapter 23). If break-in operation is not contemplated and as near perfect keying as possible is the objective, then keying an amplifier or two by the methods outlined earlier is the solution. For operating convenience, an automatic transmitter "tumer-onner" (see Campbell, QST Aug. 1956), which will tum on the power supplies and switch antenna relays and receiver muting devices, can be used. The station switches over to the complete "transmit" condition where the first dot is sent, and it holds in for a length of time dependent upon the setting of the delay. It is equivalent to voice-operated phone of the type
commonly used by ssb stations. It does not permit hearing the other station whenever the key is up, as does full break-in.

Full break-in with excellent keying is not easy to come by, but it is easier than many amateurs think. Many use oscillator keying and put up with a second-best signal.

Differential Keying

The principle behind "differential" keying is to turn the oscillator on fast before a keyed amplifier stage can pass any sigral and turn off the oscillator fast after the keyed amplifier stage has cut off. A number of circuits have been devised for accomplishing the action. The simplest, which should be applied only to a transmitter using a voltage-stable (crystal-controlled) oscillator is shown in Fig. 11-6. Many "simple" and kitied Novice transmitters can be modificd to use this system, which approaches the performance of the "tumer-onner" mentioned above insofar as the transmitter performance is concerned. With separate transmitting and receiving antennas, the performance is comparable.

A simple differential-keying circuit that can be applied to any grid-block keyed amplifier or tube-keyed stage by the addition of a triode and a VR tube is shown in Fig. 11-7. Using this keying

Fig. 11-7 - When satisfactory blocked-grid or qube keying of an amplifier stage has been obtained, this VR-tube braak-in circuit can be applied io the transmitter to furnish differential keying. The constants shown here are suitable for blocked-grid keying of a 6146 amplifier; with a tube keyer the 6 J 5 and VA tube circuitry would be the same.

With the key up, sufficient current flows through R3 to give a voltage that will cut off the oscillator tube. When the key is closed, the cathode voltage of the 6J5 becomes close to ground potential, extinguishing the VR tube and permitting the oscillator to operate. Too much shunt capacity on the leads to the VR tube and too large a value of grid capacitance in the oscillator may slow down this action, and best performance will be obtained when the oscillator (turned on and off this way) sounds "clicky." The output envelope shaping is obtained in the amplifier, and it can be made softer by increasing the value of C1, If the keyed amplifier is a tetrode or pentode, the screen voltage should be obtained from a fixed voltage source or stiff voltage divider, not from the plate supply through a dropping resistor.

Fig. 11-8 - VR-tube differential keying in an amplifier screen circuit.

With key up and current flowing through V1 and CR1, the oscillator is cut off by the droo through R3. The keyed stage draws no current because its screen grid is negative. C1 is charged negatively to the value of the - source. When the relay is energized, C1 charges through R1 to a + value. Before reaching zero (on its way +) there is insufficient voltage to maintain ionization in V 1 . and the currant is broken in R3, turning on the oscillator stage. As the screen voltage goes positive, the VR tube cannot reignite because the diode, CR1, will nor conduct in that direction. The oscillator and keyed stage remain on as long as the relay is closed. When the relay opens, the voltage across C 1 must be sufficiently negative for V1 to ionize before any bleeder current will pass through R3. By this time the screen of the keyed stage is so far negative that the tube has stopped conducting. (See Fig. 11-5 for suitable relay.)
system for break-in, the keying will be chirp-free if it is chirp-free with the VR tube removed from its socket to permit the oscillator to run all of the time. If the transmitter can't pass this test, it indicates that more isolation is required between keyed stage and oscillator.

Another VR-tube differential-keying circuit, useful when the sereen-grid circuit of an amplifier is keyed, is shown in Fig. 11-8. The normal screen keying circuit is made up of the shaping capacitor Cl , the keying relay (to remove dangerous voltages from the key), and the resistors R1 and R2. The + supply should be 50 to 100 volts higher than the normal screen voltage, and the - voltage should be sufficient to ignite the VR tube, V1, through the drop in R2 and R3. Current through R2 will be determined by the voltage required to cut off the oscillator; if 10 volts will do it the current will be 1 $\mathrm{m} \Lambda$. For a desirable keying characteristic, R2 will usually have a higher value than R1. Increasing the
value of Cl will soften both "make" and "break."
The tube used at V1 will depend upon the available negative supply voltage. If it is between 120 and 150 , a 0A3/VR75 is recommended. Above this a OC3/VR105 can be used. The diode, CR1, can be any unit operated within its ratings. A type IN4005, for example, may be used with screen voltages under 600 and with far greater bleeder currents than are normally encountered - up to 1 ampere.

Clicks in Later Stages

It was mentioned earlier that key clicks can be generated in amplifier stages following the keyed stage or stages. This can be a puzzling problem to an operator who has spent considerable time adjusting the keying in his exciter unit for clickless keying, only to find that the clicks are bad when the amplifier unit is added. There are two possible causes for the clicks: low-frequency parasitic oscillations and amplifier "clipping."

Under some conditions an amplifier will be momentarily triggered into low-frequency parasitic oscillations, and clicks will be generated when the amplifier is driven by a keyed exciter. If these clicks are the result of low-frequency parasitic oscillations, they will be found in "groups" of clicks occurring at 50 to $150-8 \mathrm{~Hz}$ intervals either side of the transmitter frequency. Of course low-frequency parasitic oscillations can be generated in a keyed stage, and the operator should listen carefully to make sure that the output of the exciter is clean before he blames a later amplifjer. Low-frequency parasitic oscillations are usually caused by poor choice in rf choke values, and the use of more inductance in the plate choke than in the grid choke for the same stage is recommended.

When the clicks introduced by the addition of an amplifier stage are found only near the transmitter frequency, amplifier "clipping" is indicated. It is quite common when fixed bjas is used on the amplifier and the bias is well past the "cut-off" value. The effect can usually be minimized by using a combination of fixed and grid-leak bias for the amplifier stage. The fixed bias should be sufficient to hold the key-up plate current only to a low level and not to zero.

A linear amplifier (Class AB1, AB2 or B) will amplify the excitation without adding any clicks, and if clicks show up a low-frequency parasitic oscillation is probably the reason.

KEYING SPEEDS

In radio telcgraphy the basic code element is the dot, or unit pulse. The lime duration of a dot and a space is that of two unit pulses. A dash is three unit pulses long. The space between letters is three unit pulses; the space between words or groups is seven unit pulses. A speed of one baud is one pulse per second.

Assuming that a speed key is adjusted to give the proper dot, space and dash values mentioned above, the code speed can be found from

Speed $($ wpm $)=\frac{\text { dots } / \text { min. }}{25}=2.4 \times$ dots $/ \mathrm{sec}$.
E.g.: A properiy adiusted electronic key gives a string of dots that count to 10 dots per second. Speed $=2.4 \times 10=24 \mathrm{wpm}$.

Many modern electronic keyers use a clock or pulse-gencrator circuit which feeds a flip-flop dot generator. For these keyers the code speed may be determined directly from the clock frequency

Speed $($ wpm $)=1.2 \times$ clock frequency (Hz).

For a quick and simple means of determining the code speed, send a continuous string of dashes and count the number of dashes which occur in a

5 -second period. This number, to a close approximation, is the code speed in words per minute.

BREAK-IN OPERATION

Smooth cw break-in operation involves protecting the receiver from permanent damage by the transmitter power and assuring that the receiver will "recover" fast enough to be sensitive between dots and dashes, or at least between letters and words.

Separate Antennas

Few of the available antenna transfer relays are fast enough to follow keying, so the simplest break-in system is the use of a scparate receiving antenna. If the transmitter power is low (25 or 50 watts) and the isolation between transmitting and receiving antennas is good, this method can be satisfactory. Best isolation is obtained by mounting the antennas as far apart as possible and at right angles to each other. Feed-line pickup should be minimized, through the use of coaxial cable or 300 -ohm Twin-Lead. If the receiver recovers fast enough but the transmitter clicks are bothersome (they may be caused by the receiver overload and so exist only in the receiver) their effect on the operator can be minimized through the use of input and output limiters (see Chapter 8).

ELECTRONIC TRANSMIT-RECEIVE SWITCHES

When powers above 25 or 50 watts are used, where two antennas are not available, or when it is desired to use the same antenna for transmitting and receiving (a "must" when directional antennas are used), special treatment is required for quiet break-in operation on the transmitter frequency. A means must be provided for limiting the power that reaches the receiver input. This can be cither a direct short-circuit, or may be a limiting device like an electronic switch used in the antenna feed line. The word "switch" is a misnomer in this case; the transmitter is connected directly to the antenna at all times. The receiver is connected to the anterna through the T-R switch, which functions to protect the receiver's input from transmitted power. In such a setup, all the operator need do is key the transmitter, and all the switching functions are taken care of by the T-R switch.

With the use of a T-R switch some steps should be taken to prevent recciver blocking. Turn off the agc or ave, decrease the rf gain setting, and advance the audio gain control. Use the rf gain control for obtaining the desired listening level. A little experimenting with the controls will provide the receiver settings best suited to individual operating preferences. A range of settings can usually be found, just on the threshold of receiver blocking, where comfortable levels of received signals are heard, and where, without adjusting the controls, the receiver can be used as a monitor during transmission. Usually no modification to the

Fig. 11-9 - Proper method of interconnecting T-R switch with various other station accessory equipment.

receiver is required, but if annoying clicks and thumps or excess volume occur at all settings of the receiver controls during transmission, their effect can be reduced with output audio limiting (see Chapter 8).

TVI and T-R Switches

T-R switches generate harmonics of the transmitted signal because of rectification of the energy reaching the input of the switch. These harmonics can cause TVI if steps are not taken to prevent it. Any T-R switch should be very well shielded, and should be connected with as short as possible a cable length to the transmitter. In addition, a low-pass filter may be required in the transmission line between the T-R switch and the antenna. Fig. 11-9 shows the proper method of interconnecting the various station accessory equipment.

Reduction of Receiver Gain During Transmission

For absolutely smooth break-in operation with no clicks or thumps, means must be provided-for momentarily reducing the gain through the receiver. The system shown in Fig. 11-I0 permits quiet break-in operation of high-powered stations. It may require a simple operation on the receiver, although many commercial receivers already provide the connection and require no internal modification. The circuit is for use with a T-R switch and a single antenna. R1 is the regular receiver rf and i-f gain control. The ground lead is run to chassis ground through R2. A wise from the junction runs to the keying relay, K1. When the key is up, the ground side of R1 is connected to ground through the relay arm, and the receiver is in its normal operating condition. When the key is closed the relay closes, which breaks the ground connection from R1 and applies additional bias to the tubes in the receiver. This bias is controlled by R2. When the relay closes, it also closes the circuit to the transmitter keying circuit. A simple rf filter at the key suppresses the local clicks caused by the

Fig. 11 -10-circuit for smooth break-in operation, using an electronic T-R switch. The leads shown as heavy lines should be kept as short as possible, to minimize direct transmitter pickup.
K1 - Spdt keying relay \{Sigma 41FZ-10000-ACS-
SIL or equiv.\}. Although battery and dc relay are shown, any suitable ac or de relay and
relay current. This circuit is superior to any working on the agc line of the receiver because the cathode circuit(s) have shorter time constants than
power source can be used.
R1 - Receiver manual gain control.
R2 - 5000- or 10,000 -ohm wire-wound potentiometer.
RFC1, RFC2 - 1- to $21 / 2-\mathrm{mH}$ rif choke, current rating adequate for application.
the agc circuits and will recover faster. A similar circuit may be used in the emitters or source leads of transistorized receivers.

TESTING AND MONITORING OF KEYING

In general, there are two common methods for monitoring one's "fist" and signal. The first type involves the use of an audio oscillator that is keyed simultaneously with the transmitter.

The second method is one that permits receiving the signal through one's receiver, and this generally requires that the receiver be tuned to the transmitter (not always convenient unless working on the same frequency) and that some method be provided for preventing averloading of the receiver, se that a good replica of the transmitted signal will be received. Except where quite low power is used, this usually involves a relay for simultaneously shorting the receiver input femninals and reducing the receiver gain.

An alternative is to use an re-powered audio oscillator. This follows the keying very closely (but tells nothing about the quality - chirps or clicks of the signal).

The casicst way to find out whas your keyed signal sounds like on the air is to trade stations with a near-by ham friend some cvening for a short QSO. If he is a half mile or so away, that's finc, but any distance where the signals are still S 9 will be satisfactory.

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash spacing (the letter "T" at about 5 wpm). With minimum selectivity, cut the rf gain back just enough to avoid receiver overloading (the condition where you get crisp signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as yours or someone else's. A good signal will have
a thump on "make" that is perceptible only where you can also hear the beat note, and the click on "break" should be practically negligible at any point. If your signal is like that, it will sound good, provided there are no chisps. Then have your friend run off a string of fast dots with the bug - if they are easy to copy, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keying. Make one check with the selectivity in, to see that the clicks off the signal frequency are negligible even at high signal level.

If you don't have any friends with whom to trade stations, you can still check your keying, although you have to be a little more careful. The transmitter output should be fed into a shielded dummy load. Ordinary incandescent lamps are unsatisfactory as lamp resistance varies too much with current. The thermal lag may cause the results to be misleading.

The first step is to get rid of the rf click at the key. This requires an of filter (mentioned earlier). With no clicks from a spark at the key, disconnect the antenna from your receiver and short the antenna terminals with a short piece of wire. Tune in your own signal and reduce the of gain to the point where your receiver doesn't overload. Detune any. antenna trimmer the recciver may have. If you can't avoid overload with the rf gain-control range, pull out the rf amplifier tube and try again. If you still can't avoid overload, listen to the second harmonic as a last resort. An overloaded receiver can generate clicks.

Describing the volume level at which you should set your receiver for these "shack" tests is a little difficult. The if filter should be effective with

These photos show cw signals as observed on an oscilloscope. At A is a dot generated at a 46 baud rate with no intentional shaping, while at B the shaping circuits have been adjusted for approximately $5-\mathrm{ms}$ rise and decay times. Vertical lines are from a $1-k H z$ signal applied to the Z or intensity axis for timing. Shown at C is a shaped signal with the intensity modulation of the pattern removed. For each of these photos, sampled rf from the transmitter was fed directly to the deflection plates of the oscilloscope.

At D may be seen a received signal having essentially no shaping. The spike at the leading adge is typical of poor power-súpply regulation, as is also the immediately following dip and rise in amplitude. The clicks were quite pronounced. This pattern is typical of many observed signals, although not by any means a worst case. The signal was taken from the receiver's i-f amplifier (before detection) using a hand-operated sweep circuit to reduce the sweep time to the order of one second. (Photos from QST for October and November 1966.)
the receiver running wide open and with an antenna connected. When you turn on the transmitter and take the steps mentioned to reduce the signal in the receiver, run the audio up and the rf down to the point where you can just hear a little "rushing" sound with the BFO off and the receiver tuned to the signal. This is with the selectivity in. At this level, a properly adjusted keying circuit will show no clicks off the rushing-sound range. With the BFO on and the same gain setting, there should be no clicks outside the beat-note range. When observing clicks, make the slow-dash and dot tests outlined previously.

Now you know how your signal sounds on the air, with one possible exception. If keying your transmitter makes the lights blink, you may not be able to tell too accurately about the chirp on your signal. However, if you are satisfied with the absence of chirp when tuning either side of zero beat, it is safe to assume that your receiver isn't chirping with the light llicker and that the observed signal is a true representation. No chirp either side of zero beat is fine. Don't try to make these tests without first getting rid of the rf click at the key, because clicks can mask a chirp.

The least satisfactory way to check your keying is to ask another ham on the air how your keying

sounds. It is the least satisfactory because most hams are reluctant to be highly critical of another amateur's signal. In a great many cases they don't actually know what to look for or how to describe anv aberrations they may observe.

A MEMORY FOR THE DELUXE KEYER

The system described below permits storage of up to 200 letters of text organized in one, two, three, or four messages. A digital display provides an indication of the message being sent or loaded (No. 1, 2, 3, or 4) and the message bit being addressed (0 to 512). Any number of pauses may

Fig. 1 - A look at the inside of the Accu-Memory. The power supply components may be seen at the left, and the three "stacked" circuit boards to their right. The fourth circuit board, containing the readout, is mounted behind the sloping portion of the front panal. The board at the bottom of the "stack" is that of the original Accu-Keyer.
be programmed into a message to allow manual insertion of changeable text (such as RST or

Fig. 2 - Diagram of memory circuitry of the Accu-Memory. See Table II for list of parts. Numbers and letters in triangles identify inter-connections to other parts of the Accu-Memory, as listed in Table I. Lerters in circles indicate terminals for jumpers to be wired for either one or two RAM ICs. This wiring mformation is also listed in Table I.
contest serial number). After manual insertion a touch of the RUN button allows the remainder of the programmed message to continuc. The message being sent may be aborted by pressing the STOP button (the "I didn't mean to press the button!" button). Unlike some programmable keyers, the use of a free-running (asynchronous) clock in the load mode has been avoided, greally simplifying
the loading process. All features of the original Accu-Keyer have been retained. The dot and dash memories of the Accu-Keyer and its automatic character-space feature arc used to good advantage in the Accu-Memory.

In addition to the Accu-Keyer board, three printed circuit boards make up the Accu-Memory: a memory board, a display board, and a display-

A Deluxe Keyer Memory

driver board. The power supply provides 5 volts at 0.8 ampere to power all the circuitry.

The Accu-Memory has been "battle tested" in contests and has been found to be very effective in reducing operator fatigue. It is of use whenever there is a requirement for repeatedly sending the same cw sequences such as in contests, DX pileups, and net-control operations. Experience has shown
that the digital displays arc far more useful than originally anticipated.

Construction

As shown in Fig. 1 , the Accu-Memory is constructed in an aluminum box made by cutting and bending sheet aluminum. The front-panel dimensions are deliberately made small because

Fig. 3 - Diagram of driver and display. See Table II for list of parts. Numbers inside triangles identify interconnections to other parts of the Accu-Memory, as listed in Table I.
depth in most ham shacks is more abundant than frontal-area space. This method aiso gives a neat, streamlined appearance. The overall outside dimensions are $4-1 / 4 \times 3-1 / 2 \times 10-1 / 2$ with the length dimension measured across the bottom plate, less knobs and heat sink. The heat sink for the LM309 is attached to the rear panel, ${ }^{1}$ along with the key jack, the output jack, and a fuse holder (Safety First!). Power supply components are located on the bottom piate near the rear. Two terminal strips are used to mount the power supply diodes and filter capacitor. All the other electronic parts are mounted on four printed-circuit cards.

The push buttons are sold by Solid State Systems (see footnote ${ }^{1}$). One word of caution: do not increase the value of the filter capacitor in the power supply. It has been chosen for minimum dissipation by the LM309 regulator.

Fig. 2 is a schematic diagram of the circuitry on the driver and display board. Wires that interconnect the boards are shown as numbers or lower case letters in triangles on the figures. Selectable jumpers allow the use of one or two RAM IC's.
${ }^{1}$ The heat $\sin x$ for the LM-309 is available from 3olid State Systems, inc.. Box 773, Columbia, MO 65201.

The jumper points are shown as capital letters in circles. Table I is a list of interconnecting wires. Table II gives a parts list for each board. Fig. 4 is a diagram of the power supply.

To send, place the LOAD/SEND switch in the SEND position and press the proper message button. The STOP button will halt sending, but the message can be continued from the halted point if the RUN button is depressed.

If it is desired to use the insert feature, load the first part of the message as described above. Then after the memory stops advancing, press the RUN button once, wait until the count stops, and then load the second half of the message. In the SEND mode the memory will send the first part, stop and allow insertion of manual input such as signal reports, and then, when the RUN button is depressed, continue with the second half. This procedure may be repeated as many times as necessary. The readout indicates the message number and the location within the message starting at 000 and continuing through either 256 or 512 , depending on whether one or two memories are installed. A decimal point lights when the keyer is sending either manually or automatically.

Helpful Advice

After a lot of correspondence with amateurs who built the Accu-Keyer, it is apparent that some do not know that there is a difference between a 7400 , a 74 H 00 , a 74 L 00 , and a 74 C 00 . These are all members of a family of quad two-input gates that are different intemally and are not interchangeable (in almost all cases) with each other. Some IC distributors tend to be haphazard about which type they send.

As with the Accu-Keyer, ready-made boards are available for the memory through Garrett. ${ }^{2}$ A business-size self-addressed stamped envelope is mandatory to reduce addressing time to a minimum, If any problems develop or changes occur in the circuit, a data sheet showing corrections will be included with the boards.

[^22]

Fig. 4 - Power supply for Accu-Memary and

TABLEI－INTERCONNECTIONS

WIRE NUMBER
 FUNCTION

Keyer－so－memory interconnections．
Clock－connect to R6
Anode CRI
Cathode CR1（Remove CR1 in keyer and connect as shown．）
Data in（Connect to U7B in keyer and
tone oscillator on driver board．）
5
Data oul（Connect to manual key input，U7 pin 5 in keyer．）
Memory－ro－control switches
$\begin{array}{ll}\text { Send } 1 & \\ \text { Send } 2 \\ \text { Load } 1 & \text { Dpdt switch }\end{array}$
Load 2
Common
Common 2
Memory to readout
Insert
Insert return
Reset 1
Reset 2
Reset 3 Push buttoss

WIRE NUMBER

18
a，b，c，d，e，f，g
Memory to driver

20

21
22
23
24
25
Driver to readout
27－33（a－g，LSB）
34－40（a－⿸⿱㇒丿⿰⿸丄丶乀，CSB）
41－47（ $-\mathrm{g}_{0}$ MSB）
48－49
50
Memory interconnections
Fior one memory IC connect：A to H, B to G, C to I，D to F，J to ground，
K to $+5 \mathrm{~V}, \mathrm{~L}$ to N ，and M to O
For two memory ICs connect：A to J，B to I，C to K，D to H，E to F，
G to +5 V ， L to O ．and M to P ．
Connect DP（decimal point）on readout board to wire 13.

TABLE II－Accu－Memory Parts List

DELUXE ALL-SOLIDSTATE KEYER

The Accu-Keyer is a modern keying device with deluxe features available on only the most expensive of commercially available instruments, but it may be built for less than $\$ 25$.

The basic circuit uses seven TTL integrated circuits which may be purchased at "bargain" suppliers for less than \$3. Optional features which may be incorporated at the builder's discretion are a stiffly regulated power supply, a keying monitor, and provisions for solid-state keying of cathodekeyed transmitters.

The Accu-Keyer was designed with these features in mind:

1) Self-completing dots and dashes
2) Dot and dash memories
3) Iambic operation
4) Dot and dash insertion
5) Automatic character space (with switching: provided to defeat this feature)
6) $5-50 \mathrm{wpm}$ speed range
7) Low cost

Fig. 2 - Schematic diagram of the Accu-Keyer. Resistances are in ohms; $k=1000$. All capacitances are in microfarads. All resistors may be $1 / 4$ wate except R13, which should have a 2-W rating. Capacitors with polarity indicated are electrolytic; all others are disk ceramic. Parts not listed below are for text reference and circuit-board identification.
CR1 - Small-signal silicon diode.
CR2 - Rectifier diode, 1/2 A or greater.
Q1, Q3 - Silicon npn, $250-\mathrm{mW}$, high-speed switching or rf-amplifier transistor.
02 - Silicon pnp, $250-\mathrm{mW}$, high-speed switching or rf-amplifier transistor.
04 - Silicon pnp, 250-mW, high-voltage afamplifier iransistor.

R7 - Reverse-log-taper control: Mallory U-28 suitable.
S1 - Spst toggle.
U1, U2, U6 - Quad 2-input NAND gate, type 7400.*

U3, U4, U5 - Dual type D flip-flop, type 7474.* U7 - Triple 3-input NAND gate, type $7410 .{ }^{*}$
VR1-5.1-V, 0.5-W Zener diode.

* All ICs are dual-in-line package, 14 pin . Note: All ICs are available from various manufactuerers or as surplus Motorola part numbers are prefixed by $M C$ and suffixed by P. Texas Instruments parts have an $S N$ prefix and N suffix. Signetics ICs have an N prefix and an A suffix. For example, Motorola's MC7400P is equivalent to Texas Instruments' SN7400N or Signetics' N7400A.

A peek inside the Accu-Keyer shows compact construction in this deluxe version built by W1RML, The ac-operated power supply components are located at the left, and the basic keyer board at the right. The keying monitor is constructed on a separate vertically mounted circuit board positioned near the center of the enclosure. The pitch control is mounted inside the keyer on this circuit board, as it is not adjusted frequently. The speaker is mounted over a "grille" formed by drilling many holes at the bottom of the enclosure, and is nearly hidden by the filter capacitor in this view. On the rear panel, in TO-3 style cases, are the 5 -volt regulator IC and the cathode keying transistor.

The Circuit

The schematic diagram of the Accu-Keyer is shown in Fig. 2. The voltage applied to CR2 for powering the keyer may be either 8 to 10 volts dc or 6.3 volts ac, such as from the filament supply of a transmitter or receiver. If dc is applied, C6 is not required. If ac is applied to CR2, VR1 functions more to protect the ICs from overvoltage by limiting the amplitude of the ripple than it does for voltage regulation. If a well-filtcred and regulated supply is desired, the circuit of Fig. 3A may be used in place of CR2, R13, and VR1 and associated capacitors. Constructed with the components shown, that supply will handle the keyer requirements with power to spare.

Should a keying monitor be desired, the diagram of Fig. 3B may be used to construct a circuit which will afford plenty of volume and a stable,

pleasing tone. The circuit is a modified version of the code-practice oscillator appearing in Chapter 1. Equipped with such a monitor, the Accu-Keyer becomes ideal for conducting code practice sessions for small and medium-sized groups.

Fig. 3C shows a circuit which may be used for cathode-keyed or solid-state "QRP" transmitters. The Delco keying transistor will safely handle two amperes of current and a collector-to-emitter potential of 800 V , and yet its cost is less than that of a new mercury-wetted relay. The use of a transistor offers advantages over both vacuum-tube keying and relay keying of cathode-keyed rigs; the voltage drop across the transistor when saturated introduces negligible grid-cathode bias to the keyed stage, and the keying is softened somewhat over relay keying because the transistor cannot go from cutoff to saturation (or vice versa) instantaneously. For QRP transmitters, Q6 may be a 300 - or $500-\mathrm{mW}$ silicon npn transistor, such as a 2 N 2222 or 2 N 4123.

(A)

Fig. 3 - At A, optional ac-operated power supply circuit for the Accu-Keyer; At B, an optional monitor, and at C a circuit for cathode keying.
LS1 - Miniature speaker, 4-, 8- or 16-ohm impedance.

Q6 - High-voltage high-current silicon npn power transistor (Delco DTS-801, -802, or -804 or equiv.).

LM309K
BOTTOM VIEW

T1 - Surplus filament transformer, 12.6-V i-A secondary rating.
U8 - Full-wave rectifier bridge, 1-A 50-V (Motorola 920-2, HEP 175, or equiv.). Four rectifier diodes in a bridge arrangement may be used instead.
U9 - Voltage-regulator IC, 5-volt (National Semiconductor LM309K or equiv.)
U10 - Signetics NE555 timer IC.

ALL TRANSISTOR CONNECTIONS

W = WIRE JUMPER

Fig. 4 - Etching pattern and parts-layout diagram for the Accu-Kever, Pattern is actual size, shown from foil side of board.

Construction and Operation

A ready-made circuit board is available for the basic circuit of the Accu-Keyer. ${ }^{1}$ Fig. 4 is an actual-size board layout and parts-placement guide. If the builder elects to use none of the optional circuit features of F ig. 3, the complete keyer may be built into a $3 \times 2 \times 5$-inch Minibox. The board pattern in Fig. 4 contains all parts of Fig. 2 except the controls, the filter capacitor, and the rectifier in the power supply.

It is essential that all leads to the keyer be shielded from rf. RG-174/U coax may be used. A $.01-\mu \mathrm{F}$ bypass capacitor is provided on the power

[^23]input to remove rf. As shown on the diagram, the inputs from the paddle are filtered by 150 -ohm resistors bypassed by . $001-\mu \mathrm{F}$ capacitors. In stubborn cases it may be necessary to bypass the paddle contacts at the paddle itself.

Substitution of transistors for Q1 and Q2 may require changing the valuc of R 5 to make the first clock pulse the same length as the rest. Both should be transistors with a beta of at least 60 . Q3 is noncritical, and any good silicon transistor should work. Q4 shouid be capable of withstanding the transmistter key-up voltage. Any pnp silicon device having a reasonable beta and mecting this requirement should work. The value of Cl may be juggled to change the range of the speed control. The value specified gives a range of approximately 5 to 50 wpm .

A SINGLE IC KEYER

The 8043 Integrated Electronic Keyer IC is a space-age component, designed specifically for the cw operator. A product of the latest design and processing technology available in the integrated circuit industry, the 8043 represents the same advancements which make possible the one chip electronic calculator and the digital electronic wrist watch. The 8043 is available from Curtis Electro Devices, Mountain Yiew, California.

A good keyer exhibits no idiosyncrasies. The 8043 incorporates filters which eliminate the effects of key bounce on both make and break. Another intangible quality is rf immunity. To protect false triggering by if on the paddle leads, the 8043 dot and dash inputs arc equipped with active pull-up resistors (a system which reflects a few hundred ohms during quiescence and zero ohms during key down) which exhibit only a few hundred ohms impedance to the power supply
when the key is open. In order to assure that the 8043 dissipates as little power as possible, CMOS (complementary metal-oxide semiconductor) circuit techniques ase used. As a result, the quiescent current required is only 50 microamperes at 0.5 volts. This makes an on-off switch unnecessary even when using a battery supply. The key-down current is about 30 mA with about 99.9% of this current being required for sidetone output and drive for the output transistor.

Once a dot, dash or space is commenced, there is no way to prevent it from transmitting at the exact standard length. It may be neither cut short nor extended by improper key action. When the dot paddle is depressed, a continuous string of dots is produced; when the dash paddle is depressed, continuous dashes are produced. When both paddies are closed, an alternate (iambic) series of dots and dashes is made. The series can be started with either a dot or a dash, depending on which key side is closed first. lambic operation allows squeeze keying if a twin-lever paddle is used.

The self-completing function of electronic keyers can cause dots to get lost because the operator, attempting to initiate a dot before the last character has been completed, tends to lead the keyer. Since dashes are naturally held longer, they seldom get lost. To prevent lost dots, the 8043 employs a memory to remember when a dot is called for and to insert it at the proper time. The dot memory also helps in squeeze keying, where a tap on the dot paddle will insert a dot into a series of dashes. Although a dot-space ratio of $1-t 0-\xi$ is correct timing, some operators like heavier keying. The 8043 has provision for a weight control if desired.

Inside view of the one IC keyer.

The 8043 has a built-in sidetone generator with pitch adjustable to your preference. This sidetone also functions when a straight key is used or the tune switch is closed. The keying output voltage from the 8043 is low for a key-up condition; key down is represented by high output of sufficient level to drive an npn keying transistor. The speed range is normally about 8 to 50 words per minute, but by selecting timing components, you can get almost any speed range you like.

The 8043 is contained in a $1-3 / 4 \times 2-1 / 4 \times$ $4-3 / 4$-inch metal box. There is no on-off switch because of the low quiescent current drain. Jacks for the paddle and output keying are located on the rear of the enclosure and are not visible in the photograph.

Fig. 1 - Circuit diagram for the keyer. All diodes are 1 N4006 or equiv. All potentiometers ara linear taper and resistors are 1/2 or 1/4 watt.

Amplitude Modulation and Double-Sideband Phone

Fig. 12-1 - Spectrum-analyzer display of the ri output of an a-m transmitter. Frequency is presented on the horizontal axis $(7-\mathrm{kHz}$ total display width) versus relative amplitude of the signal component on the vertical axis. Shown at A is the unmodulated carrier, which occupies but a single frequency. At 8 the carrier is 20 -percent modulated with a $1000-\mathrm{Hz}$ tone. Each sideband may be seen to be at a level approximately 20 dB below the carrier. The signal bandwidth in this case is twice the modulating frequency, or 2 kHz . Shown at C is the widened channel bandwidth resulting from splatzer caused by overmodulation. New frequencies, audio harmonics of the $1000-\mathrm{Hz}$ modulating tone, extend for several kilohertz either side of the carrier.

As described in the chapter on circuit fundamentals, the process of modulation sets up groups of frequencies called sidebands, which appear symmetrically above and below the frequency of the unmodulated signal or carrier. If the instantancous values of the amplitudes of all these separate frequencies are added together, the result is called the modulation envelope. In amplitude modulation ($a-m$) the modulation envelope follows the amplitude variations of the signal that is used to modulate the wave.

For example, modulation by a $1000-\mathrm{Hz}$ tone will result in a modulation envelope that varies in amplitude at a $1000-\mathrm{Hz}$ rate. The actual if signal that produces such an envelope consists of three frequencies - the carrier, a side frequency 1000 Hz higher, and a side frequency 1000 Hz lower than the carrier. See Fig. 12-1. These three frequencies easily can be separated by a receiver having high selectivity. In order to reproduce the original modulation the receiver must have enough bandwidth to accept the carrier and the sidebands simultaneously. This is because an a-m detector responds to the modulation envelope rather than to the individual signal components, and the envelope wild be distorted in the receiver unless all the frequency components in the signal go through without change in their amplitudes.

In the simple case of tone modulation the two side frequencies and the carrier are constant in amplitude - it is only the envelope amplitude that varies at the modulation rate. With more complex modulation such as voice or music the amplitudes and frequencies of the side frequencics vary from instant to instant. The amplitude of the modulation envelope varies from instant to instant in the same way as the complex audio-frequency signal causing the modulation. Even in this case the carrier amplitude is constant if the transmitter is properly modulated.

A-M Sidebands and Channel Width

Speech can be electrically reproduced, with high intelligibility, in a band of frequencies lying between approximately 100 and 3000 Hz . When these frequencics are combined with a radio-frequency carrier, the sidebands occupy the frequency spectrum from about 3000 Hz below the carrier frequency to 3000 Hz above - a total band or channel of about 6 kHz .

Actual speech frequencies extend up to 10,000 Hz or more, so it is possible to occupy a $20-\mathrm{kHz}$ channel if no provision is made for reducing its width. For communication purposes such a channel width represents a waste of valuable spectrum space, since a $6-\mathrm{kHz}$ channel is fully
adequate for intelligibility. Occupying more than the minimum channel creates unnecessary interference.

THE MODULATION ENVELOPE

In Fig. 12-2 the drawing at A shows the unmodulated rf signal, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent either voltage or current.

In B, the signal is assumed to be modulated by the audio frequency shown in the small drawing above. This frequency is much lower than the carrier frequency, a necessary condition for good modulation. When the modulating voltage is "positive," (above its axis) the envelope amplitude is increased above its unmodulated smplitude; when the modulating voltage is "negative," the envelope amplitude is decreased. Thus the envelope grows larger and smaller with the polarity and amplitude of the modulating voltage.

The drawing at C shows what happens with stronger modulation. The envelope amplitude is doubled at the instant the modulating voltage reaches its positive peak. On the negative peak of the modulating voltage the envelope amplitude just reaches zero.

Percentage of Modulation

When a modulated signal is detected in a receiver, the detector output follows the modulation envelope. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in Fig. 12-2C would produce more useful audio output than the one shown at B.

The "depth" of the modulation is expressed as a percentage of the unmodulated carrier amplitude. In either B or C. Fig. 12-2, X represents the unmodulated carrier amplitude, Y is the maximum cnvelope amplitude on the modulation uppeak, and Z is the minimum envelope amplitude on the modulation downpeak.

In a properly operating modulation system the modulation envelope is an accurate reproduction of the modulating wave, as can be seen in Fig. 12-2 at B and C by comparing one side of the outline with the shape of the modulating wave. (The lower outline duplicates the upper, but simply appears upside down in the drawing.)

The percentage of modulation is
\% Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation), or
\% Mod. $=\frac{X-Z}{X} \times 100$ (downward modulation)
If the two percentages differ, the larger of the two is customarily specified. If the wave shape of the modulation is such that its peak positive and negative amplitudes are equal, then the modulation percentage will be the same both up and down, and is
\% Mod. $=\frac{Y-Z}{Y+Z} \times 100$.

Fig. 12-2 - Graphical representation of (A) rf output unmodulated, (B) modulated 50 percent. (C) modulated 100 percent. The modulation envelope is shown by the thin outline on the modulated wave.

Power in Modulated Wave

The amplitude values shown in Fig. 12-2 correspond to current and voltage, so the drawings may be taken to represent instantaneous values of either. The power in the wave varies as the square of either the current or voltage, so at the peak of the modulation upswing the instantaneous power in the envelope of Fig. $12-2 \mathrm{C}$ is four times the unmodulated carrier power (because the current and voltage both-are doubled). At the peak of the downswing the power is zero, since the amplitude is zero. These statements are true of 100 -percent modulation no matter what the wave form of the modulation. The instantaneous envelope power in the modulated signal is proportional to the square of its envelope amplitude at every instant. This fact is highly important in the operation of every method of amplitude modulation.

It is convenient, and customary, to describe the operation of modulation systems in terms of sine-wave modulation. Although this wave shape is seldom actually used in practice (voice wave shapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common basis. With sine-wave modulation the average power in the modulated signal over any number of full cycles of the modulation frequency is found to be $1-1 / 2$ times the power in the unmodulated zarricr. In other words, the power output increases 50 percent with 100 -percent modulation by a sine wave.

This relationship is very useful in the design of modulation systems and modulators, because any such system that is capable of increasing the average power output by 50 percent with sine-wave

A-M AND DSB

Fig. 12-3 - Modulation by an unsymmetrical wave form. This drawing shows 100 -percent downward modulation along with 300 -percent upward modulation. There is no distortion, since the modulation envelope is an accurate reproduction of the wave form of the modulating voltage.
modulation automatically fulfills the requirement that the instansaneous power at the modulation uppeak be four times the carrier power. Consequently, systems in which the additional power is supplied from outside the modulated rf stage (e.g., plate modulation) usually are designed on a sine-wave basis as a matter of convenience. Modulation systems in which the additional power is secured from the modulated rf amplifier (e.g., grid modulation) usually are more conveniently designed on the basis of peak envelope power rather than average power.

The extra power that is contained in a modulated signal goes entirely into the sidebands, half in the upper sideband and half into the lower. As a numerical example, full modulation of a 100 -watt carrier by a sine wave will add 50 watts of sideband power, 25 in the lower and 25 in the upper sideband. With lower modulation percentages, the sideband power is proportional to the square of the modulation percentage, i.e., 50 -percent modulation will add 12.5 watts of sidebund power, 6.25 watts in each sideband. Supplying this additional power for the sidebands is the object of all of the various systems devised for amplitude modulation.

No such simple relationship exists with complex wave forms. Complex wave forms such as speech do not, as a rule, contain as much average power as a sine wave. Ordinary speech wave forms have about half as much average power as a sine wave, for the same peak amplitude in both wave forms. Thus for the same modulation percentage, the sideband power with ordinary speech will average only about half the power with sine-wave modulation, since it is the peak envelope amplitude, not the average power, that determines the percentage of modulation.

Unsymmetrical Modulation

In an ordinary electric circuit it is possible to increase the amplitude of current flow indefinitely,
up to the limit of the power-handling capability of the components, but it cannot very well be decreased to less than zero. The same thing is true of the amplitude of an if signal; it can be modulated upward to any desired extent, but it cannot be modulated downward more than 100 percent.

When the modulating wave form is unsymmetrical it is possible for the upward and downward modulation percentages to be different. A simple case is shown in Fig. 12-3. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward modulation is just 100 percent ($Z=0$) the peak upward modulation is 300 percent ($Y=$ $4 X$). The carrier amplitude is represented by X, as in Fig. 12-2. The modulation envelope reproduces the wave form of the modulating signal accurately, hence there is no distortion. In such a modulated signal the increase in power output with modulation is considerably greater than it is when the modulation is symmetrical. In Fig. 12-3 the peak envelope amplitude, Y, is four times the carrier amplitude, X, so the peakenvelope power (PEP) is 16 times the carrier power. When the upward modulation is more than 100 percent the power capacity of the modulating system obviously must be increased sufficiently to take care of the much larger peak amplitudes. Such a system of modulation, often called "supermodulation," was popular among amateurs in the early 1950s. (See bibliography at the end of this chapter.)

Overmodulation

If the amplitude of the modulation on the downward swing becomes too great, there will be a period of time during which the of output is entirely cut off. This is shown in Fig. 12-4. The shape of the downward half of the modulating wave is no longer accurately reproduced by the modulation envelope, consequently the modulation is distorted. Operation of this type is called overmodulation.

The distortion of the modulation envelope causes new frequencies (harmonics of the modulating frequency) to be generated. These combine

Fig. 12-4 - An overmodulated signal. The modulation envelope is not an accurate reproduction of the wave form of the modulating voltage. This, or any type of distortion occurring during the modulation process, generates spurious sidebands or "splatter."
with the carrier to form new side frequencies that widen the channel occupied by the modulated signal, as shown in Fig. 12-1C. These spurious frequencies are commonly called "splatter."

It is important to realize that the channel occupied by an amplitude-modulated signal is dependent on the shape of the modulation envelope. If this wave shape is complex and can be resolved into a wide band of audio frequencies, then the channel occupied will be correspondingly large. An overnodulated signal splatters and occupies a much wider channel than is necessary because the "clipping" of the modulating wave
that occurs at the zero axis changes the envelope wave shape to one that contains high-order harmonics of the original modulating frequency. These harmonics appear as side frequencies separated by, in some cases, many kilohertz from the carrier frequency.

Because of this clipping action at the zero axis, it is important, that care be taken to prevent applying too large a modulating signal in the downward direction. Overmodulation downward results in more splatter than is caused by most other types of distortion in a phone transmitter.

AMPLITUDĖ MODULATION METHODS

MODULATION SYSTEMS

As explained in the preceding section, amplitude modulation of a carrier is accompanied by an increase in power output, the additional power being the "useful" or "talk power" in the sidebands. This additional power may be supplied from an external source in the form of audio-frequency power. It is then added to the unmodulated power input to the amplifier to be modulated, after which the combined power is converted to rf. This is the method used in plate or collector modulation. It has the advantage that the rf power is generated at the high-efficiency characteristic of Class C amplifiers - of the order of 65 to 75 percent - but has the accompanying disadvantage that generating the audio-frequency power is rather expensive.

An alternative that does not require relatively large amounts of audio-frequency power makes use of the fact that the power output of an amplifier can be controlled by varying the potential of a tube or transistor element - such as a control or screen grid or a transistor base - that does not, in itself, consume appreciable power. In this case the additional power during modulation is secured by sacrificing carrier power; in other words, a tube is capable of delivering only so much total power within its ratings, and if more must be delivered at full modulation, then less is available for the unmodulated carrier. Systems of this type must of necessity work at rather low efficiency at the unmodulated carrier level. As a practical working rule, the efficiency of the modulated rf amplifier is of the order of 30 to 35 percent, and the unmodulated carrier power output obtainable with such a system is only about one-fourth to one-third that obtainable from the same amplifier with plate modulation.

PLATE OR COLLECTOR MODULATION

Fig. 12-5 shows a system of plate modulation, in this case with a triode of tube. A balanced (push-pull Class A, Class AB or Class B) modulator is transformer coupled to the plate circuit of the modulated of amplifier. The audio-frequency power generated by the modulator is combined with the dc power in the modulated-amplifier plate
circuit by transfer through the coupling transformer, T. For 100 -percent modulation the audiofrequency power output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the of the modulated amplifier varies between zero and twice and dc operating plate voltage, thus causing corresponding variations in the amplizude of the rf output. The tubes of Fig. 12-5 may be replaced with transistors, either bipolar or FET, for collector or drain modulation.

Fig. 12-5 - Plate modulation of a Class C if amplifier. The rf plate bypass capacitor, C, in the amplifier stage should have reasonably high reactance at audio frequencies. A value of the order of $.001 \mu \mathrm{~F}$ to $.005 \mu \mathrm{~F}$ is satisfactory in practically all cases for vacuum-tube circuits. A considerably higher value will be required if the vacuum tubes are replaced by transistors - in the order of a fow microfarads.

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated if stage sine-wave audio power equal to 50 percent of the dc input power. For example, if the dc input power to the rf stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Although the total power input (dc plus audiofrequency ac) increases with modulation, the dc plate or collector current of a modulated amplifier should not change when the stage is modulated. This is because each increase in voltage and current is balanced by an equivalent decrease in voltage and current on the next half cycle of the modulating wave. Dc instruments cannot follow the af variations, and since the average dc plate or collector current and voltage of a properly operated amplifier do not change, neither do the meter readings. A change in current with modulation indicates nonlinearity. On the other hand, a thermocouple if ammeter connected in the antenna, or transmission line, will show an increase in if current with modulation, because instruments of this type respond to power rather than to current or voltage.

Modulating lmpedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated of amplifier, is equal to

$$
\mathrm{Z}_{\mathrm{m}}=\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000 \text { ohms }
$$

where $E_{\mathrm{b}}=$ Dc plate or collector voltage
$I_{\mathrm{D}}=$ Dc plate or collector current (mA)
E_{b} and I_{p} are measured without modulation.
The power output of the rf amplifier must vary as the square of the instantaneous plate or collector voliage (the if output voltage must be proportional to the plate or collector voltage) for the modulation to be lincar. This will be the case when the amplifier operates under Class C conditions. The linearity depends upon having sufficient grid or base excitation and proper bias, and upon the adjustment or circuit constants to the proper values.

Screen-Grid RF Amplifiens

Screen-grid tubes of the pentode or beam-ictrode type can be used in Class C plate-modulated amplifiers by applying the modulation to both the plate and screen grid. The usual method of feeding the screen grid with the necessary dc and modulation voltages is shown in Fig. 12-6. The dropping resistor, R, should be of the proper value to apply normal de voltage to the screen under steady carrier conditions. Its value can be calculated by taking the difference between plate and screen voltages and dividing it by the rated screen current.

The modulating impedance is found by dividing the dc plate voltage by the sum of the plate and

Fig. 12-6 - Plate and screen modulation of a Class C rf amplifier using a screen-grid tube. The plate if bypass capacitor, C1, should have reasonably high reactance at all audio frequencies; a value of . 001 to $.005 \mu \mathrm{~F}$ is generally satisfactory. The screen bypars, C2, should not exceed $.002 \mu \mathrm{~F}$ in the usual case.
screen currents. The plate voltage multiplicd by the sum of the two currents gives the power input to be used as the basis for determining the audio power required from the modulator.

Modulation of the screen along with the plate is necessary because the screen voltage has a much greater effect on the plate current than tho plate voltage does. The modulation characteristic is norlinear if the plate alone is modulated.

Choke-Coupled or Heising Modulation

One of the oldest types of plate modulating systems is the choke-coupled Class A or Heising modulator shown in Fig. 12-7. Becausc of the relatively low power output and plate efficiency of a Class A amplifier, the method is rarely used now except for a few special applications.

The audio power output of the modulator is combined with the dc power in the plate circuit through the modulation choke, L 1 , which has a high impedance at audio frequencies. This technique of modulating the of signal is similar to the case of the transformer-coupled modulator but there is considerably less freedom in adjustment since no transformer is available for matching impedances. The dc input power to the rf stage must not exceed twice the rated af power output of the modulator, and for 100 -percent modulation the plate voltage on the modulator must be higher than the plate voltage on the of amplifier. This is because the af voltage developed by the modulator cannot swing to zero without a great deal of distortion. R1 provides the necessary dc voltage drop between the modulator and the rf aniplifier. The voltage drop across this resistor must equal the minimum instantaneous plate voltage on the modulator tube under normal operating conditions. C1, an audio-frequency bypass across R1. should have a capacitance such that its reactance at 100 Hz is not more than about one-tenth the resistance of R1. Without $\mathrm{Rl}-\mathrm{Cl}$ the percentage of modulation is limited to 70 to 80 percent in the average case.

Fig. 12.7 - Choke-coupled Class A modulator. The modulation choke, L1, should have a value of 5 H or more. A value of . 001 to $.005 \mu \mathrm{~F}$ is satisfactory for C2. See text for discussion of C1 and R1.

GRID MODULATION

The principal disadvantage of plate modulation is that a considerable amount of audio power is necessary. This requirement can be avoided by applying the modulation to a grid element in the modulated amplifier. However, serious disadvantages of grid modulation are the reduction in the carrier power output obtainable from a given rf amplifier tube and the more rigorous operating requirements and more complicated adjustment.

The term "grid modulation" as used here applies to all types - control grid, screen, or suppressor - since the operating principles are exactly the same no matter which grid is actually modulated. (Screen-grid modulation is the most commonly used technique of the three types listed here.) With grid modulation the plate voltage is constant, and the increase in power output with modulation is obtained by making both the plate current and plate efficiency vary with the modulating signal. The efficiency obtainable at the envelope peak depends on how carefully the modulated amplifier is adjusted, and sometimes can be as high as 80 percent. It is generally less when the amplificr is adjusted for good linearity, and under average conditions a round figure of $2 / 3$, or 66 percent, is representative. The efficiency without modulation is only half the peak efficiency, or about 33 percent. This low average efficiency reduces the permissible carrier output to about one-fourth the power obtainable from the same tube in cw operation, and to about one-third the carrier output obtainable from the tube with plate modulation.

The modulator is required to furnish only the audio power dissipated in the modulated grid under the operating conditions chosen. A speech amplifier capable of delivering 3 to 10 watts is usually sufficient.

Grid modulation does not give quite as linear a modulation characteristic as plate modulation, even under optimum operating conditions. When misadjusted the nonlinearity may be severe, resulting in considerable distortion and splatter.

Screen Grid Modulation

Screen modulation is probably the simplest and most popular form of grid modulation, and the least critical of adjustment. The most satisfactory way to apply the modulating voltage to the screen is through a transformer.

With practical tubes it is necessary to drive the screen somewhat negative with respect to the cathode to get complete cutoff of rf output. For this reason the pcak modulating voltage required for 100 -percent modulation is usually 10 percent or so greater than the de screen voltage. The latter, in turn, is approximately half the rated screen voltage recommended by the manufacturer under maximum ratings for radiotelegraph operation. The audio power required for 100 -percent modulation is approximately one-fourth the dc power input to the screen in cw operation, but varies somewhat with the operating conditions.

Controlled Carrier

As explained earlier, a limit is placed on the output obtainable from a grid-modulation system by the low rf-amplifier plate efficiency (approximately 33 percent) under unmodulated carries

Fig. 12-8 - Circuit for carrier control with screen modulation, A small eriode such as the 6CA can be used as the control amplifier and a 6Y6G is suitable as a carrier-control qube. T1 is an interstage audio transformer having a 1-to-1 or larger turns ratio. R4 is a 0.5 -megohm volume control and also serves as the grid resistor for the modulatar. A germanium diode may be used as the rectifier. R3 may be the normal screen dropping resistor. C1-R1 and C2-R3 should have a time constant of about 0.1 second.
conditions. The plate efficiency increases with modutation, since the output increases' while the dc input remains constant, and reaches a maximum in the neighborhood of 50 percent with 100 -percent sine-wave modulation. If the power input to the amplifier can be reduced during periods when there is little or no modulation, thus reducing the plate loss, advartage can be taken of the higher efficiency at full modulation to obtain higher effective output. This can be done by varying the dc power input to the modulated stage in accordance with average variations in voice intensity, in such a way as to maintain just sufficient carrier power to keep the modulation high, but not exceeding 100 percent, under all conditions. Thus the carricr amplitude is controlled by the average voice intensity. Properly utilized, controlled camier permits increasing the carrier output at maximum level to a value about equal to
the rated plate dissipation of the tube, twice the output obtainable with constant carrier.

It is desirable to control the power input just enough so that the plate loss, without modulation, is safely below the tube rating. Excessive control is disadvantageous because the distant receiver's avc system must continually follow the variations in average signal level. The circuit of Fig. 12-8 permits adjustment of both the maximum and minimum power input, and separates the functions of modutation and carrier control. A portion of the audio voltage at the modulator grid is applied to a Class A "control amplifier," which drives a rectifier circuit to produce a dc voltage negative with respect to ground. Cl Filters out the audio variations, leaving a dc voltage proportional to the average voice level. This voltage is applied to the grid of a "clamp" tube to control the dc screen voltage and thus the if carrier level.

DOUBLE-SIDEBAND GENERATORS

The $a-m$ carrier can be suppressed or rearly ehiminated by using a balanced modulator. The basic principle in any balanced modulator is to introduce the carrier in such a way that it does not appear in the output but so that the sidebands will. This requirement is satisfied by introducing the audio in push-pull and the rf drive in parallel, and connecting the output in push-pull. Balanced modulators can also be connected with the if drive and audio inputs in push-pull and the output in parallel with equal effectiveness.

Vacuum-tube balanced modulators can be operated at high power tevels and the double-sideband output can be used directly into the antenna.

Past issues of QST have given construction details on such transmitters (see, for example, Rush, "180-Watt D.S.B. Transmitter," QST July, 1966). A dab signal can be copied by the same methods that are used for single-sideband signals, provided the receiver has sufficient selectivity to reject one of the sidebands. In any balanced-modulator circuit, no if output will exist with no audio signal. When audio is applied, the balance of the modulator is upset so that sum and difference frequencies (sidebands) appear at the output. Furthes information on balanced modulators is presented in Chapter 13.

CHECKING A-M PHONE OPERATION

USING THE OSCILLOSCOPE

Proper adjustment of a phone transmitter is aided immeasurably by the oscilloscope. The scope will give more information, more accurately, than almost any collection of other instruments that might be named. Furthermore, an oscilloscope that is entirely satisfactory for the purpose is not necessarily an expensive instrument; the cathoderay tube and its power supply are about all that are needed. Amplifiers and lincar sweep circuits are by no means necessary.

In the simplest scope circuit, radio-frequency voltage from the modulated amplifier is applied to the vertical deflection plates of the tube, usually through blocking capacitors, and audio-frequency voltage from the modulator is applied to the horizontal deflection plates. As the instantaneous amplitude of the audio signal varies, the rf output of the transmitter likewise varies, and this produces a wedge-shaped pattern or trapezoid on the screen. If the oscilloscope has a built-in horizontal sweep, the if voltage can be applied to the vertical plates as before, and the sweep will produce a pattern
that follows the modulation envelope of the transmitter output, provided the sweep frequency is lower than the modulation frequency. This produces a wave-envelope modulation pattern.

The Wave-Envelope Pattem

The connections for the wave-envelope pattern are shown in Fig. 12-9A. The vertical deflection plates are coupled to the amplifier tank coil (or an antenna coil) through a low-impedance (coax, twisted pair, etc.) line and pickup coil. As shown in the altemative drawing, a resonant circuit tuned to the operating frequency may be connected to the vertical plates, using tink coupling between it and the transmitter. This will eliminate rf harmonics, and the tuning control provides a means for adjustment of the pattem height.

If it is inconvenient to couple to the final tank coil, as may be the case if the transmitter is tightly shielded, the pickup loop may be coupled to the tuned tank of a matching circuit or antenna coupler. Any method (even a short antenna coupled to the tuned circuit shown in the
"alternate input connections" of Fig. 12-9A) that will pick up enough if to give a suitable pattern height may be used.

The position of the pickup coil should be varied until an unmodulated carrier pattern, Fig. 12-10A, of suitable height is obtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the screen. When voice modulation is applied, a rapidly changing pattern of varying height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone. the wave is being modulated 100 percent. This is illustrated by Fig. 12-10C.

If the height is greater than twice the unmodulated carrier amplitude, as illustrated in Fig. $12-10 \mathrm{D}$, the wave is overmodulated in the upward direction. Overmodulation in the downward direc. tion is indicated by a gap in the pattern at the refcrence axis, where a single bright line appears on the screen. Overmodulation in either direction may take place even when the modulation in the other direction is less than 100 percent.

The Trapezoidal Pattern

Connections for the trapezoid or wedge pattern as used for checking a-m are shown in Fig. 12-9B. The vertical plates of the CR tube are coupled to the transmitter tank through a pickup loop, preferably using a tuned circuit, as shown in the upper drawing, adjustable to the operating frequency. Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, R1-R2. This voltage should be adjustable so a suitable pattern width can be obtained; a 0.25 -megohm volume control can be used at R2 for this purpose.

The resistance required at R1 will depend on the dc voltage on the modulated element. The total resistance of $R 1$ and $R 2$ in series should be about 0.25 megohm for each 100 volts. For example, if a plate-modulated amplifier operates at 1500 volts, the total resistance should be 3.75 megohms, 0.25 megohm at R2 and the remainder, 3.5 megohms, in R1. R1 should be composed of individual resistors not larger than 0.5 megohm each, in which case l-watt resistors will be satisfactory.

For adequate coupling at 100 Hz , the capacitance in microfarads of the blocking capacitor, C, should be at least $.05 / R$, where R is the total resistance ($\mathrm{R} 1+\mathrm{R} 2$) in megohms. In the cxample above, where R is 3.75 megohms, the capacitance should be $.05 / 3.75=.013 \mu \mathrm{~F}$ or more. The voltage rating of the capacitor should be at least twice the dc voltage applied to the modulated element.

Trapeziodal patterns for various conditions of modulation are shown in Fig. 12-10, each alongside the corresponding wave-onvelope pastern. With no signal, only the cathode-ray spot appears on the screen. When the unmodulated carrier is applied, a vertical line appears; the length of the line should be adjusted, by means of the pickup-coil coupling, to a convenient value. When the carrier is modulated, the wedge-shaped pattern appears; the higher

Fig. 12-9 - Methods of connecting the oscilloscope for modulation checking. A connections for wave-envelope pattern with any modulation method; B - connections for trapezoidal pattern with plate or screen modulation.
the modulation percentage, the wider and more pointed the wedge becomes. At 100 -percent modulation it just makes a point at one end of the horizontal axis, and the height at the other end is equal to twice carrier height. Overmodulation in the upward direction is indicated by increased height, at one end, and downward by an extension along the horizontal axis at the pointed end.

CHECKING A-M TRANSMITTER PERFORMANCE

The trapezoidal pattem is generally more useful than the wave-envelope pattern for checking the operation of the phone transmitter. However, both types of patterns have their special virtues, and the best test setup is one that makes both available. The trapezoidal pattern is better adapted to showing the performance of a modulated amplifier from the standpoint of inherent linearity, without regard to the wave form of the audio modulating signsl, than is the wave-envelope pattern. Distortion in the audio signal also can be detected in the trapezoidal pattern, although experience in analyzing scope pattems is required to recognize it.

If the wave-envelope pattern is used with a sine-wave audio modulating signal, distortion in the

Fig. 12.10 - Oscilloscope patterns showing various forms of modulation of an rí amplifier. At left. wave-envelope patterns; at right, corresponding trapezoidal patterns. The wave-envalope patzerns were obtained with a linear oscilloscope sweep having a frequency one-third that of the sine-wave audio modulating frequency. so that three cycles of the modulation envelope may be seen. Shown at A is an unmodulated carrier, at B approximately 50 -percent modulation, and at C, 100-percent modulation. The photos at D show modulation in excess of 100 percent. E and F show the results of improper operation or circuit design. See text.
modulation envelope is easily recognizable; however, it is difficult to determine whether the distortion is caused by lack of linearity of the if stage or by af distortion in the modulator. If the trapezoidal pattern shows good linearity in such a case, the trouble obviously is in the audio system. It is possible, of course, for both defects to be present simultaneously. If they are, the rf amplifier should be made linear first; then any distortion in the modulation envelope will be the result of improper operation in the speech amplifier or modulator, or in coupling the modulator to the modulated ff stage.

Rf Linearity

The trapezoidal pattern is a graph of the modulation characteristic of the modulated amplifier. The sloping sides of the wedge show the rf amplitude for every value of instantaneous modulating voltage. If these sides are perfectly straight lines, the modulation characteristic is linear. If the sides show curvature, the characteristic is nonlinear to an extent shown by the degree to which the sides depart from perfect straightness. This is true regardless of the modulating wave form. If these edges tend to bend over toward the horizontal at the maximum height of the wedge, the amplifier is "flattening" on the modulation uppeaks. This is usually caused by attempting to get too large a carrier output, and can be corrected by tighter coupling to the antenna or by a decrease in the dc screen voltage. The slight "tailing off" at the modulation downpeak (point of the wedge) can be minimized by careful adjustment of excitation and plate loading.

Several types of improper operation are shown in Fig. 12-10. The patterns at E show the effect of a too long time constant in the screen circuit, in an amplifier getting its screen voltage through a dropping resistor, both plate and screen being modulated. The "double-edged" pattern is the result of audio phase shift in the screen circuit combined with varying screen-to-cathode resistance during modulation. This effect can be reduced by reducing the screen bypass capacitance, and also by connecting resistance (to be determined experimentally, but of the same order as the screen dropping resistance) between screen and cathode.

The pictures at the bottom, F, show the effect of insufficient audio power. Although the trapezoidal pattem shows good linearity in the if amplifier, the wave-envelope pattern shows flattened peaks (both positive and negative) in the modulation envelope even though the audio signal applied to the amplifier was a sine wave. More speech-amplifier gain merely increases the Gattening without increasing the modulation percentage in such a case. The remedy is to use a larger modulator or less input to the modulated of stage. In some cases the trouble may be caused by an incorrect modulation-transformer turns ratio, causing the modulator to be overioaded before its maximum power output capabilities are reached.

GENERAL-PURPOSE AMPLITUDE MODULATORS

The two modulator circuits shown in Figs. 12-11 and 12-12 can be employed to deliver from 3 to 70 watts of audio power. The basic designs are taken from RCA's Audio Design Phase 2. The complementary-symmetry circuit, Fig. 12-11, is characterized by a Class A driver and a complementary pair (npn/pnp) of output transistors. The primary advantages of this circuit are simplicity and economy. Common conduction is minimized because the transistor which is "off" duning half of the audio cycle is reverse biased. The
output transistors are operated at zero bias, providing excellent dc stability. Elaborate regulated power supplies are not required. The comple-mentary-symmetry amplifier is limited to about 20 watts output because of the high level of heat that the driver stage must dissipate. Component valucs and transistor types are given in Table 12-I for 3-, $5-, 12$, and 20 -watt designs.

For higher power levels, the quasi-complementary circuit (Fig. 12-12) is usually chosen. Here a Class A predriver feeds a Class B npr/pnp driver

TABLE 12-1

PARTS VALUES FOR COUPLEMEATARY - SYNAETRY CIRCUIT																			
Alse (Masta)	RI	13	RS	R7	R8	R9	R10	R13	R14	RI6	R17	Clum	$\begin{aligned} & \text { cs } \\ & \text { of } \end{aligned}$	\propto $\text { p }{ }^{\prime}$	Q 4	2S	c)		
3	91k	812	2.1t	3.96	620	33h	5,6k	120	150	22	22k	a1/6V	10	100	40613	40610	40609	15V. 1A	tSeamat (P-4)
5	SIL	88:	3.3k	3.9\%	620	27h	3.6\%	$\begin{aligned} & 130 \\ & 11 w_{1} \end{aligned}$	$\begin{aligned} & 110 \\ & \text { (1W) } \end{aligned}$	27	224	025/8V	5	150	40616	40615	40034	17V, IA	(Stancor (TH)
12	361	911	2.58	2.714	390	1818	1.85	$\begin{gathered} 91 \\ 12 \mathrm{w} 1 \end{gathered}$	$\begin{gathered} 91 \\ \text { (27.1 } \end{gathered}$	56	-	1/6V	10	220	40319	40622	40050	2V. 1A	(Stancor 1P-4)
20	8.21	D13	812	2.12	380	231	1.12	$\begin{aligned} & 100 \\ & \text { (2W) } \end{aligned}$	$\begin{aligned} & 100 \\ & (201) \end{aligned}$	100	-	2HV	10	230	40638	40621	40626	$32 \mathrm{~V} / \mathrm{A}$	(C. P. Elex, 1059\%)

TABLE 12-11

PARTS VALUES FOR QUASI-COMPLEMENTARY-SYMMETRY CIRCUIT												
Powe (Wets)	R3	R7	R8	810	RII	$\begin{aligned} & R 22 \\ & R 23 \end{aligned}$	$0 \cdot$	Qs	$\begin{aligned} & Q 6 \\ & Q_{7} \end{aligned}$			
25	12k	680	1800	2200	270	0.43(5w)	2N3568	2N3638	40632	37 V	1.SA	(C. P. Elec. 10596)
40	15k	560	2200	2700	390	0.3F(5w)	40635	40634	40633	46 V	2A	(C. P. Elec. (0596)
70	18k	470	2700	3300	470	0.33(5w)	40594	40595	40636	60V	2.5A	(C. P. Eloc. 10598)

ExCEPT as indicated, decimal
VELUES OF CADCITAKCE ADE

ARE In Pboranace for on xifli
AE\&8TANCES A RE IM OMAS:

- $1000, \mathrm{~m} \cdot 1000000$

Fig. 12-19 - General-purpose amplitude modulator for 3 to 20 watts of audio power. Capacitors with polarity indicated are electrolytic. See Table 12-1 for parts not listed below.
S1 - Spst toggle.
T2 - See text.

i $=1000$, $\mathbf{W}+1000000$

Fig. 12-12 - General-purpose amplitude modulator for 25 to 70 watts of audio power. Capecitors with polarity indicated are electrolytic. See Table 12-II for parts not listed below.
pair, which, in turn, activates the npn output transistors. The danger of damage to the output stage from a short circuit is high, so protection is included. Table 12-11 inchudesparts information for three power levels: 25,40 , and 70 watts.

All amplifiers are designed for an 8 -ohm output, so $T 2$ can be a standard audio output transformer in "reverse." The secondary impedance will depend on the impedance of the stage to be modulated.

L1 - J. W. Miller 4622 or equiv.
S1 - Spst toggle.
T2 - See text.

Bibliography

Audio Design Phase 2, RCA, Somerville, NJ, 1970.
Preiss, "The '2-Meter QRP Mountain Topper'," QST, May. 1970.
Rush, ${ }^{50} 180$-Watt D.S.B. Transmitter," QST, July, 1966.
Villard, "'Supermodulation' - An Evaluation and Explanation," QST, December, 1950.

Single-Sideband Transmission

GENERATING THE SSB SIGNAL

A fully modulated $a-m$ signal has two thirds of its power in the carrier and only one third in the sidebands. The sidebands carry the intelligence to be transmitted; the carrier "goes along for the ride" and serves only to demodulate the signal at the receiver. By eliminating the carrier and transmitting only the sidebands, or just one sideband, the available transmitter power is used to greater advantage. To recover the intelligence being transmitted, the carrier must be reinserted at the receiver, but this is no great problem with a proper detector circuit.

Assuming that the same final-amplifier tube or tubes are used cither for normal a-m or for single sideband, carrier suppressed, it can be shown that the usc of ssb can give an effective gain of up to 9 dB over $\mathrm{a}-\mathrm{m}$ - equivalent to increasing the transmitter power 8 times. Eliminating the carrier also eliminates the heterodyne interference that so often spoils communication in congested phone bands.

Filter Method

Two basic systems for generating ssb signals are shown in Fig. 13-2. One involves the use of a bandpass filter having sufficient selectivity to pass one sideband and reject the other. Mechanical filters are available for frequencies below 1 MHz . From 0.2 to 10 MHz , good sideband rejection can be obtained with filters using four or more quartz crystals. Oscillator output at the filter frequency is combined with the audio signal in a balanced modulator, and only the upper and lower sidebands appear in the output. One of the sidebands is passed by the filter and the other rejected, so that an ssb signal is fed to the mixer. The signal is mixed with the output of a high-frequency rf oscillator to produce the desired output frequency. For additional amplification a linear rf amplifier must be used. When the ssb signal is generated around 500 kHz . it may be necessary to convert twice to reach the operating frequency, since this simplifies the problem of rejecting the "image" frequencics resulting from the heterodyne process. The problem of image frequencies in the frequency conversions of ssb signals differs from the problem in reccivers because the beating-oscillator frequency becomes important. Either balanced mixers or sufficient selectivity must be used to attenuate these

Fig. 13-1 - Single sideband is the most popular of all the modes for amateur hf communication.
frequencics in the output and hence minimize the possibility of unwanted radiations. (Examples of filter-type exciters can be found in various issues of QST and in Single Sideband for the Radio Amateur.)

Phasing Method

The second system is based on the phase relationships between the carrier and sidebands in a modulated signal. As shown in the diagram, the audio signal is split into two components that arc identical except for a phase difference of 90 degrees. The output of the rf oscillator (which may be at the operating frequency, if desired) is likewise split into two separate components having a 90-degrec phase difference. One rf and one audio component are combined in each of two separate balanced modulators. The carrier is suppressed in the modulators, and the relative phases of the sidebands are such that one sideband is balanced out and the other is augmented in the combined output. If the output from the balanced modulators is high enough, such an ssb exciter can work directly into the antenna, or the power level can be increased in a following amplifier.

Gencrally, the filter-type exciter is casier to adjust than is the phasing exciter. Most home built ssb equipment uses commercially made filters these days. The alignment is done at the factory, thus relieving the amateur of the sometimes tedious task of adjusting the filter for suitable bandpass characteristics. Filter-type exciters are more popular than phasing units and offer better carrier suppression and alignment stability. It is still practical for the builder to fabricate his own crystal-lattice filter by utilizing low-cost surplus crystals. This possibility should not be overlooked if the builder is interested in keeping the overall cost of the home-built exciter at a minimum.

BALANCED MODULATORS

The carrier can be suppressed or nearly eliminated by using a balanced modulator or an extremely sharp filter. In ssb transmitters it is common practice to use both devices. The basic principle of any balanced modulator is to

Fig. 13-2 - Two basic systems for generating single-sideband suppressed car. rier signals.
introduce the carrier in such a way that it does not appear in the output, but so that the sidebands will. The type of balanced-modulator circuit chosen by the builder will depend upon the constructional considerations, cosh, and whether diodes or transistors are to be employed.

In any balanced-modulator circuit there will be no output with no audio signal. When audio is applied, the balance is upset, and one branch will conduct more than the other. Since any modulation process is the same as "mixing" in receivers, sum and difference frequencies (sidebands) will be generated. The modulator is not balanced for the sidebands, and they will appear in the output.

In the rectifier-type balanced modulators shown in Fig. 13-3, at A and B, the diode rectifiers are connected in such a manner that, if they have equal forward resistances, no rf can pass from the carrier source to the output circuit via either of the two porsible paths. The net effect is that no rf energy appears in the output. When audio is applied, it unbalances the circuit by biasing the diode (or diodes) in one path, depending upon the instantaneous polarity of the audio, and hence some rf will appear in the output. The of in the output will appear as a double-sideband suppres-sed-carrier signal.

In any diode modulator, the rf voltage should be at least 6 to 8 times the peak audio voltage for minimum distortion. The usual operation involves a fraction of a volt of audio and several volts of $\mathbf{r f}$. Desirable diode characteristics for balanced modulator and mixer service include: low noise, low forward resistance, high reverse resistance, good temperature stability, and fast switching time (for high-frequency operation). Fig. $13-4$ lists the different classes of diodes, giving the ratio of forward-to-reverse resistance of each. This ratio is an important criterion in the selection of diodes. Also. the individual diodes used should have closely matched forward and reverse resistances; an
ohmmeter can be used to select matched pairs or quads.

One of the simplest diode balanced modulators in use is that of Fig. 13-3A. Its use is usually limited to low-cost portable equipment in which a high degree of carrier suppression is not vital. A ring balanced modulator, shown in Fig. 13-3B, offers good carrice suppression at low cost. Diodes CR1 through CR4 should be well matched and can be 1 N 270 s or similar. C1 is adjusted for best rf phase balance as evidenced by maximum carrier null. R1 is also adjusted for the best carsier null obtainable. It may be necessary to adjust each control several times to secure optimum suppression.

Varactor diodes are part of the unusual circuit shown in Fig. 13-3C. This arrangement allows single ended input of nearequal levels of audio and carrier oscillator. Excellent carrier suppression, 50 dB or more, and a simple method of unbalancing the modulator for cw operation are features of this design. CRI and CR2 should be rated at 20 pF for a bias of $-4 \mathrm{~V} . \mathrm{R} 1$ can be adjusted to cancel any mismatch in the diode characteristics, so it isn't necessary that the varactors be well matched. T1 is wound on a small-diameter toroid core. The tap on the primary winding of this transformer is at the center of the winding.

A bipolar-transistor balanced modulator is shown in 13-3D. This circuit is similar to one used by Galaxy Electronics and uses closely matched transistors at Q1 and Q2. A phase splitter (inverter) Q3, is used to feed audio to the balanced modulator in push-pull. The carrier is supplied to the circuit in parallel and the output is taken in push-pull. CR1 is a Zener diode and is used to stabilize the dc voltage. Controls R1 and R2 are adjusted for best carricr suppression.

The circuit at E offers superior carrier suppression and uses a 7360 beam-deflection tube as a balanced modulator. This tube is capable of

Fig. 13-3 - Typical circuits of balanced modulators. Representative parts values are given and should serve as a basis for designing one's own equipment.

Fig. 13-4 - Table showing the forward-to-reverse resistance ratio for the different classes of solid-state diodes.
providing as much as 60 dB of carrier suppression. When used with mechanical or crystal-lattice filters the total carrier suppression can be as great as $\mathbf{8 0}$ dB. Most well-designed balanced modulators can provide between 30 and 50 dB of carrier suppression; hence the 7360 circuit is highly desirable for optimum results. The primary of transformer T1 should be bifilar wound for best results.

IC Balanced Modulators

Integrated circuits (ICs) are presently available for use in balanced-modulator and mixer circuits. A diode array such as the RCA CA3039 is ideally suited for use in circuits such as that of Fig. 13-5A. Since all diodes are formed on a common silicon chip, their characteristics are extremcly well matched. This fact makes the IC ideal in a circuit where good balance is required. The hot-carrier diode also has closely matched characteristics and excellent temperature stability. Using broad-band toroidal-wound transformers, it is possible to construct a circuit similar to that of Fig. 13-6 which will have 40 dB of carrier suppression without the need for balance controls. T1 and T2 consist of trifilar windings, 12 tums of No. 32 enam. wire wound on a $1 / 2$-inch toroid core. Another device with good inherent balance is the special IC made for modulator/mixer service, such as the Motorola MC1496G or Signetics S5596. A sample circuit using the MC1496 can be seen in Fig. 13-5B. RI is adjusted for best carrier balance. The amount of energy delivered from the carrier generator effects the level of carrier suppression;

100 mV of injection is about optimum, producing up to 55 dB of carrier suppression. Additional information on balanced modulators and other ssb-generator circuits is given in the texts referenced at the end of this chapter.

FILTERS

A home-built crystal lattice filter suitable for use in an ssb generator is shown in Fig. 13-7. This unit is composed of three half-lattice sections, with 2 crystals in each section, made with surplus hif crystals. The 330 -ohm resistor between sections two and three reduces interaction and smooths the passband response. The leakage reactance between the two halves of L2 and L3 is tuned out by the capacitors connected in series with the center taps of these coils. LI and L4, the input and output coils, resonate with the calculated value of terminating capacitance at 5060 kHz and reflect the needed inductance across the crystals. The 2000 -ohm resistors complete the termination.

All the crystals were purchased as $5500-\mathrm{kHz}$ FT-243s and etched to the desired frequencies with hydrofluoric acid. It is best to wash each crystal with soap and water and measure its frequency before etching. The crystals in each set of three should be as close to each other in frequency as possible. and the separation between the two groups should be about 1500 Hz .

Tuning the filter is quite simple since all four adjustements can be peaked for maximum output at a fixed alignment frequency. This frequency should be on the high side of the pass band and can be the carrier frequency used for lower-sideband transmission $(5505.5 \mathrm{kHz}$ in the case of the filter described). Using the carrier frequency it is only necessary to unbalance the balanced modulator to obtain a cw alignment signal. Of course, a signal generator and rf-probe-equipped VTVM can also be used. C1, C2, L1 and 1.4 are adjusted for maximum output.

A slightly better shape factor can be had by detuning the carricr oscillator to a lower alignment frequency corresponding to about the $4-\mathrm{dB}$-down point on the high-frequency side of the pass band. Fig. 13-8 shows the measured performance of the filter when aligned at 5505.2 kHz . The $6-\mathrm{dB}$ bandwidth is 2750 Hz .

Fig. 13-5 - Additional batancedmodulator circuits in which integrated circuits are used.

Fig. 13-6 - Balanced modulator design using hot-carrier diodes.

The (suppressed) carrier frequency must be adjusted so that it falls properly on the slope of the filter characteristic. If it is too close to the filter mid frequency the sideband rejection will be poor; if it is too far away there will be a lack of "lows" in the signal.

Ordinarily, the carrier is placed on one side of the curve, depending upon which sideband is desired, which is approximately 20 dB down from the peak. It is sometimes helpful to make provisions for "rubbering" the crystal of the carrier oscillator so that the most natural voice quality can be realized when making initial adjustments.

Using Commencial Crystal Filters

Some builders may not have adequate testing facilities for building and aligning their own filters. In such instances it is possible to purchase ready-made units which are prealigned and come equipped with crystals for upper- and lower-sideband use. Spectrum International ${ }^{1}$ has two types for use at 9 MHz . Another manufacturer, McCoy Electronics Co., ${ }^{2}$ sells $9-\mathrm{MHz}$ models for amateur use, and other filters are available surplus. ${ }^{3}$

Mechanical Filters

Mechanical filters contain elements that vibrate and establish resonance mechanically. In crystal

[^24]

Fig. 13-8 - Measured selectivity characteristic of the filter when aligned at 5505.2 kHz . The $6-\mathrm{dB}$ bandwidth is 2750 Hz and the $30-\mathrm{dB} / 6-\mathrm{dB}$ shape factor is 1.44.
filters the coupling between filter sections is achieved by electrical means, In mechanical filters, mechanical couplers are used to transfer the vibrations from one resonant section to the next. At the input and output ends of the filter are transducers which provide for electrical coupling to and from the filter. Most mechanical filters are designed for use from 200 to 600 kHz , the range near 455 kHz being the most popular for amateur use. Mechanical filters suitable for amateur radio circuits are manufactured by the Collins Radio Co. and can be purchased from some dealers in amateur radio equipment.

FILTER APPLICATIONS

Methods for using typical sideband filters are shown schematically in Fig. 13-9. In the circuit of

Fig. 13-7 - Circuit diagram of a filter. Resistances are in ohms, and resistors are 1/2-watt composition; capacitors are disk ceramic except as noted.

C1, C2 - Mica trimmer.
L1, L4 - 50 turns No. 38 enamel, close-wound on 17/64-inch dia ceramic slug-tuned form (CTC LS-6, National XR-81 or similar).
L2, L3-60 turns No. 38 enamel, close wound on 17/64-inch ceramic form (CTC LS-6, National

XR-81 or similar with powered-iron core removed), center tapped.
Y1. Y2. Y3 - All same frequency (near 5500 kHz).
Y4, Y5, Y6 - All same frequency and 1500 to 1700 Hz different from Y1, Y2, Y3.

Fig. 13-9A a $455-\mathrm{kHz}$ mechanical filter is coupled to the balanced modulator by means of two dc isolating capacitors. Cl is used to tune the input of FL1 to resonance (if a Collins type 455-FB-21 is uscd). Frequently, a fixed-value $120-\mathrm{pF}$ capacitor will suffice at each end of the filter. C2 tunes the output of the filter. A stage of i-f amplification usually follows the filter, as shown, to compensate for the insertion loss of the filter and to provide a stage to which agc can be applied for alc (automatic level control) purposes. In the circuit shown the operator can ground R1 if alc is not used. R2 can be lifted from ground and a $5000-\mathrm{hm}$ control can be placed between it and ground to provide a means of manual gain control for providing the desired signal kevel to the mixer.

The circuit of Fig. 13-9B uses a $9-\mathrm{MHz}$ crystal filter, followed by an IC i-f amplifier. Either the McCoy or Spectrum Intemational filters are suitable. Most commercial ssb filters are supplied with a data sheet which shows recommended input and output circuits for matching the impedance of the filter. All are adaptable to use with tubes or transistors.

Another circuit which uses an hf crystal filter, preceded by a dual-gate MOSFET operating as an rf speech clipper, is shown in Fig. 13-9C. The advantages of rf clipping are explained later in this chapter. A second MOSFET amplifies the signal from the filter and provides a variable level of output which is controlled by the alc line.

CARRIER OSCILLATOR

The ssb-generation process starts with a crystal-controlled oscillator, as shown in Fig. 13-2. In a filter-type generator, the oscillator frequency is set on the low-frequency side of the filter bandpass to produce upper sidcband and on the upper side when lower-sideband operation is desired. Suitable oscillator circuits are shown in Chapter 6.

MIXER

A single-sideband signal, unlike fm or cw , cannot be frequency multiplied. Onc or more mixer stages are employed in an ssb exciter to

Fig. 13-10 - Speech circuits for use with standard-type microphones. Typical parts values are given.
heterodyne the output of a fixed-frequency ssb generator to the desired operating frequency. See Chapter 8 for details of mixer design and sample mixer circuits.

THE SPEECH AMPLIFIER

The purpose of a speech amplifier is to raise the level of audio output from a microphone to that required by the modulator of a transmitter. In ssb and fm transmitters the modulation process takes place at low levels, so only a few volts of audio are necessary. One or two simple voltage-amplifier stages will suffice. A-m transmitters often employ high-level plate modulation requiring considerable audio power, as described in Chapter 12. The microphone-input and audio voltage-amplifier circuits are similar in all three types of phone transmitters, however.

When designing speech equipment it is necessary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the required audio power without overloading or undue distortion anywhere in the system.

MICROPHONES

The level of a microphone is its electrical output for a given sound intensity. The level varies somewhat with the type. It depends to a large extent on the distance from the sound source and the intensity of the speaker's voice. Most commencial transmitters ase designed for the median level. If a high-level mike is used, care should be taken not to overload the input amplifier stage. Conversely, a microphone of too low a level must be boosted by a preamplifier.

The frequency response (fidelity) of a microphone is its ability to convert sound uniformly into altemating current. For high articulation it is desirable to reproduce a frequency range of $200-3500 \mathrm{~Hz}$. When all frequencies are reproduced equally, the microphone is considered "flat." Flat response is highly desirable as peaks (sharp rises in the reproduction curve) limit the swing or modulation to the maximum drive voltage, whereas the usable energy is contained in the flat part of the curve.

Microphones are generally omnidirectional, and respond to sound from all directions, or unidirectional, picking up sound from one direction. If a microphone is to be used close to the operator's

Fig. 13-11 - A resistancecoupled speech amplifier. Component values are representative of a typical circuit.

Fig. 13-12 - Typical phase-inverter circuits for :ransistor amplifier applications.
mouth, an omnidirectional microphone is ideal. If, however, speech is generated a foot or more from the microphone, a unidirectional microphone will reduce reverberation by a factor of $1.7: 1$. Some types of unidirectional microphones have proximity effect in that low frequencies are accentuated when the microphone is too close to the mouth.

Carbon Microphones

The carbon microphone consists of a metal diaphragm placed against a cup of loosely packed carbon granules. As the diaphragm is actuated by the sound pressure, it alternately compresses and decompresses the granules. When current is flowing through the button, a variable dc will correspond to the movement of the diaphragm. This fluctuating de can be used to provide grid-cathode voltage corresponding to the sound pressure.

The output of a carbon microphone is extremely high, but nonlinear distortion and Instabillty has reduced its use. The circuit shown in Fig. $13-10$ will deliver $20-30$ volts at the transformer secondary.

Piezoelectric Microphones

Piezoelectric microphones make use of the phenomena by which certain materials produce a voltage by mechanical stress or distortion of the material. A diaphragm is coupled to a small bar of material such as Rochelle salt or ceramic made of barium titanate or lead zirconium titanate. The diaphragm motion is thus translated into electrical energy. Rochelle-salt crystals are susceptible to high temperatures, excessive moisture, or extreme dryness. Although the output level is higher, their use is declining because of their fragility.

Ceramic microphones are impervious to temperature and humidity. The output tevel is adequate for most modern amplificrs. They are capacitive devices and the output impedance is high. The load impedance will affect the low frequencies. To provide attenuation, it is desirable to reduce the load to 0.25 megohm or even lower, to maximize performance when operating ssb, thus eliminating much of the unwanted low-frequency response.

Dynamic Microphones

The dynamic microphone somewhat resembles a dynamic loudspeaker. A lightweight coil, usuatly made of aluminum wire, is attached to a diaphragm. This coil is suspended in a magnetic circuit. When sound impinges on the diaphragm, it

moves the coil through the magnetic field generating an altemating voltage.

Electret Microphones

The electrct microphone has recently appeared as a feasable alternative to the carbon, piezoelectric or dynamic microphone. An electret is an insulator which has a quasi-permanent static electric charge trapped in or upon it. The electret operates in a condenser fashion which uses a set of biased plates whose motion, caused by air pressure variations, creates a changing capacitance and accompanying change in voltage. The electret acts as the plates would, and being charged, it requires no bias voltage. A low voltage provided by a battery used for an FET impedance converter is the only power required to produce an audio signal.

Electrets traditionally have been susceptable to damage from high temperatures and high humidity. New matcrials and different charging techniques have lowered the chances of damage, however. Only in extreme conditions (such as 120 degrees F at 90 percent humidity) are problems present. The output level of a typical electret is higher than that of a standard dynamic microphone.

VOLTAGE AMPLIFIERS

The important characteristics of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum af voltage that can be secured from the stage without distortion. The amplifier frequency response should be adequate for voice reproduction; this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. The output voltage is in terms of peak voltage rather than ms; this makes the rating independent of the waveform. Exceeding the prak value causes the amplifier to distort, so it is more useful to consider only peak values in working with amplifiers.

Resistance Coupling

Resistance coupling generally is used in voltage-amplifier stages. It is relatively inexpensive, good frequency response can be secured, and there

Fig. 13-13 - Typical speech amplifier using integrated circuits.
is little danger of hum pick-up from stray magnetic fields. It is the most satisfactory type of coupling for the output circuits of pentodes and high $-\mu$ triodes, because with transformers a sufficiently high load impedance cannot be obtained without considerable frequency distortion. A typical circuit is given in Fig. 13-11.

Phase Inversion

Push-pull output may be secured with resistance coupling by using phase-inverter or phasesplitter circuits as shown in Fig. 13-12. In this circuit the voltage developed across the emitter resistor of Q1 is equal to, but 180 degrees out of phase with, the voltage swing across the collector resistor. Thus, the following two stages are fed equal af voltages. The gain of Q1 will be quite low, if indeed the stage exhibits any gain at all.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is very inefficient), or when it is necessary to couple between a

Fig. 13-14 - A dc voltage controls the gain of this IC, eliminating the need for shielded leads to the gain control.
single-ended and a push-pull stage.
Several types of ICs have been developed for use in speech amplifiers. The Motorola MFC8040 features very low noise, typically $1 \mu V_{2}$ (Fig. 13-13A), while the RCA CA3020 has sufficient power output - 500 mW - to drive low-impedance loads (Fig. 13-13B). A transistor IC array can also be put to work in a speech amplifier, as shown in Fig. 13-13C. This circuit uses an RCA CA3018, with a high-gain Darlington pair providing high gain and high input impedance. A second transistor within the IC functions as an emitter follower, for low-impedance output. Most of the operationalamplifier ICs will work as high-gain speech amplifiers, using a minimum of external parts as shown in Fig. 13-13D. The $\mu \mathrm{A} 741$ has internal frequency compensation, but the popular 709 series of operational amplifiers requires external frequency compensation to prevent self-oscillation.

Gain Control

A means for varying the over-all gain of the amplifier is necessary for keeping the final output at the proper level for modulating the transmitter. The common method of gain control is to adjust the value of ac voltage applied to the base or grid of one of the amplifiers by means of a voltage divider or potentiometer.

The gain-control potentiometer should be near the input end of the amplifier, at a point where the signal voltage level is so low there is no danger that the stages ahead of the gain control will be overloaded by the full microphone output. In a high-gain amplifier it is best to operate the first stage at maximum gain, since this gives the best signal-to-hum ratio. The control is usually placed in the input circuit of the second stage.

Remote gain control can also be accomplished with an electronic attenuator IC, such as the Motorola MFC6040. A dc voltage varies the gain of the IC from +6 dB to -85 dB , eliminating the need

Fig. 13.15 - Rf filters using $L C(A)$ and $R C$ (B) components, which are used to prevent feedback caused by rf pickup on the microphone lead.
for shielded leads to a remotely located volume control. A typical circuit is shown in Fig. 13-14.

Speech-Amplifier Construction

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two difficulties - excessive hund, and unwanted feedback. For reasonably humless operation, the hum voltage should not exceed about 1 percent of the maximum audio output voltage - that is, the hum and noise should be at least 40 dB below the output level.

Unwanted feedback, if negative, will reduce the gain below the calculated value; if positive, is likely to cause self-oscillation or "howis." Feedback can be minimized by isolating each stage with decoupling resistors and capacitors, by avoiding layouts that bring the first and last stages near each other, and by shielding of "hot" points in the circuit, such as high-impedance leads in low-level stages.

If circuit-board construction is used, highimpedance leads should be kept as short as possible. All ground retums should be made to a common point. A good ground between the circuit board and the metal chassis is necessary. Complete shielding from rf energy is always required for low-level solid-state audio circuits. The microphone input should be decoupled for rf with a filter, as shown in Fig. 13-15. At A, an rf choke with a high impedance over the frequency range of the transmitter is employed. For high-impedance inputs, a resistor may be used in place of the choke.

When using paper capacitors as bypasses, be
sure that the terminal marked "outside foil," often indicated with a black band, is connected to ground. This utilizes the outside foil of the capacitor as a shield around the "hot" foil. When paper or mylar capacitors arc used for coupling between stages, always connect the outside foil terminal to the side of the circuit having the lower impedance to ground.

DRIVER AND OUTPUT STAGES

Few ssb transmitting mixers have sufficient output to properly drive an output stage of any significant power level. Most modern-day linear amplifiers require at least 30 to 100 watts of exciter output power to drive them to their rated power input level. It follows, then, that an intermediate stage of amplification should be used between the mixer and the pa stage of the exciter.

The vacuum-tube mixers of Chapter 8 will provide 3 to 4 peak volts of output into a high-impedance load. Since most AB_{1} exciter output stages need from 25 to 50 volts of swing on their grids for normal operation, it is necessary to employ a driver stage to amplify the mixer output. There are scveral high-transconductance pentode tubes that work well as drivers. Among them are the 6CL6, the 12 BY 7 , the 6EH7, and the 6GK6. Since all of these tubes are capable of high gain, instability is sometimes encountered during their use. Parasitic suppression should be included as a matter of course, and can take the form of a low-value noninductive resistor in series with the grid, or a standard parasitic choke installed directly at the plate of the tube. Some form of neutralization is recommended and is preferred to resistive loading of the tuned circuits. The latter method lowers the tuned-circuit Q. This in turn lowers the stage selectivity and permits spurious responses from the mixer to be passed on to the following stage of the exciter.

A typical driver and PA stage for modern exciters is shown in Fig. 13-16. The PA is set up for $A B_{1}$ amplification. The $A B_{1}$ mode is preferred because it results in less distortion than does the AB_{2} or Class-B modes, and because driving power is not needed for AB_{1} operation. A 6146 tube is used but an inexpensive TV sweep tube may be employed if a higher level of IMD is permissible.

Fig. 13-16 - Schematic diagram of a typical driver and final stage for ssb exciter. Neutralization and parasitic-supprassion circuits have been included.

Some sweep tubes are capable of producing less IMD than others, but if not overdriven most of them are satisfactory for ham use. Among the sweep tubes useful as $A B_{1}$ amplifiers are the following: 6DQ5, 6GB5, 6GES, 6HF5, 6JE6, 6JS6, 6KD6, 6KG6, 6LF6 and 6LQ6.

A Practical Circuit

In the circuit of Fig. 13-16, a 6GK6 and a 6146 are shown in a typical driver-amplifier arrangement. Each stage is stabilized by means of R1 in the driver grid, and $\mathrm{Z1}$ in the PA plate, both for parasitic suppression. C2 and C5 are neutralizing capacitors and can take the form of stiff wires placed adjacent to, and in the same plane as the tube anode. Varying the spacing between the
neutralizing stubs and the tube envelopes provides the adjustment of these capacitors. Parallel dc feed is used in the mixer and driver stages to prevent the tured-circuit Q from being lowered by dc current flow through L1 and L2. C1A and C1B are ganged, and slug-tuned inductors are used at L1 and L2 to permit tracking of the mixer and driver plate tanks. C3 and C4 fom part of the neutralizing circuits. The values shown are suitabic for operation on 3.5 MHz but may require modification for use on the other bands. Regulated dc vollage is recommended for the screen grids of the driver and of stages. Typical rf voltages (measured with a diode if probe and VTVM are identified with an asterisk. A circuit of this type is capable of up to 60 watts PEP output. For more information on linear amplifiers for sideband service, see Chapter 6 .

POWER RATINGS OF SSB TRANSMITTERS

Fig. 13-17 is more or less typical of a few voice-frequency cycles of the modulation envelope of a single-sideband signal. Two amplitude values associated with it are of particular interest. One is the maximum peak amplitude, the greatest amplitude reached by the envelope at any tume. The other is the average amplifude, which is the average of all the amplitude values contasined in the

Fig. 13.17 - (A) Typical ssb voice-modulated signal might have an envelope of the general nature shown, where the in amplitude \{current or voltage\} is plotted as a function of time, which increases to the right horizontally. (B) Envelope pattern after speech processing to increase the average level of power output.
envelope over some significant period of time, such as the time of one syllable of speech.

The power contained in the signal at the maximum peak amplitude is the basic transmitter rating. It is called the peak-envelope power, abbreviated PEP. The peak-envelope power of a given transmitter is intimately related to the distortion considered tolerable. The lower the signal-to-distortion ratio the lower the attainable peak-nvelope power, as a general rule. For splatter reduction, an S / D ratio of 25 dB is considered a border-line minimum, and bigher figures are desirable.

The signal power. S, in the standard definition of S / D ratio is the power in one tone of a two-tone test signal. This is 3 dB below the peakenvelope power in the same signal. Manufacturers of amateur ssb equipment usually base their published S / D ratios on PEP, thereby getting an S / D ratio that looks 3 dB better than one based on the standard definition. In comparing distortionproduct ratings of different transmitters or amplifiers, first make sure that the ratios have the same basc.

When the outpul of an ssb transmitter is viewed on a spectrum analyzer, the display shows the power in the two tones separately, so that the level of distortion products is 6 dB below the level of either tone. However, commercial analyzers usually have a scale over the display tube which is calibrated directly in JB below a single-tone test. Readings may be converted to dB below the PEP level by subtracting 6 dB from the indicated distortion levels.

Peak vs. Average Power

Envelope peaks occur only sporadically during voice transmission, and have no direct relationship with meter readings. The meters respond to the amplitude (current or voltage) of the signal averaged over several cycles of the modulation envelope. (This is true in practically all cases, even though the transmitter rf output meter may be calibrased in watts. Unfortunately, such a calibra-

Fig. 13.18 - Typical
solid-state compressor circuit.

tion means little in voice transmission since the meter can be calibrated in watts only by using a sine-wave signal - which a voice-modulated signal definitely is not.)

The ratio of peak-to-average amplitude varies widely with voice of different characteristics. In the case shown in Fig. 13-17A the average amplitude, found graphically, is such that the peak-to-average ratio of amplitudes is almost 3 to 1. The ratio of peak power to average power is something else again. There is no simple relationship between the meter reading and actual average power, for the reason mentioned earlier.

DC Input

FCC regulations require that the transmitter power be rated in terms of the dc input to the final stage. Most ssb final amplifiers are operated Class $A B_{1}$ or $A B_{2}$, so that the plate current during modulation varies upward from a "resting" or no-signal value that is generally chosen to minimize distortion. There will be a peak-envelope value of plate current that, when multiplied by the dc plate voltage, represents the instantaneous tube power input required to produce the peakenvelope output. This is the "peak-envelope dc input" or "PEP input." It does not register on any meter in the transmitter. Meters cannot move fast enough to show it - and even if they did, the eye couldn't follow. What the plate meter does read is the plate current averaged over several modulation-envelope cycles. This multiplied by the dc plate voltage is the number of watts input required to produce the average power output described earlier.

In voice transmission the power input and power output are both continually varying. The power input peak-to-average ratio, like the power-
output peak-to-average ratio, depends on the voice characteristics. Determination of the input ratio is further complicated by the fact that there is a resting value of dc plate input even when there is no rf output. No exact figues are possible. However, experience has shown that for many types of voices and for ordinary tube operating conditions where a moderate value of resting current is used, the ratio of PEP input to average input (during a modulation peak) will be in the neighborhood of 2 to 1 . That is why many amplifiers are rated for a PEP input of 2 kilowatts even though the maximum legal input is 1 kilowatt.

PEP Input

The 2-kilowatt PEP input rating can be interpreted in this way: The amplifier can handle dc peak-envelope inputs of 2 kw , presumably with satisfactory linearity. But it should be run up to such peaks if - and only if - in doing so the dc plate current (the current that shows on the plate meter) multiplied by the dc plate voltage does not at any time exceed 1 kilowatt. On the other hand, if your voice has characteristics such that the dc peak-to-average ratio is, for example, 3 to 1 , you should not run a greater de input during peaks than $2000 / 3$, or 660 watts. Higher dc input would drive the amplifier into nonlinearity and generate splatter.

If your voice happens to have a peak-to-average ratio of less than 2 to 1 with this particular amplifier, you cannot run more than 1 kilowatt dc input even though the envelope peaks do not reach 2 kifowatts.

It should be apparent that the dc input rating (based on the maximum value of dc input developed during modulation, of course) leaves much to be desired. Its principal virtues are that it can be measured with ordinary instruments, and that it is consistent with the method used for rating the power of other types of emission used by amateurs. The meter readings offer no assurance that the transmitter is being operated within linearity limits, unless backed up by oscilloscope checks using your voice.

It should be observed, also, that in the case of a grounded-grid final amplifier, the 1 -kilowatt dc input permitted by FCC regulations must include the input to the driver stage as well as the input to the final amplifier itself. Both inputs are measured as described above.

SPEECH PROCESSING

Four basic systems, or a combination thereof, can be used to reduce the peak-to-average ratio, and thus, to raise the average power level of an ssb signal. They are: compression or clipping of the af wave before it reaches the balanced modulator, and compression or clipping of the if waveform after the ssb signal has been generated. One form of rf compression, commonly called alc (automatic level control) is almost universally used in amateur ssb transmitters. Audio processing is also used to increase the level of audio power contained in the sidebands of an a-m transmitter and to maintain constant deviation in an fm transmitter. Both compression and clipping are used in a-m systems, while most fm transmitters employ only clipping.

Volume Compression

Although it is obviously desirable to kcep the voice level as high as possible, it is difficult to maintain constant voice intensity when speaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantaneous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered dc to a control electrode in an early stage in the amplifier.

A practical example of an audio compressor circuit is shown in Fig. 13-18A. Q1 is employed as an impedance converter, providing coupling between a high-impedance microphone and the input terminal of the Plessey SL630C audio-amplifier IC. Low-impedance microphones can be connected directly to the input of the SL630C. Ul has an agc terminal which allows logarithmic control of the output level with a variable dc voltage. High frequency cutoff is accomplished by connecting a $.002-\mu \mathrm{F}$ capacitor between pins 3 and 4. Manual gain control is effected by applying a dc voltage to
pin 8.
Agc voltage for U1 is developed by the SL620C. A suitable time constant for voice operation is established by the capacitors connected to pins 3,4 and 6, respectively. The IC provides a fast-attack, slow-decay characteristic for the agc voltage when voice signals are applied and a short burst of agc voltage when a short noise burst occurs. Twenty transistors and four diodes are used in U2.

The compressor will hold the output level constant within 2 dB over a $40-\mathrm{dB}$ range of input signal. The nominal output level is 80 mV ; the microphone used should develop at least 3 mV at the gate of Q1.

Fig. 13-18B shows an IC audio compressor circuit using the National Semiconductor LM-370. This IC has two gain-control points, pins 3 and 4; one is used for the input gain adjustment while the other receives agc voltage whenever the output level exceeds a preset norm. R2 establishes the point at which compression starts.

Speech Clipping and Filtering

In speech wave forms the average power content is considerably less than in a sine wave of the same peak amplitude. If the low-energy peaks are clipped off, the remaining wave form will have a considerably higher ratio of average power to peak amplitude. Although clipping distorts the wave form and the result therefore does not sound exactly like the original, it is possible to secure a worthwhile increase in audio power without sacrificing intelligibility. Once the system is properly adjusted it will be impossible to overdrive the modulator stage of the transmitter because the maximum output amplitude is fixed.

By itself, clipping generates high-order harmonics and therefore will cause splatter. To prevent this, the audio frequencies above those

Fig. 13-19 - This drawing illustrates use of JFETs or silicon diodes to clip positive and negative voice peaks.
needed for intelligible speech must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation below about 2500 Hz , but high attentuation for all frequencies above 3000 Hz .

The values of L and C should be chosen to form a low-pass filter section having a cutoff frequency of about 2500 Hz , using the value of the terminating resistor load resistance. For this cutoft frequency the formulas are:

$$
\mathrm{L} 1=\frac{R}{7850} \text { and } \mathrm{Cl}=\mathrm{C} 2=\frac{63.6}{R}
$$

where R is in ohms, L 1 in henrys, and C 1 and C 2 in microfarads.

There is a loss in naturalness with "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 dB) there is almost no change in "quality" but the voice power is increased considerably.

Before drastic clipping can be used, the speech signal must be amplified several times more than is necessary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the noise in the output of the amplifier increases in proportion to the gain.

DB. OF PEAK COMPRESSION OR CLIPPING (SSB)
Fig. 13-20 - The improvement in received signal-to-noise ratio achieved by the simple forms of signal processing.

In the circuit of Fig. 13-19B a simple diode clipper is shown following a two-transistor preamplifjer section. The 1 N3754s conduct at approximately 0.7 volt of audio and provide positive- and negative-peak clipping of the speech wave form. A 47,000 -ohm resistor and a $.02-\mu \mathrm{F}$ capacitor follow the clipper to form a simple R-C filter for attenuating the high-frequency components generated by the clipping action, as discussed earlier. Any top-hat or similar silicon diodes can be used in place of the 1 N3754s. Germanium diodes (IN34A type) can also be used, but will clip at a slightly lower peak audio level.

SSB SPEECH PROCESSING

Compression and clipping are related, as both have fast attack times, and when the compressor release time is made quite short, the effect on the
(A)

(B)

(C)

(D)

Fig. 13-21 - Two-tone envelope patterns with various degrees of if clipping. All envelope patterns are formed using tones of 600 and 1000 Hz . (A) At clipping threshold; (B) 5 dB of clipping; (C) 10 dB of clipping; (D) 15 dB of clipping.
wave from approaches that of clipping. Speech processing is most effective when accomplished at radio frequencies, although a combination of af clipping and compression can produce worthwhile results. The advantage of an outboard audio speech processor is that no internal modifications are necessary to the ssb transmitter with which it will be used.

To understand the effect of ssb speech processing, review the basic rf waveforms shown in Fig. 13-17A. Without processing, they have high peaks but low average power. After processing Fig. 13-17B, the amount of average power has been raised considerably. Fig. $13-20$ shows an advantage of several dB for of clipping (for 20 dB of processing) over its nearest competitor.

Investigations by W6JF.S reported in QST for January, 1969, show that, observing a transmitted signal using 15 dB of audio clipping from a remote receiver, the intelligibility threshold was improved nearly 4 dB over a signal with no clipping.

to primary, of 2 or 3 to 1 , An inexpensive transformer may be used since the primary and secondary currents are negligible. CR1 may be a 1N34A or similar; time constant R2C3 is discussed in the text.
(C) Control voltage is obtained from the grid af a Class $A B_{1}$ tetrode amplifier and amplified by a triode audio stage.
(D) Alc system used in the Collins 32S-3 transmitter.
(E) Applying control voltage to the tube or $\langle F|$ linear IC controlled amplifier.
receiver can thus be substantially improved by if clipping. The effect of such clipping on a two-tone test pattern is shown in Fig. 13-21.

Automatic level control, although a form of rf speech processing, has found its primary application in maintaining the peak rf output of an ssb transmitter at a relatively constant level, hopefully below the point at which the final amplifier is overdriven, when the audio input varies over a considerable range. These typical alc systems, shown in Fig. 13-22, by the nature of their design time constants offer a limited increase in transmitted average-to-PEP ratio. A value in the region of $2-5 \mathrm{~dB}$ is typical. An alc circuit with shorter time constants will function as an if
syllabic compressor, producing up to 6 dB improvement in the intelligibility threshold at a distant recejver. The Collins Radio Company uses an alc system with dual time constants (Fig. 13-22D) in their S/Line transmitters, and this has proven to be quite effective.

Heat is an extremely important consideration in the use of any speech processor which increases the average-to-peak power ratio. Many transmitters, in particular those using television sweep tubes, simply are not built to stand the effects of increased average input, either in the final-amplifier tube or tubes or in the power supply. If heating in the final tube is the limiting factor, adding a cooling fan may be a satisfac tory answer.

AN AUDIO SPEECH PROCESSOR

Over the years, different speech processing schemes have been cmployed, with varying degrecs of success, to raise the average-to-peak power satio of a voice signal and improve communications effectiveness. The various inethods generally fall into one of two categories - compression or clipping: Described here is a processor which represents a departure from these standard approaches. Processing is done at audio freguencies, but in a unique fashion. The unit is used between the microphone and the transmitter so that no modification to the transmitter is required.

Technical Description

Operation is a consequence of the fact that speech energy rcsembles an amplitude-modulated signal. The speech waveform represents multiplication of a slowly varying envelope containing energy below 100 Hz with a voice-frequency signal contained mostly between 300 and 3000 Hz . In an analagous fashion, a conventional $a-m$ modulator multiplies an amplitude-varying low-frequency signal (the applied modulation) with a constantamplitude higher-frequency carrier. Thus the speech waveform envelope corresponds to the a-m modulation and the voice-frequency portion to the carrier. Note that the voice carrier actually varies continuously in frequency, unlike the conventional fixed-frequency a-m case, but is constant in amplitude. The object of this speech processor is to reproduce only the carrier portion of speech. The voice envelope is separated from the voice carrier,
and because their respective frequency spectrums are nonoverlapping, the envelope can be filtered leaving only the carrier. (See Fig. 1.)

To separate the envelope and carrier, the speech signal is passed through a logarithinjc amplifier which performs the mathematical operation of taking logarithms. By analogy to the $d-m$ model, this signal can be represented as the mathematical product EV, where E represents the envelope and V , the voice carrier, both of which are functions of time. Taking the logarithm produces $\log \mathrm{EV}$, but $\log \mathrm{EV}=\log \mathrm{E}+\log \mathrm{V}$ (a well known property of the logarithm). The envelope and carrier components are then separated in terms of their logarithms and it is now a relatively simple matter to process the two components independently. This is something which could not be done up to this point. A high-pass filter with an appropriately chosen cutoff frequency attenuates the envelope waveform but passes the higher-frequency voice carricr. The remaining signal is $\log \mathrm{V}$. It goes through an inverse-logarithm amplifier which produces at its output the signal V . The sesult is the desired constant-amplitude voice carrier.

Circuit Description

Some additional issues arise when one tries to implement the preceding scheme. These will be considered now in a stage-by-stage operational description of the processor. The reader is referred to the block diagram given in Fig. 2 and the circuit shown in diagram Fig. 3. Speech amplifier U1 first boosts the incoming audio signal to a convenient and usable level. Before taking logarithms, however, output from Ul must be full-wave rectified to be all positive since the logarithmic amplifier works only for positive signal input. The logarithm of a number is defined only for positive numbers. U4 and U5 serve as a full-wave rectifier and precedes the logaritlimic amplifier, U6 and U7. Matched silicon diodes are recommended for CR1 and CR2. If none are available, individual 1 N914 diodes may be substituted. The logarithmic stage separates the voice-frequency and envelope components of the speech waveform, as described above, and the envelope is filtered by an active $R C$ high-pass filter, U8.' A two-pole Butterworth configuration is used with the lower half-power frequency set at approximately 50 Hz . Those who are experimentally inclined may wish to try lower or higher cutoff frequencies. The expression for cutoff frequency, $\mathrm{f}_{\mathrm{c}^{\text {, }}}$ in terms of the filter components is:

$$
\mathrm{f}_{\mathrm{c}}=\frac{1}{2 \pi \sqrt{\mathrm{R} 3 \mathrm{R} 2 \mathrm{ClC2}}}
$$

[^25]

where it is required that $\mathrm{Cl}=\mathrm{C} 2$ and $\mathrm{R} 3=2 \mathrm{R} 2$ for proper filter response. Varying the cutoff frequency corresponds to changing the compression level setting on a conventional speech compressor. Lower cutoff frequencies result in reduced "compression." In the original model of this processor, it was found that a filter cutoff frequency of about 400 Hz or higher produced essentially constant-amplitude output from the processor. Harmonic distortion was quite noticeable, however. Thus 50 Hz was chosen as a compromise between maximum "compression" and minimum distortion. The distortion that is inherent in this unit occurs for signals that have considerable energy in the neighborhood of the high-pass filter cutoff frequency. With a setting of 50 Hz , the distortion is quite low. The filtered signal proceeds to an exponential amplifier, U9 and U10. As with the logarithmic amplifier, matched diodes for CR3 and CR4 will produce the best results, but individual 1N914's will serve satisfactorily. The signal at the output of U 10 is still in rectified form (all positive). To be converted back to its bipolar form, the signal is multiplied by the correct sign information (either positive or negative). The effect is to invert (make negative)

Fig. 1 - A voice signal can be represented as an a-m waveform, which results from multiplication of a relatively slowly varying envelope (B) with a carrier, (C). Nore the carrier peak amplitude is constant. The speech processor separates components B and C, and filters out B, leaving the carrier portion only.
portions of the signal which should be negative, leaving the remaining parts positive. The correct sign information is obtained by hard-limiting the voice signal at the processor input Output from U1 is further amplified by U2 and then limited by a diode clipper, CR5 and CR6. Because of the very high gain of the U1-U2 cascade, the clipper produces almost pure square-wave output. Thus, any positive input to Ul produces a level of approximately one voit at the output of U2, and any negative input produces a level of about minus one volt. The square-wave output is multiplied with the signal from the exponential amplifier by an analog multiplier, U14. The LM1595 used at U14 produces an output voltage equal to the mathematical product of its two input signals, which in this case are the signals from U2 and U10. The result, then, is to multiply the rectified signal from the exponential amplifier by plus or minus one volt to produce the desired bipolar signal. Output is taken from buffer amplifier U1I. The processed signal is passed through a low-pass filter with sharp cutoff above 3 kHz to eliminate unwanted high-frequency energy.

Because the processor is inherently sensitive to even the smallest input signals, undesired background noise or induced ac hum will be processed along with the speech and will appear as a loud disturbance at the output. To help eliminate this problem noise blanker U3 is included in the design. It consists of a free-running multivibrator with square-wave output at about 20 kHz , which is beyond audibility. When this signal is added to the output of the speech amplifier, the effect is to mask, before processing, any noise which is lower in amplitude than the $20-\mathrm{kHz}$ signal.

An audio amplifier, U13, at the output, provides a convenient means of monitoring the processed audio output with low-impedance (eight-ohm) headphones. If high-impedance headphones are to be uscd, TI may be omitted and output can be taken directly from pin 6 of U13 through a $5 \mu \mathrm{~F}$ coupling capacitor.

Fig. 2 - Block diagram for the processor.

Fig. 3 - Circuit diagram for the speech processor CR1. CR2 - pair of matched silicon diodes (see text).
CR3, CR4 - Same as CR1, CR2.
R1, R4, R5, R6, R7-Use circuit-board type pots.

S1 - Dpdt toggle switch.
T1 - 1000 -ohm to 8 - 0 hm audio transformer, 250 milliwats.
U1, U5, U6, U8, U9, Uโ1, U12, U13-741 op amp (Fairchild μ A741, National Semiconductor LM741, Motorola MC1741, or equivalent),

8-pin mini DIP package.
U2, U3, U4, U7, U10 - National Semiconductor LM301 op amp, 8-pin mini DIP package.
U14 - National Semiconductor LM1595 (or M torola MC1595), 14-pin DIP package.

Construction Information

An elched circuit board template pattern is available from ARRL, 225 Main Street, Newington CT 06111. Please include 50 cents and a selfaddressed, stamped envelope. Builders who use this layout should experience no problems. Those altempting their own layout, however, should be cautioned that because of the relatively large number of active devices, some oporating with high gain, the potential for instability (oscillation) exists in a haphazard layout. Arrangement of circuit components should be generally in a straight line from input to output. The shortest possible leads should be used in all cases. Particular attention should be paid to the positions of UI and U2 with respect to each other. Because of the very high gain the input of Ul should be kept physically as far apart as possible from the output of U2. Mounting the circuit board inside a metal chassis, such as a suitable Minibox, is recommended for rf shielding.

Procurement of parts should present no particulas problems. As of the time of this writing, the 741 and LM301 operational amplifiers used in the circuit can be purchased from mail order houses for about 30 cents apiece. The LM1595 integrated circuit, probably the single most expensive item in the processor, was bought for under two dollars. Matched diodes for CR1, CR2, CR3 and CR4 cost less than a dollar.'

The circuil is powered by a dual dc power supply that provides plus and minus 15 volts, as is typically used with most operational amplifiers. Current consumption is approximately 50 mA from each side of the supply.

Initial Adjustments

If an oscilloscope and audio sine wave generator arc available, the following alignment procedure should be followed: Set R4 to minimum resistance. Connect a microphone to II and the oscilloscope probe to pin 6 of Ul. Adjust R1, the input gain control, while speaking into the microphone so that the voice peaks viewed on the oscilloscope are

[^26]sightly below the output clipping level of UI (approximately 14 volis peak). Remove the microphone and connect the sigral generator to JI. Set the generator frequency to about 1000 Hz and adjust its output level to produce aboul 10 volts peak at pin 6 of U1. Place the oscilloscope probe on pin 6 of U12. Adjust offset controls RS and R6 for the best-looking sinc wave. It should be possible to produce a ncarly perfect sine wave. Disconnect the generator, reconsect the microphone, and plug headphones into 33. Advancing volume control R8, one should now be able to hear himself talking, although background noise and ac hum will probably be very high. Adjust noise blanking control R4 for the desired degree of background noise suppression.

Those who do not have access to test equipment may do the following: Set R4 to the center of its range. Connect a microphone to Jl and headphones to J3. Speaking into the microphone, advance input gain control R1 and monitor volume control R8 to the point where the speech becomes audible in the headphones. Adjust offeet controls R5 and R6 for minimum distortion as monitored in the headphones. The final setting of R1 is not critical. It should be high enough wo that the circuit functions properly (if set too low, the audio output will sound broken up and "grainy") but not so high that the speech amplifier itself distorts the signal by clipping. Adjust R4 to suppress background noise as desired.

Finally, connect the processor output at J2 to the iransmitter's microphone jack. Switch the processor out of the lise by means of S1. If a Monitorscope is available to view rf output, speak into the microphone and note the level of the voice peaks. Switch the unit "in" and adjust outpue level control R7 for the same peak voice output level. If a monitorscope is not available, the transmitter's ale meter readings may be used. With the processor switched "out," speak into the microphone and increase the transmitter's microphone gain control until the alc meter starts to deflect. Note the peak readings. Switch the processor "in" and adjust R7 to obtain the same peak reading.

SINGLE-SIDEBAND TRANSCEIVERS

A "iransceiver" combines the functions of transmitter and receiver in a single package. In contrast to a packaged "iransmitter-rceiver," it utilizes many of the active and passive elements for both transmitting and receiving. Ssb transceiver operation enjoys widespread popularity for several justifiable reasons. In most designs the transmissions are on the same (suppressed-carrier) frequency as the receiver is tuned to. The only practical way to carry on a rapid multiple-station "round table" or net operation is for all stations to transmit on the same frequency. Transceivers are ideal for this, since once the receiver is properly set the transmitter is also. Transceivers are by nature more compact than transmitter-receivers, and thus lend themselves well to mobile and portable use.

Although the many designs available on the market differ in detail, there are of necessity many points of similarity. All of them use the filter type of sideband generation, and the filter unit fumishes the receiver if selecitivity as well. The carrier oscillator doubles as the receiver (fixed) BFO. One or more mixer or i-f stage or stages will be used for both transmitting and receiving. The receiver S meter may become the transmitter plate-cument or output-voltage indicator. The VFO that sets the receiver frequency also determines the transmitter frequency. The same signal-frequency tuned circuits may be used for both transmission and reception, tncluding the transmitter pi-network output circuit.

Usually the circuits are switched by a

Fig. 13-28 - Transceiver circuits where a section is made to operate on both transmit and receive. See text for details.
multiplecontact relay, which transfers the antenna if necessary and also shifts the biases on several stages. Most commercial designs offer VOX (voice-controlled operation) and MOX (manual operation). Which is preferable is a controversial subject; some operators like VOX and others prefer MOX.

Circuits

The use of a filter-amplifier combination common to both the transmitter and receiver is shown in Fig. 13-28A. This circuit is used by the Heath Company in several of their transceiver kits. When receiving the output of the hf mixer is coupled to the crystal filter, which, in turn, feods
the first i-f amplifier. The output of this stage is transformer coupled to the second i-f amplifier. During transmit, K1 is closed, turring on the isolation amplifier that links the balanced modulator to the band-pass fllter. The single-sideband output from the fller is amplified and capacitancecoupled to the transmitter mixer. The relay contacts also apply alc voltage to the first i-f stage and remove the screen voltage from the second i -f amplifier, when transmitting.

Bilateral amplifier and mixer stages, first used by Sideband Engineers in their SBE-33, also have found application in other transceiver designs. The circuits shown in Fig. 13-28B and C are made to work in cither direction by grounding the bias
divider of the input transistor, completing the bias network. The application of these designs to an amateur transceiver for the $80-10$ meter bands is given in the 5 th Edition of Singte Sideband for the Radio Amateur.

The complexity of a multiband ssb transceiver is such that most amatcurs buy them fully built and tested. There are, however, some excellent designs available in the kdt field, and any amateur able to handle a soldering iron and follow instructions can save himself considerable money by assembling an ssb transceiver kit.

Some transceivers include a feature that permits the receiver to be tuned a few kHz either side of the transmitter frequency. This consists of a voltage-sensitive capacitor, which is uned by varying the applied dc voltage. This can be a useful device when one or more of the stations in a net
drift slighty. The control for this function is usually labled RIT for recerver independent runing. Other transceivers include provision for a crystalcontrolled transmitter frequency plus full use of the receiver tuning. This is useful for "DXpeditions" where net operation (on the same frequency) may not be desirable.

SSB Bibliography

Single Sideband for the Radio Amateur, by the American Radio Relay League, 5th Edition, 1970. Hennebury, Single Side band Handbook. Technical Material Corporation, 1964.
Pappenfus, Bruene and Schoenike, Single Sideband Principles and Circuifs, McGraw-Hill, 1964.
Amateir Single Sideband, by Collins Radio Company, 1962.

TESTING A SIDEBAND TRANSMITTER

There are three commonly used methods for testing an ssb transmitter. These include the wattmeter, oscilloscope, and spectrum-analyzer techniques. In each case, a two-tone test signal is fed into the mic input to simulate a speech signal. From the measurements, information concerning such quantities as PEP and intermodulation-distortion-product (IMD) levels can be obtained. Depending upor the technique used, other aspects of transmitter operation (such as hum problems and carrier balance) can also be checked.

As might be expected, each iechnique has both advantages and disadvantages and the suitability of a particulas method will depend upon the desired application. The wattmeter method is perhaps the simplest one but it also provides the least amount of information. Rf wattmeters suitable for single tone or $\mathrm{c} w$ operation may not be accurate with a two-tone test signal A suitable watimeter for the latter case must have a reading that is proportional to the actual power consumed by the load. The reading must be independent of signal waveform. A thermocouple ammeter connected in series with the load would be a typical example of such a system. The output power would be equal to $l^{2} R$, where 1 is the current in the ammeter and R is the load resistance (usually 50 ohms). In order to find the PEP output with the latier method (using a two-tone test input signal), the power output is multiplied by 2

A spectoum analyzer is capable of giving the most information (of the three methods considered here), but it is also the most costly method and the
one with the greatest chance of misinterpretation. Basically, a spectrum analyzer is a receiver with a readout which provides a piot of signal amplitude vs frequency. The readout could be in the form of a paper chart but usually it is presented as a trace on a CRT. A sweep voltrge which is applied to the horizontal-deflection amplifiers of the CRT is also used to control the frequency of the LO for the first mixar (there may be other mixers but these are fixed-frequency types) in the analyzer. (See the block diagram in Fig 1.) In order to give a meaningful output waveform, the first mixer has to have a broadband and "flat" response. It also has to have very good IMD suppression characteristics, otherwise, the mixer may generate spurious signals itself. Unfortunately, these signals fall on the same frequencies as those being measured in the tranamitter output and it may be difficult to tell whether or not the spurious products are being generated in the transmitter or in the spectrum analyzer. Other precautions that should be taken would be to ensure that good RFI-prevention practices are observed In effect, the problem is similar to trying to listen to one's own signal in the station receiver. Quite often, a signal may not be as bad or as good in the latter as it is at a distant station.

Two-Tone Tests and Scope Patterns

A method which is a very practical one for amateur applications is to use a two-tone lest signal

Fig. 1 - Block diagram of a spectrum analyzer.

(usually audio) and sample the transmitter output. The waveform of the latter is then applied directly to the vertical-deflection plates in an oscilloscope. An alternative method is to use an of probe and detector to sample the waveform and apply the resulting audio signal to the verticaldeflection amplfier input.

If there are no appreciable nonlinearities in the amplifler, the resulting envelope will approach a perfect sine-wave pattern (see Fig, 2A), As a comparison, a spectrum-analyzer display for the

(A)

(C)

(E)
same transmitter and under the same conditions is shown in Fig 2B. In this caso, spurious products can be seen which are approximately 30 dB below the amplitude of each of the tones.

As the distortion increases, so does the level of the spurious products and the resulting waveform departs from a true sine-wave function. This can be seen in Fig 2C. Onc of the disadvantages of the scope and two-tone test method is that a relatively high level of IMD-product voltage is required before the waveform seems distorted to the eyc.

(B)

(D)

(F)

Fig. 2 - Scope patterns for a two-tone test signal and corresponding spectrum-analyzar displays. The patiern in A is for a property adjusted transmitter and consequently the IMD products are relatively low as can be seen on the analyzer display. At C, the PA bias was set to zero idling current and cansiderable distortion can be observed, Note how the pattern has changed on the scope and the increase in IMD level. At E, the drive level was increased until the flattopping region was approached. This is the most sarious distortion of all since the width of the IMD spectrum increases considerably causing splatter (F).

For instance, the waveform in Fig. 2 C doesn't seem too much different than the one in Fig. 2A but the IMD level is only 17 dB below the level of the desired signal (see analyzer display in Fig. 2D). A 17- to $20-\mathrm{dB}$ level corresponds to approximately ten-percent distortion in the voltage waveform. Consequently, a "good" waveform means the IMD products are at least 20 dB below the desired tones. Any noticeable departure from the waveform in Fig. 2A should be suspect and the transmitter operation should be checked.

The relation between the level at which distortion begins for the two-tone test signal and an actual voice signal is a rather simple one. The maximum deflection on the scope is noted (for an acceptable two-tone test waveform) and the transmitter is then operated such that voice peaks are kept below this level. If the voice peaks go above this level, a type of distortion called "filattopping" will occur and the results are shown for a twotone test signal in Fig. 2E. IMD-product levels raise very rapidly when ถattopping occurs. For instance, third-order produce levels will increase 30 dB for every $10-\mathrm{dB}$ increase in desired output as the flattopping region is approached, and fifth-order terms will increase by 50 dB (per 10 dB).

Interpreting Distortion Measurements

Unfortunately, considerable confusion has grown concerning the interpretation and importance of distortion in ssb gear. Distortion is a very serious problem when high spurious-product levels exist at frequencies removed from the passband of the desired channel but is less serious if such products fall within the bandwidth of operation. In this former case, such distortion may cause needless interference to other channels ("splatter") and should be avoided. This can be seen quite dramatically in Fig. 2F when the flattopping region is approached and the fifth and higher order terms increase drastically.

On the other hand, attempting to suppress in-band products more than necessary is not only difficult to achieve but may not result in any noticeable increase in signal quality. In addition, measures required to suppress in-band IMD often cause problems at the expense of other qualities such as efficiency. This can lead to serious difficulties such as shortened tube life or transistor heat-dissipation problems.

The two primary causes of distortion can be seen in Fig. 3. White the waveform is for a single-tone input signal, similas effects occur for the two-tone case. As the drive signal is increased, a point is reached where the output current (or voltage) cannot follow the input and the amplifier saturates. This condition is often referred to as nlattopping (as mentioned previously). It can be prevented by ensuring that excessive drive docsn't occur and the usual means of accomplishing this is by alc action. The alc provides a signal that is used to lower the gain of earlier stages in the transmitter.

The second type of distortion is called "crossover" distortion and occurs at low signal levels. (See Fig. 3.) Increasing the idling plate or collector

Fig. 3 - Waveform of an amplifier with a singletone input showing flattopping and cross-over distortion.
current is one way of reducing the effect of cross-over distortion in regards to producing undesirable components near the operating frequency. Instead, the components occur at frejuencies considerably removed from the operating frequency and can be eliminated by filtering.

As imptied in the foregoing, the effect of distortion frequencywise is to generate components which add or subtract in order to make up the complex waveform. A more familiar example would be the harmonic generation caused by the nonlinearities often encountered in amplificrs. However, a common misconception which should be avoided is that IMD is caused by fundamentalsignal components beating with harmonics. Generally speaking, no such simple relation exists. For instance, single-ended stages have relatively poor 2nd-harmonic suppression but with proper biasing to increase the idling current, such stages can have very good IMD-suppression qualities.

However, a definite mathematical relation does exist between the desired components in an ssb signal and the "distortion signals." Whenever nonlinearities exist, products between the individual components which make up the desired signal will occur. The mathematical result of such multiplication is to generate other signals of the form (2 fl $-£ 2),(3 f 1),(5 f 2-\mathrm{fl})$ and so on. Hence the term intermodulation-distortion products. The "order" of such products is equal to the sum of the multipliers in front of each frequency component. For instance, 3 tern such as ($3 \mathrm{f} 1-2 \mathrm{f} 2$) would be called a fifth-order term since $3+2$ is equal to 5 . In general, the 3rd, 5th, 7th, and similar "odd order" terms are the most important ones since some of these fall near the desired transmitter output frequency and can't be eliminated by filtering. As pointed out previously, such terms do not normally result from fundamental components beating with harmonics. An exception would be when the fundamental signal along with its harmonics is applied to another nonlinear stage such as a mixer. Components at identical frequencies as the IMD products will result.

When two equal tones are applied to an amplifier and the result is displayed on a spectrum analyzer, the IMD products appear as "pips" off to the side of the main signal components (Fig. 2). The amplitudes associated with each tone and the

Fig. 4 - Speech pattern of the word " X " in a properly adjusted ssb transmitter.

IMD products are merely the dB difference between the particular product and one tone. However, each desired tone is 3 dB down from the average power output and 6 dB down from the PEP output.

Since the PEP represents the most important quantity as far as IMD is concerned, relating IMD-product levels to PEP is one logical way of specifying the "quality" of a transmitter or amplifier in regard to low distortion. For instance, IMD levels, are referenced to PEP in Recent Equipment reviews of commercially made gear in QST. PEP output can be found by multiplying the PEP input by the efficiency of the amplifier. The input PEP for a two-tone test signal is given by:

$$
P E P=E_{p} J_{p}\left[1.57-0.57 \frac{I_{0}}{I_{p}}\right]
$$

where E_{p} is the plate voltage and I_{p} is the average plate current. δ_{0} is the idling current.

Generally speaking, most actual voice patterns will look alike (in the presence of distortion) except in the case where severe flattopping occurs. This condition is not too common since most rigs have an alc system which prevents overdriving the amplifiers. However, the voice pattern in a properly adjusted mansmitter usually has a "Christmas tree" shapo when observed on a scope and an example is shown in Fig. 4.

Mathematical Relation Between Amplifier Nonlinearity and IMD Products

The term intermodulation-distortion product is often used and the following derivation shows how it is related to amplifier nonlinearity. The output of an amplifier can be related to the input by means of a power series of the form:

$$
S=A+B r+C r^{2}+D r^{3}+E r^{4}+\ldots \ldots
$$

where s represents some parameter such as output voltage or current and r represents some input quantity (voltage or current). A, B, C, and other constants are primarily determined by the amplifier nonlinearity. A represents a dc term and can be neglected. In an ideal amplifier with no distortion, C, D, and the constants for the higher exponent terms will be zero and only the constant for the

Fig. 5 - Severe clipping (same transmitter as Fig. 4 but with high drive and alc disabled).
"linear" term, B, will exist. Consequently, the output quantity will be an exact replica of the input

If the output is plotted against the input, a straight line will result, hence the term "linear operation." On the other hand, if distortion is present, the C, D, and other constants will not be zero. The values of the constants will be such that as r increases, the higher order terms will add (or subtract) so that s follows the input-output curve of the amplifier.

For a two-tone test signal, r can be represented by the following formula:

$$
r=R o\left(\operatorname{Cos} w_{z} t+\operatorname{Cos} w_{2} f\right) ; w_{1}=2 \pi f_{1}, \begin{aligned}
& w_{2}=2 \pi f_{2}
\end{aligned}
$$

where $f 1$ and $f 2$ are the frequencies of the two tones. If this equation for P is substituted into the power sories, many terms will result and the algebra involved to find each one would be rather tedious. However, the purpose here is only to show how the IMD products come about. For instance, some terms will yield products such as:

$$
\left(\operatorname{Cos}^{2} w_{1} t\right)\left(\operatorname{Cos} w_{2} t\right)
$$

The squared term can be expanded by a trigonometric formula:

$$
\cos 2 w_{1} t=\frac{1+\operatorname{Cos} 2 w_{1} t}{2}
$$

This gives rise to a term $\operatorname{Cos} 2 w_{1}$? $\operatorname{Cos} w_{2} t$ which can be expanded by another trigonometric formula to give:

$$
\begin{gathered}
\cos 2 w_{1} t \operatorname{Cos} w_{2} t= \\
\frac{1}{2}\left[\operatorname{Cos}\left(2 w_{1}+w_{2}\right) t+\operatorname{Cos}\left(2 w_{1}-w_{2}\right) t\right]
\end{gathered}
$$

The second term in the bracket represents a third-order IMD "product" which falls close to the ssb passband. Notice that the exponents of the product functions which gave rise to this term are 2 and 1, respectively, hence the term "third-order" product. The manner in which the terms increase will depend upon the distortion curve but generally speaking, the amplitude will follow a low which is proportional to r raised to a power x, where x is the order of the term.

A MODERN SOLID-STATE VOX

In QST for March, 1964, Campbell${ }^{1}$ described a simple and inexpensive voice-operated relay (VOX) device which he called "a VOX in a box." Today. most manufactured ssb transceivers include a VOX function. It would seem that insufficient time or effort has gone into the design of some commercial VOX circuits, because performance is often poor. The VOX unit described here retains Campbell's concepts of a small, low-cost device, but ICs and modern circuit techniques have been employed to improve operational characteristics.

Circuit Description

Two integrated circuits, an LM3900 (a quad of Norton operational amplifiers) and an NE555 timer, have been used in the VOX circuit. Each IC is currently priced at one dollar. A description of the NE5S5 has previously appeared in QST ${ }^{2}$ and will not be repeated here. The Norton circuit is an unusual type of operational amplifier in which the differential input transistors of a conventional op amp have been replaced by a "current mirror" circuit to obtain a non-inverting input directly from the inverting input. One advantage of this circuit arrangement is operation from a single supply voltage. A simplified diagram of the input portion of the Norton amplifier is shown in Fig. 1A. CR1 and the basc-emitter junction of Q2 clamp the maximum input voltages at approximately 0.5 volt. External series resistors are employed to convert voltage changes to current differences which are applied to the input terminals. CR1 and Q1 form the mirror circuit which assures that the bias current at both inputs will be the same; whatever bias voltage is applied to the noninverting input will be reproduced for the inverting input.

The basic design data for the LM3900 amplifiers are given in Fig. 1B. At audio frequencies,

Fig. 1 - (A) Simplified input circuit for a Norton operational amplifier such as used in the National Semiconductor LM3900. (B) Design equations for an audio amplifier using the LM3900.

The unit shown here was designed and built by W1 KLK. It originally appeared in QST for March. 1976.
the maximum gain of a single stage is 40 dB , while the open-loop gain is specified at approximately 70 dB . Input bias current is rated at 30 nanoamperes (nA). Each of the four op amps in the LM3900 may be operated independently.

The schematic diagram of the VOX device is shown in Fig. 2. Three of the LM3900 sections have been configured as high-gain audio amplifiers. UIA and U1B amplify the signal from the microphone. For applications where a high-output microphone is employed, or when the audio signal is sampled after a preamplifier stage, the builder may wish to reduce the gain of UlA. This can be accomplished by changing the values of R1 and R2 in accordance with the design equations in Fig. 1B. If R2 is changed, the value of R3 must be modified so that R3 is twice the resistance of R2. U1C functions as an amplifier for audio sampled at the station speaker. Coupling capacitors in the audio stages have been chosen to reduce response below 300 Hz . This will minimize hum problems.

Outputs from the microphone and speaker amplifiers are capacitively coupled to rectifier stages which convert the audio signals to varying dc voltages. Germanium diodes, because of the lower threshold voltage, have been used as audio rectifiers instead of silicon units. The outputs of the two rectifier stages are summed resistively by means of R6 and R7, and applied to the inverting input of a voltage comparator, U1D. The output of U1D remains high (approximately 0.5 volt less than the supply voltage) so long as the voltage at the noninverting input is less than the 0.2 -volt reference applied to the inverting input. Whenever the input exceeds the reference, the output of the comparator goes low - to near the ground or common potential. Voltage output from the micro-phone-signal rectifier is positive and, thus, will cause the comparator to switch as soon as the reference is exceeded. Because the speaker-signal rectifier produces negative voltage, it will not trigger the comparator. If the outputs of the two rectifiers are equal, as will happen when the microphone is picking up audio from the speaker, the resulting voltage from the summing network

Fig. 2 - Schematic diagram of the VOX unit. Unless otherwise specified, resistors are $1 / 4$ watt composition. Capacitors with polarity marked are plasticencapsulated tantalum; others are disk ceramic.
C1 - For text reference.
CR1 to CR4, incl. - Germanium diode, 1N34A, 1 N67 or equivalent.
CR5 - Silicon diode, 50 PRV or more, 1 N4001 or similar.
K1 - Miniature type, 12 volt cail (see text).
R1-R3, inc1., R6, R7 - For text reference.
R4, R5, R8 - Miniature control (see text).
RFC1-RFC3, incl. - Ferrite bead.
U1 - National Semiconductor LM3900.
U2 - Signetics NE555 or Motorola MC1455.
will be zero and the comparator will not trigger. The ability to reject speaker audio is usually called the ANTIVOX function.

The positive-to-ground transition of the comparator output starts the timing cycle of the NE555. The length of the time cycle is determined by the values used for R9 and C1. The time delay produced is identical each time the microphone signal stops. One of the major difficulties of earlier VOX circuits was that capacitor discharge circuits were used where the capacitor would not always be fully charged, so the time delay produced would vary. Operators compensated for the uncertain time delay by using a modified version of the English language where an ahhh, oouh, or errr was inserted after each word to assure that the VOX relay would not drop out prematurely.

The NE555 has a current-switching capability of 200 mA , sufficient to directly drive either a relay or a solid-state switching arrangement. CRS is included to protect the IC from transients generated when switching an inductive load such as a relay coil.

Components and Construction

The VOX unit is constructed on a 2-3/8 X $2-3 / 4$-inch etched circuit board. The photo indicates that one third of the board real estate is unused, so a smaller version is possible. The type of controls and relay employed will be determined by the builder's individual requirements. This writer's unit uses pc-mount controls which are aligned on the board so that they may be accessed through small holes in the rear panel of the transceiver. If panel-mount controls are desired, Mallory MLC units may be used for R4, R5 and R8.

The VOX device is small enough so it can be mounted inside most rigs. If a separate VOX unit is needed, a small utility or Minibox will make an appropriate housing. Rf interference can cause trouble, so the unit should be shielded in any application where rf fields may be present. The bypass capacitors for the audio inputs are located on the circuit board. If the leads from the audio connectors are more than a few inches long, the bypass capacitors and their associated ferrite-bead chokes should be mounted at the connectors.

No provision has been made for mounting the relay on the circuit board, as the type of relay will

Fig. 3 - Typical connections to the VOX unit.
depend on how the VOX device will be used. Any 12-volt relay which requires less than 200 mA of current can be employed. When the VOX relay must drive a second relay, such as the antenna relay in a transceiver, the fast operating time of a reed relay is nceded to prevent clipping of the first syllable spoken. The total close time of all relays connected in tandem should be 10 milliseconds or less. If the VOX relay will perform all switching functions directly, a miniature control relay such as the Potter \& Brumfield R10 series is appropriate. These relays are available in 2-, 4- and 6-pole versions, part numbers R10-E1-Y2-185, R10-E1-Y4-V185 and R10-EI-Y6-V90, respectively.

The circuit board is designed for 1/4-watt resistors which are mounted flat. If $1 / 2$-watt units are used, they must be positioned vertically. Care must be employed when mounting and soldering the germanium diodes. If the leads are bent too close to the body of the diode, breakage can result. If excessive heat is applied to the diode, it can be damaged, so use a heat sink (such as a small alligator clip) when soldering. Assure that proper polarity is observed when installing the diodes and tantalum capacitors.

Installation and Operation

Typical connections for the VOX unit are shown in Fig. 3. Shielded cable should be used for all audio connections. Audio for the ANTIVOX function can be sampled at the station speaker or at the phone-patch output (which is a feature of many commercial transceivers). If VOX operation of a cw rig is desired, connect the output of a sidetone monitor to the microphone input of the VOX unit. The mic gain control should be set so that the VOX relay closes each time a word is spoken. The delay control should be adjusted to fit individual speech patterns and operating habits. The delay time must be long enough that the VOX relay will drop out only during a pause in speech. There are two methods of setting the ANTIVOX gain control. The first way is simply to advance the control until audio from the speaker does not trip the VOX unit. A more scientific approach is to connect a voltmeter to TP1. With no audio input, the meter should read only the comparator reference voltage, approximately 0.1 volt. Tune the receiver to provide a steady tone signal, such as the heterodyne note from a crystal calibrator. Advance the ANTIVOX control until the voltmeter registers
only the reference voltage. The ANTIVOX gain should be set with the audio from the speaker slightly louder than is necessary during normal operation.

VOX control can be a helpful operating aid. It can speed up traffic handling and contest operation. It might make round-table discussions more natural. The unit described here will help to eliminate some of the operator idiosyncrasies that have become associated with VOX operation. The operators themselves can cure the rest.

References

${ }^{1}$ Campbell. "A VOX in a Box." QST for March, 1964.
${ }^{2}$ Technical Topics, "Time - IC Controlled." QST for June, 1972.

3 Blakeslee, "Some Thoughts on Station Control." QST for January, 1966.
${ }^{4}$ Blakeslee, "A Solid-State VOX," QST for September, 1970.

A TRANSVERTER FOR 1.8 MHZ

Owners of five-band transceivers often get the urge to try "top band." Converting a transceiver to cover a frequency range for which the rig was not designed is difficult indeed. A far better approach is to build an outboard transverter, such as the one described herc. This particular system requires one watt of drive power at either 21 or 28 MHz . Many transceivers can provide this low-level output along with the power supply voltages through an accessory socket.

The Circuit

A schematic diagram of the transverter is given in Fig. 1. Q1 operates as a crystal oscillator, to produce the local oscillator energy for the receive (Q5) and transmit (Q2) mixing stages, which runs continuously. During transmit 21.1 MHz ssb or cw energy is supplied to the emitter of Q2 through a power divider network. This signal is mixed with

Top view of transverter with cover removed. Final amplifier circuit is at the left. The rear apron has an accessory socket for an external power supply (transceiver), rf, and remote-keying connectors. The plate meter is at the lower left.

Fig. 1 - Schemstic diagram for the transverter. Resistors are $1 / 2$-watt composition and capacitors are disk ceramic, unless otherwise noted.
C1 - Dual-section air variable, 140 pF per section, or two 150 pF air variable units.
C2 - Air variable (Millen 19280).
C3 - Dual-section broadcast variable, 365 pF per section, both sections connected in parallel.
CR1 - Zener diode, 6.8 -volt, 1 watt (1N4736).
CR10 - Silicon, 50 PRV, 100 mA .
J1 - Phono type, chassis mount.
J2 - Coaxial recepiacle, chassis mount.
K1, K2-12 V dc. 2-A contaces, dpdi relay (Radio Shack 275-206).
L1 - 11 turns of No. 28 enam. wire wound over L2.
L2. L4 - 19.5-24.3 $\mu \mathrm{H}$ variable inductor (Miller 46 A225CPCI.
L3 - 22 turns of No. 38 enam. wire wound on L. 4 coil form.

L5 - 18.8-41.0 $\mu \mathrm{H}$ variable inductor (Miller 42 A 335 CPCl .
L6, L8 - 35-43.0 $\mu \mathrm{H}$ variable inductor (Miller 46A395CPC).
L7 - 13.2-16.5 $\mu \mathrm{H}$ variable inductor (Miller 46A155CPC).
L9 - 10.8-18.0 $\mu \mathrm{H}$ adjustable coil (Miller 21 A155R81).
L10 - 42 turns, No. 16 enam. wire equally spaced on a T-200 Amidon core.
M1 - 500 mA , panel mount (Simpson 17443 or similar l.
Q5, Q6 - RCA MOSFET.
RFC1 - 1 mH .500 mA rf choke (Johnson 102-572).
RFC2 $-56 \mu \mathrm{H}$ rf choke (Millen J-302-56).
Y1 - 19.3-MHz crystal is used for a $21-\mathrm{MHz}$ i-f. $\mathbf{2 6 . 5 - M H z}$ crystal for a $28-\mathrm{MHz} \mathrm{i}-\mathrm{f}$.
Z1, Z2 - 2 turns, No. 18 enam. wound over 47-ohm, 2-watt composition resistor.
the $19.3-\mathrm{MHz}$ output from the LO producing 1.8 MHz power which is amplified by Q3, followed by a filter network. Q4 provides adequate drive to the pair of 6146Bs. The PA stage operates class AB1 which will deliver in excess of 100 watts PEP output.

During receive, an incoming signal is amplified by Q6, a dualgate, diode-protected MOSFET. The output from the if amplifier is mixed with localoscillator energy at QS to produce a receiving i-f of

21 MHz . The frequency of the crystal is the only change required to make this system useable at 28 MHz . Changeover from transmit to receive is accomplished by K1 and K2 which are controlled by the associated transceiver. If the LO frequency is 19.3 MHz , the 1.8 to 2.0 MHz band will correspond with 21.1 to 21.3 MHz on the transceiver dial. Likewise, with a 26.5 MHz crystal in the LO circuit, the 160 -meter band will appear between 28.3 and 28.5 MHz .

If the various supply voltages can not be obtained from the transceiver, an economy power supply shown in Fig 2 can be used. The 6.3- and 5 -volt windings of TI are series-connected to provide 11.5 volts to power K1 and K2, the receiving converter and the predriver stages of the transmitting section. The windings must be phased properly to prevent cancellation of the voltages. If no output is obtained when the windings are connected, reverse the leads of one winding. The 11.3 -volt ac is rectified by CR6.

Bias voltage is obtained for V1 and V2 by connecting a $6.3-\mathrm{volt}$ filament transformer in back-to-back fashion with the 6.3 -volt winding of T1. The 125 -volt ac output from T2 is rectified, filtered, and then routed to the bias-adjust control, R1, to establish a PA resting plate current of 50 mA.

The metering circuit consists of a 500 mA meter connected in the plate voltage line. Other meters may be employed by using the proper shunts, as described in the Measurements Chapter.

Construction

An aluminum chassis which measures $7 \times 11 \times$ 2 inches is used as the base for the transverter. A homemade panel and cabinet enclose the unit. The front panel is $8 \times 7-1 / 4$ inches. The layout empioyed should be apparent from the photographs. All long runs of rf wiring should be made

The bottom view of the chassis, the sockats for the 6146B tubes are at the lower center. The etchedcircuit board is above the final amplifier tube sockets and the T-R relays at the upper right. The different supply voltages are obtained from the associated transceiver.
with subminiature coaxial cable (RG-174/U or similar).

Fig. 2 - Diagram of the power-supply section. Resistors are $1 / 2$ watt composition. Capacitors are disk ceramic, except those with polarity marked which are electrolytic.
CR2-CR5, incl. - Silicon, 1000 PRV, 1 A.
CR6, CR7 - Silicon, 400 PRV, 1 A.
J3 - Phono type, chassis mount.
K1, K2 - see Fig. 1.

L11 - Power choke, 130 mA (Allied 6X24HF or equiv.).
S1 - Spst toggle.
T1 - Power transformer, 117-V primary; secondary windings $740 \mathrm{~V} \mathrm{ct} \mathrm{at} 275 \mathrm{~mA}, 6.3 \mathrm{~V}$ at 7 A , and 5 V at 3 A (Stancor P-6315 or equiv.).
T2 - Filament transformer, 117-V primary; 6.3-V. 1-A secondary.

The receiver section, driver stages and local oscillator are constructed on a double-sided printed-circuit board measuring $3 \times 3-1 / 2$ inches. Inductors L1 and L2 are mounted on the chassis close to C1. Short leads are used from the circuit board to the PRESELECTOR capacitor and L1-L2

which are located on the underside of the chassis. The final tank inductor is wound on an Amidon T-200 toroid core. It is supported above the chassis by a ceramic standoff insulator and two pieces of Plexiglas.

Tune Up

Provision must be made to reduce the power output of most transcejvers used with the transverter since only about one watt of drive power is required. Too much rf voltage can damage the HEP 56 and will "smoke" the input resistors. Some transceivers are capable of delivering sufficient drive by removing the screen voltage from the PA stage. Or, it may be practical to disable the PA and obtain a sample of driver output by a link-coupling circuit.

Before testing the transverter, assure that the changeover relays, K 1 and K 2 , are connected to the remote-keying terminals of the transceiver. Then connect an antenna to J2 and listen for sigrals. Peak the incoming signals with the PRE-

Close-up view of the printed-circuit board. This board has the local oscillator, receiver, and lowlevel driver stages. The crystal socket and crystal for the LO are shown at the lower left.

SELECTOR control. The slugs of L2 and L4 should be adjusted for the highest S-meter reading on the transceiver. LS should be set for maximum output at 21 or 28 MHz . If the receiving converter is functioning properly, it will be possible to copy a $0.1 \mu \mathrm{~V}$ signal without difficulty in areas where atmospheric and man-made noise are at a minimum. If no signals can be heard, check Q1 to make certain that it is working properly. A wavemeter or general-coverage receiver car be employed to see if the crystal oscillator is operating.

Attach a 50 -ohm load to J 2 before testing the transmitter section. Set R1 for an indicated resting plate current of 50 mA on M1. This adjustment should be made without drive applied but with K1 and K2 energized. Next, apply about one watt of 21.1-MHz cw drive power at J1. Tune L6, L7, L8 and L9 for maximum meter reading. While monitoring the plate current, tune C 2 for a dip. C 3 is the PA LOADING control. When the PA capacitors are properly adjusted, the plate current will be about 220 mA .

A LOW-POWER SSB/CW TRANSMITTER FOR 80 OR 20 METERS

A number of QRP transmitter designs have appeared in the past, mostly for cw-only operation. The unit to be described operates in both the ssb and cw modes. Using solid-state devices throughout, the transmitter is capable of delivering up to nine watts PEP output into a 50 -ohm load. A $9-\mathrm{MHz}$ if in conjunction with a VFO that tunes 5.0 to 5.5 MHz results in single-band operation on ejther 80 or 20 meters. A regulated 12 -volt dc supply that can furnish at least two amperes is required to power the transmitter.

Construction Details

Four separate circuit board assemblies are used. Two boards, measuring 6 by $2-3 / 8$ inches and $5-3 / 4$ by 2-3/4 inches, contain most of the transmitter circuity. The VFO and power output amplifier are included on separate boards, measuring 2 by 3 inches and $2-1 / 2$ by 4 inches respectively. Doubleclad circuit board should be used for all except the VFO board. The copper plane on the component side of each board provides a good rf ground and thus enhances stability in the unit. Component leads which are soldered to ground should be soldered to both the ground plane on the component side and the ground foil on the reverse side. To prevent other leads from shorting to the ground plane, their holes on the component side are drilled out slightily with a $1 / 4$-inch dill before mounting. As can be seen in Fig. 2, shields, made from pieces of double-clad circuit board soldered to the main circuit boards, are used to isolate stages which are susceptible to stray if pickup.

The VFO is housed in a four-walled enclosure formed by four pieces of circuit board soldered together at their common seams. The VFO board fits snugly inside and is soldered along its edges to the walls of the enclosure. The tuning capacitor, C6, mounts firmly against the front wall from which its shaft protrudes. Dc power connection is made via a feedthrough capacitor. A short length of subminiature RG-174/U coax connects the VFO output to U 2 .

If the 80 -meter version of the unit is being constructed, Q11 and associated components in this amplifier stage are to be omitted from the board since the stage is required only for 20 -meter operation. Instead, then, a jumper connection is

Fig. 1 - Front view of the transmitter with cover in place. The iwo-piece chassis is made from shbet aluminum. The front panel, which measures 9-1/2 by 4 inches, is spray-painted orange and the cover is finished in brown. White decals are used to identify the power switch, mode switch, microphone gain control, and jack. For cw operation, the key plugs into a jack at the rear of the chassis. A two-speed vernier dial is employed for VFO tuning and stick-on rubber feet are fitted on the bottom of the chassis.
made from common connection 4 (as indicated in the schematic diagram) directly to the base of Q12. In the 20 -meter unit this stage is included and the jumper omitted.

The broadband power output stage employs a 2N6367 if power transistor rated for 9 watts PEP output with a -30 dB IMD specification. All rf-carrying leads associated with the base circuit of Q13 should be absoiutely as short as possible. Because of the low base input impedance - two or three ohms - even smald amounts of stray reactance cannot be tolerated. Leads as short as one inch can contribute a considerable amount of inductive reactance in the base circuit.

Fig. 2 - Schematic diagram of the 80- or 20-meter low-power ssb/cw transmitter. Capacitors with polarity marked are electrolytic. Fixed-value capacitors are ceramic unless otherwise noted. Resistors are 1/2-watt composition unless marked otherwise. Numbered parts not appearing below are so identified for pc-board layout purposes only
C1, C2 - 2.0- to 27-pF printed-circuit air
variable \{E.F. Johnson No.
193-0008-005 or equiv.\}.
C3, C4, C7, C11, C13 - 250-pF max. trimmer (Arco Élmenco 426).
C6 - 50-pF air variable.
C8, C10 - 220-pF silver mica (80-meter unit); $100-\mathrm{pF}$ silver mica ($20-$ meter u -
nit). 180 meter unit): 1,7 - $68-\mathrm{pF}$ silver mica 180 -meter unit): 11 .pF miniature air variable (E.F. to $J 1$ phn miniature air variable No. 187-0106-005 or equiv. for Johnson No. 187
20 -meter unit).
C12 - . $001-\mu \mathrm{F}$ (80-meter unit): 68-pF 14 -meter unit)
C14-820-pF silver mica (80 -meter unit): 680-pF silver mica (20 -meter unit).
C15-1500-pF silver mica ($80-$ meter unit); 470-pF silver mica (20-mater unit).
C16-820-pF silver mica (80-meter unit); 220-pF silver mica (20 -meter unit).
CR1 - Silicon diode, 50 PRV, 1 A (1 N4001
R2 - Silicon diode, 50 PRV, 3A or greater, stud-mounting type (Motorola HEP RO130 or equiv.).
FL1 - $9-\mathrm{MHz}, 2.5-\mathrm{kHz}$ bandwidth crystal filter, KVG type XF-9A.
K1 - Dpdt 12 Vdc relay, contact rating of 1 ampere or greater (Radio Shack cat. No. 275-206 or equiv.).
L1, L3 - $2.5-\mu \mathrm{H}, 25$ turns No. 24 enam. on Amidon T-50-6 toroid core
L2 - 2 turns No. 24 enam. wound over L1.
L4 - 2 turns No. 24 enam. wound over L1.
L4 - 2 turns No. 24 enam. wound over L3.
L5 - 4.6- $\mu \mathrm{H}, 34$ turns No. 24 enam. on
L6 - 3 turns No. 24 enam. wound over L5. (Continued on next page)

412

L7 - 7.8- to 12.0- H H slug-tuned cail (Miller 4309). L8, L10 - 8.9- H , 49 turns No. 26 enam. on Amidon $\mathrm{T}-50-6$ core (80 -meter unit): $1.2-\mu \mathrm{H}$, 17 turns No. 24 enam. on Amidon T-50-6 (20-meter unit),
LS - $26.5-\mu \mathrm{H}, 68$ turns No. 28 enarm. on Amidon T-68-2 toroid core (80 -meter unit); $17.6-\mu \mathrm{H}, 56$ turns No. 28 enam, on Amidon T-68-2 core (20-meter unit).
L11 - $8.1-\mu \mathrm{H}, 45$ turns No. 26 enam. on Amidon T-50-6 core (80 -mater unit); $0.68-\mu \mathrm{H}, 13$ turns No. 24 enam. on Amidon T-50-6 core $\mathbf{~} 20$ meter unit).
L12-3 turns No. 24 enam. wound over L11.
L13 - $0.68-\mu \mathrm{H}, 13$ turns No. 24 enam. on Amidon T-50-6 core lused in the 20 -meter unit only).
L14-1 turn No. 24 enam. wound over L13.
L15, L16 - $2.6-\mu \mathrm{H}, 25$ turns No. 24 enam. on Amidon T-50-6 core ($80-\mathrm{meter}$ unit); $0.28-\mu \mathrm{H}$, 8 iurns No. 24 enam. on Amidon T-50-6 core (20-meter unit).
RFC8 - 6 turns No. 28 enam. using Amidon Jumbo Ferrite Bead as toroid core.
S1 - Dpdt subminiature toggle switch \{Radio Shack 275-1546 or equiv.).
S2 - Spst subminiature toggle switch (Radio Shack 275-324 or equiv.).
T1, T4-4:1 broadband transformer; 12 turns of 1 iwisted pair of No. 24 enam. wire 6 turns per inch. not critical) wound on Amidon

Some care must be taken in mounting Q13. The power amplifier board is drilled out to allow the flange for heat-sink mounting to pass through the board. The transistor leads, which are short straps, then lie flush with the top surface of the board and the flange lies bencath the board. The leads are soldered to the board as close to the body of the transistor as possible and should not be bent. The heat sink consists of a $1 / 16$-inch thick rectangular piece of sheet aluminum cut to the same size as the circuit board. The transistor requires two bolts for mounting to the heat sink. The use of silicone grease to improve thermal conductivity between the transistor and heat sink is recommended. CR2, a stud-mounting type diode, also mounts on the heat sink near the power transistor since good thermal contact with Q13 is necessary for CR2 to provide thermal compensation for the output transistor. Note also that in the driver stage, Q12 requires a heat sink.

The chassis is formod from a piece of shect aluminum bent into a U-shape. The front panel measures $9-1 / 2$ by 4 inches and the chassis is 7 inches deep. Except for the VFO enciosure, the circuit bnards mount vertically on the chassis by means of spade bolts. An aluminum cover is formed to fit over the chassis. A Jackson Bros. No. 4103 dial mechanism is used for VFO tuning. Any similar mechanism with a slow tuning rate should be satisfactory. Front-panel controls are the micro-phone-gain control, VFO tuning, mode switch, and on-off switch. The key jack, if-output connector, and dc-power connector are mounted at the rear of the chassis. The transmit-receive relay socket mounts inside the chassis and the spare set of contacts are brought out to a connector at the back of the unit.

SINGLE-SIDEBAND TRANSMISSION

FT-61-301 toroid cose.
T2 - 4:1 broadband transformer; 6 turns of 2 iwisted pairs of No. 26 enam. wire (6 turns per inch) wound on Amidon FT-61-301 toroid core. In twisting the wires, a single turn consists of a full twist of all wires. The iwo wires at the ends of each pair are soldered together and each pair then comprises one winding of the transformer.
T3 - 4:1 broadband transformer: 4 turns of 4 twisted pairs of No. 26 enam. wire (6 turns per inch) wound on Amidon FT-61-301 toroid core. A single turn consists of a full twist of all wires. The two wires at the ends of each pair are soldered together, the ends of iwo pairs are soldered together, resulting in two 4-conducior wires. Each 4-conduczor wire comprises one winding of the transformer.
U1 - 741 operational amplifier (Motorola MC1741, National Semiconductor LM741, Fairchild $\mu A 741$ or equiv.), 14-pin DIP used here.
U2 - Balanced modulator IC IMotorola MC1496L or National Semiconductor LM1496L, Signetics 5596). 14-pin DIP used here.

Y1 - 8999.0-kHz crystal (KVG type XF 903).
Y2 - 8998.5-kHz crystal (KVG type XF 901).
Z1 - Double balanced mixer, model SRA-1 manufacrured by Mini-Circuits Laboratory, 2913 Quentin Rd., Brooklyn, NY 11229.

Initial Adjustments and Operation

A well-calibrated general-coverage receiver, a VOM, and a VTVM with an rf probe (or better yet, a good rf oscilloscope) are required for making the initial adjustments on the transmitter. Connect a 12 -volt dc supply to the transmitter (except the final power amplifjer stage). With power turned on, check to see that the unit draws no more than about 200 mA from the supply. Any reading well in excess of this value indicatcs a wiring error or defective components.

Tune the receiver to 9 MHz to locate the heterodyne oscillator signal. A few feet of hookup wire placed near the circuit board should suffice for a receiving antenna. Switching the mode switch to change the oscillator crystals Y t and Y 2 should shift the oscillator frequency accordingly. Adjust C3 for maximum signal at the collector of Q3 as displayed on an oscilloscope or VTVM with if probe.

Plug a key into the key jack and set cw drive control, R2, for minimum resisiance. Place the mode switch in the cw position. Depress the key while monitoring the collector of Q9 for rf output with the oscilloscope or rf probe. Slowly increase the cw drive level until a $9-\mathrm{MHz}$ signal appears at Q9. Adjust C 4 for maximum signal at the collector. Tuning Cl allows a small variation of the cw frequency. Adjustment is not critical but it should be tuned to place the cw signa! inside the passband of FL1. If the signal is too close to the edge of the passband, keying may cause the filter to "ring," producing key clicks at the output.

Tune the receiver between 5.0 and 5.5 MHz and vary the VFO tuning capacitor, C6, until the VFO signal is located. Slug-tuned coil L7, which reso-
nates with C6, should then be adjusted so that an entire sweep of C6 covers the range of 5.0 to 5.5 MHz or slightly greater. While monitoring the collector of Q 8 with the of probe or the oscilloscope, adjust C7 for maximum signal.

At this point, an 80 or 20 -meter signal should be generated when the transmitter is keyed. By tuning the monitor recciver to the appropriate amateur band, it should be possible to hear this signal. Tunc C6 to place the signal in the center of the amateur band. If an oscilloscope is being used, adjust CII for maximum signal at the base of Q11. Be careful not to peak this capacitor to a harmonic of the 80 - or 20 -meter signal or to another undesired frequency output from the mixer. If the 20 -meter system is being tested, it is also necessary to peak the band-pass filter at the balanced mixer output for optimum frequency response. With the VFO set to the center of the 20 -meter band, adjust C9 for maximum response, using an insulated tool so as not to introduce stray capacitance which could upset the fitter tuning. Place the oscilloscope probe at the basc of Q12. Next tune C13 for maximum signal amplitude. If an oscilloscope is not available, the above steps may be performed by listening to the radiated signal in a general-coverage receiver and using the receiver's S meter as a peak indicator.

The carrier null pot, R5, is adjusted to minimize any $5-\mathrm{MHz}$ VFO signal appearing at the output of the balanced mixer. First disable the $9-\mathrm{MHz}$ heterodyne oscillator by removing Y1 or Y2 from the sncket. With the nesillncrone attached to the mixer output at pin 6 of the MCI 496 L , adjust RS for minimum $5-\mathrm{MHz}$ output. If an oscilloscope is not available RS should be set to the middle of its range. Good suppression of the $5-\mathrm{MHz}$ signal will result at the transmitter output in conjunction with the filtering in the following stages. It is difficult to perform this step with just a receiver alone since direct pickup from the VFO will obscure any null indication. Y1 or Y2 should be replaced in its socket.

A check should be made with the VOM or VTVM to assure that the de voltage drop across R6 is approximately 4.4 volls. This indicates proper quiescent collector current at Q12 for linear operation.

Connect the power amplifier stage to the 12-volk supply but do not koy the transmitter. R9 should temporarily be set at maximum resistance first. The VOM is temporarily inserted in series with the collector lead of Q13 to measure collector curent. R9 should slowly be decreased to the point where the static collector current (no if signal input) reaches 35 mA . The VOM is removed, the collector lead reconnected, and R9 left at this setting. If a silicon diode other than an HEP RO130 is used for CR2, it may be necessary to change the values of R8 and R9 to achieve the proper quiescent collector current. Some experimentation will determine the correct values, keeping in mind the resistor power dissipation requirements.

Finally, connect a $50-\mathrm{hm}$ dummy load to the antenna connector and a high-impedance micro-

Fig. 3 - View of the inside of the transmitter. The two main circuit boards are mounted vertically on the left side. Note the use of shields (made from double-clad circuir board) to provide isolation between stages on the boards. The VFO, the third circuit board assembly from the left, is housed in a four-sided enclosure fashioned from four pieces of circuit board. The power output amplifier board mounts over the shest aluminum heat sink which is also mounted vertically on the chassis. Transmitreceive relay $K 1$ is just visible behind the VFO.
phone to the microphone jack. The gain control is adjusted in the same manner as with any conventional ssb transmitter. The setting is best determined with the aid of a Monitorscope at the transmitter output. R1 should never be advanced beyond the point where of peak flattening begins. A slight readjustment of C2 may be necessary to center the ssb signal properly in the passband of the crystal filter. Improper centering will impair the audio frequency response. This adjustment can be made by listening to oneself in a receiver and tweaking C2 for proper response. Note that the ssb frequency will shift, too, as the setting of C2 is changed. The audio should be clean and free from distortion.

In cw operation, the cw drive control R2 should be brought up to the point where no further increase in rf output results. The break-in delay circuit provides semibreak-in operation for cw and push-to-talk operation for ssb. The setting of time delay adjustment R3 determines the length of time the transmit-recejve relay KI remains closed after the key is released. Adjust R3 for a delay time suitable for the keying speed being used. The spare set of contacts of K1 may be used for muting a receiver during transmit or for switching an outboard power amplifier. The transmitter should never be operated without a proper load at the output.

A set of templates for the four circuit boards is available from ARRL Headquarters, Newington, Conn. 06111 for $\$ 1$.

A SOLID-STATE TRANSCEIVER FOR 160 METERS

Transcciver is suitable for QRP opera tion from batteries or as a main frame for fixed-station use. Its circuitry is simple enough to permit easy duplication (or substitution of components where necessary) by proficient builders with only limited experience in solid-state design.

Some 160 Notes

Technically speaking, 160 meters is interesting since it is the only amateur band in the mf range. Phone operation is similar to that encountered on the hf bands but the use of cw is somewhat different. Split-frequency operation is common and one should avoid transmitting within the DX "window" from 1825 to 1830 kllz when the band is open. While cw operation is possible with a Lransceiver, the above precaution should be noted. Because of the LORAN (Long Range Navigation) service, the band is split up according to gecgraphical area and one should observe the frequency range and power limit for his region (See Chapter 1).

LORAN, proximity to the broadcast band, QRN, and interference from TV sets often imposes severe requirements on receiving devices for this band. While litte can be done with sky-wave signals, experimentation with various antenna systems can reduce local interference to a great extent. Proximity and orientation of the antenna to the interfering source are the prime factors here. Because of latter consideration, separate transmitting and receiving antennas may be necessary. Hf-band dipoles, even though they may be
electrically short on 160 meters, can still make excellent receiving antennas if a balancing network is used. The balancing transformer (T1) shown in Fig. 1 can be used for both transmitting and recciving, thus reducing ground-loop currents. A simple loading coil in one side of the feed tine can be used to tune out the antenna capacitive reactance.

Adequate frontend selectivity is also necessary to assure that unwanted rf energy is rejected before it reaches the active elements in the receiving section of the transceiver. The preselector shown in Fig. 1 may be built from readily available parts Some experimentation with the number of turns on L1 in receiveonly applications may be necessary. Use the minimum number of turns that give sufficient sensitivity without signs of overloading. This preselector could also be used with existing receivers with inadequate front-end selectivity on 160.

Circuit Details

The circutt diagram of the transceiver is shown in Fig. 1 and Figs. 3 through 8 incl. The block diagram and switching lugic of the transceiver are shown in Fig. 2. This arrangement climinates the need for relays and pruvides excellent isolation around the $9-\mathrm{MHz}$ filter buard. The full capabilities of a good receiving filter may be reduced considerably by undesirable stray paths. Rf energy rejected by the tilter gues around it through the unwanted paths. In the receive position, signals from 1.8 to 2 MHz are mixed with the LO (10.8 to 11 MHz) to give a $9-\mathrm{MHz}$ i-f. Greater bandspread can be achieved by using a smaller value for Cl 0 and increasing $L 5$ or C11. This would reduce the band coverage, however. In the transmit position,

Fig. 1 - Schematic diagram of the if amplifier and preselector. In this and succeeding diagrams, component designations not mentioned in the captions are for text and layout references only. Unless othenwise noted, resistors are $1 / 4$ - or $1 / 2$-watt composition and capacitors are disk ceramic.

C7 - Air variable, 365 pF per section (J.W. Miller 2112 or equiv.).
the same mixer is used but rf energy from the balanced modulator and filter buard at $9-\mathrm{MHz}$ is converted to the $1.8-\mathrm{MHz}$ band.

Because of the relationship between the LO and the $i-f$, a sideband inversion accurs. This means that the carrier oscillator crystals will be opposite that usually marked on the filter package. Cw operation is in the usb mode and both carrier-

L1. L4 - 2 turns of plastic-coated wire over cold ends of L2 and L3 respectively.
L2, L3 - Modified Ferri-Tenna Coil (Radia Shack No. 270-1430). Remove coupling coil and all but 35 turns of fine wire on core (see text).
RFC1 -2.5 mH rf choke pc-board mounting type (Millen J302-2500).
T1 - 40 turns over Amidon T-68-3 toroid (gray core) of bifilar-wound No. 26 enamel wire.
oscillator and VFO offset is used. The carrieroscillator offset pulls the crystal frequency into the passband of the filter slightly, while the VFO offset can be adjusted for the desired tone on receiving. Keying is accomplished by unbalancing the 1496 IC balanced modulator. Waveshape is determined by the time constant of R62 and C59 in Fig. 7.

Fig. 2 - Block diagram \& switching logic of the transceiver.

Fig. 3 - Schematic diagram of LO and mixer module. If greater bandspread is desired, a smaller value capacitor could be substituted for C 10 with C11 increased by an appropriate amount to set the low-frequency end of the tuning range to 10.8 MHz .
C10 - Air variable, 104 pF maximum (J.W. Miller 2101 or equiv.l.
$\mathrm{L5}-1.1-\mu \mathrm{H}$ slug tuned (Millen 69054-0.91 or equiv.).
RFC2 - Three Amidon ferrite beads at drain terminal of 03. Install on 1/2-inch length of No. 24 bare wire,
RFC3, RFC4, RFC5 - Miniature $50-\mu \mathrm{H}$ choke (Millen Co. J300-50).
T2. T3 - 25 turns No. 28 (trifilar wound) on Amidon T-50-3 toroid core.

Fig. 4 - The 9-MHz filter board. Physical leyout should keep input and output leads separated.
C22. C25 - 3- to 35- pF mica compression trimmer.
RFC6 - Miniature $100-\mu \mathrm{H}$ choke (Millen Co. J300-100).
FL1 - 9-MHz crystal filter, 2.1-kHz bandwidth (KVG XF-9B Spectrum International, Box 87. Topsfield, MA 01983).

The low-pass filter shown in Fig. 8 is used to eliminate unwanted rf energy (LO , carrier oscillator, and other products) above 2 MHz before going to the buffer transistor QII. While various transistors are suitable for cw service in the hf range, many will not perform well as linear power amplifiers. The variation in transistor current gain over a large dynamic range is too great. This results in distortion or imposes severc biasing problems. Generally speaking, uhf types are the best ones to use. The amplifier used with the transceiver is capable of approximaticly one-watt output with good IMD characteristics.

Construction

A modular-type layout was used that allows the builder to pretest various sections of the transceiver before installation in the cabinet. Singlcsided pe board or Vectorbord construction should be avoided since unwanted capacitive and inductive coupling may cause spurious oscillations. Use double-sided pc board, or, as in the case of the unit shown, isolated-pad construction. The latter is highly recommended. The individual boards arc then mounted in the cabinet with small "L" brackets or in the case of the VFO module, with screws.

Fig. 5 - Carrjer oscillator board.
C30, C33 - Miniature pc-mount air variable (Johnson 189-506-5, Allied Electronics 828-1219).
L6-15 $\mu \mathrm{H}$ nominal (Miller 4506 or equiv.). RFC7 $-500-\mu \mathrm{H}$ rf choke (Millen J300-500).
Y1, Y2 - KVG matching crystals for FL1.

Where interconnecting shielded cables are used (such as the connections on S1 and other rf leads), small coaxial cable is idcal. RG-174/U was used in the unit shown and it is good practice to tie the ground leads to one point where two or more cables come together. An example would be the switch connections at S1. Regular hook-up wire can be used for the power-supply ieads going to each buard.

While the general layout should not be critical, the one slown in the photugraph is suggested. The cabinet is a Ten-Tec MW-10 and the dial assembly can be obtained from Allied/Radio Shack. The rootary switches for S1 and S2 are surplus miniature ty pes with glass-epoxy insulation. The size of
the various components available will determine the final layout but care should be taken to keep alf leads as short as possible.

It is a good idea to start with the receiver portion of the transceiver (the rf amplifier and preselector is the simplest module to build). Carefully unwind (and save) the wire from the two ferrite-loop antenna coils.

Wind a one-layer coil (35 turns) back on each form and solder it in place. Paint each coil with Q dope to keep the turns from unwinding. Mount the completed coils (L2 and L3) using heavy wire leads on the $365-\mathrm{pF}$ capacitor as shown in the photograph. L1 and L4 consist of 2 turns of hook up wire wound on the cold end of L2 and L3 respectively. Next, lay out the circuit board for the

Fig. 6 - Receiver board. This includes the i-f amplifier, product detector, and audio amplisier. Audio power is sufficient for high-impedance earphones.
L7 - Slug-tuned inductor, $1.6 \mu \mathrm{H}$ nominal. 13 turns No. 26 enam. on $1 / 4$-inch form.

Fig. 7 - Schematic diagram of the speech amplifier and the balanced modulator boards. C62 - Mica Compression trimmer, 50 pF. R52, R68-Control, pc-mounting type. RFC8 - 3 ferrite beads over microphone-input lead.
rf amplificr, making it small enough to mount on the back of the capacitor with spacers and screws. Layout for this board (and the remaining ones) will be successful if the following rules are observed. First, keep all component leads as short as possible (especially IC leads) and second, lay out the stages in a straight line as shown in the photograph. Also assure that input and output leads are kept as far away from each other as is practical. If the isolated-pad construction technique is used, a drill press (bench style) is handy. However, cither a hand-held electric drill or a crank-type hand drill may be used. Once the preselector module is completed, perforns the aligmment procedure before going on to the next board. Complete and test the remaining boards before mounting them permanently in the cabinet.

Alignment

While the transceiver could be tested after it is completed, the procedure outlined here will assure each module is working before the next one is mounted in the cabinet. Necessary test equipment includes a signal source and receiver covering 1.8 to 2.0 MHz , and 9 to 11 MHz . The receiver should be capable of receiving ssb signals. Other suggested equipment would be a VTVM, a monitor scope which can be used with the receiver to check modulation, and a frequency counter.

The preselector module should be aligned first, Connect a signal source to the general-coverage receiver and tune in the signal. Next, connect the preselector between the generator and the recciver and adjust the slugs until the signals peak. For correct alignment, Cl should be fully meshed at the low end (1.8 MHz) of the band. The VHO should be adjusted by setting its range for 10.8 to 11 MHz as indicated on either a general-coverage recciver or a frequency counter. The preselector and LO/mixer modules may be mounted inside the cabinet and interconnected. See blocks (a) and (b) in Fig. 2. The external receiver should be connected to the output of T2. When power is applied to the transcciver and S1 is set for RCV, signals and noise should be heard at 9 MHz as the VFO and preselector are tuned. The $9-\mathrm{MHz}$ filter board should be installed and the receiver connection moved from T2 to the output of the filter. See block (d) in Fig. 2. Pealk C24 and C25 for maximum signal. The carrier-oscillator board may be checked by listening with the general-coverage receiver to the two crystal frequencies (8.999 and 9.001). Mount the carrier-oscillator and receiver boards, connect a headphone set and adjust L7 for maximum recciver sensitivity. This completes the alignment of the receiver. See block (c) in Fig. 2 for details.

Refer to block (h) in Fig. 2 and mount the speech amplificr. Install the appropriate power, input and output connections. Couple a headset to the output of this circuit through a $0.5-\mu{ }^{\circ}$ capacitor and speak into the microphone. Speech should be heard. Install and connect the balancedmodulator board. Refer to block (g) in Fig. 2. Ssb signals should be detected at the output terminal of T3. Adjust R68 and C62 for minimum carrier. Interconnect the buffer and PA modules, and connect a dummy load (with an output indicator) to the antenna jack. A small pilot light (No. 47) will suffice if the PA shown in Fig 8 is used. R73 should be set for minimum collector current. A short whistle into the microphone should produce

an output signal. Clear-sounding ssb signals should be heard when listening to the general-coverage receiver. This completes the ssb alignment.

Place a jumper from either the USB or LSB position of S2A to the CW position of S2A. Set the general-coverage receiver to the USB position. Tum the transceiver to the CW position and tune until a readable ssb signal is heard. Key the transceiver and depending upon the settings of CI2 and C30, a tone should be heard. C30 will determine the amount of output. Adjust C12 until the desired sidetone is obtained. This will require retuning the receiver for readable usb after each adjustment. When the adjustment is correct, a proper-sounding ssb signal can be heard in the CW position and the desired note will also be heard when the transmitter is keyed. Remove the jumper from S2A. This completes alignment of the transceiver.

Fig. 8 - Schematic diagram of buffer and PA. If a broad-band amplifier or antenna circuit is to follow T5, a low-pass filter may be necessary to reduce unwanted harmonic energy.
L8 - $27 \mu \mathrm{H}, 66$ turns of No. 30 enam. wire on Amidon T-50-3 (gray) toroid core.
L9 - $37 \mu \mathrm{H}, 76$ turns No. 30 enam. on T-50-3 core.
R73 - Control , pc-mounting type.
RFC $-2.7 \mu \mathrm{H}$ minimum. Slip a ferrite bead over each end of a small rf choke (Millen 34300).
T4 - Stack two Amidon Husky (7 mm) beads and wind a 5 -turn primary and a 3 turn secondary through both cores. Use No. 26 enam. wire. Make a second transformer similar to the first one. Parallel the primaries, and series connect the secondaries observing the polarities shown on the diagram.
T5 - 24 turns No. 26 enam. wire (trifilar wound) on Amidon T-68-3 core.

Chapłer 14

Frequency Modulation and Repeaters

Methods of radiotelphone communication by frequency modulation were developed in the 1930s by Major Edwin Armstrong in an attempt to reduce the problems of static and noise associated with recciving a-m broadcast uansmissions. The prinuary advantage of fm , the ability to produce a high signal-to-noise ratio when receiving a signal of only moderate strength, has made for the mode chosen for mobile communications services and quality broadcasting. The disadvantages, the wide bandwidth required and the poor results obtained when an fm signal is propagated via the ionosphere (because of phase distortion), has limited the use of frequency modulation to the 10 -aneter band and the vhf/uhf section of the spectrum.

Fim has some impressive advantages for vhf operation, especially when compared to a-m. With fm the modulation process takes place in a low-level stage. The modulation equipment required is the same, regardless of transmitter power. The signal may be frequency multiplied after modulation, and the PA stage can be operated Class C for best efficiency, as the "final" need not be linear.

In recent years there has been increasing use of fim by amateurs operating around 29.6 MHz in the 10 -metcr band. The vhf spectrum now in popular use includes 52 to $53 \mathrm{MHz}, 146$ to $147.5 \mathrm{MHz}, 222$ to 225 MHIz , and 440 to 450 MH .

FREQUENCY AND PHASE MODULATION

It is possible to convey intelligence by modulating any property of a carricz, including its frequency and phase. When the frequency of the carrier is varied in accordance with the variations in a modulating signal, the resuft is frequency modulation (fm). Similarly, varying the phase of the carrier current is called phase modulation (pm).

Frequency and phase modulation are not independent, since the frequency cunnot be varied without also varying the phase, and vice versa.

The effectiveness of fm and pm for communication purposes depends almost entircly on the receiving methods. If the receiver will respond to frequency and phase changes but is insensitive to amplitude changes, it will discriminate against most forms of noise, particularly impulse noise such as is set up by ignition systems and other sparking devices. Special methods of detection are required to accomplish this result.

Modulation methods for fm and pm are simple and require practically no audio power. There is also the advantuge that, since there is no amplitude variation in the signal, interference to broadcast reception resulting from rectification of the transmitted signal in the audio circuits of the bc receiver is substantially eliminated.

Frequency Modulation

Fig. $14-2$ is a representation of frequency modulation. When a modulating signal is applied, the carricr frequency is increased during one half cycle of the modulating signal and decreased during the half cycle of opposite polarity. This is indicated in the drawing by the fact that the if cycles occupy less time (higher frequency) when the modulating signal is positive, and more time (lower frequency) when the modulating signal is negative. The change in the carrier frequency (frequency deviation) is proportional to the instantancous amplitude of the modulating signal, so the deviation is small when the instantancous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its peak, either positive or negative.

As shown by the drawing, the amplitude of the signal does not change during modulation.

Phase Modulation

If the phase of the current in a circuit is changed there is in instantaneous frequency change during the time that the phase is being shifted. The amount of frequency change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properly operating

Fig. 14-1 - The use of vhf mobile rigs in conjuncrion with repeaters has improved the communications of many amateur emergency groups. Here F2BO relays traffic being received via 2-meter fm on a 40-meter ssb link.

(B)

pm system the amount of phase shift is proportional to the instantancous amplitude of the modulating signal. The sapidity of the phase shift is directly proportional to the frequency of the modulating signal. Consequently, the frequency deviation in pm is proportional to both the amplitude and frequency of the modulating signal. The latter represents the outstanding difference between fmi and pm, since in fm the frequency deviation is proportional only to the amplitude of the modulating signal.

FM and PM Sidebands

The sidebands set up by fm and pm differ from those resulting from $\mathrm{a}-\mathrm{m}$ in that they occur at integral multiples of the modulating frequency on either side of the carrier rather than, as in a-m, consisting of a single set of side frequencies for each modulating frequency. An fm or pm signal therefore inherently occupies a wider channel than $\mathrm{a}-\mathrm{m}$.

The number of "extra" sidebands that occur in fm and pm depends on the rclationship between the modulating frequency and the frequency deviation. The ratio between the frequency deviation, in Hertz, and the modulating frequency, also in Hertz, is called the modulating index. That is,

Modulation index $=\frac{\text { Carrier frequency deviation }}{\text { Modulating frequency }}$

Example: The maximum frequency deviation in an f.m. transmitter is 3000 Hz . either side of the carrier frequency. The modulation index when the modulating frequency is 1000 Hz. is

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

At the same deviation with $3000-\mathrm{H}_{2}$. modula. tion the index would be 1 ; at 100 Hz . it would be 30 , and so on.

In pm the modulation index is constant regardless of the modulating frequency; in fm it varies with the modulating frequency, as shown in the above example. In an fin system the ratio of the maximum carricr-frequency deviation to the highest modulating frequency used is called the deviation ratio.

Fig. 14-2 - Graphical representation of frequency modulation. In the unmodulated carrier at A, each if cycle occupies the same amount of time. When the modulating signal, B, is applied, the radio frequency is increased and decreased according to the amplitude and polarity of the modulating signal.

Fig. 14-3 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulation; the first sideband (actually a pair, one above and one below the carrier) is displaced from the carrier by an amount equal to the modulating frequency, the second is twice the modulating frequency away from the carrier, and so on. For example, if the modulating frequency is 2000 Hz and the carrier frequency is $29,500 \mathrm{kHz}$, the first sideband pair is at $29,498 \mathrm{kHz}$ and $29,502 \mathrm{kHz}$, the second pair is at $29,496 \mathrm{kHz}$ and $29,504 \mathrm{kHz}$, the third at $29,494 \mathrm{kHz}$ and $29,506 \mathrm{kHz}$, etc. The amplitudes of these sidebands depend on the modulation index, not on the frequency deviation.

Note that as shown by Fig. 14-3, the carrier strength varies with the modulation index. (In amplitude modulation the carrier strength is constant; only the sideband amplitude varies.) At a modulation index of approximately 2.4 the carrier disappears entirely. It then becomes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In fm and pm the energy that goes into the sidebands is taken from the carrier, the toral power remaining the same regardless of the modulation index.

Since there is no change in amplitude with modulation, an fm or pm signal can be amplified without distortion by an ordinary Class C amplifier. The modulation can take place in a very bw-level stage and the signal can then be amplified by either frequency multipliers or straight-through amplifiers.

Fig. 14-3 - How the amplitude of the pairs of sidebands varies with the modulation index in an fm or pm signal. If the curves were extended for greater values of modulation index it would be seen that the carrier amplitude goes through zero at several points. The same statement also applies to the sidebands.

If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. For example, if modulation is applied on 3.5 MHz and the final output is on 28 MHz , the total frequency multiplication is 8 times, so if the frequency deviation is 500 Hz at 3.5 MHz it will be 4000 Hz at 28 MHz . Frequency multiplication offers a means for obtaining practically any desired amount of frequency deviation, whether or not the modulator itself is capable of giving that much deviation without distortion.

Bandwidth

FCC amateur regulations (Part 97.61) limit the bandwidth of F3 (frequency and phase modulation) to that of an $a-m$ transmission having the same audio characteristics below 29.0 MHz and in the 50.1 - to $52.5-\mathrm{MHz}$ frequency segment. Greater bandwidths are allowed from 29.0 to 29.7 MHz and above 52.5 MHz .

If the modulation index (with single-tonc modulation) does not excecd 0.6 or 0.7 , the most important extra sideband, the second, will be at least 20 dB below the unmodulated carrier level, and this should represent an effective channel width about equivalent to that of an a-m signal. In the case of speech, a somewhat higher modulation index can be used. This is because the energy distribution in a complex wave is such that the modulation index for any one frequency component is reduced as compared to the index with a sine wave having the same peak amplitude as the voice wave.

The chief advantage of fm or pm for frequencies below 30 MHz is that it eliminates or reduces certain types of interference to broadcast reception. Also, the modulating equipment is relatively simple and inexpensive. However, assuming the same unmodulated carrier power in all cases, narrow-band fm or pm is not as effective as $a-m$ with the methods of reception used by many amateurs. To obtain the benefits of the fm mode, a good fm receiver is required. As shown in Fig. $14-3$, at an index of 0.6 the amplitude of the first sideband is about 25 percent of the unmodulatedcarrier amplitude; this compares with a sidebard amplitude of 50 percent in the case of a 100 percent modulated a-m transmitter. When copied on an a-m receiver, a narrow-band fm or pm transmitter is about equivalent to a 100-percent modulated a-m transmitter operating at one-fourth the carrier power. On a suitable (fm) receiver, fm is as good or better than a-m, watt for watt.

Three deviation amounts are now standard practice: 15,5 and 2.5 kHz , which in the current vernacular of fm users, are known as wide band, narrow band, and sliver band, respectively. (See box above.) The $2.5-3 \mathrm{kHz}$ deviation (called nbfm by OTs) was popular for a time on the vhf bands and 10 meters after World War II. Deviation figures are given for the frequency swing in one direction.

The rule-of-thumb for determination of bandwidth requirements for an fm system is:

$$
2\{\triangle F\rangle+F_{\mathrm{Amax}}
$$

where ΔF is one half of the total frequency deviation, and $F_{\text {Amax }}$ is the maximum audio frequency (3 kHz for communications purposes). Thus, for narrow-band fm , the bandwidth equals (2) $5+3$ or 13 kHz . Wide-band systems need a $33-\mathrm{kHz}$ receiver bandwidth.

Comparison of FM and PM

Frequency modulation cannot be applied to an amplifier stage, but phase modulation can; pm is therefore readily adaptable to transmitters employing oscillators of high stability such as the crystal-controlled type. The amount of phase shift that can be obtained with good linearity is such that the maximum practicable modulation index is about 0.5 . Because the phase shift is proportional to the modulating frequency, this index can be used only at the highest frequency present in the modulating signal, assuming that asl frequencies will at one time or another have equal amplitudes. Taking 3000 Hz as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 Hz , the frequency response of the specechamplifier system above 3000 Hz must be sharply attenuated, to prevent excess splatter. (See Fig. 14-4.) Also, if the "tinny" quality of pm as reccived on an fm receiver is to be avoided, the pm must be changed to fm , in which the modulation index decreases in inverse proportion to the modulating frequency. This requires shaping the speech-amplifier frequency-response curve in such a way that the output voltage is inversely proportional to frequency over most of the voice range. When this is done the maximum modulation index can only be used to some relatively low audio frequency, perhaps 300 to 400 Hz in voice transmission, and must decrease in proportion to the increase in frequency. The result is that the maximum linear frequency deviation is only one or two hundred Hz , when pm is changed to fm . To increase the deviation for narrow band requires a frequency multiplication of 8 times or more.

Fig. 14-4 - Outout frequency spectrum of a narrow-band im transmitter modulated by a $1-\mathrm{kHz}$ tone.

It is relatively easy to secure a fairly large frequency deviation when a self-controlled oscillator is frequency-modulated directly. (True frequency modulation of a crystal-controlled oscillator results in only very small deviations and so requires
a great deal of frequency multiplication.) The chief problem is to maintain a satisfactory degree of carrier stability, since the greater the inherent stability of the oscillator the more difficult it is to secure a wide frequency swing with linearity.

METHODS OF FREQUENCY MODULATION

Direct FM

A simple and satisfactory device for producing fm in the amateur transmitter is the reactance modulator. This is a vacuum tube or transistor connected to the rf tank circuit of an oscillator in such a way as to act as a variable inductance or capacitance.

Fig. $14-5 \mathrm{~A}$ is a representative circuit. Gate 1 of the modulator MOSFET is connected across the oscillator tank circuit, C1L1, through resistor R1 and blocking capacitor C 2 . C3 represents the input capacitance of the modulator transistor. The resistance of R1 is made large compared to the reactance of C3, so the if current through R1C3 will be practically in phase with the rf voltage appearing at the terminals of the tank circuit.

REACTANCE MODULATOR

VARACTOR REACTANCE MODULATOR

Fig. 14.5 - Reactance modulators using (A) a high-eransconductance MOSFET and (B) a varactor diode.

However, the voltage across C3 will lag the current by 90 degrees. The rf current in the drain circuit of the modulator will be in phase with the grid voltage, and consequently is 90 degrees behind the current through C3, or 90 degrees behind the of tank voltage. This lagging current is drawn through the oscillator tank, giving the same effect as though an inductance were connected across the tank. The frequency increases in proportion to the amplitude of the lagging plate current of the modulator. The audio voltage, introduced through a radio-frequency choke, varies the transconductance of the transistor and thereby varies the rf drain current.

The modulated oscillator usually is operated on a relatively low frequency, so that a high order of carrier stability can be secured. Frequency multipliers are used to raise the frequency to the final frequency desired.

A reactance modulator can be connected to a crystal oscillator as well as to the self-controlled type as shown in Fig. 14-5B. However, the resulting signal can be more phase-modulated than it is frequency-modulated, for the reason that the frequency deviation that can be secured by varying the frequency of a crystal oscillator is quite small.

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the transconductance of the modulator transistor. It increases when R1 is made smaller in comparison with C3. It also increases with an increase in L/C ratio in the oscillator tank circuit. However, for highest carrier stability it is desirable to use the largest tank capacitance that will permit the desired deviation to be secured while keeping within the limits of linear operation.

A change in any of the voltages on the modulator transistor will cause a change in of drain current, and consequently a frequency change. Therefore it is advisable to use a regulated power supply for both modulator and oscillator.

Indirect FM

The same type of reactance-tube circuit that is used to vary the tuning of the oscillator tank in fm can be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for pm . Hence the modulator circuit of Fig. 14-5A or 14-6A can be used for pm if the reactance transistor or tube works on an amplifier tank instead of directly on a self-controlled oscillator. If audio shaping is used in the speech amplifier, as described above, fm instead of pm will be generated by the phase modulator.

The phase shift that occurs when a circuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the

Fig. 14-6 - (A) The phase-shifter type of phase modulator. (B) Pre-emphasis and (C) de-emphasis circuits.
Q, the smaller the amount of detuning needed to secure a given number of degrees of phase shift. If the Q is at least 10 , the relationship between phase shift and detuning (in kHz either side of the sesonant frequency) will be substantially linear over a phase-shift range of about 25 degrees. From the standpoint of modulator sensitivity, the Q of the tuned circuit on which the modulator operates should be as thigh as possible. On the other hand, the effective Q of the circuit will not be very high if the amplifier is detivering power to a load since the load resistance reduces the Q. There must therefore be a compromise between modulator sensitivity and if power output from the modulated amplifier. An optimum figure for Q appears to be about 20 ; this allows reasonable loading of the modulated amplifies and the necessary tuning variation can be secured from a reactance modulator without difficulty. It is advisable to nodulate at a low power level.

Reactance modulation of an amplifier stage usually results in simultancous amplitude modulation because the modulated stage is detuned from resonance as the phase is shifted. This must be climinated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages - that is, amplificrs that arc operated Class \mathbf{C} and driven hard enough so that variations in the amplitude of the input excitation produce no appreciable variations in the output amplitude.

For the same type of reactance modulator, the speech-amplifier gain required is the same for pm as for fm . However, as pointed out earlier, the fact
that the actual frequency deviation increases with the modulating audio Crequency in pm makes it necescary to cut off the frequencies above about 3000 Hz before modulation takes place. If this is not done, unnecessary sidebands will be generated at frequencies considerably away from the carricr.

SPEECH PROCESSING FOR FM

The speech amplifier preceding the modulator follows ordinary design, except that no power is taken from it and the af voltage required by the modulator grid usually is small - not more than 10 or 15 volts, even with large modulator tubes, and only a volt or two for transistors. Because of these modest requirements, only a fcw speech stages are needed; a two-stage amplifier consisting of two bipolar transistors, both resistance-coupled, will more than suffice for crystal ceramic or hi-Z dynamic microphones. For more information on speech amplificrs see Chapter 13.

Several forms of speech processing produce worthwhile improvements in fm system performance. It is desirable to limit the peak amplitude of the audio signal applied to an fm or pm modulator, so that the deviation of the fm transmitter will not exceed a preset value. This peak limiting is usually accomplished with a simple audio clipper which is placed between the speech amplifier and modulator. The clipping process produces high-order harmonics which, if allowed to pass through to the modulator stage, would create unwanted sidebands. Therefore, an audio low-pass filter with a cut-off frequency between 2.5 and 3 kHz is needed at the output of the clipper. Excess clipping can cause severe distortion of the voice signal. An audio processor consisting of a compressor and a clipper, such as described in Chapter 13, has been found to produce audio with a better sound (i.e., less distortion) than a clipper alone.

To reduce the amount of noise in some fm communications systems, an audio shaping network called pre-emphasis is added at the transmitter to proportionally attenuate the lower audio frequencies, giving an even spread to the energy in the audio band. This results in an fm signal of nearly constant energy distribution. The reverse is done at the receiver, called de-mphasis, to restore the audio to its original relative proportions. Sample circuits are shown in Fig. 14-6.

FM EXCITERS

Fin exciters and transmitters take two general fomms. One, shown at Fig. 14-7A, consists of a reactance modulator which shifts the frequency of an oscillator to generate an fm signal directly. Successive multiplier stages provide output on the desired frequency, which is amplified by a PA stage. This system has a disadvantage in that, if the oscillator is free running, it is difficult to achicye sufficient stability for vhf use. If a crystal-controlled oscillator is employed, unless the amount that the crystal frequency is changed is kept small, it is difficult to achieve equal amounts of frequency swing.

(A)

Fig. 14-7 - Block diagrams of typical fmexcitars.

The indirect method of generating fin shown in Fig. 14-7B is currently popular. Shaped audio is applied to a phase modulator to generate fm. As the amount of deviation produced is very small, then a large number of multiplier stages is needed to achieve wide-band deviation at the operating frequency. In general, the system shown at A will require a less complex ciscuit than that at B , but the indirect method (B) often produces superior results.

TESTING AN FM TRANSMITTER

Accurate checking of the operation of an fim or pm transmitter requires different methods than the corresponding checks on an $\mathrm{a}-\mathrm{m}$ or ssb set. This is because the common forms of measuring devices either indicate amplitude variations only (a milliammeter, for example), or because their indications are most easily interpreted in terms of amplitude.

The quantitics to be checked in an fm transmitter arc the linearity and irequency deviation and the output frequency, if the unit uses crystal control. The methods of checking differ in detail.

lirequency Checking

The crystal-controlled, channelized operation that is now popular with anateur fm users requires that a transmitter be held close to the desired channel, at least within a few hundred Hertz, even in a wide-band system. Having the transmitter on the proper frequency is particularly important when operating through a repeater. The rigors of mobile and portable operation make a frequency check of a channclized transceiver a good idea at three-month intervals.

Frequency meters generally fall in two categories, the hererodyne type and the digital counter. For arateur use, the vhf/uhf counterparts of the

Fig. 14-8 - (A) Schematic diagram of the deviation meter. Resistors are $1 / 2$ watt composition and capacitors are ceramic, except those with polarity marked, which are ofectrolytic. CR1-CR3, incl. are high-speed silicon switching diodes. R1 is a linear-taper camposition control, and S1. S2 are spst toggle switches. T1 is a miniature audio transformer with a 10,000 -ohm primary and $\mathbf{2 0 , 0 0 0 - o h m}$ center-tapped secondary (Triad A31X). (B) Chart of audio frequencies which will produce a carriar null when the deviation of an fm transmitter is set for the values given.
popular BC-221 frequency meter, the TS-174 and TS-175, will provide safficient accuracy. Frequency counters that will work directly up to 500 MHz and higher are available, but their cost is high. The less expensive low-frequency counters can be employed using a scaler, a device which divides an input frequency by a preset ratio, usually 10 or 100. The Heathkit IB-102 scaler may be used up to 175 MHz , using a counter with a $2-\mathrm{MHz}$ (or more) upper frequency limit. If the counting system does not have a sufficient upper frequency limit to measure the output of an fm transmitter directly, one of the frequency-multiplier stages can be sampled to provide a signal in the range of the measurement device. Alternatively, a crystal-controlled converter feeding an hf receiver which has accurate frequency readout can be employed, if a secondary standard is available to calibrate the receiving system.

Deviation and Deviation Linearity

A simple deviation meter can be assembled following the diagram of Fig. 14-8A. This circuit was designed by K6VKZ. The output of a wide-band receiver discriminator (before any de-emphasis) is fed to two amplificr transistors. The output of the amplifier section is transformer coupled to a pair of rectifier diodes to develop a dc voltage for the meter, M1. There will be an indication on the meter with no signal input because of detected noise, so the accuracy of the instrument will be poor on weak signals.

To calibrate the unit, signals of known deviation will be required. If the meter is to be set to read $0-15 \mathrm{kHz}$, then a $7.5-\mathrm{kHz}$ deviation test signal should be employed. R1 is then adjusted
until M1 reads half scale, $50 \mu \mathrm{~A}$. To check the peak deviation of an incoming signal, close both Sl and S2. Then, read the meter. Opening first one switch and then the other will indicate the amount of positive and negative deviation of the signal, a check of deviation linearity.

Measurement of Deviation Using Bessel Functions

Using a math. relationship known as the Bessel Function it is possible to predict the points at which, with certain audio-input frequencies and predetermined deviation settings, the carricr output of an fm transmitter will disappear completely. Thus, by monitoring the carrics frequency with a receiver, it will be possible by ear to identify the deviation at which the carrier is nulled. A heterodyne signal at either the input or receiver i-f is required so that the carricr will produce a beat note which can easily be identified. Other tones will be produced in the modulation process, so some concentration is required by the operator when making the test. With an audio tone selected from the chart (Fig. 14-8B), advance the deviation control slowly until the first null is heard. If a higher-order null is desired, continue advancing the control further until the second, and then the third, null is heard. Using a carrier null beyond the third is generally not practical.

For example, if a $905.8-\mathrm{Hz}$ tone is used, the transmitter will be set for $5-\mathrm{kHz}_{2}$ deviation when the second null is reached. The second null achieved with a $2805-\mathrm{Hz}$ audio input will set the transmitter deviation at 15.48 kHz . The Besselfunction approach can be used to calibrate a deviation meter, such as the unit shown in Fig. 14-8A

RECEPTION OF FM SIGNALS

Receivers for frn signals differ from others principally in two features - there is no need for linearity preceding detection (it is, in fact. advantageous if amplitude variations in signal and background noise can be "washed out") and the

Fig. 14.9 - Fm detector characteristics. Slope detection, using the sloping side of the receivers selectivity curve to convert fm to $\mathrm{a}-\mathrm{m}$ for subsequent detection.
detector must be capable of converting frequency variations in the incoming signal into amplitude variations.

Frequency-modulated signals can be received after a fashion on any ordinary recciver. The receiver is tuned to put the carrier frequency partway down on one side of the selectivity curve. When the frequency of the signal varies with modulation it swings as indicated in Fig. 14.9, resulting in an a-m output varying between X and Y. This is then rectified as an a-m signal.

With receivers having steep-sided selectivity curves, the method is not very satisfactory because the distortion is quite severe unless the frequency deviation is small, since the frequency deviation and output amplitude is linear over only a small part of the selectivity curve.

The FM Receiver

Block diagrams of an $\mathrm{a}-\mathrm{m} / \mathrm{ssb}$ and an fm receiver are shown in Fig. 14-10. Fundamentally, to achieve a sensitivity of less than one microvolt. an fm receiver requires a gain of several million too much total gain to be accomplished with stability on a single frequency. Thus, the use of the

Fig. 14-10 - Block diagrams of (A) an a-m (B) an fm receiver. Dark borders outline the sections that are different in the fm set.
FM RECEIVER

superheterodyne circuit has become standard practice. Three major differences will be apparent from a comparison of the two block diagrams. The fm receiver employs a widerbandwidth filter, a different detector, and has a limiter stage added between the i-f amplifier and the detector. Othervise the functions, and often the circuits, of the rf, oscillator, mixer and audio stages will be the same in either receiver.

In operation, the noticeable difference between the two recsivers is the effect of noise and interference on an incoming signal. From the time of the first spark transmitters, "rotten QRM" has been a major problem for amateurs. The limiter and discriminator stages in an fm set can eliminate a good deal of impulse noise, except that noise which manages to acquire a frequency-modulation characteristic. Accurate alignment of the receiver
i-f system and phase tuning of the detector are required to achieve good noise suppression. Fm receivers perform in an unusual manner when QRM is present, exhibiting a characteristic known as the capture effect. The loudest signal received, even if it is only two or three times stronger than other stations on the same frequency, will be the only transmission demodulated. By comparison, an S9 $\mathrm{a}-\mathrm{m}$ or cw signal can suffer noticeable interference from an $\mathbf{S} 2$ carrier.

Bandwidth

Most fm sets that use tubes achieve i-f selectivity by using a number of overcoupled transformers. The wide bandwidth and phaseresponse characterisitic needed in the $\mathbf{i}-\mathrm{f}$ system dictate careful design and alignment of all interstage transformers.

F M FILTERS

Manmfacture	Model	Center Frquency	Nonimal sonaluiden	Cllemate Rejection	Impedance (\%)		Indeption Lom	Oysta! Drbontanimeior
					\boldsymbol{t}	Oul		
EVG (1)	XF-9E	9.0 MHz	12 kliz	90 dB	1300	1200	3 dB	XD9-02
KVG (1)	XF-107A	10.7 MH2	12 kHz	90 dB	820	820	3.5 dB	XD107-01
KVG (1)	XF-1078	10.7 MHz	15 kHz	9088	910	910	3.5 dB	XD 107-0\%
KVG (1)	XF-107C	10.7 MHz	30 kHz	90 dB	2000	2000	4.5 dB	XD107-04
Heath Dypamica (2)	-	21.5 MHz	15 kHz	90 d⿴囗	550	550	3 dB	-
Heath Dynamics (2)	-	21.5 MHz	30 kHz	9088	1100	1100	2 dB	-
E.S. (3)	FB-6D	10.9 MH8	1S kHz	80 dB	950	950	2 dB	$A B-1 C$
E.S. (3)	10-MA	10.7 MHz	30 kHz	80 d	2000	2000	4 dB	AB-IC
E.S. (3)	EL-3A	11.5 MKz	36 yHz	70 dB	30	50	4 dB	AL-1
E.S. (3)	DR-9	21.4 MHz	20 kHz	40 dB	730	750	5 dg	AR-50
Clevite (4)	TCF4-12D3CA	455 kHz	12 kHz	80 dB	40\%	2200	6 dB	-
Cerite (4)	TCF4-18G45A	453 kHz	18 kHz	50 dB	40k	2200	6 dg	-
Clovite (4)	TCF6-30DSSA	453 kHz	30 kHz	60 dB	20k	1000	5 dB	-

Fig. 14-11 - A list of fm-bandwidth filters that are available to amateurs. Manufacturer's addresses are as
follows:

1) Spectrum International, P. O. Box 87, Tapsfield, MA 01983.
2) Heath Dynamics, Inc., 6050 N. 52nd Avenue, Glendale, AZ 85301.
3) E. S. Electronic Labs, 301 Augustus, Excelsior Springs, MO 64024.
4) Semiconductor Specialists. Inc., P. O. Box 66125. O'Hare International Airport, Chicago, IL 60666. (Minimum order $\$ 5.00$.)

Fig. 14-12 - Representation of limirer action. Amplitude variations on the signal are removed by the diode action of the grid- and plate-current saruration.

For the average ham, the use of a high-sclectivity filter in a homemade receiver offers some simplification of the alignment task. Following the techniques used in ssb receivers, a crystal or ceramic filter should be placed in the circuit as close as possible to the antenna connector - at the output of the first mixer, in most cases. Fig. 14-11 lists a number of suitable filters that are available to amateurs. Prices for thesc filters are in the range of $\$ 10$ to $\$ 30$. Experimenters who wish to "roll their own" can use surplus hf crystals, as outlined in ARRL's Single Sideband for the Radio Amateur, or ceramic resonators.

One item of concern to every amateur fm user is the choice of i-f bandwidth for his receiver, as both 15 - and $5-\mathrm{kHz}$ deviation are now in common use on the amateur bands. A wide-band receiver can receive narrow-band signals, suffering only some loss of audio in the detection process. However, a wideband signal will be badly distorted when received on a narrow-band rig. At this point it seems reasonable to assume that increasing fm activity and continued production of commercial narrow-band transceivers may gradually shift amateur operation to a $5-\mathrm{kHz}$ deviation standard. But, as with the $\mathrm{a}-\mathrm{m}$ operators, the wide-band enthusiasts will be around for some time to come, lured by inexpensive surplus wide-band gear.

Limiters

When fm was first introduced, the main selling point used for the new mode was the noise-free reception possibilities. The circuit in the fm receiver that has the task of chopping off noise and amplitude modulation from an incoming signal is the limiter. Most types of fm detectors respond to both frequency and amplitude variations of the signal. Thus, the limiter stages preceding the detector are included to "cleanse" the signal so that only the desired frequency modulation will be demodulated. This action can be seen in Fig. 14-13.

Limiter stages can be designed using tubes, transistors, or ICs. For a tube to act as a limiter, the applied B voltages are chosen so that the stage will overload easily, even with a small amount of signal input. A sharp-cutoff pentode such as the 6BH6 is usually employed with little or no bias applied. As shown in Fig. 14-12, the input signal
limits when it is of sufficient amplitude so that diode action of the grid and plate-current saturation clip both sides of the input signal, producing a constant-amplitude output voltage.

Obviously, a signal of considerable strength is required at the input of the timiter to assure full clipping, typically several volts for tubes, one volt for transistors, and several hundred microvolts for ICs. Limiting action should start with an rf input of $0.2 \mu \mathrm{~V}$ or less, so a large amount of gain is required between the antenna terminal and the limiter stages. For example, the Motorola 80D has eight tubes before the limiter, and the solid-state MOTRAC receivers use nine transistor stages to get sufficient gain before the first limiter. The new ICs offer some simplification of the i-f system as they pack a lot of gain into a single package.

When sufficient signal arrives at the recciver to start limiting action, the set quiets - that is, the background noise disappears. The sensitivity of an fm receiver is rated in terms of the amount of input signal required to produce a given amount of quieting, usually 20 dB . Current practice using the new solid-state devices can produce receivers which achieve 20 dB quieting with 0.15 to $0.5 \mu \mathrm{~V}$ of input signal.

A single tube or transistor stage will not provide good limiting over a wide range of input signals. Two stages, with different input time constants, are a minimum requirement. The first stage is set to handle impulse noise satisfactorily while the second is designed to limit the range of signals passed on by the first. At frequencies below 1 MHz it is useful to employ untuned $R C$-coupled limiters which provide sufficient gain without a tendency toward oscillation.

Fig. 14-13 - (A) Input wave form to a limiter stage shows $a-m$ and noise. (B) The same signal, after passing through two limiter stages, is devoid of a-m components.

Fig. 14-14 - Typical limiter circuits using (A) zubes, (B) transistors, (C) a differential IC, (D) a high-gain linear IC.

LIMITER

Fig. 14-14A shows a two-stage limiter using sharp-cutoff tubes, while $14-14 \mathrm{~B}$ has transistors in two stages biased for limiter service. The base bias on either transistor may be varied to provide limiting at a desired level. The input-signal voltage required to start limiting action is called the limising knee, referring to the point at which collector (or plate) current ceases to rise with increased input signal. Modern ICs have limiting knees of 100 mV for the circuit shown in Fig. 14-14C, using the CA3028A or MC1550G, or 200 $\mu \mathrm{N}$ for the Motorola MC1590G of Fig. 14-14D. Because the high-gain ICs such as the CA3076 and MC1590G contain as many as six or eight active stages which will saturate with sufficient input, one of these devices provides superior limiter performance compared to a pair of tubes or transistors.

Fig. 14-15 - The characteristic of an fm discriminator.

EXCEPT AS INOICATED, DECIMAL VALUES OF CAPACITANCE ARE IN MICMOFARADS ($\mu \mathrm{F}$); OTHERS ARE (N PICOFARAOS IDF OR $\mu \mu \mathrm{F}$) RESISTANCES ARE IN OHMS; -. 1000 , M = 1000000

Fig. 14-16 - Typical frequency-discriminator circuit used for fm detection. T 1 is a Miller 12-C45.

Detectors

The first type of fm detector to gain popularity was the frequency discriminator. The characteristic of such a detector is shown in Fig. 14-15. When the fm signal has no modulation, and the carrier is at point O, the detector has no output. When audio input to the fm transmitter swings the signal higher in frequency, the rectified output increases in the positive direction. When the frequency swings lower the output amplitude increases in the negative direction. Over a range where the discriminator is linear (shown as the straight portion of the line), the conversion of fm to $\mathrm{a}-\mathrm{m}$ which is taking place will be linear.

A practical discriminator circuit is shown in Fig. 14-16. The fm signal is converted to a-m by transformer T 1 . The voltage induced in the T1 secondary is 90 degrees out of phase with the current in the primary. The primary signal is introduced through a center tap on the secondary, coupled through a capacitor. The secondary voltages combine on each side of the center tap so that the voltage on one side leads the primary signal while the other side lags by the same amount. When rectificd, these two voltages are equal and of opposite polarity, resulting in zero-voltage output. A shift in input frequency causes a shift in the phase of the voltage components that results in an increase of output amplitude on one side of the secondary, and a corresponding decrease on the other side. The differences in the two changing voltages, after rectification, constitute the audio output.

In the search for a simplified frn detector, RCA developed a circuit that has now become standard in entertainment radios which eliminated the need for a preceding limiter stage. Known as the ratio derector, this circuit is based on the idea of dividing a dc voltage into a ratio which is equal to the ratio of the amplitudes from either side of a discriminator-transformer secondary. With a detector that responds only to ratios, the input signal may vary in strength over a wide range without causing a change in the level of output voltage fm can be detected, but not $\mathrm{a}-\mathrm{m}$. In an actual ratio detector, Fig. 14-17, the dc voltage required is developed across two load resistors, shunted by an electrolytic capacitor. Other differences include the two diodes, which are wired in scries aiding rather than series opposing, as in the standard discriminator circuit. The recovered audio is taken from a tertiary winding which is tightly coupled to the primary of the transformer. Diode-load resistor values are selected to be lower (5000 ohms or less) than for the discriminator.

The sensitivity of the ratio detector is one half that of the discriminator. In general, however, the transformer design values for Q, primary-secondary coupling, and load will vary greatly, so the actual performance differences between these two types of fm detectors are usually not significant. Either circuit can provide excellent results. In operation, the ratio detector will not provide sufficient limiting for communications service, so this detector also is usually preceded by at least a single limiting stage.

RATIO DETECTOR

Fig. 14-18 - Crystal discriminator, C1 and L1 are resonant at the intermediate frequency. C2 is equal in value to C3. CA corrects any circuit imbalance so that equal amounts of signal are fed to the detector diodes.

CRYSTAL DISCRIMINATOR

New Detector Designs

The difficultics often encountered in building and aligning $L C$ discriminators have inspired research that has resulted in a number of adjustment-free fm detector designs. The crystal discriminator utilizes a quartz resonator, shunted by an inductor, in place of the tuned-circuit secondary used in a discriminator transformer. A typical circuit is shown in Fig. 14-18. Some commercially-made crystal discriminators have the input-circuit inductor, $L 1$, built in ($C 1$ must be added) while in other types both LI and Cl must be supplied by the builder. Fig. 14-18 shows typical component values; unmarked parts are chosen to give the desired bandwidth. Sources for crystal discriminators are listed in Fig. 14-11.

The PLL

Now that the phase-locked loop (PLL) has been reduced to a single IC package, this circuit is destined to revolutionize some facets of receiver design. Introduction by Signetics of a PLL in a single flat-pack IC, followed by Motorola and Fairchild (who are making the PLL in separate building-block ICs), allows a builder to get to work with a minimum of bother.

A basic phase-locked loop (Fig. 14-19A) consists of a phase detector, a filter, a dc amplifier, and a voltage-controlled oscillator (VCO). The VCO runs at a frequency close to that of an incoming signal. The phase detector produces an error voltage if any difference in frequency exists between the VCO and the i-f signal. This error voltage is applied to the VCO. Any changes in the frequency of the incoming signal are sensed at the detector and the error voltage readjusts the VCO frequency so that it remains locked to the intermediate frequency. The bandwidth of the system is determined by a filter on the crror-voltage line.

Because the error voltage is a copy of the audio variations originally used to shift the frequency of the transmitter, the PLL functions directly as an fm detector. The sensitivity achieved with the Signetics NE565 PLL is good - about 1 mV for the circuit shown in Fig. 14-19B. No transformers or tuned circuits are required. The PLL bandwidth is usually two to ten percent of the i-f for fin detection. Components RI-C1 set the VCO to near the desired frequency. C2 is the loop-filter capacitor which deternines the capture range that range of frequencies over which the loop will acquire lock with an input signal, initially starting

PLL DETECTOR

Fig. 14-19 - (A) Block diagram of a PLL demodulator. (B) Complete PLL circuit.
out of lock. The NES65 has an upper frequency limit of 500 kliz ; for higher frequencies, the NES61, which is usable up to 30 MH ., can be employed.

220 VISITED

There are several different models of $220-\mathrm{MHz}$ transceivers on the market today. The power levels range from 8 to 15 watts output. This amplifier was developed to make all the power levels the same. It also provides a common base for large amplifiers. Since the selection of 12 -volt transistors for 220 MHz is limited, the MRF 226 is used here.

Circuit Description

The schematic diagram of the amplifier is shown in Fig. 1. This amplifier was designed for Class C operation only. RFCl provides the necessary ground and isolation for the base lead. The matching network consisting of C1, C2, and L1 is used to match the low input impedance of the base. This impedance, $1.7+j 0.2$ ohms, is transformed to 50 ohms. L1 and L2 are microstrip transmission lines. Their characteristic impedance is 62.7 ohms and this value of impedance was sclected for convenience of circuit-board layout. Width of the lines is .062 inch. The output impedance, $6.6-13.7$ ohms, is also transformed to 50 ohms. The combination of L2, C3 and C4 provides the output matching. RFC2, C5, C6, and C7 provide collector isolation and decoupling.

The matching networks were all developed with

Fig. 1 - Schematic diagram of the 220-MHz amplifier.

C1 - Arco 402 trimmer (1.5 to 20 pF).
C2, C3, C4 - Arco 421 trimmer (2 to 25 pF).
C5-220 pF. disk ceramic.
C6 - . $01 \mu \mathrm{~F}$, disk ceramic.
C7 - $10 \mu \mathrm{~F}, 50-\mathrm{V}$ electrolytic.
L1, L2 - Strip-line indicator 5 cm long $X .062 \mathrm{in}$. wide.
RFC1 - Molded rf choke $0.15 \mu \mathrm{H}$ (J. W. Miller 9250-15) with ferrite bead (Farroxcube 56-590-65/38).
RFC2 - 2 turns No. 22 enam. wire on $330-\Omega$. 1 -watt resistor.

Completed amplifier. Phone plugs were used for this first model. In actual use bettar whf connectors should be installed.
the aid of a Smith chart. An in-depth discussion of microstrip impedance and matching network calculations can be found in the Motorole Application Notes AN-548A and AN-267.

Construction

Double-sided pc board was used for the construction of the amplifier. The board is 1 oz . copper-clad glass epoxy. Thickness of the copper and type of material are factors in the impedance calculations of the strip lines. The microstrip lines were laid out using . 062 -inch drafting tape. Using this method, errors in the width are then very small. Pads were etched at the ends of the strip lines to provide areas for capacitor and transistor connections. There are several places on the board that were used for ground connections between the two sides. A No. 16 tinned wire is inserted in a No. 55 drill lole. The wire was soldered on both sides and then cut off fush with the board.

The next step is to mount the transistor to the heat sink and circuit board. Insert the stud of the transistor through the top of the board and attach it to the heat sink by lightly tightening the stud nut after applying heat-sink compound. Now examine the spacing between the heat sink and the bottom of the circuit board with the transistor flush against the top of the board. Insert a number of No. 4 washers (approximately four) so that the transistor tabs are flush against the board. There should be no upward pressure that would tend to bift them off. After the correct number of No. 4 washers have been inserted, the transistor leads are soldered to the board. The stud should be tightened to 6 inch-pounds. Do not exceed the maximum of 6.5. It is better to undertighten than to overtighten the stud. A good heat-sink compound, Dow Coming 340, should be applied between the device and the heat sink. After the amplifier has been tuned the compression trimmers could be replaced with high quality capacitors.

Antenna transfer relay.

Adjustment and Operation

The amplifier should be connected as illustrated in Fig. 2. Adjustment of the amplificr is very casy. A small amount of drive is applied to the input and the output matching capacitors are then adjusted for maximum output. Next adjust the input capacitors for minimum reflected power. Readjust the outpui capacitors for maximum power. Now Increase the drive power to the amplifier. The inpul and output capacitors will have to be readjusted for minimum reflected power and maximum output respectively. The maximum collector current of 2.5 amperes should not be exceeded.

If maximum gain is achieved, this amplifier will deliver 13 watts output with 1.5 watts of drive. Most of the transceivers on the market have a low power position that provides between 0.5 and 1.5 watts output. This low power could be used to drive the amplifier. If the lower-power position output is very small, the transceiver could be used in the high-power mode and an attenuator inserted before the amplifier.

The antenna-transfer relay was added after the amplifier was developed. If desired, the relay could be mounted on the circuit board. Relay circuitry is similar to the one described in a previous article (QST, May, 1972).

A SOLID-STATE ADAPTER

Tubes are seldom used in current designs. For those builders who prefer to be "up with the times," a solid-state version of the $455-\mathrm{kHz}$ adapter

Fig. 2 - Test setup for adjusting amplifier.
was constructed. Using IC limiter/amplifier, and miniature i-f transformers, the unit requires only 25 mA at 12 V for power. See Fig. 14-24A. The Motorola MC1590G provides 70 dB gain, and hard limiting action superior to that obtained with the lube version.

The unit is built on a $2 \times 6-1 / 2$-inch circuit board; a template is given in Fig. 14-24B. Because of the high gain of the IC stage, a shield is required across pins 4 and 6 to isolate the input from the output. Alignment and installation are the same as for the tube version. The bandwidth of the miniature transformers restricts this adapter to narrow-band reception. However, builders wishing 3 wideband version can use the J. W. Miller 881 I miniature coils which are combined with a $12-\mathrm{pF}$ soupling capacitor to form a wide-band transformer.

FM COMMUNICATIONS

Although information on fm theory and construction has been available to the amateur for a number of years, this mode has been largely neglected. But now large quantities of used zommercial fm mobilc equipment have become available for amateur use, creating new interest. Originally designed to cover frequency ranges adjacent to amateur bands, this equipment is easily retuned for amateur use.

One feature of fm is its noise-suppression capability. For signals above the receiver threshold. wideband fm has a signal-to-noise ratio advantage over $a-m$ as a result of its greater "intelligence bandwidth." This same increased bandwidth, however, results in a much more abrupt signal threshold effect, causing weak signals to suddenly disappear. The generality can be made that $a-m$ has a greater range in weak signal work but that widcband fm will provide greater noise suppression in local work. However, in practice, vhf fm mobiles experience greater range than previously found on $\mathrm{a}-\mathrm{m}$ due to the output powers employed which are considerably higher than those common on a-m.

Fig. 14-22 - In this bottom view, the input transformer is to the left, followed by the i -f amplifier, limiter and detector. On the far right are the audio amplifier stage and gain control.

Operating Practices

Amateur for practice has been to retain the fixed-frequency channelized capability of the commercial equipment. VFOs and tunable receivers have not proven satisfactory because of the requirement for precisc frequency netting. An off-frequency signal will be received with distor-

FM AND REPEATERS

Fig. 14-23 - The solid-state fm adapter is constructed on a 6×2-inch atched-circuit board, mounted on a homemade chassis.
tion and will not have full noise rejection. Channelized operation with squelched receivers permits continuous monitoring of the active frequencies. Long, time-consuming calls and CQs are not necessary (or appreciated) to establish communications, as all receivers on the channel "come alive" with the operator's first word. Natural, short transmissions are usually encour-

(B)

Fig. 14-24 - (A) Diagram of the $455-\mathrm{kHz}$ narrow-band adapter. Resistars are $1 / 4$ - or $1 / 2$-watt composition and capacitors are disk ceramic, except those with polarity marked, which are electrolytic. Components with reference numbers that ars not listed below are noted for circuitboard location.
J1, J2 - Phono receptacle, panal mount.

R1 - Miniature $1 / 2$-watt composition control. T1 - Miniature $455-\mathrm{kHz}$ i-f transformer (Miller 8807).

T2 - Miniature discriminator transformer. 455 kHz (Miller 8806).
U1 - Motorola MC1590G.
(B) Template for the solid-state adapter (not to scale).

Repeaters

aged. The old monopoly switch routine, where the operator gabs to himself for 10 minutes at a time, will get him invited off a busy fm channel. Some channels are calling channels on which extended ragchewing is discouraged, whereas other channels. or the same channel in another area, may be alive with chatter. This is a matter of local determination, influenced by the amount of activity, and should be respected by the new operators and the transient mobile operator alike. Some groups have adopted the use of the " 10 code" which was originated for law enforcement communications. However, plain language in most cases is as fast and requires no clarification or explanation to anyone.

Standards

Standard channel frequencies have been agreed upon to permit orderly growth and to permit communications from one area to another. On two meters, it has been agreed that any frequency used will fall on increments of 60 kHz , beginning at 146.01 MHz . 146.94 MHz (or "nine-four") is the national calling frequency. On six meters, the national calling frequency is 52.525 MHz , with other channels having a $40-\mathrm{kHz}$ spacing beginning at 52.56 MHz . Ten-meter fm activity can be found on 29.6 MHz . Recommendations for 10 meters and 220 MHz are for 40 kHz channel spacing starting at 29.04 and 220.02 MHz . Usage of the $420-\mathrm{MHz}$ band varies from area to area, as it is used for control channels, repeaters, and remote bases, as will be discussed later. In the absence of any other local standard, usage should begin at 449.95 MHz and proceed downward in $50-\mathrm{kHz}$ increments.

Two deviation standards are commonly found. The oider standard, "wide band," calls for a maximum deviation of 15 kHz . The newer standard, "narrow band," imposed on commercial users by the splitting of their assigned channels, is 5 kHz . The deviation to be employed by amateurs on frequencies where fm is permitted is not limited to a specific value by the FCC, but it is limited by the bandpass filters in the fm receivers. In general, a receiver with a filter for $5-\mathrm{kHz}$ deviation will not intelligibly copy a signal with $15-\mathrm{kHz}$ deviation. In some areas, a compromise deviation of 7 or 8 kHz is used with some success with both wide and narrow receivers. When necessary, recciver filters can be exchanged to change the bandpass.

REPEATERS

A repeater is a device which retransmits received signals in order to provide improved communications range and coverage. This communications enhancement is possible because the repeater can be located at an elevated site which has coverage that is superior to that obtained by most stations. A major improvement is usually found when a repeater is used between vhf mobile stations, which normally are severely limited by their low antenna heights and resulting short communications range. This is especially true where rough terrain exists.

The simplest repeater consists of a receiver with its audio output directly connected to the audio

Fig. 14-25 - A homemade fon transceiver. The transmitter section uses the solid-state exciter and amplifier shown in Chapter 10.
input of an associated isansmitter tuned to a second frequency. In this way, everything received on the first frequency is retransmitted on the second frequency. But, certain additional features are required to produce a workable repeater. These are shown in Fig. 14-28A. The "COR" or carrier-operated relay is a device connected to the receiver squelch circuit which provides a relay contact closure to key the transmitter when an input signal of adequate strength is present. As all amateur transmissions require a licensed operator to control the emissions, a "control" switch is provided in the keying path so that the operator may exercise his duties. This repeater, as shown, is

Fig. 14-26 - This typical $144-\mathrm{MHz}$ amateur repeater uses GE Progress-Line transmitter and receiver decks. Power supplies and metering circuits have been added. The receiver located on the middle deck is a $440-\mathrm{MHz}$ control receiver, also a surplus GE unit. A preamplifier, similar to that shown in Fig. 14-44, has been added to the 2 -meter receiver to improve the sensitivity so that $0.2 \mu \mathrm{~V}$ of input signal will produce 20 dB quieting.

FM JARGON (Fig. 14-27)

Duplex - Simultancous transmissions between two stations using two frequencies. Simplex - Alternating transmission between two or more stations using one frequency.
Low band - 30 to 50 MHz . Also, the sixmeter amateur band.
High band ~ 148 to 174 MHz . Also, the two-meter amateur band.
Remote base - A remotely controlled station, usually simplex (see text).
Machine - Either a repeater or a remote base. Also called a "box."
Voult - Building that houses the machine. COR - Carrier-operated relay (see text).
CTCSS - Continuous tone-controlled squelch system. Continuous subaudible tone (250 Hz or lower) transmitted along with the audio to allow actuation of a repeater or receiver only by transmitters so equipped. More frequently referred to by various trade names such as Private Line, Channel Guard, and Quiet Channel Down chonnel - Communications circuit from the machine to the control point.
Up channel - Communications and/or control circuit from the control point to the machine.
Open repeater - A machine wherc transient Operators are welcome.
Closed repeater - A machine where use by non-members is not encouraged. (When heavy expenditures are involved, freeLoaders are not popular.)
suitable for installation where an operator is present, such as the home of a local amateur with a superior location, and would require no special licensing under existing rules.

In the case of a repeater located where no licensed operator is available, a special license for remote control operation must be obtained and provisions made to control the equipment over a telephone line or a radio circuit on 220 MHz or higher. The licensed operator must then be on hand at an authorized control point. Fig. 14-28B shows the simplest system of this type. The control decoder may be variously designed to respond to simple audio tones, dial pulsed tones, or even "Touch-Tone" signals. If a leased telephone line with dc continuity is used, control voltages may be sent directly, requiring no decoder. A 3 -minute timer to disable the repeater transmitter is provided for fail-safe operation. This timer resets during pauses between transmissions and does not interfere with normal communications. The system just outlined is suitable where all operation is to be through the repeater and where the frequencies to be used have no other activity.

Remote Base Stations

The remote base, like the repeater, utilizes a superior location for transmission and reception,
but is basically a simplex device. That is, it transmits and receives on a single frequency in order to communicate with other stations also operating on that frequency. The operator of the remote base listens to his hilltop receiver and keys his hilltop transmitter over his $220-\mathrm{MHz}$ or higher control channels (or telephone line). Fig. 14-29A shows such a system. Control and keying features have been omitted for clarity. In some areas of high activity, repeaters have all but disappeared in favor of remote bases because of the interference to simplex activity caused by repeaters unable to minitor their output frequency from the transmitter location.

Complete System

Fig. 14-29B shows a repeater that combines the best features of the simple repeater and the remote base. Again, necessary control and keying features have not been shown in order to simplify the drawing, and make it casier to follow. This repeater is compatible with simplex operation on the output frequency because the operator in control monitors the output frequency from a receiver at the repeater site between transmissions. The control operator may also operate the system as a remote base. This type of system is almost mandatory for operation on one of the national calling frequencies, such as 146.94 MHz , because it minimizes interference to simplex operation and permits simplex communications through the system with passing mobiles who may not have facilities for the repeater-input frequency.

The audio interface between the repeater receivers and transmitters can, with some equipment, consist of a direct connection bridging the transmitter microphone inputs across the receiver speaker outputs. This is not recommended, however, because of the degradation of the audio quality in the receiver-output stages. A cathode

Fig. 14-28 - Simple repeaters. The system at A is for local control. Remote control is shown at B.
 channels shown.
follower connected to each receiver's first squelchcontrolled audio amplifier stage provides the best results. A repeater should maintain a flat response across its audio passband to maintain the repeater intelligibility at the same level as direct transmissions. There should be no noticeable difference between sepeated and direct transmissions. The intelligibility of some repeaters suffers because of improper level settings which cause excessive clipping distortion. The clipper in the repeater transmitter should be set for the maximum system deviation, for example, 10 kHz . Then the receiver level driving the transmitter should be set by applying an input signal of known deviation below the maximum, such as 5 kHz , and adjusting the recciver audio gain to produce the same deviation at the repeater output. Signals will then be repeated linearly up to the maximum desired deviation. The only incoming signal that should be clipped in a properly adjusted repeater is an overdeviated signal.

The choice of repeater input and output frequencies must be carefully made. On two meters, $600-\mathrm{kHz}$ spacing between the input and output frequencies is common. Closer spacing makes possible interference problems between the repeater transmitter and receiver more severe. Greater spacing is not recommended if the user's transmitters must be switched between the two frequencies, as happens when the output frequency is also used for simplex operation, either for short-range communications, or to maintain communications when the repeater is not functioning. A $5-\mathrm{MHz}$ spacing is recommended on 440 MHz .

Careful consideration of other activity in the area should be made to prevent interference to or from the repeater. Many "open" or gencral-use repeaters have been installed on one of the national calling frequencies. On two meters, a 146.94 MHz output is usually paired with a $146.34-\mathrm{MHz}$ input, and many travelers have made good use of this combination where it is found. Where $146.94-\mathrm{MHz}$ simplex activity has not permitted a repeater on this frequency, 146.76 MHz has been used as an alternative. On six meters, several choices of input frequencies have been paired with 52.525 MHz .

The choice and usage is a matter for local agreement.

In some cases where there is overlapping geographical coverage of repeaters using the same frequencies, special methods for selecting the desired repeater have been employed. One of the most common techniques requires the user to transmit automatically a 0.5 -second burst of a specific audio tone at the start of each transmission. Different tones are used to select different repeaters. Standard tone frequencies are $1800,1950,2100,2250$, and 2400 Hz .

PRACTICAL REPEATER CIRCUITS

Because of their proven reliability, commercially made transmitter and receiver decks are generally used in repeater installations. Units designed for repeater of duplex service are preferred because they have the extra shielding and filtering necessary to hold mutual interference to a minimum when both the receiver and transmitter are operated simultaneously.

Wideband noise produced by the transmitter is a major factor in the design of any repeater. The use of high-Q tuned circuits between each stage of the transmitter, plus shiclding and filtering throughout the repeater installation, will hold the wideband noise to approximately 80 dB below the output carrier. However, this is not sufficient to prevent desensitization - the reduction in sensitivity of the receiver caused by noise or If overload from the ncarby transmitter - if the antennas for the two units are placed physically close together.

Desensitization can easily be checked by monitoring the limiter current of the receiver with the transmitter switched off, then on. If the limiter current increases when the transmitter is turned on, then the problem is present. Only physical isolation of the antennas or the use of high-Q tuned cavities in the transmitter and receiver antenna feedline will improve the situation.

Antenna Considerations

The ultimate answer to the problem of receiver desensing is to locate the repeater transmitter a

(A)

Fig. 14-30 - Charts to calculate the amount of isolation achieved by (A) vertical and (B) horizontal spacing of repeater antennas. If $600-\mathrm{kHz}$ separation between the transmitted and received frequencies is used, approximately $58-\mathrm{dB}$ attenuation (indicated by the dotted line) will be needed.
mile or more away from the receiver. The two can be interconnected by telephone line or uhf link. Another effective approach is to use a single antenna with a duplexer, a device that provides up to 120 dB of isolation between the transmitter and receiver. High- Q cavities in the duplexer prevent transmitted signal energy and wideband noise from degrading the sensitivity of the receiver, even though the transmitter and receiver are operating on a single antenna simultaneously. A commercially made duplexer is very expensive, and constructing a unit requires extensive metal-working equipment and test facilities.

If two antennas are used at a single site, there will be a minimum spacing of the two antennas required to prevent desensing. Fig. $14-30$ indicates the spacing necessary for repeaters operating in the 50-, 144-, 220-, and $420-\mathrm{Milz}$ bands. An examination of $14-30$ will show that vertical spacing is far more effective than is horizontal separation. The chart assumes unity-gain antennas will be used. If some type of gain antenna is employed, the pattern of the antennas will be a modifying factor. A rugged repeater antenna was described in QST for January, 1970.

Control

Two connections are needed between the repeater receiver and transmitter, audio and transmitter control. The audio should be fed through an impedance-matching network to insure that the receiver output circuit has a constant load while the transmitter receives the proper input impedance. Filters limiting the audio response to the $300-$ to $3000-\mathrm{Hz}$ band are desirable, and with some gear an audio-compensation network may be required. A typical COR (carrier-operated relay)
circuit is shown in Fig. 14-31A. This unit may be operated by the grid current of a tube limiter or the dc output of the noise detector in a solid-state receiver.

Normally a repeater is given a "tail"; a timer holds the repeater transmitter on for a few seconds after the input signal disappears. This delay prevents the repeater from being keyed on and off by a rapidly fading signal. Other timers keep each transmission to less than three minutes duration (an FCC requirement), turm on identification, and control logging functions. A simple timer circuit is shown in Fig. 14-31B.

Logging and Identification

Current FCC rules require that a log be kept of repeater operations showing each time the repeater is placed in (or taken out of) service. Individual transmissions, however, need not be entered. Although regulations do not require logging of individual transmissions through a repeater, some repeater committees have tape recording equipment connected to the repeater system in order to record a small portion of each transmission. The tapes provide an "unofficial" record concerning repeater usage. A two track tape recorder may have one of the tracks connected to a receiver tuned to WWV or CHU if the repeater committee is interested in having time information.

Fig. 14-31 - (A) COR circuit for repeater use. R2 sets the length of time that K1 will stay closed after the input voltage dissappears. KI may be any relay with a 12 -volt coil، although the long-life reed type is preferred. CR1 is a silicon diode. (B) Timer circuit using a Signetics NE555. R1, C1 sets the timers range. C1 should be a low-leakage type capacitor. S1, S2 could have their contacts paralleled by the receiver COR for automatic START and RESET controlled by an incoming signal

Fig. 14-32 - (A) Schematic diagram of the "electronic whistle." The main diagram is for high-impedance output. The lower portion has an emitter-follower added, for use with transmitters having low-impedance speech input circuits. All values of capacitance are in $\mu \mathrm{F}$; polarity indicates electrolytic. (B) Tone-burst decoder. Resistors are 1/2-watt composition and capacitors are mylar. K1 is an spst reed relay with a 6 -volt coil (C. P. Clare PRA-2010).

Identification of the repeater itself may be done by users, but lest a forgetful operator leave the repeater unknown, some form of automatic ID is preferred; A tape deck with a short loop tape for voice ID or a digital cw generator has proven to be effective. A suitable solid-state cw generator was described in QST for June, 1970.

Many repeaters use a form of tone control so that a carrier on the input trequency will not inadvertently key the transmitter. The most popular form of tone control is known as tone burst, often called whistle on because an operator with a good ear for frequency can use a short whistle instead of an electronically generated tone to key the repeater. A better approach, however, is a simple transistor tone generator, such as shown in Fig. 14-32A.

The whistle-on device was built for use with a Motorola 30-D transmitter, on a $11 / 2 \times 21 / 2$-inch piece of Vectorbord. It is nothing more than an astable multivibrator, triggered by a one-shot. When the push-to-talk switch is closed, actuating the transmitter relay, $\mathrm{K} 1, \mathrm{Q} 1$ goes from saturation to cutoff, and the multivibrator, Q2-Q3, begins oscillating with a period dependent on the values of R3, R5, C2 and C3. Values given result in a "whistle" of roughly 650 Hz .

Low	High Tone			
	1209 Hz	1336 Hz	1477 Hz	1633 Hz
	1	2	3	cFO
770	4	5	6	F
852	7	8	9	I
941	$*$	0	$\#$	P

Fig. 14-33 - Standard Touch-Tone frequencies for the 12 -digit pad.

Fig. 14.34 - Typical connections to use a Touch-Tone pad for repeater control. Resistances are in ohms. R1 is a linear-taper composition control and J1 is a panel-mounted phono jack. Capacitors are electrolytic: color coding on the wire leads from the pad is shown in parentheses.

Oscillation ceases when Q1 turns on again. This is regulated by the values of R 2 and C 1 , and is roughly 0.25 second with the values shown. The 470 -ohm resistor, R 1 , protects the base of Q1 from current surges when the PTT is released.

The lower night portion of Fig. 1432A shows an emitter-follower 3dded, for use with transmitters employing carbon microphones. The value of C4 can be adjusted to give the appropriate output level.

Most of the component values are not critical, except the $R C$ products which determine timing. Since the frequency is low, almost any bipolar transistons can be used. Npn types are shown, but pnp will work with opposite voltage polarity. The beta rating should be at least twice R3/R4, to insure saturation.

Most narrow-bandwidth tone decoders currently used in amateur repeater and remote-station applications employ several bulky $L C$ circuits to achieve the required audio selectivity. The phase-locked loop (PLL) ICs, pioneered by Signetics, have simplified the design and reduced the size of tone decoders so that a complete Touch-Tone demodulator can be buile on a $3 \times 51 / 2$-inch etched circuit board (about the size for a single-tonc decoder using $L C$ components).

A typical PLL single-tone decoder, such as might be employed for tone-burst entry control at a repeater, is shown in Fig. 14-32B. One $R C$ network establishes the frequency to which the PLL is tuned, according to the relationship:

$$
\text { frequency }=\frac{1}{\mathrm{R} 1 \mathrm{Cl}}
$$

The PLL, a Signetics NE567, may be operated from 0.1 Hz to $500 \mathrm{kHz}, \mathrm{C} 2$ establishes the bandwidth of the decoder, which can be set between one and fourteen percent of the operating frequency. C3 smooths the output signal, and, when this capacitor is made a high value, provides a delay in the turn-on function when a tone is received. Up to 100 mA may be drawn by the ' 56 ? output circuit, enough to key a relay directly or to drive TTL logic. The PLL contains 62 transistors.

Autopatch and Touch Tone

Some repeater groups have provided an interconnection to the public telephone network through a device called an autopatch. Details on all phases of phone patching are contained in Chapter 15. Such interconnection has led to the widespread use of the telephone company's Touch Tone system of tone signaling for repeater control functions, as well as telephone dialing. Because all of the Touch-Tone frequencies are within the voice band, they can be transnitted by any amattur voice transinitter.

The Touch-Tone control system consists of pairs of tones (see Fig. 14-33) for each of 10 numbers and the two special functions. One tone from the high-frequency group is generated simultancously with one tone from the low-frequency group to represent each number or function. The Touch-Tone generator pad from a standard telephone instrument is usually cmployed. See Fig. 14-34 for connections. A simple Touch-Tone decoder using 1Cs throughout was described in July 1971 QST.

A SCANNING TOUCH-TONE DIGIT AND WORD DECODER

The Touch-Tone encoding system, used extensively in auto-patels operations on fm repcaters across the country, offers a ready-made source for dual-tone codes, and advances in micro-circuitry design have produced a single device that can be used to decode these dual-tone codes for a variety of remotely controlled functions. However, one device is required to decode each tonc. In this article the writer shows how a scanning decoder evolved as an attempt to avoid using seven of these decoder ICs, and how a simple counter circuil can recognize specific four-digit-word sequences to provide a unique approach to a remote-control decoder.

There are sixteen tone pairs possible - selecting one from the low group, 697,770, 852 and 941 H_{7}, and one from the ligh group, 1209, 1336, 1477 and 1633 Hz . Two phase-locked-loop types of tone decoders should therefore be sufficient if each one sequentially scans the four tones of one group. In this svay two decoders with some added scanning circuits take the place of eight. Parts of the scanning circuit such as the clock oscillator and digit decoder would be required in any case for word decoding. and the parts' cost of the present system using primarily low cost TTL logic is
reasonable. One disadvantage of the scansing decoder is the slow response time resulting from the need to wait for each decoder to find the received tone. Also, a delay is built-in which requires both decoders to halt for at least one full clock period before a digit is registered. The operation is, thus, relatively immune to spurious responses from vaice signals, yet takes $1 / 2$ second or less to respond pronerly to any digit.

The type 567 tone decoder is not satisfactory for use in this circuit because neither side of the frequency determining R-C network is grounded. A Motorola MC1310P was tried because onc had been used previously for tonc decoding and was found to work well in this frequency range. Its intended use is as a phase-locked-loop im stereo decoder. In this application it locks onto the $19-\mathrm{kHz}$ pilot tone which is present, along with the audio signal. and turns on an open-collector output to light a stereo indicator lamp. 1 Its intemal oscillator runs at 76 kliz , and an internal frequency divider gives the 19 kHz for the pilot tone
${ }^{1}$ Gsy. Electronics 14 (24). p. 62, November 22, 1971 .

Word Decoding

detection. A $19-\mathrm{kHz}$ monitor output is provided. In the present circuit the oscillator is run at four times the Touch-Tone frequencies, and the stereo decoder function (except for the indicator lamp output) is ignored. Since the frequency determining resistor runs to ground. it is programmed easily for scanning operation by using four resistance values and four, open-collector, 15 -volt NAND gates (7426).

Digit Decoding

The digit decoder is shown in Fig. 1. A 12 -volt power supply is required for the MC1310P circuits, and the voltage on the programming resistance network is somewhat high for the usual opencollector NAND gates, so a 7426 is used. The .01and $.015-\mu \mathrm{F}$ capacitors should be mylar or silver mica for temperature stability, and some experimentation with the resistance values to achieve the correct frequencies may be necessary. A fixed resistance of $10 \mathrm{k}-\Omega$ or $12 \mathrm{k}-\Omega$ was used and a jumper-wire or selected value of fixed resistance was inserted between all of the $1-k \Omega$ potentiometers. The circuit time constants resulting from the use of $1.0-\mu \mathrm{F}$ ceramic capacitors appear to be the correct value for the present system. The $820-\Omega$ pull-up resistor from the +5 -volt supply makes the output TTL compatible; the monitor output is correct for driving TTL devices.

The 555 timer U9 and inverting gate U7D provide a positive clock pulse for all the 7473 flip-flops which toggle on the trailing edge of the pulse. When no tone inputs are received, U3 and U4 count through four states each and cause the open collector gates US and U6 to conduct in sequence A through D, thereby sweeping the frequencies of U1 and U2 upward through the low and high tone groups respectively. When cither tunes to an incoming tone, it becomes phase locked to it, its output at the test point goes low, the counter is stopped because its J and K inputs are low and the detector remains locked on the incoming frequency. Also, the nonitor output can pass through gate U7B or U7C and can be used for exact measurement of incoming tone frequencies. When both tones are so detected, a logic-one condition appears at the output of NOR gate U7A and counter U8 is permitted to advance from its cleared condition.

The J-K flip-llops in U8 are wired to advance in count through states $0,1,3,2,2$ and become stopped in state 2 (U8A off, U8B on) until reset when onc or the other tone detector drops out. Its purpose is to provide a two-clock-period double check on the decoder operation and yield a single clock pulse (CLK) just before the end of state 3 if the tone signal is so validated. Also, during state 3 (U8A and U8B on) the decoder U11 is enabled, and one of the digit outputs from U12 or U13 comes on.

The decoder makes use of the counter states of U3 and U4 when they are stopped by an incoming two-tone signal. Since the tones are scanned from low to high and the low group (top to bottom rows

Shown here is the decoder built by W1GNP as described in QST for January, 1976.
on a standard pad) is wired to the twoleast-significant-digit inputs on U11, the output states of Ull would correspond to the tone button assignments of a standard Touch-Tone pad. In order that the digit outputs are correct for the actual assignment on the tone pad, the U11 outputs are reordered and the twelve corresponding to the commonly used twelve button pad are inverted to the positive logic form by U12 and U13. The four gatcs U14, U1S, U16 and U17 are optional and are used to obtain the binary equivalent of the standard digit assignment of the Touch-Tone pad.

Word Decoding

The word-decoding circuitry shown in Fig. 2 consists of two, three-digit prefix decoders and an output flip-flop U22. Each prefix decoder consists of a dual J.K lip-flop (U18) two AND gates (U20A and B) and two NAND gates (U21A and B). The prefix or first three digits of the four-letter word being decoded are selected by connecting inputs digit 1 (DG1), digit 2 (DG2), digit 3 (DG3) and digit 4 (DG4) to the desired outputs from U12 and U13. Likewise, the other word-decoder inputs DH1. DH2. DH3 and DH4 are connected to four outputs from U12 and U13. The first fourletler word such as the sequence 4639 would turn U22 on, and the second such as $1 \cdot 8$ \# would turn it off.

This sequence detection is achieved by the gating used on the J-K inputs of U18 and U19. Each is a two-stage counter which will advance in the state sequence $0-1-3-2-0$ only if the correct digit input is on in proper sequence. That is, in order to advance from $0-1$ DG1 must be on, to advance from I - 3 DG2 must be on, and to advance from 3-2 DG3 must be on. If any are off when tney should be on, the state goes directly to zero. When state 2 is reached, U18A is off and U18B is on, and two of the threc AND J inputs of U22 are on. At this point the three-digit prefix has been received successfully. If the fourth digit received corresponds to DG4, the clock pulse (CLK) will also tum on U22 since all its J inputs

442

will then be on. Similarly, the second four-digitword sequence will turn off U22. Further interfacing between the TTL output of U22 and a controlled system will depend upon its nature. A simple relay driver using two parallel-connected 15 -volt open-collector buffer inverters ($1 / 3$ of a 7416) and a 12 -volt, 150 -ohm relay is shown. A small silicon diode connected as shown helps to avoid transient problems.

The on-off function of Fig. 2 can be simplified by using the same prefix decoder for both turn on and turn off: only the fourth digit need be different. One must be sure the word decoder is reset before it will respond properly to a four-digit word. This is just a matter of being sure that any code such as 4639 is not preceeded by a 4, a 46 , or a 463. If in doubt about what the last digit may have been in the system, an extra random digit other than 4 is generally sufficient. Alternatively, the reset inputs of U18 and U19 can be wired to some completely independent source of a reset such as the carrier-input detector.

A few words about the choice of codes. For most amateur radio applications the four-digit word provides adequate security. If a great deal of phone patch activity is present on the channel, the characters * or \# should be used in the code as these do not appear in phone numbers. The four additional characters generated only by a sixteenbutton pad can be used if four additional inverters are added to the group in U12 and U13. When a number of four-digit codes are used to operate a remote system of some sort, it becomes difficult to remember them all, and ease of use becomes an important factor in choosing codes. Often a single digit is better to turn something off because it's quicker and less likely to be forgotten. In any case. all system codes must be mutually compatible.

Construction

The unit shown in the title photograph was constructed on double-sided, copper-clad pc board. The layout and fabrication of the boards was done by Chuck Carroll, WIGQO, in the ARRL laboratory.

The tone and digit decoder circuit of Fig. 1 was constructed on a 6×6-inch pe board. All of the components are mounted on the top side of the board and are soldered on both sides of the pc board. The value for R1 through R6 in each tone-selection line should be selected so that the potentiometer will tune the circuit to the proper tone in the middle of its resistance range. The values shown in the circuit diagram of Fig. 1 are typical and can be used as a starting point for selecting the final value. The word decoders are also constructed on pc board with a double-sided layout. The decoder board is 4×4 inches with all of the components installed on the top side. Several of these decoder boards can be stacked and will make the addition of control functions a simple task.

Alignment

Alignment is a matter of setting the scanned frequencies to the correct values using a frequency

Fig. 1 - Schematic diagram of the tone and digit decoder. Parts placement is not critical, but standard construction practice should be followed when fabricating these circuits.
counter connected to a monitor point. The associated test point is grounded, and with no input to the decoder one of the frequencies can be adjusted, depending on which of the four tones in any group happened to be on when it was stopped manually. It is best to stop the highest tone first and adjust the first potentiometer, along with $R 9$ if necessary, to get 941 Hz . Then select the second
potentiometer and value of R1 until 852 Hz can be tuned. In a like manner, adjust all eight frequencies to the correct values. After several months of operation the response became stuggish and finally the unit stopped working, but original performance was restored by retuning R1 through R6. Satisfactory operation is obtained with input levels between 0.1 and 1 volt ac.

Fig. 2 - Schematic diagram of the relay-control pc board. Be supe to select relays that have contactcurrent capability for use in the desired application.

A TONE BEEP KEYER FOR REPEATERS

This simple telemetry circuit was designed for the WR6ABN repeater. Earlier uses of tones and tone bursts reminded users to allow time for breaking stations, and to indicate that the time-out timer had been reset. This latter indication was by means of transmitting two tones simulaneously.

This system is designed to inhibit one of the two tones, selectively, and allow either the high or low tone to indicate the position of the use:'s carrier in the recciver passband.

The sensors were adjusted to trip the relays at 1 kHz above or below the center frequency: this appears to be a practical value for narrow-band receivers. Thus, the "on-channel" slot is $2-\mathrm{kHz}$ wide, centered about the receiver input frequency.

The 741 op amp is set for a dc gain of 1000. The ac gain of the circuit is very low, as set by the $1-\mu \mathrm{F}$ bypass capacitor across the $1 \mathrm{M} \cdot \Omega$ resistor in the feedback loop, and $1 \mu \mathrm{~F}$ across the $50-\mathrm{k} \Omega$ control in the input circuit. The output of the 741 feeds two transistors and a zero-center meter.

The steering diodes, CR1 and CR2, allow the op amp to drive Q1 or Q2 into conduction and to charge Cl or C 2 to the value of the op-amp output voltage. R1 and R2 allow capacitors C1 and C2 to charge above the base voltage of the transistors and to cause them to conduct for about 5 seconds after
the drive voltage from the op amp is removed. This delay acts as a memory.

Note that the poor ac frequency response of the op-amp means that the input to it must remain for approximately 3 seconds in order for it to load Cl or C 2 for the readout.

The input to the op amp is shorted to ground when a carrier is not present. This prevents noise from loading up the sensor prior to a reading. It also allows the adjustment of the dc offset control, R5. The calibrate potentiometer, R6, is adjusted to a point where signals 1 kHz above or below the center frequency of the receiver will just trip relays K\$ or KS. (Note that the receiver should be adjusted so that the discriminator voltage is zero with no signal.) This adjustment of R6 to $\pm 1 \mathrm{kHz}$ determines the slot width. The center frequency is determined by the usual crystal-oscillator adjustments in the receiver.

K1 can be the normal COR or a separate relay keyed by the COR. This relay keys both the input to the op amp and the delay relay, K2. Because of the discharge time of C3, K2 wild have a delayed release. When K2 releases, it keys K3 for a short period as determined by C4 and R8. The values needed for C3, C4, R7 and R8 will vary, depending upon the characteristics of K2 and K3.

Fig. 1 - The schematic diagram of the tone-beep keyer. A dual $28-\mathrm{V}$ supply is used in this system, but there should be no difficulty in revising values to make use of lower valtages. The charging current of C1 through C4 is limited to a safe value by means of the series resistor in each case. If the meter is omitted, tip jacks should be provided to aid in adjusting the circuit.
CR1-CR6, incl. - Silicon diades, 1 N2069 or equiv.
DS1, DS2 - $28-V$ pilot lamps. Lower-voltage units or LEDs with
suitable dropping resistors may be used.
K1 - Dpdt relay. Coil voltage and current must be compatible with voltages available from receiver COR circuitry.
K2-K5, incl. - Spdt relays, 450 - to 700 -ohm coil tor 24 V dc. Allied Control T154-2C or equiv.
U1 - Operational amplifier IC. Fairchild $\mu A 74$ i (U5B7741312), Signetics $\mu A 741 T$ or $\mu A 741 C V$. Motolala MC1741G or MC1741Pi or equiv.

IMPROVING FM RECEIVER PERFORMANCE

Many older fm receivers, and some new modek, do not have sufficient sensitivity of limiting capability. Also, the transceivers designed for the mobile telephone service do not have a squelch or audio power-amplifier circuit. Sustable accessory units can be easily constructed to improve the performance of a rig deficient in any of these areas.

A simple preamplifier, such as shown in Fig. $14-45$ for 146 MHz and in Fig. $14-47$ for 440 MHz , may be added to a receiver to increase its sensitivity and to improve limiting (as the overall gain before the limiter will be increased by $10-15$ dB). The 2 -meter version uses a dual-gate MOSFET while the $440-\mathrm{MHz}$ unit employs two JFETs in a

Fig. 14-44 - The 2-meter preamp. may be mounted in a small Minibox or connected directly inside an 4 m receiver.
grounded-gate circuit. Both amplifiers are adjusted by peaking all runed circuits for maximum limiter current while receiving a weak signal.

A receiver will have a poor limiting characteristic if the gain before the limiter circuit is insufficient, of if the limiter itself is of poor design. The circuit of Fig. 14-48 can be added to a receiver to replace an existing limiter stage. The new limiter uses an RCA CA3011 integrated circuit. Care must be used in the installation and layout of this high-gain IC to insure stability. The CA3011 will provide a "hard" limiting characteristic with about 100 mV of signal input.

Fig. 14-46 -
The $440-\mathrm{MHz}$ preamplifier is constructed in a $3 \times 31 / 2 \times 1$-inch box made of double-sided circuit board. All abutting edges are soldered to complete the enclosure. Two $3 \times 15 / 16$-inch shields separate the tuned lines.

(A)

(B)

FOIL SIDE
(HALF SCALE)

Fig. 14-45 - Circuit diagram (A) and pc-board layou: (B) for the 2 -meter preamplifier. Resistors are 1/4-watt composition and capacitors are disk ceramic unless otherwise noted. Components not listed below are given designators for circuit-board location purposes.
C2, C6 - Air variable (Johnson 189-506-5).
J1, J2 - Phono type, panel mount

L1 - 5 turns, No. 16, 5/16 inch dia, $1 / 2$ inch long. Tapped at 2 turns for the antenna connection, and 4 surns for G1.
L2 - 4 turns, No. 16, 5/16 inch dia, 3/8 inch long. Tapped at 2 iurns.
L3 - 1 turn, plastic-covered hookup wire, 5/16 inch die, placed between two turns of L2.

Fig. 1447 - Schematic diagram of the uhf preamplifier. Capacitors are disk cerarnic unless otherwise noted.
C1-C3, incl. - 1.4 to $9.2-\mathrm{pF}$ miniature variable (Johnson 189-0563-001).
C4, C5 - Feedthrough type.
11, J2 - BNC type, chassis mount.
L1-L3, incl. - $25 / 8 \times 1 / 4$-inch strip of brass, soldered to the enclosure on one end and to the capacitor at the other. Input and output taps

Fig. 14-48 - Diagram of a limiter which may be added between the last $i-f$ stage and the detector of a receiver.
fon L1 and L3) are $1 / 2$-inch up from the ground end. Drain taps for Q 1 and O 2 on L2 and L3, respectively, are made just below C2 and C3.
RFC1, RFC2 - 420-MHz choks (Miller 4584).
RFC3. RFC4 - Two ferrite beads on a short piece of No. 20 hookup wire. (Beads are available from Amidon Associates, 12033 Otsego St., N. Hollywood, CA 91607.)
RFC5 - Three ferrite beads on No. 20 hookup wire. Q1, Q 2 - Motorola JFET.

FM Bibliography

Goldsmith et al, Frequency Modulation, in two volumes, RCA Review, RCA, 1948.
Rider and Uslan, FM Tronsmission and Reception, John F. Rider Publisher, 1948.
Wolf, FM Schematic Digest, Two-Way Radio Engineers, 1970.
Pre-Progress Line Diagrams, in two volumes, Mobile Radio Department, General Electric Company, 1968.

Hund, Frequency Modulotion, McGraw-Hill Book Company, 1942.
Lytel, Two-Way Radio, McGraw-Hill Book Company, 1959.

A SOLID-STATE FM TRANSMITTER FOR 146 MHz

In an effort to shrink the dimensions of the solid-state fim transmitter treated earlier in QST, and in the 1972 ARRL Handbook, it became necessary to eliminate one stage of the rf section, and to reduce the size of the speech amplifier and clipper. The product of that effort is shown schematically in Fig. 1.

A slightly different electrical approach was taken, wherein the oscillator was called upon to deliver a fair amount of power. The increased output from Q1 permitted the deletion of a driver stage ahead of the PA. The change made it recessary to pay particular attention to the design of all networks between stages, providing adequate selectivity to assure suppression of unwanted output frequencies. The criterion was met, as evidenced by a spectral display of the output
energy. The MK-II version is as clean as was the MK-I model.

A logical approach to reducing the area occupied by the speech amplifier and clipper was the employment of a transistor-array IC as opposed to the use of discrete components. The latter technique was used in the MK-I example.

Circuit Hightights

Generally, the circuit of Fig. 1 follows the classic sonobuoy format given in RCA's Power Circuits, $D C$ to Microwaves. ${ }^{1}$ Some of the circuit changes made are radical; others are subtle. The

[^27]

Fig. 1 - Schematic diagram of the 2-meter fm transmitter, Fixed-value capacitors are disk ceramic unless otherwise marked. Polarized capacitors are electrolytic. Fixed-value resistors are 1/2-watt comb position. Numbered components not appearing in parts list are so numbered for pc-board layour purposes only. Use crown rype heat sink on Q1. larger style on 02 and Q3.
C1. C2, C6, C11, C15, C18-7. 七о 25-pF miniapure ceramic trimmar (Eris 538-0028-7-25 or equiv. Avail, new from Newark Electronics. Avail. surplus from Reliance Merchandising Co., Phila. PA).
C19 - 15- to 60-pF miniature ceramic trimmer (Erie 538-002F-15-60 or equiv.)
C31 - 100-pF silver mica.
CR1 - Voltage-variable capacitor (Varicap) diode. CR2 - High-speed silicon switching diode.
L - 1 to $2 \mu \mathrm{H}$ inductor. 20 turns No. 30 enam. close-wound on 100,000 ohm, 1 -watt resistor.
L1 - 5 turns No. 16 tinned bus wire, $1 / 4$-inch ID $\times 5 / 8$ inch long. Tap at 1-1/2 turns from 12 -volt end.
L2-3 turns No. 16 tinned bus wirs, 1/4-inch ID $\times 3 / 8$ inch long. Tap at $1 / 2$ turn from C13 end.
L3 - 4 turns No. 22 enam. wire, close-wound, 1/4-inch ID.
L4-25 turns No. 28 enam. wire, close-wound on body of 100,000 -ohm, 1 -watt resistor. Use
resistor pigtails as anchor points far ends of winding.
L5 - 5 turns No. 16 tinned bus wire, 5/16 ID \times $1 / 2$ inch long
Q1-03, incl. - RCA iransistor.
R17-10,000-ohm pc-board carbon control linear taper (Mallory MTC 14L1 or equiv.).
RFC1 - $1-\mathrm{mH}$ miniature rf choke (Millen J300-25).
RFC3. RFC4 $-10-\mu \mathrm{H}$ miniature rf choke (Millen J300-101.
RFC5 $-10 . \mu \mathrm{H}$ miniature if choke (Millen J30010) with ane Amidon ferrite bead over groundend pigiall.
RFC6, RFC9 - 4 Amidon ferrite beads on 1/2-inch length of No. 24 wire (Amidon Associates, 12033 Otsega St., No. Hollywood, CA 91607).

RFC7. RFC8 - Same as RFC6 but with three beads on $3 / 8$-inch length of wire.
S1 - Spdt slide or rotary switch.
U1 - RCA integrated circuit.
VR1 - 9.1 volt, 1 -watt Zener diode
Y1, Y2 - 18-MHz crystal IInternational Crystal Co. ground for $20-\mathrm{pF}$ load capacitance. HC-26/U holder. Use International FM-2 pcboard crystal socket). High accuracy 002 percent temperature-tolerance crystal recommended.
boiled-down version is based on amateur-band performance criteria and the more commonly available supply voltage of 12 . Emphasis has been placed on good frequency stability, narrow-band deviation (up to 6 kHz), and relative freedom from spurious output.

Low-cost transistors are used at Q1 and Q2. A ballasted transistor (mismatch protected) is used at Q3 to prevent burnout resulting from temporary open- or short-circuit conditions in the antenna system. The current OEM price (single lot) for the $2 N 5913$ is $\$ 3.63$. Over-the-counter prices will be slightly higher, but it is recommended that the builder use the '5913 if he wishes to have the circuit perform as specified here. Substitutes for any of the devices used in the circuit should be employed only by those who are experienced in semiconductor work. The wrong choice can lead to dismal results with the circuit - instability, low output, or destruction of one or more of the transistors.

Ferrite beads are used generously in the circuit, for decoupling of the dc bus and as rf chokes. ${ }^{2}$ The beads provide low- Q impedances and are superior to solenoid-wound inductors in preventing circuit instability caused by tuned-base-tuned-collector conditions. A further aid to stability is provided through the use of high and low values of capacitance (combined) in various parts of the circuit. This standard technique helps to assure stability at hf and vhf, and is necessary because of the high f_{T} of the transistors used. ${ }^{3}$

Transistor sockets should not be used at Q1, Q2 or Q3. The additional lead lengths resulting from the use of sockets could lead to instability problems. Those wishing to use a socket at Ul may do so by redesigning the pe board to allow a socket to be installed (bringing the twelve holes for the IC closer together). Alternatively, one might employ an IC socket which has fairly long lugs, bending the lugs outward to mate with the holes in the pc-board.

Speech Amplifier

Ul consists of four bipolar transistors on a common substrate. Two of the transistors are connected for use as a Darlington pair. The remaining two are separate from one another. In the circuit of Fig. 1 the Darlington pair serves as a preamplifier for a high-impedance crystal, ceramic, or dynamic microphone. One of the separate transistors is used as a diode in the clipper circuit (an outboard silicon diode is used to clip the opposite side of the af sine wave) and the remaining transistor amplifies the clipped audio after it is filtered by an $R-C$ network. Deviation is set by adjustment of a pc-board potentiometer, R17.

The processed audio is fed to CRI, the varactor diode modulator. Some reverse bias is used on CR1 to assure greater linearity of modulation (3 volts dc

[^28]3 The higher the f_{T} (upper-frequency rating) of a transistor, the greater will be its gain capability at lower frequencies, thus giving rise to unwanted hf or If oscillations.
taken from the junction of R3 and R4). As the audio voltage is impressed across CR1, the junction capacitance of the diode shifts above the steadystate value which exists when no af voltage is present. The change in capacitance shifts the crystal frequency above and below its nominal value to provide fm.

Construction

There are no special instructions provided the builder follows the template pattern offered. 4 However, it is worth mentioning that the QST

model was built on glassepoxy circuit board. Those attempting to use phenolic or other types of pc board may encounter difficulty in obtaining proper circuit performance. The dielectric properties of the various board materials are different, thercby causing different values of capacitance to exist between pc-board foil strips. The condition can cause instability, unwanted coupling, and tuned circuits that will not hit resonance. Some builders of the MK-I transmitter leamed this the hard way!

Transistors Q2 and Q3 require fairly hefty heat sinks if good efficiency and longevity of the devices is to be realized. Homemade sinks are shown in the photo. Each consists of a piece of 1/16-inch thick aluminum (brass or copper is ok) formed over a drill bit slightly smaller in diameter than a TO-5 transistor case. The aluminum can be crimped in a bench vise until it fits snugly around the drill body. Silicone grease should be used to coat the transistor bodies prior to installation of the heat sinks. The height of the sinks is 1 inch. The ID is approximately $1 / 4$ inch.

Lead lengths of the wires going from the pc board to SI should be kept short - preferably less than $1-1 / 2$ inches long. Coaxial cable (50 -ohm impedance) should be used between the antenna terminals on the pc board and the antenna connector. The shield braid must be grounded at each and of the cable. Similarly, shielded cable should be employed between the microphone jack and the audio-input terminals on the pc board.

Checkout and Use

Initial checkout should be undertaken at reduced supply voltage. Apply a voltage of between 6 and 12, making certain that a dummy load of approximately 50 ohms is connected to the output of Q3. A 56 -ohm 2-watt resistor or a No. 47 pilot lamp witl suffice. Using a wavemeter tuned to 73 MHz , adjust the collector tank of Q1 for a pcak reading on the wavemeter. Next, set the wavemeter for operation at $\$ 46 \mathrm{MHz}$ and adjust the collector tuned circuit of Q2 for maximum meter indication. The tank circuit of Q3 should be adjusted for maximum power output as observed on an rf wattmeter or Monimatch-type SWR indicator. A rough check can be made by using a No. 47 lamp as a load, adjusting for maximum bulb brilliancy. The next step is to raise the supply voltage to 12 and repeat the tweaking procedure outlined above. If all stages are functioning normally, a No. 47

Lamp should illuminate to slighty more than normal brilliance. Power output into a 50 -ohm load should be between $1-1 / 2$ and 2 watts Current drain will be between 200 and 250 mA , specch amplifier included.

Adjustment of the transmitter frequency and deviation can best be done while using a vhf frequency counter and deviation meter. Alternatively, one can put the transmitter in service and ask one of the other fm operators in the area to observe his receiver's discriminator meter while you adjust your crystal trimmer for a zero reading. Deviation can be set reasonably close to the desired amount by comparing your modulation against that of other local stations, having a third operator report the comparisons.

This transmitter is well suited as a companion unit to the $\mathrm{f} m$ receiver described in Chapter 3 , and in QST. ${ }^{3}$ The two units can be packaged to form a trans-recejver for portable, mobile, or fixed-station use. The transmitter can be used to drive a high-power solid-state 2-meter amplitīer, described later in this chapter, if one wishes to put on a pair of "boots." 6

[^29]7 Write: Spectrum Research Laboratory, Box 5824, Tucson, AZ 85703.

2-METER SOLID-STATE RF POWER-AMPLIFIERS

The majority of the commercially made 2 meter fm transceivers available today have ri power-output ievels of 1 to 15 watts. There are many occasions when an fm operator would like to have a little more power to be able to work over greater distances. Described here are two amplifiers, one for 25 watts and anothcs for 50 watts output for the 2 -meter band. Both amplifiers use a single transistor and operate directly from a 13.6 -volt vehicular electrical system.

Circuit Description

The amplifier circuit shown in Fig. 14-53 utilizes a single 2 N 6084 transistor operated in a Class-C, zero-bias configuration. This mode of operation has the advantages of high collector efficiency at full output and zero dc current drain when no r ' driving signal is applied. The reader should note that zero-bias operation yields an amplifies that is not a "linear." It is designed for

Fig. 14-52 - An and view of the breadboard version of the 50 -watt 2 -meter amplifier. The inpu: circuit is at the lower right, and the output network is at the upper left.

Fig. 14-53 (A) - Diagram of the amplifier which provides 40 to 50 watts output and its associated COR circult. Capacitors are mica unless otherwise noted. The heat sink is a Thermalloy 6169B (Allied Electronics No. 957-2890).
C1. C7 - 5- to 80-pF compression trimmer lalco 462 or equiv.)
C2, CA-C . C8, incl. - Mica button $\{$ Underwood J-101).

C3. C9 - 9- to 180-pF compression trimmer (Arco 463 or equiv.).
C10 - Feedthrough type.
C11-Tantalum.
C12. C15, C16-Ceramic disk.
C13, C14 - 39.pF mica (Elmenco 6ED390J03 or equiv.).
CR1 - 100-PRV or mare, 500-mA or more silicon diode (Motorola 1N4001 or equiv.).
CR2.CR3 - High-speed, low capacitance 100-PRV silicon diode (Motorola MSD7000 dual package used here).
J1,J2 - Coaxial connector, panel mount.
K1 - 4pdt open-frame relay, $12 \cdot \mathrm{~V}$ contacts IComar CRD-1603-4S35 or equiv., Sigma 67R4-120 also suitable), modified as described below.

L1 - 12 nH . No. 10 tinned wire, 1 1/4-inch long straight conductor.
$\mathrm{L} 2-30 \mathrm{nH}, 13 / 4$ turns, No. 10 tinned wire, $3 / 8$ inch ID, 3/4 inch long.
L3 - 15 nH , No. 14 tinned wire, 3/4-inch long straight conductor.
L4-2 turns of No. 18 tinned wire $1 / 4$-inch ID. 0.2 inch long (approximately 44 nH).

Q1 - Motorola silicon power transistor.
02 - Npn silicon Darlington transistor, h Fe of 5000 or more (Motorola MPS-A13 or equiv.). R1 - 15 ohm, 1-watt composition.
R2 - 4700 ohm 1/2-watt composition
RFC1 - 17 turns, No. 16 enam. wire wound on Amidon T-80-2 toroid core.
RFC2 - Molded rf choke (J. W. Miller 9250-15). RFC3 - Ferrite bead (Ferroxcube 56-590-65/3B or equiv.).

RELAY TOP VIEW

(C)

RELAY SIDE VIEW

FILTER

(D) Pi-section output filter, C 1 and C 2 are 39 -pF mica capacitors (Elmenco 6ED390J03 or equiv.). and L1 consists of 2 turns of No. 18 tinned wirs. $1 / 4$ inch ID, 0.2 inch long (approximately 44 nH).

Fig. 14-54 - Parts-layout diagram for the 50-watt amplifier (not to scale). A 4×6-inch pe board is used as the base.
fm (or cw - operation only, and would produce objectional distortion and splatter if used to amplify either a-m or ssb signals.

The amplifier nperates directly from an automobile clectrical system, so no additional powe: supply is required for mobile operation. The inpu: and output-tuned circuits are designed to match the impedances of the transistor to a 50 -ohm driving source and to a 50 -ohm antenna system, respectively. Since both the input and outpu: impedances of the transistor are extremely low (in the 1 - to 5 -ohm region), the matching network; employed are somewhat different than those used with tubes. The networks chosen for the amplifier are optimized for low-impedance matching, and they perform their tasks efficiently. The network designs for this amplifier were done with the aid of a computer.

The elaborate decoupling network used in the collector dc feed is for the purpose of assuring amplifier stability with a wide variety of loads and tuning conditions. The 2N6084 transistor is conservatively rated at 40 watts output (approximately 60 watts $d c$ input). The amplifier can readily be driven to power output levels considerably higher than 40 watts, but it is recommended that it be kept below 50 watts nutput. If your transmitter or transceiver has greater than 10 watts output, an attenuator should be used at the amplifier input to keep the output from the amplifier below 50 watts.

Construction Details

Construction of the amplifier is straightforward. The usual precautions that must be observed when building a solid-state finat amplifier are followed. These precautions include proper
mechanical mounting of the transistor, emitter grounding, heat sinking, and decoupling of the supply-voltage leads. Most of the components used are conventional items which are readily available, with two exceptions. The fixed mica capacitors, Underwood type J-101, are a special mica unit designed for high-frequency applications. The core for RFCl and the of bead used for RFC3 are available from Elna Ferrite Labs, Inc. 9 Pine Grove St., Woodstock, NY 12498.

The amplifier is constructed on a pc board which is bolted to a heat sink. A few islands can be etched on the board for tie points, at the builder's discretion; a complex foil pattern is not required. In the amplifier shown in the photo, islands were etched only for input and output tie points. Circuit-board islands may also be etched for the transistor base and collector leads. However, an interesting alternative method was used in the author's breadboard amplifier. The base and collector islands were formed by attaching small pieces of pc board to the top of the main board. This procedure added a few tenths of a pF of capacitance at the connection points, so if you choose to etch islands directly on the main board you may want to increase the value of C6 slightly. (The values of C4 and C5 are not critical.)

A word about the care of a stud-mount if power transistor: Two of the most important mounting precautions are (1) to assure that there is no upward pressure (in the direction of the ceramic cap) applied to the leads, and (2) that the nut on the mounting stud is not over-tightened. The way to accomplish item 1 is to install the nuts first and solder the leads to the circuit later. For item 1, the recommended stud torque is 6 inch-pounds. For those who don't have a torque wrench in the

EXCEPT AS INDICATED, DECIMAL VALUES OF CAPACITANCE ARE IN MICROFARADS ($\mu \mathrm{F}$) : OTHERS ARE IN PICOFARADS (pF OR ypF);
RESISTANCES ARE IN OHMS;
$\mathrm{k}=1000, \mathrm{M}=1000000$.

Fig. 14.55 - Circuit diagram of the 25 -watt amplifier. Capacitors are disk ceramic unless otherwise noted.
C1 - 5- to 80-pF compression trimmer (Arco 462 or equiv.).
C2-2. to 50-pF compression trimmer (Arco 461 or equiv.l.
C3 - Button mice (Underwood J-101).
C4. C5 - 9- to 180-1-pF compression trimmer (Arco 463 or equiv.).
shack, remember that it is better to under tighten than to over tighten the mounting nut.

The transistor stud is mounted through a hole drilled in the heat sink. A thermal compound, such as Dow Corning 340 heat-sink grease, should be used to decrease the thermal resistance from transistor case to heat sink. See the excellent article by White in QST for April, 1971, for details of heat-sink design.

Series impedance in the emitter circuit can drastically reduce the gain of the amplifier. Both transistor emitter leads should be grounded as close to the transistor body as is practical.

The wiring for the of voltage feeder to the collector should have extremely low dc resistance. Even a drop of one volt can significantly reduce the power output of the amplifier. A good goal is less than 0.5 volt drop from the car battery to the transistor collector. With operating currents of several amperes, a total dc resistance of only a fraction of an ohm is needed. A standard commercially made heat sink is used for the 50 -watt amplifier, and it is adequate for amateur communications. Forced-air cooling across the heat sink should be used for any appliation requiring longterm key-down operation at 40 watts or more of output.

Tune-Up Procedure

Generally, the best way to tune a transistor final is for maximum rf power output. If this approach results in exceeding the power ratings of the transistor, then the power output should be reduced by reducing the drive-level, not by detuning the final. In the case of an outboard PA stage, such as described here, both the input and output networks can be tuned for maximum rf

J1, J2 - Coaxial connecror, panel mount.
L1 - 1 -inch length of No. 14 tinned wire.
Q1 - Motorola silicon power transistor (2N5591 or HEP S3007 for 25 W output, 2N5590 or HEP S3006 for 10 W output).
RFC1 - Ferroxcube VK200-19/4B ferrite choke.
RFC2 - Molded rf choke (J. W. Miller 9250-15).
RFC3 - Ferrite bead (Ferroxcube 56-590-65/3B or equiv.l.
T1 - See Fig. 14-56.
output, if the driving source has an output impedance of approximately 50 ohms. However, a better procedure consists of tuning the output tank circuit for maximum of output and tuning the input circuit for minimum SWR as measured between the exciter and the final amplifier. This tune-up procedure has the added advantage of assuring that the amplifier presents a 50 -ohm load to the exciter. A dc ammeter to check collector current is a useful tune-up aid. Since tuning is for peak output, a Monimatch-type SWR bridge is adequate for the job. Also, the wattmeter described in Chapter 22 would be an excellent choice. The best tuning procedure is to monitor simultaneousiy both output power (absolute or relative) and the SWR between the exciter and amplifier.

First, apply dc voltage with no rf drive. No collector current should flow. Then apply a low level of if drive - perhaps 25 percent or less of the rated 10 watts maximum drive - and tune the input network for maximum indicated collector current. The networks may not tune to resonance at this low drive level, but you should at least get an indication of proper operation by smooth tuning and lack of any erratic behavior in the collector-current reading. Gradually increase the drive, retuning as you go, until the rated $7-10$ watts input and 40 to 50 watts output are obtained. As power input is increased, use the recommended tuning procedure of maximum output from the output tank and minimum input SWR for the input circuit.

There is danger of low-frequency oscillations with most transistor amplifiers. A scope of $5-\mathrm{MHz}$ or more bandwidth connected to the dc feeder at point A makes an excellent indicator of any low-frequency oscillation. It is possible to have

Fig. 14-56 - Transmission-line output transformer consisting of 24 -inch lang conductors, No. 20 enam. wire, twisted to 16 crests per inch, using an electric drill. The conductors should be color coded. one with one color and one with a second color. Farm the twisted pair into a $1 / 2$-inch dia circle. Unwind the leads so that only the portion of the pair forming the circle remains iwisted. Connect the leads of each color as shown.
signal output on all hf and vhf amateur bands and all TV channels, simultaneously, when a bad case of parasitic oscillation occurs. For those who may have access to one, the best indicator of parasitic oscillation is a wide-band spectrum analyzer.

An Additional Design

For those who own a low-power fm transceiver, an intermediate amplifier stage or a final amplifier providing 10 to 25 watts may be desired. The circuit of Fig. 14-55 is suitable for the 2N559! or HEP S3007 transistors (25 watts), and the 2N5590 or HEP 3006 transistors (10 watts). An unusual feature of this circuit is the use of a transmissionline transformer in the output network. The construction and tunc-up procedures for the amplifiers of Fig. 14-55 is similar to that described earlier for the 50 -watt amplifier.

Accessories

When an amplifier slage is used with an fm transceiver, a method of automatic transmit/receive switching is needed. A simple carrier-operated relay (COR), such as shown in Fig. 14-16 can be employed for the amplifiers described in this article. The level of input rf required to operate the COR is determined by the value of R 1 . One to two watts of 2-meter energy will operate K! when a 4700 -ohm resistor is employed. The rf signal is
rectified by two high-speed switching diodes; the dc output from the rectifier is applied to Q1, a Daslington-connected transistor pair. When sufficient current is developed in the base circuit, Q1 will turn on, activating K1. A transient-suppression diode is included across the relay coil to prevent voltage-spike damage to Q1.

The swirching circuits needed to take the amplifier in and out of the circuit- are somewhat complex. The cost of four coaxial relays would be prohibitive. But, an open-frame relay can cause sufficient loss at 146 MHz to severely degrade the sensitivity of the associated receiver. To get around this problem the author modificd an inexpensive relay. The long leads to the wiper arms were removed and discarded. Two shorting bars were added, as shown in the drawing. External connections were made only to the stationary contacts. Received signal loss through the modified relay measured 0.4 dB - an insignificant amount.

Second-harmonic output from the 50 -watt amplifier measured 34 dB down from the level of the $146-\mathrm{MHz}$ energy. Thas, the computer-design output network compares favorably with the pisection tank circuits of ten used in hif transmitters. To assure that harmonic energy didn't cause a problem to other services, a simple pi-section output filter was added. This tuter is designed for 50 -ohm input and output impedances; it can be used with any two-meter amplifier. The insertion loss of the filter at 146 MHz is 0.2 dB , while it provides 46 dB attenuation at 292 MHz and 25 dB at 438 MHz .

Appendix A

1) Amidon toriod cores are avallable from Amidon Associates, 12033 Otsego Street. No. Holiywood, CA 91607.
2) Ferroxcube components can be purchased from Elna Ferrite Laboratories, Inc., 9 Pine Grove Street, Woodstock, NY 12498.
3) J. W. Miller chokes are available from distributors, or directly from J. W. Miller, 19070 Reyes Ave., Compton, CA 90224.
4) Underwood mica capactors must be ordered directly fram the manufacturer, Underwood Electric and Manufacturing Company. Inc., P. O. Box 188. Maywood, IL 60153. Price for the J-101 units specified in thls article is approximately $\$ 1.20$ each (specify the value - in pF - desired).
5) A circult board for the 50 -watt amplifier will be available from Spectrum Ressarch Labs, P. O. Box 5824, Tucson, AZ 85708.

2-METER FM RECEIVER

An fin purist is not likely to settle for secondrate receiver performance in this day of vhf-band saturation. A satisfactory fin receiver must be able to separate the various repeater output frequencies without being aifected by LMD and overload problems. The sensitivity must be good, and so should the limiting characteristics. Few low-cost designs satisfy the foregoing criteria. The circuit of Fig. 14-58 represents a practical compromise between cost and circuit complexity, yet provides performance which is comparable to that of many commercial im receivers in use by amateurs.

The single-conversion solid-state fin receiver described here is intended as a mate for the transmitter shown in Fig. 14-50. This design centers around a muleifunction IC, the CA3089E. Circuit simplicity, good performance, and low cost are the keynotes in this psoject.

Circuit Highlights

A JFET was chosen for rf amplifier Q1, Fig. 14-58. Neutralization is unnecessary provided the gate and drain elements are tapped down on their

Fig. 14.57 - This photo shows the final breadboard version of the fmreceiver. Some of the bypass capacitors are located on the foil side of the pc board in this example. The template and parts-layout sheet provides for topside mounting of the capacitors. The differences between the receiver shown here and the final model are quite minor.

respective tuned circuits. For simplicity s sake only two tuned circuits are used ahead of the mixer, which uses a dual-gate MOSFET. The combination of FETs Q1 and Q2 assures low IMD and provides good immunity to overloading. Output from the mixer is supplied to FL1. This is a four-pole $10.7-\mathrm{MHz}$ i-f filter which is fed from a $900-\mathrm{ohm}$ tap point on tuned circuit C9-C10-L3.

The oscillator/multiplier stage, Q3, is a carbon copy of that used by Pearce-Simpson in their Gladding 25 fm transceiver. It is one of the simplest circuits one can use, yet it performs well. Injection to the mixer is supplied at 157 MHz ($10.7-\mathrm{MHz}$ i-f plus the frequency of the received signal). The oscillator crystal frequency is one half the injection frequency -78 MHz in this example. No netting trimmers are necessary if crystals for the Gladding circuit are ordered and used. Frequency doubling from 78 MHz is accomplished in the collector circuit of Q 3 .

I-f amplifier Ul is a CA3028A wired for cascode operation. FL1 connects to input terminal 2 through a $.01-\mu \mathrm{F}$ blocking capacitor. Terminating resistor R7 is selected for the characteristic inpedance of the filter used. The KVG filter has a 910 -ohm bilateral impedance, so if precise matching is desired one can use a 910 -ohm unit at R7. Output from U1 is fed to multifunction chirp U2, across R11.

Audio output from U2 is amplified by Q4 before being routed to U3, a transformerless 1 -watt output IC. Though the MC1454 is designed to work into a $\{6$-ohm speaker, good results can be had when using an 8 -ohm speaker.

Construction

How the receiver is packaged can best be decided by the builder. Two choices are offered: dividing the board in two parts and stacking one section above the other on standoff posts. If this is done it will be necessary to cut the board midway between U1 and U2. If compactness is not necessary the constructor can follow a one-piece assembly format, keeping the board its $8 \times$ 2-1:/16-inch size.

Those who desire additional crystal positions can make the board slightly longer. This will provide room for more crystal sockets, but will require that a switch with more positions be used for S1.

It is recommended that transistor and IC sockets be avoided except at Q4 and U3. Short leads between the bodies of the devices and the pc board must be maintained to prevent unstable operation. The use of sockets will cause instability unless low-profile receptacles are used. Similarly, the pigtails on the bypass capacitors should be kept as short as possible in all parts of the rf circuit.

The wiring which connects the audio and squelch controls to the circuit board should be of the shielded variety. If the board is cut into two jections, as mentioned earlier, use shielded cable between U1 and U2, routing the i-f signal from pin 6 of U1 to pin 1 of U2. Don't leave out C16.

The leads from Sl to the crystal sockets must be kept as short as possible - less than 1-1/2 inches each. As a further aid to circuit stability mount the pc board on a metal cabinet wall or chassis by means of four or six metal standoff posts. This technique is beneficial in preventing if ground boops.

Checkout and Alignment

It should be stressed that there is no simple way to align an fm receiver. A stable signal generator will be required, preferably one with fm capability Initial alignment cannot be properly effected by using off-the-air fm signals. A weak-signal source can be built by using the modulator and crystal oscillator stage of the low power transmitter described in Fig. 14-50. Whatever method is used, make certain that the test signal is no farther off frequency than 200 Hz from the desired frequency of reception. Ideally, the signal source should be exactly on the chosen input frequency of the receiver

Connect the signal generator to J1. Attach a meter across J2 and J3. Make certain that a speaker is hooked to the output of U3. Assuming that an ohmmeter check shows no shorted or open circuits in the completed assembly, connect a 12 -volt dc supply to the receiver. With the squelch tumed off (maximum hiss noise) adjust $\mathrm{C} 2, \mathrm{C} 4$, and C 44 for an upward deflection of the relative-signal-strength meter (at 12 and J3). Next, ađjust Cio for maximum meter reading. Repeat these steps two more times. All tuning adjustments should provide fairly sharp peaks when the circuits are tuned to resonance.

Fig. 14-58-Schematic diagram of the fm receiver. Fixed-value capacitors are disk ceramic unless
otherwise noted. Polarized capacitors are electrolyuoplisodwos nem-Z/I ase sionsisad anjen-paxid 'on types. Numbered components not in parts list are identified for pc-board layout purposes only. A template and parts layout diagram are available s! preoq i!najp \forall '09'0\$ $10!{ }^{\circ} \mathrm{bH} 7 \mathrm{y} y \forall$ wод available from Spectrum Research Labs., Box 5824, Tucson, AZ 85703.
substitute a $10-\mathrm{pF}$ trimmer for the fixed-value

C2, C4, C44
 C2, C4, C44 - - 11 -pF pc-mount miniature air

 Mewark Electronics, or surplus from Reliance

A frequency-modulated signal will be required fo: on-the-nose adjustment of the detector (L4 and C24). C24 should be adjusted slowly until the point is found where best audio quality occurs. Audio recovery will be the lowest at this point, creating the illusion of reduced receiver sensitivity. If no fm signal is available for this part of the alignment, tune the detector for minimum hiss noise as heard in the speaker. After the detector is aligned, readjust Cl 10 for best audio quality of a received fm signal. It may be necessary to go back and forth between C10 and C24, carefully tweaking each capacitor for the best received-signal audio quality. The detector should be adjusted while a strong signal ($100 \mu \mathrm{~V}$ or greater) is being supplied at J1.

Adjustment of the squelch control should provide complete muting of the hiss noise (no signal present) as approximately midrange in its rotation. If the audio channel is functioning properly one should find that plenty of volume occurs at less than a midrange setting of R18.

Performance

In two models built, both identical to the ciscuit of Fig. 14-58, sensitivity checked out at roaghly 0.8 NV for 20 dB of quieting. This sensitivity figure is by no means spectacular, but is quite ample for work in the primary signal contour of any repeater. The addition of a dual-gate MOSFET preamplifier ahead of Q1 resulted in a sensitivity of $0.25 \mu \mathrm{~V}$ for 20 dB of quieting. The barefoot receiver requires approximately $0.5 \mu \mathrm{~V}$ of input signal to open the squelch. A more elaborate circuit would have provided greater sensitivity, but at increased cost and greater circuit complexity.

Hard limiting occurs at signal input levels in excess of $10 \mu \mathrm{~V}$, with 3 dB of limiting exhibited at $1 \mu \mathrm{~V}$. Addition of an outboard preamplifier will greatly improve the limiting characteristics, and this would benefit those who are dealing primarily with weak signals.

A KVG XM 107S04 i-f filter (FL1) ${ }^{1}$ is used in the circuit of Fig. $14-58$. However, any $10.7-\mathrm{MHz}$ filter with suitable handwidth characteristics for amateur fom reception can be substituted for the urit specified. During the development period a Piezo Technology Comline filter was used at FL1. 2 The model tried was a PTI 2194F, which sells for $\$ 10$ per unit in single lots. Club groups may wish to take advantuge of the 5 to 9 price break. $\$ 5.95$ each. The PTl 2194F gave performance similar to that of the KVG unit.

Each brand of filter has its own characteristic impedance, so if substitutions are made it will be necessary to change the tap position on L3 to assure a proper match between Q2 and FL1. Similarly, the ohmic value of $R 7$ will have to be changed.

1 A product revtew describing the filter's characteristics was given in QST for June., 1972, p. 56. The filter sells for $\$ 15.95$ and can be ordered from Spectrum International, Box 87. Topsileld, MA 01983. A drilled printed circuit board is available for 85 from: D.L. McClaren, WBURX. 19721 Maplewrod Avenue. Cleveland. OH 44135.

2 Piezo Technology Inc., Box 7877. Orlanda. FL 32804.

Specialized Communications Systems

The field of specialized amateur communica tions systems includes radioteletype, amateur television, amateur facsimile, phone patching and space and satellite communications. Radio control of models is not a "communications" system in the amateur (two-way) sense. The specialized hobby of radio control does have a large following, but "citizen-band" provisions for frequency allocations and operator registrations divorce it from the strictly ham-radio field (unless one wishes to avoid the QRM).

By far the greatest activity in the specialized fields is to be found in radioteletype (RTTY). Operation using frequency-shift keying techniques is permitted on all amateur bands except 160 meters.

Activity in amateur TV (ATV) can be found primarily in a number of population center around the country. Most of the work is based on converted entertainment receivers and manufac-turer's-surplus camera tubes (vidicons). ATV is permitted on the amateur bands above 420 MHz , and this and the broadband nature of the transmissions precludes extensive DX work.

Slow-scan TV (SSTV) is a narrow-band system that is permitted in any of the phone bands except

160 meters. It is a completely electronic system, however: no photographic techniques are required. Pictures are transmitted in 8 seconds or less.

Amateur facsimile operation, under present U.S. regulations, is permitted only above 50.1 MHz . Operation in the 6 - and 2 -meter bands is restricted to the use of shifting audio tones with an amplitude-modulated carrier (A4 emission), so opcration through an fm repeater on these bands is prohibited. Facsimile opcration is undertaken primarily by groups in heavily populated arcas.

Amateur satellites - cafled Oscars for Orbiting Satellites Carrying Amateur Radio - offer another way of extending the range of $v h f$ and $u h f$ stations. Satellites can also operate in the hf region to provide communication during times of poor ionospheric conditions.

Phone patches permit third parties to communicate via amateur radio, through an interconnection between the amateur's station equipment and his telephone line. With voice operation in use, phone patching may be conducted in any amateur voice band between domestic stations, or between stations of any two countries permitting third-pary communications.

RADIOTELETYPE (RTTY)

Radioteletype (abbrevisted RTTY) is a form of telegraphic communication employing typewriterlike machines for (1) generating a coded set of electrical impulses when a typewriter key corresponding to the desired letter or symbol is pressed, and (2) converting a received set of such impulses into the corresponding printed character. The message to be sent is typed out in much the same way that it would be written on a typewriter, but the printing is done at the distant receiving point. The teletypewriter at the sending point may ulso print the same material.

The teleprinter machines used for RTTY are far too complex mechanically for home construction, and if purchased new would be highly expensive. However, used teletypewriters in good mechanical condition are available at quite reasonablc prices. These are machines retired from commercial scrvice but capable of entirely satisfactory operation in amateur work. They may be obtained from several sources on condition that they will be used purely for amateur purposes and will not be resold for commercial use.

Some dealers and amateurs around the country make it known by advertising that they handle parts or may be a source for machines and accessory equipment. QST's Ham-Ads and other publications often show good buys in equipment as amateurs move about, obtain newer equipment, or change interests.

Periodic publications are available which are devoted exclusively to amateur RTTY. Such publications carry timely technical articles and operating information, as well as classificd ads.

The Teletype Corp. Model 28ASR teleprinter is used by many amateurs. In addition to the keyboard and page printer, this model contains facilities for making and sending perforated tapes.

Over the years QST has carried a number of articles on all aspects of RTTY, including a detailed series by Hoff in 1965 and 1966. For a list of surplusequipment dealers, information on publishers of RTTY periodicals, and a bibliography of all articles on RTTY which have appeared in QST, write to RTTY T.I.S., ARRL Headquarters, 225 Main Street, Newington, CT 06111 U.S. residents should enclose a stamped business-size envelope bearing a return addscss with their request.

Types of Machines

There are two general types of machines, the page printer and the tape printer. The former prints on a paper roll aboul the same width as a business letterhead. The latter prints on paper tape. usually gummed on the reverse side so it may be cut to letter-size width and pasted on a sheet of paper in a series of lines. The page printer is the more common type in the equipment available to amateurs.

The operating specd of most machines is such that characters are sent at the rate of either 60,67 , 75 or 100 wpm depending on the gearing ratio of a particular machine. Current FCC regulations allow amateurs the use of any of these four speeds. Interchangeable gears permit most machines to operate at these speeds. Ordinary teletypervriters are of the start-stop variety, in which the pulse-fomming mechanism (motor driven) is at rest until a typewriter key is depressed. At this time it begins operating, forms the proper pulse scquence, and then comes to rest again before the next key is depressed to form the succeeding character. The receiving mechanism operates in similar fashion, being set into operation by the first pulse of the sequence from the transmitter. Thus, although the actual transmission specd cannot exceed about 60 wpm (or whatever maximum speed the machine is geared for), it can be considerably slower, depending on the typing speed of the operator.

It is also possible to transmit by using perforated tape. This has the advantage that the complete message may be typed out in advance of actual transmission, at any convenient speed; when transmitted, however, it is sent at the machine's normal maximum speed. A special tape reader, called a transmitter-distributor, and tape perforator are required for this process. A reperforator is a device that may be connected to the conventional teletypewriter for punching tape when the machine is operated in the regular way. It may thus be used either for an original message or for "taping" an incoming message for later retransmission.

Fig. 15A-2 - Teleprinter letter code as it appears on perforated tape; start and stop elements do not appear. Elements are numbered from top to bottom; dots indicate marking pulses. Numerals, punctuation, and other arbitrary symbols are secured by carriage shift. There are no lower-case letters on a reletypewriter using this 5 -unit code.

Fig. 15A-1 - Pulse sequence in the teleprinter code. Each character begins with a start pulse, always a "space," and ends with a "stop" pulse. always a "mark." The distribution of marks and spaces in the five elements between start and stop determines the particular character transmitted.

Teleprinter Code

In the special code used for teleprinter operation. every character has five "elements" sent in sequence. Each element has two possible states, cither "mark" or "space," which are indicated by different types of electrical impulses (i.e.. mark might be indicated by a negative voltage and space by a positive voltage). At 60 wpm each clement occupies a time of 22 milliseconds. In addition, there is an intial "start" elcment (space), also 22 ms long, to set the scading and receiving mechanisms in operation, and a terminal "stop" element (mark) 31 ms long, to end the operation and ready the machine for the next character. This sequence is ithustrated in Fig. 15A-1, which shows the letter G with its start and stop elements.

At maximum machine speed, it takes 163 ms to send each character. This is the equivalent of 368 operations per minute. At 75 wpm with this same code, 460 operations per minute result, and 600 for 100 wpm . The letter code as it appears on perforated tape is shown in Fig. 15A-2, where the black dots indicate marking pulses. Figures and arbitrary signs - punctuation, etc. - use the same set of code impulses as the alphabet, and are selected by shifting the carriage as in the case of an ordinary typewriter. The carriage shift is accomplished by transmitting either the "LTRS" or "FIGS" code symbol as required. There is also a "carriage retum" code character to bring the carriage back to the starting position after the end of the line is reached on a page printer, and a "line feed" character to advance the page to the next line after a line is completed.

Additional System Requirements

To be used in radio communication, the pulses (dc) generated by the teletypewriter must be utilized in some way to key a radio transmitter so they may be sent in proper sequence and usable form to a distant point. At the receiving end the incoming signal must be converted into dc pulses suitable for operating the printer. These functions,

Fig. 15A-3 - Block diagram showing the basic equipment required far amateur RTTY operation.
shown in block form in Fig. 15A-3, are performed by electronic units known respectively as the frequency-shift keyer or RTTY modulator and receiving converter or RTTY demodulator.

The radio transmitter and recejver are quite conventional in design. Practically all the special features needed can be incorporated in the keyer and converter, so that most ordinary amateur equipment is suitable for RTTY with little or no modification.

Transmission Methods

It is quite possible to transmit teleprinter signals by ordinary "on-off" or "make-break" keying such as is used in regular hand-keyed cw transmission. In practice, however, frequency-shift keying is preferred because it gives definite pulses on both mask and space, which is an advantage in printer operation. Also, since fsk can be received by methods similar to those used for fmreception, there is considerable discrimination against noise, both nalural and manmade, distributed uniformly across the receiver's passband, when the received signal is not too weak. Both factors make for increased reliability in printer operation.

Frequency-Shift Keying

On the vhf bands where $\mathbf{A 2}$ transmission is permitted, audio frequency-shift keying (afsk) is generally used. In this case the of carrier is transmitted continuously, the pulses being transmitted by frequency-shifted tone modulation. The audio frequencies used have been more-or-less standardized at 2125 and 2975 Hz , the shift being 850 Hz . (These frequencics are the 5th and 7th hamonics, respectively, of 425 Hz , which is half the shift frequency, and thus are convenient for calibration and alignment purposes.) With afsk, the lower audio frequency is customarily used for mark and the higher for space.

Below $50 \mathrm{MHz}, \mathrm{Fl}$ or fsk emission must be used. The carricr is on continuously, but its frequency is shifted to represent marks and spaces. General practice with fsk is to use a frequency shift of 850 Hz , although FCC regulations permit the use of any value of frequency shift up to 900 Hz . The smaller values of shift have been shown to have a signal-to-noisc-ratio advantage, and $170-\mathrm{Hz}$ shift is currently being used by a number of amateurs. The nominal transmitter frequency is the mark condition and the frequency is shifted 850 Hz (or whatever shift may have been chosen) lower for the space signal.

RITY with SSB Transmitters

A number of amateurs operating RTTY in the hf bands. below 30 MHz , are using audio tones fed into the microphone input of an ssb transmitter. With properly designed and constructed equipment which is correctly adjusted, this provides a satisfactory method of obtaining Fl emission. The user should make certain, however, that audio distortion, carricr, and unwanted sidebands are not present to the degree of causing interference in receiving equipment of good engineering design. The user should also make certain that the equip. ment is capable of withstanding the higher-thannormal average power involved. The RTIY signal is transmitted with a 100 -percent duty cycle, i.e., the average-to-peak power ratio is 1 , while ordinary speech waveforms generally have duty cycles in the order of 25 percent or less. Many ssb transmitters. such as those using sweep-tube final amplifiers, are designed only for low-duty-cycle use. Power-supply components, such as the plate-voltage transformer. may also be rated for light-duty use only. As a general rule when using ssb equipment for RTTY operation, the dc input power to the final PA stage should be no more than twice the plate dissipation rating of the PA tube or tubes.

FREQUENCY-SHIFT KEYERS

The keyboard contacts of the teletypewriter actuate a direct-current circuit that operates the printer magnets. In the "resting" condition the contacts are closed (mark). In operation the contacts open for "space." Because of the presence of de voltage across the open keyboard contacts in such an arrangement, they cannot normally be used directly to frequency-shift-key another circuit. Isolation in the form of a keying relay or electronic switching is ordinarily used.

Saturated-Diode Keying

Perhaps the simplest satisfactory circuit for frequency-shift keying a VFO is the one shown in Fig. 1. This uses a diode to switch a capacitor in and out of the circuit, and is intended for use in a transmitter which heterodynes the VFO signal to the operating frequency. Because of the small number of parts required for the modification, they can often be mounted on a small homemade subchassis, which in turn is mounted alongside the VFO tube. Connection to the VFO circuit can be made by removing the tube from its socket,

Fig. 1 - Frequency-shifi keyer using saturated diodes

RFC1, RFC2 - 2.5 mH (Na tional R-100 or equiv.).
S - Spdi rotary, toggle, or slide.

wrapping the connecting lead around the tube's cathode pin, and reinserting the tube in its socket. The variable capacitors are adjusted for the desired shifts. Once set, the shifts will remain constant for all bands of operation. With this circuit the VFO frequency will be lower on space when the fsk driver of the RTTY demodulator shown later is used. If VFO "sideband inversion" takes place in a mixer stage of the transmitter, it will be necessary to key from the afsk driver output of the demodulator to send a signal which is "right side up."

Be sure to use an NPD type miniature ceramic trimmer for best stability. Use only an rf choke wound on a ceramic form. Ferrite or iron-core types are not suitable because of excessive internal capacitance, so the National type R-100 is recommended. Use only the 1N270 diode specified. This diode is a special high-conductance computer type which provides maximum circuit Q, avoiding variations in oscillator output level.

"Shift-Pot" Keying Circuit

The circuit of Fig 2 may be used with transmitters having a VFO followed by frequencymultiplying stages. The amount of frequency multiplication in such transmitters changes from one amatcur band to another, and to maintain a constant transmitted frequency shift readjustment is nccessary during band changes. In this circuit the natural VFO frequency is used for mark, and for space the frequency is lowered somewhat depending on the current flowing through CR1. RI adjusts this current, and therefore controls the amount of frequency shift. As shown, the circuit may be keyed by the fsk driver stage of the RTTY demodulator shown later. If a keying relay is used, Q1 may be omitted and the keying contacts (closed on mark, open on space) connected directly from the junction of R1 and R2 to ground.

Leads inside the VFO compartment should be kept as short as possible. Lead tength to the remainder of the circuit is not critical, but to avoid inducing if or $60-\mathrm{Hz}$ hum into the circuit, shielded wiring should be used for runs longer than a few inches. Positive voltages other than 150 may be used for the bias supply; the value and wattage of R3 should be chosen to supply a current of 2 mA or more to the $6.5-\mathrm{V}$ Zener diode.

Fig. 2 - "Shift-pot" frequency-shift keyer circuit. The shift-adjustment controd may be remoted from the VFO circult.
CR2 - Zener, 6.5-V 400 mW (1 N710 or equiv.). R1 - Linear-taper control, Iow wattage.
Q1 - Audio iransistor, npn silicon (Motorda MPS3394 or equiv.).

AN RTTY DEMODULATOR

Fig. 1 on page 462 shows the diagram of a solid-state demodulator which can be built for approximately $\$ 60$. Using surplus $88-\mathrm{mH}$ toroidal inductors, ${ }^{2}$ the discriminator filters operate with audio tones of 2125 and 2295 Hz for copying $170-\mathrm{Hz}$ shift, which is used almost exclusively on the amateur bands these days.

The demodulator is intended to be operated from a 500 -ohm source. If only a 4 or 8 -ohm speaker output is available at the receiver, a small line to voice-coil transformer should be used between the receiver and the demodulator to provide the proper impedance match. An integrated-circuit operational amplifier, having very high-gain capability, is used for the limiter. The discriminator iilters and detectors convert the shifting audio tones into dc pulses which are amplified in the slicer section. The keyer transistor,

[^30]Q5, controls the printer selector magnets, which should be wired for $60-\mathrm{mA}$ operation. The teleprinter keyboard is to be connected in series with the printer magnets, both being connected to the demodulator via J3. Typing at the keyboard will then produce local copy on the printer and will also produce voltages at J 1 and $\mathbf{3} 2$ for frequencyshift keying a transmitter or an audio oscillator.

The autoprint and motor-delay section provides optional features which are not necessary for basic operation. This section provides a simulated mark signal at the keyer when no RTTY signal is being received, preventing cw signals and random noise from printing "garble" at the printer. The motorcontrol circuit energizes the teleprinter motor in the presence of an RTTY signal, but turns off the
motor should there be no RTTY signal present for approximately 30 seconds.

Adjustments

With a VTVM, measure the $+12-V$ supply potential Ground the audio input to the demodulator, and connect the VTVM to pin 3 of the IC. Adjust R1 through its total range, and note that the voltage changes from approximately 1.6 V at either extreme to about +6 V at the center setting of R1. Perform a coarse adjustment of R1 by setting it for a peak meter reading, approximately +6 V . Now move the VTVM lead to pin 6 of the IC. Slowly adjust R1 in either direction, and note that adjustment of just a small fraction of a

C1-Optional
C2 - . $033 \mu \mathrm{~F}$, paper or Mylar, 75- or 100-volt rating.
C3 - . $01 \mu \mathrm{~F}$ Mylar or disk, 600 volt. Omit if af keying output is not used.
CR1, CR2, CR7, CR8, CR9, CR15-CR18, incl. CR20 - Silicon diode, 50 PRV or greater (IN4816 or equiv.)
CR3-CR6, incl. - Germanium diode, type 1 N270.
CR10-CR14, incl. - Silicon rectifier, 400 PRV or greater (1 N4004 or equiv.).
CR19 - Zener diode, 12-V, 1-W (Sarkes-Tarzian VR-12 or equiv.).

EXCEPT AS inOICATED, DECIMAL
values of capacitance are IN MICROFARADS (μ F) , OThERS ARE IN PICOFARADS IDF OR ygFI: RESISTANCES ARE IN OHMS: h. 1000 . M. 1000000

CR21 - Zener diode, 4.3-V, 400-mW (1N4731 or equiv.).
J1, J2 - Phone jacks. Omit J1 if af keying output is not used.
J3 - Phone jack, single circuit, shorting.
K1 - 110-V de relay, dpdt contacts with 10-A minimum rating (Potter and Brumfield type KA11DG or equiv.).
L1, L2 - 88 mH toroid.
Q1, 06, 08, 09, 011, 021 - Audio transistor, npm silicon (Motorala MPS3394 or equiv.).
Q2. Q7, Q10 - Audio transistor, pno silicon (Motorola MPS3702 or equiv.).
Q3, Q4 - General-purpose transistor, npn silicon (Motorola MPS2926 or equiv.).
Q5, Q12 - Audio transistor, npn silicon, 300-V collector-emitter rating (Motomala MJE340 or equiv.).
R1, R2 - 10,000-ohm linear taper control, subminiature, for horizontal circuitboard mounting (Mallory MTC-14L4 or equiv.).
R3 - 5600 ohms.
R4 - 18,000 ohms.
R5-82,000 ohms.
R6 - 0.1 megohm.
R7-1000 ohms.
R8-560 ohms.
S1-S5, incl. - Spst toggle. S5 optional.
T1 - Power; primary 120 V; secondary 125 V (Chicago-Stancor PA-8421 or Triad N51-X or equiv.).
T2 - Power; primary 120 V; secondary 12 V, 350 mA (Chicago-Stancor P8391 or equiv.).
U1 - Integrated-circuit operational amplifier, HA741, TO-5 package.

Fig. 1 - The ST4 RTTY demodulator (by Hoff - from QST. April 1970). Unless otherwise indicated, resistors are $1 / 4$ watt 10 -percent tolerance. Capacitors with polarity indicated are electrolytic. Dc operating voltages are indicated in the limiter, slicer, keyer, and autoprint and motor delay circuits. All voltages are measured with respect to chassis ground with a VTVM. In the slicer and keyer stages, voltage values above the line should appear with a mark tone present at the demodulator input, while values below the line appear with a space tone present. In the autoprint and motor delay circuit, voltage values above the line occur with a mark or space tone present while those values below the line are present with only receiver noise applied at the demodulator input.

turn causes the voltage to swing from approximately +1 V to +11 V . Carefully perform a fine adjustment of R 1 by setting it for a voltmeter reading of half the supply voltage, approximately +6 V . Next, again measure the voltage at pin 3. If the potential is approximately $+6 \mathrm{~V}, \mathrm{R} 1$ is properly set. If the potential is in the range of +2 V or less, R1 is misadjusted, and the procedure thus far should be repcated.

Next connect the VTVM to point A. With a mark-tone input, adjust the tone frequency for a maximum reading around -2.5 volts. Then change the tone for maximum reading on the space frequency. Adjust R2 until the voltages are equal.

The RTTY demodulator may be constructed on a large circuit board which is mounted inside a standard aluminum chassis, as shown here. A decorative self-adhesive paper provides the grainedwood appearance. The meter is optional and provides a tuning indication for use in the hf amateur bands.

With afsk at vhf, audio tones modulating the carrier are fed from the recciver to the RTTY demodulator. At hf, the BFO must be energized and the signal tuned as if it were a lower sideband signal for the proper pitches. If the tuningindicator meter is used, the his signal should be tuned for an unflickering indication. A VTVM connected at point A of Fig 1 will give the same type of indication. An oscilloscope may be connected to the points indicated in the filter section and used for a tuning indicator, as shown in the accompanying photographs.

Oscilloscope presentations of the type obtained with the scope mark and scope space connections in the filter section are made. For these displays the mark frequency is displayed on the horizontal axis and the space frequency on the vertical axis. The signals appear as ellipses because some of the mark signal appears in the space channel and vice versa. Although only one frequency is present at a given instant, the persistence of the scope screen permits simultaneous observation of both frequencies. The photo at the left shows a received signal during normal reception, while the photo at the right shows a signal during unusual conditions of selective fading, where the mark frequency is momentarily absent.

AMATEUR TELEVISION (ATV)

Television is not exactly new to amateur radio. Enterprising amateurs have been playing with this branch of the electronics ast for a matter of 45 years or more. Files of QST dating back to the ' 20 s offer proof that there was amateur television before many of our present-day amateurs were born. The methods used then bore little resemblance to the techniques employed today, but hams were sending and receiving pictures (or trying to) two gencrations ago.

QST carried many articles on television from 1925 on, and there was plenty of interest. But the work was being done by the motor-driven scanning disk method, and it was doomed to failure. Though many dollars and man-hours were spent on the problem, nobody succeeded in developing mechanical systems that were completely practical. As carly as 1928 , a QST author was pointing out the possibilities of electronic television, using the then rare-andexpensive cathode-ray tube. The days of the scanning disk were numbered.

But predicting the coming of electronic television and bringing it about were two quite different matters. Though it had become fashionable, by 1931, to say that "Television is just around the comer," the cathode-ray tube was a laboratory curiosity, and it was to remain so for some years to come, as far as most amateurs were concerned. Not until 1937 was the subject of

An actual $440-\mathrm{MHz}$ TV picture transmitted with the equipment shown in Fig. 15B-2.

Fig. 15B-1 - Block diagram of the television system used by W2BK, formeply W2LNP. (From QST. June, 1950.)
television to appear again in QST. By then the problems involved in electronic telovision were gradually being solved. Usable components were beginning to appear, and television cxperimental work loomed as a possible field for the more advanced amateur. For more than two ycars almost every issue of QST carried something on tclevision, but it was mostly concemed with the receiving end. The gencration of a television picture for transmission was still considered to be beyond the radio amateur, until moderately priced iconoscope tubes were introduced for amatcur use in 1940. Television transmitter and camera design were treated extensively in QST for 1940.

The highly involved and expensive process required in getting on the air for actual television communication was just too much for most amateurs, and progress in amateur television slowed to a standstill until well into the postwar period. At that time, availability of most of the needed components on the surplus markel gave amateur television the push that it had always needed, and the period since 1948 has seen more amatcur TV activity than existed in all previous years combined. By 1960, color-TV signals were being transmitted by amateurs.

From several cities in this country has come news of activity in amateur television. Much of the effort has been concernce with transmitting. The trend in this country has been to use tramsmisting systems that would tie in with those employed in commercial services, so that ordinary home telcvision receivers could be used for amatcur work by the addition of a simple converter. In this country amateur TV is limited to the frequencies from 420 MHz up. because of the bandwidth involved.

A Novel Way to Get Started

The cost and complexity of TV gear has so far left most amateurs convinced that television is not for them, but ways lave been found to cut corners. There have been several ideas developed for bringing the transmission of television nearer to the abilities of the average experienced ham. One such simplified system was developed by J. R. PopkinClurman, W2LNP. later to become W2BK. This system simplifies malters for the ham who would like to transmit transparencies (film negatives or positives, movies, diagrams, visual messages) without going into the complexities of camera design and construction. It also lets a local TV station and a standard TV recoiver do some of the work, as shown in block-diagram form in Fig. 15B-I. A standard TV recuiver is tuned to a local station and the lead from the receiver video amplifier to the cathode-ray tube is disconnected and the output of the amplificr is fed to a blanking generator. The outpat of the blanking generator is applied to the receiver cathode-ray tube, the raster of which is used as a light source.

In the simplest form of picture transmission, a transparency is placed directly on the face of the cathode-ray tube, which for this purpose can be almost any type, including those with P-7 phosphor. Light from the raster, passing through the transparency, is picked up by a photo tube and multiplier and fed to a video-amplifier unit that includes a high-frequency peaker and possibly a video phase inverter. The latter is used only if it is desired to transmit negatives in positive form. After passing through a clipper and blanking inserter and a mixer, the signal is ready for the modulator and transmitter. Sound and video are

Fig. 15B-2 - The transmitting portion of a complete ATV station. The video system utilizes a modified RCA TV Eye closed-circuit camera and control unit, shown at the left. The $440-\mathrm{MHz}$ TV signal comes out the BNC connector at the end of the mixer-amplifier chassis. The power supply and bias battery are also visible in the photograph. (From QST, November, 1962)

Uansmitted on the same channel, first by frequency modulating a $4.5-\mathrm{MHz}$ oscillator. The $420-\mathrm{MHz}$ transmitter is modulated simultaneously with this signal and the video, by means of the vidco-sound modulator.

The signal thus transmitted has all the characteristics of a commercial video transmission, and may be received on any standard home television receiver equipped with a $420-\mathrm{MHz}$ converter. In the absence of a local TV station it is merely necessary to derive the sync and blanking from the receiver's own sweep circuits. In this case the picture will have only 262 lines, noninterlaced. It retains the same horizontal resolution, but the vertical resolution is reduced. In this type of operation it is desirable to sync the vertical to the $60-\mathrm{Hz}$ power supply, to reduce hum effects.

The photo tube may be a 931 - 1 multiplier type, available as surplus. The output of the photo tube is fed into a series of video amplifiers, one of which is a high-frequency peaker. This is necessary to compensate for the build-up and decay times of the cathode-ray tube's phosphor screen.

The if scction of the transmitter is crystalcontrolled. The receiver has a crystal mixer and a 6 J 6 oscillator, followed by a cascode amplifier working into a home television receiver. The channel used for the $i-f$ should be one that is not in use locally, and should be in the low.TV band for best results.

The system may be adapted for transmission of movies. A Cilm-projector light source is removed, and the photo tube installed in its place. A $60-\mathrm{Hz}$ synchronous motor is used to drive the film sprocket and the film is run at 30 frames per second instead of 16 or 24 . It is necessary to blank the raster during the film pull-down time. Pictures of live subjects may also be transmitted by projecting the light from the raster on the subject
and collecting the reflected light with a condensinglens system for the photo tube. Considerably greater light is needed than for transparencies, and a 5 TP4 or a 5 WP15 projection cathode-ray tube, with its associated high voltage, is suitable.

Adapting Closed-Circuit TV Systems

By adapting closed-circuit TV systems, a number of amateurs have bcen able to get a picture on the air without having to struggle with cut-and-try methods, not to mention the mechanical problems of camera construction. A manufactured TV camera and control unit are used, along with homebuilt rf sections necessary for the ATV station. Such a system is not restricted to sending slides or stills. It is capable of transmitting a moving picture of professional quality. Such a station is shown in Fig. 158-2.

Many closed-circuit TV cameras provide a picture signal on any regular TV channel from 2 to 6, inclusive. In a typical system, the camera contains a vidicon camera tube, a threc-stage video amplifier, a video output stage, a $55-$ to $85-\mathrm{MIl} z$ tunable oscillator, and a modulator stage that combines the rf, video, and sync signals from a control unit. The control unit contains the horizontal and vertical deflection circuits for the vidicon tube, a protective circuit that prevents damage to the vidicon in the event of a sweepcircuit failure, a blanking and vertical sync stage, and the power supply. For use in an ATV station, most amateurs choose to modify the camera oscillator circuit to provide crystal-controlled operation on a locally unused low TV channel. In this way, a regular TV receiver can be used as a monitor. The video-modulated rf signal from the camera is fed through amplifier and mixer stages to derive the transmitted video signal. For reception, a converter is used ahead of a regular TV receiver.

SLOW-SCAN TELEVISION (SSTV)

Because of the required bandwidth, amateur TV transmissions in this country are limited to the frequencies above 420 MHz . With essentially line-of-sight propagation of signals at these frequencies, it has always been necessary for an amateur wishing to engage in ATV to interest another local

Fig. 51C-1 - A typical slow-scan TV picture.

amateur in this mode, or for him to work into a local group which may already be active if he did not wish to transmit pictures merely for his own amusement. For this reason, ATV has had little to offer to the amateur who lives in a sparsely populated aroa, perhaps hundreds of miles from any large city. Slow-scan TV, on the other hand, offers a great dcal. By using voice-channel bandwidths, SSTV transmissions may be used in any amateur band except 160 meters. The amateur in the sparsely populated area can exchange pictures with the fellows in the big city, the next state, or even with fellows in other countries.

Work in the area of SSTV was pioneered by a group of amateurs headed by Copthorne Macdonald, W4ZII (later to become in succession, WA2BCW. WADNLQ, WA2FLJ, and WIGNQ. The first of Macdonald's several articles on the subject appeared in QST in 1958. Early on-the-air tests took place in the then-available 11 -meter shared band, the only hf amateur band where "facsimile" transmissions were permitted. The video information was transmitted as amplitude
modulation of a $2000-\mathrm{Hz}$ subcarricr tone, which in tum was fed into the speech-amplificr circuits of a conventional transmitter.

The loss to U.S. amateurs of the $27-\mathrm{MHz}$ band in September 1958 did much to dampen the enthusiasm of would-be slow scanners. However, special temporary authorizations were granted by the FCC to a few amateurs for the purpose of making experimental SSTV transmissions, first on 10 metors, and later on 20 meters. Tests by WA2BCW and others in 1959 and 1960 indicated that signal fading and interfering transmissions from other stations caused considerable degrading of pictures received from subcarrier a-m (scam) transmissions. This led to experiments with subcarrier $\mathrm{fm}(\mathrm{scfm})$ transmissions, and the superiority of this technique for average propagation conditions was immediately recognized. The resulting standards proposed by Macdonald in January 1961 have since been adapted and are in use today (see Table I). In the sefm system, the frequency of the audio tone conveys the video information, with 1500 Hz representing black and 2300 Hz representing white. Intermediate shades of gray arc transmitted with intermediate-frequency tones. Tones of 1200 Hz (ultrablack) are used to transmit vertical and horizontal sync pulses. The success of experiments in the mid '60s on 20 meters with scim, and especially the fact that SSTV occupies a normal voice-channel bandwidth with no side-frequency products to cause interference on adjacent chanrels. led to changes in the FCC rules.

SSTV Emissions

Since August 1968, narrow-band AS and FS emissions (SSTV) have been permitted in the Advanced and Extra Class portions of 75, 40, 20 and 15 meters, in all but the cw-only portions of 10,6 , and 2 meters, and the entire amateur range above 220 MHz . The regulations permit the transmission of independent sidebands, with picture information contained in one sideband and voice in the other. Few amateurs today are equipped for this type of operation, however. The usual practice is to intersperse picture transmissions with voice transmissions on single sideband.

A stipulation in the U.S. regulations limits the bandwidth of A5 or F5 emissions below 50 MHz ; they must not exceed that of an A3 single-sideband emission, approximately 3000 Hz . This precludes the usc of an $\mathrm{a}-\mathrm{m}$ transmitter with the standard SSTV subcarrier tones. Most amateurs operating in the hf bands feed the video information as a varying-frequency tone into the microphone input of an ssb transmitter, and with carricr suppression, F5 emission results. A seldom-used but quite fcasible alternative is to frequency modulate an rf arcillator with video signals from the camera.

Because of the narrow bandwidth used, tape recordings of SSTV video signals can be made with an ordinary audio tape recorder running at $33 / 4$ inches per second. Nearly every slow scanner preserves some of his on-the-air contacts on tape, and most prepare an interesting progran) to be transmitted. A good number of amateurs begin

The SSTV Viewing Adapter with the top cover removed. The adapter may be constructed on Vectorbord, as shown. The transformer near the rear (left) is in the power supply circuit: the one near the front is in the video detector stage. On the front panel are the power switch and indicator, the manual vertical-sweep push button, and vertical sync control. Phono jacks on the rear panel are for zonnections to the oscilloscope and receiver. Two banana jacks are used for the CRT connections, COriginally described in QST for June, 1970, by W7ABW and W7FEN.)
making two-way picture transmissions while equipped with nothing more than a receiving monitor and a tape recorder, in addition to ordinary station equipment. In lieu of a camera, thicy enlist the aid of a friend having the proper equipment to prepare a taped program which is sent during transmissions. Because of the slow frame rate with SSTV (one picture every 7 or 8 seconds), live pictures of anything except still subjects are impractical. Viewing a series of SSTV frames has frequently been compared to viewing a series of projected photographic slides.

Experiments are currently being made with the transmission of color pictures by SSTV. Various techniques are being used, but in essence the process involves the sending of three separate frames of the same picturc, with a red, a blue, and

TABLE I

Amateur Slow-Scan Standards

60-Hz Areas $50-\mathrm{Hz}$ Areas
Sweep Rates:

Horizonial	15 Hz	$162 / 3 \mathrm{~Hz}$
	$(60 \mathrm{~Hz} / 4)$	$(50 \mathrm{~Hz} / 3)$

Vertical 8 sec
($50 \mathrm{~Hz} / 3$)
No. of Scanning Lines
120
7.2 sec .

Direction of Scan:
Horizontal
Vertical
Left to Right Left to Right Top to Bottom Top to Bottom Sync Pulse Duration:

Horizontal

Vertical
Subcarrier Freq.
Sync
Black
White
Req. Trans.
Bandwidth
5 millisec. 5 millisec.
30 millisec. $\quad 30$ millisec.

1200 Hz	1200 Hz
1500 Hz	1500 Hz
2300 Hz	2300 Hz

1.0 to $2.5 \mathrm{kHz} \quad 1.0$ to 2.5 kHz

Fig. 1 - Schematic diagram of the slow-scan adapter. Capacitors with polarity indicated are electrolytic, others are ceramic or paper, except as indicated. Variable resistors are composition controls, linear taper. Resistors are 1/2-watt.
C1 $-4-\mu \mathrm{F}, 25$-volt, nonpolarized iantalum.
C2-2- μ F, 25-volt, Mylar.
J1-J3, incl. - Phono jack.
L1, L2 - Variable inductor, approx. 200 mH (Miller 6330, UTC HVC-6, or Stancor WC-14).
L3 $\mathbf{- 1 0 - H}$, low-current chake, 3000 -vott insulation from ground (Burstein-Applebee 18A959).
a green filter successively placed in front of the camera lens for each of the three frames. At the receiving end of the circuit, corresponding filters are used and each frame is photographed on color film. After a tricolor exposure is made, the photograph is developed and printed in the normal manner. The use of Polaroid camera equipment with color film is popular in this work because it affords on-the-spot processing. Color reproduction by this technique can be quite good.

SLOW-SCAN TV VIEWING ADAPTER FOR OSCILLOSCOPES

The slow-scan TV adapter shown in Figs. 1-4, incl., permits the ham with an oscilloscope to view slow-scan TV with a minimum of investment and effort. The adapter has been used successfully with several oscilloscopes, including the Tektronix 514, Dumont 304, Heathkit IO-18, Heathkit 10-10, and a Navy surplus scope, OS-8B.

Q1-Q9, incl. - 2N718, 2N697, 2N2222, or 2N3641-3.
T1 -6.3 -volt, low current, 3000 -voit insulation.
U1 - Operational amplifier [Fairchild $\mu A 709$. Texas Instruments SN6715 or Motorola SC4070G).

The oscilloscope's horizontal scan must be able to synchronize from an extemal trigger at 15 Hz . The scope should have a de vertical ingut that will accept 10 volts. If the scope does not have a dc input, the vertical deflection amplifier may be able to be driven directly. The circuit shown in Fig. 3 was used with the Heath IO-18. This arrangement should be adaptable to other scopes not having a dc input, but R1 and R2 would have to be scaled to provide proper centering.

Most oscilloscopes have cathode-ray tubes with a P1 phosphor. The P1 phosphor is of short persistence, which is not suitable for slow-scan TV. Therefore, the P1 tube should be replaced with a P7-phosphor tube which has the long persistence required. The last two characters of the CRT type usually indicate the phosphor, and most types are available in several different phosphors. The Heath 1O-18 uses a SUP1 which was replaced with a 5UP7 at a cost of less than $\$ 15.00 .1$ If a direct substitute cannot be found, it may be possible to find a

Fig. 2 - At A, a circuit which may be added to increase the contrast of the SSTV adapter, and at B. an alternative circuit using surplus $88-\mathrm{mH}$ toroidal inductors for L1 and L2. If the circuit of A is used, the 18,000- and 22,000-0hm resistors shown connected to the base of Q1 in Fig. 1 are unnecessary.
surplus CRT of another type which will function. The Dumont 304 used a SABP1 CRT, which was replaced with a 5CP7. This CRT was obtained on the surplus market for less than $\$ 5,00 .^{2}$ If the purchase of a new oscilloscope is anticipated, a P7-phosphor cathode-ray tube should be requested.

Adapter Circuit Design

The schematic diagram of the slow-scan TV converter is shown in Fig. 1. The slow-scan signal from the audio output of a communications receiver, tape recorder, or other source is fed into the input of an integrated-circuit operational amplifier having a gain of 300. Therefore, a 0.1 -volt ac peak-to-peak signal causes the amplifier to limit at the supply voltages, and the limited output will be approximately 28 volts ac peak-to-peak. The limited signal is then fed to a series video discriminator. The output of the video discriminator is fed to Q1, a vidco amplifier with a 6.3 -volt ac filament transformer as a collector load. The transformer is used to provide voltage step-up. A transformer with 3000 -volt insulation from ground is used, as the CRT grid circuit has a 1400 -volt potential which must be insulated from ground. The video is then full-wave rectified and fed to a $1000-\mathrm{Hz}$ filter. The output video dc is then connected across the scope CRT's series grid resistor to modulate the CRT intensity.

The output of the video discriminator is also fed to a $1200-\mathrm{Hz}$ sync discriminator. This circuit passes only the $1200-\mathrm{Hz}$ sync pulses. The $1200-\mathrm{Hz}$ sync pulses are then rectified, filtered and fed to a two-stage amplifier, Q2 and Q3. The,output of this squarer provides 15 -volt sync pulses.

A 5 -volt sawtooth voltage is required for vertical sweep on the oscilloscope. This voltage should have a very fast rise time and a linear decay. A sync separator circuit is used to separate the 30 -ms vertical pulses from the $5-\mathrm{ms}$ horizontal pulses. The vertical pulses are fed into the vertical trigger, a one-shot multivibrator. Provision is made

[^31]for manually triggering the vertical sweep with a front-panel push button, S1, in case a vertical sync pulse is missed. The multivibrator triggers a transistor switch, Q6, that instantaneously charges C2 every time a vertical sync pulse is received. This capacitor is discharged at a linear rate through Q7. The base of Q7 is biased by two diodes at 1.2 volts. Thus, the current through the 0.47 -megohm emitter resistor is held at a constant value, giving a linear voltage discharge across C2. This sawtooth voltage is sampled by a Darlington transistor follower, Q8 and Q9, whose output will sweep from 10 to 5 volts dc when receiving slow-scan TV. The valuc of 5 volts was chosen so that when a signal is not present, the dot on the scope CRT will be off the screen.

If the capability for high contrast is desired, the video signal level may be increased by adding a 2N718 transistor ahead of Q1, as shown in Fig. 2A. For those who wish to use $88-\mathrm{mH}$ toroids in place of the variable inductors, L1 and L2, the circuit of Fig. 2B may be used.

Construction

The layout is relatively noncritical with the exception of the 6 -volt ac filament transformer which will have high voltage on the secondary, so necessary precautions must be taken. It should be mounted away from the power transformer to minimize hum pickup. High-voltage wire is used to bring the CRT grid connection into the unit. Sockets were used for the IC amplificr and transistors; however, the components can be soldered directly into the circuit. The vertical-scan output lead should be shiclded. Several types of transistors may be used; the circuit was designed for devices with a minimum beta of 50 . A variety of integrated operational amplifiers may be used; however, the 709 was chosen because of its low cost and availability.

Scope Modification

The potential between the CRT's control grid and the cathode varics the intensity. The control

Fig. 3 - Amplifier circuit to provide a dc vertical inpui far ac-only ascilloscopes. Capacitors are ceramic, and resistors are $1 / 2$-watt. The switch, S1, may be any convenient type. The operational amplifier, U1, is a Fairchild $\mu \mathrm{A} 709$. R1 and R2 should be adjusted in value to give proper centering, if necessary.
grid usually has an isolation resistor in serics with the negative voltage lead. Video from the converter is connected across this resistor to vary the intensity of the CRT. This resistor should be at least $100 \mathrm{k} \Omega$. If it is not this large in the existing scope circuit, it should be changed. This will have no effect on the scope's operation, since this control grid draws no current. There is usually ample room on most scopes to install two additional insulated jacks on the terminal board that has the direct deflection-plate connections.

Adjustment

1) Connect the scope's vertical input to test point 1.
2) Connect a $2350-\mathrm{Hz}$ signal to the input and adjust the video discriminator coil L! for minimum indication on the scope. This is usually with the slug fully inserted.
3) Connect the scope to test point 2. Change the input to 1200 Hz and peak the sync discrimina-

Fig. 4 - Power supply for the adapter. Capacitors are electrolytic. Resistors are $1 / 2$ watt unless otherwise specified.
CR1-CR4, incl. - Silicon type, 200 PRV or greater (Motorola 1 N4002, 1 N4004 or 1 N 4007).
CR5, CR6 - 15 -volt, 1 -watt Zener ICentralab R4128-4, Unitriode Uz715).
P1 - Fused line plug.
S1 - Toggle.
T1 - 40-volt ct, 100 mA (Triad F90X).
tor coil L2 for maximum indication on the scope. Connect a dc voltmeter between the collector of Q3 (sync level) and ground. With a $1300-\mathrm{Hz}$ tone fed to the input of the adapter, adjust the 50,000 ohm sync adjust control to the point where the de volimeter just reads +15 volts.
4) Make the connections from the adpater to the oscilloscope's external sync, vertical input, and the CRT grid.
5) Connect the adapter's input to the receiver or tape recorder.
6) Set the contrast control at midposition and the sync control to maximum.
7) Adjust the scope's sweep to 15 Hz for trigger lock.
8) Adjust the size of the raster with the scope horizontal and vertical size controls until a square raster is obtained.
9) Adjust the adapter contrast and the scope intensity controls until a clear picture is obtained. If the picture is negative, the connections to the CRT grid should be reversed.
10) When a picture is obtained, the sync level should be adjusted to a point just before sync is lost. This will eliminate false triggering when copying weak signals and, if a vertical sync pulse is missed, the manual trigger can be used.

The finished adapter can be finally tested in several ways:

1) Tune to one of the SSTV frequencies listed below and look for a station transmitting SSTV. Tune the signal as you nomally would for ssb. It is a good idea to tape-record a few pictures off the air - they then can be played back as often as necessary while adjusting the adapter.
2) Send a blank recording tape (with return postage) to any amateur who is equipped with an SSTV flying-spot scanner or camera. All amateurs in this field are happy to make a tape to get a newcomer going.
3) Listen to the SSTV frequencics. You may find a nearby amateur is on the air with SSTV. You can take your adapter to his shack to try it directly on a picture generator.

The slow-scan TV adapter has given good pictures on the scopes tried. A hood sbould be provided around the CRT face for direct viewing. Scopes with CRT tubes that have an accelcrator will provide a brighter scan. The Heath 10-18 scope uses a CRT without the accelerator, and the brightness was noticeably less than others tsied.

At the present time, most SSTV operation takes place on 20 meters, on or above $14,230 \mathrm{kHz}$. Local nets operate on 3845 kHz . Other hf calling and working frequencies are $7171,21,340$, and $28,680 \mathrm{kHz}$. IIn the U.S., SSTV omissions are authorized in the Advanced and Exera Class portions of all hf phone bands.I Stations from all continents are to be found on SSTV. The DX capability of SSTV is being demonstrated daily by picture exchanges between the U.S. and Canada and foreign amateurs.

Facsimile

FACSIMILE

Facsimile (FAX) is an electronic or electromechanical process by which graphic information is transmitted by wire or by radio to a distant receiving point, where it is recorded in a permanent printed form. Common uses of FAX include the transmission of maps, schematic diagrams, drawings, photographs, and other fixed images. At the present time, amplitude modulated facsimile (A4) is permitted in the U.S. on six meters betwoen 50.1 and 54.0 MHz , on two meters between 144.1 and 148.0 MHz , and on all amateur frequencies above 220 MHz . Frequency modulated facsimile (F 4) is permitted on all amateur frequencies above 220 MHz .

FAX TRANSMISSION

The most common method of converting written or printed images into the clectrical signals used for modulating a transmitter involves photoelectric scanning. The material to be transmitted is wrapped around a cylinder or drum which is rotated about its longitudinal axis, while a tiny spot of light is projected on the surface of the material. The reflected light from the subject copy is focused on a photoconductive tube or photomultiplier. The amplified output of the phototube is an electrical analog of the varying light intensities reflected from the information being scanned. Each rotation of the drum provides one scanning line. As the drum turns, it is slowly moved laterally by a lead screw, causing slight separation of adjacent scanning lines. In this manner, the scanning beam strikes the subject copy in the form of a helix.

The band of frequencies that the output of the phototube occupies is called the baseband. The baseband ordinarily consists of varying dc levels (which represent the range of densities from white to black on the copy) and frequencies in the low audio and subaudio range (which arise from the rapid transitions between the various densities encountered by the scanning beam). On some systems, maximum output is interpreted as white, minimum output is interpreted as black, and intermediate values represent shades of grey. Other systems use the opposite scheme. The baseband signal may be used to vary the frequency of a voltage-controlled oscillator, in order to generate an fm subcarrier (not unlike an SSTV subcarrier) in which the highest frequency represents white, the lowest frequency represents black, and intermediate frequencies represent grey (or vice-versa). Alternatively, the baseband signal may be used to vary the amplitude of a constant-frequency subcarrier.

A nother method sometimes used is to interrupt the reflected light from the subject copy by placing a chopper wheel between the light source and the phototube. If the light is interrupted 2400 times per second, the output of the phototube is an amplitude modulated $2400-\mathrm{Hz}$ subcarrier. This system is used in the Western Union Telefax transceivers described later in this chapter.

The Telefax transceiver with cover removed. The shaft along which the drum traverses is visible at the left of the drum. The photo-optic assembly may be seen on the right-hand side of the chassis. just behind the drum.

RECEIVING FAX

Most FAX recejving systems available to the amateur operate on an electromechanical basis. Received a-m subcarrier signals may be demodulated with a diode or other envelope detector. Fm signals are first passed through a limiter to remove amplitude variations, and then through a discriminator and detector. The outpul from the detector in either case is a varying dc signal corresponding to the lightness and darkness variation in the subject material. There are several methods currently used to transfer the varying dc signal into a printed record of the original copy. Some of the more common processes include the usc of electrolytic paper, electrothermal paper, and photosensitive paper.

The action of electrolytic paper is based on the change of color that results from the passage of an electric current through an iron stylus and paper treated with a special electrolyte. A shect of paper is wrapped around a metal drum on the receiving machine, and the amplified signal voltage is applied between the pointed stylus and the drum. The variation in current caused by the signal voltage appears as variations in the darkness of the paper. The drum rotates, and simultaneously either the drum or the stylus moves laterally, in order to separate the adjacent lines. A drum and stylus are used with electrothermal paper, which has a coating that breaks down chemically when an electric current passes through it, and changes color according to the strength of the current. A lamp replaces the stylus when photosensitive paper is being used. The demodulated signal voltage is used to modulate the intensity of the light source, which exposes the paper. The paper is usually wrapped around a rotating cylinder (as in the previous cases). After exposure, the paper must be processed in a darkroom. Many modern facsimile recorders use a "flat paper" process whereby it is not necessary to place the sensitive recording material around a cylinder. Instead, the paper is continuously drawn from a roll across a flat "writing surface," and an electrode moves across this surface in synchronism with the drum revolution speed at the transmitter.

Synchronization

It is important that the speeds of the FAX transmitter drum and FAX receiver drum be as close to identical as possible. Failure to match the speeds will result in diagonal tearing or skewing of the received copy. In practice, synchronous motors locked to the frequency of the $60-\mathrm{Hz}$ ac line are used to drive both the drum and the lead screw on a machine.

Phasing

While synchronization ensures that the received FAX picture is spatially consistant with the subject copy being transmitted, it is also important that the start of each scan line coincide with the edge of the paper on the receiving end. If this is not done, the possibility exists (in fact it is probable) that the received image will run off the edge of the paper. Thus, it is necessary for the transmitting machine to send a series of phasing pulses prior to sending the actual picture.

CONVERSION OF TELEFAX TRANSCEIVERS TO AMATEUR SERVICE

Conversion of a telefax transceiver is easy to do. First, temove the cover and check the tubes in a tube tester. Check to see if you have a stylus. If necessary, replace the stylus with carbon-steel wire only. A wire brush is a common source of stylus wire.

Remove the exciter lamp, clean its opening, and set it aside in a safe place. These lamps are hard to obtain. Carefully remove the lamp telescope, then remove the lenses, and clean them. Be sure to replace tive lenses in the same direction as they came out. Replace the telescope and exciter lamp. Plug in the $117-\mathrm{V}$ line cord and push the white outgoing button to turn on the lamp. Focus the light spot on the dram by moving the telescope back and forth.

Remove the photo-tube telescope and clean both lenses, then reassemble. Turn on the lamp and focus the telescope image on the pinhole at the back of the telescope tube assembly. Put a paper with typed letters on the cylinder. Focus the edge of a letter on the pin hole. This is very important if you are to send sharp pictures.

Remove the bottom plate and solder a . $01-\mu \mathrm{F}$ disk capacitor from the junction of the 2000 ohm and 2700 -ohm resistors in the cathode circuits of the $12 \mathrm{AX7}$ tube to ground. This keeps rf out of the video amplifier. Clip one of the leads of the $51-\mathrm{ohm} 2$-watt resistor on the INCOMING pushbutton switch. The other two leads can also be clipped and the switch can be used to switch the line between your mic and the receiver's audio output.

Clip the wire coming from relay LR, the normally closed contact, and going to relay HR, the moving contact. Clip the wire on the rear of
the outgoing push button, the normally open contact. Run a wire from this contact to the moving contact of relay HR just made available. See Pig. 1. These changes assure proper operation of the tranmit-receive relay.

Remove the ACKNOWLEDOE push button, solder the leads together, and insulate them with spaghetti or tape. In the push-button hole, mount a spdt toggle switch. Disconnect the leads going to the contacts of relay LR (line relay). Run three wires from the spot switch to the three leads at relay LR, replacing the relay function with the switch. Now, when you close the switch, the carriage mechanism for the drum will feed. If your transmitter is keyed with a push-to-talk switch, you may use a dpdit switch, with the second pole to key the PTT line. This will key the transmitter automatically at the start of the scan.

Carefully remove the line transformer and remount it on the rear apron of the chassis in a vertical position behind relay LR. In the original position, the "gray motor" on the chassis above the line transformer will induce hum into the video signal. Solder the shield leads at the old linetransformer location, red to red and black to black. Run two shielded leads from the secondary of the line transformer through the nearby hole in the reas apron and to the LINE terminal strip. Hook a shiolded lead to the LINE terminals of the line transformer for connection to your rig's mic jack and speaker leads.

It may be necessary to replace the stylus shielded lead. The old rubber-insulated shield may have become very leaky. Also it's a good idea to replace the lead from the 6V6 tube to the plate choke.

Fig. 2 - Addition of a fiber-optics light pipe for transmission of positive pictures.

Positive Pictures

Fig. 2 shows a modification for sending positive pictures. Mount a short piece of fiber-optics light pipe between the excitor lamp and the chopper wheel. The light pipe is easily held in place by wrapping it with No. 14 wire, placing the wire under the two telescope screws, as shown in Fig. 2. Carefully position the light pipe so it shines through a sot in the chopper wheel when the pin-hole light is cut off by the chopper. Connect an oscilloscope or ac voltmeter to the LINE leads and move the light pipe nearer to or farther from the exciter lamp untll the scope or meter shows a null. Fig. 3 shows an experimentally derived circuit which will send sync pulses when in the OUTGOING mode before picture scanning begins. This circuit also receives sync pulses before scan begins to synchronize the drum angle.

Fig. 3 - Circuit modification for sending or receiving sync information before picture scan bagins. These modifications were originally described by W7OCV in QST for May, 1972.

EEEEVY AS MDICATED, DRCIMAL VAKUES OF CADACITANCE ARE IN MICROPARADS (mP):

 - 1000. MoI000 000 .

SPACE COMMUNICATIONS

The use of vhf and uhf frequencies for intermediate and long distance communications has become possible through space communications techniques. There are basically iwo types of systems: passive and active. A passive system uses a celestial object such as the moon or an artificial reflecting satellite to return signals to earth. An active system consists of a space vehicle carrying an electronic repeater.

THE MOON AS A PASSIVE REFLECTOR

Communication by reflecting signals off the lunar surface has drawn the interest of an increasing number of amatcurs in recent years, despite the considerable challenge such work represents. The requirements for earth-moonearth (EME) communication are fairly well known. Overcoming the extremely high path loss of the EME circuit calls for close to the maximum transmitter power output obtainable with one kilowatt input, the best possible receiver, and very large high-gain antennas. The highest practical receiver selectivity is helpful, and visual sigual-readout is often employed.

These requirements contribute their own problems. Narrow bandwidth demands exceptional frequency stability and calibration accuracy in both transmitter and receiver. High antenna gain means narrow beamwidth, in a system where a slowly moving target that is often invisible must be hit. And even when all demanding conditions are satisfied, the best one can expect is a signal barely distinguishable in the noise.

But the rewards are considerable, for the EME circuit provides whr and uhf communications po-

Fig. 15E-1 - Sarallite altitude above earth versus ground station map range (stature miles).

Fig. 15E-2 - Satellite passes through the range of two stations, enabling contact.
tential for any two points on earth where the moon is above the horizon. A surprising number of amateurs have accepted this supreme challenge, and before the end of 1970, all amateur bands from 144 to 2300 MHz had been employed successfully for lunar communications.

SATELLITES

Exciting communications possibilitics are afforded through the use of amateur satellites. They function much in the same way as terrestrial repeaters, to relay signals over greater distances than normally feasible. (See chapter 14.) With satellites, the area is usually international in scope. Thus, DX communication on frequencies unable to support ionospheric propagation is possible.

Three amateur communications satellites have been orbited to date. Oscar 3, used in early 1965, was a $144-\mathrm{MHz}$ in-band repeater; Ostar 4, launched in late 1965 , repeated $144-\mathrm{MHz}$ signols in the $420-\mathrm{MHz}$ band: Oscas 6, launched in October, 1972, is a long-lifetime translator, repeating $144-\mathrm{MHz}$ signals in the $28-\mathrm{MHz}$ band. Oscars 1,2 , and 5 were beacon satellites for scientific and training purposes.

Current amateur plans for sutellite systems involve the ase of the $28-144$-, and $420-\mathrm{MHz}$ bands. Crossband repeaters are favored. Thus, expected combinations might be: 144 uplink, 28 downlink: 420 uplink, 144 downlink: or 144 uplink, 420 downlink. There is a trend toward designing amateur satellites with higher system gains (i.e., higher sensitivity and greater output). The objective is to permit the use of these satellites. by average-sized amatcur ground stations. Future satellite lifetimes of one year or more can be expected. Effort will be made for successive satellites to utilize similar frequency combinations to alleviate the need for equipment changes in ground stations.

A principal factor in determining how far one can communicate via a particular satellite is the orbit. Higher altitude orbits put the satellite within tine-of-sight of greater areas of the earth. Fig, 15E-1 can be used to determine your map range for a satellite according to iss altitude. For example, a satellite at 910 miles would give a map range of 2450 mites. For iflustration, draw on a map a circle centered on your location with a radius equal to the map range. Each time the satellite is directly over any point

Fig. 15E-3 - Satellite transmitter frequency versus Doppler shift for satellite in 200- or 1000 -statutemile orbits. For a translator, use the difference between uplink and downlink frequencies as the "frequency."
within this circle, you will be able to use it for communication. Contact can be made with any other station having the satellite within its range at the same time. This is shown in Fig. 15E-2. Thus the maximum map distance for communication would be about two times your map range.

The time duration for which a satellite will be within your range depends on two factors: the satellite's altitude and the distance between the subsatellite point (the point on the earth directly below the satellite) and your station. Higher altitude orbits increase the size of your range or acquisition circle, thus providing longer exposure to the satellite: Also, the longest duration for any given altitude will occur on orbits which pass directly over the station location. For example, a satellite in a 1000 -mile orbit would be line-of-sight to a ground station for about 25 minutes on an overhead pass. At a map range of 1000 miles the duration would be 20 minutes, and at 2000 miles, availability would be about 10 minutes.

Conventional transceiver-type operation may offer some problems with satellites because of the Doppler phenomenon. Separate frequency control of the ground station's transmitter and receiver is desirable. (In some cases an "incremental tuning" feature on a transceiver will suffice.) Doppler is a frequency-shifting effect resulting from the motion of the satellite. It is a function of the transmitting frequency and the velocity of the satellite relative to the observing station. (Velocity is further a function of satellite's altitude.) Fig. 15E-3 compares Doppler shifts for frequencies up to 500 MHz for satellites in 200 and 1000 -statute-mile orbits. The reason why Doppler shift requires a special consideration with transceiver operation is because two stations in contact would go through a series of frequency compensations, thus "walking" themselves across (and perhaps out of) the band! The frequency of a satellite moving toward a ground station appears higher than the actual satellite transmitter frequency. It drops as the satellite nears the ground station. At the exact point of closest approach, the observed frequency will be the same as the true frequency. Past this point, the
satellite's signal will continue to drop lower in frequency as the satellite moves away.

There are two types of repeaters likely to be employed in future amateur satellites. A channelized repeater for fm would operate much like the ground-based fm repeaters used by amateurs; one station could use a channel at a time. Several contacts could be accommodated by a multichannel satellite. The other approach is called a frequency translator. It receives a segment of one band, say 100 kHz at 144 MHz , and retransmits the segment on another band, say 28 MHz . With a frequency translator, as many contacts as can be accommodated by the translator's bandwidth can take place simultaneously, and all modes can be used. Doppler shift from the frm repeater would be the same as expected for a transmitter on its downlink frequency. With a translator, however, the amount of Doppler shift is influenced by both the up- and downlinks. By employing a frequency inversion technique in the satellite's design, these amounts of Doppler will subtract; the resulting shift is then found from Fig. 15E-3 by using the frequency difference between up- and downlinks.

An aid to satellite communication is to monitor your own downlink signal coming from the satellite, while you are transmitting. This permits you to avoid interference from other stations, to compensate, where appropriate, for Doppler shift, and to adjust your transmitter power and antenna direction for maximum efficiency in sharing the satellite's output.

Best results in satellite communications are achieved when the ground-station antenna is pointed directly at the satellite. Movement of the antenna in elevation as well as azimuth is necessary. An easier alternative, providing adequate results, is also available. It is the use of a medium-gain antenna (about 10 dB) pointed at a fixed elevation of about 30 degrees and rotatable in azimuth. The beamwidth of such an antenna will

Fig. 15E-4 - Satellite altitude versus its period (time for one revolution) and speed.
allow satisfactory performance with most passes of the satellite. In the case of synchronous satellites, where the spacecraft maintains the same position relative to the obscrver, even the azimuth rotation can be eliminated - the antenna can be in a fixed position. However, greater antenna gain will most likely be needed in this case to compensate for the greater path loss from a satellite in such a high-altitude orbit.

Another antenna consideration for satellite communication is the use of circular polarization. Because the plane of a wave is rotated as it passes through the ionosphere, cross-polarization can occur between two linearly polarized (i.e., horizon-
tal or vertical) antennas. This is called Faraday rotation. A circularly polarized antenna (such as a crossed-dipole, crossed-yagi, or a helix) at either the ground station or the satellite serves to minimize the effect.

Late Information

QST carries information about recent developments in Oscar. Since ground station requirements are dependent on the bands, modes, etc. used by the satellite, the amateur wishing to become equipped for space communication should consult ARRL headquarters to determine current amateur satellite plans.

PHONE PATCHING

A phone patch is an interconnection made between a radiotelephone system and a wire-line telephone. When the patch is made properly, the radio link and the wire line will effectively extend each other. Phone patches have provided vital communication when a natural disaster has caused disruption of normal communication facilities. More commonly, phone patches permit men in service or on scientific expeditions to talk with their families. Few activities can create a more favorable public image for amateurs than to bring people together in this way. Such public service is always appreciated. Amateurs are using phone patches for their own convenience, too. A phone patch might be used to talk with a friend in a distant city or to make a phone call from a car. In the latter case, a number of clubs are equipping their repeaters with unattended phone patch arrangements.

Occasionally, a phone patch will be used at both ends of a radio link. That is sometimes the case when the radio contact is made to overseas

Fig. 15F-1 - The voice coupler, to the left of the touch-tone telephone, is supplied by the telephone company. The coupler is normally fixed to a wall or desk, and contains a jack for connection of the amateur's phone patch.
military bases. Some bases have a special phone booth or a small studio where the serviceman can have more privacy and be at ease while in conversation. The studio may be equipped with a regular telephone or it may have a microphone and earphones or a loudspeaker. It is common, too, for the participants to be asked to end each comment with the word "over" as a cue to radio operators (who may be using push-to-talk operation) to reverse the direction of transmission.

A few general considerations apply to phone patching. It constitutes the handling of third-party traffic. Agreements between governments specifically permitting such traffic must be in effect if the radio link is to a foreign country. Amateurs are responsible for conforming to regulations on station identification, prohibited language and the like while a phone patch is in progress. If a repeater is involved, the arrangement should meet all applicable rules regarding repeater-control facilities. Telephone companies, too, are concerned that the interconnection arrangements be made in the proper way and that the electrical signals meet certain standards.

THE TELEPHONE SYSTEM

Telephone company regulations are published in their tariffs, which in most states must be available in the company's business offices. In the tariffs, phone patches are included under "Interconnection Arrangements" or a similar designation. Telephone employees may not be familiar with the term, "phone patch" so it should be used with caution when talking with them. Patching is accomplished with the aid of devices called "couplers" or "voice connecting arrangements." These are provided by the telephone company and are important in several ways. They protect the amateur's telephone service from interruption that might result from a malfunction in his equipment; they protect other users, too. By isolating the amateur's equipment electrically from the telephone line, they give him a great deal of freedom in the design of his circuits. The protective device also permits proper adjustment of the circuit impedance, energy levels and other operating conditions to be met by the amateur's equipment.

Several different interconnection arrangements are listed in Table I.

A telephone line normally consists of a single pair of wires which is used for both directions of transmission. At the amateur's station it will be terminated in a telephone set. A voice coupler will be connected in parallel with the telephonc set when the phone patch is in progress. For design purposes, the telephone set and line are each assumed to have an impedance of about 900 ohms (in the case of residence service) and the best impedance for the phone-patch circuit is also 900 ohms. In operation, the patch will see a load of about 450 ohms. This small mismatch should not be cause for concern, however, as it is the best possible compromise. The phone patch's basic function is to connect the radio receiver's audio output circuit and the radio transmitter's audio input circuit to the telephone voice coupler. It should do this in a way that results in correct circuit impedances and voice levels. Provision should be made, too, for measuring and adjusting the voice level that is Iransmitted to the telephone line and for electrical filtering to the extent needed to comply with telephone company limitations.

Fig. 15F-1 shows a typical voice coupler and a related tclephone set. A simplified schematic diagram of this setup is given in Fig. 15F-2. The telephone is equipped with an exclusion key and a tum button. The telephone operates in the usual way when the two switches are in their nommal positions. Lifting the exclusion key causes the voice coupler to be connected to the telephone line. If it is requested when the voice coupler is ordered, the turn button will be supplied and can be wired by the telephone company to cut off the handset transmitter, the receiver, or both of them. The transmitter cutoff feature is preferred, as it will eliminate the pickup of room noisc by the telephone while permitting the patched communication to be monitored on the handset receiver. The operator can restore the tum button as required for station identification or to break in for other purposes.

Fig. 15F-2 - Simplified diagram of voice coupler and telephone set. "Bath the cutoff switch and the exclusion key switch are shown in their normal positions.

Supplemental informalion and pertinent telephone company technical specifications as they may apply to amateur radio are given in the appendix which appears at the end of this chapter.

PHONE PATCH CIRCUITS

Where push-to-talk operation is used, the phone patch can be as simple as a transfer switch (connecting the receiver and the transmitter, alternately, to the coupler) or it can be a resistive combining network of the kind shown in Fig. $\mathbf{1 5 F}-3$. Included in the circuit is a $2600-\mathrm{Hz}$ filter. the need for which is discussed later.

Hybrid Circuits

Wherc it is desirable to use voice-operated transmitter control (VOX), more elaborate arrangements are required. The VOX circuit must determine when the distant radio station is transmitting and inhibit the local transmitter. When the party

TABLE I
Voice Interconnection Arrangements of Interest to Amateurs

Applicable

Bell Syatem Arrangement
publication Serwice Code

Arrangement Deacripiton

PU842101 QKT Provides manual connection of transmitung or receiving equipment to an exchange line by means of a telephone set: uses a 30 A or L-7049A voice coupler. Telephone handset transmitter cutoff is optional. Connection to the coupler is made with a $1 / 4$-inch tip-sleeve glug. provided by the user. Impedance, 900 -ohma.
PUB 42208 STC Provides automatc (unattended) call origination and answering for one exchange line. Connection to the unit ta made with a special plug to be supplied by the user. Required is a Cinch Co. No. 291-15-61-133 plug equipped with a hood, No. 239-13-99-069. Impedance, 600 ohms. Ac power is required.
PUB42402 CD8
Provides automatic (umationded) call offaration for up to 14 trunks. Impedance, 600 ohms. Ac power is required.

NOTE: Publtcations are made available through the telephone company in local areas. Consult your telephone company about the use of these service arrangements.

Fig. 15F-3 - Schematic of the simple phone patch. Fixed resistors are $1 / 2$ watt, 5 -percent tolerance, composition.
C1 - . 04 -and .0027 - $\mu \mathrm{F}$ paper in parallel.
$\mathrm{L} 1-88-\mathrm{mH}$ surplus toroid.
PI - Phone plug.
81 - The value of this resistor may be varied from that shown; 18,000 ohms is correct for a toroid with a Q of 63.
R2 - Linear-taper composition conarol.
T1 - Output transformer, 3.2 -ohm primary, 4000-ohm secandary \Lafayette Radio AR135).

on the land telephone is talking, the VOX circuit must activate the local transmitter. This function is made difficult by the difference in audio levels. The phone patch must transmit a voice level of approximately -5 VU toward the telephone line, whereas the level received from the distant land telephone may range from -45 VU to -10 VU .1 The contrast in levels can be reduced considerably at the input to the local transmitter's VOX circuit by using a "hybrid" circuit. A liybrid circuit is an electrical network connecting together the transmitter, receiver and the voice coupler in such a way that the audio energy from the receiver is canceled at the input to the transmitter. Hybrids require a fourth circuit element, called a balancing network, in order to function.

Several kinds of hybrids can be constructed, the simplest of which is an adaptation of the Wheatstone bridge. Such a hybrid is shown in Fig. 15F-4.
1 Volume units (VU) are measured with an instrument which is basically an ac voltmeter of appropriate range and with dynamic characteristics which are carefully controlled to provide standardized measurement of complex wave forms When sine-wave power is measured, a VU meter and one calibrated in dB relative to a milliwatt (dBm) should give the same numerical indication.

Fig. 15F-4 - Wheatstone-bridge hybrid phonspatch circuit. Resistances are in ohms. Half-wát resistors of 20 -percent talerance are adequate. Filters and level-measuring arrangements are not included in this simple circuit.
T1 - Line to voice coil; primary 1000 ohms, secondary 4 ohms, such as Allied 6W3HFL or equiv.
T2 - Audia; primary 1000 ohms, secondary as appropriate to match transmitter input impedance.
Z1 - Balancing network. See Fig. 15F-5 and text.

When the impedance of the balancing network is equal to the impedance at the input to the line filter, the bridge will be in a condition of balance. The amount of audio from the receiver that reaches the transmitter (or VOX circuit) will then be minimized.

The balancing network, shown schematically in Fig. 15F-5 is not complicated. In most cases it will consist only of a resistor and a capacitor in parallel. Typical values for a condition of balance when a voice coupler is used would be 470 ohms for R1 and $.04 \mu \mathrm{~F}$ for Cl . Other interface devices, such as might be used at repeaters for unattended operation, will require other valucs. The resistance might be between 500 and 1200 ohms and the shunt capacitance might range from . 01 to $0.1 \mu \mathrm{~F}$: in rase cases, a series capacitor in the order of $2 \mu \mathrm{~F}$ may be required. The values for a particular installation must be found by trial. The hybrid can be balanced by establishing a telephone call, and tuning in a clear voice signal on the receiver. Witls headphones connected to the iransmitter audio circuit, adjust the hybrid balance network for minimum signal in the headset.

With the Wheatstone bridge hybrid circuit of Fig. 15F-4, losses between the receiver and the telephone line, and between the line and the transmitter, will be in the order of 6 to 10 dB . Transformer-type hybrid circuits exhibit lower losses, only 4.5 to 6 dB . A circuit for a singletransformer hybrid is shown in Fig. 15F-6. A two-transformer arrangement (giving better isola-

Fig. 15F.5 - Balancing network. R1 is a wirewound control. C1 and R1 should balance a voice coupler; typical values are 470 ohms and $.04 \mu \mathrm{~F}$. C2 is ordinarily not used, but values in the order of 1 to $4 \mu \mathrm{~F}$ may be required with unattended interconnection devices.
(Use appropriate impedauce natio)

Fig. 15F-6 - Hybrid circuit made with a single audio transformer.
T1 - Windings designated " B " and " C " should be of abour 900 ohms impedance each. Winding " A " may be of higher impedance if the $2600-\mathrm{Hz}$ filter is used; a lower impadance may be used to match the receiver if a $2600 \cdot \mathrm{~Hz}$ filter is not needed.
Z1 - Balancing network. See Fig. 15F-5 and text.
Z2 - 2600-Hz filter (C1, L1, and R1 of Fig. 15F-3).
tion between elements) is shown later in this chapter.

Filters

Standards have been established for the maximum signal levels that can be connected to the input of a coupler or other interconnection device. They are listed in Table II. The limits of out-of-band energy are best met by using a low-pass line filter. Located between the coupler and the hybrid it will protect the linc and also band-limit line signals to the transmitter. Filters of several types (image parameter, elliptic function, and so on) may be used. The filter should be of 600 or $900-\mathrm{hm}$ impedance (depending on the interface), passing frequencics below 3 kHz with losses rising rapidly above that point; a rejection notch should be provided at 4 kHz .

In the long distance network the telephone system uses 2600 Hz as a "disconnect" signal. If patched calls are made to telephone offices distant from your own, the need for filtering at that frequency can best be judged by experience. The filter can be made switchable, if desired. The best location for a $2600-\mathrm{Hz}$ rejection filter is at the receiver output.

REPEATER PATCHES

Some interesting phone-patch possibilities exist at repeaters. Unattended interconnection devices are associated with the repeaters to provide a form of mobile telephone service for the clubs operating them. The connections to a typical unattended interface device are shown in Fig. 15F-7.

Suitable signals generated in mobile units work through a base station to activate the interconnection device, causing it to connect and pass dial

TABLE II

Maximum Permissible Energy Levels at the Input of a Voice Interconnection Arrangement

Frea. Band
Direct current
Voice range
(nominally
300 to 3000 Hz)
2450 to
2750 Hz

3995 to
4005 Hz
4.0 to 10.0 kHz
10.0 to 25.0 kHz
25.0 to 40.0 kHz

Above 40.0 kHz
0.5 milliampere

Voice coupler. -3 dBm .
Other arrangements: 9 dB below 1 mW (levels avaraged over 3 seconds, see note.)

Preferably no energy; in no casc greater than the level present simultaneously in the $800-$ to $2450-\mathrm{Hz}$ band.
18 dB below the voice-band level.

16 dB below one milliwatt (-16 dBm). $-24 \mathrm{dBm}$
$-36 \mathrm{dBm}$
.50 dBm

NOTE: The above limits should be met with amateurprovided equipment having an internal impedance of 900 ohms if it is to work into a voice coupler, or 600 ohms if other arrangements are to be used.
pulses to the telephonc line. The system may be arranged so that the base transmitter carries both sides of the conversation or only the voice of the distant telephone user. Switching of the patch's voice path between the transmitter and the receiver could be done under the control of tones or a camicr-operated relay. A simple combining circuit may be used if both sides of the conversation are to be put out over the air. To cqualize audio levels. a wide-range agc amplifier might have to be provided, or an attenuator in the transmitter audio line would have to be switched in and out. A

Fig. 15F-7 - Interconnection diagram for a Bell CD8 coupler, representative of connections to unattended interface devices.
bybrid circuit could be used in this case but the retransmitted audio from the mobile unit would not be as free from distortion as with the combining arrangement.

Some telephone lines and interface devices can be arranged to signal the fact that a toll call has been dialed. Such a signal might be used to disconnect the phone patch if the repeater owners do not want long distance calls to be madc. Clubs would probably want to control access to the patch in any case, as they would be responsible for all telephone service charges, even if the calls were not made by their members.

A HYBRID PHONE PATCH

The photographs and Fig 1 show a deluxe 2-transformer hybrid phone patch for liome construction. Some form of hybrid circuit is necessary if VOX control of the transmitter is to be used. A third transformer matches the 3.2 -ohm output of the receiver. A $2600-\mathrm{Hz}$ filter is provided in the line from the receiver to reduce the possibility of unwanted disconnections resulting from heterodyning signals during use over long-distance telephone lines. The filter may be switched out for local calls for a slight improvement in voice fidelity from the reccived signal to the telcphone line. A modilied VU meter indicates the levels reccived from and applied to the telephone line entering the amateur station. The use of surplus or "bargain" components, especially transformers, will greatly reduce the cost of construction.

The circuit of the phone-patch unit is shown in Fig. 1. C1, L1, and R2 form the $2600-\mathrm{Hz}$ receiverline filter. Its insertion loss at 1000 Hz is negligible, but is in excess of 15 dB at 2600 Hz . T2 and T3 are the hybrid transformers, with C3 and RS provided to balance the network. Independent level adjustments are provided for the signal

The phone patch unit is built into a homemade aluminum enclosure measuring $3 \times 3 \times 6$ inches. A coating of spray-on enamel, rubber feet, and wet-transfer decal labets plus shiny knobs give the unit a professional appearance.
coupled from the receiver to the telephone line (R1) and from the telephone line to the transmitter speech amplifier (R3).

M1 is a Calectro model DI-930A "VU" meter with its time constant modified by adding external capacitance. The " A " model is identified with the letter A appearing in a circle near the bottom of the meter-scale card. Earlier models of the DI-930 meter, without the A, arc unsuitable without internal modification. The correct value of damping capacitance is $400 \mu \mathrm{~F}$, and may be obtained by connecting four $100-\mu \mathrm{F} 6 . \mathrm{V}$ electrolytic capacitors in parallel. These are to be connected directly across the meter terminals, observing proper polarity. This capacitance value applies only to this particular make and model of VU meter. The modified meter responds to speech signals of 3 kHz or less in a way that compares very closely with the measuring sets mentioned in the Bell interface specifications. Error should be less than 1 dB and should be found to be on the safe side. The meter, as modificd, has a $1-\mathrm{kHz}$ impedance of approxjmately 6500 ohms. It should be mounted only on a nonferrous panel.

Construction

The component layout for the phone patch is not critical, and any of several construction techniques is quite acceptable. In the model photographed all components except the modified meter, controls, and phono jacks were mounted on a piece of circuit-board material. The balance control was mounted on the front panel, but this is a "set once and forget" control so some builders may wish to include it inside the enclosure. An etched pattern in the copper foil provides a few of the circuit interconnections, but most connections, including all those to the two hybrid transformers, are made with point-to-point wiring. The UTE transformers specified have mounting studs affixed to the top of the case, and these are used to mount the transformers in an inverted position on the circuit board. This same construction idea can be used with perforated phenolic board and point-topoint wiring for all components, instead of an etched circuit board.

The only precaution to observe during construction is to iscep J3 insulated from chassis ground, to reduce if coupling into the telephone line. In the model photographed this was done by drilling a $1 / 2$-inch hole in the rear panel whese J3 was to be mounted, and then, with machine screws, fastening a smiall piece of phenolic board to cover the hole. Next 13 was mounted on the phenolic board, centered in the hole. Some types of phono jacks come supplied with phenolic mounting material, and if the clearance hole is large enough these types may be mounted directly on a metal panel without grounding the outer contact.

Adjustment

If one has access to an accurately calibrated audio signal generator or to an electronic fre-

Fig. 1 - Schematic diagram of the phone-patch circuit. Resistances are in ohms, $k=1000$. Fixed resistors may be $1 / 2$ watt. 10 percent tolerance. Capecitance is in microfareds. Components not listed below are identified for text reference.

C1 - Capacitors in parallel to give required value of . $0427 \mu \mathrm{~F}$: low-voltage metalized paper or Mylar are suitable.
C3 - Typical value, . $04 \mu \mathrm{~F}$. See text and Fig. 15F-5 if hybrid network cannot be balanced.
J1. J2, J3 - Phono jack. J3 should be insulated from chassis.

L1 - Surplus $88-\mathrm{mH}$ toroidal inductor, connected with half-windings in series aiding.
M1 - Calectro DI-930A VU meter, madified. See text.
R1, R3 - 6000-ohm audio-taper control (Mallory U12 or equiv.).
R5 - 1000-ohm linear-taper control (Mallary U4 or equiv.l.
T1 - Audio transformer, 4 or 8 ohms to 4000 ohms (UTC SO-10 or equiv.).
T2. T3 - Audio transformer, 2500 -ohm split primary, 1000-ohm split secondary (UTC 0.19 or equiv.l.
quency counter he may wish to check the notch frequency of the $2600-\mathrm{Hz}$. filter, although this step is not essential. The frequency may be adjusted by using various combinations of fixed-value capacitors for Cl until the notch appears at exactly 2600 Hz . In the model photographed stock-value capacitors, selected at random to provide the specified total capacitance for $C 1$, resulted in a notch frequency of 2621 Hz , which is quite acceptable.

Correct adjustment of the balance control, R5. will facilitate the operation of the transmitter VOX circuit by the distant party on the land telephone. Connect all station equipment to place the patch into operation. Connect a pair of headphones or an ac voltmeter to the transmitter audio circuit. If a sensitive ac VTVM is available, one which will measure in the millivolt range, it may be connected directly to the output from J 2 , in parallel with the lime connected to the trassmitter. Establish a phone call and connect the phone patch to the voice coupler. Tune in a clear voice signal on the receiver, and adjust R5 for the best null of the received signal as monitored in the transmitter audio section. If the null does not occur within the range of RS, experimentally try different capacitance values for C3 and a larger value for RS (connect a fixed-value resistor in series with R5 to obtain a higher equivalent value). With RS properly adjusted, the distant party should be able to trip the transmdter VOX circuit satisfactorily even though no anti-trip connection is used from the receiver. With such a connection made, VOX operation will be quite reliable.

Installation and Operation

The receiver input to the phone-patch unit may be taken in parallel with the speaker leads from the receiver. Most operators prefer to disconnect or disable the speaker, however, and to connect the patch directly to the speaker-output terminals of the receiver. The switching to and from phonepatch station operation is generally done in suitable control circuits which may be included in the phone-patch enclosure itself, if desired. Operating with the speaker disconnected will result in a $3-\mathrm{dB}$-greater audio signal being fed to the hybrid circuit, and monitoring of the receiver audio by the amateur operator may be done through the telephone handset.

The level of signal being fed from the receiver to the telephone line during reception may be adjusted either with R1 or with the receiver audio gain control. Similarly, the level of audio being fed to the transmitter from the telephone line during transmission may be adjusted with R3 and with the transmitter microphone gain control. If the distant party on the telephone line is not talking loudly enough for proper operation of the transmitter, remember that often he can be made to speak louder simply by reducing the level of audio being sent to him. The speech level should never be permitted to exceed -2 VU on the DI-930A scale. When the telephonc connection is made to a nearby point (such as a line served out of the same telephone building as the patched line), the distant listener will receive a more comfortable listening

The layout of the phone-patch components is not critical. The two hybrid-network transformers are visible to the right of center, and in the upper left comer of the circuit board the receiver matching transformer may be seen. Two damping capacitors added during modification of the Calectro DI930A meter are visible atop the meter case; two more are hidden beneath the meter.
level if the maximum signal is held to about -9 on the meter scale.

Many times when phone-patch operation is heard over the air, the transmitted voice quality of the distant land-telephone party seems to be as good as if he were speaking directly into the station microphone. Occasionally, however, signals will be heard with an undue amount of power-linefrequency hum present on the signal. Of course the quality and level of the voice signal coming in on the telephone line plays an important part in how that voice signal sounds over the air, but sometimes a hum problem can be traced directly to the installation of the phone-patch equipment. In
particular, the phone patch (and the voice coupler) should be located away from power supply transformers in station equipment. Complete magnetic shielding may not exist even with steel enclosures for power supplies. If other equipment is mounted nearby, the $60-\mathrm{Hz}$ fiedd can induce hum into the transformers of the phone patch. Hum problems of this sort can usually be solved simply by relocating the position of the phone-patch unit.

During operation of a phone patch in the hf amateur bands it is considered good practice to avoid the transmission of operator chatter, dial tones, dial pulses, ringing and busy signals, as they are not essential to communications.

Appendix

Signals and Circuit Conditions Used in the Telephone System

1) The status of a local telephone line (idle or busy) is indicated by on-hook or off-hook signals as follows:
On-Hook Minimum de resistance between tip and ring conductors of 30,000 ohms.
Off-Hook Maximum dc resistance between slip and ring conductors of 200 ohms.
Telephone sets give an off-hook condition at all times from the answer or origination of a call to its completion. The only exception to this is during dial pulsing
2) Dial pulses consist of momentary opens in the loop; dial pulses should meet the following standards:

Pulsing rate $\quad 10$ pulses/second $\pm 10 \%$
Pulse Shape $\quad 58 \%$ to 64% break (open)
Interdigital time $\quad \mathbf{0 0 0}$ milliseconds minimum
Note: Two pulses indicate the digit " 2 ," three pulses indicate the digit " 3 ," and so on, up to ten, indicating the digit " 0 ."
3) The standards for tone "dialing" are as follows:
a) Each digit is represented by a unique pair of tones as shown below.

Diglt	Low rone High rone
1	697 and 1209 Hz
2	697 and 1336 Hz
3	697 and 1477 Hz
4	770 and 1209 Hz
5	770 and 1336 Hz
6	770 and 1477 Hz
7	852 and 1209 Hz
8	852 and 1336 Hz
9	852 and 1477 Hz
0	941 and 1336 Hz
6	941 and 1209 Hz
$\#$	941 and 1477 Hz

b) In order for the central-office receiver to register the digit properly, the tone-address signals must meet the following requirements:
(1) Signal levels:

Nominal level per frequency: -6 to -4
dBm. Minimum level per frequency: Low Group, -10 dBm ; High Group. -8 dBm . Max, level per frequency pair: +2 dBm . Max, difference in levels between frequencies: 4 dB .
(2) Frequency deviation: ± 1.5 percent of the values given above.
(3) Extraneous frequency components: The total power of all extraneous frequencies accompanying the signal should be at least 20 dB below the signal power, in the voice band above 500 Hz .
(4) Voice Suppression: Voice energy from any source should be suppressed at least 45 dB during tone signal transmission. In the case of automatic dialing the suppression should be maintained continuously until pulsing is completed.
(5) Rise Time: Each of the two frequencies of the signal should attain at least 90 percent of full amplitude within 5 ms , and preferably within 3 ms for automatic dial-
ers, from the time that the first frequency begins.
(6) Pulsing Rate: Minimum duration of two-frequency tone signal: 50 ms normally: 90 ms if transmitted by radio. Minimum interdigital time: 45 ms .
(7) Tone leak during signal off time should be less than -55 dBm .
(8) Transient Voltages: Peak transient voltages generated during tone signaling should be no greater than 12 dB above the zero-topeak voltage of the composite twofrequency tone signal.
4) Audible tones will be used in the telephone system to indicate the progress or disposition of a call. These include:
a) Dial tone: 350 and 440 Hz .
b) Line busy: 480 and 620 Hz , interrupted at 60 interruptions per minute ($1 / \mathrm{min}$).
c) Reorder (all trunks busy): 480 and 620 Hz , interrupted at $120 \mathrm{I} / \mathrm{min}$.
d) Audible ringing: 440 and $480 \mathrm{~Hz}, 2$ seconds on, 4 seconds off.
e) Reserved high tons: 1633 Hz .
f) Invalid dialing code: Voice announcement.

Bibliography

Source material and more extended discussions of topics covered in this chapter can be found in the references given below. This listing does not include every asticle published in QST on the subjects of this chapter, however. A detalled bibliography of references in QST on any of the subjects amateur television, slow-scan television, radioteletype, phone patching, Oscar and moonbounce, will be sent on request to ARRL, Newington, CT 06111. Please enclose a businesssize stamped self-addressed envelope.

RADIOTELETYPE

Antanaitis, "A Simple Two-Transistor A.F.S.K. Generator," QST, September, 1969.
Craig, "Teleprinter Selector Magnets," Technical Correspondence, QST, September, 1971.
Drake, "An Audio Synthesizer - A Device to Generate RTTY Tones with Crystal-Controlled Accuracy," QST April, 1972.
Hall. "Frequency Shift Keying the Johnson Ranger, Valiant, Navigator," RTTY Journal. Jan. 1968; "What is RTTY?," QST, Dec. 1968.
Hoff, "Transmitting Radioteletype," QST, May, 1965; "Audio Frequency-Shift Keying for RTTY," QST. June, 1965; "The Mainline TT/L F.S.K. Demodulator," QST, August, 1965; "The Mainline ST-3 RTTY Demodulator," QST, April, 1970.
Petersen, "The Mainline TT/L-2 F.S.K. Demodulator," Part 1, "Construction and Adjustment," QST, May, 1969, and Part II, "Circuit Description, and the Mainline F.S.K. Keyer," QST, June, 1969.
Schecter, "First Steps in RTTY," QST, June, 1971.

AMATEUR TELEVISION

Campbell, "Amateur TV - The Easy Way," QST. November, 1962.
Keller, "An Amateur Telcvision Camera," QST, November, 1953.
Tilton, "Amateur Television - A Progress Report," QST, June, 1950.

SLOW-SCAN TELEVISION

Briles and Gervenack, "Slow-Scan TV Viewing Adapter for Oscilloscopes." QST, June, 1970.
Macdonald, "S.C.F.M. - An Improved System for Slow-Scan Image Transmission," Part I, "SlowScan Modulation Tests and Proposed Standards," QST, Jan. 1961, and Part II, "Circuit Details," QST, Feb. 1961: "A New NarrowBand Image Transmission System," Part I, "Principles of Slow Scan Picture Reproduction," QST, August 1958, and Part II, "Circuit and Construction Details," QST, Sept. 1958; "A Slow-Scan Vidicon Camera," in three parts, QST, June, July and Aug. 1965.
Tschannen, "A Solid-State SSTV Monitor," QST. March, 1971.

PHONE PATCHING

Berry, "Legalize Your Phone Patch," QST, May 1969; "An Improved Phone Patch," Hints and Kinks, QST, Nov. 1970.
Hoff, "Stopping Telephone Interference," QST, March, 1968.
Schleicher, "Phone Patching - Legitimately," QST, March, 1969; "Phone Patching - One Year Later," QST, Nov., 1970; "Measuring Phone-Patch Levels Accurately," QST, February, 1972.

Interference with other
 Services

RADIO FREQUENCY INTERFERENCE (RFI) has probably been with us since the first amateur stations came on the air some 70 years ago. Fed by the technology that developed during and following WW II, the problem has become an increasing source of irritation between radio operators and their neighbors. Homoontertainment clectronics devices now abound, with most families owning at least one television receiver, an a m or fm radio, and any one of several audio devices (such as a phonograph, an intercom, an electronic guitar, or an electronic organ). Given the innate perversity of these objects to intercept radio signals, it should surprise no one to learn that RFI is one of the most difficult problems amateurs face in their day-to-day operations.

How Serious is the RFI Problem?

In 1974, the FCC received 42,000 RFI complaints, up 20% from the number of complaints received in 1970. Of these, 38,000 involved interference to home-entertainment equipment. Most important, 36,000 of these would never have come to the Commission's attention if the manufacturers had corrected design deficiencies in their homeentertainment products at the time of manufacture. It is of interest to note that over 60% of the interference cases reported in 1974 were related to television interference (TVI).

In the case of tclevision interference, FCC experience shows that 90% of the problems experienced can only be cured at the television receiver. Further, when it comes to audio equipment, the only cure for RFI is by treatment of the audio device experiencing the interference. There is nothing an amateur can do to his transmitter which will stop a neighbor's phonograph from acting like a short-wave receiver. It should be emphasized that phonographs and Hi-Fi units are not designed to be receivers, but simply audio devices.

It is clear, therefore, that almost all RF1 problems experienced with home-entertainment devices result from basic design deficiencies in this equipment. The few small components or filters which would prevent RFI are often left out of otherwise wetrdesigned products as manufacturers attempt to reduce costs, and hence, to reduce the prices of their products.

The Solution - Consumer Protection

Given the present unacceptable situation, what can we as amateurs do to help the consumer resolve the RFI problem? One step which should certainly be taken is to advise our friends and neighbors to inquire, before they make a purchase of an electronic device, whether the product has been certified for operation in the presence of a
radio transmitter. Manufacturers must be made to recognize the RFI protection of their homeentertaimment equipment has become essential, and that this must be incorporated. Further, where interference is being experienced, the consumer should be encouraged to contact the manufacturer of his equipment and to request that the marafacrurer furnish the components or services necessary to eliminate RFI.

What Are Manufacturers Doing Today?

Many responsible manufacturers have a policy of supplying filters for eliminating television interference when such cases are brought to their attention. A list of those manufacturers, and a more thorough treatment of the RFI problem, can be obtained by writing the ARRL. If a given manufacturer is not listed, it is still possible that he can be persuaded to supply a filter; this can be determined by writing either directly to him or to the Electronic Industries Assoclation (EIA). 1

With respect to audio devices, some manufacturers will supply modified schematic diagrams showing the recommended placement of bypass capacitors and other components to reduce of susceptibility. One large American manufacturer of Hj -Fi equipment has in some cases supplied the necessary components free of charge, although no consistent policy has been evident and the consumer must still pay to have a serviceman install the components.

While these are encouraging developments, it appears likely that meaningful and widespread corrective action by equipment designers will require both pressure from consumers and establishment of suitable govemment standards.

Voluntary after-the-fact measures on the part of manufacturers simply are not enough. It is a foregone conclusion that as long as the inclusion of additional components for susceptibility reduction increases a manufacturer's cost, however slightly, there will be reluctance to take steps to improve equipment designs by the manufacturers themselves. What appears to be necessary, therefore, is federal legislation giving the FCC the authority to regulate the manufacture of home-entertainment devices and thus protect the consumer.

It's Up to Us

If requests to manufacturers of home-entertainment equipment for those components and installation services necessary to relieve RIPI problems are to be successful, each of us, when faced with an KFI problem, must make known our position to

[^32]the manufacturers involved. While a respectful request for assistance will bring more cooperation than a blunt demand, do not hesitate to let the manufacturers know that they have a responsibility to the consumer for correcting the design deficiencies that are causing the problem. Before casting the first stone, however, make sure you're not sitting in a glass house. Certainly, if your own television receiver experiences no interference while you are on the air, it is most likely that interference to a more distant television receiver is not the fault of your transmitter.

All of the above is not to say, however, that we should not continue to assist in resolving RFl problems Radio amateurs have typically sought to assist their neighbors in correcting RFI problems, even where those problems were in no way attributable to the performance of the transmitter. Ultimately, of course, it is the manufacturers' responsibility to correct those deficiencies which lead to the interception of radio signals. But in the interest of good neighborhood relations, we must continue to provide this assistance wherever older equipment designs are in use.

Clean House First

In approaching an RFI problem, the first step obviously is to make sure that the transmitter has no radiations outside the bands assigned for amateur use. The best check on this is your own a-m or TV receiver. It is always convincing if you can demonstrate that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be expected to change the interference situation, check with your neighbors. If no one is experiencing interference, so much the better; it does no harm to keep the neighborhood aware of the fact that you are operating without bothering anyone.

Should you change location, make your presence known and conduct occasional tests on the air, requesting anyone whose reception is being spoiled to let you know about it so steps may be taken to eliminate the trouble.

Act Promptly

The average person will tolerate a limited amount of interference, but the sooner you take steps to eliminate it, the more agreeable the listener will be; the longer he has to wait for you, the less willing he will be to cooperate.

Present Your Story Tactfully

Whenever a device intercepts your signals, it is natural for the complainant to assume that your transmitter is at fault. If you are certain that the trouble is not in your transmitter, explain to the listener that the reason lies in the receiver design, and that some modifications may have to be made in the receiver if he is to expect interference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the he!p of another amateur and have him operatc your transmitter while you see for yourself what happens at the affected receiver.

In General

In this "public relations" phase of the problem a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what you say about the receiver - no one takes kindly to hearing his possessions derided. If you discuss your interference problems on the air, do it in a constructive way - one calculated to increase listener cooperation, not destroy it.

VHF TELEVISION

For the amateur who does most of his transmitting on frequencies below 30 MHz , the TV band of principal interest is the low vhf band between 54 and 88 MHz . If harmonic radiation can be reduced to the point where no interference is caused to Channels 2 to 6 , inclusive, it is almost certain that any harmonic troubles with channels above 174 MHz will disappear also.

The relationship between the vhf television channels and harmonics of amateur bands from 14 through 28 MHz is shown in Fig. $16-1$. Harmonics of the 7 - and $3.5-\mathrm{MHz}$ bands are not shown because they fall in every television channel. However, the harmonics above 54 MHz from these bands are of such high order that they are usually rather low in amplitude, although they may be strong enough to interfere if the television receiver
is quite close to the amateur transmitter. Low-order harmonics - up to about the sixth are usually the most difficult to eliminate.

Of the amateur vhf bands, only 50 MHz will have harmonics falling in a vhf television channel (channels 11, 12 and 13). However, a transmitter for any amateur vhf band may cause interference if it has multiplier stages either operating in or having hamonics in one or more of the vhf TV channels. The if energy on such frequencies can be radiated directly from the transmitting circuits or coupled by stray means to the transmitting antenna.

Frequency Effects

The degree to which transmitter hamonics or other undesired radiation actually in the TV channel must be suppressed depends principally on

Fig. 16-1 - Relationship of amateur-band harmonics to whf TV channels. Harmonlc interference from iransmitters operating below 30 MHz is likely to be serious in the low-channel group (54 to 88 MHz).
two factors, the strength of the TV signal on the channel or channels affected, and the relationship between the frequency of the spurious radiation and the frequencies of the TV picture and sound carriers within the channcl. If the TV signal is very strong, interference can be eliminated by comparatively simple methods. However, if the TV signat is very weak, as in "fringe" areas where the received picture is visibly degraded by the appearance of set noise of "snow" on the screen, it may be necessary to go to extreme measures.

In either case the intensity of the interference depends very greatly on the exact frequency of the interfering signal. Fig $16-2$ shows the placement of the picture and sound carriers in the standard TV channel. In Channe! 2, for example, the picture carrier frequency is $54+1.25=55.25 \mathrm{MHz}$ and the sound carrier frequency is $60-0.25=59.75 \mathrm{MHz}$. The second hamonic of $28.010 \mathrm{kHz}(56,020 \mathrm{kHz}$ or 56.02 MHz) falls $56.02-54=2.02 \mathrm{MHz}$ above the low edge of the channel and is in the region marked "Severe" in Fig. 16-2. On the other hand, the second harmonic of $29,500 \mathrm{kHz}(59,000 \mathrm{kHz}$ or 59 MHz) is $59-54=5 \mathrm{MHz}$ from the low edge of the channel and falls in the region marked
"Mild." Interference at this frequency has to be about 100 times as strong as at $56,020 \mathrm{kHz}$ to cause effects of equal intensity. Thus an operating frequency that puts a hamonic near the picture carrier requires about 40 dB more harmonic suppression in onder to avoid interference, as compared with an operating frequency that puts the harmonic near the upper edge of the channel.

For a region of 100 kHz or so either side of the sound carrier there is another "Severe" region where a spurious radiation will interfere with reception of the sound program and this region also should be avoided. In general, a signal of intensity equal to that of the picture carrier will not cause noticeable interference if its frequency is in the "Mild" region shown in Fig. 16-2, but the same intensity in the "Severe" region will utterly destroy the picture.

Interference Patterns

The visible effects of interference vary with the type and intensity of the interference. Complete "blackout," where the picture and sound disappear

Fig. 16-2 - Location of picture and sound carriers in a monochrome television channel, and relative intensity of interference as the location of the interfering signal within the channels is varied without changing its strength. The three regions are not actually sharply defined as shown in this drawing. but merge into one another gradually.

Fig. 16-3 - "Cross-hatching," caused by the beat between the picture carrier and an interfering signal inside the TV channel.
completely, leaving the screen dark, occurs only when the transmitter and recejver are quite close together. Strong interference ordinarily causes the picture to be broken up, leaving a jumble of light and dark lines, or turns the picture "negative" the normally white parts of the picture turn black and the normally black parts turn white. "Cross-hatching" - diagonal bars or lines in the picture - accompanies the latter, usually, and also represents the most common type of less severe interference. The bars asc the result of the beat between the harmonic frequency and the picture carrier frequency. They are broad and relatively few in number if the beat frequency is comparatively low - ncar the picture carrier - and are numerous and very fine if the beat frequency is very high - toward the upper end of the channel. Typical cross-hatching is shown in Fig 16-3. If the frequency falls in the "Mild" region in Fig 16-2 the cross-hatching may be so fine as to be visible only on close inspection of the picture, in which case it may simply cause the apparent brightness of the screen to change when the transmitter carrier is thrown on and off.

Whether or not cross-hatching is visible, an amplitude-modulated transmitter may cause "sound bars" in the picture. These look about as shown in Fig 16-4. They result from the variations in the intensity of the interfering signal when modulated. Under most circumstances modulation bars will not occur if the amateur transmitter is frequency- or phase-modulated. With these types of modulation the cross-hatching will "wiggle" from side to side with the modulation.

Except in the more severe cases, there is seldom any effect on the sound reception when interference shows in the picturc, unless the frequency is quite close to the sound carrier. In the latter event the sound may be interfered with even though the picture is clean.

Reference to Fig. 16-1 will show whother or not hamonics of the frequency in use will fall in any television channels that can be received in the locality. It should be kept in mind that not only harmonics of the final frequency may interfere, but also hamonics of any frequencies that may be present in buffer or frequency-multiplier stages. In the case of $144-\mathrm{MHz}$ transmitters, frequency-multi-
plying combinations that require a doubler or tripler stage to operate on a frequency actually in a low-band vhf channel in use in the locality should be avoided.

Harmonic Suppression

Effective harmonic suppression has three sepafate phases:

1) Reducing the amplitude of hammonics generated in the transmitter. This is a matter of circuit design and operating conditions.
2) Preventing stray radiation from the transmitter and from associated wiring. This requires adequate shielding and filtering of all circuits and leads from which radiation can take place.
3) Preventing harmonics from being fed into the antenna.

It is impossible to build a transmitter that will not generate some harmonics, but it is obviously advantageous to reduce their sirength. by circuit design and choice of operating conditions, by as large a factor as possible before attempting to prevent them from being radiated. Harmonic radiation from the transmitter itself or from its associated wiring obviously will cause interference just as readily as radiation from the antenna, so measures taken to prevent harmonics from reaching the antenna will not reduce TV1 if the transmitter itself is radiating harmonics. But once it has been found that the transmitter itself is free from harmonic radiation, devices for preventing harmonics from reaching the antenna can be expected to produce results.

REDUCING HARMONIC GENERATION

Since reasonably efficient operation of rf power amplifiers always is accompanied by harmonic generation, good judgment calls for operating all frequency-multiplier stages at a very low power level. When the final output frequency is reached, it is desirable to use as few stages as possible in building up to the final output power level, and to use tubes that require a minimum of driving power.

Fig. 16-4 - "Sound bars" or "modulation bars" accompanying amplitude modulation of an interfering signal. In this case the interfering carrier is strong enough to destrov the picture, but in mild cases the picture is visible through the horizontal bars. Sound bars may accompany modulation even though the unmodulated carrier gives no visible cross-hatching.

Circuit Design and Layout

Harmonic currents of considerable amplitude flow in both the grid and plate circuits of rf power amplifiers, but they will do relatively little harm if they can be effectively bypassed to the cathode of the tube. Fig. 16-5 shows the paths followed by harmonic currents in an amplificr circuit; because of the high reactance of the tank coil there is little harmonic current in it, so the harmonic currents

Fig. 16-5 - A whf resonant circuit is formed by the tube capacitance and the leads through the tank and blocking capacitors. Regular tank coils are not shown, since they have little effect on such resonances. C1 is the grid tuning capacitor and C2 is the plate tuning capacitor. C3 and C4 are the grid and plate blocking or bypass capacitors, respectively.
simply flow through the tank capacitor, the plate (or grid) blocking capacitor, and the tube capacitances. The lengths of the leads forming these paths is of great importance, since the inductance in this circuit will resonate with the tube capacitance at some frequency in the vhf range (the tank and blocking capacitances usually are so large compared with the tube capacitance that they have little effect on the resonant frequency). If such a resonance happens to occur at or near the same frequency as one of the transmitter harmonics, the effect is just the same as though a harmonic tank circuit had been deliberately introduced; the harmonic at that frequency will be tremendously increased in amplitude.

Such resonances are unavoidable, but by keeping the path from plate to cathode and from grid to cathode as short as is physically possible, the resonant frequency usually can be raised above 100 MHz in amplifiers of medium power. This puts it between the two groups of television channels.

It is easier to place grid-circuit vhf resonances where they will do no harm when the amplifier is link-coupled to the driver stage, since this generally permits shorter leads and more favorable conditions for bypassing the harmonics than is the case with capacitive coupling. Link coupling also reduces the coupling between the driver and amplifier at harmonic frequencies, thus preventing driver harmonics from being amplified.

The inductance of leads from the tube to the tank capacitor can be reduced not only by shortening but by using flat strip instead of wire conductors. It is also better to use the chassis as the return from the blocking capacitor or tuned circuit to cathode, since a chassis path will have less inductance than almost any other form of connection.

The vhf resonance points in amplifier tank circuits can be found by coupling a grid-dip meter
covering the $50-250 \mathrm{MHz}$ range to the grid and plate leads. If a resonance is found in or near a TV channel, methods such as those described above should be used to move it well out of the TV range. The grid-dip meter also should be used to check for vhf resonances in the tank coils, because coils made for 14 MHz and below usually will show such resonances. In making the check, disconnect the coil entirely from the transmitter and move the grid-dip meter coil along it while exploring for a dip in the $54-88-\mathrm{MHz}$ band. If a resonance falls in a TV channel that is in use in the locality, changing the number of turns will move it to a less-troublesome frequency.

Operating Conditions

Grid bias and grid current have an important effect on the harmonic content of the if currents in both the grid and plate circuits. In general, harmonic output increases as the grid bias and grid current are increased, but this is not necessarily true of a particular harmonic. The third and higher harmonics, especially, will go through fluctuations in amplitude as the grid current is increased, and sometimes a rather high value of grid current will minimize one harmonic as compared with a low value. This characteristic can be used to advantage where a particular harmonic is causing interference. remembering that the operating conditions that minimize one harmonic may greatly increase another.

For equal operating conditions, there is little or no difference between single-ended and push-pull amplifiers in respect to harmonic generation. Push-pull amplifiers are frequently troublemakers on even-order harmonics because with such amplifiers the even-harmonic voltages are in phase at the ends of the tank circuit and hence appear with equal amplitude across the whole tank coul, if the center of the coil is not grounded. Under such circumstances the even harmonics can be coupled to the output circuit through stray capacitance between the tank and coupling coils. This does not occur in a single-ended amplifier having an inductively coupled tank, if the coupling coil is placed at the cold end, or with a pi-network tank.

Harmonic Traps

If a harmonic in only one TV channel is particularly bothersome - frequently the case when the transmitter operates on 28 MHz - a trap tuned to the harmonic frequency may be installed in the plate lead as shown in Fig. 16-6. At the harmonic frequency the trap represents a very high impedance and hence reduces the amplitude of the harmonic current flowing through the tank circuit. In the push-pull circuit both traps have the same constants. The L / C ratio is not critical but a high- C circuit usually will have least effect on the performance of the plate circuit at the normal operating frequency.

Since there is a considerable harmonic voltage across the trap, radiation may occur from the trap unless the transmitter is well shielded. Traps should be placed so that there is no coupling between

Fig. 16-6 - Harmonic traps in an amplifier plate circuit. L and C should resonate at the frequency of the harmonic to be suppressed. C may be a 25 to $50-\mathrm{pF}$ midget, and L usually consists of 3 ta 6 turns about $1 / 2$ inch in diameter for Channels 2 through 6. The inductance should be adjusted so that the trap resonates at about half capacitance of C before being installed in the transmitter. The frequancy may be checked with a grid-dip meter. When in place, the trap should be adjusted for minimum interference to the TV picture.
them and the amplifier tank circuit.
A trap is a highly selective device and so is useful only over a small range of frequencies. A second- or third-harmonic trap on a $28-\mathrm{MHz}$ tank circuit usually will not be effective over more than 50 kHz or so at the fundamental frequency, depending on how serious the interference is without the trap. Because they are critical of adjustment, it is better to prevent TVI by other means, if possible, and use traps only as a last resort.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interference will be caused by direct radiation of spurious signals depends on the operating frequency, the transmitter power level, the strength of the television signal, and the distance between the transmitter and TV receiver. Transmitter radiation can be a very scrious problem if the TV signal is weak, if the TV receiver and amateur transmitter are close together, and if the transmitter is operated with high power.

Shielding

Direct radiation from the transmitter circuits and components can be prevented by proper shielding. To be effective, a shield must completely enclose the circuits and parts and must have no
openings that will permit rf energy to escape. Unfortunately, ordinary metal boxes and cabinets do not provide good shielding, since such openings as louvers, lids, and holes for running in connections allow far too much leakage.

A primary requisite for good shielding is that all joints must make a good electrical connection along their entire length. A small slit or crack will let out a surprising amount of rf energy; so will ventilating louvers and large holes such as those used for mounting meters. On the other hand, small holes do not impair the shielding very greatly, and a limited number of ventilating holes may be used if they are small - not over $1 / 4$ inch in diameter. Also, wire screen makes quite effective shielding if the wires make good electrical connection at each crossover. Perforated aluminum such as the "do-it-yourself" sold at hardware stores also is good, although not very strong mechanically. If perforated material is used, choose the pariety with the smallest openings. The leakage through large openings can be very much reduced by covering such operings with screening or perforated aluminum, well bonded to all edges of the opening.

The intensity of rf fields about coils, capacitors, tubes and wiring decreases very rapidly with distance, so shielding is more effective, from a practical standpoint, if the components and wiring are not too close to it. It is advisable to have a separation of several inches, if possible, between "hot" points in the circuit and the nearest shielding.

For a given thickness of metal, the greater the conductivity the better the shiclding. Copper is best, with aluminum, brass and steel following in that order. However, if the thickness is adequate for structural purposes (over .02 inch) and the shield and a "hot" point in the circuit are not in close proximity, any of these metals will be satisfactory. Greater separation should be used with steel sheelding than with the other materials not only because it is considerably poorer as a shield but also because it will cause greater losses in near-by circuits than would copper or aluminum at the same distance. Wire screen or perforated metal used as a shield should also be kept at some distance from high-voltage or high-current if points, since there is considerably more leakage through the mesh than through solid metal.

Where two pieces of metal join, as in forming a corner, they should overlap at least a half inch and be fastened together firmly with screws or bolts spaced at close-nough intervals to maintain firm contact all along the joint. The contact surfaces should be clean before joining, and should be checked occasionally - especially steel, which is almost certain to rust after a period of time.

The leakage through a given size of aperture in shielding increases with frequency, so such points as good continuous contact, screening of large holes, and so on, become even more important when the radiation to be suppressed is in the high band $-174-216 \mathrm{MHz}$. Hence 50 and $144-\mathrm{MHz}$ transmitters, which in general will have frequencymultiplier harmonics of relatively high intensity in
this region, require special attention in this respect if the possibility of interfering with a channel received locally exists.

Lead Treatment

Even very good shielding can be made completcly useless when connections are run to

Fig. 16-7 - Proper mathod of bypassing the end of a shielded lead using disk ceramic capacitor. The $.001-\mu \mathrm{F}$ size should be used for 1600 volts or less; 500 pf at higher voltages. The leads are wrapped around the inner and outer conductors and soldered, so that the lead length is negligible. This photograph is about four times actual size.
extemal power supplies and other equipment from the circuits inside the shield. Every such conductor leaving the shielding forms a path for the escape of rf, which is then radiated by the connecting wires. Hence a step that is essential in every case is to prevent harmonic currents from flowing on the leads leaving the shielded enclosure.

Hamonic currents always fow on the dc or ac leads connecting to the tube circuits. A very effective means of preventing such currents from being coupled into other wining, and one that provides desirable bypassing as well, is to use shielded wire for all such leads, maintaining the shielding from the point where the lead connects to the tube or of circuit right through to the point where it leaves the chassis. The shield braid should be grounded to the chassis at both ends and at frequent intervals along the path.

Good bypassing of shielded leads also is essential. Bearing in mind that the shield braid about the conductor conflines the harmonic currents to the inside of the shielded wire, the object of bypassing is to prevent their escape. Fig. $16-7$ shows the proper way to bypass. The small .001-pF ceramic disk capacitor, when mounted on the end of the shielded wise as shown in Fig. 16-7, actually forms a series-resonant circuit in the $54.88-\mathrm{MHz}$ range and thus represents practically a short circuit for low-band TV hamonics. The exposed wire to the connection terminal should be kept as short as is physically possible, to prevent any possible hamonic pickup exterior to the shelded wiring. Disk capacitors in the useful capacitance range of 500 to 1000 pF are available in several voltage ratings up to 6000 volts.

Fig. 16.8 - Additional if filtering of supply leads may be required in regions where the TV signal is very weak. The rf choke should be physically small, and may consist of a 1 -inch winding of No. 26 enameled wire on a $1 / 4$-inch form, close-wound. Manufactured single-layer chokes having an inductance of a few microhenries also may be used.

These bypasses are essential at the connectionblock terminals, and desirable at the tube ends of the leads also. Installed as shown with shielded wiring, they have been found to be so effective that there is usually no need for further hamonic filtering. However, if a test shows that additional filtering is required. the arrangement shown in Fig. $16-8$ may be used. Such an rf filter should be installed at the tube end of the shieided lead, and if more than one circuit is filtered care should be taken to koep the sf chokes separated from each other and so oriented as to minimize coupling between them. This is necessary for preventing harmonics present in one circuit from being coupled into another.

In difficult cases involving Channels 7 to 13 i.e., close proximity between the transmitter and receiver, and a weak TV signal - additional lead-filtering measures may be needed to prevent radiation of interfering signals by 50 - and $144-\mathrm{MHz}$ transmitters. A recommended method is shown in Fig. 16-9. It uses a shielded lead bypassed with a ceramic disk as described above, with the addition of a low-inductance feed-through type capacitor

Fig. 16-9 - Additional lead filtering for harmonics or other spurious frequencies in the high vhf TV band (174-216 MHz).
C1 - . 001- $\mu \mathrm{F}$ disk ceramic.
C2 - 500 or $1000-\mathrm{pF}$ fed-through bypass (Centralab FT-1000. Above 500 volts, substirute Centralab 8585-500.).
RFC - 14 inches No. 26 enamel close-wound on 3/16-inch dia. form or composition resistor body.
and a small rf choke, the capacitor being used as a terminal for the extemal connection. For voltages above 400, a capacitor of compact construction (as indicated in the caption) should be used, mounted so that there is a very minimum of exposed lead inside the chassis, from the capacitor to the connection terminal.

As an alternative to the series-resonant bypassing described above, feed-through type capacitors such as the Sprague "Hypass" type may be used as terminals for external connections. The ideal method of installation is to mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in which the capacitor is mounted. The principle is illustrated in Fig. 16-10.

Meters that are mounted in an rf unit should be enclosed in shielding covers, the connections being made with shielded wire with each lead bypassed as described above. The shield braid should be grounded to the panel or chassis immediately outside the meter shield, as indicated in Fig. 16-11. A bypass may also be connected across the meter terminals, principally to prevent any fundamental current that may be present from flowing through the meter itself. As an alternative to individual meter shielding the meters may be mounted entirely behind the panel, and the panel holes needed for observation may be covered with wire screen that is carefully bonded to the panel all around the hole.

Care should be used in the selection of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the de voltage in use, but the insulation should be of material that will not easilly deteriorate in soldering. The If characteristics of the wire are not especially important, except that the attenuation of harmonics in the wire itself will be greater if the insulating material has high losses at radio frequencies; in other words, wire intended for use at dc and low frequencies is preferable to cables designed expressly for carrying rf. The attenuation also will increase with the length of the wire; in general, it is better to make the leads as long as circumstances permit rather than to follow the

Fig. 16-10 - The best method of using the "Hypass" type feedthrough capacitor. Capacitances of . 01 to $0.1 \mu \mathrm{~F}$ are satisfactory. Capacitors of this type are useful for high-current circuits, such as filament and 117 -volt leads, as a substitute for the if choke shown in Fig. 16-8, in cases where additional lead filtering is needed.

Fig. 16-11 - Meter shielding and bypassing. It is essential to shield the meter mounting hole since the meter will carry if through it to be radiated. Suitable shields can be made from 2 1/2- or 3-inch diameter metal cans or small metal chassis boxes.
more usual practice of using no more lead than is actually necessary. Where wires cross or run parallel, the shields should be spot-soldercd together and connected to the chassis. For high voltages, automobile ignition cable covered with shielding braid is recommended.

Proper shielding of the transmitter requires that the rf circuits be shielded entirely from the external connecting leads. A situation such as is shown in Fig. 16-12, where the leads in the rf chassis have been shielded and properly filtered but the chassis is mounted in a large shield, simply invites the harmonic currents to travel over the chassis and on out over the leads ourside the chassis. The shielding about the rf circuits should make complete contact with the chassis on which the parts are mounted.

Checking Transmitter Radiation

A check for transmitter radiation always should be made before attempting to use low-pass filters or other devices for preventing harmonics from reaching the antenna system. The only really satisfactory indicating instrument is a television receiver. In regions where the TV signal is strong an indicating wavemeter such as one having a crystal

Fig. 16-12 - A metal cabinet can be an adequate shield, but there will still be radiation if the leads inside can pick up if from the transmitting circuits.
or tube detector may be useful; if it is possible to get any indication at all from harmonics either on supply leads or around the transmitter itself, the harmonics are probably strong enough to cause interference. However, the absence of any such indication does not mean that harmonic interference will not be caused. If the techniques of shiclding and lead filtering described in the preceding section are followed, the harmonic intensity on any external leads should be far below what any such instruments can detect.

Radiation checks should be made with the transmitter delivering full power into a dummy antenna, such as an incandescent lamp of suitable power rating, preferably installed inside the shielded enclosure. If the dummy must be extemal, it is desirable to connect it through a coax-matching circuit such as is shown in Fig. 16-13. Shielding

Fig. 16-13 - Dummy-antenne ovstem for checking harmonic radiation from the transmitter and leads.
the dummy antenna circuit is also desirable, although it is not always necessary.

Make the radiation test on all frequencies that are to be used in transmitting, and note whether or not interference patterns show in the received picture. (These tests must be made while a TV signal is being received, since the beat patterns will not be formed if the TV picture carrier is not present.) If interference exists, its source can be detected by grasping the various external leads (by the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might escape from the transmitter. If any of these tests cause a change - not necessarily an increase - in the intensity of the interference, the presence of harmonics at that point is indicated. The location of such "hot" spots usually will point the way to the remedy. If
the TV receiver and the transmitter can be operated side-by-side, a length of wire connected to one antenna terminal on the receiver can be used as a probe to go over the transmitter enclosure and external leads. This device will very quickly expose the spots from which serious leakage is taking place.

As a final test, connect the transmitting antenna or its transmission line terminals to the outside of the transmitter shielding. Interference created when this test is applied indicates that weak currents are on the outside of the shield and can be conducted to the antenna when the normal antenna connections are used. Currents of this nature represent interference that is conducted over low-pass filters, and hence cannot be eliminated by such filters.

TRANSMITTING-ANTENNA CONSIDERATIONS

When a well-shielded transmitter is used in conjunction with an effective low-pass filter, and there is no incidental rectification in the area, it is impossible to have "hamonic-type" TVI, regardless of the type of iransmitting antenna. However, the type of transmitting antenna in use can be responsible for "fundamental-overdoad" TVI.

To minimize the chances of TVI, the transmitting antenna should be located as far as possible from the recciving antenna. The chances of fundamental overload at the television receiver are reduced when a horizontal transmitting antenna or beam is mounted higher than the TV antenna. Other things being equal, fundamental overload is more likely to occur with a vertical transmitting antenna than with a horizontal one, because the vertical antenna has a stronger field at a low angle. If a ground-plane antenna can be located well above the height of the TV receiving antenna, there is less likelihood of fundamental overioad than when it is at the same height or below the television antenna.

The SWR on the line to the transmitting antenna has no effect on TVI. However, when the line to the antenna passes near the TV antenna, radiation from the line can be a source of TVI. Methods for minimizing radiation from the line are discussed in the chapter on transmission lines.

FILTERS AND INTERFERENCE

The judicious use of filters, along with othes suppression measures such as shielding, has provided solutions to interference problems in widely varying applications. As a consequence, considerable attention has been given to the subject ovet the years that has resulted in some very esoteric designs. Perhaps the most modern approach is the optimization and/or realization for a particulas application of a filter by means of a digital computer. However, there are a number of other types with component values cataloged in tabular form. Of these, the most important ones are the so-called Chebyshev and elliptic-function filters.
(Butterworth filters are often considered as a special case of Chebyshev types only with a ripple factor of zero.)

Elliptic-function filters might be considered optimum in the sense that they provide the sharpest rolloff between the passband and stopband. Computed values for a low-pass filter with a $0.1-\mathrm{dB}$ ripple in the passband and a cutoff frequency of 30.6 MHz are shown in Fig. 1. The filter is supposed to provide an attenuation of 35 dB above 40 MHz . An experimental model was built and the response is shown in Fig. 2. As can be seen, the filter came quite close to the design goals.

Fig. 1 - Schematic diagram showing component values of an experimental elliptic function filter.

Unfortunately, as with most of the designs in this section, alignment of the more complicated filters requires some sort of sweep-generator setup. This is the only practical way of "tweaking" a filter to the desired response. While building a sweep setup is not beyond the talents of an advanced experimenter, the lack of one is an obstacle in the home construction of filters.

Chebyshev Filters

Chebyshev low-pass filters (and Butterworth filters) have the same ladder-network circuit as the elliptic-function filter in Fig. 1 except that the inductors in the shunt amms are omitted. Tables for the element values are quite common and can be found in any number of references. However, how to determine the attenuation at a particular frequency is often not included in such eables and some explanation is in order. It will be recalled that a ripple factor was mentioned in conjunction with the elliptic-function filter in the previous section. This factor specifies the allowable amount of attenuation in the passband and represents a uradeoff from steepness of the attenuation between the passband and stopband. Larger ripple factors result in greater rolloff: however, the input impedance and consequently the VSWR of the filter become larger also. For moderate powertransmitting applications, a ripple factor of 0.1 dB is about the maximum permissible amount. This results in a VSKR of approximately 1.4:1. For low-level stages, VSWR is often not a problem and higher ripple factors can be used.

The aftenuation (or insertion loss in the case of equal resistive terminations at the input and output of the filter) is given by:

$$
L=10 \log _{10} \frac{1}{1+e^{2} T_{n}^{2}(\omega)}
$$

where $\operatorname{In}(\omega)$ represents a Chebyshev polynomial of degree n. and n represents the number of inductors and capacitors in the filter (for instance, for an ordinary pi or I network, n would be 3). The term ω is just $2 \pi f(\mathcal{f}$ is the frequency in Hz and ϵ^{2} will be discussed shortly). Chebyshev polynomials can be expressed in terms of ordinary trigonometric and hyperbolic functions by:

$$
T_{n}(\omega)=\left\{\begin{array}{l}
\cos (n \operatorname{arc} \cos \omega) 0<\omega<1 \\
\cosh (n \operatorname{arc} \cosh \omega) \omega>1
\end{array}\right\}
$$

For values of ω less than onc, the polynomial oscillates between ± 1 whilc for greater values, it increases rapidly. Consequently, the value for ω

Fig. 2 - Response curve of the filter shown in Fig. 1. Vertical scale represents $10 \mathrm{~dB} / \mathrm{div}$. and horizontal scale is $10 \mathrm{MHz} / \mathrm{div}$.
equal to 1 represents the cutoff frequency of the filter. While the polynomial could be tabulated from tables of functions, the problem could be easily solved on many current calculator models. In fact, with programmable models such as the Hewlett Packard HP-25, finding the attenuation at any frequency only requires entry of the frequency. ripple factor and number of elements (number of poles). For those interested, a copy of such a program is available from ARRL for 25 cents and an s.a.s.e.

The term ϵ^{2} is the ripple factor and is related to the ripple factor in decibels by the equation:

$$
c^{2}=10^{\frac{\text { rpplo }(\Delta B)}{10}}-1
$$

This concept represents the most important aspect of current filter design. Limits or tolerances are set on the amount of ripple in either the passband or stopband (or both in the case of elliptic-function filters) and the filter is designed around these limits.

A Citation Eliminator

Quite often, some insight into the qualitative manner in which a filter works is useful. For example, consider the filter shown in Fig. 3. If the $2.26-\mu \mathrm{H}$ coils were omitted, a high-pass configuration would result. By including the coils, the filter will possibly have a rolloff above the high-pass cutoff frequancy and provide an unsymmetrical bandpass characteristic.

Pc board serves as an enclosure for this ellipticfunction filter.

Fig. 3 - Schematic diagram of the "Citation Eliminator." Component values shown are theoretical computed inductances and capacitances for a bandpass filter resonant at 21.14 MHz with a bandwidth of 4.5 MHz .
C1, C2 - 4.5 to 25 pF, ceramic trimmer.
Li, L2 - 13 turns $3 / 4$-inch dia., 16 rpi (B \& W 3011).

L3 - 5 turns No. 16 solid wire $3 / 4$-inch dia., approx. 1 -inch long.

This is shown in Fig. 4 and an application of a Bliter of this typo is as follows. Many older rigs suitable for cw work are often acquired by Novice operators because of their low cost. Unfortunately, operation on the higher bands such as 15 meters can be somewhat tricky and it is possible that the rig is tuned up on 20 meters instead. The aforementioned filter eliminates that possibility by providing rejection at 14 MHz and also at harmonics above the operating frequency of 21 MHz . It is relatively casy to align since all that is necessary is to grid-dip Li to 21.14 MHz (with the input shosted and the output open) by means of C1. The process is repeated with L2 and C2, only the input is opened and the output terminal shorted. Further tweaking can be accomplished by adjusting the capacitors for minimuna SWR with the output circuit connected to a dummy load. Some adjustment of L3 may be necessary which controls the coupling. Spreading or squeczing the coil tums farther apart or closer together, decreases or increases the inductance (and hence the coupling) accordingly.

A similar construction using pc board is shown for the "Citation Eliminator." Approximate dimensions are $2 \times 2.3 / 4 \times 2.3 / 4$ (HWD). A top cover with hole for capacitor adjustment should be soldared on after filter is initially allgned. Power rating is suitable for transmitters in 75 -watt input class.

Fig. 4 - Response of the "Citation Eliminator." Attenuation and frequency scale $10 \mathrm{~dB} /$ div. (vertical) and $5 \mathrm{MHz} /$ div. (horizonial).

An Absorptive Filter

The filter shown in lig. 1 not only provides rejection by means of a low-pass section, it also includes circuitry that absorbs harmonic energy. A high-pass section consisting of $\mathrm{L}, \mathrm{L2}, \mathrm{Cl}$ and C 2 is terminated in a 50 -ohm "idler load" and this combination performs the latter function. The advantages of this technique are that degradation of filter rejection caused by anienna mismatch at the harmonic frequency are not as severe (with a falter of this type) and the transmitter is terminated in a resistive load at the harmonic.

Construction and Test Techniques

If good performance above 100 MHz is not a necessity, this filter can be built using conventional fixed capacitors. Copperclad Teflon board may not be readily available in small quantities from many supply houses. Regular flberglass-insulated board is satisfactory for low power. One such filter has been used with an SB-100 transceiver running 100 watts. Although the Q of the fiberglass

Fig. 1 - Schematic diagram of the absorptive filter. The pe board used is MIL-P-13949D, FL-GT-. 062 in. C-2/2-11017, Class 1, Grade A. Polychem Bud Division. Capacitance between coppar surfaces la 10 -pF per square inch. Values are as follows for a design cutoff frequency of 40 MHz and rejection peak in Channel 2:
C1 - 52 pF
C4-21.6 pF
L3 $-0.3 \mu \mathrm{H}$
C2-73 $\mathrm{\rho F}$
니 $-0.125 \mu \mathrm{H}$
$\mathrm{L} 4-0.212 \mu \mathrm{H}$
C3-126 pF
L2 $-0.52 \mu \mathrm{H}$
$L 5-0.24 \mu \mathrm{H}$
capacitors will be lower than that of Teflordielectric capacitors, this should not greatly affect the type of fliter described here.

Test equipment needed to build this filter at home includes a reasonably accurate grid-dip oscillator, a $S W R$ bridge, a reactance chart or the ARRL Lighting Calculator (for L, C, and $N_{\text {, a }}$ 50 -ohm dummy load, and a transmitter.

Once the value of a given capacitor has been calculated, the next step is to determine the capacitance per square inch of the double-ctad circuit board you huve. This is done by connecting one end of a coll of known inductance to one side of the circuit board, and the other coil lead to the other side of the circuit board. Use the grid-dip oscillator, coupled lightly to the coil, to determine the resonant frequency of the coil and the cliccuitboard capacitor. When the frequency is known, the total capacitance can be determined by working the Lightning Calculator or by looking the capacitance up on a reactance chart. The total capacitance divided by the number of square inches on one side of the circuit board gives the capacitance per square inch. Once this figure is determined, capacitors of almost any value can be laid out with a suler!

Fig. 3 - Dummy load for the high-pass saction of the filter.

High voltages can be developed across capact tors in a series-tuned circuit, so the copper material should be trimmed back at least $1 / 8$ inch from all edges of a board, except those that will be soldered to ground, to prevent arcing. This should not be accomplished by filing since the copper filings would become imbedded in the board material and just compound the problem. The capacitor surfaces should be kept smooth and sharp cornern should be avoided.

If the filter box is made of doublo-clad fiber glass board, both sides should be bonded together with copper stripped from another piece of board. Stripped copper foil may be cleaned with a razor blade before soldering. To remove copper foll from a board, use a straight odge and a sharp scribe to score the thin copper foil. When the coppes foil has been cut, use a razor blade to lift a comer. Careful heating with a soldering iron will reduce the effort required to separate the copper from the board. This technique of bonding two pieces of board or two sides of a pioce of board can also be used to interconnect two capacitors when construction in one plane would require too much area. Stray inductance must be minimized and sufficient clearance must be maintained for arc-over protection

Capacitors with Teflon dielectric have been used in filters passing up to 2 kW PEP. One further

Fig. 16-14 - Equivalent circuits for the strip-line filters. At A, the circuit for the 8 . and 2 -meter filters are shown. L2 and L3 are the input and output links. These filters are bilaterlal, permirting interchanging of the input and output terminals.

At B. the representative circuit for the 220- and $432-\mathrm{MHz}$ filters. These filters are also bilateriat.

word of caution: No low-pass riter will be fully effective until the transmitter with which it is used is properly shiclded and all leads filtered.

The terminating loads for the high-pass section of the filter can be made from 2 -watt, 10 -percent tolerance composition resistors. Almost any dissipation rating can be obsained by suirable sariesparallel combinations. For example, a 16 -watt, 50 -ohm toad could be built as shown in Fif. 3. This load should handle the harmonic energy of a signal with peak fundamental power of 2 kilowates. With this load, the harmonic energy will see a SWR under 2: 1 up to $\$ 00 \mathrm{MHz}$. For low power (under 300 watts PEP), a pair of 2 -watt 100 -ohm resistors is adequate.

In the modol shown the high-pass filter series capacitors aro bonded and mounted on Teflon standoff insulators.

FILTERS FOR VHF TRANSMITTERS

High rejection of unwanted frequencies is possible with the tuned-line filters of Fig 16-14. Examples are shown for each band from 50 through 450 MHz . Construction is relatively simple, and the cost is low. Standard boxes are used, for ease of duplication.

The filter of Fig 16-15 is selective enough to pass 50-MHz energy and attenuste the 7th harmonic of an $8-\mathrm{MHz}$ oscillator that falls in TV Channel 2. With an insertion lose at 50 MHz of about 1 dB . it can provide up to 40 dB of attenuation to energy at 57 MHz in the same line. This should be more than enough attenuation to take care of the worst situations, provided that the radiation is by way of the transmitter output coax only. The filter will not eliminate interfering energy that gets out from power cables, the ac line, or from the transmitter circuits themselves. It also will do nothing for TVI that results from deficiencios in the TV receiver.

Fig. 16-15 - Interior of the $50-\mathrm{MHz}$ strip line filter. Inner conductor of oluminum strip is bent into U shape, to fit inside a standard 17 -inch chessis.

Fig. $16-16$ - The 144 MHz filter has an inner conductor of $1 / 2$-inch copper tubing 10 inches long, grounded to the left end of the case and supported at the righe end by the tuning capacitor.

Fig. 16-17 - A half-wave strip line is used in the $220-\mathrm{MHz}$ filter. It is grounded at both ends and tuned at the center.

The $50-\mathrm{MHz}$ filter, Fig. 16-15, uses a folded line in order to keep it within the confincs of a standard chassis. The case is a $6 \times 17 \times 3$-inch chassis (Bud AC-433) with a cover plate that fastens in place with self-tapping screws. An aluminum partition down the middle of the assembly is 14 inches long, and the full height of the chasals, 3 inches.

The inner conductor of the line is 32 inches long and $13 / 16$ inch wide, of $1 / 16$-inch brass, copper or aluminum. This was made from two pieces of aluminum spliced together to provide the 32 -inch length. Splicing seemed to have no ill effect on the circuit \boldsymbol{Q}. The side of the " U " are $27 / 8$ inches apart, with the partition at the center. The line is supported on ceramic standoffs. These were shimmed up with sections of hard wood or bakelite rod, to give the required $11 / 2$-inch height.

The tuning capacitor is a double-spaced variable (Hammarlund HF-30-X) mounted 1/2 inches from the right end of the chassis. Input and output coupling loops are of No. 10 or 12 wire, 10 inches long. Spacing away from the line is adjusted to about $1 / 4$ inch.

The $144-\mathrm{MHz}$ model is housed in a $21 / 4 \times 21 / 2 \times 12$-inch Minibox (Bud CU-2114A).

One end of the tubing is slotted $1 / 4$ inch deep with hacksaw. This slot takes a brass angle bracket $11 / 2$ inches wide, $1 / 4$ inch high, with a $1 / 2$-inch mounting lip. This $1 / 4$-inch lip is soldered
into the tubing slot, and the bracket is then bolted to the end of the box, so as to be centered on the and plate.

The tuning capacitor (Hammarlund HF-1 5-X) is mounted $11 / 4$ inches from the other end of the box, in such a position that the inner conductor can be soldered to the two stator bars.

The two coaxial fittings (SO-239) are 11/16 inch in from each side of the box, $31 / 2$ inches from the left end. The coupling loops are No. 12 wire, bent so that each is parallel to the center line of the inner conductor, and about $1 / 8$ inch from its surface. Their cold ends are soldered to the brass mounting bracket.

The $220-\mathrm{MHz}$ filter uses the same size box as the $144-\mathrm{MHz}$ model. The inner conductor is $1 / 16$-inch brass or copper, $5 / 8$ inch wide, Just long enough to fold over at each end for bolting to the box. It is positioned so that there will be $1 / 8$ inch clearance between it and the rotor plates of the tuning capacitor. The latter is a [lammarlund HF-15-X, mounted slightly off-center in the box, so that its stator plates connect to the exact mid-point of the line. The $5 / 16$-inch mounting hole in the case is $51 / 2$ inches from one end. The SO-239 coaxial fittings are 1 inch in from opposite sides of the box, 2 inches from the ends. Their coupling links are No. 14 wire, $1 / 8$ inch from the inner conductor of the line.

The $420-\mathrm{MHz}$ filter is similar in design, using a $15 / 8 \times 2 \times 10$-inch Minibox (Bud CU-2113-A). A
half-wave line is used, with disk tuning at the center. The disks are $1 / 16$-inch brass, $1 / 14$-inch dianeter. The fixed one is centered on the inner conductor, the other mounted on a No. 6 brass lead-screw. This passes through a threaded bushing which can be taken from the end of a discarded slug-tuned form. An advantage of these is that usually a tension device is included. If there is none, use a lock nut.

Type N coaxial connectors were used on the $420-\mathrm{MHz}$ model. They are $5 / 8$ inch in from each side of the box, and $13 / 8$ inches in from the onds. Their coupling links of No. 14 wire are 1/16 inch from the inner conductor.

Adjustment and Use

If you want the filter to work on both transmitting and receiving, connect the filter between antensa line and SWR indicator. With this arrangement you need merely adjust the filter for minimum reflected power reading on the SWR bridge. This should be zero, or close 10 it , if the antenna is well-matched. The bridge should be usod, as there is no way to adjust the filter properly without it. If you insist on trying, adjust for best reception of signals on frequencies close to the ones you expect to transmit on. This wosks only if the antenna is well matched.

When the filter is properly adjusted (with the SWR bridge) you may find that reception can be improved by retuning the filter. Don't do it, if you want the filter to work best on the job it was intended to do: the rejoction of unwanted energy. transmitting or receiving. If you want to improve reception with the filter in the circuit, work on the receiver input circuit. To get maximum power oul of the transmitter and into the line, adjust the transmitter output coupling, not the filter. If the effect of the filter on reception bothers you. connect it in the line from the antenna relay to the transmitter only.

SUMMARY

The methods of harmanic elimination oullined here have been proved beyond doubt to be effective even under highly unfavorable conditions. It must be emphasized once more, however, that the problem must be solved one step at a time, and the procedure must be in logical order. It cannot be done properly without two items of simple equipment: a grid-dip meter and wavemetor covering the TV bands, and a dummy antenna.

To summarize:

1) Take a critical look at the transmitter on the basis of the design considerations outtined under "Reducing Hamonic Generation."
2) Check all circuits, particularly those connected with the final amplifier, with the grid-dip meter to determine whether there are any resonances in the TV bands. If so, rearrange the ciscuits so the resonances are moved out of the critical frequency region.
3) Connect the transmitter to the dumary antenna and check with the wavemoter for the presence of harmonics on leads and around the transmitice enclosure. Seal off the weak spots in the shiclding and filter the icads until the wavemeter shows no indication at any harmonic frequency.
4) At this stage, check for interference with a TV receiver. If there is intericrence, determine the cause by the methods described previously and apply the recommended remedjes until the interference disappears.
5) When the transmitter is completely clean on the dummy antenna. connect it to the regular antenna and chect for interference on the TV receiver. If the interference is not bad, a Transmatch or matching circuit installed as previously described should clear it up. Alternatively, a low-pass filter may be used. If neither the Transmatch nor filter makes any difference in the interference, the evidence is strong that the interference, at least in part, is being caused by receiver uventuadirg becausc of the strong funda-mental-frequency ficld about the TV antenna and receiver. A Transmatch and/or filter, installed as described above, will invariably make a difference in the intensity of the interference if the interference is caused by transmitter hamonics alone.
6) If there is still interference ofter installing the Transmatch and/or filter, and the evidence shows that it is probably caused by a hammonic, more attenuation is needed. A more elaborate filter may be necessary. However, it is well at this stage to assume that part of the interference may be caused by receiver overloading, and take steps to alleviate such a condition before trying highlyelaborate filters and traps on the transmitter.

HARMONICS BY RECTIFICATION

Even though the transmitter is completely free from harmonic output it is still possible for interference to occur because of harmonics

Fig. 16-18 - The proper mathod of installing a low-pass filter between the transmitter and a Transmatch. If the antenna is fed through coax, the Transmatch can be eliminated, but the transmitter and filter must be completely shisided. If a TR switch is used, it should be installed batween the transmitter and low-pass filter. TR switches can generate harmonics thernselves, so the low-pass filter should follow the TR switch.

generated outside the transmitter. These result from rectufication of fundamental-frequency currents induced in conductors in the vicinity of the transmitting antenna. Rectification can take place at any point where two conductors are in poor electrical contact, a condition that frequently exists in plumbing, downspouting, BX cables crossing each other, and numerous other places in the ordinary residence. It also can occur at any exposed vacuum tubes in the station, in power supplies, speech equipment, etc., that may not be enclosed in the shielding about the rf circuits. Poor joints anywhere in the antenna system are especially bad, and rectification also may lake place in the contacts of antenna changcover relays. Another common cause is overloading the front end of the communications receiver when it is used with a separate antenna (which will radiate the harmonics generated in the first tube) for break-in.

Rectification of this sort will not only cause harmonic interference but also is frequently responsible for cross-modulation effects. It can be detected in greater or less degree in most locations, but fortunately the harmonics thus generated are not usually of high amplitude. However, they can cause considerable interference in the immediate vicinity in fringe areas, especially when operation is in the $28-\mathrm{MHz}$ band. The amplitude decreases rapidly with the order of the harmonic, the second and third being the worst. It is ordinarily found that even in cases where destructive interference results from $28-\mathrm{MHz}$ operation the interference is comparatively mild from 14 MHz , and is negligible at still lower frequencies.

Nothing can be done at cither the transmitter or receiver when rectification occurs. The remedy is to find the source and eliminate the poor contact oither by separating the conductors or bonding them together. A crystal wavemeter (tuned to the fundamental frequency) is useful for hunting the source, by showing which conductors are carrying rf and, comparatively, how much.

Interference of this kind is frequently intermittent since the rectification efficiency will vary with vibration, the weather, and so on. The possibility of corroded contacts in the TV receiving antenna should nut be overiooked, especially if it has been up a year or more.

TV RECEIVER DEFICIENCIES

When a television receiver is quite close to the transmitter, the intense if signal from the transmitter's 〔undamental may overload one or more of the receiver circuits to produce spurious responses that cause interference.

If the overload is moderate, the interference is of the same nature as harmonic interference: it is caused by harmonics generated in the early stages of the roceiver and, since it occurs only on channels harmonically related to the transmitting frequency, it is difficult to distinguish from harmonics actually radiated by the transmitter. In such cascs additional harmonic suppression at the transmitter will do no good, but any means taken at the receiver to reduce the strength of the amateur signal reaching the first tube will effect an improvement. With very severe overloading, interference also will occur on channels not harmonically related to the transmitting frequency, so such cases are easily identified.

Cross-Modulation

Upon some circumstances overloading will result in cross-modulation or mixing of the amateur signal with that from a local fin or TV station. For example, a $14-\mathrm{MHz}$ signal can mix with a $92-\mathrm{MHz}$ fm station to produce a beat at 78 MHz and cause interference in Channel 5 , or with a TV station on Channel 5 to cause interference in Channel 3. Neither of the channels interfered with is in harmonic relationship to 14 MHz . Both signals have to be on the air for the interference to occur, and eliminating cither at the TV receiver will eliminate the interference.

There are many combinations of this type, depending on the band in use and the local frequency assizaments to fm and TV stations. The interfering frequency is equal to the amateur fundamental frequency either added to or subtracted from the frequency of some local station, and when interference occurs in a TV channel that is not harmonically related to the amateur transmituing frequency the possibilities in such frequency combinations should be investigated.

Fig. 18.19 - High_pass filters for installation at the TV receivar antenna terminals. A - balanced filter for 300 -ahm line. B - for 75-ohm coaxial line. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a. $001 \mu \mathrm{~F}$ mica capacitor.

EACH COIL 3 TURNS No. 14. DIA 3^{3} : 8 TURNS PER INCH

I-f Interference

Some TV receivers do not have sufficient selectivity to prevent strong signals in the intermediate-frequency range from forcing their way through the front end and getting into the $\mathrm{i}-\mathrm{f}$ amplifier. The once-standard intermedinte frequency of, roughly, 21 to 27 MHz , is subject to interference from the fundamental-frequency output of transmitters operating in the $21-\mathrm{MHz}$ band. Transmitters on 28 MHz sometimes will cause this type of interference as well.

A form of i-f interference peculiar to $50-\mathrm{MHz}$ operation near the low edge of the band occurs with some receivers having the standard " $411-\mathrm{MHz}$ " $\mathrm{i}-\mathrm{f}$, which has the sound carrier at 41.25 MHz and the picture carrier at 45.75 MHz . A $50-\mathrm{MHz}$ signal that forces its way into the i if system of the receiver will beat with the i-f picture carrier to give a spurious signal on or near the i-f sound carrier, even though the interfering signal is not actually in the nominal passband of the i-f amplifier.

There is a type of i-f interference unique to the $144-\mathrm{MHz}$ band in localities where certain uhf TV channels are in operation, affecting only those TV receivers in which double-conversion type plug-in uhf tuning strips are used. The design of these strips involves a first intermediate frequency that varies with the TV channel to be received and, depending on the particular strip design, this first i-f may be in or close to the $144-\mathrm{MHz}$ amateur band. Since there is comparatively little selectivity in the TV signal-frequency circuits ahead of the first i-f, a signal from a $144-\mathrm{MHz}$ transmitter will "ride into" the $i-f$, even when the receiver is at a considerable distance from the transmitter. The channels that can be affected by this type of i-f interference are:
Receivers with
$21-M H_{2}$
second $i-f$
Channels $14-18$, incl.
Channels 41-48, incl
Channels $69-77$, incl.

Receivers with 41-MHz second i-f

Channels 20-25, incl. Channels 51-58, incl. Channcis 82 and 83.

If the receiver is not close to the transmitter, a trap of the typc shown in Fig. 16-21 will be effective. However, if the separation is small the $144-\mathrm{MHz}$ signal will be picked up directly on the receiver circuits and the best solution is to readjust the strip oscillator so that the first $j-f$ is moved to a frequency not in the vicinity of the $144 \cdot \mathrm{MHz}$ band. This has to be done by a competent technician.

1-f interference is easily identified since it occurs on all channels - although sometimes the intensity varies from channel to charnel - and the cross-hatch pattern it causes will rotate when the receiver's finc-tuning control is varied. When the interference is caused by a hamonic, overloading, or cross modulation, the structure of the interference pattern does not change (its intensity may change) as the fine-tuning control is varied.

High-Pass Filters

In all of the above cases the interference can be eliminated if the fundamental signal strength can be reduced to a level that the receiver can handie. To accomplish this with signals on bands below 30 MHz , the most satisfactory device is a high-pass filter having a cutoff frequency between 30 and 54 MHz , installed at the tuner input terminals of the receiver. Circuits that have proved effective are shown in Figs. 16-18 and 16-19. Fig. 16-18 has one more section than the filters of Fig. 16-19 and as a consequence has somewhat better cutoff characteristics. All the circuits given are designed to have little or no effect on the TV signals but will attenuate all signals lower in frequency than about 40 MHz . These filters preferably should be constructed in some sort of shielding container, although shielding is not always necessary. The dashed lines in Fig. $\mathbf{1 6 - 2 0}$ show how individual filter coils can be shicided from each other. The capacitors can be tubular ceramic units centered in holes in the partitions that separate the coils.

Simple high-pass filters cannot always be applied successfully in the case of $50-\mathrm{MHz}$ transmissions, because they do not have sufficient-ly-sharp cutoff characteristics to give both good attenuation at $50-54 \mathrm{MHz}$ and no attenuation above 54 MHz . A more elaborate design capable of giving the required sharp cutoff has been described (Ladd, " $50-\mathrm{MHz}$ TVI - Its Causes and Cures," QST, June and July, 1954). This article also contains other information useful in coping with the TV1 problems peculiar to $50-\mathrm{MHz}$ operation. As an altemative to such a filter, a high- Q wave trap tuned to the transmitting frequency may be used, suffering only the disadvantage that it is quite selective and therefore will protect a receiver from overloading over only a small range of transmitting frequencies in the $50-\mathrm{MHz}$ band. A trap of this type is shown in Fig. 16-21. These "suck-out" traps, while absorbing energy at the frequency to which they are tuned, do not affect the receiver operation otherwise. The assembly should be mounted near the input terminals of the IV tuner and its case should be grounded to the TV set chassis. The traps should be tuned for minimum TVI at the transmitter operating frequency. An insulated tuning tool should be used for adjustment of the trimmer capacitors, since

Fig. 16-20 - Another iype of high-pass filter for 300 -ohm line. The coils may be wound on $1 / 8$-inch diameter plastic knitting needles. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a . $001 \mu \mathrm{~F}$ mica capacitor.

Fig. 16-21 - Parallel-tuned traps for installation in the 300 -ohm line to the TV set. The traps should be mounted in an aluminum Minibox with a shield partition between them, as shown. For 50 MHz , the coils should have 9 turns of No. 16 enamel wire, close wound to a diameter of $1 / 2$ inch. The $144-\mathrm{MHz}$ traps should contain coils with a total of 6 turns of the same type wire, close-wound to a diameter of $1 / 4$ inch. Traps of this type can be used to combat fundamental-overload TVI on the lower-frequency bands as well.
they are at a "hot" point and will show considcrable body-capacitance effect.

High-pass filters are available commercially at moderate prices. In this connection, it should be understood by all parties concerned that while an amateur is responsible for harmonic radiation from his transmitter. it is no part of his responsibility to pay for or install filters, wave traps, etc. that may be required at the receiver to prevent interference caused by his fundamental frequency. Proper installation usually requires that the filter be installed right at the input terminals of the rf tuner of the TV set and not merely at the external antenna terminals, which may be at a considerable distance from the tuner. The question of cost is one to be settled between the set owner and the organization with which he deals. Don't overlook the possibility that the manufacturer of the TV receiver will supply a high-pass filter free of charge.

If the fundamental signal is getting into the receiver by way of the line cord a line filter such as those shown in Fig $16-22$ may help. To be most effective it should be installed inside the receiver chassis at the point where the cord enters, making the ground connections directly to the chassis at this point. It may not be so helpful if placed between the line plug and the wall socket unless the of is actually picked up on the house wiring rather than on the line cord itself.

Fig. 16-22 - "Brute-force" ac line filter for receivers. Ine values ot C1, C2 and C3 are not generally critical; capacitances from . 001 to $.01 \mu \mathrm{~F}$ can be used. L1 and L2 can be a 2 -inch winding of No. 18 enameled wire on a half-inch diameter form. In making up such a unit for use external to the recsiver, make sure that there are no exposed conductors to offer a shock hazard.

Antenna Installation

Usually, the transmission line between the TV receiver and the actual TV antenna will pick up a great deal more energy from a nearby transmitter than the television receiving antenna itself. The currents induced on the TV transmission line in this case are of the "parallel" type, where the phase of the current is the same in both conductors. The line simply acts like two wires connected together to operate as one. If the receiver's antenna input circuit were perfectly balanced it would reject these "parallel" or "unbalance" signals and respond only to the true transmission-line ("push-pull") currents; that is, only signals picked up on the actual antenna would cause a receiver response. However, no receiver is perfect in this respect, and many TV receivers will respond strongly to such parallel currents. The result is that the signals from a nearby amateur transmitter are much more intense at the first stage in the TV receiver than they would be if the receiver response were confined entirely to energy picked up on the TV antenna alone. This situation can be improved by using shielded transmission line - coax or, in the balanced form, "twinax" for the receiving installation. For best results the line should terminate in a coax fitting on the receiver chassis, but if this is not possible the shield should be grounded to the chassis right at the antenna terminals.

The use of shielded transmission line for the receiver also will be helpful in reducing response to harmonics actually being radiated from the transmitter or transmitting antenna. In most receiving installations the transmission line is very much longer than the antenna itself, and is consequently far more exposed to the harmonic fields from the transmitter. Much of the harmonic pickup, therefore, is on the receiving transmission line when the transmitter and receiver are quite close together. Shiclded line, plus relocation of either the transmitting or receiving antenna to take advantage of directive effects, often will result in reducing overloading, as well as harmonic pickup. to a level that does not interfere with reception.

UHF TELEVISION

Harmonic TVI in the uhf TV band is far less troublesome than in the vhf band. Harmonics from transmitters operating below 30 MHz are of such high order that they would normally be expected to be quite weak; in addition, the components, circuit conditions and construction of low-frequency transmitters are such as to tend to prevent very strong harmonics from being generated in this region. However, this is not true of amatcur vhf transmitters, particularly those working in the $144-\mathrm{MHz}$ and higher bands. Here the problem is quite similar to that of the low vhf TV band with respect to transmitters operating below 30 MHz .

There is one highly favorable factor in uhf TV that does not exist in the most of the vhf TV band: If harmonics are radiated, it is possible to move the transmitter frequency sufficiently (within the
amateur band being used) to avoid interfering with a channel that may be in use in the locality. By restricting operation to a portion of the amateur band that will not result in harmonic interference, it is possible to avoid the necessity for taking extraordinary precautions to prevent harmonic sadiation.

The frequency assignment for uhf television consists of seventy 6 -Megahertz channels (Nos. 14 to 83 , inclusive) beginning at 470 MHz and ending at 890 MHz . The harmonics from amateur bands above $50-\mathrm{MH} 7$ span the uhf channels as shown in Table 16-1. Since the assignment plan calls for a minimum separation of six channels between any two stations in one locality, there is ample opportunity to choose a fundamental frequency that will move a harmonic out of range of a local TV frequency.

TABLE 16-I

Harmonic Relationship - Amateur VHF Bands and UHF TV Channels			
Amateur Band	Harmonic	Fundamental Freq. Range	Channel Affected
144 MHz	4th	$\begin{aligned} & 144.0-144.5 \\ & 144.5-146.0 \\ & 146.0-147.5 \\ & 147.5-148.0 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$
	5th	$144.0-144.4$ $144.4-145.6$	55 56
		145.6-146.8	57
		146.8-148.0	58
	6th	144.0-144.33	79
		144.33-145.33	80
		145.33-147.33	81
		147.33-148.0	82
220 MHz	3rd	220-220.67	45
		220.67-222.67	46
		222.67-224.67	47
		224.67-225	48
	4th	220-221	82
		221-222.5	83
420 MHz	2nd	420-421	75
		421-424	76
		424-427	77
		427-430	78
		430-433	79
		433-436	80

COLOR TELEVISION

The color TV signal includes a subcarrier spaced 3.58 MHz from the regular picture carrier (or 4.83 MHz from the low edge of the channel) for transmitting the color information. Harmonics which fall in the color subcarrier region can be epected to cause break-up of color in the received picture. This modifies the chart of Fig. 16-2 to introduce another "severe" region centering around 4.8 MHz measured from the low-frequency edge of the channel. Hence with color television reception there is less opportunity to avoid
harmonic interference by choice of operating frequency. In other respects the problem of eliminating interference is the same as with black-and-white television.

INTERFERENCE FROM TV RECEIVERS

The TV picture tube is swept horizontally by the electron beam 15,750 times per second, using a wave shape that has very high harmonic content. The harmonics are of appreciable amplitude even at frequencies as high as 30 MHz , and when radiated from the receiver can cause considerable interference to reception in the amateur bands. While measures to suppress radiation of this nature are required by FCC in current receivers, many older sets have had no such treatment. The interference takes the form of rather unstable, ac-modulated signals spaced at intervals of 15.75 kHz .

Studies have shown that the radiation takes place principally in three ways, in order of their importance: (1) from the ac line, through stray coupling to sweep circuits; (2) from the antenna system, through similar coupling; (3) directly from the picture tube and sweep-circuit wiring. Line radiation often can be reduced by bypassing the ac line cord to the chassis at the point of entry, although this is not completely effective in all cases since the coupling may take place outside the chassis beyond the point where the bypassing is done. Radiation from the antenna is usually suppressed by installing a high-pass filter on the receiver. The direct radiation requires shielding of high-potential leads and, in some receivers, additional bypassing in the sweep circuit; in severe cases, it may be necessary to line the cabinet with screening or similar shielding material.

Incidental radiation of this type from TV and broadcast receivers, when of sufficient intensity to cause serious interference to other radio services (such as amateur), is covered by Part 15 of the FCC rules. When such interference is caused, the user of the receiver is obligated to take steps to eliminate it. The owner of an offending receiver should be advised to contact the source from which the receiver was purchased for appropriate modification of the receiving installation. TV receiver dealers can obtain the necessary information from the set manufacturer.

It is usually possible to reduce interference very considerably, without modifying the TV receiver, simply by having a good amateur-band receiving installation. The principles are the same as those used in reducing "hash" and other noise - use a good antenna, such as the transmitting antenna, for reception; install it as far as possible from ac circuits; use a good feeder system such as a properly balanced two-wire line or coax with the outer conductor grounded; use coax input to the receiver, with a matching circuit if necessary; and check the receiver to make sure that it does not pick up signals or noise with the antenna disconnected.

HI-FI INTERFERENCE

Since the introduction of stereo and high-fidelity receivers, interference to this type of home-entertainment device has become a severe problem for amateurs. Aside from placing the amateur antenna as far as possible from any hi-fi installation, there is little else that can be done at the amateur's han shack. Most of the hi-fi gear now being sold has little or no filtering to prevent rf interference. In other words, corrective measures must be done at hi-fi installation.

Hi-Fi Gear

$\mathrm{Hi}-\sqrt{1}$ gear can consist of a simple amplifier, with record or tape inputs, and speakers. The more elaborate installations may have a tape deck, record player, fm and a-m tuners, an amplifier, and two or more speakers. These units are usually connected together by means of shielded leads, and in most cases the speakers are positioned some distance from the amplifier, via long leads. When such a setup is operated near an amateur station, say within a few hundred feet, there are two important paths through which rf energy can reach the hi-n installation to cause interference.

Step number one is to try to determine how the interference is getting into the hi-fiunit. If the volume control has no effect on the level of interference or very slight effect, the audio rectification of the amateur signal is taking place past the volume control, or on the output end of the amplifier. This is by far the nost common type. It usually means that the amateur signal is being picked up on the speaker leads, or possibly on the ac line, and is then being fed back into the amplifier.

Fig. 16-23 - The disk capacitors should be mounted directly between the speaker terminals and chassis ground, keeping the leads as short as possible.

Experience has shown that most of the rf gets into the audio system via the speaker leads or the ac line, mostly the speaker leads. The amateur may find that on testing, the interference will only show up on one or two bands, or all of them. In hi-fi installations speakers are sometimes set up quite some distance from the amplifier. If the speaker leads happen to be resonant near an amateur band in use, there is likely to be an interference problem. The speaker lead will act as a resonant antenna and pick up the rf. One easy cure is to bypass the speaker terminals at the amplifier chassis. Use $.01-$ to $.03-\mu \mathrm{F}$ disk capacitors from the
speaker terminals directly to chassis ground; see Fig 16-23. Try . $01 \mu \mathrm{~F}$ and see if that does the job. In some amplifiers $.03 \mu \mathrm{~F}$ are required to eliminate the rf. Be sure to install bypasses on all the speaker terminals. In some instances, it may appear that one of each of the individual speaker terminals is grounded to the chassis. However, some amplifiers have the speaker leads above ground on the low side, for feedback purposes. If you have a circuit diagram of the amplifier you can check, but in the absence of a diagram, bypass all the terminals. If you can get into the amplifier, you can use the system shown in Fig. 16-24A.

In this system, two rf chokes are installed in series with the speaker leads from the output

(A)

Fig. 16-24 - At A, the method for additional speaker filter, and at B, filtering the ac-line input. In both cases, these installations should be made directly inside the amplifier chassis, keaping the leads as short as possible.
C1.C2 - .01-to .03- $\mu \mathrm{F}$ disk ceramic.
C3. C4 - . 01 disk ceramic, ac type.
RFC1 through RFC4 - 24 turns No. 18 enamel-covered wire, close-spaced and wound on a $1 / 4$-inch diameter form (such as a pencil).
transformers, or amplifier output, to the speakers. These chokes are simple to make and help keep rf out of the amplifier. In particularly stubborn cases, shielded wire can be used for the speaker leads, grounding the shields at the amplifier chassis, and still using the bypasses on the terminals. When grounding, all chassis used in the hi-fi installation should be bonded together and connected to a good earth ground (such as a water pipe) if at all possible. It has been found that grounding sometimes eliminates the interference. On the other hand, don't be discouraged if grounding doesn't appear to help. Even with the bypassing and filtering grounding may make the difference.

Fig. 16-24B shows the method for filtering the ac line at the input of the amplifier chassis. The choke dimensions are the same as those given in Fig. 16-24A. Be sure that the bypasses are rated for ac because the de types have been known to short out.

Antenna Pickup

If the hi-fi setup includes an fm installation, and many of them do, there is the possibility of rf getting into the audio equipment by way of the fm
antenna. Chances for this method of entry are very good and precautions should be taken here to prevent the if from getting to the equipment. A TV-type high-pass filter can prove effective in some cases.

Tumtables and Tape Decks

In the more elaborate hi-fi setups, there may be several assemblies connected together by means of patch cords. It is a good idea when checking for RFI to disconnect the units, one at a time, observing any changes in the interference. Not only disconnect the patch cords connecting the pieces together, but also unplug the ac line cord for each item as you make the test. This will help you determine which section is the culprit.

Patch cords are usually, but not always, made of shielded cable. The lines should be shielded, which brings up another point. Many commercially available patch cords have poor shields. Some have wire spirally wrapped around the insulation, covering the main lead, rather than braid. This method provides poor shielding and could be the reason for RFI problems.

Record-player tone-arm connections to the cartridge are usually made with small clips. The existence of a loose clip, particularly if oxidation is present, offers an excellent invitation to RFI. Also, the leads from the cartridge and those to the amplifier are sometimes resonant at vhf, providing an excellent receiving antenna for rf. One cure for unwanted rf pickup is to install ferrite beads, one on each cartridge lead. Check all patch-cord connections for looseness or poor solder joints. Inferior connections can cause rectification and subsequent RFI.

Tape decks should be treated the same as turntables. Loose connections and bad solder joints all can cause trouble. Ferrite beads can be slipped over the leads to the recording and play-back pickup heads. Bypassing of the tone-arm or pickup-head leads is also effective, but sometimes it is difficult to install capacitors in the small area available. Disk capacitors ($.001 \mu \mathrm{~F}$) should be used as close to the cartridge or pickup head as possible. Keep the capacitor leads as short as possible.

Preamplifiers

There are usually one or more preamplifiers used in a hi-fi amplifier. The inputs to these stages can be very susceptible to RFI. Fig. 16-24 illustrates a typical preamplifier circuit. In this case the leads to the bases of the transistors are treated for RFI with ferrite beads by the addition of RFC2 and RFC4. This is a very effective method for stopping RFl when vhf energy is the source of the trouble.

Within the circuit of a solid-state audio system, a common offender can be the emitter-base junction of a transistor. This junction operates as a forward-bissed diode, with the bias set so that a change of base current with signal will produce a lineas but amplified change in collector current. Should of energy reach the junction, the bias could increase, causing nonlinear amplification and distortion as the result. If the rf level is high it can

Fig. 16-25 - Typical circuit of a solid-state preamplifier.
completely block (saturate) a transistor, causing a complete loss of gain. Therefore, it may be necessary to reduce the transmitter power output in order to pinpoint the particular transistor stage that is affected.

In addition to adding ferrite beads it may be necessary to bypass the base of the transistor to chassis ground, Cl and C 2 , Fig. 16-25. A suitable value is 100 pF , and keep the leads short! As a general rule, the capacitor value should be as large as possible without degrading the high-frequency response of the amplifier. Values up to $.001 \mu \mathrm{~F}$ can be used. In severe cases, a series inductor (RFC1 and RFC3) may be required, Ohmite Z-50 or Z-144, or their equivalents (7 and $1.8 \mu \mathrm{H}$ respectively). Fig. $16-25$ shows the correct placement for an inductor, bypass capacitor, and ferrite bead. Also, it might help to use a ferrite bead in the plus-B lead to the preamplifier stages (RFC5 in Fig. 16-25). Keep in mind that Fig. $16-25$ represents only one preamplifier of a stereo set. Borh channels may require treatment.

FM Tuners

There is often an fm tuner used in a hi-fi installation. Much of the interference to tuners is caused by fundamental overloading of the first stage (or stages) of the tuner, effected by the amateur's signal. The cure is the Installation of a high-pass filter, the same type used for TVI. The filter should be installed as close as possible to the antenna input of the tuner. The high-pass filter will attenuate the amateur fundomental signal, thus preventing overloading of the front end.

Shielding

Lack of shielding on the various components in a hi-fi installation can permit rf to get into the equipment. Many units have no bottom plates, or are installed in plastic cases. One easy method of providing shielding is to use aluminum foil. Make sure the foil doesn't short circuit the components, and connect it to chassis ground.

INTERFERENCE WITH STANDARD BROADCASTING

Interference with a-m broadcasting usually falls into one or more rather well-defined categories. An understanding of the general types of interference will avoid much cut-and-try in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitic oscillations are a frequently unsuspected source of such radiations, and no transmitter can be considered satisfactory until it has been thoroughly checked for both low- and high-frequency parasitics. Very often parasitics show up only as transients, causing key clicks in CW transmitters and "splashes" or "burps" on modulation peaks in a-m transmitters. Methods for detecting and eliminating parasitics are discussed in the transmitter chapter.

In cw transmitters the sharp make and break that occurs with unfiltered keying causes transients that, in theory, contain frequency components through the entire radio spectrum. Practically, they are often strong enough in the immediate vicinity of the iransmitter to cause serious interference to broadcast reception. Key clicks can be eliminated by the methods detailed in the chapter on keying.

BCl is frequently made worse by radiation from the power wiring or the If transmission line. This is because the signal causing the interference, in such cases, is radiated from wiring that is nearer the broadcast receiver than the antenna itself. Much depends on the method used to couple the transmitter to the antenna, a subject that is discussed in the chapters on transmission lines and antennas. If it is at all possible the antenra itself should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similar conductors.

The BC Set

Most present day receivers use solid-state active components, rather than tubes. A large number of the receivers in use are battery powered. This is to the amateur's advantage because much of the be interference an amateur encounters is because of ac line pickup. In the case where the bc receiver is powered from the ac line, whether using tube or solid-stage components, the amount of if pickup must be reduced or eliminated. A line filter such as is shown in Fig. 16-22 often will help accomplish this. The values used for the coils and capacitors are in general not critical. The effectiveness of the filter may depend considerably on the ground connection used, and it is advisable to use a short ground lead to a cold-water pipe if at all possible. The line cond from the set should be bunched up, to minimize the possibility of pick-up on the cond. It may be necessary to install the filles inside the receiver, so that the filter is connected between the line cord and the set wiring, in order to get satisfactory operation.

Cross-Modulation

With phone transmitters, there are occasionally cases where the voice is heard whenever the
broadcast receiver is tuned to a bc station, but there is no interference when tuning between stations. This is cross-modulation, a result of rectification in one of the early stages of the receiver. Receivers that are susceptible to this trouble usually also get a similar type of interference from regular broadcasting if there is a strong local be station and the receiver is tuned to some other station.

The remedy for cross modulation in the receiver is the same as for images and oscillatorharmonic response - reduce the strength of the amateur signal at the receiver by means of a line filter.

The trouble is not always in the receiver, since cross modulation can occur in any nearby rectifying circuit - such as a poor contact in water or steam piping, gutter pipes, and other conductors in the strong field of the transmitting antenna external to both recciver and transmitter. Locating the cause may be difficult, and is best attempted with a battery-operated portable broadcast receiver used as a "probe" to find the spot where the interference is most intense. When such a spot is located, inspection of the metal structures in the vicinity should indicate the cause. The remedy is to make a good electrical bond between the two conductors having the poor contact.

Handling BCI Cases

Assuming that your transmitter has been checked and found to be free from spurious radiations, get another amateur to operate your station, if possible, while you make the actual check on the interference yourself. The following procedure should be used.

Tune the recciver through the broadcast band, to see whether the interference tunes like a regular be station. If so, image or oscillator-harmonic response is the cause. If there is interference only when a bc station is tuned in, but not between stations, the cause is cross modulation. If the interfercnce is heard at all settings of the tuning dial, the trouble is pickup in the audio circuits. In the latter case, the receiver's volume control may or may not affect the strength of the interference, depending on the means by which your signal is being rectified.

Having identified the cause, explain it to the set owner. It is a good idea to have a line filtêr with you, equipped with enough cord to replace the set's line cord, so it can be tried then and there. If it does not eliminate the interference, explain to the set owner that there is nothing further that can be done without modifying the receiver. Recommend that the work be done by a competent service technician, and offer to advise the service man on the cause and remedy. Don't offer to work on the set yourself, but if you are asked to do so use your own judgment about complying; set owners sometimes complain about the overall performance of the receiver afterward, often without justification. If you work on it, take it to your station so the effect of changes you make can
be seen. Retum the receiver promptly when you have finished.

MISCELLANEOUS TYPE OF INTERFERENCE

The operation of amateur phone transmitters occasionally results in interference on telephone lines and in audio amplifiers used in public-address work, plus other audio devices. The cause is rectification of the signal in an audio circuit.

Organs

An RFl problem area is the electronic organ. All of the techniques outlined for hi-fi gear hold true in getting rid of RFI in an organ. Two points should be checked - the speaker leads and the ac line. Many organ manufacturers have special servicemen's guides for taking care of RFl. However, to get this information you or the organ owner must contact the manufacturer, not the dealer or distributor. Don't accept the statement from a dealer or serviceman that there is nothing that can be done about the interference.

P-A Systems

The cure for RFI in p-a systems is almost the same as that for hi-fi gear. The one thing to watch for is if on the leads that connect the various stations in a p-a system together. These leads should be treated the same as speaker leads and bypassing and IItering should be done at both ends of the lines. Also, watch for ac-line pickup of ff.

Telephone Interference

Telephone interference may be cured by connecting a bypass capacitor (about $.001 \mu \mathrm{~F}$) across the microphone unit in the telephone handset. The telephone companies have capacitors for this purpose. When such a case occurs, get in touch with the repair department of the phone company, giving the particulars. Section $500-150-100$ of the Bell System Practices Plant Series gives detailed instructions. This section discusses causes and cures of telephone interference from radio signals. It points out that interference can come from corroded connections, unterminated loops, and other sources. It correctly points out that that rf can be picked up on the drop wire coming into the house, and also on the wiring within the house, but (usually) the detection of the rf occurs inside the phone. The detection usually takes place at the varistors in the compensation networks, and/or at the receiver noise suppressor and the carbon microphone. But interference suppression should be handied two ways: prevent the rf from getting to the phone, and prevent it from being rectified.

The telephone companies (Bell System) have two devices for this purpose. The first is a 40BA capacitor, which is installed at the service entrance protector, and the second is the 1542 A inductor, which is installed at the connector block. According to the practices manual, the 40BA bypasses of picked up on the drop wire coming into the house from the phone, and the 1542A suppresses rf picked up on the inside wiring. These are mentioned because in very stubborn cases they
may be necessary. But first, it is suggested that the telephones be modified.

Since there are several different series of phones, they will be discussed separately:

500 series - These are the desk and wall phones most commonly in use. They come in several different configurations, but all use a 425 -series compensation network. The letter designation can be A, B, C, D, E, F, G, or K, and all these networks contain varistors. The network should be replaced with a 425 J , in which the varistors are replaced by resistors. Also, . $01-\mu \mathrm{F}$ disk-ceramic capacitors should be placed across the receiver suppressor. The suppressor is a diode across the receiver terminals. The carbon microphone in the handset should be bypassed with a $.01-\mu \mathrm{F}$ ceramic capacitor.

Series 1500, 1600, 1700 - These are the "Touch-Tone" phones, and the cure is similar to that for the 500 series, except that the network is a 4010 B or D , and should be replaced with a 4010 E .

Trimline series - These are the "Princess" series phones. The practice manual says that these should be modified by installing bypass capacitors across all components in the set that may act as demodulators. This statement is rather vague, but evidently a solution is known to the telephone company for these sets.

At the end of section $500-150-100$ is an ordering guide for special components and sets, as follows:

Ordering Guide:
Capacitor, 40BA
Inductor, 1542A
-49 Gray, -50 Ivory
Set, Telephone, -rf Modified
Set, Telephone Hand, 220A, -rf Modified
Set, Telephone Hand, 2220B, -rf Modified
Set, Hand G, -rf Modified
Dial - (Touch-Tone dial only) -rf Modifted. The type " G " Handset is the one used with the 500 and Touch-Tone series phones. Also, Mountain Bell has put out an "Addendum $500-150-100 \mathrm{MS}$, Issue A, January 1971° to the practices manual, which states that items for if modified phones should be ordered on nonstock Form 3218, as follows:
(Telephone Set type)
Modified for BSP 500-150-100
for Radio Signal Suppression
The FCC
The Field Engineering Bureau of the FCC has a bulletin that will be of help to the amateur in cases involving RFI so audio devices. These butletins are available from any of the field offices. The bulletin is addressed to the users of hi- f , record players, public-address systems, and telephones. It clearly spells out the problem and the obligation of the owner of such gear.

It is suggested that the amateur obtain copies of this bulletin, which is listed as Attachment III. Bulletin. Interference to Audio Devices. When the amateur receives a complaint he can provide the complainer with a copy of the bulletin. This approach will help put the problem in correct perspective.

Chapter 17

Test Equipment and Measurements

Measurement and testing seemingly go hand in hand, but it is useful to make a distinction between "measuring" and "test" equipment. The former is commonly considered to be capable of giving a meaningful quantitative result. For the latter a simple indication of "satisfactory" or "unsatisfactory" may suffice; in any event, the accurate calibration associated with real measuring equipment is seldom necessary, for simple test apparatus.

Certain items of measuring equipment that are useful to amateurs are readily available in kit form, at prices that represent a genuine saving over the
cost of identical parts. Included are volt-ohm-milliammeter combinations, vacuum-tube and transistor voltmeters, oscilloscopes, and the like. The coordination of electrical and mechanical design, components, and appearance make it far preferable to purchase such equipment than to attempt to build onc's own.

However, some test gear is either not available or can easily be built. This chapter considers the principles of the more useful types of measuring equipment and concludes with the descriptions of several pieces that not only can be built satisfactorily at home but which will facilitate the operation of the amateur station.

THE DIRECT-CURRENT INSTRUMENT

In measuring instruments and test equipment suitable for amatcur purposes the ultimate "readout" is generally based on a measurement of direct current. A meter for measuring dc uses electromagnetic meams to deflect a pointer over a calibrated scale in proportion to the current flowing through the instrument.

In the D'Arsonval type a coil of wire, to which the pointer is attached, is pivoted between the poles of a permanent magnet, and when current flows through the coil it sets up a magnetic field that interacts with the field of the magnet to cause the coil to turn. The design of the instrument is usually such as to make the pointer deflection directly proportional to the current.

A less expensive type of instrument is the moving-vane type, in which a pivoted soft-iron vane is pulled into a coil of wire by the magnetic field set up when current flows through the coil. The farther the vane extends into the coil the greater the magnetic pull on it, for a given change in current, so this type of instrument does not have "linear" deflection - the intervals of equal current are crowded together at the low-current end and spread out at the high-current end of the scale.

Current Ranges

The sensitivity of an instrument is usually expressed in terms of the current required for full-scale deflection of the pointer. Although a very wide variety of ranges is available, the meters of interest in amateur work have basic "movements" that will give maximum deflection with currents measured in microamperes or milliamperes. They are called microammeters and milliammeters, respectively.

Thanks to the relationships between current, voltage, and resistance expressed by Ohm's Law, it
becomes possible to use a single low-range instrument - e.g., 1 milliampere or less full-scale pointer deflection - for a variety of direct-current measurements. Through its ability to measure current, the instrument can also be used indirectly to measure voltage. Likewise, a measurement of both current and voltage will obviously yield a value of resistance. These measurement functions are often combined in a single instrument - the volt-ohm-milliammeter or "VOM", a multirange meter that is one of the most useful pieces of measuring and test equipment an amateur can possess.

Accuracy

The accuracy of a dc meter of the D'Arsonval type is specified by the manufacturer. A common specification is " 2 percent of full scale," meaning that a $0-100$ microammeter, for example, will be correct to within 2 microamperes at any part of the scale. There are very few cases in amateur work where accuracy greater than this is needed. However, when the instrument is part of a more complex measuring circuit, the design and components of which all can cause error, the overall accuracy of the complete device is always less.

EXTENDING THE CURRENT RANGE

Because of the way current divides between two resistances in parallel, it is possible to increase the range (more specifically, to decrease the sensitivity) of a dc micro- or milliammeter to any desired extent. The meter itself has an inherent resistance - its internal resistance - which determines the full-scale current through it when its rated voltage is applied. (This rated voltage is of the order of a few millivolts.) By connecting an

Fig. 17-1 - Use of a shunt to extend the calibration range of a current-reading instrument.
external resistance in parallel with the internal resistance, as in Fig. 17-1, the current will divide between the two, with the meter responding only to that part of the current which flows through the internal resistance of its movement. Thus it reads only part of the total current; the effect is to make more total current necessary for a full-scale meter reading. The added resistance is called a shunt.

It is necessary to know the meter's internal resistance before the required valuc for a shunt can be calculated. It may vary from a few ohms to a few hundred, with the higher resistance values associated with higher sensitivity. When known, it can be used in the formula below to determine the required shunt for a given current multiplication:

$$
R=\frac{R_{m}}{n-1}
$$

where R is the shunt, R_{m} is the internal resistance of the meter, and n is the factor by which the original meter scale is to be multiplied.

Making Shunts

Homemade shunts can be constructed from any of various special kinds of resistance wire, or from ordinary copper wire if no resistance wire is available. The Copper Wire Table in this Handbook gives the resistance per 1000 feet for various sizes of copper wire. After computing the resistance required, determine the smallest wire size that will carry the full-scale current (250 circular mils per ampere is a satisfactory figure for this purpose). Measure off enough wire to provide the required resistance.

THE VOLTMETER

If a large resistance is connccted in series with a current-reading meter, as in Fig. 17-2, the current

Fig. 17-2 - A voltmeter is a current-indicating instrument in series with a high resistance, the "multiplier."
multiplied by the resistance will be the voltage drop across the resistance, which is known as a multiplier. An instrument used in this way is calibrated in terms of the voltage drop across the multipher resistor, and is called a voltmeter.

Sensitivity

Voltmeter sensitivity is usually expressed in ohms per volt, meaning that the meter's full-scale reading multiplied by the sensitivity will give the lotal resistance of the voltmeter. For example, the resistance of a 1000 -ohms-per-volt voltmeter is j000 times the full-scale calibration voltage, and by Ohm's Law the current required for full-scale deflection is I milliampere. A sensitivity of 20,000 ohms per volt, a commonly used value, means that the instrument is a 50 -microampere meter.

The higher the resistance of the voltmeter the more accurate the measurements in high-resistance circuits. This is because in such a circuit the current flowing through the voltmeter will cause a change in the voltage between tho points across which the meter is connected, compared with the voltage with the meter absent, as shown in Fig. 17-3.

Fig. 17.3 - Effect of voltmeter resistance on accuracy of readings. It is assumed that the de resistance of the screen circuit is constant at 100 kilahms. The actual currant and voltage without the voltmeter connected are 1 mA and 100 volts. The voltmeter readings will differ becauss the different types of meters draw different amounts of current through the 150 -kilohm resistor.

Multipliers

The required multiplicr resistance is found by dividing the desired full-scale voltage by the current. in amperes, required for full-scale deflection of the meter alone. Strictly, the internal resistance of the meter should be subtracted from the value so found, but this is seldom necessary (except perhaps for very low ranges) because the meter resistance will be negligibly small compared with the multiplier resistance. An exception is when the instrument is already a voltmeter and is provided with an internal multiplier, in which case the multiplier resistance required to extend the range is

$$
R=R_{\mathrm{m}}(n-1)
$$

where R is the multiplier resistance, R_{m} is the total resistance of the instrument itself, and n is the factor by which the scale is to be multiplied. For
example, if a 1000 -ohms-per-volt voltmeter having a calibrated range of $0-10$ volts is to be extended to 1000 volts, R_{m} is $1000 \times 10=10,000$ ohms, n is $1000 / 10=100$, and $R=10,000(100-1)=$ 990,000 ohms.

When extending the range of a voltmeter or converting a low-range meter into a voltmeter, the rated accuracy of the instrument is retained only when the multiplier resistance is precise. Precision wire-wound resistors are used in the multipliers of high-quality instruments. These are relatively expensive, but the home constructor can do quite well with 1 -percent-tolerance composition resistors. They should be "derated" when used for this
purpose - that is, the actual power dissipated in the resistor should not be more than $1 / 4$ to $1 / 2$ the rated dissipation - and care should be used to avoid overheating the body of the resistor when soldering to the leads. These precautions will help prevent permanent change in the resistance of the unit.

Ordinary composition resistors are generally furnished in 10 - of 5 -percent tolerance ratings. If possible errors of this order can be accepted, resistors of this type may be used as multipliers. They should be operated below the rated power dissipation figure, in the interests of long-time stability.

DC MEASUREMENT CIRCUITS

Current Measurement with a Voltmeter

A current-measuring instrument should have very low resistance compared with the resistance of the circuit being measured; otherwise, inserting the instrument will cause the current to differ from its value with the instrument out of the circuit. (This may not matter if the instrument is left permanently in the circuit.) However, the resistance of many circuits in radio equipment is quite high and the circuit operation is affected little, if at all, by adding as much as a few hundred ohms in series. In such cases the voltmeter method of measuring current, shown in Fig. 17-4, is frequently convenient. A voltmeter (or low-range milliammeter provided with a multiplier and operating as a voltmeter) having a full-scale voltage range of a few volts is used to measure the voltage drop across a suitable value of resistance acting as a shunt.

The value of shunt resistance must be calculated from the known or estimated maximum current expected in the circuit (allowing a safe margin) and the voltage required for full-scale deflection of the meter with its multiplier.

Power

Power in direct-current circuits is determined by measuring the current and voltage. When these

Fig. 17-4 - Voltmeter method of measuring current. This method permits using relatively large values of resistance in the shunt, standard values of fixed resistors frequently being usable. If the multiplier resistance is 20 (or more) times the shunt resistance, the error in assuming that all the current flows through the shunt will not be of consequence in most practical applications.

Fig. 17-5 - Measurement of power requires both, current and voltage measurements; once these values are known the power is equal to the product $-P=E I$. The same circuit can be used for measurempent of an unknown resistance.
are known, the power is equal to the voltage in voits multiplied by the current in amperes. If the current is measured with a milliammeter, the reading of the instrument must be divided by 1000 to convert it to amperes.

The setup for measuring power is shown in Fig. 17-5, where R is any dc "load," not necessarily an actual resistor.

Resistance

Obviously, if both voltage and current are measured in a circuit such as that in Fig. 17-5 the value of resistance R (in case it is unknown) can be calculated from Ohm's Law. For accurate results, the internal resistance of the ammeter or milliammeter, $M A$, should be very low compared with the resistance, R, being measured, since the voltage read by the voltmeter, V, is the voltage across $M A$ and R in series. The instruments and the dc voltage should be chosen so that the readings are in the upper half of the scale, if possible, since the percentage error is less in this region.

THE OHMMETER

Although Fig. 17-5 suffices for occasional resistance measurements, it is inconvenient when frequent measurements over a wide range of resistance are to be made. The device generally used for this purpose is the ohmmeter. This consists fundamentally of a voltmeter (or milliammeter, depending on the circuit used) and a small dry battery, the meter being calibrated so the value of an unknown resistance can be read
(A)

(8)

(C)

Fig. 17-6 - Ohmmeter circuits. Values are discussed in the text.
directly from the scale. Typical ohmmeter circuits are shown in Fig. 17-6. In the simplest type, shown in Fig. 17-6A, the meter and battery are connected in series with the unknown resistance. If a given deflection is obtained with terminals $A-B$ shorted, inserting the resistance to be measured will cause the meter reading to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance to be found,
e is the voltage applied (A-B shorted),
E is the voltmeter reading with R connected, and
R_{m} is the resistance of the voltmeter.
The circuit of Fig, 17-6A is not suited to measuring low values of resistance (below a hundred ohms or so) with a high-resistance voltmeter. For such measurements the circuit of Fig. 17-6B can be used. The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{Im}}}{I_{1}-I_{2}}
$$

where R is the unknown,
$\boldsymbol{R}_{\text {ma }}$ is the internal resistance of the milliammeter,
I_{1} is the current with R disconnected from terminals $\mathrm{A}-\mathrm{B}$, and
I_{2} is the current with R connected.
The formula is based on the assumption that the current in the complete circuit will be essentially constant whether or not the "unknown" terminals are short-circuited. This requires that RI be very
.arge compared with R_{m} - e.g., 3000 ohms for a $1-\mathrm{mA}$ meter having an internal resistance of perhaps 50 ohms. A 3 -volt battery would be necessary in this case in order to obtain a full-scale deflection with the "unknown" terminals open. R1 can be an adjustable resistor, to permit setting the openterminals current to exact full scale.

A third circuit for measuring resistance is shown in Fig. 17-6C. In this case a high-resistance voltmeter is used to measure the voltage drop across a reference resistor, R 2 , when the unknown resistor is connected so that current flows through it, R2 and the battery in series. By suitable choice of R2 (low values for low-resistance, high values for high-resistance unknowns) this circuit will give equaliy good results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, R_{m}, is always very high (50 times or more) compared with the resistance of R2. A 20,000 -ohm-per-volt instrument ($50-\mu \mathrm{A}$ movement) is generally used. Assuming that the current through the voltmeter is negligible compared with the current through R2, the formula for the unknown is

$$
R=\frac{e R 2}{E}-R 2
$$

where R and $R 2$ are as shown in Fig. 17-6C, e is the voitmeter reading with A-B shorted, and
E is the voltmeter reading with R connected.
The "zero adjuster," \boldsymbol{R}_{1}, is used to set the voltmeter reading exactly to full scale when the meter is calibrated in ohms. A 10,000 -ohm variable resistor is suitable with a 20,000 -ohms-per-volt meter. The battery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

BRIDGE CIRCUITS

An important class of measurement circuits is the bridge, in which, essentially, a desired result is obtained by balancing the voltages at two different points in the circuit against each other so that there is zero potential difference between them. A voltmeter bridged between the two points will read zero (null) when this balance exists, but will indicate some definite value of voltage when the bridge is not balanced.

Bridge circuits are useful both on direct current and on ac of all frequencies. The majority of amateur applications is at radio frequencies, as shown later in this chapter. However, the principles of bridge operation are most easily introduced in terms of dc, where the bridge takes its simplest form.

The Wheatstone Bridge

The simple resistance bridge, known as the Wheatstone bridge, is shown in Fig. 17-7. All other bridge circuits - some of which are rather elaborate, especially those designed for ac - derive from this. The four resistors, R1, R2, R3, and R4 shown in A, are known as the bridge arms. For the

Fig. 17.7 - The Wheasstone bridge circuit. It is frequently drawn as at (B) for emphasizing its special function.
voltmeter reading to be zero, the voltages across R3 and R4 in series must add algebraically to zero; that is E1 must equal E2. R1R3 and R2R4 form voltage dividers across the dc source, so that if

$$
\frac{R 3}{R 1+R 3}=\frac{R 4}{R 2+R 4}
$$

E1 will equal E2.
The circuit is customarily drawn as shown at 17-7B when used for resistance measurement. The equation above can be rewritten

Fig. 17.8 - Vecuum-tube voltmeter circuit.

C1, C3-.002- to . $005-\mu \mathrm{F}$ mica.
C2 - . $01 \mu \mathrm{~F}, 1000$ to 2000 volits, paper or mica.
CA - $16 \mu \mathrm{~F}$ electrolytic, 150 volis.
CR1 - 400 PRV rectifier.
M - 0-200 microammeter.
R1 - 1 megahm, 1/2 watt.
R2-R5, incl. - To give desired voltage ranges, totaling 10 megohms.
R6, R7-2 to 3 megohms.
R8-10,000-0hm variable (calibrate).
R9, R10- 2000 to 3000 ohms.
to find R_{x}, the unknown resistance. $R 1$ and $R 2$ are frequently made equal: then the calibrated adjustable resistance (the standard). $\boldsymbol{R}_{\mathrm{s}}$, will have the same value as R_{x} when R_{s} is set to show a null on the voltmeter.

Note that the resistance ratios, rather than the actual resistance values, determine the voltage balance. However, the values do have important practical effects on the sensitivity and power consumption. The bridge sensitivity is the readiness with which the meter responds to small amounts of unbalance about the null point; the "sharper" the null the more accurate the setting of $\boldsymbol{R}_{\mathrm{s}}$ at balance.

The Wheatstone bridge is rarely used by amateurs for resistance measurement, the ohmmeter being the favorite instrument for that purpose. However, it is worthwhile to understand its operation because it is the prototype of more complex bridges.

ELECTRONIC VOLTMETERS

It has been pointed out (Fig. 17-3) that for many purposes the resistance of a voltmeter must be extremely high in order to avoid "loading" crrors caused by the current that necessarily flows through the meter. This tends to cause difficulty in measuring relatively low voltages (under perhaps 1000 volts) because a meter movement of given sensitivity takes a progressively smaller multiplier resistance as the voltage range is lowered.

The voltrneter resistance can be made independent of the voltage range by using vacuum tubes or field-effect transistors as electronic dc amplifiers between the circuit being measured and the actual

R11 - 5000- to 10,000-ohm control \{zero seth.
R12 - 10,000 to 50,000 ohms.
R13, R14 - App. 25,000 ohms. A 50,000-ohm slider-type wire-wound can be used.
R15-10 megohms.
R16-3 megohms.
R17-10-megohm variable.
T1 - 130-volt $15-\mathrm{mA}$ transformer Conly secondary shownl.
V1 - Dual triode, 12AU7A.
V2 - Dual diode, 6AL6.

Fig. 17-9 - Electronic voltmeter using field-effect transistor for high input resistance. Components having the same functions as in the VTVM circuit of Fig. 17-8 carry the same designations. (Circuit is
basic voltmeter circuit of the Heathkit (M-17.) CR1 - Silicon diode. Q1 - Field-effect.transistor. Q2, 03 - Small-signal audio type.

Values to be used in the circuit depend considerably on the supply voltage and the sensitivity of the meter, M. R12, and R13-R14, should be adjusted by trial so that the voltmeter circuit can be brought to balance, and to give fuls-scale deflection on M with about 3 volts applied to the left-hand grid (the voltage chosen for this determines the lowest voltage range of the instrument). The meter connections can be reversed to read voltages that are negative with respect to ground.

The small circuit associated with V2 is for ac measurements, as described in a later section.

As compared with conventional de instruments, the VTVM has the disadvantages of requiring a source of power for its operation, and generally must lave its "cold" terminal grounded in order to operate reliably. It is also somewhat susceptible to erratic readings from rf pickup when used in the vicinity of a transmitter, and in such cases may require shielding. However, its advantages outweigh these disadvantages in many applications.

The FET Voltmeter

The circuit of an electronic voltmeter using a fieldeffect transistor as an input device is shown in Fig. 17-9. Allowing for the differences between vacuum tubes and semiconductors, the operation of this circuit is analogous to that of Fig. 17-8. Transistors Q2 and Q3 correspond to the dual triode in the VTVM circuit, but since the input resistance of Q2 is fairly low, it is preceded by an FET, Q1, with source-coupled output. Note that in this circuit the "zero" or current-balance control, R11, varies the gate bias on Q1 by introducing an adjustable positive voltage in series with the source. This arrangement permits applying the adjustable bias to the gate through the voltmeter range divider, with no other provision needed for completing the dc gate-source path.

The small circuit associated with CR1 is for ac voltage measurement, to be discussed later.

As the power supply for the FET voltmeter is a self-contained battery, the grounding restrictions associated with a VTVM do not apply. The
instrument can, however, be susceptible to rf fields if not shielded and grounded.

Electronic Ohmmeters

Most commercial electronic voltmeters include provision for measuring resistance and ac voltage, in addition to de voltage. The basic ohmmeter
circuit generally used is that of Fig. 17-6C. Since for practical purposes the input resistance of the vacuum tube or FET can be assumed to approach infinity, electronic ohmmeters are capable of measuring resistances in the hundreds of megohms - a much higher range than can be reached with an ordinary microammeter.

AC INSTRUMENTS AND CIRCUITS

Although purely electromagnetic instruments that operate directly from alternating current are available, they are seen infrequently in present-day amateur equipment. For one thing, their use is not feasible above power-line frequencies.

Practical instruments for audio and radio frequencies generally use a dc meter movement in conjunction with a rectifier. Voltage measurements suffice for nearly all test purposes. Current, as such, is seldom measured in the af range. When rf current is measured the instrument used is a thermocouple milliammeter or ammeter.

The Thermocouple Meter

In a thermocouple meter the alternating current flows through a low-resistance heating element. The power lost in the resistance generates heat which warms a "thermocouple," a junction of certain dissimilar metals which has the property of developing a small $d c$ voltage when heated. This voltage is applied to a dc milliammeter calibrated in suitable ac units. The heater-thermocouple-dc meter combination is usually housed in a regular meter case.

Fig. 17-10 - Rf ammeter mounted in a Minibox, with connectors for placing the meter in series with a coaxial line. A bakelite-case meter should be used to minimize shunt capacitance (which introduces error) although a metal-case meter can be used if mounted on bakelite sheet with a large cut-out in the case around the rim. The meter can be used for rf power measurements ($P=1^{2} R$) when connected between a transmitter and a nonreactive load of known resistance.

(B)

(c)

(D)

Fig. 17-11 - Sine-wave alsernating current or voltage (A), with half-wave rectification of the positive half cycle (B) and negative half cycle (C). D - full-wave rectification. Average values are shown with relation to a peak value of 1 .

Thermocouple meters can be obtained in ranges from about 100 mA to many amperes. Their useful upper frequency limit is in the neighborhood of 100 MHz . Their principal value in amateur work is in measuring current into a known load resistance for calculating the rf power delivered to the load. A suitable mounting for this is shown in Fig. 17-10, for use in coaxial lines.

RECTIFIER INSTRUMENTS

The response of a rectifier-type meter is proportional (depending on the design) to either the peak amplitude or average amplitude of the rectified ac wave, and never directly responsive to the rms valuc. The meter thereforc cannot be calibrated in rms without preknowledge of the relationship that happens to exist between the "real" reading and the rms value. This relationship, in general, is not known, except in the case of single-frequency ac (a sine wave). Very many practical measurements involve nonsinusoidal wave forms, so it is necessary to know what kind of instrument you have, and what it is actually
(A)

(B)

(C)

(D)

Fig. 17-12 - Same as Fig. 17-11 for an unsymmerrical wavaform. The peak values are different with positive and negative half-cycle rectification.
reading, in order to make measurements intelligently.

Peak and Average with Sine-Wave Rectification

Fig. 17-11 shows the relative peak and average values in the outputs of half- and full-wave rectifiers (see power-supply chapter for further details). As the positive and negative half cycles of the sine wave have the sante slape (A), Lalf-wave rectification of either the positive half (B) or the negative half (C) gives exactly the same result. With full-wave rectification (D) the peak is still the same, but the average is doubled, since there are twice as many balf cycles per unit of time.

Unsymmetrical Wave Forms

A nonsinusoidal waveform is shown in Fig. 17-12A. When the positive half cycles of this wave are rectified the peak and average values are as shown at B. If the polarity is reversed and the negative half cycles are rectified the peak value is different but the average value is unchanged. The fact that the average of the positive side is equal to the average of the negative side is true of all ac waveforms, but different waveforms have different averages. Full-wave rectification of such a "lopsided" wave doubles the average value, but the peak reading is always the same as it is with the half cycle that produces the highest peak in half-wave rectification.

Effective-Value Calibration

The actual scale calibration of commerciallymade rectifier-type voltmeters is very often (almost always, in fact) in terms of rms values. For sine waves this is satisfactory, and usefal since rms is the standard measure at power-line frequency. It is also useful for many of applications where the waveform is often closely sinusoidal. But in other cases, particularly in the af range, the error may be considerable when the waveform is not pure.

Turn-Over

From Fig 17-12 to is apparent that the calibration of an average-reading meter will be the same whether the positive or negative sides are rectified. A half-wave peak-reading instrument, however, will indicate different values when its consections to the circuit are reversed (tum-over effect). Very often readings are taken both ways, in which case the sum of the two is the peak-to-peak value, a useful Ggure in much audioand video work.

Average- and Peak-Reading Circuits

The basic differonce between average- and peak-reading rectifier circuits is that in the former the output is not filtered while in the latter a filter capacitor is charged up to the peak value of the output voltage. Fig. $17-13 \mathrm{~A}$ shows typical average-reading circuits, one half-wave and the other full-wave. In the absence of dc filtering the meter responds to wave forms such as are shown at B, C and D in Figs. 17-11 and 17-12, and since the inertia of the pointer system makes it unable to follow the rapid variations in current, it averages them out mechanically.

In Fig. 17-13A CRI actuates the meter; CR2 provides a low-resistance de retam in the meter circuit on the negative half cycles. R1 is the voltmeter multiplier resistance. $\mathbf{R} 2$ forms a voltage

Fig. 17.13 - A - Half-wave and full-wave rectification for an instrument intended to operate on average values. B - half-wave circuits for a peak-reading meter.
divider with RI (through CR1) which prevents more than a few ac volts from appearing across the rectifier-meter combination. A corresponding resistor can be used across the full-wave bridge circuit.

In these two circuits no provision is made for isolating the meter from any dc voltage that may be on the circuit under measurement. The error caused by this can be avoided by connecting a large capacitance in series with the "hot" lead. The reactance must be low compared with the meter impedance (see next section) in order for the full ac voltage to be applied to the meter circuit. As much as $1 \mu \mathrm{~F}$ may be required at line frequencies with some meters. The capacitor is not usually included in a VOM.

Series and shunt peak-reading circuits are shown in Fig. 17-13B. Capacitor Cl isolates the rectifier from dic voltage on the circuit under measurement. In the series circuit (which is selcom used) the time constant of the C2R1R2 combination must be very large compared with the period of the lowest ac frequency to be measured; similarly with C1R1R2 in the shunt circuit. The reason is that the capacitor is charged to the peak value of voltage when the ac wave reaches its maximum, and then must hold the charge (so it can register on a dc meter) until the next maximum of the same polarity. If the time constant is 20 times the ac period the charge will have decreased by about 5 percent by the time the next charge occurs. The average drop will be smaller, so the error is appreciably less. The error will decrease rapidly with increasing frequercy, assuming no change ln the circuit values, but will increase at lower frequencies.

In Fig. 17-13B R1 and R2 form a voltage divider which reduces the peak dc voltage to 71 percent of its actual valuc. This converts the peak reading to rms on sine-wave ac. Since the peak-reading circuits are incapable of delivering appreciable current without considerable error, R2 is usually the 11 -megohm input resistance of an electronic voltmeter. R) is therefore approximately 4.7 magohms, making the total resistance approach 16 megohms. A capacitance of $.05 \mu \mathrm{~F}$ is sufficient for low audio frequencies under these conditions. Much smaller values of capacitance suffice for radio frequencies, obviously.

Voltmeter Impedance

The impedance of the voltmeter at the frequency being measured may have an effect on the accuracy similar to the error caused by the resistance of a dc voltmeter, as discussed carlier. The ac meter acts like a resistance in prallel with a capacitance, and since the capacitive reactance decreases with increasing frequency, the impedance also decreases with frequency. The resistance is subject to some variation with voltage level, particularly at very low voltages (of the order of 10 volts or less) depending upon the sensitivity of the meter movement and the kind of rectifier used.

The ac load resistance represented by a diode rectifier is approximately equal to one-half its dc load resistance. In Fig. $17-13 \mathrm{~A}$ the dc load is essentially the meter resistance, which is generaily
quite low compared with the multiplier resistance RI, so the total resistance will be about the same as the multiplier resistance. The capacitance depends on the components and construction, test lead length and disposition, and such factors. In general, it has little or no effect at power-line and low audio frequencies, but the ordinary VOM loses accuracy at the higher audio frequencies and is of little use at rf. For radio frequencies it is necessary to use a rectificr having very low inherent capacitance.

Similar limitations apply to the peak-reading circuits. In the parallel circuit the resistive component of the impedance is smaller than in the series circuit, since the dc load resistance, R1R2, is directly across the circuit being measured, and is therefore in parallel with the diode ac load resistance. In both peak-reading circuits the effective capacitance may range from 1 or 2 to a few hundred pF. Values of the order of 100 pF are to be expected in electronic voltmeters of customary design and construction.

Linearity

Fig. 17-14, a typical current/voltage characterisuic of a small semicoñductor rectifier, indicates that the forward dynamic resistance of the diode is not constant, but rapidly decreases as the forward voltage is increased from zero. The transition from high to low resistance occurs at considerably less than 1 volt, but is in the range of voltage required by the associated dc meter. With an average-reading circuit the current tends to be proportional to the square of the applied voltage. This crowds the calibration points at the low end of the meter scale. For most measurement purposes, however, it is far more desirable for the output to be "linear;" that is, for the reading to be direcrly proportional to the applied voltage.

To achieve linearity it is necessary to usc a relatively large load resistance for the diode - large enough so that this resistance, rather than the diode's own resistance, will govern the current flow. A linear or equally spaced scale is thus gained at the expense of sensitivity. The amount of resistance needed depends on the type of diode;

Fig. 17-14 - Typical samiconductor diode charactaristic. Actual current and voltage values vary with the type of diode, but the forwardcurrent curve would be in its steep part with only a volt or so applied. Note change in current scale for reverse current. Breakdown voltage, again depending on diode type, may range from 15 or 20 volts to several hundred.

Fig. 17-15 - Rf probe circuit. CR is a small samiconductor rectifier, usually pointcontact germanium. The resistor value, for exact voltage division to rms, should be 4.14 megohms, but standard values are generally used, including 4.7 megohms.

5000 to 50,000 ohms usually suffices for a germanium rectifier, depending on the de meter sensitivity, but scveral times as much may be needed for silicon. The higher the resistance, the greater the meter sensitivity required; i.e., the basic meter must be a microammeter rather than a low-range milliammeter.

Reverse Current

When voltage is applied in the reverse direction there is a small leakage current in semiconductor diodes. This is equivalent to a resistance connected across the rectifier, allowing current to flow during the half cycle which should be completely nonconducting, and causing an error in the dc meter reading. This "back resistance" is so high as to be practically unimportant with silicon, but may be less than $100 \mathrm{k} \Omega$ with germanium.

The practical effect of back resistance is to limit the amount of resistance that can be used in the de load resistance. This in turn affects the linearity of the meter scale.

The back resistance of vacuum-tube diodes is infinite, for practical purposes.

RF VOLTAGE

Special precautions must be taken to minimize the capacitive component of the voltmeter impedance at radio frequencies. If possible, the rectifler circuit should be installed permanently at the point where the rf voltage to be measuredexists, using the shortest possible rf connections. The de meter can be remotely located, however.

For general of measurements an rf probe is used in conjunction with an electronic voltmeter. substituted for the dc probe mentioned earlier. The circuit of Fig. 17-15, essentially the peak-reading shunt circuit of Fig. 17-13B, is generally used. The series resistor, installed in the probe close to the rectifier, prevents rf from being fed through the probe cable to the electronic voltmeter, being helped in this by the cable capacitance. This resistor, in conjunction with the 10 -megohm divider resistance of the electronic voltmeter, also reduces the peak rectified voltage to a dc value equivalent to the rms of the if signal, to make the of readings consistent with the regular ac calibration.

Of the diodes readily available to amateurs, the germanium point-contact type is preferred for of applications. It has low capacitance (of the order of 1 pF) and in the high-back-resistance typer the reverse current is not scrious. The principal limitation is that its safe reverse voltage is only about $50-75$ volts, which limits the mas applied voltage to 15 or 20 volts, approximately. Diodes can be connected in series to raise the overall rating.

Linearity at Radio Frequencies

The bypass or filter capacitance normally used in rf rectifier circuits is large enough, together with the resistance in the system, to have a time constant sufficient for peak readings. However, if the resistance is low (the load sometimes is just the microammeter or milliammeter alone) the linearity of the voltmeter will be affected as previously described, even if the time constant is fairly large. It is not safe to assume that the voltmeter is even approximately linear unless the load resistance is of the order of $10,000 \mathrm{ohms}$ or greater.

Nonlinear voltmeters are useful as indicators, as where null indicators are called for, but should not be depended upon for actual measurement of voltage.

RF Power

Power at radio frequencies can be measured by means of an accurately-calibrated of voltmeter connected across the load in which the power is being dissipated. If the load is a known pure resistance the power, by Ohm's Law, is equal to E^{2} / R, where E is the rms value of the voltage.

The method only indicates apparent power if the load is not a pure resistance. The load can be a terminated transmission line tured, with the aid of bridge circuits such as are described in the next section, to act as a known resistance. An alternative load is a "dummy" antenna, a known pure resistance capable of dissipating the rf power safely.

AC BRIDGES

In its simplest form, the ac bridge is exactiy the same as the Wheatstone bridge discussed earlicr. However, complex impedances can be substituted for resistances, as suggested by Fig. 17-16A. The same bridge equation holds if \boldsymbol{Z} is substituted for \boldsymbol{R} in each arm. For the equation to be true, however, the phase angles as well as the numerical values of the impedances must bolance; otherwise, a true null voltage is impossible to obtain. This means that a bridge with all "pure" ams (pure resistance or reactance) cannot measure complex impedances; a combination of R and X must be present in at least one arm besides the unknown.

The actual circuits of ac bridges take many forms, depending on the type of measurement intended and on the frequency range to be covered. As the frequency is raised stray effects (unwanted capacitances and inductances, principally) become more pronounced. At radio frequencies special attention must be paid to minimizing them.

Fig. 17.16 - A - Generalized form of bridge circuit for either ac or dc. B - One form of ac bridge frequently used for if measurements. C SWR bridge for use in transmission lines. This circuit is often calibrated in power rather than voltage.

Most amateur-built bridges are used for if measurements, especiaily SWR measurements on transmission lines. The circuits at B and C, Fig. 17-16, are favorites for this purpose. These basic forms are often modified considerably, as will be seen by the constructional examples later in the chapter.

Fig. 17-16B is useful for measuring both transmission lines and "lumped constant" components. Combinations of resistance and capacitance are often used in one or more arms; this may be required for eliminating the effects of stray capacitance.

Fig. 17-16C is used only on transmission lines, and only on those lines having the characteristic impedance for which the bridge is designed.

SWR Measurement - The Reflectometer

In measuring standing-wave ratio advantage is taken of the fact that the voltage on a transmission line consists of two components traveling in opposite directions. The power going from the transmitter to the load is represented by one voltage (designated "incident" or "forward") and the power reflected from the load is represented by the other. Because the relative amplitudes and phase relationships are definitely established by the line's characteristic impedance, its length and the load impedance in which it is terminated, a bridge circuit can separate the incident and reflected voltages for measurement. This is sufficient for determining the SWR. Bridges designed for this purpose are frequently called reflectometers.

Referring to Fig. 17-16A, if R1 and R2 are made equal, the bridge will be balanced when $\boldsymbol{R}_{\mathbf{X}}=\boldsymbol{R}_{\mathbf{S}}$. This is tsue whether $\boldsymbol{R}_{\mathbf{X}}$ is an actual resistor or the input resistance of a perfectly matched transmission line, provided $\boldsymbol{R}_{\mathbf{S}}$ is chosen to equal the characteristic impedance of the line. Even if the line is not properly matched, the bridge will still be balanced for power traveling outward on the line, since outward-going power sees only the Z_{0} of the line until it reaches the load. However, power reflected back from the ioad does not "see" a bridge circuil, and the reflected voltagc registers on the volimeter. From the known relationship between the incident and reflected voltages the SWR is easily calculated:

$$
S W R=\frac{V_{0}+V_{\mathrm{r}}}{V_{0}-V_{\mathrm{r}}}
$$

where V_{0} is the forward voltage and V_{r} is the reflected voltage. The forward voltage may be measured either by disconnecting $R_{\mathbf{X}}$ or shorting it.

The "Reflected Power Meter"

Fig. 17-16C makes use of mutual inductance between the primary and secondary of Tl to establish a balancing circuit. C1 and C2 form a voltage divider in which the voltage across C 2 is in the same phase as the voltage at that point on the transmission line. The relative phase of the voltage across R1 is determined by the phase of the currens in the line. If a pure resistance equal to the design impedance of the bridge is connected to the "RF Out" terminals, the voltages across R1 and C2 will be out of phase and the voltmeter reading will be minimum; if the amplitudes of the two voltages are also equal (they are made so by bridge adjustment) the voltmeter will read zero. Any other value of resistance or impedance connected to the "RF Out" terminals will result in a finite voltmeter reading. When used in a transmission line this reading is proportional to the reflected voltage. To measure the incident voltage the secondary terminals of Tl can be reversed. To function as described, the secondary leakage reactance of T1 must be very large compared to the resistance of R1.

Instruments of this type are usually designed for convenient switching between forward and reflected, and are often calibrated to read power in the specified characterisitic impedance. The net power trarsmission is equal to the incident power minus the reflected power.

Sensitivity vs. Frequency

In all of the circuits in Fig. 17-16 the sensitivity is independent of the applied frequency, within practical limits. Stray capacitances and couplings generally limit the performance of all three at the high-frequency end of the useful range. Fig. 17-16A will work right down to dc, but the low-frequency performance of Fig. 17-16B is degraded when the capacitive reactances become so large that voltmeter impedance becomes low in comparison (in all these bridge circuits, it is
assumed that the volimeter impedance is high compared with the impedance of the bridge arms). In Fig. 17-16C the performance is limited at low frequencies by the fact that the transformer reactance decreases with frequency, so that eventually the reactance is not very high in comparison with the resistance of R1.

The "Monimatch"

A type of bridge which is quite simple to make, but in which the sensitivity rises directly with
frequency, is the Monimatch and its vanous offspring. The circuit cannot be described in terms of lumped constants, as it makes use of the distrbuted mutual inductance and capacitance between the center conductor of a transmission line and a wire placed parallel to it. The wire is terminated in a resistance approximating the characteristic impedance of the transmission line at one end and feeds a diode rectifier at the other. A practical example is shown later in this chapter.

FREQUENCY MEASUREMENT

The regulations goveming amateur operation require that the transmitted signal be maintained inside the limits of certain bands of frequencies.* The exact frequency need not be known, so long as it is not outside the limits. On this last point there are no tolerances: It is up to the individual amateur to see that he stays safely "inside."

This is not difficult to do, but requires some simple apparatus and the exercise of some care. The apparatus commonly used is the frequencymarker generator, and the method involves use of the station receiver, as in Fig. 17-17.

THE FREQUENCY MARKER

The marker generator in its simplest form is a high-stability oscillator generating a series of signals which, when detected in the reccjucr, mark the exact eđges of the amateur assignments. It does this by oscillating at a low frequency that has harmonics falling on the desired frequencics.

All U.S. amateur band limits are exact multiples of 25 kHz , whether at the extremes of a band or at points marking the subdivisions between types of emission, license privileges, and so on. A $25-\mathrm{kHz}$ fundamental frequency therefore will produce the desired marker signals if its harmonics at the higher frequencics are strong enough. But since harmonics appear at $25-\mathrm{kHz}$ intervals throughout the spectrum, along with the desired markers, the problem of identifying a particular marker arises. This is easily solved if the receiver has a reasonably gond calibration. If not, most marker circuits provide for a choice of fundanental outputs of 100 and 50 kHz as well as 25 kHz , so the question can be narrowed down to initial identification of $100-\mathrm{kHz}$ intervals. From these, the desired $25-\mathrm{kHz}$ (or $50-\mathrm{kHz}$) points can easily be spotted. Coarser frequency intervals are rarely required; there are usually signals available from stations of known frequency, and the $100-\mathrm{kHz}$ points can be counted' off from them.

Transmifter Checking

In checking one's own transmitter frequency the signal from the transmitter is first tuned in on

[^33]the receiver and the dial setting at which it is heard is noted. Then the nearest marker frequencies above and below the transmitter signal are turned in and identified. The transmitter frequency is obviously between these two known frequencics.

If the marker frequencies are accurate, this is ais that needs to be known - except that the transmitter frequency must not be so close to a band (or subband) edge that sideband frequencies, especially in phone transmission, will extend over the edge.

If the transmitter signal is "inside" a marker at the edge of an assignment, to the cxtent that there is an audible beat note with the receiver's BFO turned off, normal cw sidebands are safely inside the edge. (This statement does not take into account abnormal sidebands such as are caused by clicks and chirps.) For phone the "safety" allowance is usually taken to be about 3 kHz , the sominal width of one sideband. A frequency difference of this order can be estimated by noting the receiver dial settings for the two $25-\mathrm{kHz}$ markers which bracket the signal and dividing 25 by the number of dial divisions between them. This will give the number of kHz per dial division.

Transceivers

The method described above is applicable when the receiver and transmitter are separate pieces of equipment. When a transceiver is used and the

Fig. 17-17 - Setup for using a frequency standard. It is necessary that the transmitter signal be weak in the receiver - of the same onder of strength, as the marker signal from the standard. This sequirement can usually be met by turning on just the transmitter oscillator, leaving all power off any succeeding stages. In same cases it may also be necessary to disconnect the antenna from the receiver.

(B)

(C)

Fig. 17-18 - Three simple $100-\mathrm{kHz}$ oscillator circuits. C is the most suitable of available transistor circuits (for marker generators) and is recommended where solid-state is to be used. In all three circuits $\mathbf{C 1}$ is for fine frequency adjustment. The output coupling capecitor, C3, is generally small -20 to $50 \mathrm{pF}-$ a compromise to avoid loading the oscillator by the receiver antenna input while maintaining adequate coupling for good harmonic strength.
transmitting frequency is automatically the same as that to which the receiver is tuncd, setting the tuning dial to a spot between two known marker frequencies is all that is required.

The proper dial settings for the markers are those at which, with the BFO on, the signal is tuned to zero beat - the spot where the beat disappears as the tuning makes the beat tone progressively lower. Exact zero beat can be determined by a very slow rise and fall of background noise, caused by a beat of a cycle or less per second.

FREQUENCY-MARKER CIRCUITS

The basic frequency-determining element in most amateur frequency markers is a $100-\mathrm{kHz}$ crystal. Although the marker generator should produce harmonics at $25-\mathrm{kHz}$ and $50-\mathrm{kHz}$ intervals, crystals (or other high-stability devices) for frequencies lower than 100 kHz are expensive and difficult to obtain. However, there is really no need for them, since it is easy to divide the basic frequency down to any figure one desires; 50 and

25 kHz require only two successive divisions, each by 2 . In the division process, the harmonic output of the generator is greatly enhanced, making the generator useful at frequencies well into the vhf range.

Simple Crystal Oscillators

Fig. 17-18 illustrates a few of the simpler circuits. Fig. 17-18A is a long-time favorite where vacuum tubes are used and is often incorporated in receivers. Cl in this and the other circuits is used for exact adjustment of the oscillating frequency to 100 kHz , which is done by using the recejver for comparing one of the oscillator's harmonics with a standard frequency transmitted by WWV, WWVH, or a similar station.

Fig. 17-18B is a field-effect transistor analog of the vacuum-tube circuit. However, it requires a $10-\mathrm{mH}$ coil to operate well, and since the harmonic output is not strong at the higher frequencies the circuit is given principally as an example of a simple transistor arrangement. A much better oscillator is shown at C. This is a cross-connected pair of transistors forming a multivibrator of the "free-running" or "astable" typc, locked at 100 kHz by using the crystal as one of the coupling elements. While it can use two scparate bipolar transistors as shown, it is much simpler to use an integrated-circuit dual gate, which will contain all the necessary parts except the crystal and capacitors and is considerably less expensive, as well as more compact, than the separate components. An example is shown later in the chapter.

Frequency Dividers

Electronic division is accomplished by a "bistable" flip-flop or cross-coupled circuit which produces one output change for every two impulses applicd to its input circuit, thus dividing the applied frequency by 2. All division therefore must be in terms of some power of 2 . In practice this is no handicap since with modern integratedcircuit flip-flops, circuit arrangements can be worked out for division by any desired number.

As flip-flops and gates in integrated circuits come in compatible series ~ meaning that they work at the same supply voltage and can be directly connected together - a combination of a dual-gate version of Fig. 17-18C and a dual flip-flop make an attractively simple combination for the marker generator.

There are several different basic types of flip-flops, the variations having to do with methods of driving (dc or pulse operation) and control of the counting function. Information on the operating principles and ratings of a specific type usually can be obtained from the manufacturer. The counting-control functions are not needed in using the flip-flop in a simple marker generator, although they come into play when dividing by some number other than a power of 2.

Frequency Standards

The difference between a marker generator and a frequency standard is that in the latter special
pains are taken to make the oscillator frequency as stable as possible in the face of variations in temperature, humidity, line voltage, and other factors which could cause a small change in frequency.

While there are no definite criteria that distinguish the two in this respect, a circuit designated as a "standard" for amateur purposes should be capable of maintaining frequency within at least a few parts per million under normal variations in ambient conditions, without adjustment. A simple marker generator using a $100-\mathrm{kHz}$ crystal can be expected to have frequency variations 10 times (or more) greater under similar conditions. It can of course be adjusted to exact frequency at any time the WWV (or equivalent) signal is avaitable.

The design considerations of high-precision frequency standards are outside the scope of this chapter, but information is available from time to time in periodicals.

OTHER METHODS OF FREQUENCY CHECKING

The simplest possible frequency-measuring device is a parallel LC circuit, tunable over a desired frequency range and having its tuning dial calibrated in terms of frequency. It can be used only for checking circuits in which at least a small amount of rf power is present, because the energy required to give a detectable indication is not available in the $L C$ circuit itself; it has to be extracted from the circuit being moasured; honce the name absorption frequency meter. It will be observed that what is actually measured is the frequency of the of energy, nos the frequency to which the circuit in which the energy is present may be tuncd.

The measurement accuracy of such an instrument is low, compared with the accuracy of a marker generator, because the Q of a practicable LC circuit is not high enough to make precise reading of the dial possible. Also, any two circuits coupled logether react on each others' tuning. (This can be minimized by using the loosest coupling that will give an adequate indication.)

The absorption frequency meter has one useful advantage over the marker generator - it will respond only to the frequency to which it is tuned,

Fig. 17-19A - Absorption frequency-meter circuir. The closed-circuit phone jack may be omjtred if listening is not wanted; in that case the positive terminal of M1 goes to common ground.
of to a band of frequencies very close to it. Thus there is no harmonic ambiguity, as there sometimes is when using a marker generator.

Absorption Circuit

A typical absorption frequency-meter circuit is shown in Fig. 17-19. In addition to the adjustable tuned circuit, L1C1, it includes a pickup coil, L2, wound over L1, a high-frequency semiconductor diode, CR1, and a microammeter or low-range (usually not more than $0-1 \mathrm{~mA}$) milliammeter. A phone jack is included so the device can be used for listening to the signal.

The sensitivity of the frequency meter depends on the sensitivity of the dc meter movement and the size of $\mathbf{L} 2$ in relation to L 1 . There is an optimum size for this coil which has to be found by experiment. An altemative is to make the rectiñer connection to an adjustable tap on L1, in which case there is an optimum tap point. In general, the rectifier coupling should be a little below (that is, less tight) the point that gives maximum response, since this will make the indications sharper.

Calibration

The absorption frequency meter must be calibrated by taking a series of readings on various frequencies from circuits carrying of power, the frequency of the rf energy first being determined by some othcr means such as a marker generator and receiver. The sctting of the dial that gives the highest meter indication is the calibration point for that frequency. This point should be determined by tuning through it with loose coupling to the circuit being measured.

OTHER INSTRUMENTS

Many measurements require a source of ac power of adjustable frequency (and sometimes adjustable amplitude as well) in addition to what is already available from the transmitter or receiver. Rf and af test oscillators, for example, provide signals for purposes such as receiver alignment, testing of phone transmitters, and so on. Another valuable adjunct to the station is the oscilloscope, especially useful for checking phone modulation.

Rf Oscillators for Circuit Alignment

Receiver testing and alignment, covered in an

AND MEASUREMENTS

carlier chapter, uses equipment common to ordinary radio service work. Inexpensive if signal generators are available, both complete and in kit form. However, any source of signal that is weak enough to avoid overloading the receiver usually will serve for alignment work. The frequency marker generator is a satisfactory signal source. In addition, its frequencies, although not continuously adjustable, are known far more precisely, since the usual signai-generator calibration is not highly accurate. For rough work the dip meter described in the next section will serve.

Fig. 17-19B - An FET source-dipper circuit suitable for use from 1.5 to 50 MHz . For operation at vhf and uhf the value of C1 should be made smaller, RFC1 would be a vhf type, and the bypass capacitors would be smaller in value. For uhf use Q1 would be changed to a uhf-type FET, a 2N4416 or similar.

THE DIP METER

The dip meter reverses the absorption-wavemeter procedure in that it supplies the rf power by incorporating a tunable oscillator from which the circuit being checked absorbs energy when this circuit and the oscillator are tuned to the same frequency and coupled together. In the vacuumtube version the energy absorption causes a decrease or "dip" in the oscillator's rectified grid current, measured by a dc microammeter.

The same principle can be applied to solid-state oscillators. In some transistor versions the oscillator rf power is rectified by a diode to provide a
meter indication. This technique can result in "dead spots" in the tuning range if the oscillator power is too low to enable the diode to conduct at all times. The circuit of Fig. 17-19B avoids the problem by measuring the changes in source current. In the W.M. (wavemeter) position of S1 the gate-sourcc junction of Q1 serves as the detector diode.

Each tuning range of the dipper should overiap to provide sufficient coverage to check circuits of unknown resonant frequency. Plug-in coils are normally used to allow continuous coverage from 1.5 to at least 250 MHz .

Calibration

A dipper should have reasonably accurate calibration. Calibration of the dipper dial can be effected by monitoring the dipper output signal with a calibrated receiver. Make sure the fundamental frequency of the dipper is being used during calibration.

Operating the Dip Meter

The dip meter will check only resonant circuits, since nonresonant circuits or components will not absorb energy at a specific frequency. The circuit may be either lumped or linear (a transmission-line type circuit) provided only that it has enough Q to give sufficient coupling to the dip-meter coil for detectable absorption of rf energy. Generally the coupling is principally inductive, although at times there may be sufficient capacitive coupling between the meter and a circuit point that is at relatively high potential with respect to ground to permit a reading. For inductive coupling, maximum energy absorption will occur when the meter

Fig. 17-20 - Chart for determining unknown values of L and C in the range of 0.1 to $100 \mu \mathrm{H}$ and 2 to 1000 pF , using standards of 100 pF and $5 \mu \mathrm{H}$.

Fig. 17-21 - A convenient mounting, using binding-post plates, for L and C standards made from commercially available parts. The capacitor is a $100-\mathrm{pF}$ silver mica unit, mounted so the lead length is as nearly zero as possible. The inductance standard, $5 \mu \mathrm{H}$, is 17 turns of coil stock, 1 -inch diameter, 16 turns per inch.
is coupled to a coil (the same coupling rules that apply to any two coils are operative here) in the tuned circuit being checked, or to a high-cument point in a linear circuit.

Because of distributed capacitance (and sometimes inductance) most circuits resonant at the lower amateur frequencies will show quasi-lineartype resonances at or close to the vhf region. A vhf dip meter will uncover these, often with beneficial results since such "parasitic" resonances can cause unwanted responses at harmonics of the intended frequency, or be responsible for parasitic oscillations in amplifiers. Caution must be used in checking transmission lines or antennas - and, especially, combinations of antenna and line - on this account, because these linear circuits have well-defined series of harmonic responses, based on the lowest resonant frequency, which may lead to false conclusions respecting the behavior of the system.

Measurements with the dip meter are essentially frequency measurements, and for best accuracy the coupling between the meter and circuit under checking must be as loose as will allow a perceptible dip. In this respect the dip meter is similar to the absorption wavemeter.

Measuring Inductance and Capacitance with the Dip Meter

With a carefully calibrated dip meter, properly operated, inductance and capacitance in the values ordinarily used for the $1.5-50 \mathrm{MHz}$ range can be measured with ample accuracy for practical work. The method requires two accessories: an inductance "standard" of known value, and a capacitance standard also known with reasonable accuracy. Values of 100 pF for the capacitance and $5 \mu \mathrm{H}$ for the inductance are convenient. The chart of Fig. 17-20 is based on these values.

The L and C standards can be quite ordinary components. A small silver-mica capacitor is satisfactory for the capacitance, since the customary tolerance is ± 5 percent. The inductance standard can be cut from commercial machine-
wound coil stock; if none is available, a homemade equivalent in diameter, tum spacing, and number of turns can be substituted. The inductance will be $5 \mu \mathrm{H}$ within amply close tolerances if the specifications in Fig. 17-21 are followed closely. In any case, the inductance can easily be adjusted to the proper value; it should resonate with the $100-\mathrm{pF}$ capacitor at 7100 kHz .

The sctup for measuring an unknown is shown in Fig. $\mathbf{1 7 - 2 2}$. Inductance is measured with the unknown connected to the standard capacitance. Couple the dip meter to the coil and adjust the meter for the dip, using the loosest possible coupling that will give a usable indication. Similar procedure is followed for capacitance measarement, except that the unknown is connected to the standard inductance. Values are read off the chart for the frequency indicated by the dip meter.

Coefficient of Coupling

The same equipment can be used for measurement of the coefficient of coupling between two colls. This simply requires two measurements of inductance (of one of the coils) with the coupled coil first open-circuited and then short-circuited. Connect the $100-\mathrm{pF}$ standard capacitor to one coil and measure the inductance with the terminals of the second coil open. Then short the terminals of the second coil and again measure the inductance of the first. The coefficient of coupling is given by

$$
k=\sqrt{1-\frac{L_{2}}{L_{1}}}
$$

where $k=$ coefficient of coupling
$L 1$ a inductance of first coil with terminals of second coil open
$L 2=$ inductance of first coil with terminals of second coil shorted.

AUDIO-FREQUENCY OSCILLATORS

Tests requiring an audio-frequency signal generally call for one that is a reasonably good sine wave, and the best oscillator circuits for this are $R C$-coupled, operating as nearly as possible as Class A amplificrs. Variable frequency covering the entire audio range is needed for determining frequency response of audio amplifiers, but this is

Fig. 17-22 - Setups for measuring inductance and capacitance with the dip meter.

522

TEST EQUIPMENT AND MEASUREMENTS

Fig. 17-23 - Twin-T audio oscillator circuit, Representative values for R1-R2 and C1 range from $18 \mathrm{k} \Omega$ and $.05 \mu \mathrm{~F}$ for 750 Hz to $15 \mathrm{k} \Omega$ and .02 $\mu \mathrm{F}$ for 1800 Hz . For the same frequency range, R3 and C2-C3 vary from 1800 ohms and $.02 \mu \mathrm{~F}$ to 1500 ohms and $.01 \mu \mathrm{~F}$. R4 should be approximateIy 3300 ohms. C4, the output coupling capacitor, can be $.05 \mu \mathrm{~F}$ for high-impedance loads.
a relatively unimportant type of test in amateur equipment. The variable-frequency af signal generator is best purchased complete; kits are readily available at prices that compare very favorably with the cost of parts.

For most phone-transmitter testing, and for simple trouble shooting in af amplifiers, an oscillator generating one or two frequencies with good wave form is adequate. A "two-tone" (dual) oscillator is particularly useful for testing sideband transmitters, and a constructional example is found later in the chapter.

The circuit of a simple $R C$ oscillator useful for general test purposes is given in Fig. 17-23. This "Twin-T" arrangement gives a wave form that is satisfactory for most purposes, and by choice of circuit constants the oscillator can be operated at any frequency in the usual audio range. R1, R2 and C1 form a low-pass type network, while C2C3R3 is high-pass. As the phase shifts are opposite, there is only one frequency at which the total phase shift from collector to base is 180 degrees, and oscillation will occur at this frequency. Optimum operation results when C1 is approximately twice the capacitance of C 2 or C 3 , and R3 has a resistance about 0.1 that of R1 or R2 ($C 2=C 3$ and $R 1=R 2$). Output is taken across $C 1$, where the harmonic distortion is least. A relatively high-impedance load should be used -0.1 megohm or more.

A small-signal af transistor is suitable for Q1. Eithet npn or pnp types can be used, with due regard for supply polarity. R4, the collector load resistor, must be large enough for normal amplification, and may be varied somewhat to adjust the operating conditions for best waveform.

RESISTORS AT RADIO FREQUENCIES

Measuring equipment, in some part of its circuit, often requires essentially pure resistance -
that is, resistance exhibiting only negligible reactive effects on the frequencies at which measurement is intended. Of the resistors available to amateurs, this requirement is met only by small composition (carbon) resistors. The inductance of wire-wound resistors makes them useless for amateur frequencies.

The reactances to be considered arise from the inherent inductance of the resistor itself and its leads, and from small stray capacitances from one part of the resistor to another and to surrounding conductors. Although both the inductance and capacitance are small, their reactances become increasingly important as the frequency is raised. Small composition resistors, properly mounted, show negligible capacitive reactance up to 100 MHz . or so in resistance values up to a few hundred ohms; similarly, the inductive reactance is negligible in values higher than a few hundred ohms. The optimum resistance region in this respect is in the 50 to 200 -ohm range, approximately.

Proper mounting includes reducing lead length as much as possible, and keeping the resistor separated from other resistors and conductors. Care must aiso be taken in some applications to ensure that the resistor, with its associated components, does not form a closed loop into which a voltage could be induced magnetically.

So installed, the resistance is essentially pure. In composition resistors the skin effect is very small, and the rf resistance up to vhf is very closely the same as the de resistance.

Dummy Antennas

A dummy antenna is simply a resistor that, in impedance characteristics, can be substituted for an antenna or transmission line for test purposes. It permits leisurely transmitter testing without radiating a signal. (The amateur regulations strictly limit the amount of "on-the-air" testing that may be done.) It is also useful in testing receivers, in that electrically it resembles an antenna, but does not pick up extemal noise and signals, a desirable feature in some tests.

For transmitter tests the dummy antenna must be capable of dissipating safely the entire power output of the transmitter. Since for most testing it is desirable that the dummy simulate a perfectlymatched transmission line, it should be a pure resistance, usually of approximately 52 or 73

Fig. 17-24 - Dummy antenna made by mounting a composition resistor in a PL-259 coaxial plug. Only the inner portion of the plug is shown; the cap screws on after the assembly is completed.

Fig. 17-25 - Using resistors in series-parallal to increase the power rating of a small dummy antenna. Mounted in this way on pieces of flat copper, inductance is reduced to a minimum. Eight 100 -ohm 2 watt composition resistors in two groups, each four resistors in parallel, can be connected in series to form a 50 -ohm dummy. The open construction shown permits f́ree air circulation. Resistors drawn heavy are in one "deck": light olres are in the other.
ohms. This is a severe limitation in home construction, because nonreactive resistors of more than a few watts rated safe dissipation are very difficult to obtain. (There are, however, dummy antenna kits available that can handle up to a kilowatt.)

For receiver and minipower transmitter testing an excellent dummy antenna can be made by installing a 51-or 75 -ohm composition resistor in a PL-259 fitting as shown in Fig. 17-24. Sizes from une-fiall to two watts are satisfactory. The disk at the end helps reduce lead inductance and completes the shielding. Dummy antennas made in this way have good characteristics through the vhf bands as well as at all lower frequencies.

Increasing Power Ratings

More power can be handled by using a number of 2-watt resistors in parallel, or series-parallel, but at the expense of introducing some reactance. Nevertheless, if some departure from the ideal impedance characteristics can be tolerated this is a practical method for getting increased dissipations. The principal problem is stray inductance which can be minimized by mounting the resistors on flat copper strips or sheets, as suggested in Fig. 17-25.

The power rating on resistors is a continuous rating in free air. In practice, the maximum power dissipated can be increased in proportion to the reduction in duty cycle. Thus with keying, which has a duty cycle of about $1 / 2$, the rating can be doubled. With sideband the duty cycle is usually not over about $1 / 3$. The best way of judging is to feel the resistors occasionally; if too hot to touch, they may be dissipating more power than they are rated for.

THE OSCILLOSCOPE

The clectrostatically deflected cathode-ray tube, with appropriate associated equipment, is capable of displaying both low- and radio-frequency signals on its fluorescent screen, in a form which lends itself to ready interpretation. (In contrast,
the magnetically deflected television picture tube is not at all suitable for measurement purposes.) In the usual display presentation, the fluorescent spot moves across the screen horizontally at some known rate (horizontal deflection or horizontal sweep) and simultaneously is moved vertically by the signal voltage being examined (vertical deflection). Because of the retentivity of the screen and the eye, a rapidly deflected spot appears as a continuous line. Thus a varying signal voltage causes a pattem to appear on the screen.

Conventionally, oscilloscope circuits are designed so that in vertical deflection the spot moves upward as the signal voltage becomes more positive with respect to ground, and vice versa (there are exceptions, however). Also, the horizontal deflection is such that with an ac sweep voltage - the simplest form - positive is to the right; with a linear sweep - one which moves the spot at a uniform rate across the screen and then at the end of its travel snaps it back very quickly to the starting point - fime progresses to the right.

Most cathode-ray tubes for oscilloscope work require a deflection amplitude of about 50 volts per inch. For displaying small signals, therefore, considerable amplification is needed. Also, special circuits have to be used for linear deflection. The design of amplifiers and linear deflection circuits is complicated, and extensive texts are available. For checking modulation of transmitters, a principal. amateur use of the scope, quite simple circuits suffice. A $60-\mathrm{Hz}$ voltage from the power line makes a satisfactory horizontal sweep, and the voltage required for vertical deflection can easily be obtained from transmitter of circuits without amplification.

For general mcasurement purposes amplifiers and linear deflection circuits are needed. The most economical and satisfactory way to obtain a scope having these features is to assemble one of the many kits available.

Simple Oscilloscope Circuit

Fig. 17-26 is an oscilloscope circuit that has all the essentials for modulation monitoring: controls for centering, focusing, and adjusting the brightness of the fluorescent spot; voltage dividers to supply proper electrode potentials to the cathoderay tube; and means for coupling the vertical and horizontal signals to the deflection plates.

The circuit can be used with electrostaticdeflection tubes from two to five inches in face diameter, with voltages up to 2500 . Either set of deflecting electrodes (D1D2, or D3D4) may be used for either horizontal or vertical deflection, depending on how the tube is mounted.

In Fig. 17-26 the centering controls are not too high above electrical ground, so they do not need special insulation. However, the focusing and intensity controls are at a high voltage above ground and therefore should be carefully insulated. Insulated couplings or extension shafts should be used.

The tube should be protected from stray magnetic fields, either by enclosing it in an iron or steel box or by using one of the special CR tube

Fig. 17-26 - Oscilloscope circuit for modulation monitoring. Constants are for 1500 . to 2500 -volt high voltage supply. For 1000 to 1500 volts, omit R8 and consect the bottom end of R7 to the top end of R9.
C1-C5, incl. - 1000 -volt disk ceramic.
R1, R2. R9, R11 - Valume-contral typa, linear taper. R9 and R11 must be wall insulated from chassis.
R3, R4, R5, R6, R10-1/2 watt.
R7, R8-1 watt.
V1 - Electrostatic-deflection cathode-ray tube. 2. to 5 -inch. Base connections and heater ratings vary with type chosen.
shields available. If the heater transformer (or other transformer) is mounted in the same cabinet, care must be used to place it so the stray field around it does not deflect the spot. The spot cannot be focused toa fine point when influenced by a transformer field. The heater transformer must be well insulated, and one side of the heater should be connected to the cathode. The high-voltage dc can be taken from the transmitter plate supply; the current required is negligible.

Methods for connecting the oscilloscope to a transmitter for checking or monitoring modulation are given in earlier chapters.

Quasi-Linear Sweep

For wave-envelope pattems that require a fairly linear horizontal sweep, Fig. $17-27$ shows a method of using the substantially linear portion of the $60-\mathrm{Hz}$ sine wave - the "center" portion where the wave goes through zero and reverses polarity. A $60-\mathrm{Hz}$ transformer with a center-tapped secondary winding is required. The voltage should be sufficient to deflect the spot well off the screen on both sides -250 to $\mathbf{3 5 0}$ volts, usually. With such "over-deflection" the sweep is fairly linear, but it is as bright on retrace as on left-to-right. To blank it in one direction, it is necessary to couple the ac to the No. 1 grid of the CR tube as shown.

Fig. 17.27 - A quasilinear time base for an oscilloscope can be obtained from the "center" portion of a sine wave. Coupling the ac to the grid gives intensity modulation that blanks the retrace.
C1 - Ceramic capacitor of adequate voltage rating. T1 - 250- to 350 -valt center-tapped secondary. If voltage is too high, use dropping resistor in primary side.

Lissajous Figures

When sinusoidal ac voltages are applied to both sets of deflecting plates in the oscilloscope the resultant pattern depends on the relative amplitudes, frequencies and phases of the two voltages. If the ratio between the two frequencies is constant and car be expressed in integers a stationary pattern will be produced.

free ratio
$1: 1$

Fig. 17-28 - Lissajous figures and corresponding frequency ratios for a 90 -degree phase relationship between the voltages applied to the two sets of deflecting plates.

The stationary patterns obtained in this way are called Lissajous figures. Examples of some of the simpler lissajous figures are given in Fig. 17-28. The frequency ratio is found by counting the number of loops along two adjacent edges. Thus in the third figure from the top there are three loops along a horizontal edge and only one along the vertical, so the ratio of the vertical frequency to the horizontal frequency is 3 to 1 . Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertical edge, giving a ratio of 4 to 3 . Assuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} \quad f 1
$$

where $f 1=$ known frequency applied to horizontal plates,
$f 2=$ unknown frequency applied to vertical plates,
n1 = number of loops along a vertical cdge and,
$n 2=$ number of loops along a horizontal edge
An important application of Lissajous figures is in the calibration of audio-frequency signal generators. For very low frequencies the $60-\mathrm{Hz}$
power-line frequency is held accurately enough to be used as a standard in most localities. The medium audio-frequency range can be covered by comparison with the $440-$ and $600-\mathrm{Hz}$ modulation on the WWV transmissions. It is possible to calibrate over a 10 -to-l range, both upwards and downwards, from each of the latter frequencies and thus cover the audio range useful for voice communication.

An oscilloscope having both horizontal and vertical amplifiers is desirable, since it is convenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattem size.

MARKER GENERATOR FOR 100, 50 AND 25 KHZ

The frequency generator in the accompanying illustrations will deliver marker signals of usable strength well into the vhf region when its output is connected to the antenna input terminals of a communications receiver. It uses a $100-\mathrm{kHz}$ crystal in an integrated-circuit version of the solid-state multivibrator oscillator shown carlier. The oscillator is followed by a two-stage IC divider which produces 50 and $25-\mathrm{kH}$ \% marker intervals. Two inexpensive ICs are used, an MC-724P quad gate and an MC790P dual JK llip-flop. Two of the gates in the MC724P are used for the oscillator and a third serves as a following buffer amplifier and "squarcr" for driving the first divide-by-2 circuit in the MC790P. This divider then drives the sccond divide-by-2 flip-flop. Outputs at the three frequencies are taken through a 3 -position switch from taps as shown in the circuit diagram, Fig. 17-30.

Two of the three poles of the 4 -position switch are used for controlling the collector voltage for the ICs. Voltage is on the MC724P in all active positions of the switch, but is applied to the MC790P only when 50 - and $25-\mathrm{kHz}$ markers are required. This saves battery power, since the MC790P takes considerably more current than the MC724P.

The outputs on all three frequencies are good square waves. To assure reasonably constant harmonic strength through the hf spectrum the output is coupled to the receiver through a small capacitance which tends to attenuate the lowerfrequency harmonics. This capacitance, C3, is not critical as to value and may be varied to suit individual preferences. The value shown, 22 pF , is satisfactory for working into a receiver having an input impedance of 50 ohms.

At 3 volts dc input the current taken in the $100-\mathrm{kHz}$ position of SI is 8 mA . In the 50 - and $25-\mathrm{kHz}$ positions the total current (both ICs) is 35 $m A$. The generator continues to work satisfactorily when the voltage drops as low as 1.5 volts. The oscillator frequency is subject to change as the voltage is lowered, the frequency shift amounting to approximately 30 Hz at 15 MHz on going from 3 to 2 volts. There is a slight frequency shift between the $100-\mathrm{kHz}$ and $50 / 25-\mathrm{kHz}$ positions, but this amounts to only 6 or 7 Hz at 15 MHz .

Fig. 17-29 - Frequency marker generating 100-$50-$, or $25-\mathrm{kHz}$ intervals. Battery power supply (two " D " cells) is inside the cabinet, a $3 \times 4 \times 6$-inch aluminum chassis with bottom plate. The trimmer capacitor for fine adjustment of frequency is available through the hole in the top near the left front.

Frequency changes resulting from temperature variations are larger; they may be as much as a few hundred Hz at 15 MHz in normal room-temperature variations. All such frequency changes can be compensated for by adjusting C2, and it is good practice to check the frequency occasionally against one of the WWV transmissions, readjusting C2 if necessary.

Layout and Construction

The physical layout of the circuit can be varied to suit the builder's tastes. The size of the box containing the generator shown in the photographs makes the batteries easily accessible for replacement. The method of mounting the crystal and C2 allows the latter to be reached through the top of the box for screwdriver adjustment, and makes possible the easy removal of the crystal since it plugs into a standard crystal socket. There is ample room for soldering the various wires that lead to the switch from the etched board on which the ICs, resistors, and Cl are mounted. The output

C1 $-0.1 \mu \mathrm{~F}$ paper, low voltage.
C2-7-45-pF ceramic trimmer.
C3 - 22-pF dipped mica (ceramic also satisfaciory).
S1 - 3-pole, 4-position rotary (Mallory 3134J).
U1 - Quad 2-input NOR gate, 1 section unused (Motorola MC724P).
U2 - Dual I-K flip-flop (Motorola MC790P).

Fig. 17-30 - Marker generator circuit. Pin 4 of both ICs is grounded. Connect pin 11 of U1 to point C, and pin 11 of $U 2$ to point F.
jack is placed at the rear where it is convenient when the unit is alongside a receiver.

An etched board does not have to be used for wiring the ICs and associated parts, although it makes for neatness in construction. The wiring plan used in this one is shown in Fig. 17-32. Fig. 17-32 is not a conventional template, but is a scale drawing showing how the etched connections can run with a minimum number of cross-over points where jumpers are required (only one is needed in this layout). In following the wiring plan the resist can be put on as desired, so long as the separation between conductors is great enough to prevent short-circuits.

Fig. 17-32 shows the front or component side of the board. To get the reversed drawing that would $b e$ fulluwed on the copper slde, place a piece of paper under the figure, with a face-up piece of carbon paper under it. Then trace the wiring with a sharp pencil and the layout will be transferred to the back of the paper. The points where holes are to be drilled are shown by small dots and circles, the latter indicating the points at which external conrections are to be made.

Fig. 17-31 - Integrated circuits and associated fixed capacitors and resistors are mounted on an etched broad measuring $33 / 4 \times 21 / 2$ inches, supported from one wall by an aluminum bracket. The $100-\mathrm{kHz}$ crystal and trimmer capacitor are on a 1×2-inch plastic strip supported below the top on 1/2-inch spacers, with the capacitor facing upward so it can be adjusted from outside. The two dry cells are in a dual holder lavailabla from electronics supply stores). The output connector is a phono jack, mounted on the rear wall lupper left in this view) with C3.

Fig. 17-32 Wiring plan for the circuit board, component side. Dimensions for placement of parts are exact. x - jumper. Other letters indicate external connection points, corresponding to similarly lettered connec. tions in Fig. 17-30.

The counter is buile into a homemade enclosure that measures $2 \times 6 \times 6$ inches.

As the complexity of amateur sadio equipment increases, the soplestication of the test equipment needed to effectively troubleshoot failures also increases. The following counter was developed to fulfill this need and will also certainly complement the station itself. This counter as a whole is very basic in design and some interesting features are its size and the displays. Each display (except for the least significant digit) contains four sections: The counter, fatch, decoder and the display. The LSD does not have a counter included.

Circuit Description

The counter uscs a crystal-controlled time base to generate the gating pulses. A $1-\mathrm{MHz}$ oscillator is counted down to provide 1 kHz for the SN7493 (U6). U6 is connected to divide by twelve. The outputs of this divide-by-twelve counter are gated to provide the count, latch and reset gates. The timing relationships are shown in Fig. 2.

Displays are Tcxas Instruments T1L 306 devices and a single TIL 308 . Each TIL 306 contains the four units necessary to display a counter frequency. The internal counter has an upper frequency limit of approximately 18 MHz . Following the counter is a latch, which is used to hold the data while the counter is operating. The frequency information, in BCD format, is decoded and it then drives the correct segments of the display. The maximum count output is used to drive the successive displays. Each display contains a feature called ripple blanking. If the number zero is detected in the latches and ripple blanking has been enabled, the display will be blanked. This function was incorporated to give leading zero blanking in the counter. Starting from left to right (MSD to LSD), if zero is detected that dispiay will be blanked and the blanked data will be passed to the right. This means that 455.2 kHz will be
displayed as 455.2 not 00455.2 . The LSD is not connected for leading zero blanking. It was a bit disconcerting to turn the counter on and not have the display light up. Therefore, the LSD was not connected for leading zero blanking and zero will be displayed when the counter is on with no input.

The LSD, a TIL 308, does not have the internal counter. This allows a faster counter, greater than 18 MHz , to be used for the LSD. The N82S 90 , used as the counter for the LSD, is rated for $100-\mathrm{MHz}$ operation.

Signal input is applied to a source follower, Q1. For the sake of simplicity, it was decided to use this form of input configuration instead of an amplifier for the input. An input signal of 0.25 V will be sufficient to trigger the counter, up to 50 MHz . Following the input network is an SN74S00 connected to act as a level Iranslator. The signal from the input network is made TTL compatible by this circuit.

Construcrion

One of the features of this counter is that its construction is not critical. As can be seen in the photograph, the entire counter is built on a small

The use of a bezel and a single pc board allows very compact packaging in this counter. Leads that interconnect between the bezel and the circuit board have been made extra long. This excess length is tucked under the bezel and allows the pc board to be removed and worked on while still connected to the counter.

Fig. 2 - Timing diagram of the counter.

Fig. 3 - Schematic diagram of the power supply.
C1 - $2000 \mu \mathrm{~F}, 25 \mathrm{~V}$.
T1-12.6 Vac, 1 A.
U16-50 PRV, 1-A encapsulated bridge rectifier. VR1 - 5-V, 1-A vol tage regulator LM309K.
circuit board and in the bezel. Instead of using a bezel, a circuit board could be etched and mounted behind the front panel. The foil on the top of the pe board is the ground interconnection for all the integrated circuits and the builder should liberally instald bypass capacitors on the 5 -volt line. This will prevent any transients on the fine from showing up in the counted frequency. Construction techniques and added features are left entirely to individual preferences.

Operation and Adjustment

The only adjustment required is the crystal oscillator. This should be checked and set against a frequency standard. An error as small as 100 Hz in the crystal frequency can cause a frequency measurement to be off as much as 5 kHz at 50 MHz . This counter will function with signals as high as 65 MHz in its present configuration. The limiting factors are the selection of integrated circuits and the input network.

Fig. 4 - Template and parts layaut for the counter (full scale). Note that double-sided pc board is required. Some of the holes for the discrete components will be surrounded by foil on the top of the board. Using a No. 33 drill slightly countersink the top of the board to remove the copper around the hole.

A CALIBRATED FIELD STRENGTH METER

There arc many occasions when it is desirable to determine the relative performance of an antenna. While near-field pattern measurements are generally not accurate, they do show trends in terms of front-to-back ratio and may be used to determine what adjustments, if any, should be made to an existing system. The field-strength meter described here will detect large as well as small changes in radiated power from an antenna. For instance, the pattern of an hf-band Yagi may be checked by placing the meter and an associated sampling antenna several hundred feet from the beam. A watt or two of power is needed to make tests above 21 MHz , but for frequencies below this point, a griddip oscillator may serve as a "transmitter."

Fig. 1 gives the circuit diagram of the calibrated field-strength meter. L1 and L2 are resonated to the desired frequency with C 1 to tunc the hf bands. Adjustment is made to produce maximum meter deflection of the signal being sampled. Should the signal cause the meter to deflect off scale, the attenuator, R4, may be reset to reduce the level of the incoming energy.

Two operational amplifiers comprise a logarithmic circuit which produces a voltage outpul at pin 10 of U1B that is proportional to the logarithm

(thus dB) of the input voltage. Forward bias is applied to CR1 via a 1 -megohm resistor to improve conductivity at low signal input values. The output voltage from U1B is displayed by M1, a conventional milliammeter. Two scale ranges are availabic, 20 dB and 40 dB . With no signal applied, a small amount of quiescent current will appear on

Fig. 1 - Circuit diagram for the calibrated field strength meter. Component designations not listed below are for text reference.

C1 - Variable capacitor, 140 pF maximum. L1 - 44 iurns of No. 24 enam. on a T-68-2 core
tapped four turne from the ground end.
L2 - 15 turns of No. 24 enam on a T-68-2 core.
L3 - Two turns of No. 24 enam. wound over L2.
U1 - Dual 747 operational amplifier.
S1 - Dpde rotary.
S2, S3 - Miniature toggle.

Inside view of the field strength meter. Most of the components are mounted on a circuit board.

M1. Readings made near this level will not be quite as accurate as those made in the upper portion of the scale. Accuracy is within one dB. About 1000 microvolts of signal is necessary to provide a meaningful movement of M1. R1 is the dc offset control and is mounted on the rear panel. It permits some variation of the absolute readings by shifting the dc levels at the output of U1B and may be used to set the meter to some convenient reference mark. The combined values of R2A and R2B should be 8000 ohms. R2A is a trim pot to allow proper adjustment to exactly that value. R3A and R3B serve a similar purpose and should be set for a total resistance of $16 \mathrm{k} \Omega$.

AN AUDIO OSCILLATOR

A wide-range audio oscillator that will provide a moderate output level can be built from a single 741 operational amplifier (Fig 1). Power is supplied by two nine-volt batteries, from which the cincuit draws 4 mA . The frequency range is selectable from 15 Hz to 150 kHz , although a $1.5-$ to $15-\mathrm{Hz}$ range can be included with the addition of two $5-\mu F$ nonpolarized capacitors and an extra switch position. Distortion is approximately one percent. The output level under a light load (10 $\mathrm{k} \Omega$) is 4 to 5 volts. This can be increased by using higher battery voltages, up to a maximum of plus and minus 18 volts, with a corresponding adjustment of R_{q}.

Pin connections shown are for the TO-S case. If another package configuration is used, the pin connections may be different. $R_{q}(220 \Omega)$ is trimmed for an output level about five percent below clipping. This should be done for the temperature at which the oscillator will normally operate, as the lamp is sensitive to ambient temperature. Note that the output of this oscillator is direct coupled. If you are connecting this unit into circuits where dc voltage is present, use a coupling capacitor. As with any solid-state equipment, be cautious around plate circuits of tubetype equipment, as the vollage spike caused by charging a coupling capacitor may destroy the IC. This unit was originally described by Schultz in QST for November, 1974.

Fig. 1 - A simple audlo oscillator that provides a selectable frequancy range. R2 and R3 control the frequency and R1 varies the output leval.

A TESTER FOR FET AND BIPOLAR TRANSISTORS

The circuit shown is intended solely as a tester for npn and pnp transistors, junction FETs, and dual-gate MOSETs. This equipment is not for use in checking audio or high-power if transistors.

The circuit of Fig. 1 is an oscillator which is wired so that it will test various small-signal transistors by switching the battery polarity and bias voltage. A crystal for the upper range of the hf spectrum is wired into the circuit permanently, but could be installed in a crystal socket if the builder so desires. A $20-\mathrm{MHz}$ crystal was chosen for this model. Any hf crystal cut for fundamental mode operation can be used.

When testing FETs the bias switch, S3, is placed in the FET position, thus removing R2 from the circuit. However, when testing bipolar transistors the switch position must be changed to BIPOL so that forward bias can be applied to the base of the bipolar transistor under test. R1 is always in the circuit, and serves as a gate-leak resistor for FETs being evaluated. It becomes part of the bias network when bipolars are under test. Cl is used for feedback in combination with the internal capacitances of the transistors being checked. Its value may have to be changed experimentally if crystals for lower frequencies are utilized in the
circuit. Generally speaking, the lower the crystal frequency, the greater the amount of capacitance needed to assure oscillation. Use only that amount necessary to provide quick starting of the oscillator.

Components R3 and R4 are used as a voltage divider to provide bias for dual-gate MOSFETs. C2 is kept small in value to minimize loading of the oscillator by the low-impedance voltage doubler, CR1 and CR2. Rectified if from the oscillator is monitored on M1. Meter deflection is regulated manually by means of control R5. SI is used to select the desired supply voltage polarity - negative ground for testing n-channel FETs and npn bipolars, and a positive ground when working with p-channel and pnp devices.

When testing MOSFETs that are not gate protected (3N140 for one), make certain that the transistor leads are shorted together until the device is seated in the test socket. Static charges on one's hands can be sufficiently great to damage the insulation within the transistor. Use a single strand of wire from some No. 22 or 24 stranded hookup wire, wrapping it two or three times around the pigtails of the FET as close to the transistor body as possible. After the FET is plugged into the
\bar{r} ig. 1 - Schematic diagram of the transistor tester. Capacitors are disk ceramic or mica. Resistors are $9 / 2$ or $1 / 4$-watt composition execet for R5. Estimated cost for this tester (all parts new) is $\$ 15$. Numbered components not appearing in parts list are so designated for text discussion. BT1 - Small 9-V tran-sistor-radio battery.
CR1. CR2 - 1N34A germanium diode or equiv.
11 - Four-terminal transisior socket.
J2, J3 - Three-terminal transistor socket.
M1 -- Microampere meter. Calectro D1-910 used here.
R5 - 25,000-ohm linear-taper composition conirol with switch.
RFC1 $2.5-\mathrm{mH}$ rf choke.
S1 - Two-pole double-throw miniature toggle.
S2 - Part of R5.
S3 - Spst miniature toggle.
Y1 - Surplus crystal (see tex).

socket, unwrap the wire and perform the tests. (It's not a bad idea to have an earth ground connected to the case of the tester when checking unprotected FETs.) Put the shorting wire back on the FET leads before removing the unit from the tester.

The meter indication is significant in checking any type of transistor. If the device is open, shorted, or extremely leaky, nо oscillation will take place, and the meter will not deflect. The
higher the meter reading, the greater the vigor of the transistor at the operating frequency. High meter readings suggest that the transistor is made for vhf or uhf service, and that its beta is medium to high. Lower readings may indicate that the transistor is designed for hf use, or that it has very low gain. Transistors that are known to be good but will not cause the circuit to oscillate are most likely made for low-frequency or audio appljcations.

A TESTER FOR CRYSTALS AND BIPOLAR TRANSISTORS

The circuit of Fig. 1 is intended primarily to test surplus crystals and bipolar transistors. It uses a Pierce oscillator. Battery polarity can be switched to allow testing of npn or pлp transistors. Crystal quality is indicated on M1. The greater the crystal activity, the higher the meter reading. A suitable transistor for use at Q1 (when testing crystals) is the 2N4124, MPS3563, or HFP53. All three have f_{T} ratings well into the vhf spectrum, and each has reasonably high beta. The two characteristics make
the devices ideal as general-purpose oscillators.
This tester witl work well from the upper hf range down to at least 455 kHz . Sl is used to change the value of feedback capacitance. The lower the frequency of operation, the greater the amount of capacitance required.

A transistor can be checked by plugging the unknown type into the panel socket while using a crystal of known frequency and condition. Both testers can be used as calibrators by inserting

Fig. 1 - Schematic diagram of the No. 2 tester. Capacitors are disk ceramic. Fixed-value resistors are $1 / 2$ or $1 / 4$-watt composition. Estimated cost for this tester (all new parts) is $\$ 13$.

BT1 - Small 9-V transistor-radio battery. CR1. CR2 - 1N34A germanium diode or equiv. J1-J4, incl. - Crystal socket of builder's choice.

M1 -Microampere meter. Calectro D1-910 used here.
R1 $\mathbf{- 2 5 , 0 0 0 - o h m - l i n e a r - t a p e r ~ c o m p o s i t i o n ~ c o n t r o l ~}$ with switch.
RFCl $-2.5-\mathrm{mH}$ rf choke.
S1 - Single-pole three-position phenolic rotary wafer type, miniature.
S2 - Part of R1.
S3 - Double-pole double-throw miniature toggie.
Q1 - Vhf npn bipolar, 2N4124, MPS3563, HEP53.
crystals for band-edge checking. The frequencies of unknown crystals can be checked by listening to the output from the test oscillators on a calibrated receiver or while using a frequency counter connected to the designated test point

Four crystal sockets are provided in the model shown here. J1 through J4 provide for testing of FT-243, HC-6/U, HC-17, and HC-25 crystals, the most popular holder styles in use today. Other types can be added by the builder if desired.

DIODE NOISE GENERATORS

A noise generator is a device for creating a controllable amount of rf noise ("hiss"-type noise) eventy distributed throughout the spectrum of interest. The simplest type of noise generator is a diode, either vacuum-tube or crystal, with dc flowing through it. The current is also made to flow through a load resistance which usually is chosen to equal the characteristic impedance of the transmission line to be connected to the receiver's input terminals. The resistance then substitutes for the line, and the amount of rif noise fed to receiver input is controlled by varying the dc through the diode.

The noise generator is useful for adjusting the "front-nd" circuits of a receiver for best noise figure. A simple circuit using a crystal diode is shown in Fig. 17-51. The unit can be built into a small metal box; the main consideration is that the circuit from Cl through Pl be as compact as possible. A calibrated knob on R1 will permit resetting the generator to roughly the same spot each time, for making comparisons. If the leads are short, the generator can be used through the $144-\mathrm{MHz}$ band for receiver comparisons.

To use the generator, screw the coaxial plug onto the receiver's input fitting, open S1, and measure the noise output of the receiver by connecting an audio-frequency voltmeter to the receiver's af output terminals. An average-reading voltmeter is preferable to the peak-reading type, since on this type of noise the average-reading meter will give a fair approximation of rms, and the object is to measure noise puwer, not voltage.

In using the generator for adjusting the input circuit of a receiver for optimum noise figure, first make sure that the receiver's rf and af gain controls are set well within the linear range of response, and turn off the automatic gain control. With the noise generator connected but Sl open, adjust the receiver gain controls for an output reading that is far enough below the maximum obtainable to

Fig. 17-51 - Circuit of a simple crystal-diode noise generator
BT1 - Dry-cell battery, any convenient type.
C1 - 500-pF ceramic, disk or tubular.
CR1 - Silicon diode, 1 N21 or 1N23. Diodes with
" R " suffix have reversed polarity. (Do not use ordinary germanium diodes.)
P1 - Coaxial fitting, cable type.
R1 - 50,000 -ohm control, ccw logarithmic taper. R2 - 51 or 75 ohms, 1/2-watt composition.
S1 - Spst toggle (may be mounted on R1).
ensure that the receiver is operating linearly. This is your reference level of noise. Then close Sl and adjust R1 for a readily perceptible increase in output. Note the ratio of the two readings - i.e., the number of dB increase in noise when the generator is on. Then make experimental adjustments of the receiver input coupling, always with the object of obtaining the largest number of dB increase in output when the generator is switched on.

A simple crystal-diode noise generator is a uscful device for the receiver adjustment, especially at vhf, and for comparing the performance of different receivers checked with the same instrument. It does not permit actual measurement of the noise figure, however, and therefore the results with one instrument cannot readily be compared with the readings obtained with another. In order to get a quantitative measure of noise figure it is necessary to use a temperature-saturated vacuum diode in place of the semiconductor diode. Suitable diodes are difficult to find.

RF PROBE FOR ELECTRONIC VOLTMETERS

The rf probe shown in Figs. 17-52 to 17-55, inclusive, uses the circuit discussed earlier in connection with Fig. 17-15.

The isolation capacitor, C1, crystal diode, and filter/divider resistor are mounted on a bakelite 5 -lug terminal strip, as shown in Fig. 17-55. One end lug should be rotated 90 degrees so that it extends off the end of the strip. All other lugs should be cut off flush with the edge of the strip. Where the inner conductor connects to the terminal lug, unravel the shield three-quarters of an inch, slip a piece of spaghetti over it, and then
solder the braid to the ground lug on the terminal strip. Remove the spring from the tube shield, slide it over the cable, and crimp it to the remaining quarter inch of shield braid. Solder both the spring and a 12 -inch length of flexible copper braid to the shield.

Next, cut off the pins on a seven-pin miniature shield-base tube socket. Use a socket with a cylindrical center post. Crimp the terminal lug previously bent out at the end of the strip and insert it into the center post of the tube socket from the top. Insert the end of a phone tip or a

Fig. 17-52 - Rf probe for use with an electronic voltmeter. The case of the probe is constructed from a 7 -pin ceramic tube socket and a $21 / 4$-inch tube shield. A half-inch grommet at the top of the tube shield prevents the output lead from chafing. A flexible copper-braid grounding lead and alligator clip provide a low-inductance return path from the test circuit.
pointed piece of heavy wirc into the bottom of the tube socket center post, and solder the lug and tip to the center post. Insert a half-inch grommet at the top of the tube shictd, and slide the shield over the cable and flexible braid down onto the tube socket. The spring should make good contact with the tube shield to insure that the tube shield (probe case) is grounded. Solder an alligator clip to the other end of the llexible braid and mount a phone plug on the free end of the shielded wire.

Fig. 17-53 - The rf probe circuit.

Fig. 17-54 - Inside the probe. The 1N34A diode, calibrating resistor, and input capacitor are mounted tight to the terminal strip with shortest leads possible. Spaghetti tubing is placed on the diode leads to prevent accidental short circuits. The tube-shield spring and flexible-copper grounding lead are soldered to the cable braid (the cable is RG-58/U coax). The tip can be either a phone tip or a short pointed piece of heavy wire.

Mount components close to the terminal strip, to keep lead lengths as short as possible and minimize stray capscitance. Use spaghetti over all wires to prevent accidental shorts.

The phone plug on the probe cable plugs into the dc input jack of the electronic voltmeter and mos voltages are read on the voltoneter's negative dc scale.

The accuracy of the probe is within ± 10 percent from 50 kHz to 250 MHz . The approximate input impedance is 6000 ohms shunted by 1.75 pF (at 200 MHz).

Fig. 17-55 - Component mounting details.

RF IMPEDANCE BRIDGE FOR COAX LINES

The bridge shown in Figs. 1 through 3 may be used to measure unknown complex impedances at frequencies below 30 MHz . Measured values are of equivalent series form, $R+j K$. The useful range of the instrument is from about 5 to 400 ohms if the unknown load is purely resistive, or 10 to 150 ohms resistive component in the presence of reactance. The reactance range is from 0 to approximately 100 ohms for either inductive or capacitive loads. Although the instrument cannot indicate impedances with the accuracy of a laboratory type of bridge, its readings are quite adequate for the measurement and adjustment of antenna systems for amateur use, inctuding the taking of line lengths into account with a Smith chart or Smith transmission-line calculator.

The bridge incorporates a differential capacitor, Cl , to obtain an adjustable ratio for measurement
of the resistive component of the load. The capacitor consists of two identical sections on the same frame, arranged so that when the shaft is rotated to increase the capacitance of one section, the capacitance of the other section decreases. The capacitor is adjusted for a null reading on MI, and its settings are calibrated in terms of resistance at J3 so the unknown value can be read off the calibration. A coil-and-capacitor combination is used to determine the amount and type of reactance, inductive or capacitive. L1 and C2 in the bridge circuit are consected in series with the load. The instrument is initially balanced at the frequency of measurement with a purcly resistive load connected at J3, so that the reactances of L1 and of C2 at its midsetting are equal. Thus, these reactances cancel each other in this arm of the bridge. With an unknown complex-impedance load
then connected at J3, the setting of C2 is varied either to increase or decrease the capacitive reactance, as required, to cancel any reactance present in the load. If the load is inductive more capacitive reactance is required from C2 to obtain a balance, indicated by a null on M1, with less reactance needed from C2 if the load is capacitive. The settings of C2 are calibrated in terms of the value and type of reactance at J3. Because of the relationship of capacitive reactance to frequency, the calibration for the dial of C2 is valid at only one frequency. It is therefore convenient to calibrate this dial for equivalent reactances at 1 MHz, as shown in Fig. 4. Frequency corrections may then be made simply by dividing the reactance dial reading by the measurement frequency in megahertz.

Construction

In any ff-bridge type of instrument, the leads must be kept as short as possible to reduce stray reactances. Placement of component parts, while not critical, must bo such that lead lengths greater than about $1 / 2$ inch (except in the dc metering circuit) are avoided. Shorter leads are desirable, especially for $\mathrm{R1}$, the "standard" resistor for the bridge. In the unit photographed, the body of this resistor just fits between the terminals of Cl and J2 where it is connected. C1 should be enclosed in a shicld and connections made with leads passing through holes drilled through the shicld wall. The frames of both variable capacitors, C1 and C2, must be insulated from the chassis, with insulated couplings used on the shafts. The capacitor specified for $\mathbf{C 1}$ has provisions for insulated mounting. C2 is mounted on 1 -inch ceramic insulating pillars.

Band-switching arrangements for L1 complicate the construction and contribute to stray reactances in the bridge circuit For these reasons plug-in coils are used at L1, one coil for each band over which the instrument is used. The coils must be adjustable, to permit initial balancing of the bridge with C 2 set at the zero-reactance calibration point. Coil data are given in Table I. Millen 45004 coil forms with the coils supported inside provide a convenient method of constructing thesc slugtuned plug-in coils. A phenolic washer cut to the proper diameter is epoxied to the top or open end of each form, giving a rigid support for mounting of the coil by its bushing. Smull knobs for $1 / 8$-inch shafts, threaded with a No. 6-32 tap, are scrowed onto the coil slug-tuning screws to permit ease of adjustment without a tuning tool. Knobs with setscrews should be used to prevent slipping. A ceramic socket to mate with the pins of the coil form is used for 12 .

Calibration

The resistance dial of the bridge may be calibrated by using a number of $1 / 2$ - or 1 -watt 5 -percent-tolerance composition resistors of different values in the 5 - to 400 -ohm range as loads. For this calibration, the appropriate frequency coil

Fig. 1 - An RCL bridge for measuring unknown values of complex impedances. A plug-in coil is used for each frequency band. The bridge operates at an of input level of about 5 volts; pickup-link assemblies for use with a grid-dip oscillator are shown. Gefore measurements are made, the bridga must be balanced with a nonreactive load connected at its measurement terminals. This load consists of a resistor mounted inside a coaxial plug. shown in front of the instrument at the left. The aluminum box measures $41 / 4 \times 103 / 4 \times 61 / 8$ inches and is fitted with a carrying handle on the left end and self-sticking rubber feet on the right end and bottom. Dials are Millen No. 10009 with skirts reversed and calibrations added.

Fig. 2 - Schematic diagram of the impedance bridge. Capacitance is in microfarads; resistances are in ohms. Resistors are $1 / 2-\mathrm{W} 10$-percent talerance unless otherwise indicased.
C1 - Differential capacitor, 11 -161 pF per section (Millen 28801).
C2 - 17.5-327 pF with straight-line capacitance characteristic (Hammarlund RMC-325-S).
CR1, CR2 - Germanium diode, high back resistance.
11. J3-Coaxial connectors, chassis type.

J 2 - To mate plug of L1, ceramic.
14 - Phone jack, disconnecting type.
L1 - See text and Table I.
M1 - 0-50 μ A dc (Simpson Model 1223 Bold-Vue, Cat. No. 15560 or equiv.).
R1 - For text reference.
RFC1 - Subminiature if choke (Miller 70F103Al or equiv.l.

			LE 17-I
			Impedance Bridge
Band	Nominal Inductance Range, $\mu \mathrm{H}$	Frequency Coverage, MHz	Coil Type or Data
80	6.5-13.8	3.2-4.8	28 turns No. 30 enam. wire close-wound on Miller form 42 A 000 CBI .
40	2.0-4.4	5.8-8.5	Miller 42A336CBI or 16 turns No. 22 enam, wire close-wound on Miller form 42A000CB1.
20	0.6-1.1	11.5-16.6	8 turns No. 18 enam, wire close-wound on Miller form 42A000CBI.
15	0.3-0.48	18.5-23.5	$41 / 2$ turns No. 18 enam. wire close-wound on Miller form 42A000CBI.
10	0.18-0.28	25.8-32.0	3 turns No. 16 or 18 enam. or tinned bus wire spaced over $1 / 4$-incl winding length on Miller form 42 A 000 CBI .

must be inserted at J 2 and its inductance adjusted for the best null reading on the meter when C 2 is set with its plates half meshed. For each test resistor, Cl is then adjusted for a null reading. Alternate adjustment of Ll and Cl should be made for a complete null. The leads between the test resistor and J3 should be as short as possible, and the calibration preferably should be done in the $3.5-\mathrm{MHz}$ band where stray inductance and capacitance will have the least effect.

If the constructional layout of the bridge closcly follows that shown in the photograplis, the calibration scale of Fig. 4 may be used for the reactance dial. This calibration was obtained by connecting various reactances, measured on a laboratory bridge, in series with a 47 -ohm $1-W$ resistor connected at J3. The scale is applied so that maximum capacitive reactance is indicated with C2 fully meshed. If it is desired to obtain an individual calibration for C 2 , known values of inductance and capacitance may be used in series with a fixed resistor of the same approximate value as R1. For this calibration it is very important to keep the leads to the test components as short as possible, and calibration should be performed in the $3.5-\mathrm{MHz}$ range to minimize the effects of stray reactances. Begin the calibration by setting C 2 at half mesh, marking this point as 0 ohms reactance.

With a purely resistive load connected at $J 3$, adjust L1 and C1 for the best nul! on M1. From this point on during calibration, do not adjust L 1 except to rebalance the bridge for a new calibration frequency. The ohmic value of the known reactance for the frequency of calibration is multiplied by the frequency in MHz to obtain the calibration value for the dial.

UFing the Impedance Bridge

This instrument is a low-input-power device, and is nol of the type to be excited from a transmitter or left in the antenna line during station operation. Sufficient sensitivity for all measurements results when a $5-\mathrm{V}$ rms rf signal is applied at J1. This amount of voltage can be delivered by most grid-dip oscillators. In no case should the power applied to J exceed 1 watt or calibration inaccuracy may zesult from a permanent change in the value of R 1 . The input impedance of the bridge at Jl is low, in the order of 50 to 100 ohms, so it is convenient to excite the bridge through a length of 52 - or 75 -ohm line such as RG-58/U or RG-59/U. If a grid-dip oscillator is used, a link coupling arrangement to the oscillator coil may be used. Fig. 1 shows two pick-up link assemblies. The larger coil, 10 turns of $11 / 4$-inchdia stock with turns spaced at 8 tums per inch, is used for the $80-, 40$ and 20 -meter bands. The smaller coil, 5 turns of 1 -inch-dia stock with turns spaced at 4 turns per inch, is used for the 15 -and 10 -meter bands. Coupling to the oscillator should be as light as possible, while obtaining sufficient

Fig. 3 - All components except the meter are mounted on the top of the box. C1 is visible inside the shiald at the left, with C2 at the right and J2 mounted between them. J1 is hidden beneath C1 in this view; a part of J3 may be seen in the lower right corner of the box. Components for the de metering circuit are mounted on a tie-point strip which is affixed to the shield wall for C 1 ; all other components are interconnected with very short leads. The 4700 -ohm input resistor is connected across J1.

Fig. 4 - Calibration scale for the reactance dial associated with C 2 . See text.
sensitivity, to prevent severe "pulling" of the oscillator frequency.

Before measurements are made, it is necessary to balance the bridge. Set the reactance dial at zero and adjust Ll and Cl for a null with a nonreactive load connected at J3. The bridge must be rebalanced after any appreciable change is made in the measurement frequency. A 51 -ohm $1-W$ resistor mounted imside a PL-259 plug, as shown in Fig. 17-24, makes a load which is essentially nonreactive. After the bridge is balanced, connect the unknown load to 13, and alternately adjust $\mathbf{C l}$ and C2 for the best null.

The calibration of the reactance dial is shown in Fig. 4. The measurement range for capacitive loads may be extended by "zeroing" the reactance dial at some value other than 0 . For example, if the bridge is intially balanced with the reactance dial

set at 500 in the X_{L} range, the 0 dial indication is now equivalent to an X_{C} reading of 500 , and the total range of measurement for $X_{\mathbf{C}}$ has been extended to 1000 .

A LOW-POWER RF WATTMETER

The wattmeter shows in Fig. 1 can be used with transmitters having power outputs from 1 - to 25 -watts within the frequency range of 1.8 to 30 MHz . For complete details, see QST for June, 1973. A bridge circuit based on a version of the one shown in Fig. 17-16C is used to measure the forward and reflected power on a transmission line.

The rf watimeter.

Fig. 1 - Schematic diagram of the wattmetar. C1. C2 - 0.5- to $5-\mathrm{pF}$ trimmer.
CR1. CR2 - 1N34A or equivalent.
M1 $-50-\mu$ A panel meter.
R1 - Linear-raper, 1/4 or 1/2 watt, 25,000 ohm. R2, R3 - 33-ohm, 1/2-W composition resistor (matched pair recommended).
RFCI - 1 mH rf choke.
S1 - Spditoggie.
T1 - 60 turns No. 28 enam. wire, close wound on Amidon T-68-2 toroid core (secondary). Primary is 2 turns of small-diameter hookup wire over T1 secondary.

It will be necessary to have a nonreactive 50 -ohen dummy load for initial adjustment of the power meter. Connect the dummy load to one port of the instrument and apply ff power to the remaining port. SI should now be thrown back and forth to determine which position gives the highest meter reading. This will be the FORWARD position. Adjust the sensitivity control for fultscale reading of the meter. Now, move the switch to the opposite (RELFECTED) position and adjust the trimmer nearest the transmitter input port for a null in the meter reading. The needle should drop to zero. It is recommended that these adjustments be made in the 10 - or 15 -meter band. Next, reverse the transmitter and load cables and repeat the nulling procedure while adjusting the trimmer on the opposite side of the pc board. Repeat these steps until a perfect null is obtained in both directions. The switch and the coax connectors can now be labeled, TRANSMITTER, LOAD, FORWARD, and REFLECTED, as appropriate.

STANDARD FREQUENCIES AND TIME SIGNALS

The National Bureau of Standards maintains two radio tran3mitting stations, WWV at Ft . Collins, Co., and WWVH near Kekaha, Kauai (Hawaii), for broadcasting standard radio frequencies of high accuracy. WWV broadcasts are on 2.5, $5,10,15,20$, and 25 MHz , and those from WWVH are on $2.5,5,10,15$, and 20 MHz . The broadcasts of both stations are continuous, night and day. Standard audio irequencies of 440,500 , and 600 Hz on each radio-carrier frequency by WWV and WWVH. The duration of each tone is approximately 45 seconds. A $600-\mathrm{Hz}$ tone is broadcast during odd minutes by WWV, and during even minutes by WWVH. A $500-\mathrm{Hz}$ tone is broadcast during alternate minutes unless voice announcements or silent periods are scheduled. A $440-\mathrm{Hz}$ tonc is broadcast beginring one minute after the hour by WWVH and two minutes after the hour by WWV. The $440-\mathrm{Hz}$ tone period is omitted during the first hour of the UT day.

Transmitted frequencies from the two stations are accurate to ± 2 parts in 10^{11}. Atomic frequency standards are used to maintain this accuracy.

Voice announcements of the timc, in English, are given every minute. WWV utilizes a male voice, and WWVH features a female voice to distinguish between the two stations. WWV time and frequency broaicasts can be heard by telephone also. The number to call is (303) 499-7111, Boulder, CO.

All official announcements are made by voice. Time announcements are in GMT. One-second markers are transmitted throughout all programs except that the 29 th and 59th markers of each minute are onitted. Detailed information on
hourly broadcast schedules is given in the accompanying format chart. Complete information on the services can be found in NBS Special Publication 236, NBS Frequency and Time Broadcast Services, available for 25 cents from the Superintendent of Documents, U. S. Government Printing Office, Washington, D.C. 20402.

Geophysical Alerts

"Geoalerts" are broadcast in voice during the 19th minute of each hour from WWV and during the 46th minute of each hour from WWVH. The messages are changed each day at 0400 UT with provisions to schedule immediate alerts of outstanding occuring events. Geoalerts tell of geophysical events affecting radio propagation, stratospheric warming, etc.

Propagation Forecasts

Voice broadcasts of radio propagation conditions are given during part of every 15 th minute of each hour from WWV. The announcements deal with short-term forecasts and refer to propagation along paths in the North Atlantic area, such as Washington, D.C. to London, or New York to Berlin.

CHU

CHU, the Canadian time-signal station, transmits on $3330.0,7335.0$ and $14,670.0 \mathrm{kHz}$. Voice announcements of the minute are made each minute; the 29 th-second tick is omitted. Voice announcements are made in English and French.

A Heterodyne Deviation Meter

A HETERODYNE DEVIATION METER

The instrament described here can be used to check the audio deviation of an fm transmitter, or to determine how far off frequency the transmitter carrier may be. It can also be used as a signal source to aid in setting a receiver on frequency, if a crystal of known accuracy is plugged into the oscillator.

The Circuit

As shown in Fig. 17-57 a transistor oscillator is used to feed energy to a mixer diode, CR1. A small pickup antenna is connected to the diode also, thereby coupling a signal from a transmitter to the mixer. The output from the diode, in the audio range, is amplified by U1, a 2747 operational amplifier. The 2747 amplifies and clips the audio, providing a square wave of nearly constant amplitude at the output. This square wave is applied to a rectifier circuit through variable coupling capacitors and a selector switch. A meter is connected to the rectificr circuit to read the average current. Since the amplitude of the input is constant, a change in frequency will produce a change of average current. Three ranges are selected by SI, with individual trimmers being placed in the circuit for calibration.

Fig. 17-56 - The deviation meter is constructed in a Calectro aluminum box. A four-position switch is at the lower right. The crystal plugs in on the left, with the frequency adjusting trimmer just below. A short whip or pickup wire can be plugged into the phono connector that is mounted on the back wall of the box.

Construction

An aluminum box is used for the enclosure, $6-1 / 4 \times 3-1 / 2 \times 2$ inches. A meter switch, variable capacitor, and crystal socket are all mounted on the top panel. A small pc board is fastened to the

Fig. 17-57 - Circuit of the deviation meter. CR2, CR3-Silicon diode, 1 N914 or equiv. Connections shown are for a 2747 dual op amp. A 741 may be substituted with appropriate changes in pin numbers.
C1 - 360 to 1000 pF mica trimmer (J. W. Miller 160.A or equiv.l.

C2, C3-3 to 30 pF mica trimmer (J. W. Miller 86 MA 2 or equiv.).
C4 - 50 pF miniature air variable (Hammarlund MAPC 50 or equiv.).
CR1 - Germanium diode, 1N34, 1N58, or 1N82 suitable.

J1 - Coax connector, BNC or phono type suitable. M1 - Microammeter, 0 to 1000 HA (Simpson Model 1212 Wide-Vue or equiv.).
Q1 - Motorola transistor.
R1 - 10,000-ohm miniature control, pe mount.
S1 - 2-pole, 4-position rotary switch, nonshorting.
U1 - Dual operational amplifier IC. Type 2747. one half not used,
Y1 - Crystal to produce harmonic on desired transmitter or receiver frequency. Fundamental range 6 to 20 MHz .
meter terminals as a convenient support. This board contains the IC and associated circuit components, as well as the rectifier diodes.

The oscillator is constructed on a separate pc board which mounts behind the crystal socket and variable capacitor. Metal spacers and 4-40 screws and nuts are used to fasten the oscillator board in place. A shield of pc board is placed between the oscillator and the amplifier to provide isolation. Power for the instrument is fumished by a 9 -volt transistor radio battery that is held by a clip inside the box.

Testing and Use.

Before calibrating the meter, the dc balance should be adjusted. A voltmeter should be connected to the output of U1, (pin 12) and R1 adjusted until the potential at this pin in one half of the supply voltage.

A low-level audio signal can be used to test the amplifier and meter circuit. As little as 10 mV , applied to pin 1, will produce a square wave at the output of the amplifier. Three ranges are provided in this meter; $0-1000 \mathrm{~Hz}, 0-10 \mathrm{kHz}$, and $0-20$ kHz . Each position can be calibrated by adjustment of the associated trimmer capacitor. The amount of capacitance needed may vary with different diodes, so fixed ceramic capacitors may be placed in parallel with the trimmers to bring the adjustment within range. As the frequency of the input to U1 is varied, the meter reading should correspond to that frequency over most of its range. On the upper frequency range, $0-20 \mathrm{kHz}$, a multiplication factor must be applied to the reading on the meter.

In use, a short whip or piece of wire is connected to J , and the meter placed near a transmitter. A crystal that will produce a harmonic on the correct frequency is plugged into the socket. The selector switch should be in the first (0) - 1000 Hz) position. When the transmitter is turned on, the meter will indicate the difference in frequency between the transmitter and the har-

Fig. 17-58 - The dual op amp is located just below the center. Meter terminals are used as a conveniant support for the amplifier pc board. The oscillator board is at the right, held in place by means of metal spacers.
monic from the oscillator. The trimmer, C 4 , should be adjusted for a minimum reading. Any hum, noise, or power-supply whine will cause a residual reading that could mask true zero beat. Modulation can be applied to the transmitter and the deviation control adjusted for the amount desired as indicated on the meter. Note that there is a difference between the indications obtained from a sine wave and those from voice. Readings will be lower with voice, the amount being dependent on the meter that is used and upon the individual voice.

Several transmitters can be netted to a system by setting the crystal in the device to the correct frequency at first, then adjust the frequency of each transmitter for an indication of zero beat.

Since there is some energy from the oscillator present at the input, 31 , the same procedure can be used to align receivers to the correct frequency. When the deviation meter is acting as a signal source for checking either receivers or transmitters, the crystal should be checked for frequency drift several times during the test.

Construction Practices and Data Tables

TOOLS AND MATERIALS

While an easier, and perhaps a better, job car be done with a greater variety of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing panels and metal chassis for assembly and wiring. It is an excellent idea for the amateur who does constructional work to add to his supply of tools from time to time as funances permit.

RECOMMENDED TOOLS

Long-nose pliers, 6-inch and 4-inch
Diagonal cutters, 6 -inch and 4 -inch
Combination pliers, 6 -inch
Screwdriver, 6- to 7-inch, 1/4-inch blade
Screwdriver, 4-to 5 -inch, $1 / 8$-inch blade
Phillips screwdriver, 6- to 7-inch
Phillips screwdriver, 3- to 4-inch
Longshank screwdriver with holding clip on blade
Scratch awi or scriber for marking metal
Combination square, 12 -inch, for layout work
Hand drill, $1 / 4$-inch chuck or larger
Soldering pencil, 30-watt, $1 / 8$-inch tip
Soldering iron, 200-watt, $5 / 8$-inch tip
Hacksaw and 12 -inch blades
Hand nibbling tool, for chassis-hole cutting
Hammer, ball-peen, 1 -lb head
Heavy-duty jack knife
File set, flat, round, half-round, and triangular. Large and miniature types recommended
High-speed drill bits, No. 60 through 3/8inch diameter
Set of "Spintite" socket wrenches for hex nuts
Crescent wrench, 6-and 10 -inch
Machine-screw taps, 4-40 through $10-32$ thread
Sacket punches, $1 / 2^{\prime \prime}, 5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, 11 / 8^{\prime \prime}$, $11 / 4^{\prime \prime}$, and $11 / 2^{\prime \prime}$
Tapered reamer, T-handle, $1 / 2$-inch maxi mum pitch
Bench vise, 4 -inch jaws or larger
Medium-weight machine oil
Tin shears, 10 -inch size
Motor-driven emery wheel for grinding
Solder, rosin core only
Contact cleaner, liquid or spray can
Duco cement or equivalent
Electrical tape, vinyl plastic

Radio-supply houses, mail-order retail stores and most hardware stores carry the various tools required when buidding or servicing amateur radio equipment. While power tools (electric drill or drill press, grinding wheel, etc.) are very useful and will save a lot of time, they are not essential.

Twist Drills

Twist drills are made of either high-speed steel or carbon steel. The latter type is more common and will usually be supplied uriess specific request is made for high-speed drills. The carbon drill will suffice for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes, those listed in bold-faced type in Table 18-I will be most commonly used in construction of amateur equipment. It is usually desirable to purchase several of each of the commonly used sizes rather than a standard set, most of which will be used infrequently if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance which may be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angies required for best cutting with least wear. Occasional ailstoning of the cutting edges of a drill or reamer will extend the time between grindings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scale which may have accumulated. An oxidized tip may be cleaned by dipping it in sal ammoniac while hot and then wiping it clean with a rag. If the tip becomes pitted it should be filed until smooth and bright, and then tinned irmmediately by dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materials will be required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative list follows:

Fig. 1 - The SCR motor-speed control is housed in a small cabinet.

Shect aluminum, solid and perforated, 16 or 18 gauge, for brackets and shielding. $1 / 2 \times 1 / 2$-inch aluminum angle stock.
1/ 4 -inch diameter round brass or aluminum rod for shaft extensions. Machine screws: Round-head and flat-head, with muts to fit. Most useful sizes: $4-40,6-32$ and $8-32$, in lengths from $1 / 4$ inch to $11 / 2$ inches. (Nickel-plated iron will be found satisfactory except in strong rf fields, where brass should be used.) Bakelite, lucite and polystyrene scraps. Soldering lugs, panel bearings, nubber grommets, terminal-lug wiring strips, varnished-cambric insulating tubing.
Shielded and unshielded wire.
Tinned bare wire, Nos. 22, 14 and 12.
Machine screws, nuts, washers, soldering luge, etc., are most reasonably purchased in quantities of a gross. Many of the radio-supply stores sell small quartities and assortments that come in handy.

TRIAC MOTOR-SPEED CONTROL

Most electric hand drills operate at a single high speed; however, from time to time, the need arises to utilize low or medium speeds. Low speeds are useful when drilling in tight spaces or on exposed surfaces where it is important that the drill bit doesn't slip, and when drilling bakelite, Plexiglas and similar materials. Mediun speeds are useful for drilling non-ferrous metals such as aluminum and brass. One way to accomplish these ends with a single-speed electric drill is to use a silicon bidirectional thyristor (Triac) speed control.

The circuit for the Triac speed control is shown in l'ig. I. This type of circuit provides some degree of regulation with varying loads.

The working parts of the motor-speed control. The triac is centered on its aluminum heat sink, with the terminals of the speed-control resistor protruding from underneath. The rf-hash-suppression filter and components in the gate-triggering circuit are mounted on a tie-point strip, being visible at the bottom of the enclosure as shown in this view. The triac is barely discernable at the right end of the fixed resistor. Terminals of the strip which are associated with the mounting feat are unused, and are bent down to prevent accidental shorts to other parts of the circuit.

Construction

Because of the small complement of parts, the Triac speed control can be constructed inside a very small container. The model described was built in a $2-3 / 4 \times 2-1 / 8 \times 1-5 / 8$-inch Minibox. Since the mounting stud and main body of the Triac are common with the anode, care should be used to mount the Triac clear from surrounding objects. In the unit shown, two soldering lugs were soldered together and the narrow ends connected to one side of the female outpul connector; the large ends were used as a fastening point for the Triac anode stud.

Operation

Although the circuit described is intended to be used to reduce the speed of electric hand drills that draw six amperes or less, it has many other applications. It can be used to regulate the temperature of a soldering iron, which is being used to wire a delicate circuit, or it may be used for dimming lamps or for controlling the cooking speed of a small hot platc. Note, however, if the circuit is used with a device drawing from three to six amperes for a continuous period of over ten minutes, it will be necessary to provide a heat sink (insulated from the chassis) for the Triac anode case.

CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building radio gear on a metal chassis is a relatively simple matter. Aluminum is to be preferred to steel, not only because it is a superior shielding material, but bccause it is much easier to work and provides good chassis contacts.

The placing of components on the chassis is shown quite clearly in the photographs in this Handbook. Aside from certain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can be saved by spending sufficient time in planning the job. When all details are worked out beforehand the actual construction is greatly simplified.

Cover the top of the chassis with a piece of wrapping paper, or, preferably, cross-section paper, folding the edges down over the sides of the chassis

Fig. 18-3 - Method of measuring the heights of capacitor shafts. If the square is adjustable, the end of the scale should be set flush with the face of the head.

TABLE 18-I

Numbered Drill Sizes			
			Drilled for
Num.	Diameter (Mils)	Will Clear Screw	Tapping from Steel or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	213.0	-	14-24
4	209.0	12-20	-
5	205.0	-	-
6	204.0	-	-
7	201.0	-	-
8	199.0	-	-
9	196.0	-	-
10	193.5	10-32	-
11	191.0	10-24	-
12	189.0	-	-
13	185.0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	169.5	8.32	-
19	166.0	-	12-20
20	161.0	-	-
21	159.0	-	10.32
22	157.0	-	-
23	154.0	-	-
24	152.0	-	-
25	149.5	-	10-24
26	147.0	-	-
27	144.0	\checkmark	-
28	140.0	6-32	-
29	136.0	-	8-32
30	128.5	-	
31	120.0	-	-
32	116.0	-	-
33	113.0	4-40	-
34	111.0	-	-
35	110.0	-	6-32
36	106.5	-	
37	104.0	-	-
38	101.5	-	-
39	099.5	3.48	-
40	098.0	-	-
41	096.0	-	-
42	093.5	-	4-40
43	089.0	2.56	-
44	086.0	-	-
45	082.0	-	3.48
46	081.0	-	-
47	078.5	-	-
48	076.0	-	-
49	073.0	-	2-56
50	070.0	-	-
51	067.0	-	-
52	063.5	-	-
53	059.5	-	-
54	055.0	-	-
*Use one size larger for tapping bakelite and phenolics.			

and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place capacitors and other parts with shafts extending through the panel first, and arrange them so that

Fig. 18-4 - To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of B, making it possible to start the hacksaw blade along the cutting line. A shows how a single-ended handle may be constructed for a hack saw blade.
the controls will form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch out for capacitors whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i-f transformers, etc., as well as holes for wiring leads. The small holes for socket-mounting screws are best located and center-punched, using the socket itself as a template, after the main center hole has been cut.

By means of the square, lines indicating accurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which require mounting underneath may be located and the mounting holes drilled, marking sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge of the chassis should be transferred to the panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the capacitors and any other parts with shafts extending to the panel, and measure accurately the height of the center of each shaft above the chassis, as illustrated in Fig. $18-3$. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted. Holes for terminals etc., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill stasts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$-inch in diameter should be started with a smaller drill and reamed out with the larger drill.

The check on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the circumference of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with a file. Taper reamers which fit into the carpenter's brace will make the job easier. A large rat-tail file clamped in the brace makes a very good reamer for holes up to the diameter of the file.

For socket holes and other large holes in an aluminum chassis, socket-hole punches should be used. They require first drilling a guide hole to pass the bolt that is turned to squeeze the punch through the chassis. The threads of the boit should be oiled occasionally.

Large holes in steel panels or chassis are best cut with an adjustable circle cutter. Occasional application of machine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the right diameter.

The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a $1 / 2$-inch hole inside each corner, as illustrated in Fig. 18-4, and using these holes for starting and turning the hack saw. The socket-hole punch and the square punches which are now available also may be of considerable assistance in cutting out large rectangular openings.

SEMICONDUCTOR HEAT SINKS

Homemade heat sinks can be fashioned from brass, copper or aluminum stock by employing ordinary workshop tools. The dimensions of the heat sink will depend upon the type of transistor used, and the amount of heat that must be conducted away from the body of the semiconductor.

Fig. 18-5 shows the order of progression for forming a large heat sink from aluminum or brass
(A)

(B)

(C)

(D)

Fig. 18-5 - Details for forming channel type heat sinks.
channels of nearequal height and depth. The width is lessened in parts (B) and (C) so that each channel will fit into the preceding one as shown in the completed model at (D). The three pieces are bolted together with \&-32 screws and nuts. Dimensions given are for illustrative purposes only.

Heat sinks for smaller transistors can be fabricated as shown in Fig. 18-7. Select a drill bit that is one size smaller than the diameter of the transistor case and form the heat sink from 1/16 inch thick brass, copper or aluminum stack as shown in steps (A), (B), and (C). Form the stock around the drill bit by compressing it in a vise (A). The completed heat sink is press-ifted over the body of the semiconductor as illustrated at (D). The larger the area of the heat sink, the greater will be the amount of heat conducted away from the transistor body. In some applications, the heat sinks shown in Fig. 18-7 may be two or three inches in height (power transistor stages).

Another technique for making heat sinks for TO-S type transistors (1) and larger models (1) is shown in Fig. 18-6. This style of heat sink will dissipate considerably more heat than will the type shown in Fig. 18-5. The main body of the sink is fashioned from a piece of $1 / 8$-inch thick aluminum angle bracket - available from most hardware stores. A hole is bored in thic angle stock to allow the transistor case to fit snugly into it. The

Fig. 18-6 - Layout and assambly details of another homemade heat sink. The completed assembly can be insulated from the main chassis of the transmitter by using insulating washers.
transistor is held in place by a small metal plate whose center hole is slighty smaller in diameter than the case of the transistor. Details are given in Fig. 18-6.

A thin coating of silicone grease, available from most electronics supply houses, can be applied between the case of the transistor and the part of the heat sink with which it comes in contact. The silicone grease will aid the transfer of heat from the transistor to the sink. This practice can be applied to all models shown here. In the example given in Fig. 18-5, the grease should be applied between the

Fig. 18-7 - Sreps used in constructing heat sinks for small transistors.

(C)

(B)

heat sink INSTALLED ON TRANSISTOR
(D)
three channels before they are bolted together, as well as between the transistor and the channel is contacts.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension, as well as electrical contact for safety, can be provided by means of a metal panel bearing made for the purpose. These can be obtained singly for use with existing shafts, or they can be bought with a captive extension shaft included. In either case the panel bearing gives a "solid" feel to the control.

The use of fiber washers between ceramic insulation and metal brackets, screws or nuts wiil prevent the ceramic parts from breaking.

STANDARD METAL GAUGES			
Gauge No.	American or $B \& S^{1}$	U.S. Standard ${ }^{2}$	Bimingham or Srubs ${ }^{3}$
1	. 2893	. 28125	. 300
2	. 2576	. 265625	. 284
3	. 2294	. 25	. 259
4	. 2043	. 234375	. 238
5	. 1819	. 21875	. 220
6	. 1620	. 203125	. 203
7	.1443	. 1875	. 180
8	. 1285	. 171875	. 165
9	. 1144	. 15625	. 148
10	. 1019	. 140625	. 134
11	. 09074	. 125	. 120
12	. 08081	. 109375	. 109
13	. 07196	. 09375	. 095
14	. 06408	. 078125	. 083
15	. 05707	. 0703125	. 072
16	. 05082	. 0625	. 065
17	. 04526	. 05625	. 058
18	. 04030	. 05	. 049
19	. 03589	. 04375	. 042
20	. 03196	. 0375	. 035
21	. 02846	. 034375	. 032
22	. 02535	. 03125	. 028
23	. 02257	. 028125	. 025
24	. 02010	. 025	. 022
25	. 01790	. 021875	. 020
26	. 01594	. 01875	. 018
27	. 01420	. 0171875	. 016
28	. 01264	. 015625	. 014
29	. 01126	. 0140625	. 013
30	. 01003	. 0125	. 012
31	. 008928	. 0109375	. 010
32	. 007950	. 01015625	. 009
33	. 007080	. 009375	. 008
34	. 006350	. 00859375	. 007
35	. 005615	. 0078125	. 005
36	. 005000	. 00703125	. 004
37	. 004453	. 006640626
38	. 003965	. 00625	
39	. 003531	
40	. 003145	
1 Used for aluminum, copper, brass and nonferrous alloy sheets. wire and rods. 2 Used for iron, steel, nickel and ferrous alloy sheets, wire and rods. 3 Used for seanless tubes; also by some mar ufacturers for copper and brass.			

Cutting and Bending Sheet Metal

If a shect of metal is too large to be cut conveniently with a hack saw, it may be marked with scratches as deep as possible along the line of the cut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise, will make the job easier. "C" clamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet. Bends may be made similarly.

Finishing Aluminum

Aluminum chassis, panels and parts may be given a sheen finish by treating them in a caustic bath. An enamelled or plastic container, such as a dishpan or infani's bathtub, should be used for the solution. Dissolve ordinary houschold lye in cold water in a proportion of $1 / 4$ to $1 / 2$ can of lye per gallon of water. The stronger solution will do the job more rapidly. Stir the solution with a stick of wood until the lye crystals are completely dissolved. Be very careful to avoid any skin contact with the solution. It is also harmful to clothing. Sufficient solution should be prepared to cover the piece completely. When the aluminum is immersed, a very pronounced bubbling takes place and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be sufficient, depending upon the strength of the solution and the desired surface.

Remove the aluminum from the solution with sticks and rinse thoroughly in cold water while swabbing with a rag to remove the black deposit. When dry, finish by spraying on a light coat of clear lacquer.

Soldering

The secret of good soldering is to use the right amount of heat. Too little heat will produce a "cold-soldered joint"; too much may injure a component. The iron and the solder should be applied simultaneously to the joint. Keep the iron clear by brushing the hot tip witl a paper towel. Always use rosin-core solder, never acid-core. Solders have different melting points, depending upon the ratio of tin to lead. A 50-50 solder melts at 425 degrees \mathfrak{F}, while $60-40$ melts at 371 degrees F. When it is desirable to protect from excessive heat the components being soldered, the $60-40$ solder is preferable to the $50-50$. (A less-common solder, 63-37, melts at 361 degrecs P.)

When soldering transistors, crystal diodes or small resistors, the lead should be gripped with a pair of pliers up close to the unit so that the heat will be conducted away. Overheating of a transistor or diode while soldering can causc permanent damage. Also, mechanical stress will have a similar
effect, so that a small unit should be mounted so that there is no appreciable mechanical strain on the leads.

Trouble is sometimes experienced in soldering to the pins of coil forms or male cable plugs. It helps if the pins are first cleaned on the inside with a suitable twist drill and then tinned by flowing rosin-core solder into them. Immediately clear the surplus solder from each hot pin by a whipping motion or by blowing through the pin from the inside of the form or plug. Before inserting the wire in the pin, file the nickel plate from the tip. After soldering, round the solder tip off with a file.

When soldering to the pins of polystyrene coil forms, hold the pin to be soldered with a pair of heavy pliers, to form a "heat sink" and insure that the pin does not heat enough in the coil form to loosen and become misaligned.

Wiring

The wire used in connecting amateur equipment should be sclected considering both the maximum current it will be called upon to handle and the voltage its insulation must stand without breakdown. Also, from the consideration to TVI, the power wiring of all transmitters should be done with wire that has a braided shielding cover. Receiver and audio circuits may also require the use of shielded wire at some points for stability, or the elimination of hum.

No. 20 stranded wire is commonly used for most receiver wiring (except for the high-frequency circuits) where the current docs not exceed 2 or 3 amperes. For higher-current heater circuits, No. 18 is available. Wire with cellulose acetate insulation is good for voltages up to about 500. For higher voltages, themoplastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hookup wire an easy job are available on the market.

When power leads have several branches in the chassis, it is convenient to use fiber-insulated multiple tie points as anchorages or junction points. Strips of this type are also useful as insulated supports for resistors, rf chokes and capacitors. High-voltage wiring should have exposed points held to a minimum; those which cannot be avoided should be made as inaccessible as possible to accidental contact or short-circuit.

Where shielded wire is called for and capacitance to ground is not a factor, Belden type 8885 shielded grid wire may be used. If capacitance must be minimized, it may be necessary to use a piece of car-radio low-capacitance lead-in wire, or coaxial cable.

For wiring high-frequency circuits, rigid wire is often used. Bare soft-drawn tinned wire, size 22 to 12 (dcpending on mechanical requirements) is suitable. Kinks can be removed by stretching a piece of 10 or 15 feet long and then custing into short lengths that can be handled conveniently. Rf wiring should be run directly from point to point with a minimurn of sharp bends and the wire kept well spaced from the chassis or other grounded metal surfaces. Where the wiring must pass through the chassis or a partition, a clearance hole should

Fig. 18-8 - Methods of lacing cables. The method shown at C is mare secure, but takes more time than the method of B. The latter is usually adequate for most amateur requirements.
be cut and lined with a rubber grommet. In case insulation becomes necessary, vamished cambric tubing (spaghetti) can be slipped over the wire.

In transmitters where the peak voltage does not texteed 2500 volts, the shiefled grid wire mentioned above should be satisfactory for power circuits. For higher voltages, Belden type 8656, Bimbach type 1820 , or shielded ignition cable can be used. In the case of filament circuits carrying heavy current, it may be necessary to use No. 10 or 12 bare or enameled wire, slipped through spaghetti, and then covered with copper braid pulled tightly over the spaghetti. The chapter on TVI shows the manner in which shielded wire shculd be applied. If the shielding is simply slid back over the insulation and solder flowed into the end of the braid, the braid usually will stay in place without the necessity for cutting it back ot binding it in place. The braid should be cleaned first so that solder will take with a minimum of heat.

Rf wiring in transmitters usually follows the method described above for receivers with due respect to the voltages involved.

Where power or control leads run together for more than a few inches, they will present a better appeatance when bound together in a singe cable. The correct technique is illustrated in Fig. 18-8; boih plastic and waxed-linen lacing cords are available. Plastic cable clamps are available to hold the laced cable.

To give a "commercial look" to the wiring of any unit, run any cabled leads along the edge of the chassis. If this isn't possible, the cabled leads should then run parallel to an edge of the chassis. Further, the generous use of tie points (mounted parallel to an edge of the chassis), for the support of one or both ends of a resistor or fixed capacitor,

83-58FCP

1. Strip cable - don't nick brald. dielectric or conducror. Slide teprule, then coupling ring on cable. Flare braid slightly by ratating conductor and dielectric in circular motion
2. Slide body on dielecteic. barb gaing under braid until flange is Bgainst outer jacket. Braid will fan out against bock flanga.

3. Slide nut over body. Grasp sable with hand and push ferrule over barb unpil braid is captured heiween ferruis and body flange. Squeeze crimp tip only of center consact with pliers: altematesolder tip.
4. Strip cable. don't nick braid dielectric of conductar. Tin ex posed braid and conductor. Slide coupling ring on cable.

5. Screw body on cable. Solder braid through solder holes. Solder conductor to center coniact.

6. Screw coupling ring on body.

83-1SP PLUG WITH ADAPTERS

1. Sirio jacket. Don't nick braid. Slide couplin'g ring and adapier on cable. Note - use $83-168$ adapter for RG-58/U and 83.185 for PG-59/U.

2. Fan braid slighily. fold back over adapter and trim to $3 / 8^{\prime \prime}$. Strip dielectric and tin exposed conductor. Don't nick conidtefor.

BNC CONNECTORS (STANDARD CLAMP)

4 Solder contact on conductap through solder hole. Contact should buti againsı dialectric Re . move excess solder from outside of contact. Avoid excess heal to prevent swallen diefectric which would intertere with connector body

BNC CONNECTORS (STANDARD CLAMP)

5 Push assombly Into body. Screw nut inlo body with wranch until light. Don 't rotate bodly on able to righten.

BNC CONNECTORS IIMPROVED CLAMPI

1. Follow 1, 2, 3 and 4 above excepi as noted Sirip cahle as shown. Stide gasket on cable with ghoot'e faciitg clomp. Slide clamp on cable wilh sharp edpe focting gusket. Clamp should cut gasket so seal properly.

2. Screw bady on adapter. Fallow 2 and 3 undar 83-1SP plug.

Fig. 18-9 - Cable stripping dimensions and assembly instructions for several popular coaxial cable connectors. This material courtesy of AMPHENOL ELECTRONIC COMPONENTS, RF Division, Bunker Ramo Corp.
will add to the appearance of the finished unit. In a similar manner, "dress" the small components so that they are parallel to the panel or sides of the chassis.

Winding Coils

Close-wound coils are readily wound on the specificd form by anchoring one end of a length of wire (in a vise or to a doorknob) and the other end to the coil form. Straighten any kinks in the wire and then pull to keep the wire under slight tension. Wind the coil to the required number of turns while walking toward the anchor, always maintaining a slight tension on the wire.

To space-wind the coil, wind the coil simultaneously with a suitable spacing medium (heavy thread, string or wire) in the manner described above. When the winding is complete, secure the end of the coil to the coil-form terminal and then carefully unwind the spacing material. If the coil is wound under suitable tension, the spacing material can be easily removed without disturbing the winding. Finish the space-wound coil by judicious applications of Duco cement, to hold the turns in place.

The "cold" end of a coil is the end at or close to chassis or ground potential. Coupling links should be wound on the cold end of a coil, to minimize capacitive coupling.

CIRCUIT-BOARD FABRICATION

Many modern-day builders prefer the neatness and miniaturization made possible by the use of ctched or printed circuit boards. There are additional benefits to be realized from the use of circuit boards: Low lead inductances, excellent physical stability of the components and interconnecting leads, and good repeatability of the basic layout of a given project. The latter attribute makes the use of circuit boards ideal for group projects.

Methods

Perhaps the least complicated approach to circuit-board fabrication is the usc of unclad perforated board into which a number of push-in terminals have been installed. The perforated board can be obtained with one of many hole patterns, dependent upon the needs of the builder. Perforated terminal boards are manufactured by such firms as Vector, Kepro, and Triad. Their products are available from the large mail-order houses.

Once the builder plots the layout of his circuit on paper, push-in terminals can be installed in the "perf" board to match the layout which was done on paper. The terminals serve as tie points and provide secure mounting-post anchors for the various components. Selected terminals can be wired logether to provide ground and B-plus lines. Although this technique is the most basic of the methods, it is entirely practical.

An approach to etched-circuit board assembly can be realized by cutting strips of flashing copper, hobby copper, or brass shim stock into the desired
shapes and lengths, then gluing them to a piece of unclad circuit board. Epoxy cement is useful for the latter. Altematively, the strips can be held in place by means of brass eyelets which have been installed with a hand eyelet tool. If standard unclad circuit board is not handy, linoleum or Formica sheeting can be made to serve as a base for the circuit board. If this technique is used, the metal strips should be soldered together at each point where they join, assuring good electrical contact.

Etched-circuit boards provide the most professional end result of the three systems described here. They are the most stable, physically and electrically, and can be easily repeated from a single template. Etched-circuits can be formed on copper-clad perforated board, or on unpunched copper-clad board. There is no advantage in using the perforated board as a base unless push-in terminals are to be used.

Planning and Layout

The constructor should first plan the physical layout of the circuit by sketching a pictorial diagram on paper, drawing it to scale. Once this has been done, the interconnecting leads can be inked in to represent the copper strips that will remain on the etched board. The Vector Company sells layout paper for this purpose. It is marked with the same patterns that are used on their perforated boards.

After the basic etched-circuit design has been completed the designer should go over the proposed layout several times to insure against errors. When the foregoing has been done, the pattern can be painted on the copper surface of the board to be etched. Etch-resistant solutions are available from commercial suppliers and can be selected from their catalogs. Some builders prefer to use India ink for this purpose. Perhaps the most readily-available material for use in ctch-resist applications is ordinary exterior enamel paint. The portions of the board to be retained are covered with a layer of paint, applied with an artist's brush, duplicating the pattem that was drawn on the layout paper. The job can be made a bit easier by tracing over the original layout with a ballpoint pen and carbon paper while the pattern is taped to the copper side of the unetched circuit board. The carbon paper is placed between the pattern and the circuit board. After the paint has been applied, it should be allowed to dry for at least 24 hours prior to the etching process. The Vector Company produces a rub-on transfer material that can also be used as etch-resist when laying out circuit-board patterns. Thin strips of ordinary masking tape, cut to size and firmly applied, serve nicely as etch-resist material too.

The Etching Process

Almost any strong acid bath will serve as an etchant, but the two chemical preparations recommended here are the safest to use. A bath can be prepared by mixing 1 part ammonium persulphate crystals with 2 parts clear water. A

Fig. 18-10 - A hamemade stand for processing etched-circuit boards. The heat lamp maintains the etchant-bath temperature between 90 and 115 degrees, F. and is mounted on an adjustable arm. The tray for the bath is raised and lowered at one end by the action of a motor-driven eccentric disk, providing the necessary agitation of the chemical solution. A darkroom thermometer monitors the temperature of the bath.
normal quantity of working solution for most amateur radio applications is composed of 1 cup of crystals and 2 cups of water. To this mixture add $1 / 4$ teaspoon of mercuric chloride crystals. The latter serves as an activator for the bath. Ready-made etchant kits which use these chemicals are available from Vector. A two-bag kit is sold as itcm 2594 and costs just over \$1. Complete kits which contain circuit boards, etchant powders, etch-resist transfers, fayout paper, and plastic etchant bags are also available from Vector at moderate prices.

Another chemical bath that works satisfactorily for copper ctcling is made up from one part ferric chloride crystals and 2 parts water. No activator is required with this bath. Ready-made solutions (one-pint and one-gallon sizes) are available through some mail-order houses at low cost. They are manufactured by Kepro Co. and carry a stock number of E-1PT and E-1G, respectiveiy. One pint costs less than a dollar.

Etchant solutions become exhausted after a certain amount of copper has becn processed, therefore it is wise to keep a quantity of the bath
on hand if frequent use is anticipated. With either chemical bath, the working solution should be maintained at a temperature between 90 and 115 degrees F. A heat lamp can be directed toward the bath during the etching period, its distance set to maintain the requred temperature. A darkroom thermometer is handy for monitoring the temperature of the bath.

While the circuit board is immersed in the solution, it should be agitated continuously to permit uniform reaction to the chemicals. This action will also speed up the etching process somewhat. Normally, the circuit board should be placed in the bath with the copper side facing down, toward the bottom of the tray. The tray should be non-metalic, preferably a Pyrex dish or a photographic darkroom tray.

The photograph, Fig. 18-10, shows a homemade etching stand made up from a heat lamp, some lumber, and an 8 rpm motor. An eccentric disk has been mounted on the motor shaft and butts against the bottom of the etchant tray. As the motor turns, the eccentric disk raises and lowers one end of the try, thus providing continuous agitation of the solution. The heat lamp is mounted on an adjustable, slotted wooden arm. Its height above the solution tray is adjusted to provide the desired bath temperature. Because the etching process takes between 15 minutes and one hour -dependent upon the strength and temperature of the bath - such an accessory is convenient.

After the etching pracess is completed, the board is removed from the tray and washed thoroughly with fresh, clear water. The etch-resist material can then be rubbed off by applying a few brisk strokes with medium-grade steel wool. WARNING: Always use rubber gloves when working with etchant powders and solutions. Should the acid bath come in contact with the body, immediately wash the affected area with clear water. Protect the eyes when using acid baths.

COMPONENT VALUES

Values of composition resistors and small capacitors (mica and ceramic) are specified throughout this Handbook in terms of "preferred values." In the preferred-number system, all values represent (approximately) a constant-percentage increase over the next lower value. The base of the system is the number 10 . Only two significant figures are used.
"Tolerance" means that a variation of plus or minus the percentage given is considered satisfactory. For example, the actual resistance of a " 4700 -ohm" 20 -percent resistor can lie anywhere between 3700 and 5600 ohms, approximately. The permissible variation in the same resistance value with 5 -percent tolerance would be in the range from 4500 to 4900 ohms, approximately.

In the component specifications in this Handbook, it is to be understood that when no tolerance is specified the largest tolerance available in that value will be satisfactory.

Vatues that do not fit into the preferrednumber system (such as $500,25,000$) easily
can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20 -percent resistor used in the example above. It would not. however, be usable if the tolerance were specified as 5 percent.

TABLE 18- II

Approximate Series-Resonance Frequencies of Disc Ceramic Bypass Capacitors

Capacirance	Freq. ${ }^{1}$	Freq. 2
$.01 \mu \mathrm{~F}$	13 MHz	15 MHz
.0047	18	22
.002	31	38
.001	46	55
.0005	65	80
.0001	135	165
1 Total lead length of 1 inch		
2 Total lead length of 1/2-inch		

COLOR CODES

Standardized color codes are used to mark values on small components such as composition resistors and mica capacitors, and to identify leads from transformers, etc. The resistor-capacitor number color code is given in Table 18-111.

Fixed Capacitoss

The methods of marking "postage-stamp" mica capacitors, molded paper capacitors and tubular ceramic capacitors are shown in Fig. 18-11.

Capacitors made to American War Standards or Joint Army-Navy specifications are marked with the 6-dot code shown at the top. Practically all surplus capacitors are in this category.

The 3 -dot EIA code is used for capacitors having a rating of 500 volts and ± 20 percent tolerance only; other ratings and tolerances are covered by the 6-dot EIA code.

[^34]
Ceramic Capacitors

Conventional markings for ceramic capacitors are shown in the lower drawing of Fig.18-11.The colors have the meanings indicated in Table 18-11I. In practice, dots may be used instead of the narrow bands indicated in Fig. 18-11.

Exemple: A ceramk capactior hax the following markiage: Broad band, violet: narrow beads of dots. green, brown, black. grecn. The signiflcant חhares ane 3, I (31) and the decimal mulliptice is I. so tice capecitance is 5 I pl: The semperature cocfficient is - 150 paits per mallion pCt degrec (.. as given by the broad band. the caparitance toteranter is ± 5 ?

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the composition type) are color-coded as shown in Fig 18-12. Colored bands are used on resistors having axial leads; on radial-lead resistors the colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.

Examples: A resistor of the type shown in the lowar drawing of Fig 18-12 has the following color bands: A, rod; B. red; C, orange: D, no color. The significant figures are 2. 2 (22) and the decimal mulaplier is 1000 . The value of resistance is therefore 22,000 ohms and the tolerance is $\pm 20 \%$.

A reaistor of the type shown in the upper drawing has the following colors: body (A), blue; end (B , gray; dot, red; end (D), gold. The algnificent figures ase 6, 月 (68) and the decimal multiplier is 100 , so the resiatance is 6800 obms. The tolerance is $\pm 5 \%$.

Fig. 18-11 - Color coding of fixed mics, molded paper and tubular ceramic capacitors. The color code for mica and molded papar capacitors is given in Table 18-1II. Table 18-1V gives the color code for tubular ceramic capacitors.

TABLE 18-III				
$\text { Color }{ }^{\text {Sig }}$	Significant Figure	Dectmal Multipiler	Tolerance (\%)	Voltage Rating"
Black	0	1	-	-
Brown	1	10	$1 *$	100
Red	2	100	2*	200
Orange	3	1,000	3*	300
Yellow	4	10,000	$4{ }^{\circ}$	400
Green	5	100,000	$5 *$	500
Blue	6	1.000,000	6^{*}	600
Violel	7	10,000,000	$7 *$	700
Gray	8	100,000,000	$8{ }^{\circ}$	800
White	9	1,000,000,000	09°	900
Gold	-	0.1	5	1000
Stiver	-	0.01	10	2000
No color	or -		20	500
* Applies to capacitors only.				

TABLE 18-IV

Color Code for Ceramic Capacitors
Capacitance Tolerance

Temp.

Color	Slgnificant Figure	Dec. imal Multipher	Mone shan 10 pF	Less than 10 pF	Temp. Coeff. ppm /deg.
Black.	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		-80
Orange	3	1000			-150
Yellow	4				-220
Green	5				-330
Blue	6		± 5	0.5	-470
Violet	7				-750
Oray	8	0.01		0.25	30
White	9	0.1	± 10	1.0	500

TABLE 18-V		
Capacitor Characteristic Code		
Color Sixth Dor	Temperature Coeffictent ppm/deg. C.	Capachance Drify
Black	± 1000	$\pm 5 \%+1 \mathrm{pF}$
Brown	± 500	$\pm 3 \%+1 \mathrm{pF}$
Red	± 200	土0.5\%
Orange	± 100	$\pm 0.3 \%$
Yellow	-20 to +100	$\pm 0.1 \%+0.1 \mathrm{pF}$
Green	0 to +70	$\pm 0.05 \%+0.1 \mathrm{pF}$

Fig. 18-12 - Color coding of fixed composition resistors. The color code is given in Table 18-III. The colored areas have the following significance: A - First significant figure of resistance in ohms. B - Second significant figure.
C - Decimal multiplier.
D - Resistance tolerance in percent. If no color is shown the tolerance is $\mathbf{t 2 0}$ percent.
E - Relative percent change in valua per 1000 hours of operation; Brown 1 percent; Red, 0.1 percent; Orange, . 01 percent; Yellovs, . 001 percent.

I-f Transformers

Bhue - plate lead.
Red - "B" + lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
NOTE: If the secondary of the i-f transformer is center-tapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

Audio Transformess

Blue - plate (finish) lead of primary.
Red - "B" + lead (this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Green - grid (flnish) lead to secondary.
Black - gind refum (this applies whether the secondary is plain or center-tapped).
Yellow - grid (start) lead on center-tapped secondaries. (Green may be used for this lead if polarity is not important.)
NOTE: These markings apply also to line-togrid and tube-to-line transformers.

Power Transfommers

1) Prinary Leads . Bluch If tapped:

Common Black
Tap. Black and Yellow Striped Finish Black and Red Srriped
2) High-Voltage Placc Winding Red Center-Tap Red and Yellow Striped
3) Rectifier Filament Winding Yellow Center-Tap Yellow and Blue Striped
4) Filament Winding No. 1 Green Center-Tap Green and Yellow Striped
5) Filament Winding No. 2 Brown Center-Tap Brown and Yellow Srriped
6) Filament Winding No. 3............... Slape Center-Tap.... . . Slate and Yellow Striped

[^35]| | TABLE 18-VI Cor Code for Hookup Wire |
| :---: | :---: |
| Wire Color | Type of Cincuir |
| Black | Grounds, grounded elements, and returns |
| Brown | Heaters or filaments, off ground |
| Red | Power supply B plus |
| Orange | Screen grids and Base 2 of transistors |
| Yellow | Cathodes and transistor emitters |
| Green | Control grids, diode piates, and Base 1 of transistors |
| Blue | Plates and transistor colloctors |
| Violet | Power supply, minus leads |
| Gray | Ac power line leads |
| White | Bias supply, B or C minus, agc |

Wires with tracers are coded in the same manner as solid-color wires, allowing additional circuit Identification over solid-color wiring. The body of the wire is white and the color band spirals around the wire lead. When more than one color band is used, the widest band represents the 1 st color.

(A)

$$
8.2 \mu \mathrm{H} \pm 10 \%
$$

(B)
$330 \mu \mathrm{H} \pm 5 \%$

Color	Figure	Multiplier	Tolerance
Black	0	1	
Brown	1	10	
Red	2	100	
Orange	3	1000	
Yellow	4		
Green	5		
Blue	6		
Violet	7		
Gray	8		
White	9		20%
None			10%
Silver			5%
Gold			

Multiplier is the factor by which the two color figures are multiplied to ohtain the inductance value of the choke coil.

TABLE 18-VII

Metric Multiplier Prefixes Multiples and submultiples of fundamental units (e.g, ampere, farad, gram, meter, watt)) may be indicated by the following prefixes.

Prefix
tera
giga
mega
kilo
hecto
deci
centi
milli
micro
nano
pico
Abbreviation
Multiplier
1012
109
108
$10 \begin{array}{r}6 \\ 103\end{array}$
102
10-1
10-2
10-3
10-6
10-9
10-12

Fig. 18-13 - Color coding for tubular encapsulated rf chokes. At A, an example of the coding for on $8.2-\mu \mathrm{H}$ choke is given. At B , the color bands for a $330-\mu \mathrm{H}$ inductor are illus trated.

PILOT-LAMP DATA					
Lamp	Bead	Base	Bulb	RA	NG
No.	Color	(Mintature)	Type	Volts	Amp.
40	Brown	Screw	T-3 1/4	6-8	0.15
40A ${ }^{1}$	Brown	Bayonet	T-3 1/4	6-8	0.15
41	White	Screw	T-31/4	2.5	0.5
42	Green	Screw	T-3 1/4	3.2	-
43	White	Bayonet	T-3 1/4	2.5	0.5
44	Blue	Bayonet	T-3 1/4	6-8	0.25
45	-	Bayonet	T-3 1/4	3.2	.
462	Blue	Screw	T-3 1/4	6-8	0.25
471	Brown	Bayonet	T-3 1/4	6-9	0.15
48	Pink	Screw	T-3 1/4	2.0	0.06
493	Pink	Bayonet	T-3 1/4	2.0	0.06
$49 \mathrm{~A}^{3}$	White	Bayonet	T-3 1/4	2.1	0.12
50	White	Screw	G-3 1/2	6-8	0.2
512	White	Bayonet	G-3 1/2	6-8	0.2
53	-	Bayonet	G-3 1/2	14.4	0.12
55	White	Bayonet	G-4 1/2	6-8	0.4
2925	White	Screw	T-31/4	2.9	0.17
$292 A^{5}$	White	Bayonet	T-31/4	2.9	0.17
1455	Brown	Screw	G-5	18.0	0.25
1455A	Brown	Bayonet	G-5	18.0	0.25
1487	-	Screw	T-3 1/4	12-16	0.20
1488	-	Bayonet	T-3 1/4	14	0.15
1813	-	Bayonet	T-3 1/4	14.4	0.10
1815	-	Bayonet	T-3 1/4	12-16	0.20
140 A and 47 are interchangeable. 2 Have frosted bulbs. 349 and 49A are interchangeable. 4 Replace with No. 48. 5 U8e in 2.6-volt sets where regular bulb burns out too frequendy. - White in G.E. and Sylvania; green in National Union, Ray theon and Tung-Sol. ** 0.35 in G.E. and Sylvania; 0.5 in National Union, Raytheon and TungSol.					

FINDING PARTS

No chapter on construction would be complete without information on where to buy parts. Amateurs, on a dwarfed scale, must function as purchasing agents in these perplexing times. A properly equipped buyer maintains as complete a catalog file as possible. Many of the companies listed in Chart \mid will provide free catalogs upon written request. Others may charge a small fee for catalogs. Mail ordering, especially for those distant
from metropolitan areas, is today's means to the desired end when collecting component parts for an amateur project. Prices are, to some extent, competitive. A wise buyer will study the catalogs and sefect his merchandise accordingly.

Delays in shipment can be lessened by avoiding the use of personal checks when ordering. Bank or postal money orders are preferred by most distributors. Personal checks often take a week to clear, thereby causing frustrating delays in the order reaching you.

FREQUENCY-SPECTRUM REFERENCE CHART

Non-amateur Channel Assignments and Other Frequency Data

$f(\mathrm{kHz})$

$15.734264 \pm .000044$ TV hor. scan freq.
$17.8(0.5)^{\text {a }}$ NAA Cutler, ME.
$18.6(0.5)^{\mathrm{a}}$ NPG/NLK Jim Creek, WA.
$21.4(0.5)^{\mathrm{a}}$ NSS Annapolis, MD.
24.0 (0.5)a NBA Balboa, Panama, C.Z.
26.1 (0.5$)^{\mathrm{a}} \mathrm{NPM}$, Hawaii.
$60.0(0.5)^{\mathrm{a}, \mathrm{b}}$ WWVB Ft. Collins. CO.
85 Receiver i-f (command set or "QSer"). 100.0 (0.5$)^{\text {a }}$ Loran C (regional).

179 WGU-20 CD Station, East Coast. Bc of WX and time ($\mathrm{a}-\mathrm{m}$).
285-325 Marine RDF band. Two cw tones 1020 Hz apart.
$285-405$ Aero RDF; aero WX (a-m) 325-405.
415 - 490 Marine (cw).
455 Recejver i -f/mech. filters (Collins).
$535-1605 \mathrm{Bc}(\mathrm{a}-\mathrm{m}), 107$ chans. every 10 kHz . from 540 (carrier).

$f(\mathrm{MHz})$

1.8 - 2.0 Loran A (pulse xsm).
2.5 (0.5) a.b WWV, Ft. Collins, CO. WWVH Hawais.
3.33 (50) a,b CHU Ottawa, Canada.
3.395 Transceiver i-f (Heath, Kenwood).
3.579545 ± 10^{-5} TV chrominance subcarricr.
$5.0(0.5)^{\mathrm{a}, \mathrm{b}}$ WWV, WWV11.
5.645 Receiver i-f (Drake).
$7.335(50)^{\mathrm{a}, \mathrm{b}} \mathrm{CHU}$.
9.0 Xtal filters (KVG).
$10.0(0.5)^{\mathrm{a}, \mathrm{b}}$ WWV, WWVH.
10.7 Recejver j-f (fm bc).
14.67 (50$)^{\mathrm{a} . \mathrm{b}} \mathrm{CHU}$.
15.0 (0.5$)^{\mathrm{a}, \mathrm{b}}$ WWV.
$20.0(0.5)^{\mathrm{a}, \mathrm{b}}$ WWV.
$25.0(0.5)^{\mathrm{a}, \mathrm{b}} \mathrm{WWV}$.
26.965-26.985 Citizens Band, chan. 1 - 3 ($10-\mathrm{kHz}$ sep.).
27.005-27.035 CB, than. 4-7.
27.055 CB , chan. 8.
27.075-27.085 CB, chan. $10-11$.
$27.105-27.135$ CB, chan. $12-15$.
27.155-27.185 CB, shan. 16-19.
27.205 - 27.225 CB. chan. $20-22$.
27.255 CB , chan. 23.
41.25 TV sound carrier (location in receiver i-f).
42.17 TV color subcarrier (location in receiver i-f).
45.75 TV picture carrier (location in receiver i-f).
$54-72$ TV chan. $2-4$. (Three $6-\mathrm{MHz}$ chans. starting from 54).
72, 75 RC chans.
76-88TV chan. 5-6.
88.1 - $107.9 \mathrm{Bc}(\mathrm{fm}) 100$ chan. from 88.1 (carrier) with $200-\mathrm{kHz}$ sep.
120-130 Aero; RDF WX.
137.5, 137.62 WX Sat. (A4) ref. WIAW Bul. for orb. data.
162.4 Marine WX bc (fm, regional).

174 - 216 TV chan. 7 - 13.
$470-890$ TV chan. $14-83$ (70 chan. $6-\mathrm{MHz}$ wife).

[^36]

$\begin{gathered} \text { Wire } \\ \text { Size } \\ \text { A.W.G. } \end{gathered}$	Diam. Mils 1	Circular Area Area	Turns per Lixear Inch ${ }^{\text {a }}$			Cont.duty current ${ }^{3}$ single wire in open air	Cont.duty current ${ }^{8}$ wires or cables in	Feet Pound, Bare	$\begin{aligned} & \text { Ohms } \\ & \text { perer } \\ & 100 \mathrm{tt.} \\ & 25^{\circ} \mathrm{c} . \end{aligned}$	Current Carrying Capacify $700^{a t}$ C.M. per Amp.	Diam. in	$\begin{aligned} & \text { Nearest } \\ & \text { British } \\ & \text { S.W.G. } \\ & \text { No. } \end{aligned}$
			Enamel	S.C.E.	D.C.C.		conduits or bundles					
		83690	二		-		-	3.947	. 1264	119.6	7.348	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	257.6 229.4	66370 52640	-		-			4.977	. 1593	94.8	6.544	3
4	204.3	52140 43700			-			${ }_{7}^{6.914}$. 22009	75.2 59.6	5.827 51189	4
5	181.9	33100						9.980	. 3195	47.3	4.621	7
6	162.0	26250			-			12.58	. 4028	37.5	4.115	8
8	144.3 128.5	20820 16510			7.1			15.87	. 5080	29.7	${ }_{3}^{3.665}$	
9	114.4	13090	8.6		7.8	73	46	${ }_{25}^{20.01}$. 68075	23.6 18.7	3.264 2.906	10
10	101.9	10380	9.6	9.1	8.9	55	33	31.82	1.018	14.8	${ }_{2}^{2.588}$	12
12	90.8	8234 6530	10.7 12.0	11.3	9.8 10.9	41		${ }^{40.12}$	1.264	11.8	2.305	13
13	72.0	5178	13.5	11.3	12.8	41	23	50.59 63.80	1.619 2.042	9.33 7.40	2.053 1.828	14
14	64.1	4107	15.0	14.0	13.8	32	17	80.44	2.575	5.87	1.628	16
15 16	57.1 50.8	3257 2583	16.8 18.9	17.3	14.7 16.4	22		101.4	3.247	4.65	1.450	17
17	45.3	2048	21.2	17.3	18.1	22	13	127.9 161.3	4.094 5.163	3.69 2.93	1.291 1.150	18 18
18	${ }^{40.3}$	1624	23.6	21.2	19.8	16	10	203.4	6.510	2.32	1.024	19
19	35.9 32.0	1288 1022	26.4		21.8	$\frac{11}{11}$		256.5	8.210	1.84	. 912	20
21	28.5	1810	${ }_{33.1}^{29.4}$	$\frac{25.8}{31}$	23.8 23.0	11	7.5	323.4 407.8	10.35 13.05	1.46 1.16	. 8173	${ }_{22} 2$
${ }_{23}^{22}$	25.3 22.6	642 510	37.0	31.3	30.0		5	514.2	16.46	. 918	. 644	23
24	22.1	404	41.3 46.3	$\overline{37.6}$	37.6 35.6		-	648.4	20.76	. 728	. 573	24
25	17.9	320	51.7	37.6	38.6			${ }^{810317}{ }^{817}$	26.17 33.00	. 5458	. 4511	25 26
26 27	15.9	254	58.0	46.1	41.8		二	1300	41.62	. 363	. 405	27
27 28	14.3 12.6	202 160	64.9 72.7	$\overline{54.6}$	45.0		-	1639	52.48	. 288	. 361	29 30
29	11.3	127	81.6	54.6	51.8			2067 2607	66.17 83.44	. 2181	. 2821	30 31
30	10.0	101	90.5	64.1	55.5			3287	105.2	. 144	. 255	33
31 32	8.9 8.0	80 63	101	$\overline{74.1}$	59.2 62.6			4145	132.7	. 114	. 227	34 36
33	7.1	s0	127	74.1	62.6 66.3			5227 6591	167.3 211.0	. 0972	. 180	36 37
34	6.3	40	143	86.2	70.0	-			266.0	. 057	.160	38
35	5.6	32	158	-03,	73.5			10480	335	. 045	. 143	38.39
36 37	5.0	25	175	103.1	77.0	-	-	13210	423	. 036	. 127	39.40
38	4.5	20 16	198	$1 \overline{16.3}$	80.3 83.6	-		16660 21010	533 673	. 0228	. 1101	41 42
39 40	3.5 3.1	12	248 248	116.3	83.6 86.6			21010 26500	673 848	. 0228	. 1090	42 43
40	3.1	10	282	131.6	89.7			33410	1070	. 014	. 080	44
${ }^{2}$ A mil is .001 inch. ${ }^{2}$ Figures given are approximate only; insulation thickness varies with manufacturer. ${ }^{8}$ Max. wire temp. of $212^{\circ} \mathrm{F}$ and max. ambient temp. of $135^{\circ} \mathrm{F}$. ${ }^{4} 700$ circu lar mils per ampere is a satisfactory design figure for small transformers, but values from 500 to 1000 cm . are commonly used.												
SEMICONDUCTOR DIODE COLOR CODE The "1N" prefix is omitted. A double-width band. which also identifies the cathode terminal end of the diode, is usually used as the first band. (An alternative method uses Diodes with three-digit numbers are coded with the sequence numbers in the first, equal band widths with the set clearly grouped toward the cathode end.) The code is second and third bands. Any suffix letter is indicated by a fourth band. read starting at the cathode end. Diodes with four-digit numbers are coded by four bands followed by a black band. Diodes having two-digit numbers are coded with a black band followed by second A suffix letter is indicated by a fifth band replacing the black band. and third bands. A suffix letter is indicated by a fourth band. The color code (numbers) is the same as the resistor-capacitor code. The suffix-letter code is A-brown, B-red, C-orange, D-yellow, E-green, and F-blue.												

Wave Propagation

Though great advances have been made in recent years in understanding the many modes of propagation of radio waves, variables affecting communication over appreciable distances are very complex, and not entirely predictable. Amateur attempes to schedule operating time and frequencies for optimum results may not always succeed, but familiarity with the nature of radio propagation can certainly reduce the margin of failure and add greatly to one's enjoyment of the pursuit of any kind of DX.

The sun, ultimate source of life and energy on earth, dominates all radio communication beyond the local range. Conditions vary with such obvious
sun-related earthly cycles as time of day and season of the year. Since these differ for appreciable changes in latitude and longitude, almost every communications circuit is unique in some respects. There are also short and longterm solar cycles that inlluence propagation in less obvious ways. Furthermore, the state of the sun at a given moment is critical to long-distance communication, so it is understandable that propagation forecasting is still a rather inexact science.

With every part of the radio spectrum open to our use differing in its response to solar phenomena, amateurs have been, and still are, in a position to contribute to advancement of the art, both by accident and by careful investigation.

SOLAR PHENOMENA

Man's inferest in the sun is older than recorded history. Sunspots were seen and discussed thousands of years ago, and they have been studied since Galileo observed them with the first telescope ever made. Records of sunspot observations translatable into modern terms go back nearly $\mathbf{3 0 0}$ years. Current observations are statistically "smoothed" to maintain a continuous record, in the form of the Zurich Sunspor Number, on which propagation predictions mentioned later are based.

A useful modern indication of overall solar activity is the solar flux index. Solar flux (noise) is measured on various frequencies in many places. A $2800-\mathrm{MHz}$ measurement made several times daily in Ottawa is transmitted hourly by WWV. Because it is essentially current information, directly related to the sunspot number (see Fig 19-1) and more immediately useful, it tends to displace the latter as a means of predicting propagation conditions.

SUNSPOT CYCLES

Even before their corrciation with radio propagation variations was well-known, the pcriodic rise and fall of sunspot numbers had been studied for many years. These cycles average roughly 11 years in length, but have been as short as 9 and as long as 13 years. The highs and lows of the cycles also vary greatly. Cycle 19 peaked in 1958 with a sunspot number of over 200. Cycle 20, of nearer average intensily, reached 120 in 1969. By contrast, one of the lowest, Cycle 14, peaked at only 60 in 1907.' Several cycle lows have not reached zero levels on

Fig. 19.1 - Relationship between smoothed mean Zurich sunspot number and the $2800-\mathrm{MHz}$ solar flux. Highest solar flux recorded in 1974, Oct. 12, was 145 , the equivalent of a sunspot number of 100. Lowest flux value in 1975 (early June) was 66, equating with a sunspot number very close to 2 ero.
the Zurich scale for any appreciable period, while others have had several months of little or no activity.

Sunspot cycles should not be thought of as having sine-wave shape. There can be isolated highs during the normally low years A remarkable example was a run of several days in October, 1974, only a few months from the approximate bottom of Cycle 20, when the solar flux reached 145, a level well above the highs of several cycles on record. Only 5 months later, several days of solar flux below 70 were recorded.

SOLAR RADIATION

Insofar as it affects most radio propagation, solar radiation is of two principal kinds: ultraviolet light and charged particles. The first travels at just under $300,000,000$ meters (186,000 miles) per

Fig. 19-2 - W1HDQ and WISL look for sunspots with a simple projection system. The baffle at the top end of the small telescope provides a shaded area for viewing the sun's image (light circle) on the projection surface. Sunspots large enough to affect radio propagation are easily seen with this viewing system.
second, as does all electromagnetic radiation, so UV effects on wave propagation develop simultancously with increases in observed solar noise, approximately 8 minutes after the actual solar event. Particle radiation moves more slowly, and by varying routes, so it may take up to 40 hours to affect radio propagation. Its principal effects are high absorption of radio energy and the production of auroras, both visual and the radio variety.

Variations in the level of solar radiation can be gradual, as with the passage of some sunspot groups and other long-lived activity centers across the solar disk, or sudden, as with solar flares. An important clew for anticipating variations in solar radiation levels and radio propagation changes resulting from them is the rotational period of the sun, approximately 27 days. Sudden events (flares) may be short-lived, but active areas capable of influencing radio propagation may recur at 4 -week intervals for 4 or 5 solar rotations. Evidence of the "27-day cycle" is most marked during years of low solar activity.

Information on the condition of the sun, as it affects radio propagation, can be obtained in several ways. Projection of the sun's image as in Fig. 19-2 is particularly useful in the fow years of the "11-year" cycle. At other times visible cvidence of solar activity may be more difficult to sort out. Enough definition for our purposes is possible with the simplest telescopes. Low-cost instruments, 10 to 30 -power, are adequate. A principal requirement is provision for mounting on a tripod having a pan-tilt head. ${ }^{2}$

Adjust the aiming to give a circular shadow of the scope body, then move the scope slowly until a bright spot appears on the projection surface. Put a baffle on the scope to enlarge the shaded area and adjust the focus to give a sharp-edged image of the solar disk. If there are any sunspots you will see them now. Draw a rough sketch of what you see, every time an observation is made, and keep it with your record of propagation observations.

Spots move across the image from left to right, as it is viewed with the sun at the observer's back. The line of movement is parallel to the solar equator. Not all activity capable of affecting propagation can be seen, but any spots seen have significance. Active areas may develop before spots are visible and may persist after spots associated with them are gonc, but once identified by date they are likely to recur about 27 days later, emphasizing the worth of detailed records.

Variations in solar noise may be observed by aiming the artenna at the rising or setting sun Sudden large increases may be heard regardless of the antenna position. Such bursts are often heard, but seldom recognized for what they are warnings of imminent changes in propagation.

Vhf or uhf arrays capable of movement in elevation as well as azimuth are useful for solar noise monitoring. With a good system, the "quiet sun" can be "heard" at a low level. ${ }^{3}$ Bursts that can be many dB higher indicate the start of a major event, such as a solar Пlare capable of producing an hf blackout and possibly vhf auroral propagation.

CHARACTERISTICS OF RADIO WAVES

All e lectromagnetic waves are moving fields of electric and magnetic force. Their lines of force are at right angles, and are mutually perpendicular to the direction of travel. They can have any position with respect to the earth. The plane containing the continuous lines of electric and magnetic force is called the wave fromt.

The medium in which electromagnetic waves travel has a marked influence on their speed of movement. In empty space the speed, as for light. is just under $300,000,000$ meters per second. It is sightly less in air, and it varies with temperature and humidity to a degree, depending on the frequency. It is much less in dielectrics, where the speed is inversely proportional to the square root of the dielectric constant of the material.

Waves cannot penetrate a good conductor to any extent because the electric lines of force are practically short-circuited. Radio waves travel
through dielectric materials with ease.

POLARIZATION

If the lines of force in the electric field are perpendicular to the surface of the earth the wave is said to be vertically polarized. If parallel with the earth, the polarization is said to be horizontal. It is possible to generate waves with rotating field lines. Known as circular polarization, this is useful in satellite communication, where polarization tends to be random. When the earth's surface is not available as a reference, polarization not of a rotating nature is described as linear or planc polarization, rather than vertical or horizontal, which become meaningless. Circular polarization is usable with plane-polarized antennas at the other end of the circuit, though with some small loss on most paths.

TYPES OF PROPAGATION

Depending on the means of propagation, radio waves can be classified as ionospheric, tropospheric, or graund waves. The ionospheric or sky wave is that main portion of the total radiation leaving the antenna at angles somewhat above the horizontal. Except for the reflecting qualities of the ionosphere, it would be lost in space. The tropospheric wave is that portion of the radiation
kept close to the carth's surface as the result of bending in the lower atmosphere. The ground wave is that portion of the radiation directly affected by the surface of the earth. It has two components, an earth-guided surface wave, and the space wave, the latter itself being the resultant of two components, direct and ground-reflected. The terms "tropospheric wave" and "ground wave" are often used interchangeably, though this is not strictly correct.

THE IONOSPHERE

Long-distance communication and much over shorter distances, on frequencies below 30 MHz , is the result of bending of the wave in the jonosphere, a region between about 60 and 200 miles above the earth's surface where free ions and electrons exist in sufficient quantity to affect the direction of wave travel. Without the ionosphere, DX as we know it would be impossible.
lonization of the upper atmosphere is attributed to ultraviolet radiation from the sun. The result is not a single region, but several layers of varying densities at various heights surrounding the earth. Each layer has a central region of relatively dense ionization that tapers off both above and below.

IONOSPHERIC LAYERS

The lowest useful region of the ionosphere is called the E layer. Its average height of maximum ionization is about 70 miles. The atmosphere here is still dense enough so that ions and electrons sct free by solar radiation do not have to travel far before they meet and recombine to form neutral particles, so the layer can maintain its ability to bend radio waves only when continuously in sunlight. Ionization is thus greatest around local noon, and it practically disappears after sundown.

In the daylight hours there is a still lower area called the D region where ionization is proportional to the height of the sun. Wave energy in the two lowest frequency amateur bands, 1.8 and 3.5 MHz , is almost completely absorbed by this layer. Only the highest angle radiation passes through it and is reflected back to earth by the E layer. Communication on these bands in daylight is thus limited to short distances, as the lower angle radiation needed for longer distances travels farther in the D region and is absorbed.

The region of ionization mainly responsible for long-distance communication is called the F layer. At its altitude, about 175 miles at night, the air is so thin that recombination takes place very slowly. Ionization decreases slowly after sundown, reaching a minimum just before sunrise. The obvious effect of this change is the early disappearance of long-distance signals on the highest frequency that was usable that day, followed by loss of communication on progressively lower frequencies during the night. In the daytime the F layer splits into two parts, F1 and F2, having heights of about 140 and 200 miles, respectively. They merge again at sunset.

Scattered patches of relatively dense ionization
develop seasonally at E-layer height. Such sporadic E is most prevalent in the equatorial regions, but it is common in the temperate latitudes in late spring and early summer, and to a lesser degree in early winter. Its effects become confused with those of other ionization on the lower amateur frequencies, but they stand out above 21 MHz , especially in the low-activity years of the solas cycle, when other forms of DX are not consistently available.

Duration of openings decreases and the length of skip increases with progressively higher frequencies. Skip distance is commonly a few hundred miles on 21 or 28 MHz , but multiple hop propagation can extend the range to 2500 miles or more. June and July are the peak months in the northern hemisphere. E_{8} propagation is most common in midmorning and early evening, but may extend almost around the clock at times. The highest frequency for E_{s} is not known, but the number of opportunities for using the mode drops off rapidly between the amateur 50 and $144-\mathrm{MHz}$ bands, whereas 28 and 50 MHz are quite similar.

The greater the intensity of ionization in a layer, the more the wave path is bent. The bending also depends on wavelength; the longer the wave the more its path is modified for a given degree of ionization. Thus, for a given level of solar radiation, ionospheric communication is available for a longer period of time on the lower-frequency amateur bands than on those near the upper limit of hf spectrum. The intensity and character of solar radiation are subject to many short-term and longterm variables, the former still predictable with only partial success.

ABSORPTION

In traveling through the ionosphere, a radio wave gives up some of its energy by setting the ionized particles in motion. When moving particles collide with others, this energy is lost. Such absorption is greater at lower frequencies. It also increases with the intensity of ionization, and with the density of the atmosphere. This leads to a propagation factor often not fully appreciated: signal levels and quality tend to be best when the operating frequency is near the maximum that is reflected back 10 earth at the sime.

VIRTUAL HEIGHT

An ionospheric layer is a region of considerable depth, but for practical purposes it is convenient to think of it as having finite height, from which a
simple reflection would give the same effects (observed from the ground) as resuit from the gradual bending that actually takes place. It is given several names, such as group height, equivalent height, and virtual height.

The virtual height of an ionospheric layer for various frequencies and vertical incidence is determined with a variable-frequency sounding device that directs pulses of energy vertically and measures the time required for the round-trip path shown at the left in Fig 19-3. As the frequency rises, a point is reached where no energy is returned vertically. This is known as the critical frequency, for the layer under consideration. A representation of a typical ionogram is shown in Fig. 19-4.4 In this sounding the virtual height for 3.5 to 4 MHz was 400 km . Because the ionogram is a graphical presentation of wave travel time, double-hop propagation appears as an $800-\mathrm{km}$ return for the same frequency. The critical frequency was just over 5 MHz on this occasion. Such a clear F-fayer ionogram is possible only under magnetically quiet conditions, and at night, when little or no E - and D-layer ionization is present.

EFFECTS OF THE EARTH'S MAGNETIC FIELD

The ionosphere has been discussed thus far in terms of simple bending, or refraction, a concept useful for some explanatory purposes. But an understanding of long-distance propagation must take the earth's magnctic field into account. Because of it, the ionosphere is a birefringent medium (doubly refracting) which breaks up planepolarized waves into what are known as the ordinary and extraordinary waves, $f_{0} F 2$ and $f_{\mathrm{x}} \mathrm{F} 2$
in the ionogram. This helps to explain the dispersal of plane polarization encountered in most ionospheric communication. ${ }^{5}$

Sudden marked increases in solar radiation, such as with solar flares, trigger instantaneous effects in the F, E, and D regions; slightly delayed effects, mainly in the polar areas; and geomagnetic effects, delayed up to 40 hours.

Onset of the D-region absorption is usually sudden, lasting a few minutes to several hours, leading to use of the term SID (sudden ionospheric disturbance). Shortwave fadeouts (SWFs) and SIDs exhibit wide variations in intensity, duration, and number of events, all tending to be greater in periods of high solar activity. Though their effects on radio propagation are of great importance, solar flares and associated disturbances are among the least predictable of solar-induced communications variables.

RADIATION ANGLE AND SKIP DISTANCE

The lower the angle above the horizon at which a wave leaves the antenna, the less refraction in the ionosphere or troposphere is required to bring it back, or to maintain useful signal levels in the case of tropospheric bending. This results in the emphasis on low radiation angles in the pursuit of DX , on the hf or vhi bands. It is rarely possible to radiate energy on a line tangent to the earth's surface, but even when this is done some bending is still required for communication over appreciable distances, because of earth curvature.

Some of the effects of radiation angle are illustrated in Fig. 19-3. The high-angle wave at the left is bent only slightly in the ionosphere, and so goes through it. The wave at the somewhat lower

Fig. 19-3 - Three types of ionospheric propagation. Sounder, left, measures virtual height and critical frequency of F_{2} layer. Transmitter T is shown radiating at three different angles. Highest passes through the ionosphere after slight refraction. Lower-angle wave is returned to earth by the E layer, if frequency is low enough, at a maximum distance of 2000 kM . The F-layer reflection returns at a maximum distance of about 4000 kM , depending on the radiation angle. It is shown traversing a second path (double hop) from R2 to R4, the latter beyond single-hop range. The lowest-angle wave reaches the maximum pracical single-hop distance at R3.

Fig. 19-4 $\quad F$-layer ionogram taken at night during magneticaliy quiet conditions. The traces show the breaking up into ordinary and extraordinary waves. Because it required twice the travel time, the double-hop return appears as having come from twice the height of the single-hop.
angle is just capable of being returned by the ionosphere. In daylight it might be returned via the E layer. Its area of return from the F layer, R 2 , is closer to the transmitting point, T, than is that of the lowest-angle wave. If R 2 is at the shortest distance where returned energy is usable, the area between R1 and the outer reaches of the ground wave, near the transmitter, is called the skip zone. The distance between R2 and T is called the skip distance. The distances to both R1 and R2 depend on the ionization density, the radiation angle at T , and the frequency in use. The maximum distance for single-hop propagation via the F layer is about 2500 miles (4000 kilometers). The maximum E-layer single hop is about 1250 miles (2000 kilometers).

The maximum usable frequency (muf) for F-layer communication is about 3 times the critical frequency for vertical return, as at the left in Fig. 19-3. For E-layer propagation it is about 5 times.

MULTIPLE-HOP PROPAGATION

On its return to earth, the ionospherically propagated wave can be reflected back upward near R1 or R2, travel again to the ionosphere, and be refracted back to earth. This process can be repeated several times under ideal propagation conditions, leading even to communication over distances well beyond halfway around the world. Ordinarily ionospheric absorption and groundreflection losses exact tolls in signal level and
quality, so multiple-hop propagation usually yields lower signal levels and more distorted modulation than single-hop. This is not always the case, and under ideal conditions even long-way-around communication is possible with good signals. There is evidence to support the theory that signals for such communications, rather than hopping, may be ducted through the ionosphere for a good part of the distance.

FADING

Two or more parts of the wave may follow different paths, causing phase differences between wave components at the receiving end. Total field strength may be greater or smaller than that of one component. Fluctuating signal levels also result from the changing nature of the wave path, as in the case of moving air-mass boundaries, in tropospheric propagation on the figher frequencies. Changes in signal level, lumped under the term fading, arise from an almost infinite variety of phenomena; some natural, some man-made. Aircraft reflections are in the latter category.

Under some circumstances the wave path may vary with very small changes in frequency, so that modulation sidebands arrive at the receiver out of phase, causing distortion that may be mild or severe. Called selective fading, this problem increases with sigral bandwidth. Double-sideband a-m signals suffer much more than single-sideband signals with suppressed carrier do.

THE SCATTER MODES

Much long-distance propagation can be described in terms of discrete reflection, through the analogy is never precise since true reflection would be possible only with perfect mirrors, and in a vacuum. All electromagnetic wave propagation is subject to scattering influences which alter idealized patterns to a great degree. The earth's atmosphere and ionospheric layers are scattering media, as are most objects that intervene in the wave path as it leaves the earth. Strong returns are thought of as reffections and weaker ones as scattering, but both influences prevail. Scatter modes have be-
come useful tools in many kinds of communication.

FORWARD SCATTER

We describe a skip zone as if there were no signal heard between the end of useful groundwave range and the points R1 or R2 of Fig. 19-3, but actually the transmitted signal can be detected over much of the skip zone, with sufficiently sensitive devices and methods. A small partion of the transmitted energy is scattered back to earth in
several ways, depending on the frequency in use.
Tropospheric scatter extends the local communications range to an increasing degrec with frequency, above about 20 MHz , becoming most useful in the vhf range. Jonospheric scarter, mostly from the height of the E region, is most marked at frequencies up to about 60 or 70 MHz . Vhf tropospheric scatter is usable within the limits of amateur power levels and antenna techniques, out to nearly 500 miles. Ionospheric forward scatter is discernible in the skip zone at distances up to 1200 miles or so.

A major component of ionospheric scatter is that contributed by short-lived columns of ionization formed around meteors entering the earth's atmosphere. This can be anything from very short bursts of little communications value to sustained periods of usable signal level, lasting up to a minute or more. Meteor scatter is most common in the early morning hours, and it can be an interesting adjunct to amateur communication at 21 MHz and higher, especiaily in periods of low solar activity. It is at its best during major meteor showers. ${ }^{6}$

BACKSCATTER

A complex form of scatter is readily observed when working near the maximum usable frequency for the F hayer at the time. The transmitted wave is refracted back to earth at some distant point, which may be an ocean area or a land mass where there is no use of the frequency in question at the time. A smail part of the energy is scattered back to the skip zone of the transmitter, via the ionospheric route.

Backscatter signals are generally rather weak, and subject to some distortion from multipath effects, but with optimum equipment they are usable at distances from just beyond the reliable local range out to several hundred miles. Under ideal conditions backscatter communication is possible over 3000 miles or more, though the term "sidescatter" is more descriptive of what probably happens on such long paths.

The scatter modes contribute to the usefulness of the higher parts of the DX spectrum, especially during periods of low solar activity when the normal ionospheric modes are less often avaitable.

USING WWV BULLETINS

The National Bureau of Standards stations WWV and WWVH (see Chapter 17) transmit hourly propagation bulletins that are very useful for short-term communications planning. At 14 min utes after each hour (WWV only) information is given on expected propagation conditions, the cument state of the geomagnetic field, and the
solar flux index. At 18 minutes after each hour on WWV and at 46 after on WWVH, a summary for the previous day and a prediction for the current day are given. Detailed information on use of these bulletins appeared in QST for June, August, and September, 1975.'

PROPAGATION IN THE MF AND HF BANDS

The $1.8-\mathrm{MHz}$ band offers reliable communication over distances up to about 25 miles during daylight. On winter nights ranges up to several thousand miles are possible.

The $3.5-\mathrm{MHz}$ band is seldom usable beyond 200 miles in daylight, but long distances are not unusual at night, especially in years of low solar activity. Atmospheric noise tends to be high in the summer months on both 3.5 and 1.8 MHz .

The $7-\mathrm{MHz}$ band has characteristics similar to 3.5 MHz , except that much greater distances are possible in daylight, and more often at night. In winter dawn and dusk periods it is possible to work the other side of the world, as signals follow the darkness path.

The $14-\mathrm{MHz}$ band is the most widely used DX band. In the peak years of the solar cycle it is open to distant parts of the world almost continuously. During low solar activity it is open mainly in the daylight hours, and is especially good in the dawn and dusk periods. There is almost always a skip zone on this band.

The $21-\mathrm{MHz}$ band shows highly variable propagation depending on the level of solar activity.

During sunspot maxima it is useful for longdistance work almost around the clock. At intermediate levels it is mainly a daylight DX band. In the low years it is useful for transequatorial paths much of the year, but is open less often to the high latitudes. Sporadic- E skip is common in early summer and midwinter.

The $28-\mathrm{MHz}$ band is excelient for DX communication in the peak solar-cycic ycars, but mostly in the daylight hours. The open time is shorter in the intermediate years, and is more confined to low-latitude and transequatorial paths as solar activity drops off. For about two years near the solar minimum, F-layer openings tend to be infrequent, and largely on north-south paths, with very long skip.

Sporadic-E propagation keeps things interesting in the period from late April through early August on this band, and on 21 MHz , providing single-hop communication out to 1300 miles or so, and multiple-hop to 2600 miles. Effects discussed in the following section on vhf propagation also show up in this band, though tropospheric bending is less than on 50 MHz .

THE WORLD ABOVE 50 MHZ

It was once thought that frequencies above 50 MHz would be useful only locally, but increased occupancy and improved techniques turned up
many forms of long-distance vhf propagation. What follows supplements information given earlicr in this chapter. First, let us consider the nature of our
bands above 50 MHz .
50 to 54 MHz This borderlinc region has some of the characteristics of both higher and lower frequencies. Just about every form of wave propagation is found occasionally in the $50-\mathrm{MHz}$ band, which has contributed greatly to its popularity. Its utility for service-area communication should not be overlooked. In the absence of any favorable condition, the wellequipped $50-\mathrm{MHz}$ station should be able to work regularly over a radius of 75 to 100 miles or more, depending on terrain and antenna size and height.

Changing weather patterns extend coverage to 300 miles or more at times, mainly in the warmer months. Sporadic-E skip provides seasonal openings for work over 400 to 2500 miles, in seasons centered on the longest and shortest days of the year. Auroral effects afford vhf operators in the temperate latitudes an intriguing form of DX up to about 1300 miles. During the peak of " 11 -year" sunspot cycle $50-\mathrm{MHz}$ DX of worldwide proportions may be workable by reflections of waves by the ionospheric F_{2} layer. Various weak-signal scatter modes round out the $50-\mathrm{MHz}$ propagation fare.

144 to 148 MHz Ionospheric effects are greatly reduced at 144 MHz . Flayer propagation is unknown. Sporadic-E skip is rare, and much more limited in duration and coverage than on 50 MHz . Auroral propagation is quite similar to that on 50 MHz , except that signals tend to be somewhat weaker and more distorted at 114. Tropospheric propagation improves with increasing frequency. It has been responsible for $144-\mathrm{MHz}$ work over distances up to 2500 miles, and 500 -mile contacts are fairly common in the warmer months. Reliable range on 144 is slightly less than on 50 , under minimum conditions.

220 MHz and Higher lonospheric propagation of the sorts discussed above is virtually unknown above about 200 MHz . Auroral communication is possible on 220 and 420 MHz , but probably not on higher frequencies, with amateur power levels. Tropospheric bending is very marked, and may be better on 432 than on 144 MHz , for example. Communication has been carried on over paths far beyond line of sight, on all amateur frequencies up through $10,000 \mathrm{MHz}$. Under minimum conditions, signal levels drop off slightly with each higher band.

PROPAGATION MODES

Known means by which vhf signals are propagated beyond the horizon are described below.
F_{2} Leyer Reflection Most communication on lower frequencies is by reflection of the wave in the F region, highest of the ionized layers. Its density varies with solar activity, the maximum usable frequency (muf) being highest in peak years of the sunspot cycle. Cycle 19 (in the recorded history of sunspot activity) hit an all-time high in the fall of 1958, which may never be equalled within the lifetime of some of us. Cycle 20 produced $50-\mathrm{MHz} F_{2} \mathrm{DX}$ in 1968 to 1970, but less
than Cycle 18 (1946 to 1949), and far less than Cycle 19.

The muf for F_{2}-layer propagation follows daily, monthly and seasonal cycles, all related to conditions on the sun, as with the hf bands. Frequent checks will show if the muf is rising or falling, and the times and directions for which it is highest. Two-way work has been done over about 1800 to 12,500 miles; even greater, if daylight routes around the earth the long way are included. The muf is believed to have reached about 70 MHz in 1958.

The TE Mode Also associated with high solar activity is a transequatorial mode, having an muf somewhat higher than the F_{2}. This is observed most often between points up to 2500 miles north and south of the geomagnefic equator, mainly in late afternoon or êarly evening.'

Sporadic-E Skip Patchy ionization of the E region of the ionosphere often propagates 28 - and $50-\mathrm{MHz}$ signals over 400 to 1300 miles or more. Often called "short skip," this is most common in May, June and July, with a shorter season around year end. Seasons are reversed in the southern hemisphere. E skip can occur at any time or season, but is most likely in mid-morning or early evening. Multiple-hop effects may extend the range to 2500 miles or more.
E_{2} propagation has been observed in the $144-\mathrm{MHz}$ band, and on TV channels up to about 200 MHz . Minimum skip distance is greater, and duration of openings much shorter, on 144 MHz than on 50 . Reception of strong E_{8} signals from under 300 miles on 50 MHz indicates some possibility of skip propagation on 144, probably to 800 miles or more.

Aurora Effect High-frequency communication may be wiped out or seriously impaired by absorption in the ionosphere, during disturbances associated with high solar activity and variations in the earth's magnetic field. If this occurs at night in clear weather, there may be a visible aurora, but the condition also develops in daylight, usually in late afternoon. Weak wavery signals in the $3.5-\mathrm{MHz}$ and $7-\mathrm{MHz}$ bands are good indicators.

Vhf waves can be returned to earth from the auroral region, but the varying intensity of the aurosa and its porosity as a propagation medium impart a multipath distortion to the signal, which garbles or even destroys any modulation. Distortion increases with signal frequency and varies, often quite quickly, with the nature of the aurora. Single-sidcband is preferred to modes requiring more bandwidth. The most effective mode is cw , which may be the only reliable communications method at 144 MHz and higher, during most auroras.

Propagation is generally from the north, but probing with a directional array is recommended. Maximum range is about 1300 miles, though $50-\mathrm{MHz}$ signals are heard occasionally over greater distances, usually with little or no auroral distortion.

How often auroral communication is possible is related to the geomagnetic latitude of participating
stations, auroras being most frequent in northeastern USA and adjacent arcas of Canada. They are rare below about tatitude 32 in the Southeast and about latitude 38 to 40 in the Southwest. The highest frequency for auroral retums depends on equipment and antennas, bul auroral communication lias been achieved up to at least 432 MHz .

Tropospheric Bending An easily-anticipated extension of normal vhf coverage results from abrupt changes in the refractive index of the atmosphere, at boundaries between air masses of differing temperature and humidity characteristics. Such warm-dry over cool-moist boundaries often lie along the southern and western edges of stable slow-moving areas of fair weather and high barometric pressure. Troposheric bending can increase signal levels from within the normal working range, or bring in more distant stations, not normally heard.

A condition known as ducting or trapping may simulate propagation within a waveguide, causing vhe waves to follow earth curvature for hundreds or even thousands of miles. Ducting incidence increases with frequency. It is rare on 50 MHz . fairly common on 144, and more so on higher frequencies. It occurs most often in temperate or low latitudes. It was the medium for the W6NLZ-KH6UK work on 144, 220 and 432 MHz , over a 2540 -mile path. Gulf-Coast states sce it often, the Atlantic Seaboard, Great Lakes and Mississippi Valley areas occasionally, usually in September and October.

Many lucal conditions contribute to tropospheric bending. Convection in coastal arcas in warm weather; rapid cooling of the earth after a hot day, witls upper air cooling more slowly; warming of air aloft with the summer sunsise; subsidence of cool moist air into valleys on calm summer evenings - thesc familiar situations create upper-air conditions which can extend normal vhf coverage.

The alert vhf enthusiast soon learns to correlate various weather signs and propagation patterns. Temperature and barometric-pressure trends, changing cloud formations, wind direction, visibility and other natural indicators can give him clues as to what is in store in the way of tropospheric propagation.

The $50-\mathrm{MHz}$ band is more responsive to weather effects than 28 , and 144 MHz is much more active than 50 . This trend continues into the microwave region, as evidenced by tropospheric records on all our bands, up to and including work over a 275 -mile path on $10,000 \mathrm{MHz}$.

The Scatter Modes Though they provide signal levels too low for routine communication, severa! scatter modes attract the advanced vhf operator.

Tropospheric scatter offers marginal communication up to $\mathbf{5 0 0}$ miles or so, almost regardless of conditions and frequency, when optimum equipment and methods arc used.

Ionospheric scatter is useful mainly on 50 MHz , where it usually is a composite of meteor bursts and a weak residual scatter signal. The latter may be heard only when optimum conditions prevail. The best distances are 600 to 1200 miles.

Back scatter, common on lower frequencies, is observed on 50 MHz during ionospheric propagation, mainly of the F_{2} variety. Conditions for $50-\mathrm{MHz}$ backscatter are similar to those for the hf bands, detailed carlier in this chapter.

Scatter from meteor trails in the E region can cause signal enhancement, or isolated bursts of signal from a station not otherwise heard. Strength and duration of meteor bursts decrease with increasing signal frequency, but the mode is popular for marginal communication in the 50 - and $144-\mathrm{MHz}$ bands. It has been used on 220 MHz , and, more marginally, on 432 MHz

Random meteor bursts can be heard by cooperating vhf stations at any time or season, but early-moming hours are preferred. Major meteor showers (August Perseids and December Geminids) provide frequent bursts. Some other showers have various periods, and may show phenomenal burst counts in peak years. Distances are similar to other E-layer communication.

All scatter communication requires good equipment and optimum operating methods. The narrow-band modes are superior to wide-band systems.

Communication Via the Moon Though amateurs first bounced signals off the moon in the early 1950s, reas communication via the earth-moon-earth (eme) route is a fairly recent accomplishment. Requirements are maximum legal power, optimum receiving equipment, very large high-gain antennas, and precise aiming. Sophisticated tracking systems, narrow bandwidth (with attendant requirements for receiver and transmitter stability) and visual signal-resolution methods are desirable. Lunar work has been done on all amateur frequencies from 50 to 2400 MHz , over distances limited only by the ability of the stations to "see" the moon simultaneously.

For more detailed vhf propagation information and references, see The Radio Amateur's VHF Manual, Chapter 2.

PROPAGATION PREDICTION

Information on the prediction of maximum usablc frequencies (muf) and optimum working frequencies for F-layer propagation was formerly available from the U.S. Government Printing Office. The material took several forms, as methods developed for military communications use werc adapted to worldwide civilian needs. Though the service was terminated in 1975, the basic methods are still of interest. A full description may be found in QST for March, 1972.7 The government information is available in some technical libraries.

Other means are available to amateurs who wish to make their own predictions, both short- and long-tern. As appreciable amount of observing and record-kceping time is involved at first, but the work can be streamlined with practicc. Many amateurs who try it find the task almost as

TABLE 19-1
Some time and frequency stations useful for propagation monitoring.

Call	Freq. (kIIz)
WWV	$2500,5000,10,000,15,000,20,00025,000$
WWVH	Same as WWV
CHU	$3330,7335,14,760$
RAT, RWM	$5000,10,000,15,000$
RIM, RCH	$2500,5000,10,000$
RID, RKM	$5004,10,004,15,004$
RTA	$4996,9996,14,996$
ZUO	2500,5000
VNG	7500
BPV	$5000,10,000,15,000$
JJY	$2500,5000,10,000,15,000$

Location

Ft. Collins, Colorado Kekaha, Kauai, Hawaii
Ottawa, Ontario, Canada
Moscow, USSR ${ }^{*}$
Tashkent, USSR*
Irkutsk, USSR*
Novasibirsk, USSR*
Pretoria, South Africa
Lyndhurst, Australia
Shanghai, China
Tokyo, Japan
*Call, from international table, may not check with actual reception. Locations and frequencies appear to be as given.
interesting as any operational success that may result from it. Properly organized, data collection and propagation prediction can become an ideal group project.

Getting Started

Because most factors have well-defined cyclical trends, the first step in propagation prediction is to become familiar with the rhythm of these trends for the geographical location and season under consideration. This job is made easier if wc understand the causes of the ups and downs, so familiarity with basic information given earlier in this chapter is helpful.

What frequencies are "open," and where the cutoff in ionospheric propagation lies in the spectrum can be determined quite readify by tuning upward in frequency with a generalcoverage receiver, until ionosphcrically propagated signals are no longer heard. The muf for the day and the times that a given frequency band opens or closes can be found in this way. A daily log will show if conditions are improving or deteriorating.

Listening in the amateur bands and on inmediately adjacent frequencies may be the only way to do this, if the receiver is the amateur-bands-only variety. Most DX bands are narrower in other parts of the world than in the Americas, so there is no fack of round-the-clock occupancy by other services, ordinarily. Most receivers also cover somewhat more than the actual amateur assignments, at their widest, so some commercial and governnental signals can be found close by our band edges. A worldwide listing of stations, by frequency, is useful in identifying signals for propagation monitoring purpose. ${ }^{\text {o }}$ Don't overlook W1AW; frequencies and schedule are listed in every QST.

Ability to tune to 5 MHz and multiples thereof, to receive the standard time-and-frequency stations now operating in many parts of the world, is a great aid. See Table 19-I. Most such stations operate continuously, with appreciable power and omnidirectional antennas. WWV and WWVH are excellent indicators, at any suitable distance from Colorado or Hawaii. Their signal behavior can tell the experienced observer al least as much about
propagation - at the moment - as does the content of their propagation bulletins. Many receivers can be made to tune some of these frequencies by deluning their front-panel tracking controls. See QST, September, 1975 , page 23, for suggestions. Simple crystal-controlled converters for the standard frequencies offer another possibility (QST for June, 1976, p. 2S).

Recurring Phenomena

Because the sun is responsible for all radiopropagation variables, their rhythmic qualities are related to time, season and other sun-earth factors. Some are obvious. Others, particularly the rotational period of the sun, about 27.5 days, show best in long-term chart records kept on a monthly or four-week basis. Recurrence data are used in nearly all prediction work done presently, and the data can yicld fair accuracy.

If the muf is high and conditions are generally good for several days, a similar condition is likely to prevail four weeks later, when the same area of the sun will be in view from the earth. Ionospheric disturbances also generally follow the 27 -day cycic, though there may be marked differences in level from onc period to the next.

Some solar-activity centers are short-lived, lasting less than a tull rotation. Others go on and on, recognizable from their propagation effects for a year or more. Recurring phenomena are more apparent in the low-activity years of the solar cycle, most of them being far enough apart to be clearly identifiable. In April and May, 1976, for example, there were three well-separated areas affecting radio propagation. All were of "the old cycle." There were also three new-cycle areas seen briefly, but with no recognizable radio-propagation influence. The WWV propagation bulletins described will be seen to show recurring effects, if their content is charted for extended periods.

WWV Propagation Bulletins

Since the fall of 1974, WWV and WWVH have :ransmitted fairly detailed information hourly on the condition of the sun and the earth's magnetic rield, and the radio spectrum. At 14 minutes after

Fig. 19.5 - Graghs of $2800-\mathrm{MHz}$ solar-flux information, as transmitted by WWV, for five consecutive fourweek periods in early 1975. It will be seen that, even in this period of relatively low solar activity, the flux readings rise and fall with the passage of small spots. The rise in muf is mainly in the first half of the spot or group's passage across the solar disk. Observation in this period was with the system shown in Fig. 19-2.

the hour (WWV only), and changed four times daily, beginning at 0100 Universal Time, there is a series of statements. The first is a propagation quality forecast, "useless" to "excelient," in nine steps. Next is the condition of the earth's magnetic field, "quict," "unsettled," or "disturbed." Then comes a letter-number coded forecast, W (disturbed), U (unsettled) or N (norinal). The number reflects the 9 -step wording given earlier. "Fair-togood, quiet, November ($\operatorname{for} \mathrm{N}$) six" is commonly heard when conditions are above average. The forecast is for the North Atlantic path, but use of the information for other areas can be learned by experience.

The second section of the bulletin is the "K-index," given for the time of bulietin issuance, but relating to the hours just before then. It is a numerical figure for disturbance of the geomagnetic field, 0 to 9 in order of increasing severity. Essentially a current figure, and given with an expected trend, it is potentially quite valuable for short-term forecasting of hi (and occasionally vhff propagation. A K-index of 0 or 1 indicates very low absorption in the entire hf range, and generally good F-layer propagation, up to the muf. Rising K -indices mean increasing absorption, affecting the lower bands first, and more severely on paths involving high latitudes. Up to 3 may show little effect on 21 or 28 MHz , or on low-latitude or transequatorial circuits. A K-index of 4 and expected to rise warns of probable more severe and general disturbance. Severe disturbance is associated with 6 or higher, and auroral propagation is likely on 28 MHz and higher frequencies
above about latitude 40; perhaps farther south, cast of the Mississippi.

Extremes of the numerical range provided are seldom used in the bulletins. A "W3" forecast is likely to be associated with severely disturbed conditions. "N7" is the usual limit on the good side. The bulletins' semantic nuances are not unlike those heard in weather forecasting, and for the same basic reason - the unpredictability of the sun at current levels of knowledge.

The final bulletin item is the solas flux, a reading taken on 2800 MHz at 1700 UTC in Ottawa. It is also given with an expected trend. Usually the solar-flux value is changed only with the 1900 bulletin, but the trend information may be changed at other times if marked variations are apparent. Especially in the transmissions immediately after the daily change, the solar flux may be the most revealing item of all, for reasons given in more detail later.

A second bulletin at 18 minutes after the hour (46 after on WWVH) is a brief statistical review of the previous day and a prediction for today. First given is the solar flux, the 1700 reading for the previous day (see above). Then comes the A-index, a 24 -hour figure for geomagnetic disturbance reflecting the short-term K-index figures of the previous day. It is stated in a different way to give a more linear scale of geomagnetic variation, as a whole-day index for statistical purposes. When the A-index variation is plotted on a long-term basis, its significance as a recurrence warning becomes apparent. The "yesterday" portion of the bulletin concludes with the level of solar activity and the

Fig. 196 - A-index information as transmitted by WWV, for the same four-week periods as Fig. 19-5. Propagation conditions as to level of absorption are indicated for the month of March, normally the most disturbed period of the year. Periods of geomagnetic storms are indicated by MS. It will be seen that disturbed periods show very marked 27 -day recurrence effects, though the severity of disturbance is not necessarily consistent.

Projection viewing of the sun's image with a 5 -inch reflector-type telescope. White-paper viewing surface is cemented in the bottom of a black-sprayed cardboard box.
blossom "out of nowhere," at times, as new areas develop. Prediction of these seeming anomalies presents a challenge not yet met fuily by anyone, including professionals. It is a wide-open field.

Solar Observation

Regular viewing of the sun should be a part of any major propagation-prediction effort. Even simple projection with a low-cost telcscope, as shown in Fig. 19-2, is well worthwhile, if it is done consistently and if drawings are made. Improvements in technique need not be costly. Λ desirable first step is a light exclusion box that can cost practically nothing. A corrugated-paper box about 6 inches square (or round) and 12 -inches deep is fitted with a cover of the same material, about 12 inches square. A hand hole is cut in the side of the box. The cover and interior are sprayed dull black, and a viewing surface of white paper is cemented inside the bottom.

The box is used in the same way as the shaded card in Fig. 19-2, but reduction in ambient light in the viewing area helpsgreatly in making small detail more noticeable. It enables those with good eyesight to see spots and light variations on the solar surface that would have been missed before. For a complete black-box viewing system that can be assembled from simple optics and plywood, sec reference 2.

The telescope used in the photograph, Fig. 19-2, was a low-priced zoom model, with a range of 8 to 25 power. Target scopes and the like in this general range work well, especially with light exclusion around the viewing surface. But many radio amateurs are also astronomers, and may have much better instruments that can be used for solar projection. Moderately priced, 2 - or 3 -inch refractors give bcautiful projection detail with lightexclusion viewing.

Reducing ambient light allows use of a larger image, but this intensifics mechanical-stablity problems with camera tripods and other portable supports. The need for sun tracking also increases. An equatorial mount and clock drive used in
astronomical work take care of tracking, but only the best tripods give adequate stability.

Better definition with a given degree of optical quality is obtainable with direct viewing of the sun, but this requires a safe solar filter (neutral density 4 or more and designed for sun viewing) mounted over the scope aperture. Do not use eye-piece filters. Be sure the aperture filter is mounted so that it cannot come off accidentally. Never look at the sun without it.

Visual acuity is very important. Even people who think they have satisfactory vision with properly fitted glasses may find that keener cyes will see much fine detail and light gradation that they miss. Have a younger helper, if you are middle-aged or older.

Interpreting What You See

In vicwing the sun with a celestial telescope equipped with a star diagonal and a vertical eyepiece, one sees the solar disk with the east limb on the right and the west limb on the left. This is the opposite of the view obtained with the selup of Fig. 19-2, but is more natural since it simulates a map. Visible solar activity moves across the disk from right to left, on a line parallel with the solar equator. The apparent position of the equator varies with the time of day and the position of the viewer, but it can be determined readily if drawings are made during each observation. Knowing the position of the equator is important in identifying activity as belonging to the old or new cycle, in times of transition. Old-cycie spots move near the equator. New-cycle activity appears some 30° above or below.

In good projection, or with properly safeguarded direct viewing, bright patches may be seen, especially near the east or west limbs. Known as plage, faculae, or flocculi, these patches identify active areas that may or may not include visible spots. When seen on the cast limb, they may be advance notice of spots duc in another day or two. They serve as warning of propagation changes several days away, and their appearance may coincide with the start of a steady rise in solar flux and in the muf as well. Faculae may identify new activity in which spots will appear four weeks later, or they may be the residue of declining activity that contained spots last time around. They can be a vital part of visual records, and their significance will increase as records accumulate.

In their first or last day on the east or west limb, respectively, sizcable spots or groups usually show as fine lines on or close to the edge of the image. Some dctail will begin to show on the second day of new or recurring activity, and sketches should be made as accurately as possible. Note any changes in additional sketches, marked with date and time. Changes in appearance and growth or decay are significant indicators, becoming more so on consecutive rounds of long-lived activity centers.

Increasing size and number of spots will be reflected in a rise in solar flux on the WWV bulletins, particularly the one for 1900 UTC, and in rising F-layer muf. Sudden large growth, or a

Direct viewing of the sun should be done only with a telescope equipped with an aperture filter known to be safe for this purpose. Telescope is a Celestron 5 with the maker's solar filter, which passes 0.01 percent of impinging light. A brimmed hat shading the observer's eyes from direct rays of the sun helps to improve visual acuity.
major breakup of a large spot or group, may show radio effects at once - a rise in muf and perhaps a considerable increase in noise level. The latter is more obvious when using a directive array that can be aimed at the sun.

The noise burst and visible change will abmost certainly be accompanied by particle radiation increase, the radio effects of which will be increased absorption of hf signal energy, and possibly auroral conditions on 28 MHz or the viff bands, one to four days later. (Rising K-index on WWV, possibly without warning on previous bulletins.)

Slower growth, barely distinguishable from day to day, will be accompanied by rising solar-flux numbers, probably a point or two daily, and a gradual improvement in hf conditions that will last as long as the K -index remains low. A rise in muf will be apparent at such times, and propagation will remain good on all frequencies for several days, barring sudden solar change which is always a possibility.

If, on the first attempt at solar viewing, one sees sizeable spots or groups, it is well to remember that these may represent activity in a declining phase. If so, they may move across the disk with only minor apparent change. Keep watch though; the area could be brought back to active state again by forces nol yet fully understood. This is why long-term predictions are doonied to occasional abject failure and why short-term prediction, using all the tools available, is such an exciting and useful pursuit.

Solar Flux vs. Sunspot Number

The question is often raised as to why we have both the $2800-\mathrm{MH} z$ Solar-Flux Index and the Zurich Sunspot Number as indicators of solar activity. The answer lies in history and its continuity with the future.

Awareness of the infinite variation of the sun began almost with the invention of the telescope, but study of it was largely surreptitious and sporadic at füst. There was a strong religious attachment to the sum and the heavens in Galileo's time, and a questioning attitude was actively discouraged. In addition, there is good evidence that the sun entered a period of some 70 years of

relative calm in the middle 1600 s . Though sunspots were seen frequently by Galileo and other early users of his invention, variations in the solar surface became so rare after about 1640 that new spots or groups were hailed as scientific curiosities. ${ }^{9}$

Record-keeping of sorts began about 100 years later, but up to the middle of the 18 th century the accuracy of the surviving records is not high. Even thereafter, observing was done with many levels of sophistication, and it still is today. Thus, any long-term statistics must take the equipment used, the natural conditions of the site, and the skill and diligence of the observer into account. A Swiss astronomer devised a simple formula for what is called the "Wolf Number" in his honor:

$$
R=K(10 g+f)
$$

where R is the sunspot number, K an observer rating factor, g the number of groups visible, and f the total number of spots seen, regardless of size. That the Wolf Number is still in use, with all its ambiguity, is recognition of its worth as a statistical link with history, but it has little in its favor otherwise. Today's radio amateur need only run off a few Wolf Numbers based on his daily observation of the sun and the concurrent behavior of the radio spectrum to realize that "sunspot number" has little relevance to the radio communications scene in this half of the 20th century.

Long-term statistics inevitably involve some "smoothing" of original data. Even the $2800-\mathrm{MHz}$ solar flux given hourly on WWV is a smoothed value, but it tracks much better with observed variations in radio conditions and the appearance of the sun than any other available statistic.

The individual observer of the sun can establish his own Wolf-equation K factos by working out examples of his observed g and f, and finding the average for K that tracks well with the information given in Fig. 19-1. This is an interesting exercise, but it will show that, for our purposes, the solar flux is the only muf indicator we really need.

Monitoring Solar Noise

Radiation from the sun is recorded on many frequencies at many sites all over the world.

Combined charts of the results for the same time and date show marked differences from onc frequency to another in the level of noise from the sun. Great equipment sophistication is not required for monitoring solar noise, and the curbous amateur may find it an interesting project. In any location where man-made noise is low, a reasonably good receiver and a directional antenna that can be aimed at the sun will yield some solar noisc. In fact, the "quiet sun" is a good noise generator with which to rate antenna and receiver system performance on most frequencies where directive antennas are used in amatcur communication.

Increasing intcrest in amateur moonbounce and satellite communication have made antenna control in both azimuth and elevation much more common than in the past and have increased our sun-noise consciousness accordingly. Recording changes in received sun noise could add a useful dimension to any propagation-observation program: Hf, vhf, or uhf. The idea is not exactly new. See reference 3.

The most interesting projects in amateur radio tend to be those where we can start at the beginner level and get interesting results at moderate cost, then work up by stages, making worthwhile improvements for as long as we want to carry on the effort. Monitoring of the sun and the observat tion and recording of radio propagation variations.
with a view to making better usc of our on-the-air time, make a game of great fascination that can be played at ever-increasing levels of sophistication. You may never get enough of it.

Propagation References

"Tilton, "The DXer's Crystal Ball." QST, June. August, and September, 1975.

Projection of the sun and interpretation of results are discussed in reference 1 , and in QST for Decernber, 1974, p. 83 and January, 1975, p. 84. A black-box viewing device (Tomcik, K4HYF) for sun projection is shown in July, 1964, QST. (Photocopy from ARRL, 75 cents and stamped envelope.)
${ }^{3}$ Bray and Kirchner, "Antenna Patterns from the Sun." QST, July, 1960. Wilson. "432-MHz Solar Patrol, OST, August, 1967.
"Davies, "Tonospheric Radio Propagation," NBS Monograph 80, out of print. Available in some technical libraries.
${ }^{5}$ See reference 4, p. 45.

- Bain. "VHF Propagation by Meteor Trail Ionization," QST, May, 1974. Table of major meteor showers, "Radio Amateurs VHF Manual," Ch. 2 .
${ }^{7}$ Hall, "High-Firequency Proparation Estimations for the Radio Amateur," QST, March, 1972.

World Radio and TV Handbook. Billboard Publications, London W1V1PG; 2160 Patterson Street, Cincinnati, Ohio 45124. Gilfer Associates, Box 239, Park Ridge, NJ 07656.

- Eddy. "The Maunder Minimum." digest of longer paper, QST for July, 1976.

WWV PROPAGATION BULLETIN SERVICE LOST

With portions of this Handbook already printing, changes in the WWV format were made, deleting the propagation bulletins formerly broadcast at 18 minutes after the hour. Termination of the 14 -after information was also under considera-
fion, though there was some prospect that this service might be saved. For the latest available information, see the propagation information that runs regularly in QST. Changes of any major nature will atso be announced via WI AW bullelin.

Transmission Lines

Transmission lines, and the theory behind them, play an important role in many phases of radio communication. This is because the basic principles involved can be applied to a wide variety of problems. Types of transmission lines include simple two-conductor configurations such as the familiar coaxial cabie and TV parallel-wire line. Such lines are useful from power \{requencics to well up into the microwave region and form perhaps the most important class. The waveruide is representative of a second type. Here, the conductor configuration is rather complex and ordinary concepts such as voltage and current tend to become obscure. As a consequence, 'larious parameters are expressed in terms of the electric and magnetic fields associated with the line. Finally, the propagation of electromagnetic energy through space itself is closely related to similar phenomena in wave guides and transmission lines. In fact, the only significant physical difference is that the power density in a wave propagated in space decreases with increasing distance while it is possible to transmit power over long distances with conventional lines with little attenuation. This is because power flow is essentially confined to one dimension in the latter case while the threcdimensional aspect of space does not permit such confinement.

Transmission Lines and Circuits

A transmission line differs from an ordinary circuit in one very important aspect. Delay effects associated with the finite propagation time of electromagnetic energy are often neglected in network design since the dimensions involved are normally small compared to the wavelength of any frequencies present in the circuit. This is not true in transmission-line considerations. The finite propagation time becomes a factor of paramount importance. This can be illustrated with the aid of Fig. 1. A transmission line separates a source at point g from a load at point a by a distance l. If the line is uniform (same conductor shape at any cross section along the line). only two parameters are required to express the line properties completely. These are the phase velocity, v_{p}, and the characteristic impedance, Z_{0}. If the line can be considered lossless as well, Z_{0} becomes a pure resistance, R_{0}.

Assume that a very short burst of power is
emitted from the source. This is represented by the vertical line at the left of the scries of lines in Fig. 2. As the pulse voltage appeass across the load Z_{8}, all the energy may be absorbed or part of it may be reflected in much the same manner energy in a wave in water is reflected as the wave hits a steep breakwater or the end of a containcr. This reflected wave is represented by the second line in the series and the arrow above indicates the direction of travel. As the latter wave reaches the source, the process is again repeated with either all of the energy being absorbed or partially reflected.

The back-and-forth cycle is actually an infinite one but after a few reflections, the intensity of the wave becomes very small. If, instead of a short pulse, a continuous voltage is applied to the terminals of a transmission line, the voltage at any point along the line will consist of a sum of voltages of the composite of waves traveling toward the right and a composite of waves traveling toward the left. The total sum of the waves traveling toward the right is called the forward wave or incident wave while the one traveling toward the icft is called the retlected wave. Provided certain conditions concerning Z_{a} are met. there will be a net flow of energy from the source to the load with a fraction of the energy being stored in the "standing" waves on the line. This phenomenon is identical to the case of a coupled resonator with ordinary circuit elements and sections of tuansmission line are often used for this purpose especially in the vhf/uhf region. The duplexer found in many vhf repeaters is a common example.

Line Factors and Equations

Since transmission tines are usually connected between lumped or discrete circuitry, it is con-

Fig. 1 - Source and load connected by means of a transmission line.

Fig. 2 - Magnitudes of components for forward and reverse traveling waves of a short pulse on a transmission line.
venient to be able to express the input impedance of a line in terms of the output or load impedance. A line treated this way is then similar to a filter or matching network with a given load impedance. One caution should be kept in mind in applying such relations and that is the manner in which the source and load are connected to the line can be important. There are always some "parasitic" effects arising from connectors and post-connector circuit configuration that may cause the line to "see" a different impedance than if measurements were made at the load terminals directly. This is indicated by the abrupt change in line dimensions at points a and g in Fig. 1. Even though the short line connecting the generator to the main transmission line (and the one connecting the load to the line) might have the same characteristic impedance, if the sizes are different, a mismatch will still occur. Normally, this effect can be neglected at hf but becomes important as the frequency of operation is extended into the vhf region and above.

In referring to the previous example shown in Fig. 2, the ratio of the voltage in the reflected wave to that of the voltage in the incident wave is defined as the voltage reflection coefficient designated by the Greek letter, Γ, or by ρ. The relation between the output resistance. $\boldsymbol{R}_{\mathrm{g}}$. the output reactance. X_{a}, the line impedance, \mathcal{Z}_{0}, and the magnitude of the reflection coefficient is

$$
\Gamma=\sqrt{\frac{\left(R_{\mathrm{a}}-R_{\mathrm{o}}\right)^{2}+X_{\mathrm{a}}^{2}}{\left(R_{\mathrm{o}}+R_{\mathrm{a}}\right)^{2}+X_{\mathrm{a}}^{2}}}
$$

Note that if $\boldsymbol{R}_{\mathrm{a}}$ is equal to $\boldsymbol{R}_{\mathrm{o}}$, and if $\boldsymbol{x}_{\mathrm{a}}$ is 0 the reflection coefficient is 0 which represents "matched" conditions. All the energy in the incident wave is transferred to the load. In effect, it was as if there were an infinite line of characteristic impedance Z_{0} connected at a. On the other hand, if R_{a} is 0 , regardless of the value of x_{a} the reflection coefficient is 1.0 . This means all the power is reflected in much the same manner as radiant energy is reflected from a mirror.

If there are no reflections from the load, the voltage distribution along the line is constant or "flat" while if reflections exist, a standing-wave
pattern will result. The ratio of the maximum voltage on the line to the minimum value (pruvided the line is longer than a quarter wavelength) is defined as the voltage standing-wave ratio (VSWR). The VSWR is related to the reflection coefficient by

$$
V S W R=\frac{1+\Gamma}{1-\Gamma}
$$

and this latter definition is a more general one valid for any line length. Quite often, the actual load impedance is unknown and an alternate way of expressing the reflection coefficient is

$$
\mathrm{r}=\sqrt{\frac{P_{\mathrm{r}}}{P_{\mathrm{f}}}}
$$

where Pr is the power in the reflected wave and Pf is the power in the forward wave. The parameters are relatively easy to measure with power meters available commercially or with homemade designs. However, it is obvious there can be no other power sources at the load if the foregoing definition is to hold. For instance, the reflection coefficient of the generator in the example shown in Fig. 2 is 0.9. This value could have been obtained by substituting the generator resistance and reactance into a previous formula for reflection coefficient, but not by measurement if the source were activated.

Fortunately, it is possible to determine the input resistance and reactance of a terminated line if the load resistance and reactance are known, along with the line length and characteristic impedance. (With actual lines, the physical length must be divided by the velocity factor of the cable which gives the value of δ in the following formula.) The equations are:

$$
\begin{gathered}
r_{\text {in }}=\frac{r_{a}\left(1+\tan ^{2} \beta l\right)}{\left(1-x_{a} \tan \beta l\right)^{2}+\left(r_{\mathrm{a}} \tan \beta l\right)^{2}} \\
x_{\text {in }}=\frac{x_{a}\left(1-\tan ^{2} \beta l\right)+\left(1-r_{a}^{2}-x_{a}^{2}\right) \tan \beta l}{\left(1-x_{\mathrm{a}} \tan \beta l\right)^{2}+\left(r_{\mathrm{a}} \tan \beta l\right)^{2}}
\end{gathered}
$$

for a $1-\Omega$ tine. Equations are often "norma3ized" this way in order to make universal tables or plots that cover a wide range of values. If characteristic impedances $\left(Z_{0}\right)$ other than 1.0 are to be used, the following set of conversions apply where R_{a} and X_{a} are the load resistance and reactance and $R_{\text {in }}$ and $X_{\text {in }}$ represent the resistance and reactance at the imput end of the line.

$$
\begin{array}{ll}
r_{\mathrm{a}}=\frac{R_{\mathrm{a}}}{Z_{0}}, \quad R_{\mathrm{in}}=Z_{\mathrm{o}} r_{\mathrm{in}} \\
x_{\mathrm{a}}=\frac{X_{\mathrm{a}}}{Z_{\mathrm{o}}}, \quad X_{\mathrm{in}}=Z_{0} x_{\mathrm{in}}
\end{array}
$$

In order to determine the value of the tangent function, either the line length in meters or feet.

Fig. 3 - Normalized input reactance and resistance vs. line length for various values of $r_{\mathrm{a}}\left(x_{\mathrm{a}}\right.$ equal to 0).
along with the frequency in MHz can be substituted into the following expressions:

$$
\begin{aligned}
& \beta l \text { (degrees) }=1.2 f_{\left(\mathrm{MHz}^{\prime}\right)} \times I_{\text {(meters) }} \\
& \beta 1 \text { (degrees) }=0.367 f_{(\mathrm{MHz})} \times 1_{\text {(feet) }}
\end{aligned}
$$

Since the foregoing transmission-line equations are somewhat awkward to work with, various plots have been devised that permit a graphical solution. However, with modern programmable calculators, even those in a moderate price class, it takes approximately 4 seconds to solve both equations. The plots shown in Fig. 3A and Fig. 3B were computed in this manner. The curves are for $r_{\text {in }}$ and $x_{i n}$ for various values of $r_{a}\left(x_{\mathrm{a}}\right.$ equal to 0$)$ and line length in degrees. Note that 90 degrees appears to be a "critical" value and represents a line length of a quarter wavelength. As this value is approached, the transmission-line equations can be approximated by the formulas:

$$
\begin{aligned}
& r_{\text {in }} \cong \frac{r_{\mathrm{a}}}{r_{\mathrm{a}}^{2}+x_{\mathrm{a}}^{2}} \\
& x_{\mathrm{in}} \cong \frac{-x_{\mathrm{a}}}{r_{\mathrm{a}}^{2}+x_{\mathrm{a}}^{2}}
\end{aligned}
$$

If x_{a} is zero, the formula for a quarter-wavelength
transformer is obtained which is

$$
R_{\mathrm{ln}}=Z_{\mathrm{o}}^{2} / R_{\mathrm{a}}
$$

Quite often, it is mistakenly assumed that power reflected from a load represents power "lost" in some way. This is only true if there is considerable loss in the line itself and the power is dissipated on the way back to the source. On the other hand, the quarter-wavelength transformer is an example where reflections on a lossless line can actually be used to advantage in matching a load impedance that is different from the source impedance.

If the terminating resistance is zero, the input resistance is also zero. In effect, the line and load act as a pure reactance which is given by the formula:

$$
x_{i n}=\frac{x_{\mathrm{a}}+\tan \beta l}{1-x_{\mathrm{a}} \tan \beta I}
$$

The special cases where the terminating reactance is either zero or infinity are given by the respective formulas:

$$
x_{\text {in }}=\tan \beta 1, \quad x_{\text {in }}=-\cot \beta 1
$$

A short length of line with a short circuit as a terminating load appears as an inductor while an open-circuited line appears as a capacitance.

The load for a transmission line may be any device capable of dissipating rf power. When lines are used for transmitting applications the most common type of load is an antenna. When a transmission line is connected between an antenna and a receiver, the receiver input circuit (not the antenna) is the load, because the power taken from a passing wave is delivered to the receiver.

Whatever the application, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristic impedance of the line, there will be no standing waves. In case the load is not purely resistive, and/or is not equal to the line Z_{0}, there will be standing waves. No adjustments that can be made at the input end of the line can change the SWR, nor is it affected by changing the line length.

Only in a few special cases is the load inherently of the proper value to match a practicable transmission line. In all other cases it is necessary either to operate with a mismatch and accept the SWR that results, or else to take steps to bring about a proper match between the line and load by means of transformers or similar devices. Impedance-matching transformers may take a variety of physical forms, depending on the circumstances.

Note that it is essential, if the SWR is to be made as low as possible, that the load at the point of connection to the transmission line be purely resistive. In general. this requires that the load be tuned to resonance. If the load itself is not resonant at the operating frequency the tuning sometimes can be accomplished in the matching system.

THE ANTENNA AS A LOAD

Every antenna system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connected. The problem is to transform this antenna input impedance to the proper value to match the line. In this respect there is no one "best" type of line for a particular antenna system, because it is possible to transform impedances in any desired ratio. Consequently, any type of line may be used with any type of antenna. There are frequently reasons other than impedance matching that dictate the use of one type of line in

Fig. 20-10A - " Q " matching section, a quarter-wave impedance rransformer.

Fig. 20-10B - The folded dipole, a method for using the antenna element itself to provide an impedance transformation.
preference to another, such as case of installation, inherent loss in the line, and so on, but these are not considered in this section.

Although the input impedance of an antenna system is seldom known very accurately, it is often possible to make a reasonably close estimate of its value.

Matching circuits can be built using ordinary coils and capacitors, but are not used very extensively because they must be supported at the antenna and must be weatherproofod. The systems to be described use linear transformers.

The Quarter-Wave Transformer of "Q" Section

As mentioned previously, a quarter-wave transmission line may be used as an impedance transformer. Knowing the antenna impedance and the characteristic impedance of the transmission line to be matched, the required characteristic impedance of a matching section such as is shown in Fig. 20-10A is:

$$
\begin{equation*}
Z=\sqrt{\mathrm{Z1ZO}} \tag{20-H}
\end{equation*}
$$

Where $\mathbf{Z 1}$ is the antenna impedance and $\mathbf{Z O}$ is the characteristic impedance of the line to which it is to be matched.

Exampic: To match a 600 -ahm linc to an antenna presentiog a 72 -ohm load, the quarter-wave matching ection would reyuire a charactenstic impectance of
$\sqrt{72 \times 600}=\sqrt{43.200}=208 \mathrm{ohm}$
The spacings between conductors of various sizes of tubing and wire for different surge impedances

Fig. 20-11 - Impedance transformation ratio, two-conductor folded dipole. The dimensions d1, d2 and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
are given in graphical form in the chapter on "Transmission Lines." (With $1 / 2$-inch tubing, the spacing in the example above should be 1.5 inches for an impedance of 208 ohms.)

The length of the quarter-wave matching section may be calculated from

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246 \mathrm{~V}}{f} \tag{20-n}
\end{equation*}
$$

where $V=$ Velocity factor
$f=$ Frequency in MHz
Example: A quaties wuve transformer of RG-11/U is to be used at $\mathbf{3 8 . 3} \mathbf{M H z}$. Frasn the lable 20-1, $V=0.66$.

$$
\begin{aligned}
\text { Length } & =\frac{246 \times 0.66}{28.7}=5.65 \text { fieve } \\
& =5 \text { feet } 8 \text { inches }
\end{aligned}
$$

The antenna must be resonant at the operating frequency. Setting the antenna length by formula is amply accurate with singe-wire antennas, but in other systems, particularly close-spaced arrays, the antenna should be adjusted to resonance before the matching section is connected.

When the antenna input impedance is not known accurately, it is advisable to construct the matching section so that the spacing between conductors can be changed. The spacing then may
be adjusted to give the lowest possibic SWR on the transmission line.

Folded Dipoles

A half-wave antenna element can be made to match various line impedances if it is split into two or more pasallel conductors with the transmission line attached at the center of only one of them. Various forms of such "folded dipoles" are shown in Fig. 20-10B. Currents in all conductors are in phase in a folded dipole, and since the conductor spacing is small the folded dipole is equivalent in radiating properties to an ordinary single-conductor dipole. However, the current flowing into the input terminals of the antenna from the line is the current in one conductor only, and the entire power from the line is delivered at this value of current. This is equivalent to saying that the input impedance of the antenna has been raised by splitting it up into two or more conductors.

The ratio by which the input impedance of the antenna is stepped up depends not only on the number of conductors in the folded dipole but also on their relative diameters, since the distribution of current between conductors is a function of their diameters. (When one conductor is larger than the other, as in Fig. 20-10B, the larger one carries the greater current.) The ratio also depends, in general on the spacing between the conductors, as shown by the graphs of Figs. 20-11 and 20-12. An important special case is the 2 -conductor dipole with conductors of equal diameter; as a simple antenna, not a part of a directive array, it has an

Fig. 20-12 - Impedance transformation ratio, three-conductor folded dipole. The dimensions d1. d2 and s are shown on the inset drawing. Curves show the ratio of the impedance \{resistive\} seen by the transmission line to the radiation resistance of the resonant antenna system.

Fig. 20.13 - The " T " match and "gamma" match.
input impedance close enough to 300 ohms to afford a good match to 300 -ohm Twin-Lead.

The required ratio of conductor diameters to give a desired impedance ratio using two conductors may be obtained from Fig. 20-11. Similar information for a 3 -conductor dipole is given in Fig. 20-12. This gaph applies where all three conductors are in the same plane. The two conductors not connected to the transmission line must be equally spaced from the fed conductor, and must have equal diameters. The fed conductor may have a different diameter, however. The unequal-conductor method has been found particularly useful in matching to low-impedance antennas such as directive arrays using close-spaced parasitic elements.

The length of the antenna element should be such as to be approximately self-resonant at the median operating frequency. The length is usually not highly critical, because a folded dipole tends to have the characteristics of a "thick" antenna and thus has a relatively broad frequency-response curve.

"T" and "Gamma" Matching Sections

The method of matching shown in Fig. 20-13A is based on the fact that the impedance between any two points along a resonant antenna is resistive, and has a value which depends on the spacing between the two points. It is therefore possible to choose a pair of points between which the impedance will have the right value to match a transmission line. In practice, the line cannot be connected directly at these points because the distance between them is much greater than the conductor spacing of a practicable transmission line. The " T " arrangement in Fig. 20-13A overcomes this difficulty by using a second conductor paralleling the antenna to form a matching section to which the line may be connected.

The "T"' is particularly suited to use with a parallel-conductor line, in which case the two points along the antenna should be equidistant from the center so that electrical balance is maintained.

The operation of this system is somewhat complex. Each " T " conductor (y in the drawing) forms with the antenna conductor opposite it a short section of transmission line. Each of these transmission-line sections can be considered to be terminated in the impedance that exists at the point of connection to the antenna. Thus the part of the antenna between the two points carries a transmission-line current in addition to the normal antenna current. The two transmission-line matching sections are in series, as seen by the main transmission line.

If the antenna by itself is resonant at the operating frequency its impedance will be purely resistive, and in such case the matching-section lines are terminated in a resistive load. However, since these sections are shorter than a quarter wavelength their input impedance - i.e., the impedance seen by the main transmission line looking into the matching-section terminals - will be reactive as well as resistive. This prevents a perfect match to the main transmission line, since its load must be a pure resistance for perfect matching. The reactive component of the input impedance must be tuned out before a proper match can be secured.

One way to do this is to detune the antenna just enough, by changing its length, to cause reactance of the opposite kind to be reflected to the input terminals of the matching section, thus cancelling the reactance introduced by the latter. Another method, which is considerably easicr to adjust, is to insert a variable capacitor in series with the matching section where it connects to the transmission line, as shown in Fig. 21-39. The capacitor must be protected from the weather.

The method of adjustment commonly used is to cut the antenna for approximate resonance and then make the spacing x some value that is convenient constructionally. The distance y is then adjusted, while maintaining symmetry with respect to the center, until the SWR on the transmission line is as low as possible. If the SWR is not below 2 to 1 after this adjusment, the antenna length should be changed slightly and the matching section taps adjusted again. This procedure may be continued until the SWR is as close to 1 to 1 แs possible.

When the series-capacitor method of reactance compensation is used (Fig. 21-32), the antenna should be the proper length to be resonant at the operating frequency. Trial positions of the matching-section taps are then taken, each time adjusting the capacitor for minimum SWR. until the standing waves on the transmission line are brought down to the lowest possible value.

The unbalanced ("gamma") arrangement in Fig. $20-13 \mathrm{~B}$ is similar in principle to the " T ," but is adapted for use with single coax line. The method of adjustment is the same.

BALANCING DEVICES

An antenna with open ends, of which the half-wave type is an example, is inherently a balanced radiator. When opened at the center and fed with a parallel-conductor line this balance is
maintained throughout the system, so long as the causes of unbalance discussed in the transmissionline chapter are avoided.

If the antenna is fed at the center through a coaxial line, as indicated in Fig. 20-14A, this balance is upset because one side of the radiator is connected to the shield while the other is connected to the inner conductor. On the side connected to the shield, a current can flow down over the outside of the coaxial line, and the fields thus set up cannot be canceled by the fields from the inner conductor because the fields inside the line cannot escape through the shielding afforded by the outer conductor. Hence these "antenna" currents flowing on the outside of the line will be responsible for radiation.

Lincay Baluns

Line radiation can be prevented by a number of devices whose purpose is to detune or decouple the line for "antenna" currents and thus greatly reduce their amplitude. Such devices generally are known as baluns (a contraction for "balanced to unbalanced"). Fig. 20-14B shows one such arrangement, known as a bazooka, which uses a sleeve over the transmission line to form, with the outside of the outer line conductor, a shorted quarter-wave line section. As described earlier in this chapter, the impedance looking into the open end of such a section is very high, so that the end of the outer conductor of the coaxisl line is effectively insulated from the part of the line beluw due sleeve. The length is an electrical quarter wave, and may be physically shorter if the insulation between the sleeve and the line is other than air. The bazooka has no effect on the impedance relationships between the antenna and the coaxial line.

Another method that gives an equivalent effect is shown at C. Since the voltages at the antenna terminals are equal and opposite (with reference to ground), equal and opposite currents flow on the surfaces of the line and second conductor. Beyond the shorting point, in the direction of the transmitter, these currents combine to cancel out. The balancing section "looks like" an open circuit to the antenna, since it is a quarter-wave parallel-conductor line shorted at the far end, and thus has no effect on the normal antenna operation. However, this is not essential to the line-balancing function of the device, and baluns of this type are sometimes made shorter than a quarter wavelength in order to provide the shunt inductive reactance required in certain types of matching systems.

Fig. 20-14D shows a third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing section. Since the voltages at the balanced end are in series while the voltages at the unbalanced end are in parallel, there is a 4 -to-1 step-down in impedance from the balanced to the unbalanced side. This arrangement is useful for coupling between a balanced 300 -ohm line and a 75 -ohm coaxial line, for example.

Fig 20-14 - Radiator with coaxial feed (A) and methods of preventing unbalanced currents from flowing on the ourside of the transmission line IB and Cl . The half-wave phasing section shown at D is used for coupling between an unbalanced and a balanced circuis when a 4-to-1 impedance ratio is desired or can be accepted.

OTHER LOADS AND BALANCING DEVICES

The most important practical load for a transmission line is an antenna which, in most cases, will be "balanced" - that is, symmetrically constructed with respect to the feed point. Aside from considerations of matching the actual impedance of the antenna at the fced point to the characteristic impedance of the line (if such matching is attempted) a balanced antenna should be fed through a balanced transmission line in order to preserve symmetry with respect to ground and thus avoid difficulties with unbalanced currents on the line and consequent undesirable radiation from the transmission line itself.

If, as is often the case, the antenna is to be fed through coaxial line (which is inherently unbalanced) some method should be used for connecting the line to the antenna without upsetting the symmetry of the antenna itself. This requires a circuit that will isolate the balanced load from the unbalanced line while providing effecient power transfer. Devices for doing this are called baluns. The types used between the antenna and transmission line are generally "linear," consisting of transmission-line sections.

The need for baluns also arises in coupling a transmitter to a balanced transmission line, since the output circuits of most transmitters have one side grounded. (This type of output circuit is desirable for a number of reasons, including TVI reduction.) The most flexible type of balun for this purpose is the inductively coupled matching network described in a subsequent section in this chapter. This combines impedance matching with balanced-to-unbalanced operation, but has the disadvantage that it uses resonant circuits and thus can work over only a limited band of frequencies without readjustment. However, if a fixed impedance ratio in the balun can be tolerated, the coil balun described below can be used without adjustment over a frequency range of about 10 to $1-3$ to 30 MHz , for example.

Coil Baluns

The type of balun known as the "coil balun" is based on the principles of linear-transmission-line balun as shown in the upper drawing of Fig. 20-15. Two transmission tines of equal length having a characteristic impedance (Z_{0}) are connected in series at one end and in parallel at the other. At the series-connected end the lines are balanced to ground and will match an impedance equal to 27_{0}. At the parallel-connected end the lines will be matched by an impedance equal to $Z d 2$. One side may be connected to ground at the parallelconnected end, provided the two lines have a length such that, considering each line us a single wire, the balanced end is effectively decoupled from the parallel-connected end. This requires a length that is an odd multiple of $1 / 4$ wavelength.

A definite line length is required only for decoupling purposes, and so long as there is adequate decoupling the system will act as a 4-to-1 impedance transformer regardless of line length. If

Fig. 20-15 - Baluns for matching between push-pull and single-ended circuits. The impedance ratio is 4 to 1 from the push-pull side to the unbalanced side. Coiling the lines (lower drawing) increases the frequency range over which satisfactory operation is obtained.
each line is wound into a coit, as in the lower drawing, the inductances so formed will act as choke coils and will tend to isolate the serics-connected end from any ground connection that may be placed on the parallel-connected end. Balun coils made in this way uill operate over a wide frequency range, since the choke inductance is not critical. The lower frequency limit is where the coils are no longer effective in isolating one end from the other; the length of lise in each coil should be about equal to a quarter wave-length at the lowest frequency to be used.

The principal application of such coils is in going from a 300 -ohm balanced line to a 75 -ohm coaxial line. This requires that the Z_{0} of the lines forming the coils be 150 ohms.

A balun of this type is simply a fixed-ratio transfomer, when matched. Is cannot compensate for inaccurate matching elsewhere in the system. With a " 300 -ohm" line on the balanced end, for example, a 75 -ohm coax cable will not be matched unless the 300 -ohm line actually is terminated in a 300 -ohm load.

TWO BROAD-BAND
 TOROIDAL BALUNS

Air-wound balun transfomers are somewhat bulky when designed for operation in the 1.8- to $30-\mathrm{MHz}$ range. A more compact broad-band transformer can be reatized by using toroidal ferrite core material as the foundation for bifilar-wound coil balun transformers. Two such baluns are described here.

In Fig. 20-16 at A, a $1: 1$ ratio balanced-to-unbalanced-line transfomer is shown. This transformer is useful in converting a $50-\mathrm{hm}$ balanced line condition to one that is $\mathbf{5 0}$ ohms, unbalanced. Similarly, the transformer will work between balanced and unbalanced 75 -ohm impedances. A 4:1 ratio transformer is illustrated in Fig. 20-16 at B . This balun is useful for converting a 200 -ohm balanced condition to one that is 50 ohms, unbalanced. In a like manner, the transformer can be used between a balanced 300 -ohm point and a 75 -ohm unbalanced line. Both balun transfommers will handle 1000 watts of rf power and are designed to operate from 1.8 through 60 MHz .

Fig. 20-16-Schematic and pictorial representations of the balun transformers. T1 and T2 are wound on CF-123 toroid cores (see footnote 1 , and the text). J1 and J4 are SO-239-type coax connectors, or similar. J2. J3, J5, and J6 are steatite feedthrough bushings. The windings are labeled a, b, and c to show the relationship between the pictorial and schematic itlustrations.

Low-loss high-frequency ferrite core material is used for T1 and T2.1.3 The cores are made from Q-2 material and cost approximately $\$ 5.50$ in single-lot quantity. They are 0.5 inches thick, have an OD of 2.4 inches, and the ID is 1.4 inches. The permeability rating of the cores is 40 . A packaged one-kilowatt balun kit, with winding instructions for $1: 1$ or $4: 1$ impedance transformation ratios, is available, but uses a core of slightly different dimensions. ${ }^{2}$

Winding Infomation

The transformer shown in Fig. 20-16 at A has a trifilar winding consisting of 10 turns of No. 14 formvar-insulated copper wire. A 10 -turn bifilar winding of the same type of wire is used for the balun of Fig. 20-16 at B. If the cores have rough edges, they should be carefully sanded until smooth enough to prevent damage to the wire's formvar insulation. The windings should be spaced around the entire core as shown in Fig. 20-17. Insulation can be used between the core material and the windings to increase the power handling capabilitics of the core.

Using the Baluns

For indoor applications, the transformers can be assembled open style, without benefit of a protective enclosure. For outdoor installations, such as at the antenna feed point, the balun should be encapsulated in epoxy resin or mounted in a

[^37]suitable weather-proof enclosure. A Minibox, sealed against moisture, works nicely for the latter.

NONRADIATING LOADS

Typical examples of nonradiating loads for a transmission line are the grid circuit of a power amplifier (considered in the chapter on transmitters), the input circuit of a receiver, and another transmission line. This last case includes the "antenna tuner" - a misnomer because it is

Fig. 20-17 - Layout of a kilowatt 4:1 toroidal balun transformer. Phenolic insulating board is mounted between the transformer and the Minibox wall to prevent shore-circuiting. The board is held in place with epoxy cement. Cement is also used to secure the transformer to the board. For outdoor use, the Minibox cover can be instailed, then sealed against the weather by applying epoxy cement along the seams of the box.

Fig. 20-18 - Networks for matching a low-Z transmitter output to random-length end-fed wire antennas.
actually a device for coupling a transmission line to the transmitter. Because of its importance ir amateur installations, the antenna coupler is considered separately in a later part of this chapter.

Coupling to a Receiver

A good match between an antenna and its transmission line does not guarantce a low standing-wave ratio on the line when the antenna system is used for receiving. The SWR is determined wholly by what the line "sees" at the receiver's antenna-input terminals. For minimum SWR the receiver input circuit must be matched to
the line. The rated input impedance of a receiver is a nominal valuc that varies over a considerable range with frequency. Most hf receivers are sensitive enough that exact matching is not necessary. The most desirable condition is that in which the receiver is matched to the line Z_{0} and the line in turn is matched to the antenna. This transfers maximum power from the antenna to the receiver with the least loss in the transmission line.

COUPLING TO RANDOM-LENGTH ANTENNAS

Several impedance-matching schemes are shown in Fig. 20-18, permitting random-iength wires to be matched to normal low- Z transmitter outputs. The circuit used will depend upon the length of the antenna wire and its impedance at the desired operating frequency. Ordinarily, one of the four methods shown will provide a suitable impedance match 10 an end-fed random wire, but the configuration will have to be detcrmined experimentally. For operation between 3.5 and 30 MHz , Cl can be a $200-\mathrm{pF}$ type with suitable plate spacing for the power level in use. C2 and C3 should be $500-\mathrm{pF}$ units to allow for flexibility in matching. L1, L4, and L5 should be tapped or rotary inductors with sufficient L for the operating frequency. L3 can be a tapped Miniductor coil with ample turns for the band being used. An SWR bridge should be used as a match indicator.

COUPLING THE TRANSMITTER TO THE LINE

The type of coupling system that will be needed to transfer power adequately from the final rf amplifier to the transmission line depends almosi entirely on the input impedance of the line. As shown earlier in this chapter, the input impedance is determined by the standing-wave ratio and the line length. The simplest case is that where the line is terminated in its characteristic impedance so that the SWR is 1 to 1 and the imput impedance is equal to the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a flat line are readily designed. For all practical purposes the line can be considered to be flat if the SWR is no greater than about 1.5 to 1 . That is, a coupling system designed to work into a pure resistance cqual to the line Z_{0} will have enough leeway to take care of the small variations in input impedance that will occur when the line length is changed, if the SWR is higher than 1 to 1 but no greater than I.S to 1.

Current practice in transmitter design is to

Fig. 20-19 - Simple circuits for coupling a transmitter to a balanced line that presents a load different than the transmitter output impedance. (A) and (B) are respectively series- and paralleltuned circuits using variable inductive coupling between coils, and (C) and (D) are similar but use §jxed inductive coupling and a variable series capacitor, C1. A series-tuned circuit works well with a low-impedance load; the parallal circuit is better with high-impedance loads (several hundred ohrss or more).

Fig. 20-20 - Coupling from a transmitter designed for 50 to 75 -ohm output to a cosxial line with a 3or 4-to-1 SWR is readily accomplished with these circuits. Essential difference between the circuits is $|\mathrm{A}|$ adjustable inductive coupling and (B) fixed inductive coupling with variable series capacitor.

In either case the circuit can be adjusted to give a 1-to-1 SWR on the meter in the line to the transmitter. The coil ends marked " x " should be adjacent, for minimum capacitive coupling.
provide an output circuit thet will work into such a line, usually a coaxial line of 50 to 75 ohms charactenstic impedance. The design of such output circuits is discussed in the chapier on high-frequency transmitters. If the input impedance of the transmission line that is to be connected to the transmitter differs appreciably from the value of impedance into which the transmitter output circuit is designed to operate, an impedance-matching network must be inserted between the transmitter and the line input terminals.

IMPEDANCE-MATCHING CIRCUITS FOR TRANSMISSION LINES

As shown earlicr in this chapter, the input impedance of a line that is operating with a high standing-wave ratio can vary over quite wide limits. The simplest type of circuit that will match such a range of impedances to 50 to 75 ohms is a simple series- or parallel-tuned circuit, approximately resonant at the operating frequency. If the load presented by the line at the operating frequency is low (below a few hundred ohms), a series-tuned circuit should be used. When the load is higher than this, the parallel-tuned circuit is easier to use.

Typical simple circuits for coupling between the transmitter with 50 - to 75 -ohn coaxial-line output and a balanced transmission line are shown in Fig. 20-19. The inductor L1 should have a reactance of about 60 obms when adjustable inductive coupling is used (Figs. 20-19A and 20-19B). When a variable series capacitor is used, L1 should have a reactance of about 120 ohms. The variable capacitor, C 1 , should have a reactance at maximum capacitance of about 100 ohms.

On the secondary side, L_{s} and C_{s} should be capable of being tuned to resonance at about 80 percent of the operating frequency. In the seriestuned circuits, for a given low-impedance load looser coupling can be used between LI and L_{s} as the $L_{s}-t_{0}-C_{8}$ ratio is increased. In the parallel-tuned circuits, for a given high-impedance load looser coupting can be used between L1 and L_{p} as the C_{p}-to- L_{p} ratio is increased. The constants are not critical; the rules of thumb are mentioned to assist in correcting a marginal condition where sufficient transmitter loading cannot be obtained.

Coupling to coaxial lines that have a high SWR, and consequently may present a transmitter with a load it cannot couple to, is done with an
unbalanced version of the series-tuned circuit, as shown in Fig. 20-20. The rule given above for coupling ease and L_{s}-to- C_{s} ratio applics to these circuits as well.

The most satisfactory way to set up initially any of the circuits of Fig. 20-19 or 20-20 is to connect a coaxial SWR bridge in the line to the transmitter, as shown in Fig. 20-20. The "Monimatch" type of bridge, which can handle the full transmitter power and may be left in the line for continuous monitoring, is excellent for this purpose. However, a simple resistance bridge such as is described in the chapter on measurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. To adjust the circuit, make a trial setting of the coupling (coil spacing in Figs. 20-19A and B and 20-20A, C1 setting in others) and adjust C_{s} or C_{p} for minimum SWR as indicated by the bridge. If the SWR is not close to practically 1 to 1 , readjust the coupling and retum C_{s} or C_{p}, continuing this procedure until the SWR is practically 1 to 1 . The settings may then be iogged for future reference.

In the series-tuned circuits of Figs. 20-20A and 20-20C, the two capacitors should be set at similar settings. The " $2 C_{\mathrm{s}}$ " indicates that a balanced series-tuned coupler requires twice the capacitance in each of two capacitors as does an unbalanced series-tuned circuit, all other things being equal.

It is possible to use circuits of this type without initially setting them up with an SWR bridge. In such a case it is a matter of cut-and-try until adequate power transfer between the amplifier and main transmission line is secured. However, this method frequently results in a high SWR in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is critical with frequency. The bridge method is simple and gives the optimum operating conditions quickly and with certainty.

A TRANSMATCH FOR BALANCED OR UNBALANCED LINES

Nearly all commercially made transmitters are designed to work into a 50 to 70 -ohm load, and they are not usually equipped to handle loads that depart far from these values. However, many antenna systems (the antenna plus its feed tine) have complex impedances that make it difficult. if not impossible, to load and tune a transmitter

Fig. 20-21 - The universal Transmatch shown here will couple a transmitter to almost any ansenna system. If the amateur already has a matching indicator, the Monimatch section of the circuit can be eliminated. The counter dial and knobs are James Millen \& Co. components.
properly. What is required is a coupling method to convert the reactive/resistive load to a non-reactive 50 -ohm load. This task can be accomplished with a Transmatch, a device that consists of one or more LC circuits. It can be adjusted to tune out any load reactance plus, when necessary, transforming the load impedance to 50 or 70 ohms.

As has been discussed earlier in this chapter, losses in transmission lines depend on several factors: the size of the conductors, the spacing between conductors, the dielectric material used in the construction of the feed linc, and the frequency at which the line is usod. Coaxial lines can be classed as lossy lines when compared to a low-loss tine such as open-wise feeders, at least below 100 MHz . Because losses increase as the SWR increascs, the type of line used to feed an antenns should be chosen carefully. If the transmission line has very low-loss characteristics, high standing wave ratios can be tolerated with no practical loss of power in the line.

A wire antenna, fed at the center with open-wire line, is the most efficient multiband antenna devised to date. For all practical purposes, the feed line is lossless, so extremely high SWRs can be tolerated. This should not be construed to mean that coaxial feed lines cannot be used because of a high SWR, but only the very expensive types are really suitable in this application.

Fig. 20-22 - Circuit diagram of the Transmatch.
The .001- $\mu \mathrm{F}$ capacitors used are disk ceramic.
C1 - Dual section or air variable, 200 pF per section IE. F. Johnson $154-507$ or Millen 162501.

C2 - Air variable 350 pF. (E. F. Johnson 154-10 or Millen 18520A).
CR1; CR2 - 1N34A germanium diode.
J1, J2 - Coax chassis connector, type SO-239.
d3. $\mathbf{~ 4}$, $\mathbf{J 5}$ - Isolantite faedthrough insulators.

L1. L2 - See Fig. 20-25.
L3 - Roller inductor, $28 \mu \mathrm{H}$ (E. F. Johnson 229-2031.
M1 -50 or $100 \mu \mathrm{~A}$.
R1, R2 - 68 -ohm, 1/2-watt carbon or composition.
R3 $\mathbf{- 2 5 , 0 0 0 - o h m}$ control, linear taper.
S1 - Spst toggle.
T1 - Balun transformer, see toxt and Fig. 20-23.

Fig. 20-23 - Details of the balun bifilar windings. The drawing shaws the connections required. In the actual balun, the turns should be closed spaced on the inside of the core and spread evenly on the outside.

The Transmatch shown in Fig. $20-22$ is designed to handle practically any mismatch that an amateur is likely to encounter. The unit can be used with cither open-wire feeders, balanced lines, coaxial lines, or even an end-fed single wire. Frequency range of the unit is from 3 to 30 MHz , accomplished without the use of bandswitching. Basically, the circuit is designed for use with unbalanced lines, such as "coax." For balanced lines, a 1:4 (unbalanced-to-balanced) balun is connected to the output of the Transmatch.

The chassis used for the Transmatch is made of a 16×25-inch sheet of aluminum. When bent to form a U, the completed chassis measures $16 \times 13 \times 6$ inches. When mounting the variable capacitors, the roller inductor and the balun, allow at least $1 / 2$-inch clearance to the chassis and adjoining components. The capacitors should be mounted on insulated standoff insulators. The bolun can be mounted on a cone insulator or piece of Plexiglas.

The balun requires three ferrite cores stacked for $2-\mathrm{kW}$ or two cores for $1-\mathrm{kW}$ power levels. Amidon type T-200-2 cores arc uscd in making the balun. ${ }^{1}$ Each core should be covered with two layers of 3 M No. 27 glass-cloth insulating tape. Next, the cores are stacked and covered with another layer of the tape. The winding consists of 15 bifilar turns of No. 14, Teflon-covered wire. Approximately 20 feet of wire (two 10 -foot lengths) are required.

A template for the etched-circuit Monimatch is shown in Fig. 20-25. Details for making etched circuits are given in the Construction Practices chapter. If the builder desires, a power-type bridge can be substituted. Such a unit is described in the Measurements chapter. In addition to providing standing-wave indications for Transmatch adjustment purposes, the power bridge will accurately measure transmitter output power.

For coax-to-coax feeder matching, the antenna feed line should be connected to J2 of Fig. 20-22. Cl and C 2 should be set at maximum capacitance and power applied to the transmitter. The SWR indicator should be switched to read reflected power. Then, adjust L 3 until there is a drop in the reflected reading. Cl and C 2 should then be reset, along with L3, until a perfect match is obtained. It

[^38]

Fig. 20-24 - Interior view of the Transmatch. The etched-circuit Monimatch is mounted $1 / 2$ inch above the chassis. Both C1 and C2 must be mounted on insulated stand-affs and insulated shaft couplers used between the capacitors and the panel knobs. Likewise. T1 should be installed on an insulated mounting. An isolantite cone is used in the unit shown (the balun could be mounted on a piece of Plexiglas). Feedthrough isolantite insulators, mounted through the rear deck, are used for the antenna connectors.
will be found that with many antenna systems, scveral different matching combinations can be obtained. Always use the matching setting that uses the most capacitance from C 1 and C 2 , as maximum C provides the best harmonic attenuation.

End-fed wircs should be connected to J3. Use the same adjustment procedures for setting up the Transmatch as outlined above. For balanced feeders, the feed line should be connected to J 4 and J5, and a jumper must be connected between J 3 and 14 (see Fig. 20-22 at C).

A slight modification will permit this Transmatch to be used on the 160 -meter band. Fixed capacitors, 100 pF each (Centralab type $850 \mathrm{~S}-100 \mathrm{~N}$), can be insta!led across each of the stator sections of $C 1$, providing sufficient C to tune to 1.8 MHz . But, the fixed capacitors must be removed when using the Transmatch on the other hf bands.

Fig. 20-25 - Template for the etched-circuit Monimatch, foil side shown, etched portion shaded.

A SIMPLE COUPLER FOR BALANCED LINES

Gencrally speaking, antenna balance can be neglected with many of the systems commonly used by amateurs. Such closed-loop configurations as the quad and the folded dipole tend to cancel out the effects of imbalance even though they are inherently balanced antennas in nature. Other antennas have only a limited vulnerability (the ordinary half-wave dipole for example) to imbalance effects and often can be operated with no balancing networks being necessary. However, some antennas require a balanced source and the best approach is to tailor the coupler design accordingly. These systems usually have a high input impedance also.

The coupler shown in Fig. I can be used to

Fig. 1 - Schematic diagram for the coupler.
C1 - Air variable, 325 pF (Millen 19335 or equiv.).
L1 - Air-wound inductor, 2-1/2-inch dia., 6 tpi (B\&W 3029 or equiv.), 7 inches long.
T1 - Phase-reversal transformer, stack two Amidon FT-61-601 ferrite cores and wrap with glass tape. Wind 18 turns of twisted pair made from two strands of No. 20 enam. wire twisted such that there are approximately 34 "bumps" or notches per foot as the pair is pulled between the thumb and forefinger.

To construct the twisted pair, bend a four-foot piece of wire in the middle and clamp this end in a vice. Pull the wires taut and twist slightly so that the wires come together over the antire length. Roll the free ends into a ball large enough to be clamped in the chuck of a small hand-powered drill. Twist stowly until the desired pitch is obtained.
match the transmitter to a balanced load with a high input impedance. Typical examples would be short dipoles fed with short lengths of open-wire line or a half-wave dipole fed with a quarter-wave section of high-impedance line. For instance, the coupler was used with an 80-meter dipole fed with 67 -feet of 450 -ohm line on both 80 and 160 meters with the values given for L 1 and C 1 .

In most instances, values for this type of coupler are not critical and any number of combjnations could be used. If desired, a link could be substituted for the phase-reversing transformer. However, the latter provides a simple means for getting a voltage with the necessary 180-degree phase shift for the opposite half of a balanced load. This allows tap adjustment over a wide range of values eliminating the need for changing coils (usually necessary with such couplers). Recommended power limit with the components given would be approximatcly 100 watts which means the coupler should handle any transmitter in the 150-watt, PEP class without any difficulty on either phone or cw .

Construction of the coupler. Note method of mounting T1 (seen to the left of the coil L1).

Adjustment of the coupler should proceed as follows. First, tune the receiver to the band segment of interest. Next, adjust the taps and tune Cl until sigrals begin to peak up (the taps should be adjusted equally with the same number of turns from ground to the outer taps on each side and likewise with the inner ones). If a high-impedance load is suspected, start with the inner taps close to the ground connection and adjust the outer taps. With medium-impedance levels, the inner taps will be farther out. Finally, turn the transmitter on and adjust for minimum SWR with the meter connected between the transmitter and the coupler. With the antenna mentioned earlier, only minor retuning of C 1 was required to cover the 75 -meter phone band.

A VARIABLE-INDUCTOR ANTENNA COUPLER

Antenna couplers come in all sizes and circuit configurations. The design described here is different than most because it uses a fixed-value capacitor and an inductor which is adjustable. The system may be used on only 80 meters with a half-wavelength dipole, center fed with 300 -ohm TV lead-in or 450 -ohm open-wire line. Other antennas are unsuitable. The purpose for this description is to stimulate interest in variablecapacitor substitutes rather than in antenna tuning nexibility. No doubt, one could change the inductor and capacitor values for operation on any one of the hf bands but no information will be given here.

Electrical Design

The circuit shown in Fig. 1 is similar to ones shown earlicr in the chapter. The two inductors are used to provide excellent circuit balance for open-wire fed antennas. A fixed-value capacitor is fabricated from aluminum plates and attached to the rear panel on ceramic pillars as shown in the photograph. The capacitance value is presel with the antenna connected and the variable inductors set to midrange. Capacitor adjustment is accomplished by adding or removing plates. Proper phase shift is given by a phase-reversal transformer at the input side of the tuner network. The transformer is attached to the inductors a few turns from the cold end at approximately the 100 -ohm points. The two 100 -ohm taps in paraliel provide a 50 -ohm input impedance for the coupler. The system shown here has a range of about 500 kHz when set properly at the center of the 80 -meter band with all of the adjusting being accomplished by the variable inductors. The advantage of a one-knob Transmatch is obvious.

Inside view of the variable inductor antenna coupler. A shiald is placed between the two inductors. Care must be taken to assure that moving wires aftached to the inductors have a minimum of stress placed on them during dial rotation.

Mechanical Details

Most of the construction details may be viewed in the photograph. A U-shaped enclosure is used with a shield located at the center between the two coils. A long phenolic rod, coupled to the vernier dial mechanism, runs the entire length of the chassis and is held in place at the rear with a shaft bushing. These are smaller in diameter than the fixed portion to allow free movement through a complete 180 -degree turn.

The rotating inductors are placed in the center of each coil section to provide maximum inductance change with rotation. Several turns are removed at the center of each fixed coil section to allow the phenolic shaft to pass through frecly. High-voltage test-probe wire is used for the connections because it is flexible and will withstand the high voltages present in a coupler of this type. The unit shown here is able to handle output from a 2 -kilowatt amplifier.

Fig. 1 - Circuit diagram for the antenna coupler. L1. L2 - 12 turns, six each side of center, 2-1/2-inch dia., 12 tpi, with tap at five turns from cold end. Rotating section is six tums, 2-inch dia., 12 tpi.
T1 - 11 turns of twisted No. 14 PVC covered wire on a T-200 core from Amidon.

HF Antennas

HF ANTENNAS

An antenno system can be considered $t 0$ include the antenna proper (the portion that radiates the if energy), the feed line, and any coupling devices used for transferring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antenna proper, and in many cases will show popular types of lines, as well as line-to-antenna couplings where they are required. However, it should be kept in mind that any antenna proper can be used with any type of fecdline if a suitable impedance matching is used between the antenna and the line.

ANTENNA SELECTION AND CONSIDERATIONS

In choosing an antenna one must base his selection upon available space, the number of bands to be operated, and the type of propagation he will most often make usc of. Frequently, because of limitations in available antenna space, the hf operator must settle for relatively simple antenna systems. It is wise to choose an antenna that will offer the best performance for its size. The "compromise antenna" - those offering multiband possibilities, and those using physically shortened elements - cannot perform as efficiently as full-size antennas cut for a single band of operation. However, many of the so-called compromise antennas are suitable for DX work even though they have less gain than other types. Ideally, one should attempt to have separate antennas - full size - for the bands to be operated. Also, erecting the antennas as high as possible, and away from trees and man-made objects, will greatly enhance their operational cffectiveness.

In general, antenna construction and location become more critical and important on the higher frequencies. On the lower frequencies (1.8, 3.5, and 7 MHz) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 MHz they may be all-important.

Definitions

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus a vertical antenna radiates vertically polarized waves, while a horizontal antenna radiates horizontally polarized waves in a direction broadside to the wire and vertically polarized waves at high vertical angles off the ends of the wire. The wave from an antenna in a slanting position, or from the horizontal antenna in direc-
tions other than mentioned above, contains components of both horizontal and vertical polarization.

The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna.

The impedance of the antenna at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antenna, since it constitutes the load to the line offered by the antenna. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antenna is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the temminated rhombic and terminated " V " have substantially uniform current along their length.

The ratio of power required to produce a given field strength with a "comparison" antenna to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antenna. The field is measured in the optimum direction of the antenna under test. The comparison antenna is gencrally a half-wave antenna at the same height and having the same polarization as the antenna under consideration. Gain usually is expressed in decibels.

In unidirectional beams (antennas with most of the radiation in only one direction) the front-toback ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-back ratio is usually expressed in decibels.

The bandwidth of an antenna refers to the frequency range over which a property falls within acceptable limits. The gain bandwidth, the front-to-back-ratio bandwidth and the standing-waveratio bandwidth are of prime interest in amateur work. The gain bandwidth is of interest because, generally, the higher the antenna gain is the namower the gain bandwidth will be. The SWR bandwidth is of interest because it is an indication
of the transmission-line efficiency over the useful frequency range of the anterna.

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattem of the antenna. The free-space pattern of an antenna is almost impossible to obtain in practice, except in the vhf and uhf ranges. Below 30 MHz , the height of the antenna above ground is a major factor in determining the radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattem and ground reflections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly reflecting ground is such that the original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 21-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas. As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary importance, especially at the higher frequencies. It is advantageous, therefore, to erect the antenna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the antenna should be high - at least one-half wavelength at 14 MHz , and preferably three-quarters or one wavelength, and at least one wavelength, and preferably higher, at 28 MHz . The physical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half wavelength at 14 MHz is only 35 feet, approximately, while the same height represents a full wavelength at 28 MHz . At 7 MHz and lower frequencies the higher radiation angles are effective, so that again a useful antenna height is not difficult to attain. Heights between 35 and 70 feet are suitable for all bands, the higher figures being preferable. It is well to remember that most simple horizontally polarized antennas do not exhibit the directivity they are capable of unless they are one half wavelength above ground, or greater, at their operating frequency. Therefore, with di-
pole-type antennas it is not important to choose a favored broadside direction unless the antenna is at least one-half wavelength above ground.

Imperfect Ground

Fig. 21-1 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrecs, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expected at angles between 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few fect below it, depending upon the characteristics of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the antenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antenna varies with height. The theoretical curve of variation of radiation resistance for a very thin half-wave antenna above perfectly reflecting ground is shown in Fig: 21-2. The impedance approaches the free-space value as the height becomes large, but at low heights may differ considerably from it.

Fig. 21-1 - Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights. This chart is based on perfectly conducting ground.

Fig. 21-2 - Theoretical curve of variation of radiation resistance for a very thin half-wave horizontal antenna as a function of height in wavelength above perfectly reflecting ground.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between 3.5
and 30 MHz , when considering sky-wave communications. However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical half-wave or quarter-wave antenna will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical antenna would be preferred because it would concentrate the radiation horizontally, and this low-angle radiation is preferable for practically all work. Another advantage to the use of a vertically polarized antenna, especially at $1.8,3.5$, and 7 MHz , is that local communications during night-time hours are improved. The vertical antenna is not as subject to signal fading as is the horizontal antenna.

THE HALF-WAVE ANTENNA

A fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more-complex forms of antennas are constructed. It is known as a dipole antenna.

The length of a half-wave in space is:

$$
\text { Length }(\text { feet })=\frac{492}{\text { Freq. }(\mathrm{MHz})}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fig. 21-3, where K is a factor that must be multiplied by the half wavelength in free space to obtain the resonant antenna length. An additional shortening effect occurs with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas for frequencies up to 30 MHz :

$$
\text { Length of half-wave on tenna (feet) }=
$$

$$
\frac{492 \times 0.95}{\text { Freq. }(\mathrm{MHz})}=\frac{468}{\text { Freq. } \mathrm{MHz})}
$$

Example: A balf-wave antenna for 7150 kHz \{7.15 MHz) is $\frac{468}{7.15}=65.45 \mathrm{fcel}$, or 65 feet 5 inches.

Above 30 MHz the following formulas should be used, particularly for antennas constructed from rod or tubing. K is taken from Fig. 21-3.

$$
\begin{gathered}
\text { Length of half-wave antenne }(\text { feet })= \\
\frac{492 \times K}{\text { Freq. }(\mathrm{MHz})} \\
\text { or length } \text { (inches) }=\frac{5905 \times K}{\text { Freq. }(\mathrm{MHz})}
\end{gathered}
$$

Example: Find the length of a half wavelength antenna at 28.7 MHz . if the antenna is made of $1 / 2$-inch diameter tubing. At $28.7 . \mathrm{MHz}$, a half wavelength in space is

$$
\frac{492}{28.7}=17.14 \text { feet }
$$

from Equation 21-A. Ratio of half wavelength to conductor diameter (changing wavelength to inches) is

$$
\frac{(17.14 \times 12)}{0.5}=411
$$

From Fig. 21-3, $K=0.97$ for this ratio. 'the length of the antenna, (rom Equation 21-C, is

$$
\frac{(492 \times 0.97)}{28.7}=16.63 \mathrm{fee}
$$

of 16 feet $71 / 2$ inches. The answer is obtained directly in inches by substitution of Equation 21-D:

$$
\frac{(5205 \times 0.97)}{28.7}=199.6 \text { trclies. }
$$

Fig. 21-3 - Effect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half wavelength (Equation 21-A). The effect of conductor diameter on the center impedance also is shown.

Fig. 21-4 - The above scales, based on Eq. 21-B, can be used to determine the length of a half-wave antenna of wire.

Current and Voltage Distribution

When power is fed to an antenna, the current and voltage vary along its length. The current is maximum (loop) at the center and nearly zero (node) at the ends, while the opposite is true of the rf voltage. The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not zero at its node because of the resistance of the antenna, which consists of both the rf resistance of the wire (ohmic resistance) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antenna. The radiation resistance is the equiva lent resistance that would dissipate the power the antenna radiates, with a current flowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a half-wavelength antenna is ordinarily small enough, compared with the radiation resistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitely-thin half-wave antenna in free-space is about 73 ohms.

Fig. 21-5 - The free-space radiation pattern of a half-wave antenna. The antenna is shown in the vertical position, and the actual "doughnut" pattern is cut in half to show how the line from the center of the antenna to the surface of the pattern varies. In practice this pattern is modified by the height above ground and if the antenna is vertical or horizontal. Fig. 21-1 shows some of the effects of height on the vertical angele of radiation.

The value under practical conditions is commonly taken to be in the neighborhood of 60 to 70 ohms , although it varies with height in the manner of Fig. 21-2. It increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as indicated in Fig. 21-3. If the diameter of the conductor is increased the capacitance per urit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C ratio causes the Q of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is qreater as the diameter is increased, and is a property of some importance at the very high frequencies where the wavelength is small.

Fig. 21-6 - Illustrating the importance of vertical angle of radiation in determining antenna directional effects. Off the end, the radiation is greater at higher angles. Graund reflection is neglected in this drawing of the
 free-space pattern of a horizontal antenna.

Fig. 21-7 - Horizontal pattern of a horizontal half-wave antenna at three vertical radiation angles. The solid line is relative radiation at 15 degrees. Dotted lines show deviation from the 15 -degree pattern for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle considered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will be the same. The arrow indicates the direction of the horizontal antenna wire.

Radiation Characteristics

The radiation from a dipole antenna is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 21-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown, then the field strength will be uniform in all horizontal directions; if the antenna is hosizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at various vertical angles from a half-wavclength horizontal antenna is indicated in Figs. 21-6 and 21-7.

FEEDING A DIPOLE ANTENNA

Since the impedance at the center of a dipole is in the vicinity of 70 ohms , it offers a good match for 75 -ohm transmission lines. Several types are available on the market, with different powerhandling capabilities. They can be connected in the center of the antenna, across a small strain insulator to provide a convenient connection point. Coaxial line should be used with a $1: 1$ balun transformer to assure symmetry. Direct feed (without a balun) is also acceptable, but may cause a slight skew in the radiation pattern. The transmission line should be run away at right angles to the antenna for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pickup from the antenna. The antenna length is calculated from Equation 21-B, for a half wavelength anterna. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the overall length measured from the loop through the insulator at each end. This is illustrated in Fig. 21-8.

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm linc. Such an antenna is shown in Fig. 21-9. The open-wire line shown in Fig. 21-9 is made of No. 12 or No. 14 crameled wire, separated by lightweight spacers of Plexiglas or other material (it doesn't have to be a low-loss insulating material), and the spacing can be on the order of from 4 to 8 inches, depending upon what is convenient, and what the operating frequency is.

Fig. 21-8 - Construction of a dipole fed with 75 -ohm line. The length of the antenna is calculated from Equation 21-8 or Fig. 214.

At $14 \mathrm{MHz}, 4$-inch separation is satisfactory, and 8 -inch spacing can be used at 3.5 MHz .

The half-wavelength antenna can also be made from the proper length of 300 -ohm line, opened on one side in the conter and connected to the feedline. After the wires have been soldered together, the joint can be strengthened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of Plexiglas can be devised.

Similar in some respects to the two-wire folded dipole, the three-wire folded dipole of Fig. 21-10 offers a good match for a $600-\mathrm{hm}$ line. It is favored by amateurs who prefer to use an openwire line instead of the 300 -ohm insulated line. The three wires of the antenna proper should all be of the same diameter.

Another method for offering a match to a 600 -ohm open-wire line with a half wavelength antenna is shown in Fig. 21-11. The system is called a delta match. The line is "fanned" as it approaches the antenna, to have a gradually increasing impedance that equals the antenna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is necessary. The length of the antenna, L, is calculated from Equation $21-B$ or Fig. 214. The length of section C is computed from:

$$
C(\text { feet })=\frac{118}{\text { Freq. }(\mathrm{MHz})}
$$

The feeder clearance, E, is found from

$$
E(\text { feet })=\frac{148}{\text { Freq. }(\mathrm{MHz})}
$$

$$
\text { Example: For a frequency of } 7.1 \mathrm{MHz} \text {, the length }
$$

$L=\frac{468}{1.1}=65.91$ feet, os 65 feet 11 inches.
$C=\frac{118}{7.1}=16.62$ feet, or 16 feet 7 inches.
$E=\frac{148}{7.1}=20.84$ feef, or 20 feel 10 inches.

Fig. 219 - The construction of an open-wire or twintine folded dipole fed with 300 -ohm line. The length of the antenna is calculated from Equation 21-B or Fig. 214.

Fig. 21-10 - The construction of a 3wirs folded dipole is similar to that of the 2 wire folded dipole. The end spacers may have to be slightly stronger than the others because of the greater compression force on them. The length of the antenna is obtained from Equation 21-B or Fig. 21-4. A suitable line can be made from No. 14 wire spaced 5 inches, or from No. 12 wire spaced 6 inches.

Fig. 21-11 - Delta-matched antenna systems. The dimensions, C, D, and E are found by formulas given in the text. It is important that the matching section. E, come straight away from the antenna.

Fig. 21-12 - The half-wave antennes can be fed at the center or at one end with openwire feeders. The length of the antennas can be computed from Equation 21-8 or Fig. 21-4.

Fig. 21-13 - Nethod of supporting a half-wave dipale from a single upright such as a trea or wooden mast. Maximum directivity will be in the direction of the arrow, and the signal will be vertically polarized at a fairly low radiation angle. By having anchor stakes at different compass points, the directivity can be changed to favor different DX regions.

Since the equations hold only for 600 -ohm line, it is important that the line be close to this value. This requires 5 -inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-inch spaced No. 16 wire.

If a half-wavelength antensa is fed at the center with other than $75-\mathrm{ohm}$ line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as described in Chapter 20. However, in many cases it is not convenient to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antenna at the center. Where multiband operation is desired (to be discussed later) or when the antenna must be fed at one end by a transmission line, an open-wire line of from 450 to 600 ohms impedance is generally used. The impedance at the end of a half-wavelength antenns is in the vicinity of several thousand ohms, and hence a standing-wave ratio of 4 or 5 is not unusual when the line is connected to the end of the antenna. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the usc of ceramic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers boiled in paraflin are satisfactory. Mechanical details of half wavelength anternas fed with open-wire tincs are given in Fig. 21-12.

THE "INVERTED V" ANTENNA

A popular nondirectional antensa is the socalled "inverted V" or "drooping doublet." Its principal advantages are that it requires but one supporting structure, and that it exhibits more or less omnidirectional radiation characteristics when cut for a single band. The multiband version of Pig. 21-14 is somewhat directional above 7 MHz , off
the ends (not broadside) of the antenna. This is because the legs of the " V " are long in terms of wavelength at 14,21 and 28 MHz . The antenna offers a good compromisc between vertical and horizontal polarization, thus making it effective for local as well as DX communications. Its low-angle radiation compares favorably with that of a full-

size one quarter wavelength vertical worked against ground. When fed as shown in Fig. 21-14 it serves as an excellent multiband anterna.

For single-band operation the " V " is cut to the same length as a half-wavelength doublet, and is fed with 52 -ohm coaxial line. Its center (feed

Fig. 21-14 - Details for an Inverted-V antenna (sometimes called a "drooping doublet"). At A, a wooden mast supports the antenna at its center. Open-wire feeders permit the antenna to be used for multiband operation. If this is done, a Transmatch of the type shown at B should be used to tune the system to resonance, and to match the feeder to the transmitter and receiver.
point) should be as high above ground as possible, preferably one-quarter wavelength or more at the operating frequency. The apex angle should be as close to 90 degrees as possible, but in practice any angle between 90 and 120 degrees provides good results. Less than a 90 -degree angle causes excessive cancellation of the signal, and should be avoided.

Though some operators have reported satisfactory results when supporting the " V " from a metal mast or tower, it is best to use a wooden mast to keep the field of the antenna unobstructed. Good results can be had by supporting the center of the antenna from a limb on a tall tree, provided the area below the limb is completely open.

Single-band, coax-fed inverted Vs will normally require some pruning to make them resonant at the desired frequency. The standard doublet formula is recommended for a starting point, but because the ends of the " V " are normally in close proximity to ground this antenna will be slightly shorter than a horizontal dipole. No formula can be given because of the variations in the ground propertics in different areas. Also, the actual height above ground in a particular installation, plus the proximity of the ends of the antenna to nearby objects, will have a marked effect upon resonance. The best way to tune the antenna is to insert an SWR bridge in the coax feed line and prune an inch at a time off each end of the "V" until the lowest SWR is obtaince.

LONG-WIRE ANTENNAS

An antenna is a long wire only when it is long in terms of wavelength. An antenna, simply becanse it is a long piece of wire is not a long-wire antenna. Space permitting, these antennas arc effective for DX work, and when erected high above ground offer considcrable power gain over a dipole. The longer the antenna, the greater the gain. Maximusn directivity occurs off the ends of the antenna, and not off the broad side of it. A long-wire antenna, unless terminated at the far end in its characteristic impedance by a noninductive resistance, is bidirectional. A terminated long wire is directional only off the terminated end. This antenna radiates minor lobes at many wave angles in the vertical and horizontal planes. The longer the wire, the greater and more complex the lobes become. It is not uncommon to find a long-wire antenna outperforming a beam antenna on DX contacts under certain propagation conditions. This is because it can respond to a variety of incoming wave angles (and car radiate a signal in a like manner), which is not the case with a well-designed beam-type antenna.

LongWire Characteristics

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half wavelength.

Current and Voltage Distribution

Fig. 21-15 shows the cument and voltage distribution along a wire operating at its fundamental frequency (where its length is cqual to a half wavelength) and at its second, third, and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 MHz , the current and voltage distribution will be as shown at A. The same antenna excited at 14 MHz would have current and voltage distribution as shown at B. At 21 MHz , the third harmonic of 7 MHz , the current and voltage distribution would be as in C ; and at 28 MHx , the fourth harmonic, as in D . The number of the harmonic is the number of half waves

2ND KARMONIC (FULL-WAVE)

4TM HARMONIC (2-WAVE)

Fig. 21-15 - Standing-wave current and voltage distribution along an antenna when it ls operated at various harmonics of its fundamental resonant frequency.
contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antenna (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents flowing in the same direction are in phase; in opposite directions, ous of phase.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these cffects are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(\mathrm{~N}-0.05)}{\text { Freq. }(\mathrm{MHz})}
$$

where N is the number of half-waves on the antenna.

Example: As antenna 4 half-waves long at 14.2 MHz woold be

$$
\begin{aligned}
& \frac{492(4-0.05)}{14.2}=\frac{392 \times 3.95}{14.2} \\
= & 136.7 \text { feet. or } 136 \text { feet } 8 \text { inches }
\end{aligned}
$$

It is apparent that an antenna cut as a half wave for a given frequency will be slightly off resonance at exactly twice that frequency (the second harmonc), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, except for a possible unbalance in the feeder system and consequent radiation from the feed line. If the antenna is fed in the exact center, no unbalance will occur at any frequency, but end-fed systems will show an unbalance on all but one frequency in each harmonic range.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes higher as the antenna length is increased. Also, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in other directions. Fig. 21-16 shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Directional Characteristics

As the wire is made longer in terms of the number of half wavelengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antenna, the directional characteristic splits up into "lobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Methods of Feeding

In a long-wise antenna, the currents in adjacent half-wave sections must be out of phase, as shown in Fig. 21-15. The foeder system must not upset this phase relationship. This is satisfied by feeding the antenna at either end or at any current loop. A two-wire feeder cannot be inserted at a current node, however, because this invariably brings the currents in two adjacent half-wave sections in phase. A long-wire antenna is usually made a half wavelength at the lowest frequency and fed at the end.

MULTIBAND ANTENNAS

One of the most simple antenna systems for multiband use is one which is a half wavelength long at the lowest operating frequency, and which is fed either at the center, or at one end with open-wire tuned feeders, Fig. 21-12. The center-fed system is superior to the end-fed type in that it will have less feeder radiation, but the end-fed variety is often more practical from an installation view-
point. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the length of the anterna is a half wavelength. The end-fed antenna acts like a long-wire antenna on all bands (for which it is longer than a half wavelength), but the center-fed one acts like two antennas of half that length fed in phase. For

TABLE 21.1			
Multiband Tuned-Line-Fed Antennas			
Antenna Length (Fr.)	Feeder Length (Fr.)	Band	Type of Coupling Circuil
With end feed:			
135	45	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Series Parallel
67	45	$\begin{gathered} 7-21 \\ 28 \end{gathered}$	Series Parallel
With center feed:			
135	42	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Parallel Series
135	77 1/2	3.5-28	Parallel
67	$421 / 2$	$\begin{gathered} 3.5 \\ 7-28 \end{gathered}$	Series Parallel
67	$651 / 2$	$\begin{gathered} 3.5,14,28 \\ 7,21 \end{gathered}$	Parallel Series

Antenna lengths for end-fed antennas are approximate and should be cut to formula length at favorite operating frequency.

Where parallel tuning is specified, it will be necessary in some cases to tap in from the ends of the coil for proper loading - see Chapter 20 for examples of antenna couplers.
example, if a full-wavelength antenna is fed at one end, it will have a radiation pattern somewhat like a four-leaf clover. With either of these multiband antennas the SWR will never be 1 , but these antennas will be efficient provided low-loss tuned feeders are used.

Since multiband operation of an antenna does not permit matching of the feed line, some attention should be paid to the length of the feed line if convenient transmitter-coupling arrangements are to be obtained. Table $21-1$ gives some suggested antenлa and feeder length for multiband operation. In general, the length of the feed line can be other than that indicated, but the type of coupling circuit may change.

Since open-wire linc is recommended tor this antenna, TV-type (open-wire) 300 - or 450 -ohm feeders are satisfactory. Home made open-wire line can be made up from lengths of No. 14 or 12 soft-drawn copper wire. The spacers can be made from Plexiglas strips or similar low-loss material. Some amateurs have had success using plastic hair curters or plastic clothespins. Any line spacing from 1 to 6 inches will give satisfactory results since the line impedance is not an important consideration with this antenna.

If antenna space is at a premium, a shortened version of the multiband antenna can be erected. The feeders are lengthened, and the flat-top portion is shortened as shown in Fig. 21-17. The antenna can be as short as a quarter wavelength long, but will still radiate fairly well if tuned to resonance. This method will not give as good results as the full-size version, but will still be useful. A Transmatch tuner of the type described in Chapter 20 can be used with this system.

MULTIBAND OPERATION WITH COAXIAL LINE FEED

The proper use of coaxial line requires that the standing-wave ratio be held to a low value, preferably below 3:1. Since the impedance of an ordinary antenna changes widely from band to band, it is not possible to feed a simple antenna with coaxial line and use it on a number of bands without tricks of some kind. One exception to this is the use of $75-\mathrm{ohm}$ coaxial line to feed a $7-\mathrm{MHz}$ half-wave antenna, as in Fig. 21-18; this antenna can also be used on 21 MHz and the SWR in the line will not run too high.

However, the diagram shows a separate dipole element for $21-\mathrm{Mliz}$ use. Though the $7-\mathrm{MHz}$ element will operate as a $1 / 2$ wavelength doublet on 21 MHz , and will present a low impedance feed point at its center, some may wish to add a separate dipole for $21 / \mathrm{MHz}$ operation. This antenna is capable of radiating harmonics from the transmittor, so it is important to make sure the transmitter output is clean. A coax-to-coax type antenna coupler can also be installed at the transmitter end to help reduce harmonic radiation from the antenna.

A MULTIBAND "TRAP" ANTENNA

Another method of obtaining multiband operation from a single antenna, with a single feed line, is the use of parallel-tuned traps in each leg of a two-wire doublet. If the traps are installed in the right points of the antenna they "divorce" the remainder of the antenna from the center portion as the transmitter is changed to operate a higher

Fig. 21-16 - Curve A shows variation in radiation resistance with antenna length. Curve B shows power in lobes of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half wave antenna.

Fig. 21-17 - Practical arrangements of a shortened antenna. When the total length, $A+B+B+A$, is the same as the antenna length plus twice the feeder length of the center-fed antennas of Table 21-1, the same type of coupling circuit will be used. When the feeder length or antenna length, or both, makes the sum different, the type of coupling circuit may be different but the effectiveness of the antenna is not changed, unless $A+A$ is less than a quarter wavelength.
band. On the lowest operating band the traps act as loading inductors, thus allowing a shorter overall length for the doublet than would be possible if it were cut for use without the traps.

The trap-antenna concept has been adopted by several manufacturers who produce multiband beam antennas, multiband doublets, and vertical antennas for several bands of operation.

The antenna of Fig. 21-19 may be of interest to those amateurs not having sufficient room to erect a full-size 80 -meter doublet. The overall length of this system is 106 feet. If need be, the ends can be bent slightly downward so that the horizontal portion will occupy even less space. It is best, however, to keep the entire antenna horizontal if possible. The antenna is fed with 75 -ohm coax, or balanced line of the same impedance. The latter is recommended, or system balance can be enhanced by using a $1: 1$ balun transformer at the feed point if coaxial line is used. This antenna is an adaptation of the W3DZZ design described in the ARRL Antenne Book.

As shown in Fig. 21-20, each trap is literally built around a "strain" insulator. With this insulator, the hole at one end is at right angles to the hole at the opposite end, and the wires are fastened as illustrated in Fig. 21-21. This style of insulator has greater compressive strength than tensile strength and will not permit the antenna to

Fig. 21-18 - Illustration of a multiband coax-fed antenna. Wooden support poles are recommended so that they will not interfere with the radiation pattern of the antenna. At B, a representative diagram of a coax-to-coax coupler that will reduce hammonic rediation from the system. It should be installed in the operating room, near the transmitter, and adjusted for a 1:1 SWR.
fall should the insulator break. There is plenty of space inside the inductor to install the insulator and the trap capacitor. The plastic protective covers are not essential, but are used to protect the traps from ice, snow, and soot which could cause a deterioration in performance.

Electrically, each trap consists of a $50-\mathrm{pF}$ capacitor which is shunted by a $10 \mu \mathrm{H}$ inductor. A Centralab 850S-50Z capacitor is used. It is rated at 7500 volts, and should safely handle a kilowatt. Miniductor coil stock is used for the inductor. Those wishing to optimize the antenna for a specific portion of the 40 -meter band can experimentally adjust the number of turns in the trap coil for resonance in the desired segment. Similarly, the end sections of the dipole can be adjusted for lowest SWR in the portion of the 80 -meter band most favored. With the dimensions given in Fig. 21-19, the antenna performs well from 3.5 to 30 MHz . The lowest SWR on 80

Fig. 21-19 - Sketch of a trap dipole for use on 80 through 10 meters. SWR on all of the bands is less than 2.5:1. With the dimensions given here the SWR rises at each end of the 80 -meter band, but is approximately 1.5:1 at the center of the band. The $10-\mu \mathrm{H}$ trap coils consist of 15 turns No. 12 wire, 2 1/2 inches in diameter, 6 turns per inch. Use 15 rurns from Polycoils No. 1774, B\&W 3905-1, or Air-Dux 2006T. Trap capacitors are Centralab 850S-50Z. The traps are tuned to resonance at 7.1 MHz .

5-BAND TRAP DIPOLE

Fig. 21-20 - Photo of a typical trap. The unit shown here is cut for resonance at 14 MHz , but construction techniques are the same as for the traps used in the antenna of Fig. 21-19. A waatherproof cover can be made from plastic tubing, sheeting which is heated and formed, or from a plastic refrigerator container. The capacitor and strain insulator are inside the coil.

Fig. 21-21 - Method of connecting the antenna wire to the strain insulator. The antenna wire is cut off close to the wrap.
meters occurs at midband. SWR on all other bands is less than 2.5 to 1 , an acceptable figure for all but the most critical operator. Most modernday transmitters will load into this antenna without difficulty.

Trap Adjustment

As a preliminary step, loops of No. 12 wire are fitted to one of the cgg insulators in the normal manner (sec Fig. 21-21), except that after the wraps are made, the end leads are snipped off close to the wraps. A capacitor is then placed in position and bridged with short leads across the insulator and soldered sufficiently to provide temporary support. The combination is then slipped inside about 10 turns of the inductor, one end of which should be soldered to an insulator-capacitor lead. Adjustment to the resonant frequency can oow proceed, using a grid-dip meter.

Coupling between the GDO and the trap should be very loose. To assure accuracy, the station receiver should be used to check the GDO frequency. The inductance should be reduced 1/4 turn at a time. If one is careful, the resonant frequency can easily be set to within a few kilohertz of the chosen figure.

The reason for snipping the end leads close to the wraps and the inclusion of the loops through the egg insulator soon becomes apparent. The resonant frequency of the capacitor and inductor
alone is reduced about 10 kHz per inch of end lead length and about 150 kHz by the insulator loops. The latter add approximately 2 pF to the fixed capacitor value.

Assembly

Having determined the exact number of inductor tums, the trap is taken apart and reassembled with leads of any convenient length. One may, of course, connect the entire lengths of the antensa sections to the trap at this time, if desired. But, if more convenient, a foot or two of wire can be fastened and the remaining lengths soldered on just before the antenna is raised.

The protective covers are most readily formed by wrapping two tums (plus an overlap of $1 / 2$ inch) of 0.020 -inch polystyrene or Lucite sheeting around a 3 -inch plastic disk held at the center of the cylinder so formed. The length of the cover should be about 4 inches. A very small amount of plastic solvent (a cohesive cement that actually softens the plastic surfaces) should then be applied under the edge of the overlap and the joint held firmly for about two minutes to insure a strong. tight seal. The disk is pushed out and the inner seam of the sheeting sealed.

The trap is then placed in the plastic cylinder and the end disks marked where the antenna wires are to pass through. After drilling these holes, the disks are slipped over the leads, pressed into the ends of the cylinder and a small amount of solvent applied to the periphery to obtain a good seal.

Some air can flow in and out of the trap through the antenna-wire holes, and this will prevent the accumulation of condensation.

AN END-FED HERTZ

One of the more simple multiband antennas is the end-fed Hertz of Fig. 21-22. It consists of an end-fed length of No. 12 wire, 130 feet long. This type of antenna performs in the same manner as the end-fed half-wave system of Fig. 21-12B, but has nо feeder. One end of the wire connects directly into an L-network impedance matchex, as shown in the diagram. This type of antenna is very convenient for those who have their stations on the top floor of the house, thus enabling the user to bring one end of the antenna in through a window and to the coupler. Ideally, the entire antenna should be in a horizontal plane for best results. However, either end can be bent to make the system fit into whatever space is ảvailable. First-floor diwellers can drop the fed end of the wire to the window of the radio room, as shown in Fig. 21-22A. Or, the wire can be kept straight and rise diagonally to the support at the far end. Height is important with antennas of this type, so an effort should be made to get the system as high above ground as possible, and clear of power lines and other structures.

This antenna is intended for operation from 3.5 to 28 MHz . A coupler of the kind shown in Fig. 21-43 (L-Network Coupler) will match the antenna on all of the hf amateur bands mentioned. It will also perform well as an end-fed quarter wavelength on 1.8 MHz if the reactance is tuned out by means

END-FED HERTZ

Fig. 21-22 - Diagram of an end-fed Hertz. It is cut for the lowest desired operating frequency (1/2 wavelength), and is operated on its harmonic frequencies on the remaining bands above. An L-network is used to match it to 50 - or 75 -ohm unbalanced transmitter terminals. At B, schematic representation of an L-network tuner. The value of L and C is adjusted until a $1: 1$ match is obtained.
of a $1500-\mathrm{pF}$ series variable capacitor. A good earth ground will be needed for proper operation on 1.8 MHz . For hf-band use, a good earth ground is also important in order to keep unwanted of voltages from appearing on the transmitter and receiver chassis. No one wants (or needs) a "hot" key or microphone. Sometimes a good water-pipe ground is sufficient for preventing rf potentials on the equipment.

It must be remembered that the ends of this antenna are voltage points (high impedance), and bringing the end of the antenna into the "shack" can often introduce of into the equipment as mentioned. During phone operation the if can get into the microphone circuit and cause howling and
hum if the ground system is not used. Similarly, the operation of some electronic keyers can be made erratic by the introduction of if chassis cuments. The operator, therefore, may wish to locate the tuner at the window and have the ham station across the room at some distant point. If this is done, coaxial cable can be used to connect the station to the tuner. Operation with this antenna at W1CKK has been without problems for nearly three years, operating all bands with a kilowatt of power. The fed end of the wire is three feet from the station equipment. A water pipe and an earth ground are used. The L network provides a $1: 1$ match on all of the bands, and DX operation has been quite successful on the 20,15 - and 10 -meter bands. While using a parallel-tuned antenna coupler, successful 6 - and 2 -meter operation has been realized.

It should be remembered that the antenna will perform as a long wire on those bands above 3.5 MHz . At the higher end of the hf range particularly 15 and 10 meters - the antenna will tend to be directional off its eads (bidirectional), and will begin to have some gain. It exhibits more or less omnidirectional characteristics on 7 and 14 MHz , the pattern being somewhat like the shape of a four-leaf clover. There will not be much directivity on 3.5 MHz unless the antenna is at least a half wavelength above ground at that frequency.

A BROAD-BAND DIPOLE

Most untuned doublet antennas are not broad enough to provide a low SWR across an entire amateur band. This is a particularly troublesome situation on the 80 and 40 -meter bands. The antenna of Fig. 21-23, sometimes called a "double-bazooka" antenna, was developed by the staff of M.I.T. for radar use, and was later popularized by W8TV for amateur use (QST, July 1968). An 80 -meter version of this system, cut for

Fig. 21-23 - Details for building a broad-band dipole. The builder may choose to employ other methods for joining the sections, but the illustrations at B and C represent one of the better, more secure techniques.
3.7 MHz . provides an SWR of less than 2:1 across the entire band, and shows a $1: 1$ reading at 3.7 MHz . SWR at 3.5 MHz is $1.7: 1$, and is $1.9: 1$ at 4 MHz.

The antenna consists of a half-wavelength section of coax line with the sheath opened at the center and the feed line attached to the open ends of the sheath. The outside conductor of the coax thus acts as a half-wave dipole, in combination with the open-wire end sections of the antenna. The inside sections, which do not radiate, are quarter-wave shorted stubs which present a very high resistive impedance to the feed point at resonance. At frequencies off resonance the stub reactance changes in such a way as to tend to cancel the antenna reactance, thus increasing its bandwidth. This antenna can be cut for any operating frequency, including that of the

160-meter band. Formulas are given in Fig. 21-23. RG-58/U coax line is capable of handling a full' kilowatt from the transmitter with the SWR figures given earlier. Details are given for making up the junction blocks where connections are made. Other construction techniques are possible, and this will be pretty much up to the builder. If the plastic blocks of Fig. 21-23 are used, their inner surfaces can be grooved to provide a snug fit for the coax cables when the two halves are bolted together. After assembly, the mating outer surfaces of the junction blocks can be sealed with epoxy cement to assure a weatherproof bond. This antenna can be mounted from a single center support and used as an "inverted V " if desired. Single-wire end sections can be substituted for the open-wire stubs, but the open-wire sections contribute to the antenna's broadband characteristics.

VERTICAL ANTENNAS

A vertical quarter-wavelength antenna is often used in the lower-frequency amateur bands to obtain low-angle radiation. It is also used when there isn't enough room for the supports for a horizontal antenna. For maximum effectiveness it should be located free of nearby objects and it should be operated in conjunction with a good ground system, but it is still worth trying where these ideal conditions cannot be obtained.

Four typical examples and suggested methods for feeding a vertical antenna are shown in Fig. 21-24. The antenna may be wire or tubing supported by wood or insulated guy wires. When tubing is used for the antenna, or when guy wires (broken up by insulators) are used to reinforce the structure, the length given by the formula is likely to be long by a few percent. A check of the standing-wave ratio on the line will indicate the frequency at which the SWR is minimum, and the antenna length can be adjusted accordingly.

A good ground connection is necessary for the most effective operation of a vertical antenna (other than the ground-plane type). In some cases a short connection to the cold-water system of the house will be adequatc. But maximum perfommance usually demands a separate ground system. A single 4 - to 6 -foot ground rod driven into the earth at the base of the antenna is usually not sufficient, undess the soil has exceptional conductivity. A minimum ground system that can be depended upon is 6 to 12 quarter-wavelength radials laid out as the spokes of a wheel from the base of the antenna. These radials can be made of heavy aluminum wire, of the type used for grounding TV antennas, buried at least 6 inches in the ground. This is nomally done by slitting the earth with a spade and pushing the wire into the slot, after which the earth can be tamped down.

The examples shown in Fig. 21-24 all require an antenna insulated from the ground, to provide for the feed point. A grounded tower or pipe can be used as a radiator by employing "shunt feed," which consists of tapping the inner conductor of the coaxial-line feed up on the tower until the best
match is obtained, in much the same manner as the "gamma match" (described later) is used on a horizontad element. If the antenna is not an electrical quarter wavelength long, it is necessary to tune out the reactance by adding capacitance of inductance between the coaxial line and the shunting conductor. A metal tower supporting a TV antenna or rotary beam can be shunt fed only if all of the wires and leads from the supported antenna run down the center of the tower and underground away from the tower.

Fig. 21-24 - A quarter-wavelength antenna can be fed directly with 50 -ohm coaxial line (A), with a low standing-wave ratio, or a coupling network can be used (B) that will permit a line of any impedance to be used. In (B), L1 and C1 should resonate to the operating frequency and L1 should be larger than is normally used in a plate tank circuit at the same frequency. By using multiwire antennas, the quarter-wave vertical can be fed with (C) 150 or (D) 300 -ohm line.

Fig. 21-25 - All-metal construction of a vertical ground-plane antenna can be effected as shown at A. The driven element is insulated from the remainder of the system, but the tubing radials are common to the mounting plate, and to one another. The outer conductor of the coax connects to the base plate and radials. The center conductor of the feed line attaches to the base of the driven element with as short a lead as possible. If a metal mast is used, it, to0, can be common to the bese plate and radials. At B, the radials are made of No. 10 wire (approximately 5 percent longer than the resonant vertical elemsent) and are used as guy wires. Drooping the wires at a 45 -degree angle raises the feed-point impedance to approximately 50 ohms for direct connection to RG-8/U.

THE GROUND-PLANE ANTENNA

A ground-plane antenna is a vertical quarterwavelength antenna using an artifictal metallic ground, usually consisting of four rods or wires perpendicular to the antenna and extending radially from its base, Fig. 21-25. Unlike the quarter-wavelength vertical antennas without an artificial ground, the ground-plane antenna will give low-angle radiation regardless of the height above actual ground. However, to be a truc ground-plane antenna, the plane of the radials should be at least a quarter-wavelength above ground. Despite this one limitation, the antenna is useful for DX work in any band below 30 MHz .

The vertical portion of the ground-plane antenna can be made of self-supported aluminum tubing, or a top-supported wirc, depending upon the necessary length and the available supports. The radials are also made of tubing or heavy wire depending upon the available supports and necessary lengths. They need not be exactly symmetrical about the base of the vertical portion.

The radiation resistance of a ground-plane antenna varics with the diameter of the vertical clement. The radiation resistance is usually in the vicinity of 30 ohms, and the antenna can be fed with 75 -ohm coaxial line with a quarter-wavelength section of 50 -ohm line between line and antenna. For multiband operation, a ground-plane antenna can be fed with tuned open-wire line, or the vertical section can be quarter-wavelength pieces for each band. The radials should be a quarter wavelength at the lowest frequency.

Matching by Length Adjustment

The radiation resistance as measured at the base of a ground-plane antenna also changes as a function of the length of the radiating element. It is possible to choose a length such that the base radiation resistance will equal the characteristjc impedance (Zo) of the transmission line to be used. The lengths of most interest are a little over 100 degrees (0.28 wavelength), where the resistance is spproximately 52 ohms, and about 113 degrees (0.31 wavelength), where the resistance is 75 ohms, to match the two common types of coaxial line. These lengths are quite practicable for groundplane antennas for 14 MHz and higher frequencies. The lengths in degrees as given above do not require any correction for length/diameter ratio; i.e., they are free-space lengths.

Since the antenna is not resonant at these lengths, its input impedance will be reactive as well as resistive. The reactance must be tuned out in order to make the line see a purely resistive load equal to its characteristic impedance. This can be done with a series capacitor of the proper value, when the lengths given above are used. The approximate value of capacitive reactance required, for antennas of typical length/diameter ratio, is about 100 ohms for the 52 -ohm case and about 175 ohms for the 75 -ohm case. The corresponding capacitance values for the frequency in question can be detcrmined from appropriate charts or by equation. Variable capacitors of sufficient range may be used and adjustment made for the lowest SWR.

From a practical construction standpoint it may be preferable to connect the reactance-canceling component in parallel or shunt with the base feed point, rather than in series with the radiating element. If a capacitor is used, for example, this would eliminate the requirement for insulating its frame from the supporting structure, as may be seen from Fig. 21-26. To obtain a match to 52- or 75 -ohm line, radiator lengths must be different than those given above when the reactancecanceling component is shunt connected, however. As a matter of fact, there are two lengths where a match may be obtained for $52-0 h m$ line, and two lengths for matching 75 -ohm line. One of these two lengths for either impedance is somewhat less than that required for resonance. This results in the base feed point being capacitive, therefore requiring a shunt inductor for a resistive line termination. The other length is somewhat longer than that for resonance, requiring a shunt capacitor. So far as radiation is concerned, one is as good as the other, and the choice becomes the one of the simpler mechanical approach. or perhaps one of economy. The following information applies to conductor half-wavelength/diameter ratios in the order of 1000 , but will not be greatly different for other length/diametcr ratios. Radiator lengths are freespace lengths, requiring no correction for length? diameter ratios.

Feed-Line Zo, Ohms	Radiator Length	Shunt-Canceling Component
52	82.5 degrees 0.229 wavelength	Inductor, 57.1 ohms
52	93.6 degrees 0.260 wavelength	Capacitor, 78.1 ohms
75	84.0 degrees 0.233 wavelength	Inductor, 58.1 ohms
75	92.0 degrees 0.256 wavelength	Capacitor, 80.6 ohms

It may be seen from the above that, for an inductive shunt-canceling component, the radiator lengths are not much different for a 52 -ohm or for a 75 -ohm termination. The same is true for a capacitive shunt for the two impedances. This

Fig. 21-26 - Matching to ground-plane antenna with shunt reactance. If the length of the radiator (but not the radials) is slightly more than that required for resonance, a capacitive shunt will provide a match to either 52- or 75 -ohm line, depending on the exact radiator length. Similarly, a shorter-than-resonant radiator length may be used with a shunt inductor to offer a 52 - or $75 . \mathrm{ohm}$ match.
indicates that the radiator length for a proper match is somewhat critical. This causes no problems, however, as the final length can merely be adjusted for the lowest SWR in the feed line. Similarly, it may be seen that there is little difference in the required reactance values for $\$ 2$ versus 75 ohms terminating impedance. If matching by final length adjustment is performed, this means that the reactance value is not critical. In other words, a shunt inductor having a reactance in the order of 57 ohms will afford a close match to either 52 or 75 ohms.

Construction and Adjustment

From an economy standpoint, inductors are generally more satisfactory than capacitors as shunt elements, if one considers that the component will be required to handle rf currents in the order of I ampere or more, even at modest power levels. Suitable inductors may be made from heavy bus wire or from available coil stock.

The photographs of Fig. 21-27 show the construction of a sturdy ground-plane system. As pictured, the antenna is constructed for 6 -meter operation, but provisions for telescoping additional lengths of aluminum tubing to extend the radials and radiator make it readily adaprable to 10,15 , or even 20 meters. The base-plate assembly is made from $1 / 4$-inch thick aluminum stock, obtained at a modest price as salvaged scrap from a local machine shop. Two pieces of this materisl are joined at right angles with short lengths of $3 / 4$-inch angle aluminum and No. 8 nickel-plated brass hardware. A length of angle stock is attached to either side of the vertical plate, which is drilled to accept U bolts for attachment to the mast. A 2 -inch circular hole is cut in the 9 -inch-square horizontal plate to clear the hurdware which supports the radiator. A 4 -incls square plece of $1 / 4$-inch thick phenolic material is used as the insulator for the radiator, the insulator being mounted atop the base plate with No. 10 hardware at each corner. A $1 / 2$ - by 6 -inch hex-head cap screw (with head removed) serves to support the radiator, and clectrical connection is made by means of a solder lug which is attached by drilling and tapping the wrought-iron flat washer underneath the insulating phenolic. Flat washers and nuts are used above and below the phenolic insulator, and lock washers are used on all hardware. The radials are attached directly to the base plate by drilling through them, but the method shown in Fig. 21-25 with U bolts would avoid weakening the tubing material by drilling. The radiator, consisting of $1 / 2$-inch ID aluminum tubing for the lower portion, is slipped over the cap

Fig. 21-27 - The ground-plane antenna partially assembled (left) and complately assambled, ready for installation (right). Both views ase looking down on the base plate, which is in an inverted position in these photos. In the view ot the right may be seen an added brackat which supports a coaxial chassis connector, type SO-239, and the shunt inductor. A right-angle connector is used at the chassis connector to avoid a bend in the cosx, which is secured to the mast during installation.

TABLE 1 - Coil and dimension data for ground-plane antennas					
Frea. MHz	Impedance. ohms	Each Radial Length	Approx. Radialor Length	Coll Value, μ	Coll Dara
14.2	52	17'7'	15'5"	0.64	6-1/3 turns, 1 "'dia, 6 tpi
14.2	75	179**	15'8"	0.65	6-1/2 turns, $1^{\text {"0 dia, }} 6$ tpi
21.25	52	1179'	$10^{\circ} 3^{\prime \prime}$	0.43	4-1/2 turns, 1 "dia, 6 tpi
21.25	75	11'9"	10'6"	0.44	4-3/4 turns, 1 "dia, 6 tpi
28.5	52	$8^{\circ} 9^{\prime \prime}$	7'8"	0.32	4-1/2 turns, 9 "dia, 4 rpi
28.5	75	8'9'0	710"	0.32	4-1/2 turns, $1 \times 0 \mathrm{dia}, 4$ tpl
29.5	52	$8^{\prime \prime} 6^{\prime \prime}$	7×10	0.31	4-1/3 turns. 1 "dia, 4 til
29.5	75	$8^{\prime 6} 6^{\prime \prime}$	$77^{\prime \prime}$	0.31	4-1/3 turns, 1 "'dia, 4 tpi
51	52	$4^{\prime 1} 11^{\prime \prime}$	$43^{\prime \prime}$	0.18	3 turns, 1 "dia. 4 tpi
51	75	$4^{\prime} 11^{\prime \prime}$	$4^{4} 4^{\prime \prime}$	0.18	3 turns, 1 '0dia, 4 tpi
53	52	$4^{\circ} 9^{\prime \prime}$	$41^{\prime \prime}$	0.17	2-3/4 furns, 1 "dia, 4 tpl
53	75	$4^{\prime} 9^{\prime \prime}$	4.2'	0.17	2-3/4 turns, $1^{\text {"0dia. }} 4$ ¢pi

screw and secured with a No. 6 screw which passes through both the tubing and the cap screw. A "weep" hole, $1 / \$$-inch or so diameter, is drilled through one wall of the tubing just above the top of the cap scrow, to permit an escape point for condensed moisture. The length of the radiator is adjusted during final pruning by varying the amount of telescoping of the tubing at the top of the element. Table I gives dimensions and coil data for the construction of ground-plane antennas for which this construction technique is suilable.

ANTENNAS FOR 160 METERS

Results on 1.8 MHz will depend to a large extent on the type of antenna used and the time of day or night that operations will take place. Almost any random length of wire that is tuned to resonance and matched to the transmitter will give fair results at night. During daylight hours the absorption is high, and such high-angle radiators become ineffective. For this reason a vertically polarized, low-radiation-angle antenna is best for use on the 160 -meter band, day and night. Fig.

21-29 shows three effective 160 -meter antennas. Ai A, a shortened inverted V is made resonant by means of L, loading coll in each leg of the doublet. This antenna will give vertical polarization, and will perform well for day and night use. A fuld-size inverted V with tuned feeders would be better, even if the voltage ends were but a few inches off the ground. However, when antenna space is at a premium, a 75 -meter doublet can be equipped with loading inductors as shown, and the antenna will perform on 1.8 MHz . Two-band operation can be had by merely shorting the losding coils with clip leads during 75 -meter use. For use on 1.8 MHz the coils are expenimentally pruned, a half tum at a time, until the lowest SWR is obtained.

As a starting point, the coils should be $70 \mu \mathrm{H}$ each, 16 feet, 5 inches for the length between the coil and antenna center (one side), and 46 feet from the coil to the end insulator. Resonate the antenns on the dexired 80 -metes frequency by shorting out tums on the coil, looking for the lowest SWR. Note that point and follow the same

Fig. 21-29 - Illustrations of three verticatly polarized short antennas for use on 1.8 to 2 MHz . They are describad in the text.
procedure for 160 . Of course, the shorting taps must be changed each time one changes bands.

The antenna at B is nothing more than a top-loaded quarter-wavelength Marconi. The flattop section, a, can be any convenient length - 25 to 50 feet - and should be as high in the air as possible. Its three wires are joined at the ends and center, and a single vertical wire drops down to the loading/matching inductor, \boldsymbol{L}. The flat-top section serves as a capacitance hat for the vertical member, b. The larger that a is made, the less coil will be

HF ANTENNAS
needed at L. A good earth ground is essential to proper performance. A buried radial system is recommended, but if the soil has good conductivity it may be possible to get by with six or eight ground rods driven into the earth, 4 feet apart, and bonded together by means of No. 10 wirc. They should be centered around the boltom end of section b. There are two taps on L. The bottom one is adjusted for a match to the coax fecder. The top tap is adjusted for antenna resonance. There will be some interaction between the adjustments, so several attempta may be necessary before the system is tuned up. Section b should be made as long as possible - 30 fect or more - for best results.

An adaptation of the antenna just described is shown at C in Fig. 21-29. Here an 80-meter doublet is used as a quarter-wavelength top-loaded Marconi. The feeders, whether coax or balanced line, ase twisted together at the transmitter end and tuned with serics L or C. The method used will depend upon the length of the feed line. Ordinarily, an 80 -meter dipole with a quarter wavelength feeder will require the series C to tunc out reactance. If the feed line is much less than one quarter wavelength, the series L will be needed. An SWR bridge should be used during these adjustments. A good earth ground is necessary with this antenna.

Other Antennas

Most of the full-size horizontal and vertical antennas described earlier in this chapter are suitable for 1.8 MIIz, too. When space is available for a large antenna orce should try to make use of this advantage on "160." The helically-wound short vertical described in the section on "limited-space antennas" should be of interest to the 160 -meter operator, too.

LIMITED-SPACE ANTENNAS

Reducing losses which detract from the radiated power is the key to success in any limitedspace antenna system. In fact, if there wase no losses present, the radiating effictency of a shortened antenna would be as good as its full-sized counterpart. The only difference between the two is that the bandwidth over which the input impedance remains relatively constant is less for the former than it is for the latter. As the length of a radiator becomes shorter in comparison to the wavelength of operation, less rf energy is radiated during each if cycle and most of the energy is stored in the electric field surrounding the antenna. This means the Q of the antenna is very high and consequently the bandwidth becomes very narrow. From a circuit point of view, the radistor looks like a smalt-value capacitor (large capacisive reactance) in series with a small resistance or in parallel with large resistance value. The problem reduces to one of tuning out the reactance and matching the transmitter or feed line to the antenna radiation resistance. While this sounds relatively simpto to do in theory, the effects of losses complicate the problem considerably. It is the unwanted losses
which set practical limits on how small an antensa can be made and still be useful for communication purposes.

Electrical length, and not physical size, determine whether or not an antenna is "small." For instance, a 20 -meter dipole is approximately 34 feet long and could easily be installed in an attic or other arca. The same length antenna would be quite short on 75 meters and would present formidable matching and loss problems. Antenna height is subject to the same considerations in regards to physical versus electrical siee and the effects of height are covered elsewhere in this Hondbook. Since the high-current parts of an antenna are responsible for most of the radiation, they should be kept as high as possible. This will improve the angle of radiation somewhat.

A Multiple-Tuned Short Dipole

The use of limited-space antennas is becoming more of a necessity than formerly. Therefore, any possibilities for new or different designs should be explored. Shown in Fig 21-30 is an ansenna

Fig. 21-30 - At left, construction of the dipole. Heavier spreaders with insulators were used at the ends with a lighter one in the middle. The weight of the feed line is distributed on both sides of the spreader by means of a cord, forming the Y -shaped object in the middle. Also shown are the four loading coils. At right, close-up view of a loading coil showing tap connection and polypropylene insulator.
utilizing a technique scldom found in amateur antennas with the exception of the folded dipole. The method is called multiple tuning and has been used exsensively in vif antenna instaliations.

Some advantages to the technique are as follows: if two or more resonant radiators are paralleled in folded-dipole fashion then the impedance ($R_{\mathrm{a}}+R_{\mathrm{o}} / N$) is stepped up by a factor of N^{2} (where N is the number of radiators and R_{a} is the radiation resistance of each radistor). The loss resistance is $\boldsymbol{R}_{\mathrm{o}}$ which is associated with loadingcoil losses, wire conductivity, and other sources. R_{0} is decreased by a factor of $1 / N$. Antenna efficiency is equal to $100 \% /\left(1+R_{0} / N R_{\mathrm{a}}\right)$ and improves as N is increased. These effects are of less importance when the electrical length of the resonant radialor is large since efficiency is high to begin with. Also, reasonable input impedances make matching to the feed line or transmitter relatively simple. However, the advantages become pronounced when the efficiency is poor $\left(R_{0} / R_{a}\right.$ large) and $R_{\mathrm{g}}+R_{\mathrm{o}}$ is small making matching difficult. This is the case when the length of the resonant radiator becomes short compared to the wavelength being used.

While space is usually available for full-size dipoles on the higher amateur frequencies, the idea of using multiple tuning for a highefficiency short dipole for one of the lower bands seemed attractive. Some experimental antennas for the 75 -meter band were constructed and one is shown in Fig 21-31. Even though only 30 feet long, performance on both recciving and transmitting of this antenna seemed to compare favorably with much larger ones. Using a 180 -watt transceiver in a temporary setup, a number of contacts were made and the reports were generally good in comparison with stations running higher power and with larger anternas.

If the value of $R_{\mathrm{a}}+R_{\mathrm{o}} / \mathcal{N}$ is on the order of I3 ohms, an impedance step up of four will give $\mathbf{S 2}$ ohms. This would allow matching to a transmitter or 52 -ohm feed line without additional networks. While not an advantage in particular (since other values could be used with an appropriate matching network), it turned out that this occured with the length and antenna height used. The latter would be realistic ones for many limited-space installations, however.

Bandwidth of the antenna was quite narrow (20
kHz) indicating an antenna Q of approximately 190. However, this is as it should be (as pointed out previously) and a broad bandwidth would be suspect with an antenna this short. In many applications, the narrow bandwidth would not prove to be a great objection. Since nets and round tables tend to operate on a fixed-frequency basis, the inconvenience of retuning would not pose a problem. Improved performance because of the increased efficiency may offset this disadvantage in some instances. Tuning was accomplished by lowering the antenna and changing the taps on the loading coils. The SWR was then checked until a point where a minimum occured was found.

Initial values for the loading-coil inductance were calculated for a single dipole from curves in The ARRL Antenna Book, 13 th edition. The chart in Fig. $10-2$ was used to determine these starting values and good agreement with the actual value needed was observed. Antennas for other lengths and frequencies could be designed with theso carves. Keeping the coils approximately midway between the center and the outer end of the antenna is advisable, however. It is also a good idea to make the L of coils somewhat larger than calcuiated and then tap down to get the correct value. Tap connections should be soldered for highest conductivity. In urder to avoid disappointment, it is advisable to reduce oll the losses as much as possible. This philosophy holds for other types of limited-space antennas as well. Compromises made for convenience or other reasons will normally result in poorer efficiency.

Construction of the dipole can follow the

Fig. 21-31 - Dipole dimensions and coil data.
L1-L4, incl. $-82 \mu \mathrm{H}$ for 3.86 MHz . Air waund proferable, 57 turns, 2-1/2-inch dia., 10 tpi of No. 16 solid wire (B\&W 3031).

builder's requirements but the factors mentioned previously should be kept in mind. Using the antenna in an attic installation might be attractive since it could be strung from the rafters by means of standoff insulators. Caution should be taken that no contact with metallic of flammable objects occurs. When used in outdoor setups, construction of the loading-coil supports may be improved by using fiberglass rods instead of the polypropylene rope insulators shown in the experimental dipole. However, polypropylene has very fow-loss djelectric properties which makes it adequate for insulating applications. Gencrally speaking. weatherproofing is unadivisable since a poor job tends to keep moisture in once it gets there while an open-type construction quickly dries out once inclement weather clears up. If air-wound coil stock is used for the loading coils, alternatc windings near the tap points should be pushed in slightly to ease the task of soldering connections and insure that no unwanted shorts between turns occur. While many types of homemade coils are possible, it should be pointed out that PVC plastics have relatively poor dielectric-loss properties. This may or may not be an important factor in loading-coil operation and will depend upon the voltage across the coil.

Other types of limited-space antennas may be of interest and The ARRL Antenna Book, 13th edition, contains additional designs. The particular lype selected will depend upon factors such as ground conductivity, ability to install ground planes, height available, and proximity to surrounding objects.

HELICALLY-WOUND SHORT VERTICAL ANTENNAS

An effective physically-short radiator can be built by helically-winding a length of wise on a long insulating rod or pole as shown in the sketch. Supporting poles such as bamboo rods, fiber glass

Fig. 21-32 - Artist's sketch of the helically. wound vertical. This resonant quarter-wavelength antenna will perform well when worked against a good earth ground.

tubing, or treated dowel rod, serve as practical foundation material for such an antenna. This type of antenna is most often used as a vertical radiator and is worked against ground as a quarterwavelength system. The voltage and current distribution ts more lintar than when a lumpedinductance (loading coil and whip) is employed, a possible reason forits effective performance.

This type of antenna is particularly useful for limited-space applications in the lower part of the hf spectrum $-1.8,3.5$ and 7.0 MHz . It can be used for 14 MHz and higher, but is desirable only if an antenna shorter than a natural quarter wavelength is required.

Construction

The length of the supporting pole can be anything between 4 feet and 20 feet in length. The longer the rod, the better the performance. Fiber glase spreader poles for cubical-quad antennas are ideal for this application. Alternatively, bamboo fishing poles, covored with fiber glass, work well. Some lumber yards carry 16 -foot long hand-rail stock (wooden) which can be coated with fiber glass or several coats of exterior spar vamish and used as a coil form. The main consideration is that the antenna pole be of good dielectric properties and that it be weatherproofed.

So that the antenna will be approximately $1 / 4$-wavelength long electrically, a $1 / 2$-wavelength piece of insulated wire is needed for the radiating element. When helically-wound as shown, the antenna becomes approximately one-quarter wavelength long, electrically. No. 14 or No. 12 Formvar-insulated copper wire is recommended for the antenne winding. It should be space-wound in as linear a manner as possible. The far end of the vertical should have a 6 -inch diameter metal disk, or 12 -inch spike, to add suflicient capacitance to bower the impedance at the far end of the radiator sufficiently to prevent corona effects which can burn the far end of the element during mediumand high-power operation. An aluminum bascmounting plate and two U clamps can serve as a support for the antenna.

Operation

To build the antenna for use on 160 meters, for example, wind approximately 248 feet of wire on the pole as shown. Since this will fall just short of natural resonance at one-quarter wavelength, some type of variable inductor will be needed at the base of the antenna. A rotary inductor from an old Command Set transmitter will do the job. It should be enclosed in a weatherproof box of plastic or metal. The inductor is adjusted by means of an SWR indicator for the best match obtainable at the operating frequency. An earth ground is required for proper operation, and a buried radial system is recommended. Alternatively, several ground rods can be driven into the earth near the base of the antenna and bonded together with heavy wirc.

It may not be possible to secure a $1: 1$ SWR without using some form of impedance-matching system. After the antenna is made resonant at the operating frequency, a tuning network such as that

Fig. 21-33 - Circuit diagram of the L-network Transmatch. The eight banans jacks are E. F. Jahnson sype 108-900, and three dual banana plugs are required, E. F. Johnson type 108-200. C1 - Variable capacitor, 350 pF (E. F. Johnson 154-10).
CR1, CR2 - 1 N3AA germanium diode. J1, J2 - Chassis connector, type SO-239. 53 - Feedthrough terminal, isolantite.
of Fig. 21.33 can be employed to provide the desired 1:1 SWR. Since antennas of this type are relatively "frequency conscious," it will be necessary to retune the matching network when moving from one part of the band to another. The completed antenna should be given a coating of Triber glass or spar vamish to seal it against the weather, and to secure the coil turns. It has been observed that this antenna has exceptional immunity to man-made electrical nodses. It also cuts down the response to broadcast-band signals which sometimes tend to overload tho station recetver. The foregoing attributes result from the fact that it do a narrow-band antenna.

Fig. 21.34 - Etched clrcuit-board zemplate. The foil side is shown, the atched portion is shaded.

Fig. 21-35 - The Monimatch is at the upper left, covered by a metal enclosure. Connections from the roller inductor and the variable capacitor to the terminals on the jacks are made with thin strips of copper, although No. 12 or 14 wire can be used instead. The two antenna terminals are at the rear right. The top terminal is for use with a coax-fed antenna, if desired.
2) An antenna inside a frame building with wood exteriors is better than the same antenna in a steel-and-concrete building.
3) The higher above ground, inside or out, the better the antenna will work.
4) The bigger (or longer) you can make an indoor antenna, the better - even if it means running wire around comens.
5) Even a poor antenna should produce some contacts.

The Coupling Problem

Most transmitters are designed to work into a 50 -ohm load, and contain little or no provision for adjusting the transmitter when the load is other than 50 ohms. Unfortunately, there is no random-length wire antenna that will present a 50 -ohm load on all bands. What is required is a Transmatch. A Transmatch is simply an adjustable $L C$ network that converts the unknown antenna impedance to 50 ohms. The unit, shown in Fig. 21-35, will cover the 80 - through 10 -meter bands and can handle 1 kW of rf power.

Circuit Details

The unit shown in Fig. 21-33 is designed to be used in three configurations. They are shown at B, C, and D. With one of the three hookups, it should be possible to match practically any antenna to the transmitter.

HF ANTENNAS

In order to get complete band coverage and avoid the complexities of band-switching, banana and jack plugs are used to change the circuit to the configuration needed. For example, if the setup shown at B is desired, jumper terminals 7 and 8,1 and 3 , and 4 and 5 should be used. Using the banana plugs makes for casy changing of the circuit.

Whencver a Transmatch is used, the operator should have a way of knowing when the unit is adjusted correctly. The answer to this need is a Monimatch or other SWR indicator.

Construction Details

The chassis for mounting the Transmatch is made from a piece of aluminum measuring 10×19 inches. The ends of the 19 -inch length of aluminum are bent up to form a U-shaped chassis, the ends being $41 / 2$ inches high to form a chassis $10 \times 10 \times 41 / 2$ inches. The back side of the U has an opening cut out, $31 / 4$ inches high by $41 / 2$ inches long. A piece of Plexigias is mounted over this opening. The jack-plug sockets are installed directly on the plastic. Connections from the roller inductor, L 3 , and variablc capacitor, Cl , are made to the banana jacks. Be careful when drilling the holes for the jacks to insure that they will mate with the plugs. Fig. 21-34 shows the details for a pc-board Monimatch. Mcthods for making etched circuit boards are given in detail in the Construction Practices chapter.

How to Tune Up

Using the Transmatch is not complicated. Although it takes some time to find the correct combination of settings, once determined, they can be logged for later reference. Use a short length of $50-\mathrm{hm}$ coax to connect the Transmatch to the transmitter. Attach the antenna to the Transmatch. Tune up the transmitter on the desired band, making sure that the final amplifier is resonated, but with the power output reduced. With the Monimatch in the forward-reading position, set the sensitivity control for a full-scale reading. Be sure to keep the final amplifier tank in resonance. Switch the meter to the reflected position, and then adjust L1 and C1, until the lowest indication of reflected power is obtained. It should be possible to get the meter to read zero. With a zero reading in the reflected position, versus full scale in the forward setting, the Transmatch is correctly adjusted, and the SWR is 1 . The circuit may have to be changed to one of the other configurations in order to get a match, but one combination should work. Once the Transmatch is set properly, then adjust the transmitter to its rated power input. One other point: It isn't always possible to get a good ground connection in an apartment. Therefore, a connection to a cold-water pipe or carth ground should be used.

Try to make the antenna as long as possible, even if it must be run around comers. The length that will work best is from 120 to 130 feet. The end of the wise can be terminated at a window screen, which will get part of the antenna outside.

DIRECTIVE ARRAYS WITH PARASITIC ELEMENTS

With few exceptions, the antennas described so far in Chapter 21 have unity gain or leas, and are either omnidirectional or bidirectional. In order for antennas to have gain and take on directional characteristics they must employ additional elcments. Antennas with thesc properties are commonly referred to as "beam" antennas. This section will deal with the design and characteristics of directional antennas with gain.

Parasitic Excitation

In most of these arrangements the additional elements receive power by induction or radiation from the driven element generally called the "antenna." and reradiate it in the proper phase relationship to achieve the desired effect. These eiements are called parasitic elements, as contrasted to the driven clements which receive power dircctly from the transmitter through the transmission line.

The parasitic element is called a director when it reinforces radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic element is a divector or reflector depends upon the parasitic-element tuning, which usually is adjusted by changing its length.

Gain vs. Spacing

The gain of an antenna with parasitic elements varies with the spacing and tuning of the elements and thus for any given spacing there is a tuning condition that will give maximum gain at this spacing. The maximum front-to-back ratio seldom, if ever, occurs at the same condition that gives maxtmum forward gann. The impedunce of the driven clement also varies with the tuning and spacing, and thus the antenna system must be tuned to its final condition before the match betwoen the line and the antenna can be completed. However, the tuning and matching may interlock to some extent, and it is usually necessary to run through the adjustments several times to insure that the best possible tuning has been obtained.

Fig. 21-36-Gain vs. element spacing for an antenna and one parasitic element. The reference point, 0 dB, is the field strength from a half-wave antenna alone. The greatest gain is in the direction A at spacings of less than 0.14 wevelength, and in direction \mathbf{B} at greater spacing. The front-ro-back ratio is the difference in dB between curves A and B. Variation in rediation resistance of the driven element is also shown. These curves are for a self-resonant parasitic element. At most spacings the gain as a reflector can be increased by slight lengthening of the parasitic element; the gain as a director can be increased by shortening. This also improves the front-to-back ratio.

Two-Element Beams

A 2-element beam is useful where space or other considerations prevent the use of the larger structure required for a 3-element beam. The general practice is to lune the parasitic element as a reflector and space it about 0.15 wavelength from the driven elcment, although some successful antennas have been built with 0.1 -wavelength spacing and director tuning. Gain es. element spacing for a 2 -element antenna is given in Fig. 21-36, for the special case where the parasitic clement is resonant. It is indicative of the performance to be expected under maximum-gain tuning conditions.

Fig. 21-37 - Gain of 3-lement Yagi versus director spacing, the reflector spacing being fixed at 0.2 wavelength.

Three-Element Beams

A theoretical investigation of the 3 element case (director, driven element and reflector) has indicated a maximum gain of slightly more than 7 dB. A number of experimental investigations have shown that the optimum spacing between the driven clement and reflector is in the region of 0.15 to 0.25 wavclength, with 0.2 wavelength representing probably the best overall choice. With 0.2 -wavelength reflector spacing, Fig, 21-37 shows the gain variation with director spacing. It is obvious that the director spacing is not especially critical, and that the overall length of the array (boom length in the case of a rotatable antenna)

Fig. 21.38 - Element lengths for a-element beam. These lengths will hold closely for tubing elements supported at or near the center.
can be anywhere between 0.35 and 0.45 wavelength with no appreciable difference in gain.

Wide spacing of both elements is desirable not only because it results in high gain but also because adjustment of tuning of element length is less critical and the input resistance of the driven element is higher than with close spacing. The latter feature improves the efficiency of the antenna and makes a greater bandwidth possible. However, a total antenna length, director to reflector, of more than 0.3 wavelength at frequencies of the order of 14 MHz introduces considerable difficulty from a constructional standpoint, so lengths of 0.25 to 0.3 wavelength are frequently used for this band, even though they are less than optimum.

In general. the gain of the antenna drops off less rapidly when the reflector length is increased bcyond the optimum value than it does for a corresponding decrease below the optimum value. The opposite is true of a director. It is therefore advisable to err, if necessary. on the long side for a reflector and on the short side for a director. This also tends to make the antenna performance less dependent on the exact frequency at which it is operated, because an increase above the design frequency has the same effect as increasing the length of both parasitic clements, while a decrease in frequency has the same effect as shortening both elements. By making the director slightly short and the reflector slightly long, there will be a greater spread between the upper and lower frequencies at which the gain starts to show a rapid decrease.

When the over-all length has been decided upon, the element lengths can be found by referring to Fig. $21-38$. The lengths determined by these charts will vary slightly in actual practice with the element diameter and the method of supporting the clements, and the tuning of a beam should always be checked after installation. However, the lengths obtained by the use of the charts will be close to correct in practically all cases, and they can be used without checking if the beam is difficult of access.

In order to make it even easier for the Yagi builder, Table 21-ת can be used to determine the element lengths needed. Both cw and phone lengths are included for the three bands, 20, 15, and 10 meters. The 0.2 wavelength spacing will provide greater bandwidth than the 0.15 spacing. Antenna gain is essentially the same with either spacing. The element lengths given will be the same whether the beam has 2.3 or 4 elements. It is recommended that "Plumber's Delight" type construction be used where all the elements are

Fig. 21-39 - Illustrations of gamma and T-matching systems. At A, the gamma rod is adjusted along with C until the lowest possible SWR is obtained. A T-match is shown at B. It is the same as two gamma-match rods. The rods and C1 and C2 are alsernately adjusted for a $1: 1$ SWR. A coaxial 4:1 balun transformer is shown et C. A toroidal balun can be used in pface of the coax model shown. Details for the toroidat version are given in Chapter 20, and it has a broader frequency range than the coaxial version. The T -match is adjusted for 200 ohms and the balun steps this balanced value down to 50 ohrms, unbalanced. Or, the T-match can be set for 300 ohms, and the balun used to step this down to 75 ohms, unbalanced. Dimensions for the gamma and T-match rods cannot be given by formula. Thair lengths and spacing will depend upon the tubing size used, and the spacing of the parasitic elements of the beam. Capacitors C, C1 and C2 can be 140 pF for $14-\mathrm{MHz}$ beams. Somenhat less capacirance will be needed at 21 and 28 MHz .
mounted directly on and grounded to the boom. This puts the entirc array at de ground potential, affording better lightning protection. A gamma section can be used for matching the feed line to the array.

Tuning Adjustments

The preferable method for checking the beam is by means of a field-strength meter or the S meter of a communications receiver, used in conjunction with a dipole antenna located at least 10 wavelengths away and as high as or higher than the beam that is being checked. A few watts of power fed into the antenna will give a useful signal at the observation point, and the power input to the transmitter (and hence the antensa) should be held constant for all of the readings.

Preliminary matching adjustments can be done
on the ground. The beam should be set up so that the reflector element rests on earth with the remaining elements in a vertical configuration. In other words, the beam should be aimed straight up. The matching system is then adjusted for $1: 1$ SWR between the feed line and driven element. When the antenna is raised into its operating height, only slight touch-up of the matching network will be required.

A great deal has been printed about the need for tuning the elements of a Yagi-type beam. However, expenience has shown that lengths given in Fig. 21-38 and Table II are close enough to the desired length that no further tuning should be required. This is true for Yagi arrays made from metal tubing. However, in the case of quad antennas. made from wire, the reflectors and directors should be tuned with the antenna in its operating location. The reason is that it is practically impossible to cut and install wire to the exact dimensions required for maximum gain or front-to-back.

Simple Systems: The Rotary Beam

Two- and three-element systems are popular for rotary-beam antennas, where the entire antenna system is rotated, to permit its gain and directivity to be utilized for any compass direction. They may be mounted either horizontally (with the plane containing the elements parallel to the earth) or vertically.

A fourelement beam will give still more gain than a threcelement one, provided the support is sufficient for about 0.2 wavelength spacing between elements. The tuning for maximum gain involves many variables, and complete gain and tuning data are not available.

The elements in close-spaced (less than one-quartcr wavelength clement spacing) arrays preferably should be made of tubing of one-half to onc-inch diameter. A conductor of large diameter not only has less ohmic resistance but also has lower Q; both these factors arc important in close-spaced arrays because the impedance of the driven element usually is quite low compared to that of a simple dipole antenna. With three- and fourelement close-spaced arrays the radjation resistance of the driven element may be so low that ohmic losses in the conductor can consume an appreciable fraction of the power.

Feeding the Rotary Beam

Any of the usual methods of feed (described later under "Matching the Antenna to the Line") can be applied to the driven element of a rotary beam. The popular choices for feeding a beam are the gamma match with series capacitor and the T match with series capacitors and a half-wavelength phasing section, as shown in Fig. 21-39. These methods are preferred over any others because they permit adjustment of the matching and the use of coaxial line feed. The variable capacitors can be housed in small plastic cups for weatherproofing; receiving types with close spacing can be used at powers up to a few hundred watts. Maximum

capacilance required is usually 140 pF at 14 Mlb and proportionately less at the higher froquencies.

If physcially possible, it ts better to adjust the matching device after the antenna has been installed at its ultimate height, since a match made with the antenna near the ground may not hold for the same antenna in the air.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the clements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 percent of the resonant frequency, or up to about 500 kHz at 28 MHz . However, the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to gree maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wlder frequency range.

The use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causcs the reactances of the elements to change rather slowly with frequency, with the rosult that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to combine parasitic elements with driven elements to fom arrays composed of collinear driven and parasitic elements and combination broad-side-collinear-parasitic elements. Thus two or more collincar elements might be provided with a collincar reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array can be treated in the same fashion.

Fig. 21-40 - Information on building a quad or a Delta-Loop antenna. The antennas are electrically similar, but the Delte-Loop uses 'plumber's delight"' construction. Additional information is given in the text.

DELTA LOOPS AND OUAD BEAMS

One of the more effective DX arrays is called the "cubical quad" or, simply, "quad" antenna. It consists of two or more square loops of wire supported by a bamboo or fiberglass cross-am assembly. The loops ane a quarter wavelength per side (full wavelength overall) one loop being driven, and the other serving as a parasitic clement - usually a reflector. A variation of the quad is called the Delta Loop. The electrical properties of both antennas are the same, generally speaking. though some operators report better DX results with the Delta Loop. Both antennas are shown in Fig. 21-40. They differ mainly in their physical propurties, one being of "Plumber's Delight" construction, while the other uses insulating suppors members. One or more directors can be added to either antenna if additional gain and directivity is desired, though most operators use the two-clement arrangement.

1t is possible to interdace quads or "deltas" for two or more bands, but if this is done the formulas given in Fig. 21-40 may have to be changed slightly to compensate for the proximity effect of the second antenna. For quads the length of the full-wave loop can be computed from

$$
\text { Full-wave loop }(\mathrm{ft})=\frac{1005}{f(\mathrm{MHz})}
$$

21-H

If multiple arrays are used. each anienna should be tuned up separately for maximum forward gain as noted on a field-strength meter. The roflector stub on the quad should be adjusted for the foregoing condition. The Delta-Loop gamma match should be udjusted for a 1:1 SWR. No reflector tuning is needed. The Delta-Loop antenna has a broader frequency response than the quad, and holds at an SWR of 1.5:1 or better across the band it is cut for.

TABLE 21-III			
Quantity	Length (fl.) Diameter (inn.)	Reynolds	
2	8	1	9 A
2	8	$3 / 4$	8 A
4	8	$11 / 4$	10 A
1	8	$7 / 8$	4231
1	6		

2 U-bolts, TV antenna to mast type, 1 variable capacitor, 150 pF maximum, any typc, I plastic freczer container, approximately $5 \times 5 \times 5$ inches, $t 0$ house gamma capacitor.
Gamma rod, 3/8-to $1 / 2$-inch diameter aluminum tubing, 36 inches long. (Aluminum curtain rod or similar.)

The resonance of the quad anterma can be found by checking the frequency at which the lowest SWR occurs. The element length (driven eloment) can be adjusted for resonance in the most-used portion of the band by lengthening or shortening it.

It is believed that a iwo-element quad or

Delta-Loop antenna compares favorably with a three-element Yagi array in terms of gain (see QST. May, 1963, and QST, January 1969 for additional information). The quad and Delta-Loop antennas perform very well at 50 and 144 MHz . A discussion of radiation pattems and gain, quads vs. Yagis, was presented by Lindsay in QST, May, 1968.

A SHORT 20-METER YAGI

Described here is a small, yet effective, itheeelement 20-meter Yagi that offers gain and good directivity. This system exhibits a front-to-back ratio in excess of 18 dB as measured with a good quality communications receiver.

Construction

The boom and all the eiements are mode from 1-1/4-inch diameter aluminum tubing available at most hardware stores. The two boom sections and the two pieces which make up the conter portion of the driven element are coupled together using 15 -inch sleeves of $1-3 / 8$-inch OD aluminum tubing. Sheet metal screws should be used to secure the sections within the coupling sleeves.

The loading coils are wound on $1-1 / 8$-inch diameter Plexiglas rod. Details are shown in Fig. 1. Be sure to slit the ends of the aluminum subing where the compression clamps are placed. The coils are made from No. 14 enameled copper wire. The specified number of turns are equally spaced to cover the entire nine inches of Plexigias.

The capacitance hats are constructed from $3 / 4$-inch angle aluminum. Two pieces two feet in length are required for each hat. The model shown in the diagrams has the angle aluminum fastened to the element using aluminum strips however No. 8 sheet metal screws provide a suitable substitute. Solder lugs are fastoned to the ends of the angle aluminum and No. 12 or 14 wire connects the ends of the aluminum resulting in a square loop. The wires should be soldered at each of the solder lugs.

All of the elements are secured to the boom with TV U-bolt hardware. Plated bolts are desirable to prevent rust from forming. An aluminum plate nine inches square by $1 / 4$-inch thick was used as the boom-to-mast plate.

* ALL PLEXIOLAS IMSULATORS MAYE g't2em OF LEMETMEXPOBED

Fig. 2 - Constructional details for the 20-meter beam. The coils on each side of the element are identical. The gemma capacitor is a 140 -pF variable unit manufactured by E. F. Johnson Co.
the aftachment point for the center of the truss line. To reduce the possibility of water accumulating in the element tubing and subsoquently freezing, crutch caps are placed over the ends. Rubber feot suitable for keeping furniture from scratching hardwood floors would serve the same purpose.

A piece of Plexiglas was mounted inside an aluminum Minibox to provide support and insulation for the gamma capacitor. A plastic sefrigerator box would serve the purpose just as woll. The capacitor housing is mounted to the boom by means of a.bolt. The gamma rod is made of $3 / 8$-inch aluminum 40 -inches long and is connected to the gamma capacitor by a 6 -inch length of strap aluminum.

Tune-Up and Operation

The builder is encouraged to follow the dimensions given in Fig 1 as a starting point for the position of the gamma rod shorting strap. Connect the coaxial cable and install the antenna near or at the top of the tower. The gamma capacitor should
be adjusted for minimum SWR at 14.100 MHz as indicated by an SWR meter (or power meter) connected in the feedline at the gamma capacitor box. If a perfect match cannot be obtained a stight repositioning of the gamma short might be required. The dimensions given favor the cw portion of the band. At 14.050 MHz the SWR is $1.1: 1$ and at 14.350 MHz the SWR is less than $2: 1$ making this antenna useful for phone as well as cw .

AN OPTIMUM-GAIN TWO-BAND ARRAY

If optimum performance is desired from a Yagi, the dual-4-element array shown in Fig. 21-43 will be of interest. This antenna consists of fous elements on 15 meters interlaced with the same number for 10 . Wide spacing is used, providing excellent gain and good bandwidth on both bands. Each driven element is fed separately with 50 -ohm coax: gamma-matching systems are employed. If desired, a single feed tine can be run to the array and then switched by a remotely controlled relay.

The element lengths shown in Fig. 21-44 are for the phone portions of the band, centered at 21,300 and $28,600 \mathrm{kHz}$. If desired, the element lengths can be changed for cw operation, using the dimensions given in Table 21-1I. The spacing of the

Fig. 2143 - Ready for erection, this is the completed dual-band beam.
elements will remain the same for both phone and cw.

Construction Details

The elements are supported by commercially made U-bolt assemblies. Or, muffer clamps make excellent eiement supports. The boom-to-mast support is also a manufactured item that is designed to hold a 2 -inch diameter boom and that cun be used with mast sizes up to $2 \mathrm{t} / 2$ inches in diameter. Another feature of this device is that it permits the beam to be tilted after it in mounted in place on the tower, providing access to the elements if they need to be adjusted once the beam has been mounted on the tower.

The elements are made from 6061-T6 aluminum tubing, which is available from metal suppliers. The tubing comes in 12 -foot lengths and can be purchased in telescoping sizes. The center sections of the 15 -meter beam elements are l-inch outside diameter and the 10 -meter sections are $3 / 4$-inch. The ends of the tubing are slit with a

Fig. 21-44 - The element lengths shown are for the phone sections of the bands. Table 21-11 provides the dimensions for Cw frequencies.

Fig 21-45 - This is the boom-io-masi fixture that holds the two 12-foot boom sections together. The unit is made by Hy-Gain Electronics, P. O. Box 5407-HE, Lincoln, NE 68505.
hack saw, and hosc clamps are used to hold the telescoping portions.

A THREE-BAND QUAD ANTENNA SYSTEM

Quads have been popular with amateurs during the past few decades because of their light weight, relatively small turning radius, and their unique ability to provide good DX performance when mounted close to the earth. A two-element threeband quad, for instance, with the elements

The three-bend quad antenna.
mounted only 35 feet above the ground, will give good performance in situations where a triband Yagi will not. Fig. 1 shows a large quad antenna which can be used as a basis for design for either smaller or larger arrays.

Five sets of element spreaders are used to support the three-element 20 -meter, four-element 15 -meter, and five-element 10 -meter wire-loop system. The spacing beiween elements has been chosen to previde optimum performance con-

Fig. 2 - Details of one of iwo assemblies for a spreader frame. The two assemblies are jointed to form an \mathbf{x} with a muffler clamp mounted at the position shown.

TABLE 1					
Three-Band Quad Loop Dimensions					
Band	Reflector	Driven Elemens	Firss Direcror	Second Director	Third Director
20 Meters	(A)72' ${ }^{\prime \prime}$	(8) $71{ }^{\prime} 3^{\prime \prime}$	(C) 69' ${ }^{\prime \prime}$	-	-
15 Maters	(D) $48^{\circ} 61 / 2^{\prime \prime}$	(E) $47^{\prime} 78{ }^{\prime \prime}$	(F) 46 ${ }^{\prime \prime}{ }^{\prime \prime}$	(G) 46' $5^{\prime \prime}$	-
10 Mesers	(H) $36^{\prime} 2 \%^{\prime \prime}$	(1) $35^{\prime} 6^{\prime \prime}$	(J) $34^{\circ} 7^{\prime \prime}$ identified i	(K) $34^{\circ} 7^{\prime \prime}$ Fig. 1	(L) $34^{\prime} 7^{\prime \prime}$

sistent with boom length and mechanical construction. Each of the parasitic loops is closed (ends soldered together) and requires no tuning. All of the loop sizes are listed in Table I and are designed for a center frequency of $14.1,21.1$, and 28.3 MHz . Since quad antennas are rather broadtuning devices excellent performance is achieved in both cw and ssb band segments of each band (with the possible exception of the very high end of 10 meters). Changing the dimensions to favor a frequency 200 kHz higher in each band to create a "phone" antenns is not necessary.

One question which comes up quite often is whether to mount the loops in a diamond or a square configuration. In other words, should one spreader be horizontal to the earth, or should the wire be horizontal to the ground (spreaders mounted in the fashion of an X)? From the electrical point of view, it is probably a trade-off. While the square configuration has its lowest point higher above ground than a diamond version (which may lower the angle of radiation slightly), the top is also lower than that of a diamond shaped
array. Some authorities indicate that separation of the current points in the diamond system gives slightly more gain than is possible with a square layout. It should be pointed out, however, that there never has been any substantial proof in favor of one or the other, electrically.

Spreader supports (sometimes called spiders) are available from many different manufacturers. If the builder is keeping the cost at a minimum, he should consider building his own. The expense is about half that of a commercially manufactured equivalent and, according to some authorities, the homemade arm supports described below are less likely to rotate on the boom as a result of wind pressure.

A three-foot long section of one-inch-per-side steel angle stock is used to interconnect the pairs of spreader arms. The steel is drilled at the center to accept a muffier clamp of sufficient size to clamp the assembly to the boom. The fiber glass is attached to the steel angle stock with automotive hose clamps, two per pole. Each quad-loop spreader frame consists of two assemblies of the type shown in Fig. 2.

A 20-METER VERTICAL BEAM

An excellent parasitic array for 20 meters is a 3-element vertical beam originally described by W2FMI in June. 1972, QST. The antenna is actually one-half of a Yagi array using quarter-wave elements with spacing between elements of 0.2 wavelength (12-1/2 feet on 20 meters). This spacing results in a good compromise between gain and input impedance. Closer spacing would reduce the input impedance, and hence the efficiency, because of the inherent earth losses with vertical antennas. This vertical symmetrical Yagi allows for electrical beam switching (changing a director into a reflector by switching in a loading coil at the base) while maintaining a constant input impedance at the driven element. The dimensions of the three-element antenna, when used as a fixed or a switched array, are shown in Table 21-1V. The elements are constructed using $1 / 16$-inch-wall aluminum tubing and consist of three telescoping sections with one-inch $O D$ tubing used for the bottom portions. This results in a self-supporting structure. Actually, many choices are available, including No. 14 or 12 wire taped to bamboo poles.

The three-element array with the full image plane presents an input impedance of 15 ohms. Matching is accomplished with the step-down transformer, a $4: 1$ unbalanced-to-unbalenced toroidal balun. This transformer is also shown in Fig. 21-52 connected to the driven element.

Fig. 21-53 shows the geometry of the image plane. The inner square has a diagonal of $4 / 10$ wavelength (25 feet). The outer wires of these sections are No. 14 wire and the inner wires are No. 18. All cross-connected wiros were wirewrapped and soldered. The pattern was chosen 10 give an easy path for the surface currents of a five-element array (parasitic elements at the four corners). The outer radials were all 0.4 wavelength long and also of No. 18 wire. Twenty-flve wires emanated from each corner and nine from the sides.

TABLE 21-IV

Dimensions of 20-Meter Parasitic 3-Element Array 1) Fixed Array

Director
Driven Element
Reflector
Spacing Between Elements
2) Switched Arroy

Director and Refiector
Driven Element
Spacing Between Elements
Loading Coil

15 ft 8 in.
16 ft
17 ft 7 in.
12-1/2 if

15 ft
16 it
12-1/2 fl 2 ft No. 12 wire wound 3 turns with 3 in. dis. Length adjusted for max. F/B ratio

Fig. 21-52 - Bese hardware of the driven element and the matching transformer.

Fig. 21-53 - Geometry of the image plane used in this invertigation. The partern was chosen to spproximate lines of current flow.

Fig. 21-54 - Base of one of the parasitic elements zhowing the relay enclosure, loading coil, and the indicator meter of the field-strength detector, which was located 2 wavalengehs away.

STANDARD SIZES OF ALUMINUM TUBIN G

Many hams like to experiment with antenns but one problem in making antennas using aluminum tubing is knowing what sizes of tubing are avaliable. If you want to build a beam, many questions about tubing sizes, weights, what size tubing fits into what other size, and so forth must be answered.

Table 21-V gives the standard sizes of aluminum tubing that are stocked by most aluminum suppliers or distributors in the United States and Canada. Note that all tubing comes in 12 -foot lengths and also that any diameter tubing will fit into the next larger size, if the larger size has a 0.058 -inch wall thickness. For example, $5 / 8$-inch tubing has an outside diameter of 0.625 inches and will fit into

3/4-inch tubing with a 0.058 -inch wall which has an inside diametes of 0.634 inches. Having used quite a bit of this type tubing it is possible to state that 0.00 -inch clearance is just right for a slip fit or for slotting the tubing and then using hose clamps. To repeat, always get the next larger size and specify a 0.058 -inch wall to obtain the 0.009 -inch clearance.

With the chart, a little figuring will provide all the information needed to build a beam, including what the antenna will weigh. The 6061-T6 type of aluminum is a relatively high strength and has good worksbility, plus being highly resistant to corrosion and will bend without taking a "set."

Check the Yellow Pages for aluminum dealers.

TABLE 21-V
6061-T6 (615-T6) ROUND ALUMINUM TUBE
in 12-Foor bengins

o. D. Inchice	mALL THICKMESS Inehm siubs Gs.		$\begin{aligned} & \text { I. D. } \\ & \text { Inches } \end{aligned}$	PGPPOA	Per Lenath	O. D. WALL THICKNESS Inehere Inthea Sluth Qas.			$\begin{gathered} \text { I. D. } \\ \text { Inehis. } \end{gathered}$	APPROX. WEIGHYPer Fool Per Length	
He"	. 035	(No. 20)	.117	. 01	. 228	$1{ }^{\circ}$. 083	(No. 141)	. 834	. 281 lbs	3.372 lbs .
	. 049	(No. 18)	. 089	. 025 lbs.	.330 lbs	1\%"	. 035	(No.20)	1.055	. 139	1.668 lbs
14°	. 035	(No. 20)	. 180	. 027 lbs .	. 324 lbs.		. 058	(No. 17)	1.009	. 228 lbs	2.736 lbs.
	. 049	(No. 18)	. 152	. 036 lbs .	. 432 lbs	$11 /{ }^{\circ}$. 035		1.180		
	. 058	(No. 17)	. 134	. 041 lbs	. 492 lbs		. 049	$\text { (No. } 18 \text {) }$	1.152	$.210 \mathrm{lb}$	$\begin{aligned} & 1.860 \mathrm{lbs} . \\ & 2.520 \mathrm{lbs} . \end{aligned}$
si6"	. 035	(No. 20)	. 242	. 036	. 432		. 058	(No. 17)	1.134	. 256 Ibs.	3.072 lbs
	. 049	(No. 181	. 214	. 047	. 56		. 065	(No. 161	1.120	. 284 lbs .	3.408 lbs .
	. 058	(No. 17)	. 196	. 055 tbs.	.660 lbs		. 083	(No. 14)	1.084	. 357 lbs.	4.2
$\% "$. 035	(No. 20)	. 305	. 043	. 516		. 035	(No. 20)	1.305	. 173 lbs	2.076 lbs .
	. 049	(No. 18)	. 277	. 060 lbs	. 720 lbs.		. 058	(No. 171	1.259	. 282	3.384 lbs .
	. 058	(No. 171	. 259	. 0688 lbs .	.816 lbs.	$11 / 2$. 035				
	. 065	(No. 161	. 245	. 074 lbs	.888 lbs.	$11 / 2$	$\begin{aligned} & .035 \\ & .049 \end{aligned}$	(No. 18)	$\begin{aligned} & 1.430 \\ & 1.402 \end{aligned}$	$\text { . } 180 \mathrm{lbs} .$	$3.120 \mathrm{lbs} .$
70"	. 035	(No. 20)	. 367	. 051	. 612		. 058	(No. 17)	1.384	. 309 lbs .	3.708 lbs.
	. 049	(No. 18)	. 339	. 070 lbs .	. 840		. 065	(No. 161	1.370	.344 lbs	4.12
	. 065	(No. 16)	. 307	. 089 lbs .	1.068		. 083	\|No. 14]	1.334	.434 lbs .	5.208 lbs
夕'	. 028	(No. 22)	. 444	. 049 lbs	. 588		-. 125		1.250	$.630 \mathrm{lbs} .$	7.416 lbs
	. 035	(No. 201	. 430	. 059 lbs	. 708 lbs		. 250		1.0	. 150	14.832 lbs
	. 049	(No. 181	. 402	. 082 lbs	. 984 lbs.	$1 \% /$. 035	(No. 20)	1.555	. 206 lbl	2.472 lbs.
	. 058	(No. 171	. 384	. 095 lbs	1.040 lbs .		. 058	(No. 17)	1.500	. 336	4.032 lbs
	. 065	(No. 161	. 370	.107 lbs	1.284 lbs .	174	058	(o. 17]	1.634	. 363	. 3
$3{ }^{\circ}$. 028	(No. 22)	. 569	. 061 lbs .	. 732 lbs.		. 083	(No. 14)	1.584	. 510	.
	. 035	(No. 20)	. 555	. 075 lbs .	. 900 lbs.	$1 \%^{\prime \prime}$. 058	(No. 17]			
	. 049	(No. 18)	. 527	. 106 lbs.	1.272 lbs.		. 058	o.	1.75	389	
	. 058	(No. 17)	. 509	.121 lbs	1.452	$2^{\prime \prime}$. 049	(No. 18)	1.902	. 350 lbs .	4.2
	. 065	(No. 16)	. 495	.137 lba .	1.644 lbs		. 065	(No. 16)	1.870	. 450 lbs.	.
$34^{\prime \prime}$. 035	(No. 20)	. 680	. 091 lbs	1.092 lbs		.083 .0125	(No. 14)	1.834 1.750	. 590 Jbs.	7.080 lbs .
	. 049	(No. 181	. 652	. 125 lbs .	1.500 lbs		¢ $\bullet .125$ $\bullet 250$		1.750 1.500	$\text { . } 870 \text { lbs }$	9.960 lbs.
	. 058	(No. 171	. 634	. 148 lbs	1.776 lbs .		. 2				
	. 085	(No. 161	. 620	.160 lbs .	1.920 lbs.	$2 \%{ }^{\circ}$. 049	(No. 18)	2.152	. 3988 lbs	4.7
	. 083	(No. 14)	. 584	. 204 lbs.	2.448		. 065	(No. 16)	2.120	. 520 lbs .	6.240
\%"	. 035	(No. 20)	. 805	. 108 lbm	1.308		. 083	(No. 14)	2.084	. 660	.
	. 049	(No. 181	. 777	. 151 lbs.	1.810 lbs .	21/2"	. 065	(No. 16)	2.370	. 587 lbs	7.0
	. 058	(No. 17)	. 759	. 175 lba .	2.100 lbs.		. 083	(No. 14)	2.334	. $740 \mathrm{ll} \mathrm{lbs}^{\text {c }}$	8.880
	. 065	(No. 18)	. 745	. 199 ibs.	2.399 lbs		. 125	$\%$	2.250	1.100 lbs	12.720
$1{ }^{\prime \prime}$. 035	(No. 20)	. 930	. 123	176		-. 250		2.000	2.080	25.
	. 049	(No. 18)	. 902	. 170 lbs .	2.040 lbs.	3*	. 065	(No. 161	2.870	. 710 lbs.	8.520
	. 058	(No. 17)	. 884	. 202 lbs .	2.424 lbs .		. 125	1/	2.700	1.330 lbs	15.600 lbs .
	. 065	(No. 16)	. 870	. 220 lbs.	2.640 lbs .		-. 250	1/4	2.500	2.540 lbs .	31.200 lbs

[^39]
A SMALL YAGI FOR 40 METERS

Fig. 1 - The short 40-metar Yagi resembles a large 20 -meter system.

A $7-\mathrm{MHz}$ antenna for most amateur installations consists of a half-wave dipole attached between two convenient supports and fed power at the center with coaxial cable. When antenna gain is a requirement on this frequency, the dimensions of the system can become overwhelming A full size three-element Yagi typically would have 68 -foot clements and a 36 -foot boom. Accordingly, half size elements present some distinct mechanical as well as ecomomical advantages. Reducing the spacing between elements is not recommended since it would severely restrict the bandwidth of operation and make the tuning critical. Good directivity and reasonable gain are features of this

Fig. 2 - The parasitic elaments are held in position with a small plate and four automotive muffler clamps.
array, yet the mechanical design allows the use of a "normal" heavy-duty rotator and a conventional towes support. Element loading is accomplished by lumped inductance and capacitance hats along the 38-foot elements.

Construction

The system described here is similar to the three-element antenna for 20 meters described carlier in this chapter. Some minor changes have been made to allow the use of standard sizes and lengths of aluminum tubing. All three elements are the same length; the tuning of the inductor is slightly different on each element, however. The two parasitic elements are grounded at the center with the associated boom-to-element hardware. A helical hairpin match is used to provide a proper match to the split and insulated driven element. Two sections of steel angle stock are used to reinforce the driven-element mounting plate since the Plexiglas center insulating material is not rigid and element sag might otherwise result. The parasitic element center sections are continuous sections of aluminum tubing and additional support is not needed here. Figs. 2 and 3 show the details clearly.

The inductors for each element are wound on 1-1/8-inch diameter solid Plexiglas cast rod. Each end of the coil is secured in place with a solder lug and the Plexiglas is held in position with an automotive compression clamp. The total number of turns needed to resonate the elements correctly is given in Fig 5. The capacitance hats consiat of $1 / 2$-inch tubing three feet long (two pieces used) attached to the element directly next to the coil on each parasitic element and two inches away from

Fig. 3 - The driven olement needs to be insulated from the boom. Insulation is provided by PVC tubing held in place on sheet plastic with U bolts.
the coil for the driven element. Complete details are given in Fig. 4.

The boom is constructed from three sections of aluminum tubing which measures $2-1 / 2$ inches diameter and 12 feet long These pieces are joined together with inser tubes made from $2 \cdot 1 / 4$-inch stock shimmed with aluminum flashing. Long strips, approximately one inch wide, are wound on the inner tubing before it is placed inside the boom sections. A pair of $3 / 8 \times 3-1 / 2$ inch steel bolts are placed at right angles to each other at every connection point to secure the boom. Caution: do not over tighten the bolts since this will distort the tubing making it impossible to pull apart sections, should the need arise. It is much better to install locking nuts over the original ones to assure mechanical security.

The helical hairpin details arc given in Fig. 6. Quarter inch copper tubing is formed into seven turns approximately four inches long and 2-1/4 inches ID.

Tuning and Matching

The builder is encouraged to carefully follow the dimensions given in Fig. S. Tuning the elements with the aid of'a grid-dip oscillator has proved to be somewhat unreliable and accordingly, no resonant frequencies will be given.

The hairpin matching system may not resemble the usual form but its operation and adjustment are essentially the same. For a detaried explanation of this network, see the Transmission Line chapter of The ARRI Antenna Book, thirtcenth edition. The driven element resonant frequency rcquired for the hairpin match is determined by the placement of the capacitance hats with respect to the ends of the coils. Sliding the capacitance hats away from the ends of the coils increases the resonant frequency (capacitive reactance) of the

Fig. 4 - Each loading coil is wound on Plexiglas rod. The capacitance hats for the parasitic elements are mounted next to the coil, as shown here. The hose clamps compress the tubing against the Plexiglas rod. Each capacitance hat consists of two sections of tubing and associated muffler clamps.
element to cancel the effect of the hairpin inductive reactance. The model shown herc had capacjtance hats mounted 2-1/2 inches out from the ends of the coils (on the driven element only). An SWR indicator or wattmeter should be installed in series with the feed line at the antenna. The hairpin coil may be spread or compressed with an insulated tool (or by hand if power is removed!) to provide minimum reflected power at 7.050 MHz . The builder should not necessarily strive for a perfect match by changing the position of the capacitance hats since this may reduce the bandwidth of the matching system. An SWR of tess than 2 to 1 was achieved across the entire 40 -meter band with the antenna mousted atop an 80 -foot tower.

Fig. 5 - Mechanical details and dimensions for the 40-meter Yagi. Each of the elements uses the same dimensions; the difference is only the number of turns on the inductors and the placement of the capacitance hats. See the text for more details.

Fig. 6 - Driven-element hairpin matching details.

The tuning of the array can be checked by making front-to-back ratio measurements across the band. With the dimensions given here, the best fegures of front-to-back (approximately 25 to 30 dB) should be noticed in the cw portion of the
band Should the builder suspect the tunimg is incorrect os if the antenna is mounted at some height greatly different than 80 feet, retuning of the elements may be necessary.

ANTENNA SUPPORTS

"A".FRAME MAST

The simple and inexpensive mast shown in Fig. 1 is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be selected. The completed mast may be proiected by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stakes should be driven to keep the bottom from stipping and it may then be "walked up" by a pair of helpers. If it is tu go un a roof,
first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys - with the mast vertical all the while. It is entirely practicable, therefore. to emect this type of mast on any small, flat area of roof.

By using $2 \times 3 \mathrm{~s}$ or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 feet. The 2×2 is $\mathbf{2 0 0}$ flexible to be satisfactory at such heights.

Fig. 1 - Details of a simple 40-foot " A "-frame mast suitable for arection in locations where space is limited.

Fig. 2 - A simple and sturdy mast for heights in the vicin. fity of 40 feet. pivoted at the base for easy erection. The height can be extended to 50 feet or more by using 2 $X 4 s$ instead of $2 \times$ 35.

Fig. 3 - While guys are not normally required for the homernade tower, they provide an extra measure of protection against high winds. An inverted V can serve here as two of the guy lines.

HF ANTENNAS

SIMPLE 40-FOOT MAST

The mast shown in Fig. 2 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the " A "-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of $2 \times 3 \mathrm{~s}$ with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two legs are bolted to a length of 2 $X 4$ which is set in the ground. A short length of 2 $\times 3$ is placed between the two legs about halfway up the bottom section, to maintain the spacing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical by lining it up with a plumb bob. The holes for the bolts should be drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in place and the mast pushed up, using a ladder or another 20 -foot 2×3 for the job. As the mast goes up, the slack in the guys can be taken up so that the whole structure is in some measure continually supported. When the mast is vertical, bolt B should be slipped in place and both A and B tightencd. The lower guys can then be given a final tightening, leaving those at the top a little slack until the antenna is pulled up, when they should be adjusted to pull the top section into line.

VHF and UHF Antennas

Improving his antenna system is one of tho most productive moves open to the vhf enthusiast. It can incresse transmitting range, improve reception, reduce interference problems, and bring other practical benefits. The work itself is by no means the least attractive part of the job. With even high-gain antennas, experimentation is greatly simplified, at vhf and uhf, because an array is a workable size, and much can be learned about the nature and adjustment of antennas. No large investment in test equipment is necessary.

Whether we buy or build our antennas, we soon find that there is no one "best" design for all purposes. Selecting the antenna best suited to our needs involves much more than scanning gain figures and prices in a manufacturer's catalog. The first step should be to establish priorities.

OB.JECTIVES

Gain: Shaping the pattern of an antenns, to concentrate radiated energy, or received signal pickup, in some directions at the expense of others is the only way to develop gain. This is best explained by starting with the hypothetical isotropic antenna. which would radiate equally in all directions. A point source of light Illuminating the insido of a globe uniformly, from its center, is a visual analogy. No practical antenna can do this, so all antennas have "gain over isotropic" (dBi). A half-wave dipole in free space has 2.1 dBi . If we can plot the radiation paftern of antenna in all planes, we can compute its gain, so quoting it with respect to isotropic is a logical base for agreement and understanding. It is rarely possible to eract a half-wave antenna that has anything approaching a free-space pattern, and this fact is responsible for much of the confusion about true antenna gain.

Radiation patterns can be controlled in various ways. One is to use two or more driven elements, fed in phasc. Such collinear arrays movide gain without markedly sharpening the frequency response, compared to that of a single element. More gain per element, but with a sacrifice in frequency coverage, is obtained by placing parasitic elements longer and shorter than the driven one, in the plane the first element, but not driven from the feedline. The reflector and directors of a Yagis array are highly frequency sensitive and such an antenna is at its best over frequency changes of less than one percent of the operaling frequency.

Frequency Response: Ability to work over an entire vhf band may be important in some types of work. The response of an antenna clement can be broadened somewhat by increasing the conductor diameter, and by tapering it to something
approximating cigar shape, but this is done mainly with simple antennas. More practically, wide frequency coverage may be a reason to select a collinear array, rather than a Yagi. On the other hand, the grewing tendency to channelize operations in small segments of our bands tends to place broad frequency coverage low on the priority list of most vhf stations.

Radiation Pattem: Antenna radiation can be made omnidirectional, bidirectional, practically unidirectional, or anything between these condftions. A vhf net operator may find an omnidjrectional system almost a necessity, but ti may be a poor choice otherwise. Noise pickup and other interference problems tend to be greater with such antennas, and those having some gain are especially bad in these respects. Maximum gain and low radiation angle are usually prime intorests of the weak-signal DX aspirant. A clean paltern, with lowest possible pickup and radiation off the sides and back. may be important in high-activity areas, or where the noise level is high.

Heighs Gain: In goneral, the higher the better in vhf antenna installations. If raising the antenna clears its view over nearby obstructions, it may make dramatic improvements in coverage. Within reason greater height is almost always worth its cost, but height gain must be balanced against increased transmission-line loss. Tho latter is considerable, and it increases with frequency. The best available line may be none too good, if the run is long in terms of wavelength. Give line-loss information, shown in table form in Chapter 20, close scrutiny in any antenna planning.

Physical Size: A given antenna design for 432 MHz will have the same gain as one for 144 MHz , but being only one-third the size it will intercept only one-third as much energy in receiving. Thus, to be equal in communication effectiveness, the $432-\mathrm{MHz}$ array should be at least equal in size to the $144-\mathrm{MHz}$ one, which will require roughly three times as many elements. With all the extra difficulties involved in going higher in froquency, it is well to be on the big side, in building an antenna for the higher band.

DESIGN FACTORS

Having sorted out objectives in a general way, we face decisions on specifics, such as polarization. type of transmission line, matching methods and mechanical design.

Polarization: Whether to position the antenna elements vertical or horizontal has been a moot point since early vhf pioneering. Tests show little evidence on which to sct up a uniform polarization
policy. On long paths there is no consistent advantage, either way. Shorter paths tend to yield higher signal levels with horizontal in some kinds of terrain. Man-made noise, especially ignition interference, tends to be lower with horizontal. Verticals are markedly simpler to use in omnidirectional systems, and in mobile work.

Early vhf communication was largely vertical, but horizontal gained favor when dircctional arrays became widely used. The major trend to fm and repeaters, particularly in the $144-\mathrm{MHz}$ band, has tipped the balance in favor of verticals in mobile work and for repeaters. Horizontal predominates in other communication, on 50 MHz and higher frequencies. it is well to check in advance in any new arca in which you expect to operate, however, as some localities still use vertical almost exclusively. A circuit loss of 20 dB or more can be expected with cross-polarization.

Transmission Lines: There are two main categories of transmission lines: balanced and unbalanced. The former include open-wire lines separated by insulating spreaders, and Twin-Lead, in which the wires are embedded in solid or foamed insulation. Line losses result from ohmic resistance, radiation from the line, and deficiencies in the insulation. Large conductors, closely spaced in terms of wavelength, and using a minimum of insulation, make the best balanced lines. Impedences are mainly 300 to 500 ohms. Balanced lines are best in straight runs. If bends are unavoidable. the angles should be as obtuse as possible. Care should be taken to prevent one wire from coming closer to metal objects than the other. Wire spacing should be less than $1 / 20$ wavelength.

Properly built, open-wire line can operate with very low loss in vhf and even uhf installations. A total line loss under 2 dB per hundred feet at 432 MHz is readily obtained. A line made of No. 12 wire, spaced $3 / 4$ inch or less with Teflon spreaders, and running essentially straight from antenna to station, can be better than anything but the most expensive coax, at a fraction of the cost. This asumes use of baluns to match into and out of the lise, with a short length of quality coax for the moving section from the top of the tower to the antenna. A similar $144-\mathrm{MHz}$ setup could have a line loss under! dB.

Small coax such as RC-58 or 59 should never be used in vhf work if the nun is more than a few fect. Half-inch lines (RG-8 or 11) work fairly well at 50 MHz , and are acceptable for $144-\mathrm{MHz}$ nns of 50 feet or less. If these lines have foam rather than solid insulation they are about 30 percent better. Aluminum-jacket lines with large inner conductors and foam insulation are well worth their cost. They are readily water-proofed, and can last almost indefinitely. Beware of any "bargains" in cosx for vhf or uhf uses. Lost transmitter power can be made up to some extent by increasing power, but once lost, a weak signal can never be recovered in the recciver.

Effects of weather should not be ignored. A well-constructed open-wire line works well in nearly any weather, and it stands up well. Twin-Lead is almost uscless in heavy rain, wet
snow or icing. The best grades of coax are impervious to weather. They can be run underground, fastened to metal towers without instlation, or bent into any convenicnt position, with no adverse effects on performance.

Impedance Matching

Theory and practice in impedance matching are given in detail in earlier chapters, and theory, at least, is the same for frequencies above 50 MHz . Practice may be simnilar, but physical size can be a major modifying factor in choice of methods. Only the matching devices used in practical construction examples later in this chapter will be discussed in detail here. This should not rule out consideration of other methods, however, and a reading of relevant portions of Chapters 20 and 21 is recommended.

Universal Stub: As its name implies, the double-adjustment stub of Fig. 22-1 A is useful for many matching purposes. The stub length is varied to resonate the system, and the transmission line is tapped onto the stub at the point where line and stub impedances arc equal. In practice this involves moving both the stiding short and the point of line connection for zero reflected power, as indicated on an SWR bridge connected in the line.

The universal stub allows for tuning out any small reactince present in the driven part of the

Fig. 22-1 - Matching methods commonly used in uhf antennas. The universal stub, A, combines tuning and matching. The adjustable short on the stub, and the points af connection of the transmission line, are adjusted for minimum reflected power in the line. In the delte match, 8 and C, the line is fanned out to tap on the dipole at the point of best impedance match. Impedances need not be known in A, B and C. The gamma-match. D, is for direct connection of coax. C1 tunes out inductance in the arm. Folded dipole of uniform conductor size. E, steps up antenna impedance by a factor of 4. Using a larger conductor in the unbraken portion of the folded dipole, E, gives higher onders of impedance transformation.
system. It permits matching antenna to line without knowledge of the actual impedances involved. The position of the short yielding the best match gives some indication of amount of reactance present. With little or no scactive component to be tuned out, the stub will be approximately a half-wavelength from load to short.

The stub should be stiff bare wire of rod, spaced no more than $1 / 20$ wavelength. Preferably it should be mounted rigidly, on insulators. Orce the position of the short is determined, the center of the short can be grounded, if desired, and the portion of the stub ло longer needed can be removed.

It is not necessary that the stub be connected directly to the driven element. It can be made part of an open-wire line, as a device to match into or out of the line with coax. It can be connected to the lower end of a delta match, or placed at the feedpoint of a phased array. Examples of these uses are given later.

Delta Match: Probably the first impedance match was made when the ends of an open line were fanned out and tapped onto a half-wave antenna, at the point of most efficient power transfer, as in Fig. 22-1B. Both the side length and the points of connection cither side of the center of the element must be adjusted for minimum reflected power in the line, but as with the universal stub, the impedances need not be known. The delta makes no provision for luning out reactance, so the universal stub is often used as a termination for it, to this end.

Once thought to be inferior for vhf apptications because of its tendency to radiate if improperly adjusted, the delta has come back to favor, now that we have good methods for measuring the effects of matching. It is very handy for phasing multiple-bay arrays with open tines, and its dimensions in this use are not particularly critical. It should be checked out carefully in applications like that of Fig. 22-1C, having no tuning device.

Gamma Match: An application of the same principle to direct connection of coax is the gamma match, Fig. 22-1D. There being no if voltage at the center of a half-wave dipole, the outer conductor of the coax is connected to the element at this point, which may also be the junction with a metallic or wooden boom. The inner conductos, carrying the ff current, is tapped out on the element at the matching point. Inductance of the arm is tuned out by means of Cl , resulting in electrical balance. Both the point of contact with the clement and the setting of the capacitor are adjusted for zero reflected power. with a bridge connected in the coaxial line.

The capacitor can be made variable temporarlily, then replaced with a suitable fixed unit when the required capacitance value is found, or Cl can be mounted in a waterproof box. Maximum should be about 100 pF for 50 MHz and 35 to 50 pF for 144. The capacitor and arm can be combined in one coaxial assembly, with the am connecting to the driven element by means of a sliding clamp. and the inner end of the arm sliding inside a slecve
connected to the inner conductor of the coax. A commercially supplied assembly of this type is used in a $50-\mathrm{MHz}$ array described later, or one can be constructed from concentric pieces of tubing, insulated by plastic siceving. Rf voltage across the capacitor is low, once the match is adjusted properly, so with a good dielectric, insulation presents no great problem, if the initid adjustment is made with low power level. A clean, permanent high-conductivity bond between anm and olement is important, as the rf current flow is high at this point.

Folded Dipule: The impedance of a half-wave antensa broken at its center is 72 ohms . If a single conductor of uniform size is folded to make a half-wave dipole as shown is Fig. 22-1E, the impedance is stepped up four times. Such a folded dipole can thus be fed directly with 300 -ohm line with no appreciable mismatch. Coaxial line of 70 to 75 ohms impedance may also be used, if a $4: 1$ balun is added. (See balun information presented later in this chapter.) Higher impedance step up can be obtained if the unbroken portion is made larger in cross-section than the fed portion, as in 22-1F For design information, sce Chapter 20.

Baluns and Transmatches: Conversion from batanced loads to unbalanced lines, or vice versa, can be performed with electrical circuits, or their equivalents made of coaxial line. A balun made from flexible coax is shown in Fig. 22-2A. The looped portion is an clectrical half-wavelength. The physical length depends on the propagation factor of the line used, so it is well to check its resonant frequency, as shown at B. The twa ends are shorted, and the loop at one end is coupled to a dip-meter coil. This type of balun gives an impedance stepup of 4 to 1 in impedance, 50 to 200 ohms, or 75 to 300 ohms, typically.

Coaxial balune giving 1 -to- 1 impedance transfer are shown in Fig. 22-3. The coaxial slcove, open at the top and connected to the outer conductor of the line at the luwer end (A) is the proferred type. A conductor of approximately the same size as the line is used with the outer conductor to form a quarter-wave stub, in B. Another piece of coax, using only the outer conductor, will serve this purpose. Both baluns are intended to present an infinite impedance to any of current that might otherwise tend to flow on the outer conductor of the coax.

The functions of the balun and the impedance

Fig. 22-2 - Conversion from unbaiancad coax to a balanced load can be done with a half-wave coaxial balun. A. Electrical length of the looped section should be checked with a dip-meter, with ends shorsed. B. The half-wave belun gives a $4: 1$ impedance step up.
transformer can be handled by various tuned circuits. Such a device, commonly called an antenna coupler or Trananstch, can provide a wide range of impedance transformations. A versadile example is described at the end of this chapter.

The Q Section: The impedance transforming property of a quarter-wave line is treated is Chapter 20. The parallej-bar \mathbf{Q} section is not useful in low-impedance vhf matching situations, but \mathbf{Q} sections of flexible coaxial line may be handy in phasing and matching vhf and uhf arrays. Such sections can be any odd multiple of a quarter-wavelength. An example of two $3 / 4$-wave $75-\mathrm{ohm} \mathbf{Q}$ sections, used to phase and match a pair of Y agi bays, each of which has 50 ohms impedance, is given later in this chapter.

Mechanical Design

The small size of vhf and, especially, uhf arrays opens up a wide range of construction possibitities. Finding components is becoming dificult for home constructors of ham gear, but it should not hold back antenna work. Radio and TV distributors have many useful antenna parts and materials. Hardware stores, metals suppliers, lumber yards, welding-supply and plumbing-supply houses and even junkyards should not be overlooked. With a little imagination, the possibilities are endless.

Wood or Metas? Wood is very useful in antenna work, and it is almost universally available, in a great variety of shapes and sizes. Rug poles of wood or bamboo make fine booms. Round wood stock (dowelling) is found in many hardware stores in sizes suitable for small arrays. Square or rectangular boom and frame materials can be ripped to order in most lumber yards, if they are not available from the racks in suitable sizes.

There is no ri voltage at the center of a half-wave dipole or parasitic element, so no insulation is required in mounting elements that are centered in the support, whether the latter is wood or metal. Wood is good for the framework of multibay arrays for the higher bands, as it keeps down the amount of metal in the active area of the array.

Wood used for antenna construction should be woll-neasoned and free of knots or damage. Available matcrials vary, depending on local sources. Your lumber dealer can help you better than anyone else in choosing sutable matcrials. Joining wood members at right angles is often done advantageously with gusset plates. These can be of
thin outdoor-grade piywood or Masonite. Round materials can be handled in ways similar to those used with metal components, with U clamps and with other hardware.

Metal booms have a small "shorting effect" on elements that run through them. With materiads sizes commonly employed, this is not more than one percent of the element length, and may not be noticeable in many applications. It is just perceptible with $1 / 2$-inch tubing booms used on 432 MHz , for example. Formula lengths can be used as given, if the matching is adjusted in the frequency range one expects to use. The center frequency of an all-metal asray will tend to be 0.5 to I percent higher than a similar system built of wooden supporting members.

Element Materials and Dimensions: Antennas for 50 MHz need not have elements larger than $1 / 2$-inch diameter, though up to 1 inch is used occasionally. At 144 and 220 MHz the elemenss are usually $1 / 8$ to $1 / 4$ inch in diameter. For 420 . elements as small as $1 / 16$ inch in diameter work well. if made of stiff rod. Aluminum welding rod. $3 / 32$ to $1 / 8$ inch in diameter is fine for $420-\mathrm{MHz}$ arrays, and $1 / 8$ inch or larger is good for the 220 band. Aluminum rod or hard-drawn wire works well at 144 MHz . Very strong elements can be made with stiff-rod inserts in hollow tubing. If the latter is slotted, and tightened down with a small clamp. the element lengths can be adjusted experimentally with ease.

Sizes recommended above are usable with formula dimensions given in Table 22-1. Larger diameters broaden frequency response; smaller ones sharpen it. Much smaller diameters than those recommended will require longer elements, especially in $50-\mathrm{MHz}$ arrays.

The driven element(s) of a vhf array may be cut from the formula

$$
L \text { (inches) }=\frac{5600}{\text { Freq. }(\mathrm{MHz})}
$$

This is the basis for Table 22-1 drivenelement information. Reflectors are usually about 5 percent longer, and directors 5 percent shorter, though element spacing und desired antenna bandwidth affect parasitic-element lengths. The closer the reflector and director (especially the latter) are to the driven element the nearer they must be to the driven-element length to give optimum gain. This is another way of saying that close-spaced arrays tend to work effectively over narrower bandwidths than

Fig. 22-3 - The balun conversion function, with no impedance change, is accomplished with quarter-wave lines, open at the rop and connected to the coax ouser conductor at the boitom. Coaxial sleeve, A, is the preferred type.

TABLE 22-1

Dimensions for VHF Arrays in Inches				
Freq. (MHz)	50^{*}	144	220^{*}	432
Driven Element	111	$385 / 8$	$257 / 16$	13
Change per MHz	2	$1 / 4$	$1 / 8$	$1 / 32$
Reflector	$1161 / 2$	$401 / 2$	$263 / 4$	$131 / 2$
1st Director	$1051 / 2$	$365 / 8$	$241 / 8$	$1211 / 32$
2nd Director	$1031 / 2$	$363 / 8$	24	$129 / 32$
3rd Director	$1011 / 2$	$361 / 8$	$237 / 8$	$127 / 32$
1.0 Wavelength	236	$811 / 2$	$535 / 8$	$271 / 4$
0.625 Wavelength	149	51	$331 / 2$	17
0.5 Wavelength	118	$403 / 4$	$2613 / 16$	$135 / 8$
0.25 Wavelength	59	$203 / 8$	$137 / 8$	$613 / 16$
0.2 Wavelength	$473 / 4$	$161 / 4$	$103 / 4$	$57 / 16$
0.15 Wavelength	$351 / 2$	$121 / 4$	8	4

Abstract

- Dimensions are for the most-used section of each bend: 50 to $50.6 \mathrm{MHz}, 144$ to $145.5 \mathrm{MHz}, 220$ to 222 MHz. and 432 io 434 MHz . The element lengths should be ad\}usted for each megahertz dif Sereace in frequency by the amount điven in the third line of the table. Example: If opdmam performance is wanted much above 145 MHz , shorten all elements by about $1 / /$ Inch. For above 146 MHz , shorten For nhove 146 MH by k inch. See text.

Element spacings are not critical, and table figures may be used, regardless of element lengths chosen. Parasitic element lengths are optimum for collinear arrays and small Y :gis, having 0.2 -wavelength spacing.

wide-spaced ones, though maximum gain may be possible with many different combinations of lengths and spacings.

Parasitic-element lengths of Table 22-1 are based on spacings of about 0.2 wavelength, common in relatively short Yagis and collinear arrays. Dimensions given later in the individual descriptions of antennas may be at variance with those of the table. Where this is evident, the length differences result from usc of different element spacings, for the most part. Some designs are for maximum gain, without consideration of bandwidth. Still others have slightly modified spacings, to give optimum results with a particular boom length.

ANTENNAS FOR 50 MHz

Simple antennas such as dipoles, groundplanes, mobile whips and the like are covered adequately elsewhere in this Handbook. Adaptation of them to vhf work involves mainly reference to Table 22-1 for length information. We will be concemed here with arrays that give appreciable gain, or other properties necded in vhf communication.

Yagis, Short and Long: The Yagi array is practically standard for $50-\mathrm{MHz}$ directive use. Usual sizes are three to six elements, though up to eight or nine in line are seen in ambitious installations. Director spacing, after the first threc, must be very wide to be worthwhile, so boom lengths of 30 feet or more are needed for more than 6 clements. Though long Yagis certainly are desirable, it should be emphasized that the first two or three elements provide very high gain per unit of spacc. Even a 3-element Yagi, on as short a boom as 6 feet, is good for 7.5 dB over a dipole. To double the gain (add 3 dB) requires going to only 6 elements - but it takes a boom more than 20 fect long. If it is possible to put up a rotatable antenna at all, there is usually room for at least a 3-element structure, and the gain such an antenna provides is very helpful. Dimensions can follow those given for the first three elements of larger arrays described here.

Stacking Yagis: Where suitable provision can be made for supporting them, two Yagis mounted one above the other and fed in phase may be preferable to one long Yagi having the same theoretical or
measured gain. The pair will require a much smaller turning space, for the same gain, and their lower radiation angle can provide interesting results. On long ionospheric paths a stacked pair occasionally may show an apparent gain much greater than the 2 to 3 dB that can be measured locally as the gain due to stacking.

Optimum spacing for Yagis of 5 elements or more is one wavelength, but this may be too much for many builders of $50-\mathrm{MHz}$ antennas to handle. Worthwhile rosults can be obtained with as little as one half-wavelength (10 fcet), and $5 / 8$ wavelength (12 feet) is markedly better. The difference between 12 and 20 feet may not be worth the added structural problems involved in the wider spacing, at 50 MHz , at least. The closer spacings give lower measured gain, but the antenna patterns are cleaner than will be obtained with one-wavelength spacing. The extra gain with wider spacings

Fig. 22-4 - 5-over-5 stacked-Yagi array for 50 MHz , with all-coax feed.

Fig. 22-5 - Principal dimensions of the $50-\mathrm{MHz}$ E-over-5, with details of the $3 / 4$-wovelength Q-ection matching system. The propagation factor at 0.66 applies only with solid-dielectric coax. Gamma-matching assemblies are coaxial-capacitor unlts (Kirk Electronics C6M).
is usually the objective on 144 MHz . and higher bands. Where the structural problems are not severe.

E-OVER. 5 FOR 50 MHz

The information provided in Fig. 22-5 is useful for a single 5-element Yagi, or for the stacked pair of Fig. 22-4, either to be fed with a $50-0 h m$ line. The phasing and matching arrangement may be used for any pair of Yagis designed for 50 -ohm foed individually. With slight modiflcation it will serve with Yagis designed for 200 -ohm balanced fced.

Mechanical Details

Construction of the single Yagi bay or a stacked pair is simplified by use of components that should be available to most builders. Element-to-boom and boom-to-mast mounts are aluminum cestings designed for these applications by Kirk Flectronics, 134 Westpark Road, Dayton, Ohio 45459. The gumma matches shown schematically in Fig. 22-5 are of coaxial construction, waterproofed for long life, available from the same supplier.

Booms are made of two 8 -foot lengths of I 1/-4-inch aluminum (Reynolds) found in many hardware stores. Reynolds makes a special fitting for joining sections of the tubing, but these are not widely available from the usual hardware-store
stocks, so a handmade splice was substituted. A piece of the same-diameter tubing as the booms. 12 inches or more in length, is slotted with a hacksaw. and then compressed to fit inside the ends of the two 8-foot lengths, as seen in Fig. 22-6. If the splice is held in the compressed position with large pipe pliers or a hose clamp, the ends will slide inside the boom sections readily. When the splice is released from compression, the two tubes can be driven together. Self-tapping screws should be run through the tubes and the splice, to hold the arsembly firm. Use at least two on each side of the splice.

Elements are $1 / 2$-inch aluminum tubing. Alcoa alloy $6061-\mathrm{T} 6$. Almost any ahuminum should be suitable. Kirk Yagi clamps, one-picce aluminum castings designed for this job, are available for $3 / 8$ as well as $1 / 2$-inch elements, and $11 / 4$-inch boom. The cyes through which the elements pass are drilled, but must be tapped for $10-32$ setscrews to tighten the elements firmly in place, two screws per clement. The portion of the clamp that surrounds the boom can be spread slightly to allow the clamp to slide along the boom to the desired point. The interior surface is slightly rough, so tightening the yoke with the screw provided with the clamps makes the element set fimmly on the boom. The reflector, driven element and first director are all in back of the boom splice.

The vertical member of the stacked array is 1//4-inch thick-wall anodized steel tubing, commonly used in large antenna installations for home TV. Do not use thin-wall aluminum or light galvanized stecl masting. The aluminum is not strong enough, and inexpensive steel masting rusts inside, weakening the structure and inviting failure.

Spacing between bays can be a half wavelength (10 feet), 5/8 wavelength (12 feet), or a full wavelength (20 fect), though the wide spacing imposes mechanical problems that may not be worth the effort for most builders. The $5 / 8$-wave spacing is a good compromise between stacking gain and severe support problems, and is recommended with the materials used here.

The 10 -foot lengths of steel masting could be used, with the bottom 8 feet running through the tower bearing to the rotator. A heavier main support is preferablo, however, and it is " 1 -inch water pipe" in this installation. This is iron, about I $3 / 8$-inch outside diameter, extending about 8 feet out of the tower. The steel masting between the Yagi bays is fastened to the pipe with four TV-type U-clamps, spaced evenly in the overlapping area of the two supports.

The booms are braced to the mast fore and aft, using the longest picues of element stock left over when the forward directors are cut from 12 -foot lengths. Ends of the braces are flattened about one inch, and bent to the proper angle. Outer ends fasten to the booms with two self-tapping screws each. The mast ends are clamped to the support with one TV U-clamp for each pair. This bracing is good insurance against fluttering of the booms and elements, which can cause failures after long periods, even though a structure appears adequately strong.

Fig. 22-6 - Details of the boom splices used in the 5 -element $50-\mathrm{MHz}$ Yagis. Two 8 -foot lengths of $11 / 4$-inch tubing are joined to make the 16 -foot booms.

Phasing and Matching

A single 5-element Y agi can be fed directly with S0-ohm coax, through the Kirk coaxial gammamatch assembly (Type C6M). This has an adjustable coaxial capacitor, and an arm that connects to the driven olement with a sliding clip. Both the capacitor and the point of connection should be adjusted for minimum reflected power, at the center of the frequency range most used. Doing this between 50.2 and 50.4 MHz is suitable for most operators, other than those using fm above 52.5 MHz . Each bay of the stacked pais should be set in this way. The pair can then be fed through a double Q-section of 75 -ohm coax, as shown in Fig. 22-5.

The Kirk gamma-match assembly has an SO-239 coaxial fitting bullt in, so the phasing lines are fitted with PL-259 conxial connectors at both ends. The inner ends attach to a matching coaxial T fitting. The main run of $50-\mathrm{ohm}$ line connects to the center of the T, with a coaxial throughconnector and a PL-259 fitting. When the antenna is installed all connectors should be wrapped tighlly with plastic tape, and sprayed with Krylon or other protective spray. Dow-Coming Silastic RTV-732 sealant is also good for this use. If the coaxial phasing sections are wrapped around the booms and vertical support a few times, they will just reach the T-fitting, when 12 -foot spacing is used.

The lines should be any odd multiple of a quarter-wavelength. If both are the same length the gamma arms should attach to the same side of the driven clements. If there is a half-wavelength difference in the lines, the ams should connect to opposite sides. The length given in Fig. 22-5 is nominal for solid-dielectric coax. If foam-dielectric line is used, the propagation factor given by the maker should be substituted for the 0.66 figure. It is best to grid-dip the line sections for resonant frequency, in any case. Cut the line three inches or more longer than the expected length. Solder a loop of wire between the center pin and the mounting flange of an SO-239 connector. Attach this to the PL-259 connector at one end of the line, and couple it to the dip-meter coil. Trim the line length until resonance at the midpoint of the intended frequency range is indicated. This will not change appreciably when the other coaxial connector is attached.

The line used in the model described is RG-59A/U, which is satisfactory for any amateur power level, so long as the SWR is kept low. Larger coax, such as RG-11A/U, is recommended for a greater margin of safety.

Adjustment and Testing

An individual Yagi can be tested and matched properly by mounting it a half-wavelength above ground, in a large area that is clear of obstructions for many wavelengths. The boom can also be tilted up, until the ground-reflected wave is not a factor in the field-strength meter reading. The SWR bridge should be connected at the gamma match, or an electrical half-wavelength therefrom. Apply low power (not over 10 watts) and adjust the gamma capacitor and the point of connection to the driven element for zero reflected power, at the desired frequency range. The model was flat from 50.2 to 50.4 with just perceptible reflected power showing at 50.1 to 50.5 . Adjusted in this way the array should work well up to about 51 MHz .

The best way to check operation of the stacked pais is to support the array with the reflectors resting on the ground and the booms pointing straight up. A 6 -foot step-ladder can be used for a temporary support. The bays can be fed separately with 50 -ohm line, in this position, and the gamma settings should be the same as obtained in the first check, described above. Now connect the two 75 -ohm phasing lines, and insert the SWR bridge in the $50-0 \mathrm{hm}$ line to the T fitting. The SWR should be the same as when the bays are fed separately through the 50 -ohm line; close to $1: 1$. The array can be dismantled and reassembled atop the tower. and matching should remain correct.

The matching-phasing system described is useful for any two loads dosigned for 50 -ohm feod. The $5 / 8$-wave spacing is usable with up to at least 6element bays, though wider bay spacing is needed for maximum gain with long Yagis. Individual antennas intended for 200 -ohm balanced feed can be matched with 75 -ohm coax in the phasing hamess and baluns at cach load.

Bay spacing is not critical. Close spacing gives somewhat lower gain, bul a very clean pattern. The main lobe gets sharper and larger as spacing is increased, but minor lober also increase. These take over from the main lobe if spacing of bays is carried too far. The effect of increasing bay spacing is shown graphically in Fig. 8-11 of The Radio Amateur's VHF Manual, and associated text.

144 OVER 50

Four phased $144-\mathrm{MHz}$ Yagis are shown mounted above a $50-\mathrm{MHz}$ 6-element Yagi in Fig 22-7. The latter can be mechanically similar to the 5 -clement antennas of Fig. 22-4, though this two-band system was bullt almost entirely by hand. Element spacings are closer than in the 5-element 6 -meter arrays, in order to fit 6 elements onto a 20 -foot boom. The individual bays of the 2-meter array can be used singly, in pairs, of to the 4-bay system shown. Feed details are given for each application.

6-Element $50-\mathrm{MHz}$ Yagi

The 6 -meter elements were designed for light weight, with $1 / 2$-inch tubing for half their length and thin-wall fuel-line tubing inserts for the outer

Fig. 22-7 - Antennas for two bands on a single support. Four 5 -element Yagis for 144 MHz , top, have onewavelength spacing each way. The $50-\mathrm{MHz}$ Yagi is set up to make optimum use of 6 elements on a 20 -foot boom.
portions. One-picce half-inch elcments are equally good, though a bit bulkier. Elements can be run through the boom and held in place with clamps, as in Fig. 22-8, or mounted in Kirk castings. (See 5 element array description) Lengths are 116, $1101 / 2,1051 / 2,104,1023 / 4$, and $1011 / 2$ inches. Spacings, in the same order, are 36, 36, 42, 56 and 66 inches. The boom is made of two 10 -foot aluminum mast sections, braced from above with $3 / 4$-inch tubing. See Fig. 22-8.

The gamma matching was handled in two different ways. A coaxial capacitor and moving arm was hand-made, as shown in Fig. 22-9 using $1 / 2$-inch and $1 / 4$-inch tubes, insulated from one another by plastic sleeves that just fit inside the $1 / 2$-inch fixed portion. The inner tubing can be wrapped with plastic tape to build up the needed thickness, to the same end. The arm is supported at two points with 1 -inch ceramic pillars.

A second and simplier matching arrangement uses merely an extension of the main coaxial line, with a $100-\mathrm{pF}$ fixed transmitting-type capacitor in series with the inner conductor and the sliding contact. The matching point was about 20 inches

Fig. 22-8 - Elements may be run through a wood or metal boom, and held in place with simple aluminum clamps, left. At the right is a clamp for holding boom braces on the vertical support in the $50-\mathrm{MHz}$ 6-element array.
out from the boom with a $100-\mathrm{pF}$ capacitor. It is suggested that the matching be done first with a variable capacitor, substituting a fixed onc when the desired value is found.

An element-mounting clamp no longer available appears in Fig. 22-9. The Kirk $1 / 2$-to-1 $1 / 4$-inch element-mounting clamps (see 5 -over-5 description) do this job nicely.

5-Element $144-\mathrm{MHz}$ Yagis

An optimum design for 5 -element 2 -meter Yagis, to be used singly or combined in stacked systems, is shown in Fig. 22-10. Dimensions given work well from 144 to 146 MHz , if the matching is adjusted at 145 . Lengths should be reduced $1 / 4$ inch for each megahertz higher center frequency than 145 MHz . The oripinal elements have center sections of $1 / 4$-inch aluminum tubing, with $5 / 32$-inch rod inserts that slide into the center members. One-piece elements of $1 / 8$ to $1 / 4$-inch tubing or rod will work equally well. The larger size will permit fastening in place with self-tapping screws bearing on the elements. For smaller sizes, use a clamp like that of Fig 22-8. The booms are 3/4- or i -inch diameter aluminum. Wood dowelling could be used equally well.

Feed Methods: A delta match is used in conjunction with a coaxial-line balun to feed a single 5-element Yagi. Some experimentation with delta dimensions may be required to achieve the best match. (Sec Fig. 22-1C and detailed description of the delta match earlicr in this chapter.) This arrangement makes a fine small Yagi that can be dismantled readily, for carrying about in portable work.

Fig. 22-9 - A hand-made coaxial gamma match for $50-\mathrm{MHz}$ arrays. A $1 / 4$-inch rod or tube 14 inches or longer slides inside a $1 / 2$-inch sleeve that is connected to the coaxial fitting above the boom. The rod slides on plastic sleeves inside the larger section. Separation is maintained with two ceramic pillars mounted with wraparound clips. Both the coaxial capacitor and the sliding clip between rod and element are adjusted for minimum reflected power in the coaxial line.

Fig. 22-10 - Optimum design for a 2-meter Yagi, using 5 elements on a 6 -foot boom. When used singly, this antenna can be fed as shown in Fig. 22-1C, with 4 -inch delta arms connected 3 inches either side of center. The bolun loop would be about 27 inches long. With lengths shown, the antenna works well from 144 to above 146 MHz , but gain drops sharply above 147 MHz .

Use of two 5-element Yagis with 1-wavelength spacing is shown in Fig. 22-11A. The phasing harness can be any open-wire line, preferably not spaced more than one inch. Delta dimensions are not critical in this application, as the matching is done with the universal stub at the center of the hamess.

The 4 -bay 20-olement system in Fig. 22-7 and $22-11 \mathrm{~B}$ uses two sets of 5 -over-5, connected between centers with another 1 -wavelength line. The universal stub is connected at the center of the horizontal section. In each case, the stub length and line-connection point are adjusted for minimum reflected power in the main line.

An interesting phasing method was used in the 4-bay array. Common electric zipcord, available in any hardware storc, was split into its two parts. The insulation was left on, and spreaders made of ordinary $1 / 2$-inch wood dowel were used to hold the wires one inch apart. Holes were drilled in these of such size that the zipcord could just be pulled through them. They are held in place with any good cement. If supported with TV-type screweycs that grip the spreaders, sach a low-cost line is very durable. The array shown was taken down after two years of use in a very exposed

Fig. 22-11 - Stacking details for the 5-element Yagis of Fig. 22-7 and 22-10. The short on the universal stub, and the point of connection of the main transmission line, are adjusted for minimum reflected power in the latter. Balanced line could be connected similarly for the main turn.
location, and no deterioration was apparent. There was no breakage, even under several heavy ice loads each winter. Using several supports on each hamess section is the key to this long life.

The transmission line was switched between the six- and two-meter arrays by means of a waterproofed antenna relay. To avoid the dangers of a 115 -volt line run, 6.3 -volt transformers were used at each end. This one-line hookup makes it possible to use a single rather expensive line to its fullest potential on two bands.

13-ELEMENT YAGI FOR 144 MHz

Many combinations of element lengths and spacings work well in long Yagis. The 13 -element array detailed in Fig. 22-12 is the product of many months of joint experimental work by W2NLY and W6QKI. First described in QST for January, 1956, it has been a winner ever since. Elements are $1 / 8$-inch hard-drawn aluminum wire, except for the folded-dipole driven element. This is the step up variety, intended to give a feed impedance of 200 ohms, for feeding with 50 -ohm line and a coaxial balun.

The 24-foot boom carries a light load, and can

Fig. 22-12 - High-performance long Yagi for 144 MHz . from exparimental work by W2NLY and WGQKI. Dimensions are for maximum gain beiween 144 and 145 MHz .

be made of thin-wall tubing if braced in the manner of the $50-\mathrm{MHz}$ arrays previously described. Elements run through the boom and are held in place with clamps, as in Fig. 22-8. Lengths are for optimum gain betwcen 144 and 145 MHz . Gain drops rapidly above 145.2 MHz . For a center frequency of 145 MHz , cut element lengths $1 / 8$ inch. Broader frequency response can be obtained by tapering element lengths $1 / 8$ inch per clement, beginning with the sccond director.

Effective stacking of such long Yagis requires bay spacing of $11 / 2$ to 2 wavelengths. Pairs or pairs of pairs can be fed in the manner of Fig. 22-15, using dimensions of Table 22-1.

11-ELEMENT YAGIS FOR 220 AND 432 MHz

High-gain antennas are almost a necessity for any serious work on 220 MHz and higher frequencies. The 11 -eiement Yagis shown in Figs. 22-13 and 14 were worked out experimentally for

All elemonts made
from Vis or N/S8 Alum. Rod
$D 1=12^{\prime \prime}$
D2 $=11 \% /{ }^{\circ}$
D3 $=11 x^{2}$
D4 = 11\%
$D 5=11 / 2{ }^{\circ}$
D6 $=11^{3 / 3^{\circ}}$
$D 7=114^{\circ}$ $D 8=11 / 8$ $D 9=11^{\circ}$

Fig. 22-14 - 11-element Yagi for 432 MHz . designed for optimum performance on a 6 -foot boom. Operation should be uniform between 432 and 436 MHz , if the stub matching is adjusted when moving more than one megahertz in frequency.
$D 1=23 \%^{\prime \prime}$
$D 2=23 \%^{\circ}$
$D 3=23^{\prime \prime}$
$D 4=22 \%^{\prime \prime}$
$D 5=22 \%^{\circ}$
$D 6=22 \%$
$D 7=22 \%^{\circ}$
$D 8=22 \%^{\circ}$
$D 9=22 \%^{\circ}$

Fig. 22-13-11-element Yagi for 220 MHz , Dimensions are for maximum gain in the lower 2 MHz of the band. Recommended feed method is a delta match, with universal stub and balun. Delta sides should be about 3 inches, tapped 2 inches either side of the element midpoint.
maximum gain per element. They are intended primarily to be used in stacked pairs or sets of four, as shown (for 432 MHz) in Fig. 22-15.

Elements are stiff wire or welding rod, $1 / 8$-inch diameter for $220,3 / 32$ or $1 / 8$ inch for 432 . Wood booms are shown, and are recommended for stacked arrays, particulary for 432. Metal booms should be $1 / 2$-inch diameter for 432 and $3 / 4$ to 1 inch for 220 . Element lengths should be increased 0.5 to 1 percent if metal booms are used.

Frequency coverage without appreciable loss of gain, and no readjustment of matching, is about 1 percent of the operating frequency. Lengths of elements given are for 220 to 222 MHz and 432 to 434 MHz . Coverage can be extended somewhat higher by readjusting the matching for the desired higher frequency.

Recommended phasing is by open-wire line two wavelengths long each way. No. 12 wire spaced $1 / 2$ to $3 / 4$ inch with Teflon spreaders is ideal. If a metal supporting structure is used, it should preferably be entircly in back of the plane of the reflector elements.

COLLINEAR ANTENNAS

Information given thus far is mainly on parasitic arrays, but the collinear antenna has much to recommend it. Inherently broad in frequency response, it is a logical choice where coverage of an entire band is wanted. This tolcrance also makes a collinear easy to build and adjust for any vhf application, and the use of many driven elements is popular in very large phased arrays, such as may be required for moonbounce (EME) communication.

Omnidirectional Verticals

Two or more half-wave elements mounted in a vertical line and fed in phase are often used to build up some gain, without directivity. A simple omnidirectional collinear of rugged construction is shown in Fig. 22-16. It is made entirely of copper pipe and matching elbow fittings, obtainable from plumbing supply houses and some hardware stores.
lnitially the phasing stub was opcrated in the manner of Fig. 22-1A. When the optimum dimensions were found, the assembly was completed by making the angles with plumbing fittings, and the balun connections with bolts, nuts and star lugs.

Preferably the antenna should be mounted on a wooden support, though the center of the stub can be grounded for lightning protection. Dimensions given are for the upper half of the 2 -meter band,

Fig. 22-15 - Phasing mathods for using two or four 11 . element Yagis for 432 MHz , with 2-wavelength spacing. Universal-stub match permits use of any type of transmission line.
though it works well enough all the way down to 144 MHz .

Any number of radiators can be used, if quarter-wave phasing stubs are connected between them. Commonly an odd number is used, and the center radiator is broken at its midpoint and fed with a universal stub. This type of antenna can be made of wire and strung up in a horizontal position. The pattern is bidirectional when this type of collinear is mounted horizontally.

Large Collinear Arrays

Bidirectional curtain arrays of 4,6 and 8 half-waves in phase are shown in Fig. 22-17. Usually reflector elements are added, normally at about 0.2 wavelength in back of each driven element, for more gain and a unidirectional pattern. Such parasitic elements are omitted from the sketch in the interest of clarity. Dimensions are not critical, and may be taken from Table 22-I.

When parasitic elements are added, the feed impedance is low enough for direct connection open line or Twin-Lead, connected at the points indicated by black dots. With coaxial line and a balun, it is suggested that the universal stub match, Fig. 22-1 A, be used at the fecdpoint. All elements should be mounted at their electiocal centers, as indicated by open circles in Fig. 22-17. The framework can be metal or insulating material, with equally good results. A model showing the preferred method of assembling an all-metal antensa is pictured in Fig. 22-18. Note that the metal supporting structure is entirely in back of the plane of the reflector elements. Sheet-metal clamps can be cut from scraps of aluminum to make this kind of assembly, which is very light in weight and rugged as well. Collinear elements should always be mounted at their centers, where rf voltage is zero - nover at their ends, where the voltage is high and insulation losses and detuning can be very harmful.

Collinear arrays of $32,48,64$ and even 128 elements can be made to give outstanding performance. Any collinear should be fed at the center of the system, for balanced current distribation. This is very important in large arrays, which are treated as sets of 6 or 8 driven elements
each, and fed through a balanced harness, each section of which is a resonant length, usually of open-wire line. A 48 -element collinear array for 432 MHz . Fig. 22-19, illostrates this principle.

PLANE AND PARABOLIC REFLECTORS

A reflecting plane, which may be sheet metal, wire mesh, or even closely-spaced elements of tubing or wire, can be used in place of parasitic reflectors. To be effective, the plane reflector must extend on all sides to at least a quarter-wavelength beyond the area occupied by the driven elements. The plane reflector provides high front-to-back ratio, a clean pattern, and somewhat more gain than parasitic clements, but large physical size rules it out for amateur use below 420 MHz . An interesting space-saving possibility lies in using a

Fig. 22-16 - Rugged 2-meter omnidirectional vertical antenna made entirely of $1 / 2$-inch copper pipe and elbows. The midpoint of the stub can be grounded, for lightning protaction.

Fig 22-17 - Element arrangemens for 8, 12 and 16 -element collinear arrays. Parasitic reflectors, omited here for clarity, are 5 percent longer and 0.2 wavelength in back of the driven dements. Feed poines are indicated by black dots. Open circles are recommended support points. The elaments can run through wood or metal booms. without insulation, if supported at their centers in this way. Insulators at the element ends (points of high if voltagel tend to datune and unbalance the system.
single plane refiector with clements for two different bands mounted on opposite sides. Reflector spacing from the diriven eloment is not critical. About 0.2 wavelength is common.

The reflector can be formed into parabolic shape for a focussing effect, similas to that in a searchlight. Parabolic reflectors must be very large in terms of wavelength. Principles involved in parabolic reflector design are discussed by WA9HUV in QST for June, 1971, page 100.

CIRCULAR POLARIZATION

Polarization is described as "horizontal" or "vertical," but these terms have no meaning once the reference of the earth's surface is lost. Many propagation factors can cause polarization change: reflection or refraction, passage through magnetic ficlds (Faraday rotation) and, satcllite rolling. for examples. Polarization of vhf waves is often

Fig. 22-18 - Model showing recommended method for assembling all-metal arrays. Suitable assembling clips can be cut and bent from sheat aluminum. Supporting seructure should be in back of all active elements of the array.
random, so an antenna capable of accepting any polarization is useful. Circular polarization, generated with helical antennas or with crossed elements fed 90 degrees out of phase, has this quality.

The circularly-polarized wave, in effect, threads its way through space. and it can be left- or right-hand polarized. These polarization "senses" are mutually exclusive, but either will respond to any plane polarization. A wave generated with right-hand polarization comes back with left-hand, when reflected from the moon, a fact to be bome in mind in setting up EME circuits. Stations communicating on direct paths should have the same polarization sense.

Both senses can be generated with crossed dipoles, with the aid of a switchable phasing hamess. With helical arrays, both senses are provided with two antennas, wound in opposite directions.

Helical Antenna for 432 MHz

The 8-turn helix of Fig 22-20 is designed for 432 MHz , with left-hand polarization. It is made

Fig. 22-19 - Lerge collinear arrays should be fed as sets of no more than 8 driven slements each, inter. connecred by phasing lines. This 48 -element array for $432 \mathrm{MHz}(A)$ is treated $8 s$ if it were four 12 -element collinears. Reflector olements are omited for clarity. Phasing harness is shown at B.

Fig. 22-20 - An 8-turn 432-MHz helical array, wound from aluminum clothesline wire. Left-hand polarization is shown. Each rurn is one wavalengzh. with a pitch of 0.25 wavelength. Feed is with $50-\mathrm{hm}$ coax, through an 84 -ohm Q saction.
from 213 inches of aluminum clothestine wire. inctuding 6 inches that are used for cutting back to adjust the fced impedance.

Each tum ts one wavelength long, and the pitch is about 0.25 wavelength. Tums are stapled to the wooden supports, which should be water-proofed with liquid fiber glass of exterior vamish. The reflecting screen is one wavelength square, with a Type N coaxial fitting soldered at its center, for connection of the required coaxial Q section.

The nominal impedance of a helical antenna is 140 ohms, calling for an 84 -ohm matching section to match to a 50 -ohm line. This can be approximated with copper tubing of 0.4 -inch inside diameter, with No. 10 inner conductor, both $61 / 2$ inches long. With the antenna and transformer connected, apply power and trim the outer end of the helix until reflected power approaches zero.

The support arms are made from sections of I X 1 wood and are each 60 inches long. The spacing betweon them is 8.25 inches, outer dimension. The screen of the antenna in Fig. 22-20 is tacked to the support arms for temporary use. A wooden framework for the screen would provide a more rugged antenna structure. The theoretical gain of an 8 -tum helical is approximately 14 decibeis. Where both sight- and left-hand circularity is desired. two antennas can be mounted on a common framework, a few wavelengths apart, and wound far opposite sense.

A TRANSMATCH FOR 50 AND 144 MHz

The antenna couplers as shown in Fig. 22-21 will permit unbelanced transmitter output lines
($50-75$ ohms) to be matched to balanced feeders in the 300 to 450 -ohm impedance range. Also, "coax-to-coax" matching is possible with this circuit, permitting 50 -ohm lines to be matched to 75 -ohm lines, or vice versa. In situations where a high SWR condition exists where an antenna is being used in a part of the-band to which it has not been tuned, this couples will enable the tranmitter to look into a flat load, thus permiting maximum loading for better efficiency.

Couplers of this type are beneficial in the reduction of harmonic energy from the transmitter, an aid to TVI reduction. It should be possible to realize a $30-\mathrm{dB}$ or greater decreaso in harmonic level by using this Transmatch between the transmitter and the feed line. When connected ahead of the receiver as well - a common arrangement - the added selectivity of the coupler's tuned circuits will help to reduce images and other undeaired receiver responses from out-of-band signals. It is wise to remember that the use of devices of this kind will not correct for any mismatch that exists at the antenna end of the line. Although it assures a good match between the transmitter and the line, it can only disguise the fact that a mismatch exists at the antennu.

The Circuit

Balanced circuits are used for both bands, Fig. 22-22. Butterly capacitors are employed to aid in securing good circuit symmetry. The links of each tuned circuit, L2 and L3, are series luned by single-ended capacitors to help tune out reactance in the line.

Construction

A $4-1 / 2 \times 4-1 / 2 \times 2$-inch homemade cabinet houses the 2 -meter Transmatch; A Ten-Tec $3 \mathrm{~W}-5$ ts used as an enclosure for the $50-\mathrm{MHz}$ unit. Othes commercially made cabinets would be suitable. also. The two tuning controls are mounted in a line across the front of each cabinet. The main coil in each Transmatch is supposted by a ceramic standoff insulator on one end and by the connection to the TUNING capacitor on the other. The links are self supporting. The coil taps are effected by bending standard No. 6 soider lugas

Fig. 22-21 - These 6- and 2-mater Transmatches may be used with powers up to 500 wetts. They can be employed with either balanced or unbalanced feeders.

Fig. 22-22 - The schematic diagram of the vhf Transmatches. Capacitance is in pF unless otherwise noted. Resistance is in ohms, $k=1000$.

C1 - 26-pF per section butterfily (E.F. Johnson 167-221.
C2 - 100-pF miniature variable (Millen 20100).
C3 - 35-pF miniasure variable (Millen 20035).
CA - 10-pF per section butserfly (E.F. Johnson 167-21).
J1- $\mathbf{5 4}$, incl. - Insulated binding post.
J5-J8, incl. - SO-239-style chassis connector.
L1 - 7 turns No. 10 copper wire, 1 1/2-inch dia,
spaced one wire thickness between zurns. Tap 2 $1 / 2$ turns from each end.
L2 - 2 turns No. 14 enam. or spaghetti-covered bare wire, 2 -inch dia, over center of L1.
L3 - 2 tums No. 14 enam. or spaghetti-covered bare wire, 1 1/2-inch dia. over center of $L 4$.
L. 4 - 5 turns No. 10 copper wire. 1 -inch dis, spaced one wire thickness between turns. Tap 1 1/2 turns from each and.

Fig. 22-23 - Inside view of the two Transmatches.
around the coil wire at the proper spots, then soldering the lugs in place. No. 20 bus wire is used to connect the taps of L 1 to jacks J1 and \$2. When operating coax-to-coax style, a shorl jumper wire connects Jl to its ground lug, of 14 to its ground lug, depending on the band being operated. The jumper must be removed for balanced-feeder operations.

Operation

Attach the vhf transmitter to $\mathbf{3 7}$ or $\mathbf{3 8}$ with a short length of coax cable. Connect a balanced
feeder to J and 32 (for $50-\mathrm{MHz}$ operation), or to I4 and $\$ 5$ (for $184-\mathrm{MHz}$ uperation). A reflectedpower meter or SWR bridge connected between the Transmaich and the transmitter will aid in the adjustment process. Adjust Cl and C 2 , alternately (for $50-\mathrm{MHz}$ operation) for minimum meter reading on the SWR indicator. For $144-\mathrm{Mllz}$ operation, tune C3 and C4 in the same manner. Repeat the tuning until no furthes reduction in reflected power is possible. The meter should fall to zero, indicating a $1: 1$ match. No further adjustments will be needed until the transmitter frequency is moved 50 kHz or more. The tuning procedure is identical for matching coax to coax. In doing so, however, the antenna feed line (coax) is connected to either J 3 or $\mathrm{J6}$ and the shorting strap (discussed earlier) must be connected to JI or J4. In some situations, it may be possible to get a better match by leaving the shorting strap off.

After the coupler is tuned up, the transmitter power can be increased to its normal level. These units will handle power levels up to 500 watts (transmitter output power) provided the coupler is tuned for a matched condition at all times. Reduced power (less than 50 watts) should be used during initial tune up, thus preventing parts from being damaged by healing or arcing. The coupler should never be operated without a load connected to its output terminals.

AN INEXPENSIVE DIRECTIONAL COUPLER

Precision in-line metering devices that are capable of reading forward and reflected power over a wide range of frequencies are very useful in amateur vhf and ahf work, but their rather high cost puts them out of the reach of many vhf enthusiasts. The device shown in Fig. 22-25 is an inexpensive adaptation of their basic principles. You can make it yourself for the cost of a meter, a few small parts, and bits of copper pipe and fittings
that can be found in the plumbing stocks at many hardware stores.

Construction

The samples consiats of a short section of hand-made coaxial line, in this instance of 50 ohms impedance, with a reversible probe coupled to it . A small pickup loop built into the probe is terminated with a resistor at one end and a diode at the
other. The resistor matches the impedance of the loop, not the impedance of the line section. Energy picked up by the loop is rectified by the diode, and the resultant current is fed to a meter equipped with a calibration control.

The principal metal parts of the device are a brass plumbing T, a pipe cap, short pieces of 3/4-inch ID and 5/16-inch OD copper pipe, and two coaxial fittings. Other available tubing combinations for 50 -ohm line may be usable. The ratio of outer-conductor ID to inner-conductor OD should be $2.4 / 1$. For a sampler to be used with other impedances of transmission line, see Chapter 20 for suitable ratios of conductor sizes. The photographs and Fig. 22-26 just about tell the rest of the story.

Soldering of the large parts can be done with a 300 -watt iron or a small torch. A neat job can be done if the inside of the T and the outside of the pipe are tinned before assembling. When the pieces are reheated and pushed together, a good mechanical and electrical bond will result. If a torch is used, go easy witls the heat, as an over-heated and discolored fitting will not accept solder well.

Coaxial connectors with Teflon or other heatresistant insulation are recommended. Type N , with split-ring retainers for the center conductors, are preferred. Pry the split-ring washers out with a knife point or small screwdriver. Don't lose them, as they'll be needed in the final assembly.

The inner conductor is prepared by making eight radial cuts in one end, using a coping saw with a fine-toothed blade, to a deptlo of $1 / 2$ inch. The fingers so made are then bent together, forming a tapered end, as seen in Fig. 22-26. Solder the center pin of a coaxial fitting into this, again being careful not to overheat the work.

In preparation for soldering the body, of the coax connector to the copper pipe, it is convenient to use a similar fitting clamped into a vise as a holding fuxture, with the T assembly resting on top, held in place by its own weight. Use the partially prepared center conductor to assure that the coax connector is concentric with the outer conductor. After being sure that the ends of the

Fig. 22-24 - Major components of the line sampler. The brass T and two end sections are at the back of the picture. A completed probe assembly is at the right. The N connectors have their center pins removed. The pins are shown with one inserted in the left end of the inner conductor and the other lying in the right foreground.
pipe are cut exactly perpendicular to the axis, apply heat to the coax fitting, using just enough so that a smooth fillet of solder can be formed where the flange and pipe meet.

Before completing the center conductor, check its length. It should clear the inner surface of the connector by the thickness of the split ring on the center pin. File to length; if necessary, slot as with the other end, and solder the center pin in place. The fitting can now be soldered onto the pipe, to complete the 50 -ohm line section.

The probe assembly is made from a $1-1 / 2$-inch length of the copper pipe, with a pipe cap on the top to support the upper feedthrough capacitor, C2. The coupling loop is mounted by means of small Teflon standoffs on a copper disk, cut to fit inside the pipe. The disk has four small tabs around

Fig. 22-25 - Circuit diagram for the line sampler. $\mathrm{Ci}-500-\mathrm{pF}$ feadthrough capacitor, solder-in type. C2 - 1000 pF feedthrough capacitor, threaded type.

CR1 - Germanium diode 1N34, 1N60. 1N270. 1N295, or similar.
d1, J2 - Coaxial cannector, zype N (UG-58A/U).
L1 - Pickup loop, copper strap 1 inch long $\times 3 / 16$ inch wide. Bend into "C' shape with flat portion 5/8-inch long.
M1 - 0-100- $\mu \mathrm{A}$ meter.
R1 - Composition resistor, 82 to 100 ohms. See text.
R3 - 50,000-ohm composition control, linear taper.

the edge for soldering inside the pipe. The diode, CRI, is connected between one end of the loop and a $500-\mathrm{pF}$ feedthrough capacitor, Cl , soldered into the disk. The terminating resistor, R1, is connected between the other end of the loop and ground, as directly as possible.

When the disk assembly is completed, insert it into the pipe, apply heat to the ootuide, and solder the tabs in place by melting solder into the assembly at the tabs. The position of the loop with respect to the end of the pipe will determine the sensitivity of a given probe. For power levels up to 200 watts the loop should extend beyond the face of the pipe about $5 / 32$ inch. For use at higher power levels the loop should protrude only $3 / 32$ inch. For operation with very low power levals the probe position can be determined by experiment.

The decoupling resistor, R2, and feedthrough capacitor, C2, can be connected, and the pipe cap put in place. The threaded portion of the capacitor extends through the cap. Put a solder lug over it before tightening its nut in place. Fasten the cap with two small screws that go into threaded holes on the pipe.

Calibration

The sampler is very useful for many jobs, even if it is not accurately calibrated, though it is desirable to calibrate it against a wattmeter of known accuracy. A good 50 -ohm dummy load is a must.

The first step is to adjust the inductance of the loop or the value of the terminating resistor, for lowest reflected-power reading. The loop is the easier to change. Filing it to reduce its width will increase its impedance. Increasing the cross-section of the loop will lower it, and this can be done by coating it with solder. When the reflected-power reading is reduced as far as porsibie, reverse the probe and calibrate for forward power, by increas-
ing the transmitter power output in steps and making a graph of the meter readings obtained. Use the calibration control, R3, to set the maximum reading.

Variations

Rather than use one sampler for monitoring both forward and reflected power by repeatedly reversing the probe, it is better to make two assemblies by mounting two T fittings end-toend, using one for forward and one for reflected powes. The meter can be switched between the probes, or two meters can be used.

The sampler described was calibrated at 146 MHz , as it was intended for 2 -meter repeater use. On higher bands the meter reading will be higher for a given power level, and it will be lower for lower-frequency bands. Calibration for two or three adjacent bands can be achieved by making the probe depth adjustable, with stops or marks to aid in resetting for a given band. And, of course. more probes can be made, with each calibrated for a given band, as is done in some of the commercially available units.

Other sizes of pipe and fittings can be used, by making uso of information given in Chapter 20 to select conductor sizes required for the desired impedances. (Since it is occasionally possible to pick up good bargains in 72 -ohm line, you might like to make up a sampler for this impedance.)

Type N fittings were used because of their constant impedance, and their ease of assembly. Most have the split-ring retainer, which is simple to use in this application. Some have a crimping method, ar do apparently all BNC connectors. If a fitting must be used that cannot be taken apart, drill a hole large enough to clear a soldering iron tip in the copper-pipe outer conductor. A hole of up to $3 / 8$-inch diameter will have very litule effect on the operation of the sampler.

Chapter 23

Assembling a Station

The actual location inside the house of the "shack" - the room where the transmitter and receiver are located - depends, of course, on the free space available for amateur activities. Fortunate indeed is the amateur with a separate room that he can reserve for his hobby, or the few who can have a special small building separate from the main house. However, most amateurs must share a room with other domestic activities, and amateur stations will be found tucked away in a corner of the living room, a bedroom, or even a large closet! A spot in the cellar or the attic can almost be classed as a separate room, although it may lack the "finish" of a normal room.

Regardless of the location of the station, however, it should be designed for maximum operating convenience and safety. It is foolish to have the station arranged so that the throwing of several switches is required to go from "receive" to "transmit," just as it is silly to have the equipment arranged so that the operator is in an urcomfortable and cramped position during his operating hours. The reason for building the station as safe as possible is obvious, if you are interested in spending a number of years with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position, which includes the operator's table and chair and the pieces of equipment that are in constant use (the receiver, send-receive switch, and key or microphone). The table should be as large as possible, to allow sufficient room for the receiver or receivers, transmitter frequency control, frequency-measuring equipment, monitoring equipment, control switches, and keys and microphones, with enough space left over for the logbook, a pad and pencil. Suitable space should be included for radiogram blanks and a Callbook, if these accessories are in frequent use. If the table is small, or the number of pieces of equipment is large, it is often neccssary to build a shelf or rack for the auxiliary equipment, or to mount it in some less convenient location in or under the table. If one has the facilities, a semicircular "console" can be built of wood, or a simpler solution is to use two small wooden cabinets to support a table top of wood or Masonite. A Dush-type door will make an excellent table top. Homebuilt tables or consoles can be finished in any of the available oil stains, varnishes, paints or lacquers, Surplus com-

This neatly arranged station belongs to WOTDR in Missouri. The equipment is mounted in a homemade console placed on top of a desk. All controls are easily reachable. A telephone is conveniently located to the right of the operating position. Directly in front of the operator, above the lower receiver, is the control panel which handles antenna and station component switching. This layout is ideal for the right-handed operator.

puter furniture is readily available through various channels Many of these consoles are ideal for an operating position. Many operators use a large piece of plate glass over part of their table, since it
fumishes a good writing surface and can cover miscellaneous charts and tables, prefix lists, operating aids, calendar, and similar accessories.

TIME REFERENCES

Next to frequency, accurate measurement of time is an important part of a station's operating routinc. While the matter of a ninute or so may not seem like much, it could mean the difference between getting a coveted confirmation or waiting until a busy DX or contest operator has time to search for your contact in his log. As a consequence, the station clock should be both accurate and casy to read.

Digital clocks are ideal in both respects and just about any commercially manufactured model should do the job. However, a rather unique module is also available and should appeal to the ham who likes to build his own gear.

Digital Clock Module

Depending upon the module selected, it is possible for the builder to tailor this clock to his individual desires. The entire clock, with the exception of the power transformer and switches, is contained on one small pc board. The dimensions, epproximately $1-3 / 8 \times 3 \times 1$ inches (HWDj, allow the builder to package the clock into almost any size container.

At present there are eight different modulcs available. The different combinations allow selection of: Line frequency (50 or 60 hertz). 12- or 24 -hour display and clock/radio or alarm-tone output. The display contains four digits and also

Fig. 1 - Schematic diagram of the clock. T1 is discussed in the text. S1 and S2 are spdt miniarure toggle switches. $\$ 3$ through S 6 are momentary switches that are normally open. R1 is a miniapure linear-taper potentiometer.

four LEDs as indicators. The normal display indicates the time in hours and minutes. Using the external switches it is possible to call up the seconds display, alarm tinne, and slecp time. The module used for this clock (MA1002A) is a 12 -hour format that contains the clock/radio feature. There are two outputs available for controlling external devices. Each output (sleep or alarm) is a positive curyent source that can tum on an non transistor for control purposes.

Interior view showing modified transformer.

TABLE I MA 1002 Display Modes				
-Selected Disploy Modes	Digit No. 1	Digit No. 2	Digit No. 3	Digit No. 4
Time Display	10's of Hours \& AM/PM	Hours	10's of Minutes	Minuzes
Seconds Display	Blanked	Minutes	10's of Seconds	Seconds
Alarm Display	10's of Hours \& AM/PM	Hours	10's of Minutes	Minutes
Sleep Display	Blanked	Blanked	10's of Minutes	Minutes

TABLE II MA1002 Control Functions		
Selected Display Mode		
	Control Inpus	Contral funcrion
- Time	Slow	Minutes Advance at 2 Hz Rate
	Fast	Minutes Advance at 60 Hz Rate
	Both	Minutes Advance at 60 Hz Rate
Alarm/ Snooze	Slow	Alarm Minutes Advance at 2 Hz Rate
	Fast	Alarm Minutes Advance at 60 Hz Rate
	Both	Alarm Resets to 12:00 A.M. 112 hour format)
	Both	Alarm Resets to (0)0:00 (24 hour format)
Seconds	Slow	Input to Entire Time Counter is Inhibited (Hold)
	Fast	Seconds and 10's of Seconds Reset to Zero Without a Carry to Minutes
	Both	Time Resets to 12:00:00 A.M. 112 hour format]
	Both	Time Resets to (0):00:00 (24 hour format)
Sleep	Slow	Subtracts Count at 2 Hz
	Fast	Subtracts Count at 60 Hz
	Both	Subtracts Count at 60 Hz
*When setting time sleep minutes will decrement at rate of time counter, until the sleep counter reaches 00 minutes isleed counter will not recycle).		

Schematic Diagram and Construction

A look at the schematic diagram (Fig. 1) will show the simplicity of the entire clock. All that has to be provided is low-voltage ac and the controlling switches. After checking the catalogs of our parts suppliers, the transformers appeared to be a major stumbling block. It was not possible to find a manufacturer that produced transformers supplying the required voltages. At that point it was decided to rewind an available transformer. A Radio Shack 273-1480 was selected as the candidate. Its original secondary was rated 25.2 V at 1.2 amperes. The original secondary was removed and replaced with two new windings. The first, 106 iurns of No. 30 enameled wire, produced 16.0 V ac under load. The second winding was 72 turns of No. 24 enameled wire. This winding measured 10.9 V ac under load. The entire job of rewinding the transformer can be done in less than two hours. A complete discussion of rewinding transformers can be found in the Beginner and Novice cloumn of QST, February, 1970. This article was the basis for rewinding the transformer. The process is not long nor difficult and it produces a transformer that fulfills the requirements at a low cost.

Operation

The complete operation of the extemal switches and the display readouts are summarized in Tables I and II. This information was obtained from the MA1002 data sheet provided by National Semiconductor Corporation.

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power outlets and control circuits will make it an easy job to change units within the station. If the station is planned in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a threc-wire cable and box from a wall outet over to the operating table or some central point, than to use a number of adapters and cube plugs at the wall outlet. If

Fig. 23-1 - A remote antenna switching system using low voltage relays handles three different antennas. The coaxial cable is used as the control line. CR1 and CR2 can be any low voltage silicon diodes (Motorola 1N4001 or equiv.). K1 and K2 can be any $12-\mathrm{V}$ de relays with suitable contact ratings PPotter and Brumfield KA5DG or equiv.l. The rotary switch should have at least two sections and three positions.
several outlets are located slightly above the table height, it will be convenient to reach the various plugs. Cable ties can be uscd for wrapping power cords to maintain a neat arrangement. The operaling table should be positioned away from the wall slightly so it will be easier to reach the rear of equipment.

The power wiring should never be overloaded. Check the wire size to assure that the ratings are not exceeded. Consult an electrician for details on power handling capabilities of your house wiring. A 234-V ac line should be available with suitable current ralings. The outlet for this line should be different from the $117-\mathrm{V}$ ac outlets to prevent confusion. A station which runs more than 500 watts input to the transmitter should have this higher voltage line to prevent lights from "blinking" with keying or modulation. It also provides better regulation. A single switch, either on the wall of the shack or at the operating position, should control all of the 117 - and 234 -voll outlets, except for lights and the line to which the clock is connected. This makes it a simple matter to tum the station to "standby" condition, In case of an emergency, a family member has one switch to shut off power but not the lights. The station equipment normally should be shut off with the:r own power switches before the main switch is turned off. With equipmene left on, turning on the power with the main switcl could cause a great surge on the line, which could trip a fuse or circult breaker.

All power supplies should be fused. Pilot lights or other types of indicators always should be used to tell the operator when the unit is on. All switches for these power supplies should be clearly marked. Even though you may know the different functions of the control panel or power supply, a family member may not, and it is important that this vital information be available in case of trouble. In high voltage power supplies, it is recommended that an autotransformer be used in the primary circuit, aside from the power switch, to maintain better control of the high voltage. It also reduces the initial surge of current in the line caused by charging fulter capacitors.

SWITCHES AND RELAYS

It is dangerous to usc an overloaded switch in power circuits. After it has been used for some time, it may fail, leaving the power turned on even after the switch is set to the "OFF" position. For this reason, large switches or relays with adequate ratings should be used to control the plate power supply.

Any remote-control circuitry should be powered from low voltage. It is dangerous to have $117-\mathrm{V}$ ac controlling remote antenna relays mounted atop a cower. It is recommended that low de voltages be used for all control systerns. Ore 12-V dc power supply of suitable current rating could be used to handle afl control circuitry. As a back-up power source, an automobile battery could be tied in parallel with this supply in case of a power failure. Relay contacts used for antenna switching or If switching should be rated at least 10 amperes, which will handle two kilowatts. A basic diagram of a remote antenna switching system is shown in Fig. 23-1. The coaxial cable is used to carry the control voltage. The two diodes provide proper operation of cither relay.

The nature of the send-receive conirol circuitry depends almost entirely on the particular station equipment. It is impossible to list here anything but the broadest principles to follow. Corrmercially manufactured equipment usualiy has a section of the instruction book devoted to this point. In many cases the antenna-transfer relay is included in the transmitter so that the antenna is directly connected to the transmitter and a separate cable is connected from the transmitter to the receiver. When the transmitter is "on" the relay transfers the antenna to the transmitter ousput circuit.

EQUIPMENT INTERFACE

As the station grows in complexity, it is important to maintain a unique cabling system. The use of standard cable connectors makes the station components flexible. For low power rf or af, phono plugs and jacks are adequatc. High power
or voltage requires a higher quality component. A handy device that can simplify the ever present interfacing problem is a patch board with several different types of connectors. While experimenting or changing the station layout, this board can be quite helpful.

Audio patching is the most common situation the amateur encounters. The addition of a tape recorder or another aid to the station should be a simple process. Some tape recorder audio-output circuits are low impedance and could, without suitable coupling, undesisably load the circuit that is being interfaced. A coupling technique often used is that of a resistor ($100 \mathrm{~K} \Omega$) and blocking capacitor (. $001 \mu \mathrm{~F}$) in a series combination. Experimentation is necessary until the circuits are properly matched. The transmitted signal quality of the two units operating in unison should be checked thoroughly.

Often it is convenient to have another headphone jack for a visitor. An audio splitter is shown in Fig. 23-2 that will handle this function. The use of the two potentiometers allows each listener to set his own audio level. If the operator desires to listen to two receivers, at the same time or individually, the reverse of the described system and appropriate switch contacts are required.

Fig. 23-2 - Diagram of the headphone splitter. The transformer, T1, is a universal output type. Jl and J 2 are phone jacks. This circuit allows two sets of headphones to be operated from one receiver: each channel has its own volume control.

The amateur station can become quite sophisticated. As an aid to the operator and any one else within the family, a written record of all wiring is essential. Diagrams of the station wiring, ac voltage lines, rf and af cabling will reduce troubleshooting time or redesigning of the station. Documentation of all changes in antennas, transmitters, receivers, or amplifiers will kecp the operator from going over the same road again.

SAFETY

Of prime importance in the layout of the station is the personal safety of the operator and of visitors, invited or otherwise, during normal operating practice. If there are small children in the house, every step must be taken to prevent their accidental contact with power leads of any voltage. A locked room is a fine idea, if it is possible; otherwise housing the transmitter and power supplies in metal cabinets is an excellent, although expensive solution. Lacking a metal cabinet, a wood cabinet or a wooden framework covered with wire screen is the next-best solution. Many stations have the power supplies housed in metal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept locked - with the key out of reach of everyone but the operator. The power leads are run through conduit to the transmitter, using ignition cable for the high-voltage leads. If the power supplies and transmitter are in the same cabinet, a lock-type main switch for the incoming power line is a good precaution.

An essential adjunct to any station is a shorting stick for discharging any high voltage to ground before any work is done in the transmitter. Even if interlocks and power-supply bleeders are used, the failure of one or more of these components may leave the transmitter in a dangerous condition. The shorting stick is made by mounting a small metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the transmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the transmitter to permit work on the rig, the shorting stick is first used to touch the several high-voltage leads (plate rf choke, filter capacitor, tube plate connection) to insure that there is no high voltage at any of these points..

Some items which should be included in the station for safety reasons are a fire extinguisher and flashlight. Both should be convenient to reach. The fire extinguisher must be a carbon dioxide type to be effective in electrical fires. The flashlight batteries should be checked regularly. The extinguisher should likewise be inspected on a regular basis. A carbon dioxide type of extinguisher is recommended because it will cause the least amount of damage to equipment.

Family members should be instructed in the use of mouth-to-mouth resuscitation. A sign posted in

If space is available, a neat console can be constructed to house various types of station components. Surplus computer furniture can be used as well. Access to the equipment is through the back of the console. This station belongs to WTVRO.

the station describing the necessary procedures to be followed in the event of an emergency should be pointed out to the family. Telcphone numbers of the local police, fire department, and doctor should be included on this sign.

Fusing

A minor hazard in the amateur station is the possibility of fire through the failure of a component. If the failure is complete and the component is large, the house fuses will generally blow. However, it is unwise and inconvenient to depend upon the house fuses to protect the lines running to the radio cquipment, and every power supply should have its primary circuit individually fused, at about 150 to 200 percent of the maximum rating of the supply. Circuit breakers can be used instead of fuses if desired.

Wining

Control-circuit wires running between the operating position and a transmitter in another part of the room should be hidden, if possible. This can be done by running the wires under the floor or behind the base molding bringing the wires out to terminal boxes or regular wall fixtures. Such construction, however, is generally only possible in elaborate instaliations, and the average amateur must content himself with lrying to make the wires as inconspicuous as possible. If several pairs of lcads must be run from the operating table to the transmitter, as is generaily the case, a single piece of rubber- or vinylcovered multiconductor cable will always look neater than several pieces of rubber-covered lamp cord, and it is much easjer to sweep around or dust.

Solid or standard wire connected to a screw terminal (ac plug, antenna binding posts) should either be "hooked" around a clockwise direction, or, better yet, be terminated in a soldering lug. If the wire is hooked in a counter-clockwise position, it will tend to move out from under the screw head as the screw is tightened.

The antenna wires always present a problem, unless coaxiat-line feed is used. Open-wire line from the point of entry of the antenna line should always be arranged neatly, and it is generally best to support it at several points Many operators prefer to mount any antenna-tuning assemblies right at the point of entry of the feed line, together with an antenna changeover relay (if one is used). and then link from the tuning assembly to the transmitter can be made of inconspicuous coaxial

ASSEMBLING A STATION

Voice operased control (VOX) used in conjunction with a microphone placed on a boom makes operating a nearly "hands-off" affair. This arrangement enables the operator, WBGDSV, to handle paparwork and watch meters and other important controls. This station is awned by WBOKK.
line. If the transmitter is mounted near the point of entry of the line, it simplifies the problem of "What to do with the feeders?"

The station components which are located outside must be as safe as the arrangement in the shack. All antenna structures should be protected so that no one will be injured. There should be no low hanging wires or cables. A guard around a tower base is important to keep small children from climbing it Several ways of protecting the tower base are possible. Cutting a sheet of $1 / 2$-inch plywood lengthwise into three pieces and placing hinges on two edges and pad lock on the third edge will allow the entire structure to be stood up and wrapped around the tower basc. The pad lock is essential. Other methods use hardware cloth (heavy mesh) with holes too small to get feet or hands through. Vertical antennas should be protected in a similar fashion, except use a wooden structure or fence.

Open-wire line should be insulated where it can be reached by someone. All control cables or other cables, if possible, should be buried undergound or placed high enough so as not to be reached. If antenna work is planned, all cables leading to the tower should be disconnected and power must be shut off. Rotator controls should be unplugged. Any electrical wiring or contacts which are exposed to the outdoor environment must be protected from the weather. A water-tight box or a plastic bag will provide such protection. Corrosion to electrical contacts can cause TVI or RFI, poor connections, or losses in vital circuitry. Another

Fig. 23-3 - A simple lightning arraster made from thres stand-off or feedthrough insulators and sections of a $1 / 8 \times 1 / 2$-inch brass or copper strap. It should be installed in the open-wire or Twin-Lead line at the point where it is nearest the ground outside the house. The heavy ground lead should be as short and direct as possible. Gap setting should be minimum for transmitter power.
consideration for control cables is rf bypassing. A strong if field can cause a circuit to be actuated which could disrupt normal operation.

Where guyed towers are used, the guy wires should be arranged so as not to cause danger to someone walking through the area. If this is not possible, planting a shrub or trec near the guy anchor will tend to kecp people clear of the vicinity.

LIGHTNING AND FIRE PROTECTION

The National Electrical Code (NFPA No. 70) adopted by the National Fire Protection Association, although purely advisory as far as the NFPA is concerned, is of interest because it is widely used in law and for Iegal regulatory purposes. Article 810 deals with radio and television equipment, and Section C treats specifically amateur transmitting and receiving stations. Some pertinent paragraphs are reprinted below.

810-13. Avoidance of Contacts with Conductors of Other Systems. Outdoor antenna and lead-in conductors from an antenna to a building shall not cross over electric light or power circuits and shall be kept well away from all such circuits so as to avoid the possibility of accidental contact. Where proximity to electric light and power service conductors of less than 250 volts between conductors cannot be avoided, the installation shall be such as to provide a clearance of at least two feet. It is recommended that antenna conductors be so installed as not to cross under efectric light or power conductors.

810-15. Grounding Masts and metal structures supporting antennas shall be permanently and effectively grounded, without intervening splice or connection.

810-56. Protection Against Accidental Contact. Lead-in conductors to radio transmitters shall be so located or installed as to make accidental contact with them difficult.

810-57.. Lightning Arrestors - Transmitting Stations. Each conductor of a lead-in for outdoor antenna shall be provided with a lightning arrestor or other suitable means which will drain static charges from the antenna system.

Exception No. 1. When profected by a continuous metallic shield which is permanently and effectively grounded.

This modern station belongs to JA1BRK which is set up to operate the hf and whf bands. The equipment most often used is on the lower shelf, whils the upper shelf holds auxiliary apparatus used for monitoring other frequencies. The large overthead lamp is especially useful.

Table 810-52
Size of Amateur-Station Outdoor Antenna Conductors
$\left.\begin{array}{ccc} & \begin{array}{c}\text { Minimum Size of } \\ \text { Conductors }\end{array} \\ \text { When Maximum Open } \\ \text { Span Length Is }\end{array}\right\}$

Exception No. 2. Where the antenna is permanently and effectively grounded.

In some areas the probability of lightning surges entering the home via the $117 / 230$ volt-line may be high. A portion of the lightning surges originating on an overhead primary feeder can pass through the distribution transformer by electrostatic and electromagnetic coupling to the secondary circuit, even though the primary is protected by distribution-class lightning arresters. Radio equipment can be protected from these surges by the use of a "secondary service lightning arrester." A typical unit is the G.E. Model 9L15CCB007. marketed as the Home Lightning Protector. It is mounted at the weatherhead or in the service entrance box.

The best protection from lightning is that of zompletely disconnecting all equipment from antennas, and all ac reccptacies, Eliminate the possible paths for any lightning stroke. Rotator cables or any other control cabie from the antenna location should be disconnected during severe electrical storms.

Experiments have indicated that a high vertical conductor will generally divert to itself direct hits that might otherwise fall within a cone-shaped space of which the apex is the top of the conductor and the base a circle of radius approximately two times the height of the conductor. Thus a radio mast may afford some protection to low adjacent structures, but only when low-impedance gounds are provided.

Operating a Station

Good on-the-air operating practices are important to every amateur for at least three good reasons: to assure compliance with regulations, to permit a large volume of activity to be conducted as efficiently and as simply as possible, and as a matter of personal pride and competence. Good practices is a very bewildering subject at first to many new amateurs, but as in so many other fields, it soon becomes apparent that there is a sound basis of custom and tradition which has produced a body of standard practices. These have evolved over more than a half-century of experience. One of the League's important functions has been to formalize, to foster and to encourage good standard practices so that they have become universal and accepted. Some of our standard practices go back a long time; others have been developed to meet changing circumstances, requiroments and technology.

It used to be that one standard was all that was required. Today, things are different. There are standard operating practices for cw , voice, RTTY and repeaters, with additional standards for ATV not too far away. Those for cw and voice are pretty firmly cstablished, but RTTY is newer and repeater operation newer still. Your League will take a crack at all of them. If its recommendations don't "take hold," they will be changed untid they become acceptable to a majority in a particulas operating specialty. This has been the pattem on cW and phone and will be the pattern on RTTY, repeaters, satellites and whatever else comes along in the future. Operating is better than 50% of mosi amateurs' lives. Better learn to do it right.

Initially, we'll talk about phone and cw , because they can be covered together. RTTY and repeaters will be handled scparately.

ESTABLISHING A CONTACT

The best way to do this, especially at first, is to fisfen until you hear someone calling CQ , and call them. This requires a bittle patience, but that's something eise all amateurs must learn if we are to share our bands in harmony. Tune around near your own frequency. If you hear a CQ, put your vio on that frequency (without putting a signal on the air), wait until he indicates he is listening, then call him, thus: "W6ZRJ, WGZRJ, this is W7PGY', W7 Papa Golf Yankec calling, Over" On cw:

W6ZRJ W6ZRJ DE W7PGY W7PGY $\overline{A R}$. If no answer (to anyone) this may be repeated; brief, repeated calls are pseferred to long drawn out ones. Chances are, if he is to hear you at all, he will hear your first brief call; most amateurs seldom tune far from their transmitting frequency to listen after a CQ. Note the ending signals. These have a special significance of their own to indicate to a casual listener the "status of the contact."

In answer to your call (assuming you ase heard), the called station will reply: "W7PGY from WGZRJ, roger . . in and then go into conversation. On cw, it would be W7PGY DE W6ZRJ R That "roger" (R) means that he has reccived your call correctly. That's all it means RECEIVED. It does not mean correct, I agree, I will comply. It is not sent unless everything was received correctly. Note also that "roger" is the phonetic equivalent of the letter R only in this usage. The regular phonetic for R is "Romeo."

Perhaps W6ZRJ heard W7PGY but did not catch his call. In this case, he might come back with "The W7 station, please repeat your call, this is W6ZRJ, over." On cw: QRZ? W7? DE W6ZRJ $\overline{\text { AR }}$. The presence of interference (QRM) and atmospherics (QRN) in the amateur bands makes use of this procedure fairly frequent. The contact (QSO) can then continue. Please note the FCC requirements on identification (97.87).

CALLING CQ

If you hear no $C Q$, you may wish to make such a call yourself. Refrain from CQing unless you are willing to establish contact with whoever calls. CQ means "I wish to contact any amateur station." If this is not your desire, then don't $C Q$, or be specific in doing so. A CQ call can be somewhat longer than a call to a specific station, because you are trying to attract the attention of casual listeners, including those tuning around looking for someone to call. However, please avoid the common operating discrepancy of calling CQ endlessly: it clutters up the air and drives off potential "customers." The average call would go something like this: "Hello $\mathrm{CQ}, \mathrm{CQ}, \mathrm{CQ}$, calling CQ , this is W甲PAN, W zero Papa Alpha November, Bloomington, Minnesota, calling CQ and listening, go." On cw: CQ CQ CQ DE WQPAN WQPAN WøPAN K. After a brief standby for replies, if no

Q SIGNALS

Given below are a number of \mathbf{Q} signals whose meanings most often need to be expressed with brevity and clearness in amateur work. (Q abbreviations take the form of questions only when each is sent followed by a question mark.)

QRG Will you tell me my exact frequency (or that of . . .)? Your exact frequency (or that of . . .) is . . . kHz.
QRH Does my frequency vary? Your frequency varies.
QRI How is the tone of my transmission? The tone of your transmission is . . . (1. Good; 2. Variable; 3. Bad).
QRK What is the intelligibility of my signals (or those of . . .)? The intelligibility of your signals (or those of . . .) is . . . (1. bad; 2. poor; 3. fair; 4. good; 5, excellent.
QRL Are you busy? I am busy (or 1 am busy with . . .). Please do not interfere.
QRM Is my transmission being interfered with? Your transmission is being interfered with . . . (1. nil; 2. slightly; 3. moderately; 4. severely; 5. extremely.
QRN Are you troubled by static? I am troubled by static . . . (1-5 as under QRM).
QRO Shall I increase power? Increase power.
QRP Shall 1 decrease power? Decrease power.
QRQ Shall 1 send faster? Send faster (. . . wpm).

QRS Shall I send more slowly? Send more slowly (. . . wpm).
QRT Shall I stop sending? Stop sending.
QRU Have you anything for me? I have nothing for you.
QRV Are you ready? I am ready.
QRW Shall I inform . . . that you are calling him on ... kHz? Please inform . . . that I am calling on . . . kHz
QRX When will you call me again? I will call you again at . . . hours (on . . . kHz).
QRY What is my turn? Your turn is number
QRZ Who is calling me? You are being called by . . . (on . . . kHz).
QSA What is the strength of my signals (or those of . . .)? The strength of your signals (or those of . . .) is . . . (1. Scarcely perceptible; 2. Weak; 3. Fairly good; 4. Good; 5. Very good).
Are my signals fading? Your signals are fading.
QSD Are my signals mutilated? Your signals are mutilated.
QSG Shall 1 send . . . messages at a time? Send . . . messages at a time.

Can you hear me between your signals and if so can 1 break in on your transmission? I can hear you between my signals; break in on my transmission.
Can you acknowledge receipt? 1 am acknowledsing receipt.
Shall I repeat the last message which I sent you, or some previous message? Repeat the last message which you sent me lor message(s) number(s)

Did you hear me (or) on . . . kHz_{2} I Idid hear you (or . . .) on . . . $k H z$.
Can you communicate with . . . direct or by relay? I can communicate
with . . . direct (or by relay through . . .).
QSP Will you relay to . . . ? I will relay to . . .
QSU Shall I send or reply on this frequency (or on . . . kHz)? Send or reply on this frequency (or on . . . $k H z$).
QSV Shall I send a series of Vs_{s} on this frequency (or . . . kHz)? Send a series of Vs on this frequency (or . . . kHz).
QSW Will you send on this frequency (or on . . . kHz)? I am going to send on this frequency (or on . . . kHz).
QSX Will you listen to ... on ... kHz? I am listening to . . . on . . . $k H z$.
QSY Shall I change to transmission on another frequency? Change to tranamission on another frequency (or on . . . kHz).
QSZ Shall I send each word or group more than once? Send each word or group twice (or . . . times).
QTA Shall I cancel message number . . . ? Cancel message number . . .
QTB Do you agree with my counting of words? 1 do not agree with your counting of words; I will repeat the first letter or digit of each word or group.
QTC How many messages have you to send? 1 have . . . messages for you (or for . . .)
QTH What is your location? My location is ...
QTR What is the correct time? The time is . .

Special abbreviations adopted by ARRL:

QST General call preceding a message addressed to all amateurs and ARRL members. This is in effect "CQ ARRL."

THE R-ST SYSTEM READABILITY

1-Unreadable.
2-Barely readable, uccasional worts distinguishable.
3 Readable with considerable difficulty.
$\$$-Readable with practically no difficulty.
5 -Perfectly readable.
SIGNAL STRENGTH
I-Faine siganals barely perceptible.
2-Very weak signal.
3-Weak sigrak.
4-Fair signals.
5-Fairly pood xignala.
6-Good signals.
7-Moderately struny xilgnats.
8-Strong signalx.
9-Exiremely utrong sjanads. TONE
1-Sixty-cycle n.e. ap besb, very roogh and broad.
2-Very rough as... ven hamh and broad.
3-Rough ac. toae. rectified bul not filtered.
4-Rough note, some trace of filienine
5-Filiered rectified ac. bul stroagly nipplemodulated.
6-Filtered tome, definite trace of ripple modulation.
7-Near pure tone, frace of ripple modulation.
8 -Near perfect trine, slight trace of morlulation.
9 -Perfect lone, no trace of ripple ot madulation of any kind.
The "roase" repurt refers only tu the purity uf the signal, and the nis connection with its slability nr freednm frum cllicks or chirps. If the signal hys the charactertaile strmalimes of eryutal cmitrol, add x to the repart (ef- RST 469X). If it han a chisp or "Hald (either on "make" nu "hreak"). add C (0.g.. 46MC). If it has clicker ow notriceable uther keying ifanainati, edd K (e.g.. 469 K). Of course a signal could have hoth chirps and slicter, in whinh case bonth could have hoth

one answers and the frequency is still clear, you can try again. Short calls and frequent standbys are the best way to establish contact with the minimum QRM. This kind of procedure is easy to use when using VOX or keying through your VOX relay, or using cw break-in procedure.

THE QSO

During the contact, be sure to observe the FCC identification rules (see ARRL License Manual) Aside from that, there are no legal limits to what you can talk about, although it is recommended that controversial subjects connected with politics and morality be avoided. Keep everything on a friendly and cordial level, remembering that the conversation is not private and many others, including possibly members of the lay public, may be listening. Try to avoid the habitual utterances, procedures and inanities which so often make amateur radio contacts boring - things such as the drawn out 'ahhbhhh' to keep the VOX relay closed, or repeated "double dash" (dahdidididah) sign on cw , or hackneyed expressions such as "there" (referring to the other fellow) and "here" referring to yourself, or "we" when you mean "l." Both on cw and voice it is possible to be informal, friendly and conversational, and this is what makes an amateur radio QSO enjoyable. During the QSO, when you stand by the recommended signal is "go only" on voice, KN on cw , meaning that you want only the contacted station to come back to you. If you don't mind someone else breaking in, just "go" or K is sufficient. Of course, using VOX or break-in the conversation can proceed as it would face to face, without ending signals after each transmission; this is more normal in a voice contact than in a cw QSO.

ENDING THE OSO

When you decide to end the contact, end it. If the other fellow indicates a desire to end it, don't keep on talking, don't say "I won't hold you," then hold him. Express your pleasure at having contacted him and sign out, thus "WIQV from W6KW, clear." If you don't want further contacts, say "clear and leaving the air." On cw, it's SK WIQV DE W6KW, and, if leaving the air, CL.

All these things establish amateur radio as a cordial and fraternal hobby at the same lime they foster orderliness and denote organization. Most of them have no legal standing; FCC regs say little about our internal procedures. The procedures we ourselves adopt are even more important than that, because they indicate that we are not just a bunch of hobbyists playing around in random fashion, but that we are an established communications service with distinct and distinctive procedures tailored to our special needs.

COURTESY

One thing that is considered the height of ill manners and "liddy" procedure in amateur radio is to tune up or make any transmission on a frequency which is already occupied. In some cases
this is necessary, in others inadvertent; but it should always be avoided where possible. For example, if you are committed to a legal one-way transmission or schedule with a friend on a certain frequency ai a certain time, it is sometimes unavoidable to cause temporary inconvenience to a going contact or even a net. In another situation, you may not hear another station on the frequency because of "skip," in which case an inquiry "Is the frequency in use?" or, on cw , the Morse letter C (didit dit) should bring a response if you are interfering with a station which you cannot hear. Use the same procedure in tuning up your antenna (use a dummy antenna for testing your rig) - don't ever fire up the rig and start tuning it without first turning on the receiver and checking the frequency. The amateur bands are crowded; consideration for the other guy will make things better for everybody.

RTTY PROCEDURES

On radioteletype, the methods of transmission and reception are somewhat different, so slightly different procedures are required. Voice is seldom a "written" mode and cw need not be, but RTTY always is. You type your transmission on a keyboard and it is received at the other end in printed form. Thus, most cw abbreviations can be used to good effect. In addition, such things as line feeds and carriage returns must be considered, as well as shifts for "let ters" and "figures." These are nonprinting functions nevertheless essential for teleprinter operation.

Because of wide variations in RTTY machines, different mechanical procedures can often be used, but if you don't know the machine at the other end it is best to assume that it has none of the refinements.

As in other operating, the best thing to do is listen. The typical beadle-beadle of RTTY is familiar enough that it can be tuned in with an ordinary communications receiver, then put through the converter to copy on your printer. Some typical calls can be identified just by their sound, such as RY (the RTTY "(est") and CQ and even your own call. The procedure is much the same as for Cw - zero your vfo while copying and call your station on the same frequency. Even though he finishes his $C Q$ with a carriage return (CR) and line feed (LF), it is a good idea to get into the habit of transmitting these functions, to "clear the machine." Thus: (2CR) (LF) K6DYX K6DYX K6DYX DE W1AW W1AW $\overline{A R}$ (2CR) (LF).

To initiate a $C Q$, find an unused point in the band, activate your carrier and transmit: (2CR) (LF) CQ CQ CQ DE K6DYX K6DYX K6DYX K (CR) (LF).

During the QSO, when you come to the end of a line (or the end-of-line indicator on tape equipment), send 2CR, LF, 2LTRS. That is, after your carriage return and line feed at the end of a tine, the two nonprinting "letter" pulses serve to allow sluggish machines to get ready for the next line, and take less than a second to send. This is
especially important with tape transmissions at the higher machine speeds - 75 and 100 wpm .

Most siations equipped for RTTY are also equipped with tape equipment. While RTTY can be sent manually from a keyboard. the use of tape for material which can be prepared ahcad of time is much preferable, since it allows the machine to run at an even speed, faster than it could be typed by hand even by an expert typist. The tape is punched on a perforator and fed into a transmitterdistributor (TD) which is motor-driven. Thus, CQ calls or other prepared text (including message (raffic) can be made up in advance. It is also fairly common practice to punch tape in ordinary QSOs. keeping ahead of the TD with the perforator. Many operators start punching their reply tape while they are still receiving from the operator at the other end, thus getting ahead far enough so that even if their typing speed is below the speed of the machine (usually 60 wpm) there is enough leeway to allow for the difference. Taped transmissions have no pauses, which can be irksome in manual transmissions.

RTTY equipment operates at different speeds and with different frequency shifts, depending on the sophistication of the equipment. Most amateurs, however, operate at a standard 60 wpm and 850 -Hertz shift, and those with 100 wpm and 170-Hertz shift capability can usually switch to the standard. The considerate RTTY operator will be glad to do so whenever called upon, jusi as a considerate cw operator will slow down to the speed of lis QSO.

REPEATER OPERATING

Although repeater operation is generally voice operation, it has some ramifications that are not present in the type of operation used in direct (i.e. not through a repeater) contact on phonc. Most repeaters are of the "open" type where anyone with appropriate equipment operating on the repeater's input and output frequencies can participate. Such repeaters usually are accessed simply by depressing the mike button. Some "machines" have limited access, such as by means of a tone, a serics of tones or pulses, or some other means to prevent their being triggered by a casual signal.

The primary purpose of repeaters is to extend the coverage for mobile and hand-held units. Fixed-station operation should be held to a minimum. Repeaters lend themselves very well to public service communications such as highwayaccident reporting, and emergency-preparedness activities.

A repeater has to be built or purchased by somebody. installed by somebody, and maintained by somebody, usually at considerable expense and trouble. Sometimes this "somebody" is an indjvidual but more often it is a group, either organized for the purpose or undertaking repeater operation as an additional club project. So a first point of repeater operating, not exactly an on-theair concept, is to lend some kind of support to the group or individual that sponsors the repester you use regularly.

Here are a few "dos" and "don'ts" put forward by repeater groups that may serve as useful guidelines for repcater operation:

1) Monitor the repeater you plan to use. Each system has its own pecullarities. Don't "key up" a repeater until you"re famillar with its operation.
2) Identify properly. When operating mobite, you're required to indicate the call area you are in. Thus, "This is WAIRDX mobile one" would be proper. It is considered poor practice (indeed Eilegal) to key a repeater without identifying yourself.
3) When desiring to make a contact, all that is recessary is to indicate that you are on frequency. On some machincs this may be accomplished by "This is WAIRDX mobile one monitoring." On others, standard practice calls for a single CQ followed by identification. Never send a long CQ; any respondent will be listening on frequency and tear the short call.
4) Kecp transmissions short and thoughtful. Don't monopolize the repeater. Most repeaters go off automatically (time out) after a certain length of transmission (usually three minutes or less) and must be rekeyed. Remember, what you say may be monitored by many listeners using public-service tand receivers. Don't give a bad impression of ham radio.
5) During a repeater contact, always pause a few seconds before transmitting to allow other stations access to the repeater. Someone may have an emergency to report or priority traffic.
6) Don't break into a contact unless you have something to add. Interrupting is no more polite on the air than it is in person.
7) Use simplex (i.e. direct contact, not through a repeater) operation whenever possible. This frees the repeater for use by stations unable to conmmunicate directly.
8) Use the minimum power necessary to maintain communications Not only is this an FCC requirement; it's also common courtesy.
9) Many repeaters have autopatch facilities, which is an interconnection between the repeater and the telephone system, to provide a public service. It is strictly forbidden to use the autopatch for anything that could be construed as business communications. Nor should the autopatch be used to simply avaid a toll call. Do not use an autopatch where regular telephone service is available. Abuses of autopatch privileges can lead to their loss.

The ARRL makes available an annually revised repeater directory listing all repeaters which have been registered. For details on how to obtain a copy, check recent issues of QST.

CW PROCEDURE

Cw operating procedure has been developing for over a ceniury, for our present Intermational (Continental) Code had its beginnings on the telegraph wire tines. There is more to talk about in cw procedures than any other mode for this reason, not because it is the most popular mode.

Phone many years ago outstripped cw as the mosi popular mode. But cw is far from dead. A listen to a rare DX pileup in the cw bands, or the cw section of any contest will demonstrate that conclusively. And it ha: many advantages over any other mode. Any amatcur who avoids the use of cw because he is too lazy to become proficient enough in the code to realize its full benefits is missing almost half of amateur radio pleasure.

Grood Sending

In many ways. cw can be compared with the spoken word. For the proficient cw man, it is indeed equivalent to this. But just as enunciatior. must be precise for best understanding in speaking. proper character formation and spacing is requirec in sending the code. And the learning processes are also similar. The beginning cw operator is subjec: to the same stresses and pressures as the child learning to talk, and can learn bad habits. He becomes subject to outside influences to his own possible detriment in everyday operating

Actually, it is far easier to learn code today than it was, say, forty years ago when nearly all amateur operation was by cw , because there are more helps available. On the other hand, there is less reason to learn it today than there was then. True, the licensing requirement still exists, but once you have your license if you prefer (and many amateurs do), you can spend 100 percent nf your amatcur operating time on voice or other modes that require no knowledge of the code. In the 1930s, you needed the code to communicate, not just to get your license. There are also, today, a great many gadgets on the manket that, while seeming to make code casier only serve really to instill bad habits on the operator. Some teachers for example, would have you start out with an

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to listen. Avoid long CQs; do not answer over-long CQs.
3) Use push-to-talk or voice control. Give essential data concisely in first transmission.
4) Make reports honest. Use definitions of strength and readabllity for reference. Make your reports informative and useful. Honest reports and full word description of signals save amateur operators from FCC trouble.
5) Limit transmission length. Two minutes or less will convey much informition. When three or more stations converse in round tables, brevity is essential.
6) Display sportsmanship and courtesy. Bands are congested . . . make transmissions meaningful . . . give others a break.
7) Check itansmitter adjust. ment...avoid a.m overmodulation and splafter. On ssb check carrier balance carefully. Do not radiate when moving VFO frequency or checking n bfm swing. Use receiver BFO to check stability of signal. Complefe testing before busy hours!
electronic keyer, but this weds you to such a device forever more. The best way to start is with an ordinary straight key, learning characters by their sound, and striving to imitate machine sending by learning to conirol the muscles used in manipulating this key. This makes "graduating" to a bug or an electronic key much easier at a later date.

In order to make yous sending good, you have to know what good sending sounds like. The way to acquire this is to copy WIAW's butletins and code practice, or other perfect sending, then strive to imitate it Sometimes you can get a copy of the practice text (it's listed in advance in $Q S T$), and try to send along with W1AW. Most amateur cw operators zoday have difficulty maintaining proper spacing, probably because so much equipment in use demands that we key through a VOX relay. On cw the control for this relay is usually set for minimum delay, so it will close quickly and open just as quickly; but on most equipment it still doesn't close quickly enough, so a part of the first dit or dah of the first character is cut off. This has a tendency to cause the operator to run his words together so the relay will stay closed while he is sending but open immediately when he stops, making his sending very difficult to copy.

Nobody's sending is perfect, and therefore every operator should continuaily strive for improvement. Watch out for the customary pittalls as your cw proficiency develops. Do you ever send Q for MA, or P for AN? Do you have a "swing?" Yes, even on an electronic key you can develop personal idiosyncrasies. Be yous own worst critic, and make sure your sending, at whatever speed, is beyond reproach.

Break-In

On cw you can have true break-in - the ability to hear the signal of the other station while you are keying your transmitter, Technical considerations are covered elsewhere in this manual. Once this part of it has been accomplished, the full advantages and benefits of break-in can be realized. Long calls are unnecescary, because you can hear immediately if the station being called comes back to someone elsc. Much QRM is thus eliminated. If both stations in a QSO are using break-in, no station transmits unnecessarily; if the transmitting station is not being received, the receiving station "breaks" him and transmission stops. If another signal comes on the frequency, it can be heard immediately and any appropriate action taken. If message or other recorded traffic is being transmitted, any material missed can be filled immediately because the iransmission can be interrupted just by the tap of a key. You can even call a CQ using break-in, and stop the moment someone hears you and starts calling. The customary procedure is CQ CQ CQ DE WOPAN W円PAN BK (pause) CQ CQ CQ . . ., until someone breaks or until it seems obvious no one is going to. Alsernatively, the O signal QSK can be used, either in sending CQ or at the beginning of a QSO to indicate to the other station that you are equipped for break-in and invite him to use it. QSK
is the mark of a well-equipped and well-operated cw station.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using code. In telegraphy words must be spelled out letter by letter. It is therefore but natural that abbreviations and shortcuts have come into use. In voice work, however, abbreviations are not necessary, and have less importance in our operating procedure.

The letter " K " is used in telegraphic practice so that the operator will not have to pound out the separate letters. The voice operator can say the words "go" or "over."

One laughs on cw by sending HI. On phone, laugh when one is called for.

The matter of reporting readability and strength is as important to phone operators as to those using code. With telegraph nomenclature, it is necessary to spell out words to describe signals or use abbreviated signal reports. But on voice, we have the ability to "say it with words." "Readability four, strength eight" is the best way to give a quantitative report, but reporting can be done so much more meaningfully with ordinary words: "You are weak but I can understand you, so go ahcad," or "Your signal is strong but you are buried under local interference."

Voice Equivalents to Code Procedure		
Voice	Code	Meaning

Phone-Operating Practice

Efficient voice communication, like good cw communication, demands good operating. Adherence to certain points "on getting results" will go a long way loward improving our phone-band operating conditions.

Use VOX or push-raralk. If you use vOX (most home stations do). don't defeat its purpose by saying "aaahhh" to keep the relay closed. If you use push-to-talk (common on mobiles so traffic noises won't affect transmission), let go of the button every so aften to make sure you aren't "doubling" with the other fellow. Don't be a monologuist - a guy who likes to hear himself talk.

Listen with care. It's natural enough to answer the loudest signal who calls, but do a little digging, if necessary, to answer the best signal instead, where there is a choice. Every amateur can't run a
kilowatt, but there is no reason why every amateur cannot have a signal of the highest quality. Don't reward the guy who cranks up his gain and splatters by answering his call if another station is calling.

Inserpose your call frequently. Say it often and distinctly, in measured tones. Too often, identification is muflled or slurred. The fastest voice communication doesn't come from the guy who talks fastest; it comes from the operator who speaks distinctly. Your call especially is important, you can be cited for improper identification if it cannot be understood.

Listen before rransmisting. Make sure the frequency isn't being used before you come barging onto it. Our voice bands are pretty crowded and QRM is inevitable. But this is a reason for more courtesy, not less.

Keep modulation constans. By turning your gain "wide open" you are subjecting anyone listening to all kinds of extraneous noises that don't belong on the air. Speak as closely to the mike as you can without breath modulation, turn your gain down so that only your voice can be heard. A good stunt is to hold the mike at the corner of your mouth and talk across it, rather than into it. If you use a stationary mike, turn it so that your breath goes across it, not into it; otherwise, your "explosives" will distort your speech.

Have a pencil and paper always handy. Take notes on the other guy's conversation while he's talking, so you can answer him or comment on the things he has said; otherwise he might get the wrong impression that you are deliberately ignoring some of his remarks.

Avoid repetition. Don't repeat back what the other fellow has just said. Just say you received everything, don't try 10 prove it.

Avoid inaniries. There are many of them in phone operation, and they are contagious. "That's a roger." "Yeeeaaah!" "By golly." The phoney laugh. The affected speech. If you must parrot, parrot the polished operator, not the affected or idiotic one.

Steer clear of such controversial or suggestive subjects as politics and sex, and of profanities, even those considered acceptable in today's permissive society.

Use phonetics only as required. When clarifying genuinely doubtful expressions and in getting your zall identified positively we suggest use of the International Telecommunication Union list. However, don't overdo its use.

The speed of radiotelephone transmission (with perfect accuracy) depends almost entirely upon the skill of the two operators involved. One must learn to speak at a rate aHowing perfect understanding as well as permitting the receiving operator to copy Jown the message text, if that is necessary. Because of the similarity of many English specch sounds, the use of word lists has been found necessary. All voice-operated stations should use a standard list as needed to identify call signals or unfamiliar expressions.

A - ALFA	N - NOVEMBER
B - BRAVO	O - OSCAR
C - CHARLIE	P - PAPA
D - DELTA	Q - QUEBEC
E - ECHO	R - ROMEO
F - FOXTROT	S - SIERRA
G - GOLF	T - TANGO
H - HOTEL	U - UNIFORM
I - INDIA	V - VICTOR
J- JULIETT	W - WHISKEY
K - KILO	X - X-RAY
L - LIMA	Y - YANKEE
M - MIKE	Z - ZULU
ple: WIAWW I ALFAWHISKEY...	

Round Tables. The round table has many advantages if run properly. It clears frequencies of interference, especially if all stations involved are

DX OPERATING CODE

(For W/VE Amateurs)

Some amateurs interested in DX work have caused considerable confusion and QRM in their efforts to work DX stations. The points below, if observed by all W/VE amateurs, will go a long way toward making DX more enjoyable for everybody.

1. Call DX only after he calls CQ. QRZ7, signs SK. or phone equivalent thereof.
2. Do not call a DX station:
a. On the frequency of the station he is working until you are sure the QSO is over. This is indicated by the ending signal SK on cw and any indication that the operator is listening. on phone.
b. Because you hear someone else calling him.
c. When he signs $\overline{\mathrm{KN}} . \overline{\mathrm{AR}}, \mathrm{CL}$, or phone equivalents.
d. Exactly on his frequency.
c. After he calls o directional CQ, unless of course you are in the right direction or area.
3. Keep within frequency-band limits. Some DX stations operate outside. Perhaps they can get away with it, but you cannot.
4. Observe calling instructions of DX stations. "10U" means call ten $\mathrm{kHz} u$ from his frequency, "15D" means 15 kHz down, etc.
5. Give honest reports. Many foreign stations depend on W and VE reports for adjustment of station and equipment.
6. Keep your signal clean. Key clicks, chirps, hum or splatter give you a bad reputation and may get you a citation from FCC.
7. Listen for and call the station you want. Calling CQ DX is not the best assurance that the rave DX will reply.
8. When there are several W or VE stations waiting to work a DX station, avoid asking him to "ltsten for a friend." Let your friend take his chances with the rest. Also avoid engaging DX stations in rag-chews against their wishes.
on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, or vox, the conversation can be kept lively and interesting, giving each station operator ample opportunity to participate without waiting overlong for his turn.

Round tables can become very unpopular if they are not conducted properly. The monologuist, off on a long spiel about nothing in particular, cannot be interrupted; make your rransmissions short and to the point. "Butting in" is discourteous and unsportsmanlike; don's enter a round rable, or any contact between two other amoteurs, uniess you are invired It is bad enough trying to copy through prevailing interference without the added difficulty of poor voice quality; check your transmitter adjustments frequently. In general, follow the precepts as hercinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication.

WORKING DX

Most amateurs at one time or another make "working DX" a major aim. As in every other phase of amateur work, there are right and wrong ways to go about getting best results in working foreign stations, and it is the intention of this section to outline a few of them.

The ham who has trouble raising DX stations readily may find that poor transmitter efficiency is not the reason. He may find that his sending is poor, his calls ill timed, or his judgment in error. Working DX requires the know-how that comes with experience. If you just call CQ DX you may get a call from a foreign station, but it isn't likely to be a "rare one." On the other hand, unless you are experienced enough to know that conditions are right, your receiver is sensitive and selective enough and your transmitter and antenna properly tuned and oriented, you may get no calls at all, and succeed only in causing some unnecessary QRM.

The call CQ DX means slightly different things to amateurs on different bands:
a) On vhf, CQ DX is a general call ordinarily used only when the band is open, under favorable "skip" conditions. For vhf work, such a call is used for looking for new states and countries, also for distances beyond the customary "line-of-sight" range on most vhf bands.
b) CQ DX on our 7-, 14-, 21-, and $28-\mathrm{MHz}$ bands may be taken to mean "General call to any foreign station." The term "foreign station" usually refers to any station on a different continent. If you do call CQ DX, remember that it implies you will answer any DX who calls. If you don't mean "general call to any DX station," then listen and call the station you do want.

Snagging the Rare Ones

Once in a while a CQ DX will result in snagging a rare DX contact, if you're lucky. This seldom happens, however; usually, what you lave to do is listen - and listen - and then listen some more. You gotta hear 'em before you can work ' em ! If everybody transmits, nobody is going to hear anything. Be a snooper. Usually, unless you are
lucky enough to be among the first to hear him, a rare DX station will be found under a pileup, with stations swarming all over him like worker bees over a queen. The bedlam will subside when the DX station is transmitting (although some stations keep right on calling him), and you can hear him. Don't immediately join the pack, be a little cagey. Listen a while, get an idea of his habits, find out whese he is listening (if not zero on himself), bide your time and wait your chance. Sometimes "tail-ending" works. This is the practice of waiting unifl the station your DX is working starts his sign-off, then just transmitting your own call. Be careful however; this could backfire. If your DX station doesn't respond to such tactics, best to avoid it. Some of them don't like it.

Make your calls short, snappy. No need to repeat his call (he knows it very well, all he needs to know is that you are calling him), but send your own call a couple of times. Tiry to find a time when few stations are calling him and he is not transmitting; then get in there! With experience, you'll learn all kinds of tricks, some of them clever some just plain dirty. You'll have no trouble discerning which is which. Learn to use the clever ones, and shun the dirty ones. More than you think depends on the impressions we make on our foreign friends!

Codes and Ethics

One of the most effective ways to work DX is to know the operating habits of the DX stations sought, and to abide by the procedures they use. Know when and where to call. and for how long, and when to remain silent waiting your chance. DXing has certain understood codes of ethics and procedures that will make this popular amateur pursuit more fun for everybody if everybody follows them. One of the sad things about DXing is to listen to some of the vituperation and abuse that gocs on, mostly by stations on "this" side, as they trample on each other trying to raise their quarry. DX stations have been known to QRT in disgust at some of the tactics.

If W and VE stations will use the procedure in the "DX Operating Code" detailed elsewhere on these pages. we can all make a good impression on the air. ARRL has also recommended some operating procedures for $D X$ stations aimed at controlling some of the thoughtless practices sometimes used by W/VE amateurs A copy of these recommendations (Op Aid No. 5) can be obtained free of charge from ARRL Headquarters.

Choosing Your Band

If it does nothing else in furthering your education, striving to work DX will certainly teach you a few things about propagation. You will find that four principal factors determine propagation characteristics. (1) The frequency of the band in which you do your operating. (2) The time of day or night. (3) The season of the year (4) The sunspot cycle. The proper choice of band depends pretty much on the other three factors. For example, the $3.5-4.0-\mathrm{MHz}$ band at high noon in the summertime at the "node" part of the sunspot cycle is the poorest possible choice, while the same
band at midnight during the wintertume at the ' null' part of the cycle might produce some very exciting DX. Similarly, you will learn by experience when to operate on which band for the best DX by juggling the above factors using both long-range and other indications of band conditions. WWV transmissions can also be helpful in indicating both current and immediate-forecast band conditions.

Conditions in the transmission medium often make it possible for the signals from low-powered transmitters to be received at great distances. In general, the higher the frequency band the less important power considerations become, for occasional DX work. This accounts in part for the relative popularity of the $14-, 21$ - and $28-\mathrm{MHz}$ bands among amateurs who like to work DX.

OSL CARDS AND BUREAUS

Most amateurs who work another station for the first time, cspecially a foreign station, will later send the station a postcard confirming the contact. These cards are knows as QSLs, taken from the international signal meaning, "I acknowledge receipt." A number of printing firms specialize in producing these postcards, following standard designs, or following the directions of an individual amateur. Advertiscments of these printers appear each month in QST, ARRL's official joumal.

Since it is rather expensive, for a foreign station especially, to send a QSL separately to each U.S. or Canadian station he's worked, ARRL has set up a system of QSI. Ruraaus, manned by amateur volunteers in each call area. The bureaus get packages of cards from overseas, which are sorted by call. Individual amateurs may claim their cards by sending a supply of stamped, self-addressed envelopes to the QSL manager in their call area. QST carries the addresses of these bureaus nearly cvery issue. Or write to ARRL Hq. for information.

KEEPING AN AMATEUR STATION LOG

Although recent FCC rulings have eliminated the legal necessity for detailed logging, you'll still want to maintain a log to preserve a record of your own activity within amateur radio, to be able to send QSLs, and to protect yourself. You'll be confident of mecting all of these by recording: (1) the date and time of each transmission, (2) all calls and transmissions made, whether contacts resulted. or not, (3) the input power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each contact (QSO), and (6) the signature of the licensed operator. Written messages handled in standard form must be int cluded in the log or kept on file for a period of at least one year.

But a log can be more than just a legal record of station operation. It can be a "diary" of your amateur experience. Make it a habit to enter thoughts and comments, changes in equipment, operating experiences and reactions, any thing that might make enjoyable reminiscences in years to come. Your log is a reflection of yous personal

$\left(\cos _{10}\right.$	3rars\％	$\left.{ }^{64}\right)^{1 / 8}$	＊	3，${ }_{\text {cime }}$	\％		－ownt	${ }^{2}$	arubiseorn	＊＊＊ו	ala．	
											\bullet	－
cMM												
		\wedge	589	$57 \dot{L}$	3． 5	A 1	35．	2308		Aicl	－	
$31 / 5$	CH	A			7							
16	－	a－Sorn	$46 i$	774	4	\cdots	＂	2330	$C \mathrm{cosa} \mathrm{paga}$	Sicepy	\checkmark	
35	K2SJa	1	57	5\％	3．a	1.30	1\％	2．358	Sヘぐ入			
17MA入												
0005	$154 \% 04$	\wedge	． $5 / 7$	5.9	15	A2	$2 \bar{x}$	Oe－2		Ka Ma	\checkmark	
3013	－	Nuyst	528	512	，	\cdots	－	Caro	\rightarrow	V／A	\bullet	
iגC6	Cu	x			，	－	\bullet					
O込	\times	bヵ3NA	512	iy\％	＊	－	＊＊	1217	ME゙LBUAKNE	Nici 2	\checkmark	

KEEP AN ACCURATE AND COMPLETE STATION LOG AT ALL TIMES．FCC REQUIRES IT．
A page from the official ARRL log is shown above，answering every FCC requirement in respect to station records．Bound logs made up in accord with the above form can be obtained from Headquarters for a nominal sum or you can prepare your own，in which case we offer this form as a suggestion．The ARRL log has a special wire binding and lies perfectly flat on the table．
experience in amateur radio．Make it both neal and complete．

ARRL headquarters stocks log books and message blanks for the convenience of amateurs．

PUBLIC SERVICE OPERATING

Amateurs interested in rendering public service in operating under ARRL sponsorship have formed the Amatcur Radio Public Service Corps（ARPSC）． This organization has two principal divisions．One is the Amateur Radio Emergency Corps（AREC）， an emergency－preparedness group of approxi－ mately 30,000 amatcur operators signed up voluntarily to keep amateur radio in the forefront along preparedness lines．The other is the National Traffic System（NTS），a message－handling facility which operates daily（including weekends and holidays）for systematic handling of third－party traffic．

Also recogrized by ARRL as a part of the organized amateur radio public service effort are the Radio Amateur Civil Emergency Service （RACES），a part of the amateur service serving civil defense under a separate sub－part of the amateur regulations：the Military Affiliate Radio Service， sponsored by the armed services to provide

Here is an example of a plain－language message as it would be prepared for delivery．If the message were for relay instead of delivery，the information at the bottom would be filled in instead of that in the box．
military training for amateurs；and numerous amateur groups organized into nets by individuals， clubs or other amateur entitites for public service and registered with the League．The detailed workings of ARPSC and RACES are covered brielly herein and explained in somewhat more detail in Public Service Communications，Operating an Amascur Radio Station，available to interested amateurs withou！charge，and The Radio Ama－ reur＇s Operasing Manual．

MESSAGE HANDLING

Amateur operators in the United States and a few other countries enjoy a privilege not available to amatcurs in nost countries－that of handling third－party message traffic．In the early history of amateur radio in this country，some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became the ARRL．

Thus，amateur message－handling has had a long and honorable history，and like most services，has gone through many periods of development and change．Those amateurs who handled traffic in 1914 would hardly recognize it the way some of us do it today，just as equipment in those days was far different from that in use now．Progress has been made and new methods have been developed in step with advancement in communication tech－ niques of all kinds．Amateurs who handled a lot of traffic found that organized operating schedules werc more effective than random relays，and as techniques advanced and messages increased in mumber，trunk lines were organized，spot frequen－ cies began to be used，and there came into existence a number of traffic nets in which many stations operated on the same frequency to effect wider coverage in less time with fewer relays：but
the old methods are still available to the amateur who handles only an occasional message.

Although mesange handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a formal message and have never done so. As each amateur grows older and gains experience in the amateur service, there is bound to come a time when he will be called upon to handle a written message, during a communications emergency, in casual contact with one of his many acquaintances on the air, or as a result of a request from a non-amateur friend. Regardless of the occasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know how to go about putting it on the air.

Traffic work need not be a complicated or tum-consuming activity for the casual or occasional messagehandler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems. This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first consider that in doing so they are accepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Forty-eight hours after fliling or secoipt is the generally-accepted rulc among traffichandling amateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed os delivered as quickly as possible.

Message Form

Once this responsibility is realized and accepted, handling the message becomes a matter of following generally-accepted standards of form and transmission. For this purpose, each message is divided into four parts: the preamble, the address, the text and the signsture. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actually transmitting it to know not only what cach part is and what it is for, but so know in what order it should be transmitted. and to know the various procedure signals used with it when sent by cw . If you are going to send a message, you may as well send it right.

Standardization is important! There is a great deal of room for expressing originality and individuality in amateur radio, but there are also times and places where such expression can only cause vonfusion and inefficiency. Recognizing the need for standardization in message form and
message transmitting procedures, ARRL has long since recommended such standards, and most traffic-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to year, have been at the request of amateurs participating in this activity, and they are completely outtined and explained in Operaring an Amateur Radio Station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

The best way to clear a message is to put it into one of the many orgonized traffic networks, or to give it to a station that can do so. There are many amateurs who make the handling of traffic their principal operating activity, and many more still who participate in this activity to a greater or lesser extent. The result is a traffic system which spreads to all corners of the United States and covers most U.S. possessions and Canada. Once a message gets into an organized net, regardless of the net's size or coverage, it is systematically routed toward its destination in the shortest possible time.

Amatcurs not experienced in message handling should depend on the experienced message-handler to get a message through, if it is important; but the average amateur can enjoy operating with a message to be handled either through a local traffic net or by frec-lancing. The batter may be accomplished by careful listening for an amateur station at desired points, directional CQ_{s}, use of recognized calling and net frequencies, or by making and keeping a schedule with another amateur for regular work between specified points. He may well ain at learning and enjoying through doing. The joy and accomplishment in thus developing one's operating skill to the peak of perfection has a reward all its own.

If you decide to "take the bull by the horns" and put the message into a traffic net yourself (and more power to you if you do!), you will need to know something about how nets operate, and if on cw , the special Q signals and procedure they use to dispatch all traffic with a maximum of efficiency. The frequency and operating time of the net in your section, or of other nets into which your message can go, is given in ARRL's Net Directory. This annually-revised mublication is available on request. Listening for a few minutes at the time and frequency indicated should acquaint you with enough fundamentals to enable you to report into the net and report your traffic. [irom that time on you follow the instructions of the net control station, who will rell you when and to whom (and on what frequency, if different from the net frequency) to send your message. Cw nets use the special "QN" signals, so it may be helpful to have a list of these beforc you tuvallable from ARRL Hq.. Operating Aid No. 9).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it and increase your proficiency. Many amatours are happily "addicted" to traffic handled after only one or two brief
exposures to it. Much traffic is at present being conducled by cw , since this mode of communication seems to be popular for record purposes - but this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are many nets organized specifically for the slow-speed amateur, and most of the so-called "fast" nets are usually glad to slow down to accommodate slower operators.

It is a significent operating fact that code speed alone does not make for efficiency - sometimes the contrary! A high-speed operalor who does not know procedure can "foul up" a net much more completely and more quickly than can a slow operator. Cw net operation provides an excellent opportunity $t 0$ increase code speed. Given a little time your speed will reach the point where you can easily hold your own. Concentrate first on learning the net procedures.

Voice modes are also very popular for traffic work. Procedure is of paramount importance on phone, just as it is on cw. Procedure differs in that standard phonetics are an important ingredient in phone operation and Q and $Q N$ signals are not used. However, nets on all modes share the need for concise operation.

Teamwork is the theme of all net operation. The net which functions most efficiently is the net in which all participants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting except at the direction of the net control station, and do not occupy time with extraneous comments, even the exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handing traffic until all traffic is cleared. Before or after the net is the time for rag-chewing and discussion. Some further details of net operation are included in Operating an Amareur Radio Station, mentioned earlier, but there is no substitute for actual participation.

The National Traflic System

To facilitate and specd the movement of message traffic, there is in existence an integrated national system by means of which originated tralic can normally reach its destination area the same day the message is originated. This system uses the state or section net as a basis. Each section net sends a representative to a "region" net (normally covering a call area) and each "region" net sends a representative to an "ares" net (normally covering a time zone). After the area net has cieared all its traffic. its members then go back to their respective region nets, where they clear traficic to the various section net representatives. By means of connecting schedules between the arca nets, traffic can flow both ways so that traffic originated on the West Coast reaches the East Coast with a maximum of dispatch. and vice versa. In gencral, evening section nets function at 1900. evening region nets at 1945, evening area nets at 2030 and the same or different regional personnel again at 2130. Some section nets conduct a late session at 2200 to effect traffic delivery the same night. Local standard time is referred to in each
case.
There also exists a segment of NTS that meets during the daytime hours. NTS(D) follows the same gencral sequence as NTS(E). but the times are less standard from region to region and area to area. Traffic from area to area is handled in a Condinental Net, rather than by use of a Transcontinental Corps, as in NTS(E). QST covers details of NTS(D) as they unfold.

The NTS plan somewhat spreads traffic opportunity so that casual traffic may be reported into nets for efficient handling one or two days or nights per week: or the ardent traffic man can operate in both daytime and evening segments to roll up impressive totals and speed traffic reliably to its destination. Old-time traffic men who prefer a high degrec of organization and teamwork have returned to the traffic game as a result of the new system. Beginners have shown more interest in becoming part of a system nationwide in scope, in which anyone can participatc. The National Traffic System has vast and intriguing possibilitics as an amateur service. It is open to any amateur who wishes to participate.

The above is but the briefest resume of what is of necessity a rather complicated arrangement of nets and schedules. Complete details of the System and its operation are included in the ARRL Public Service Communications Manual.

EMERGENCY COMMUNICATION

Onc of the most important ways in which the amateur serves the public, thus making his existence a national asset, is by his preparation for and his participation in communications emergencics. Every amateur, regardless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside wortd. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready?

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equipment capable of operating on any type of emergency power (i.e., cither ac or dc), und equipment which can readily be transported to the scene of disaster. Mobile and hand-held equipment is especially desirable in most emergency situations.

Such equipment. regardless of how elaburate or how modern, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergencies, by no means less important than the nirst is to leam 10 operose efficiently. There are many amateurs who fecl that they know how to operate efficiently but who find themselves considetably handicapped at the crucial time by not knowing proper procedure, by being unable. due to ycars of casual amatcur operation, to adapt themselves to snappy, ubbreviated iransmissions, and by being unfamiliar with message form and
procedures. It is dangerous to overrate your ability in this; it is better to assume you have things to leam.

In general it can be said that there is more crnergency equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse procedure with complete break-in on cw and fast push-totalk or VOX on phone. The casual rag-chewing aspect of amateur radio, however enjoyable and worth-while in its place, must be forgotten at such times in favor of the business at hand. There is only one way to gain experience in this type of operation, and that is by practie. During an emergency is no time for practice; it should be done beforehand, as often as possible, on a regutar basis.

This leads up to the necessity for emergency onganization and preparedness. ARRL has long recognized this necessity and has provided forit. The Section Communications Manager (whose address appears on page 6 of every issue of $Q S T$) is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency communication organization and prepartdness in specified areas or communities. This appointee is known as an Emergency Coordinator for the city or town. Onc should be specified for each community. For coordination and promotion at section level a Section Emergency Coordinator arranges for and recommends the appointments of various Emergency Coordinators at activity points throughout the section. Emergency Coordinators organize amateurs in their cornmunities according to local needs for emergency communication facilities.

The community amateurs taking part in the local organization are members of the Amateur Radio Emergency Corps (AREC). All amateurs are invited to register in the AREC, whether they are able to play an active part in their local organization or only a supporting role. Application blanks are availabic from your EC, SEC, SCM or direct from ARRL Headquarters. In the event that inquiry reveals no Emergency Coordinator appointed for your community, your SCM would welcome a recommendation either from yourself or from a radio club of which you are a member. By holding an amateur operator license, you have the responsibility to your community and to amateur radio to uphold the traditions of the service.

Among the League's publications is a booklet entitled Public Service Communications. This booklet, while small in size, contains a wealth of information on AREC organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to AREC members and should be in every amateur's shack. Drop a line to the ARRL Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

Following World War II there was established within our government the Federal Civil Defense

Before Emergency

PREPARE yourself by providing emergency power for your station.

TEST your emergency equipment and operating ability in the annual Simutated Emergency Test and Field Day.

REGISTER with your ARRL Emergency Coordinator. If none, offer your services to local and civic relief agencies and explain what amateur radio can do during disasters.

In Emergency

LISTEN before you transmit, always! REPORT to your Emergency Coordinator so he will have latest data on your facilities. Offer local civic and relief agencies your services directly in the absence of an EC.

RESTRICT all on-the-air work in accordance with FCC regulations, Sec. 97.107.

SOS is the international Distress Call for a dire emergency. The phone equivalent is MAYDAY. Use these calls for emergency only. False distress calls are uniawful.

RESPECT the fact that success in emergency depends on circuit discipline. The net control station is the supreme authority.

COOPERATE with those we serve. Be ready to help, but stay off the air unless there is a specific job to be done that you can handle mort efficiently than any other station.

COPY bulletins from WIAW. During emergencies, special bulletins are transmitted.

After Emergency

REPORT to ARRL Headquarters promptly and fully so that the Amateur Service can roceive full credit.

Administration (FCDA), which, at the behest of ARRL and other amateurs, considered the role of the amateur in civil defense communication should the U.S. become embroiled in another war. This resulted, in 1951, in the establishment of the Radio Amateur Civil Emergency Service (RACES) with rules promulgated by FCC as a part of the Amateur Radio Service. FCDA has evolved into the present Defense Civil Preparedness Agency, part of the Department of Defense, and although the RACES rulcs have undergone several minor changes they are still essentially the same as originally put into effect.

RACES is intended solely for civil defense communication during civil emergencies, through the medium of amateur radio, and is designed to continue operation during any extreme national emergency such as war. It shares certain segments of frequencies with the regular (i.e., normal) Amateur Service on a nonexclusive basis. Its regulations are a subpart of the familiar amateur regulations (Part 97) and are included in full in the ARRL License Manual.

If every amatcur participated, we would still be short of the total operating personnel required properly to implement RACES. As the service which bears the responsibility for the successful
implementation of this important function, we face not only the task of installing (and in some cases building) the necessary equipment, but also of the training of thousands of additional people. This can and should be a function of the local unit of the Amateur Radio Emergency Corps under its EC and his assistants, working in close collaboration with the local civil defense organization.

A drastic change in RACES rules effected by FCC in February of 1976 greatly simplifies the procedures for amateur participation in RACES. The average amateur now simply makes himself available to his local civil defense (or whatever name) organization and becomes a part of that organization. He then uses his amateur call and observes regular amateur licensing privileges.

There is no longer a requirement for such things as a communications plan, a radio officer or personnel clearances. Local regulations may provide for some of these, but FCC regulations do not. Only licensed amateurs may act as control oper-
ators, and then only within their licensed privileges.

RACES stations are licensed only to civil defense organizations, not to individuals. They are given a WC prefix, a number corresponding to the cal! area in which they are located, and threc letters. Application is made on FCC Form 610-B by the civil defense director or equivalent.

In the event of war, civil defense will place great reliance on RACES for back-up radio communication. Even in peacetime, RACES can be of great value in natural disaster communications. As a part of our total amateur public service effort, it deserves our whole-hearted and enthusiastic support and will permit us to continue to function in the public service, as amateurs, in RACES in wartime as we function in AREC and NTS during peacetime. If interested, inquire of your local civil defense agency and get sighed up with your radio officer.

ARRL OPERATING ORGANIZATION

Amateur operation must have point and constructive purpose to win public respect. Each individual amateur is the ambassador of the entire fraternity in his public relations and attitude toward his hobby. ARRL field organization adds point and purpose to amateur operating.

The Communications Department of the League is concerned with the practical operation of stations in all branches of amateur activity. Appointments or awards are available for ragchewer, traffic enthusiast, phone operator, DX man and experimenter.

There are seventy-four ARRL Sections in the League's field organization, which embraces the United States, Canada, and certain other territory. Operating affairs in each Section are supervised by a Section Communications Manager (SCM) elected by members in that section for a two-year term of office. Organization appointments are made by the SCMs, elected as provided in the Rules and Regulations of the Communications Department, which accompany the League's By-Laws and Articles of Association: SCM addresses for all sections are given in full in each issue of QST. SCMs welcome monthly activity reports from all amateurs in their sections, regardless of status.

Whether your activity embraces phone or telegraphy, or both, there is a place for you in the League organization.

LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to develop practical communications plans with the greatest success, appointments of ARRL members holding Conditional Class licenses or better to serve as leaders and organizers in particular single-interest fields are made by the SCM. Each leadership post is imporfant. Each provides activities and assistance for appointee groups and individual members along
the lines of natural interest. Some posts further the general ability of amateurs to communicate efficiently at all times by pointing activity toward networks and round tables; others are aimed specifically at establishment of provisions for organizing the amateur service as a standby communications group to serve the public in disaster, civil defense need or emergency of any sort. The SCM appoints the following in accordance with section needs and individual qualifications:
PAM Phone Activities Manager. Organizes activities for voice operators in his section. Promotes phone nets and recruits Official Phone Station appointees. The appointment of VHF-PAM is open to Technician licensees.
RM Route Manager. Organizes and coordinates cw traffic activities. Supervises and promotes nets and recruits Official Relay Station appointees.
SEC Section Emergency Coordinator. Promotes and administers section emergency radio organization.
EC Emergency Coordinator. Organizes amateurs of a community or other local areas for emergency radio service; maintains liaison with officials and agencies served, also with other local communication facilities. Sponsors tests, recruits for AREC and encourages alignment with RACES. A Technician Class licensee may receive this appointment if a qualified higher class licensee is not available.

STATION APPOINTMENTS

ARRL's field organization has a place for every active amateur who has a station. The Communications Department organization exists to increase individual enjoyment and station effectiveness in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities, to report results monthly, and to apply to the SCM for one of the following station appointments. ARRL membership and the conditional class or higher license or VE equivalent is
prerequisite to all appointments, except where otherwise indicated.
OPS Official Phone Station. Sets high voice operating standards and procedures, furthers phone nets and trafic.
ORS Official Relay Station. Traffic service, oparates cW nets; noted for 15 wpm and procedure ability. Open to RTTY traffickers.
ORS II Same as ORS, for the Novice operators. code speed minimum of 10 wpm .
OBS Official Bulletin Station. Transmits ARRL and FCC bulletin information to amateurs. Open to Technician licensees.
OVS Official VHF Station. Collects and reports vhf-uhf-shf propagation data, may engage in facsimile. TT, TV, work on 50 MHz and/or above. Takes part as feasible in vhf traffic work, reports same, supports vhf nets, observes procedure standards. Open to both Novice and Technician licensees.
OO Official Observer. Sends cooperative notices to amateurs to assist in frequency observance, insures high-quality signals, and prevents FCC trouble.

Emblem Colors

Members may wear the ARRL emblem with black-enamel background. A red background will indicate that the wearer is or has been SCM. SECs, ECs, RMs and PAMs may wear the emblem with green background. Observers and all station appointees are entitled to wear blue background emblems.

RADIO CLUB AFFILIATION

ARRL affiliation is available to any amatcur socicty in one of three categories: Category 1, all "local" radio clubs having at least 51% licensed amateurs and at least 51% ARRL membership; Category 2, radio club "councils," and similar organizations of large geographic arca, same requirements as category 1 . Category 3, high school, college and youth-group clubs having at least onc officer or trustee who is a licensed amateur and an ARRL member.

A "Club Kit" is available upon request from the Club and Training Department; this kit contains all papers necessary for affiliation application plus other materials of interest to clubs. Once the completed affiliation package is retumed the affiliation process begins.

ARRL affiliated clubs receive a quarterly bulletin from Headquarters and special information at intervals for posting on club bulletin boards or for relay to club mernbers. A travel plan providing communications, technical, and legal/regulatorial contact from the Headquarters is worked out seasonally to give maximum bencfits to as many as possible of the active affiliated radio clubs.

Material aimed at training and entertainment of club members is available, plus advice on club problems such as organization, conducting meetings and attracting new members. Training services for clubs include films, slide collections, and complete lesson plans, available upon requcst. Watch QST and radio club news for details on these items, or write the ARRL for the special benefits to affiliated clubs.

W1AW

The Maxim Memorial Station, W1AW, is dedicated to fratemity and service. Operated by the League headquarters, W1AW is located adjacent to the Headquarters offices on a seven-acre site. The station is on the air daily, except holidays, and available time is divided between the different bands and modes. Facilities for all commonly used amateur modes are provided for all bands from 1.8 to 144 MHz .

Operation is roughly proportional to amateus interest in different bands and modes with maximum legal power on most bands. WIAW's daily bulletins and code practice aim to give operational help to the largest number.

W1AW was established as a living memorial to Hiram Percy Maxim, to carry on the work and traditions of amatcur radio. The station is on the air daily and is open to visitors at all times it is in operation. The WIAW schedule of operation and visiting hours is printed each month in the Operating News section of QST.

WIAW Code Practice

Approximate frequencies: $1.820 \quad 3.58 \quad 7.08$ 14.0821 .0828 .0850 .08 and 145.588 MHz . For practice purposes the order of words in each line may be reversed during the 5-13 wpm transmissions. Each tape carries checking references. Details on Qualifying Runs appear monthly in QST Operating Events.

Speeds EST/EDST
5-71⁄2-10-1 3-20-25
9 A.M. MWF
9:30 P.M. TThSSu
10-13-15

4 P.M. M-F	1 P.M. M-F
7:30 P.M.Dy	4:30 P.M. Dy

35-30-25-20-15
9:30 P.M. MWF
9 A.M. TTh

PST/PDST

6 A.M. MWF
6:30 P.M. TThSSu

1 P.M. M-F
4:30 P.M. Dy
6:30 P.M. MWF
6:00 A.M. TTh

OPERATING ACTIVITIES

Within the ARRL ficld organization there are many special activities. For all appointees and officials quarterly CD (Communications Department) Partics are scheduled to develop operating ability and a spirit of fraternalism.

In addition, ARRL sponsors various other activitics open to all amateurs. The DX-minded amateur may participate in the Annual ARRL International DX Competition during February and March. This popular contest may bring you the thrill of working new countries and building up your DXCC totals; certificate awards are offered to top scorers in each country and ARRL section (see page 6 of any $Q S T$) and to club leaders. Then there is the very-popular Sweepstakes in November. Of domestic scope, the SS affords the opportunity to work new states for that WAS award. A Novice activity is planned annually. Both a 10 and 160 -Meter Contest are scheduled for early December. The interests of vhf enthusiasts are also provided for in contests held in January, June and September of each year. Where enough logs (three) are reccived to constitute minimum "competition" a certificate in spot activities, such as the "SS" and vhf party, is awarded the leading newcomer for his work considered only in competition with other newcomers.

As in all our operating, the idea of having a good time is combined in the Annual Junc Field Day with the more serious thought of preparing ourselves to render public service in times of emergency. A premium is placed on the use of equipment without connection to commercial power sources. Clubs and individual groups always enjoy themselves in the "FD" and leam much about the requirements for operating under knockabout conditions afield.

ARRL contest activities are diversified to appeal to all operating interest, and will be found announced in detail in issucs of $Q S T$ preceding the different events.

AWARDS

The Lcague-sponsored operating activities, heretofore mentioned, have useful objectives and provide much enjoyment for members of the fraternity. Achievement in amateur radio is also recognized by various certificates offered through the League and dctailed below.

WAS Award

WAS means "Worked All States." An amateur, anywhere in the world, who succeeds in getting confirmed contacts with all fifty U.S. states and sends them in for examination, may receive this award from the League. For W/VE members and DX stations, there is a $\$ 3$ fee which includes return of the cards by registered mail. The fee for W/VE non-members is $\$ 6$.

You can make the contacts over any period of time and on any or all amateur bands. If you wish, you may have your WAS award issued for some special way in which you made it, such as all cw , all phone, all on one band, all with lower power, etc. - only providing alf cards submitted plainly show that a contact took place under the special
circumstances for which you wish the award issucd.

Before you send your cards, drop the ARRL Communications Department a line requesting a copy of the rules and an application blank.

SBWAS

The Five Band Worked All States Award became effective January 1, 1970. Only contacts made after that date count. Contacts must be confirmed with all 50 states on each of five amateur bands. Rules require applicants in the U.S. and possessions, Puerto Rico and Canada, to be a full member of ARRL. Basic WAS rules apply, with the addition of a $\$ 15$ fec for W/VE League members and DX stations which includes return of the cards by registered mail and a plaque. The award is not available to W/VE non-members.

DX Century Club Award

The DXCC is one of the most popular and sought-after awards in all of amateur radio, and among the more difficult to acquire. Its issuance is carefully supervised at ARRL headquarters by two staff members who spend full time on this function alone.

To obtain DXCC, an amateur must make two-way contact with 100 "countries" listed on ARRL Operating Aid No. 7, which also contains the complete rules. Written confirmations are required for proof of contact. Such confirmations must be sent to ARRI headquarters, where each one is carefully scrutinized to make sure it actually confirms a contact with the applying amatcur, that it was not altered or tampered with, and that the "country" claimed is actually on the ARRL list. Further safeguards are applied to maintain the high standards of this award. A handsome king-size certificate is sent to each amateur qualifying.

The term "country" is an arbitrary one not necessarily agreeing with the dictionary definition of such. For DXCC purposes, many bodies of land not having independent status politically are classified as countries. Fior example, Alaska and Hawaii, while states of the U.S., are considered separate "countries" because of their distance from the mainland. There arc over 300 such designations on the ARRL list. Once a basic DXCC is issued, the certificate can be endorsed, by sticker, for additional countries by sending the additional cards in to headquarters for checking.

Separate DXCC Awards are available for mixed modes, all phone and all cw .

There are fees charged for the DXCC award and for endorsements. Before applying, familiarize yourself with full information. Application forms (CD164) and the ARRL Countries List (detailing rules/charges) may be obtained from Headquarters for a stamped addressed envelope.

Five-Band DXCC

Entirely separate from 'DXCC, ARRL also offers a Five-Band DXCC (5BDXCC) Award for those amateurs who submit written proof of having
made two-way contact with 100 or more countries on each of live amateus bands sisce January 1 , 1969. Only full ARRL members are eligible in the U.S., possessions and Canada; elsewhere, any amateur may apply.

A charge of $\$ 20$ (U.S.) is made for application forms; this covers the cost of returning cards by first class registered mail and issuance of a personalized engraved plaque for those qualifying.

For a copy of the complete rules, drop a line to ARRL Headquarters, 225 Main St.. Newington, CT 06111.

WAC Awards

The WAC award, Worked All Continents, is issued by the International Amateur Radio Union (IARU) upon proof of contact with each of the six continents. Amatcurs in the U.S.A., Possessions and Canada should apply for the award through ARRL, headquarters socicty of the IARU. Those elsewhere must submit direct to their own IARU member-society. Residents of countries not represented in the Union may apply directly to ARRL for the award. Two basic types of WAC certificates are issued. One contains no endorsements and is awarded for cw , or a combination of cw and phone contacts; the other is awarded when all work is done on phone. There is a special endorsement to the phone WAC when all the confirmations submitted clearly indicate that the work was done on two-way ssb. Special endorsements are also available for RTTY and SSTV. The only special band endorsements are for $1.8,3.5$, and 50 MHz .

Five- and Six-Band WAC Awards are based on contacts made on or after January 1, 1974. Write ARRL Headquarters for details.

Satellite "1000" A ward

Contacts made on or after December 15, 1972, via the Oscar communications satellites count for this unique "DX Achievement" award. Only one contact per station, regardless of mode. To earn the award you must anlass 1000 points. Each contact with a new station counts 10 points, with a new country 50 points, with a new continent 250 points. The fee for W/VE members and DX stations is $\$ 2$ which includes return of the cards by registered mail. W/VE non-members' fee is $\$ 3$

Code Proficiency Award

Many hams can follow the general idea of a contact "by car" but when pressed to "write it down" they "muff" the copy. The Code Proficiency Award permits each amateur to prove himself as a proficient operator, and sets up a system of awards for step-by-step gains in copying proficiency. It enables every amateur to check his code proficiency. to better that proficiency, and to receive a certification of his receiving speed.

This program is a whale of a lot of fun. The League will give a certificate to any interested individual, who demonstrates that he can copy perfectly, for at least one minute, plain-language Continental code at $10,15,20,25,30$ or 35 words
per minute, as transmitted monthly from WIAW and W6OWP.

As part of the ARRL Code Proficiency program W1AW transmits plain-language practice material each evening and week-day moming at speeds from 5 to 35 wpm , occasionally in reverse order. All amateurs are invited to use these transmissions to increase their code-copying ability. Non-amateurs are invited to utilize the lower speeds, $5,71 / 2$ and 10 wpm, which are transmitted for the benefit of persons studying the code in preparation for the amateur license examination. Refer to any issue of QST for details.

Rag Chewers Ciub

The Rag Chewers Club is designed to encourage friendly contacts and discourage the "hello-goodbye" type of QSO. It furthers fraternalism through amateur radio.

Membership certificates are awarded to amateurs who report a fraternal-type contact with another amateur lasting a half hour or longer. This does not mean a half hour spent trying to get a message through or in trying to work a rare DX station, but a solid half hour of pleasant "visiting" with another amateur discussing subjects of mutual interest and getting to know each other. If nominating someone for RCC, please send the information to the nominee who will (in tum) apply to Headquarters for RCC.

Members sign "RCC" after their calls to indicate that they are interested in a chat, not just a contact. There is no fee for W/VE members and DX, a 25 fee for others.

Operating Aids

The following Operating Aids are available free, upon request: Emergency Operating. DX Operating Code, Contest Duplicate Contact Record, DXCC Countries List. WAS Record, ARRL Message Form, Ready Reference Information. A composite aid - Ending Signals. Time Conversion. Phonetic Alpḩabets, RST System and Steps in an Emergency, Emergency Reference Information.

A-1 Operator Club

The A-I Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operatorn who already belong. General keying or voice technique, procedure, copying ability, judgment and courtesy all count in rating candidates under the club rules detailed at length in Operoting an Amateur Radio Station. Aim to make yourself a finc operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worthwhile certificate in its own right.

Brass Pounders Leaguc

Every individual reporting more than a specified minimum of official monthly traffic totals is given an honor place in the QST listing known as the Brass Pounders Leaguc and a certificate to recognize his performance is fus-
nished by the SCM．In addition，a BPL Traffic A werd（medallion）is given to individual amateurs working at their own stations after the third time they＂make BPL＂provided it is duly rcported to the SCM and recorded in QST．

Public Service Honor Roll

A new listing，supplementing the BPL，was started in 1970．It takes into account the many public service functions of amateurs in addition to the handling of record messages．Points can be claimed for checking into and participating in nets， for serving as net control stations，as liaison between nets，for handing phone patches，for making BPL，for handling real emergency traffic and for serving as a net manager．Each such function has a maximum number of points per
month so that nobody can make the PSHR by performing a single type of function，except handling emergency traffic．Versatility in public service is encouraged and rewarded．See QST for details．

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time，and who held an amateur license（operator or station） 20 －ar－more years ago．Lapses in activity during the intervening ycars are permitted．

If you can qualify as an＂Old Timer，＂send an outline of your ham career．Indicate the date of your first amateur license and your present call．If eligible for the OTC，you will be added to the roster and will receive a membership certificate．

INTERNATIONAL PREFIXES

AAA－ALZ
AMA－ALZ
AMA－AOZ
ATA－AWZ
AXA－AXZ
AYA－AZZ
BAA－日ZZ
CAA－CEZ
CFA－CKZ
CLA－CMZ
CLA－CMZ
CNA－CNZ
COA－COZ
COA－COZ
CQA－CRZ
CSA－CUZ
CVA－CXZ
CYA－CZZ
DAA－DTZ
DAA－DZZ
DUA－DZZ
EIA－EJZ
EKA－EKZ
ELA－ELZ
EMA－EOZ
EPA－EQZ
ERA－ERZ
ESA－ESZ
ETA－ESZ
EUA－EWZ
EXA－EZZ
FAA－FZZ
GAA－GZZ
HAA．HAZ
HEA－HBZ
HEA－HBZ
HCA－HDZ
HCA－HDZ
HEA－HEZ
HEA－HEZ
HFA－HFZ
HGA－HGZ
HHA－HHZ
HIA－HIZ
HJA－HKZ
HLA－HMZ
HNA－HNZ
HOA－HPZ
HQA－HRZ
HSA－HSZ
HTA－HTZ
HUA－HUZ
HVA－HVZ
HWA－HYZ
HZA－HZZ
1AA－IZZ
JAA－JSZ
JTA－」VZ
JWA－JXZ
JVA－JYZ
J2A－JZZ
KAA－KZZ
LAA－LNZ
LOA－LWZ
LXA－LXZ
LYA－LYZ
LZA－LZZ
MAA－MZZ
NAA－NZZ
OAA－OCZ
ODA－ODZ
OFA－OJZ

United States of America
Spaln
Pakistan
India
Commonwealth of Ausiralla
Argentine Republic
China
Chile
Canada
Cuba
Morocco
Cuba
Bolivia
Portuguese Overseas Provinces
Portugal
Uruguay
Canada
Germany
Republic of the Philipoines
Spaln
Iraland
Unlon of Soviet Soclalist Rep． Liberia
Union of Soviet Sociallst Rep．
Iran
Unlon of Soviet Socialist Rep．
Esionia
Ethlopla
Elelorussian Soviet Soclallst Rep．
Unlon of Soviet Soclallst Rep．
France and French Communisy
Unlted Kingdom
Hungarian Psople＇s Rapublle
Switzerland
Ecuador
Switzerland
Peaple＇s Republic of Poland
Hungarian People＇s Republic
Republic of Halti
Dominican Republic
Republic of Colombla
Korea
rad
Republlc of Panama
Republic of Honduras
Thalland
Nicaragua
Repubilc of El Salvador
Vatican City State
Vrance and French Community
Franca and
Saudl Arabia
ltaly
Japan
Mongollan People＇s Republlc
Norway
Jordan
Western New Guinea
United States of America
Norway
Argentine Republlc
Luxembourg
Clthuanla
People＇s Republic of Bulgaria
United Kingdom
United States of America
Peru
Labanon
Austrla
FInland

OKA－OMZ
ONA－OTZ
OUA－OZZ
PAA－pIZ
PJA．PJZ
PKA．POZ
PPA－PYZ
PZA－pZZ
QAA－QZZ
RAA－R22
SAA．SMZ
SNA－SRZ
SSA－SSM
SSN－STZ
SUA－SUZ
SVA－SZZ
TAA－TCZ
TDA－TDZ
TEA．TET
TFA－TFZ
TGA－TGZ
THA－THZ
TAA－TIZ
TKA－TKZ
TLA－TLZ
TMA－TMZ
TNA－TNZ
TOA－TQZ
TRA－TRZ
TSA－TSZ
TTA－TTZ
TUA－TUZ
TVA－TXZ
TVA－TXZ
TYA－TYZ
TZA－TZZ
UAA－UQZ
URA－UTZ
UUA－UZZ
VAA－VGZ
VHA－VNZ
VOA－VO2
VPA－VSZ
VPA－VSZ
VTAVVWZ
$V \times A-V Y Z$
VZA－VZZ
WAA－WZZ
$\times A A-\times I Z$
$\times J A-\times O Z$
$\times P A-\times P Z$
\times QA－XRZ
\times SA．\times SZ
\times TA－XTZ
XUA－XUZ
xソA－XVZ
XWA－XWZ
$\times \times A-\times \times Z$
XYA－XZZ
YAA－YAZ
YBA－YHA
YIA－YIZ
YJA－YJZ
YKA－YKZ
YLA－YLZ
YMA－YMZ
YNA－YNZ
YOA－YRZ
YSA．YSZ
YTA－YUZ

Czechoslovakia
Belgium
Denmark
Netherlands
Netherlands Antilles
Republic of Indonesia
Brazil
Surinam
（Service abbraylaflons）
Union of Sovet Soclalist Rep．
Sweden
People＇s Republic of Poland
United Arab Repubilc
Sudan
Arab Republic of Egypt
Greece
Turkey
Guatemala
Cncta Rica
icaland
Guatemala
France and Franch Community
Costa Rica
Republic of Cameroon
France and French Community
Central Afsican Republic
France and French Community
Republic of Congo（Brazzaville）
France，Fiench Community
Repubilc of Gabon
Tunisia
Republic of Chad
Republic of the Ivory Coast
France and French Community
Republic of Danomey
Republic of Mall
Union of Soviat Soclalist Republics
Ukrainian Sovlet Soclalist Rep．
Union of Soviet Socialist Republics
Canada
Commonwealih of Ausiralia
Canada
British Overseas Territaries
India
Canada
Commonwealin of Australla
United States of America
Mexico
Canada
Denmark
Cnile
Cnina
Repubilc of the Upper Volta
Khmer Republic
Vlet Nam
Laos
Portuguese Overseas Proulnces
Burma
Afghanistan
Republic of Indonesla
Irad
New Hebrides
Syria
Latvia
Turkey
Nicaragua
Roumanian People＇s Republic
Republic of EI Salvador
Yugoslavia

6CA-6CZ
60A-5JZ
6KA-6NZ
60A-60Z
6PA-65Z
6TA-6UZ
6VA-6WZ
$6 \times A-6 \times Z$
6 YA-6YZ
62A-62Z
7AA-712
7JA-7NZ
70A-70Z
79A-7QZ
7RA-7RZ
7SA-7SZ
TTA-7YZ
72A-7ZZ
8AA-81Z
8JA-8NZ
80A-80Z
8PA-8PZ
8QA-8QZ
8RA-8RZ
8SA-BSZ
8TA-8YZ
8ZA-8ZZ
9AA-9AZ
9EA-9DZ
9GA-9GZ
$9 \mathrm{HA}-9 \mathrm{HZ}$
91A-9JZ
9KA-9KZ
9LA-9LZ
9MA-9MZ
9NA-9NZ
9UA-9UZ
9 9A-9VZ
9VIA-9WZ
9xA-9×Z
9YA-9ZZ
A2A-A2z
A3A-A3Z
A4A-A4Z
A5A-A5Z
A5A-A5Z
C2A-C22
C3A-C3Z
L2A-L9Z
S2A-S3Z

Syria
Mexico
Korea
Somalia
Pakistan
Sudan
Repubic of the Senegal
Malagasy Repubilc
Jamaica
LIberla
Indonesla
Japan
South Yemen Popular Republic
Lesotho
Malawi
Algeria
Sweden
Saudi Arabla
Indonesia
Indones
Japan
Botswana
Barbados
Maldive Islands
Guyana
Swaden
India
Saudi Arabla
San Marino
Iran
Ethlopla
Ghana
Malta
Zambla
Kuwalt
Slerra Leone
Malaysia
Nepa
Republic of Zaire
Burundl
singapore
Malaysia
Rwanda
Trinidad and Tobago
Republic of Botswana
Kingdom of Tonga
Oman
Bhutan
United Arab Emirates
Republic of Nauru
pelnclpality of Andorra
Argentina
Bangladesh

ABBREVIATIONS FOR CW WORK

Abbreviatlons help to cut down unnecessary transmission. Howaver. make it a rule not to abbrevlate unnecessarliy when working an operator of unknown experlance.

- Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, " 0 " Signals and Abbreviations used in amateur oparating, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.

A Public Service Communications is the "bible" of the Amateur Radio Public Service Corps. Within its pages are contained the fundamentals of operation of the Amateur Radio Emergency Corps (AREC). the National Traffic System (NTS), and the Radio Amateur Civil Emergency Service (RACES), including diagrams of how each is organized and how it operates. The role of the American Red Cross and FCC's regulations concerning amateur operation in emergancias also come in for some special attention.

The two publications described above

- may be obtained without charge by any Handbook reader. Either or
both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE

225 Main Street

Nowington, CT 06111
Please send me, without charge, the following:OPERATING AN AMATEUR RADIO STATION PUBLIC SERVICE COMMUNICATIONS

Name

(Pleaso Print)

Address

Vacuum Tubes and Semiconductors

For the convenience of the designer. the receiving-lype tubes listed in this chapter are grouped by filament voltages and construction types (glass, metal, miniature, ctc.). For example. all miniature tubes are listed in Table I, all metal tubes are in Table II, and so on.

Transmitting tubes are divided into triodes and telrodes-pentodes, then listed according to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power classification.

For quick reference, all tubes arc listed in numerical-alphabetical order in the index. Types having no table reference are either obsolete or of little use in amateur equipment. Base diagrans for these tubes are listed.

Tube Rating

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the clectrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in electrodes.

In the transmitting-tube tables, maximum ratings for electrode voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receivingtube tables, ratings and operating data are combined. Where only one set of operating conditions appears, the positive electrode voltages shown (plate, screen, etc.) are, in gencral, also the maximum rated voltages.

For certain air-cooled transmitting tubes, there are two sets of maximum values, one designated as CCS (Continuous Commercial Service) ratingy, the other ICAS (Intermittent Commercial and Amateur Service) ratings. Continuous Commercial Scrvice is defined as that type of scrvice in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. Intermittent Commercial und Amateur Service is defined to include the many applications where the transmitter design factors of
minimum size, light weight, and maximum power outpat are more important than long tube life. ICAS ratings arc considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifice in tube life, the period over which tubes give satisfactory performance in intermittent service can be extremely long.

The plate dissipation values given for transmitting tubes should not be exceeded during normal operation. In plate modulated amplifier applications, the maximum allowable carrier-condition plate dissipation is approximately 66 percent of the value listed and will rise to the maximum value under 100 percent sinusoidal modulation.

Typical Operating Conditions

The typical operating conditions given for transmitting tubes represent, in geacral, maximum ICAS ratings where such ratings have been given by the manufacturcr. They do not represent the only possible method of operation of a particular tube type. Other values of plate voltage, plate current, etc., may be used so long as the maximum ratings for a particular voltage or current are not exceeded.

Detailed information and characteristic curves arc available from tube and semiconductor manufacutrers, in books sold through radio dealers or direct from the factory.

Semiconductors

The semiconductor tablulation in this chapter is restricted to some of the more common diodes and transistors. The units listed werc selected to represent thosc types that are useful for most amateur radio experimental applications. These diodes and transistors were chosen for their low cost and availability. Most of them can be obtained from the large mail-order houses or from the local manufacturer's distributor. Because there are thousands of diode and trunsistor types on today's market, this list is by no means complete.

index to tube tables

I - Miniature Recciving Tubes V16
II - 6.3-Voit Metal Receiving Tubes V18
III - 6.3-Volt Glass Tubes, Octal Bases. V19
[V-Control and Regulator Tubes VI9
V - Rectifiers V19
VI - Triode Transmitting Tubes V20
VII - Multigrid Transmitting Tubes V22
VHII - Semiconductor Diodes V24
1X-Semiconductors V24

INDEX TO VACUUM-TUBE TYPES
Base-diagram section pages V5-V15. Classified data pages V16-V3s,

 बैँ

Chapter 25

Type Page Baze

 はสウind

[^40]
E.I.A. VACUUM-TUBE BASE DIAGRAMS

(3)

30

3N

4AH

488

$4 C 8$

46

59

$4 R$

48C

4AD

4A4

48.

AAC

$3 T$

4A. J

4AM

440

4AT

48

46

4

4P

42

45

4B.

480

4

4V

san

$4 x$

4

40

4 M

AC

4Y

BA

TUBE BASE DIAGRAMS
Bollom viawn are shown. Terminal dealgatiom on secketa are fiven on pape YS.

5K

5 L

5 M

SC

5 E

50

$5 Y$

6 6

TUBE BASE DIAGRAMS
Bollom riewi are shown. Tafmial denignallons on actrets are glvan an page Vf.

66

60

$6 \times$

6

6R

$8 Y$

6.

BRA

62

7AD

6K

6.

6M

65

$6 T$

6 W

TUBE DASE DIAGRAMS
Boltom vjew are shown. Terminal designalion on ocekati are given on page VJ.

TAT		7AV		7AZ	
7BA	788	7BC			
	78」	78k		7BN	
78 P			7BS		
782	$7 C$				
	7 CU				
	7DC				

TUEE BASE DIAGRAMS
Botlom viown are ohown. Terminal designalione on sockets are given on pagt VB.

	70W	$7 E$			
TEN					
			PGA		
		7K			
					72

TUBE BASE DIAGRAMS
Baltam view are ohema. Terminal dedpaliom on sachefs are given mage VS.

TUBE BASE DIAGRAMS
Bottom viewi are shawa. Terminal denignations on soekest ure given on page Vs.

TUBE BASE DIAGRAMS
Bottom views are shown. Terminal designations on socketa are given an page Vठ.

	$9 E$				
					$9 F$
				90	
		9 Hz			
					9K

TUBE BASE DIAGRAMS
Bottom viewa are shown．Temminal designations on sockets and meaning are gaven on page V8．

		9R	93		
			92		118
				IIN	
IIT		12 A			12日F
128」	12日M	1280	I28W		
					12 FB

TUAE BASE DIAGRAMS
Bottom viowa are shown. Terminel desiznations on socketa are given on page V5.

PUBE BASE DIAGRAMS
Bounom views are shown. Terminal designations on sockets are given on page V5.

	FIC. 40	Fig. 41 F依 42		
F16. 45	F18 46	F16.47	FGG 49	
	FIG. 52	F1G. 53 FIG. 54	FIG. 55	FIG. 56
PIG 57	FIG. 58	F16. 59 Fig. 60	FIG. 6	FIG. 62
FIG. 63		FIG. 65 FIG. 66	FIG. 67	FIG 68
F1G. 69	FIG. 70	FIG. 71 FIG. 72		fic. 34
		FIG 77 fig. 78		
FIG. 81	FIG. 82	F1G. 83 Fig 84	 FIB. 85	FIG 66

Type	Name	Bose	Fif．ar Meatar		Capreleancas				몬皆			$\stackrel{8}{\mathbb{A}}$			这		
			Y	Amp．	$\mathrm{C}_{\text {In }}$	Coul	C_{9}										
TAFAM	Um－Yriode $\frac{A_{1} \text { Amp．}}{\text { Osc．95n MH2 }}$	10K	53	0.225	22	6.45	1.9	80	150°	－	－	16	22 k	6800	15	－	－
								100	10R：1	－	0.81	22	－	－	－	－	－
8AGS	Shapp Cutoti Pent．	780	5.3	0.3	6.5	1.8	0.03	250	180°	150	20	6.5	800 K	5000	－	－	－
8A6S								150	780 ${ }^{\circ}$	100	1.4	8.5	5003	8500	－	－	－
8AHB	Sharp Cut－of Pent，Amp．	78K	5.1	0.45	10.0	2.0	0.05	300	160	150	25	10	500 K	5600	－	－	－
dans	Pent．	\％	6.1	0.45	10.0	8.0	0.0	150	160°	－	－	12.5	3．6K	lik	80	\cdots	－
BJY	Uht Triode	9 XX	6.3	0.225	4.4	0.18	2.4	125	68°	－	－	16	8．2K	D0K	42	－	－
tax	Sharp Cut－otl Pent	180	5.3	0.175	4.0	2.8	0.02	180	200°	120	2.4	7.7	690 K	5108	－－	－	－
								150	330°	140	2.2	7	420 K	4300	－	－	－
								120	$200{ }^{\circ}$	120	25	7.5	340 K	5000	－	－	－
CHE	Pwr．Āmp Pint	7 1 K	6.3	0.15	3.6	4.2	0.12	180	－9	180	25	15	2 CLK	2300	－	10 k	1.1
DRE5	Dasi Diodere	8.87	5.3	0 C？	－	二	－										
18.101	UHi Triode	$38 \times$	63	0.225	4.4	0.6	2.8	150	$100{ }^{\circ}$	－	－	7.5	ICK	5000	90	－	
B6NS	Beam Pwr．Pont	780	6.5	0.45	9.0	4.8	0.075	120	120°	120	120	35	12．5K	8000	－	2．5K	1.3
ganbas	Medilim－μ Triode	184	6.3	0.45	20	27	1.5	200	－6		－	13	5．75\％	3300	－	－	
	Shard Cut－ott Pent．				7.0	2.3	0.04	200	180°	150	2.8	9.5	30K	5200	－	－	－
6 603A1	Beam Pwr．Pent．	782	6.3	0.45	8.3	8.2	0.35	180	－ 8.5	180	3／4	30^{7}	58 K	3700	$2{ }^{5}$	5.5 K	2.0
								250	－12．5	250	2．5／7	47^{7}	S2K	8100	45	5K	4.5
SA08	Dual Diode -	IBT	5.3	6.15	1.1	1.5	18	100	－1	－	－	0.9	51 K	1150	70	－	－
－	$\text { High. } \mu \text { Triofe }$	$76 T$	5.3	0.15	1.7	1.5	12	250	－ 3	－	－	1	52 K	1200	70	－	－
	Por．Amp Aent．	E¢C	$6:$	0.4	－	－	－	250	－16．5	250	57／10	351	65K	2400	33^{5}	7 7	32
	Av．Amp Reni．				－			251	－18	250	5．5／10	$3{ }^{3}$	Stk	2350	$3{ }^{3}$	7.6 K	3.4
3158	Sharp Culdoff Peal．	7CM	6.3	0.175	4	－	02	120	－2	120	3.5	5.2	110 K	3200	－	－	－
BITE	Duplax Diodo－High．y Triode	78T	6.3	0.3	23	T．	2.1	250	－3	－		1	58 K	1200	70	－	－
BALBA：	Sharp Cutoil Pent．	78 K	6.3	0.3	5.5	5	0.0035	250	68°	150	4.3	10.5	1 meg．	52.00	－	－	－
IAV8	Dual Diode－HIgh．μ Triode	787	6.3	0.3	2.2	61	2.0	250	－？	－	－	1.2	82．5k	I600	100	－	－
6i2l	Medium－ 5 Trisule	950	5.3	0.85	2	1.8	1.7	200	－－6	－	－	13	5．75K	3300	19	－．	－
	Semiremale Cul of Pert				5.3	2？	0.12	200	180°	150	3	2.5	300 K	6000	－	－	－
Thin	Remols Car of Pent．	78K	－6．3	03	5.3	－	0.0035	250	58°	100	8.8	11	！mez．	8400	－	－	－
8183）	Pentagnd Ceny．	761	－63	0.5	Ose． $201 . \mathrm{s}$			250	－1	100	10	3.9	1 meg ．	950	－	－	－
UE4	Bhr Medium－ －Triode	909	6.3	0.275	29	0.36	1.8	150	100	－	－－	18.5	\＄8\％	10K	$\sqrt{18}$	－	－
BLEI	Pentaguid Cony．	7CH	5.3	0.3	（382 20kt］			250	－1．5	100	6.8	2.9	1 meg．	475	－	－	－
B8E8At	Medium． F ？	9EG	5.3	0.45			1.8	150	55°		－	18	5 K	8500	40^{1}	－	－
	Shatp Cut－of Pen！．				4.4	2.6	0.04	250	68°	110°	3.5	10	800k	5200		\cdots	－
BEF	Beasm Pwi．Amp．	781	6.3	1.2	14	6	0.65	110	-7.5	130	4／10．5	39^{7}	12 K	7500	$3{ }^{4}$	2.5 K	1.9
P1F6	Dual Dloce－Mellus：－Triode	TBT	6.3	0.3	1.8	0.8	2	250	－9	－	－	2．E	8.5 K	1900	16	10K	03
THE	Sharp Cut－59 Pent	ICM	कु3	0.15	5.	4.5	00035	250	－1	150	2.9	2.8	14 mees	8600	－	－	－
ffenl：	Meflum．a Prove	101	6.3	C． 6	2.5	0.38	2.4	150	－ 5	－		9.5	515 K	3300	17	－	－
	Starp［utect Pemb				7	21	0.916	20	85°	125	34	15	150 K	7000	－	－	－
\＄1184	Remale Cal－ot Pen！	76M	6.3	0.15	75	is	0 Celis	750	－1	100	3.3	9.2	1.3 mes．	380	－	－	－
8817	Trigle Cioda	dix	63	0.45			Mex zeal		late voll	，	V．Max	It plat	cuireal ea	¢ diode	1.07		
88181	Dual Diode－Medium－ Triade	gen	8.3	0.6	2.8	0.38	2.6	250	－9	－	－	8	7．15K	2800	20	－	－
8888	Dual Diode ．．．r｜ch．μ Triode	789	6.3	0.3	－	－	－	250	－2	－	－	1.2	E2．5k	1600	100	－	－
88×78	Medium－y Dual Trajal ${ }^{\text {a }}$	901	6.3	0.4	3	1	1.8	150	56°	－	－	18	4.6 K	93008	43	－	－
EBL8	Triode	80C	6.3	0.43	25	1.8	1.5	250	－1．3	－		18		5000	2	－	－
	Pentoóe				52	3.1	0.025	250	－1．3	$5 \sqrt{5}$	2.8	10	200K	6200	47	－	－
6日RLA	Medium－μ Yiode	7EB	E3	0.2	3.9	12	12	150	220°	－		9	6.3 K	6801	13	－	－
B915	Gred－Basm Pent．	7 FF	63	03	42	3.3	00c\％	2	－1．3	Et	5	023	－	－	－	6818	－
B8k］：	Dral Dioce－Hish．r Trivite	GER	6.3	0.6	3.6	0.25	2.5	250	－ 3	－	－	i． 5	28 k	2500	20	－	－
8805	Pwr．ARme Pent．	SCY	6.3	0.76	10.8	6.5	0.5	300	-7.3	200	10.8	3.59	38k		－	5.25	7^{7}
68078	Medium－$\frac{1}{}$ Dusl Triotig ${ }^{\text {a }}$	8 Cd	6.3	0.4	2.85	1.35	1.15	150	220°	－	－	9	6.15	6800	39	－	－
6日R8A！	Medium． y Trlode	9FA	6.3	0.45	2.5	0.4	1.8	150	56°	－	－	18	5 K	8500	80	－	－
	Sharg Cuf－ofl Pent．				5	7.6	0.015	250	68°	110	3.5	10	800k	5200	－	－	－
TIS！	Low－Naise Dual Thadele	901	6.3	0.5	26	135	1.15	150	220°	－	－	10	5 K	7200	36	－	－
6日⿸厂	Dusi Triodel？	50］	6.3	0.4	－	－	16	5	－1	－	－	9	－	8700	25	－	－
	Semitemale Cut of Pent．	16 m	5.3	0.3	7.5	1.8	0ल？	200	100°	1.50	26	11	500 k	6100	－	－	－
8127	Medium－a Dual linder	9NJ	6.3	0.9	25	1.35	1.15	134	280°	－	－	10	5．5．5	Ex30	$\underline{3}$	－－	－
P1831	Dual Trodelit	901	53	0.3	－	－	－	125	100°	－	－	10^{11}	5.6 K	8000	is	－	－
${ }_{6} \mathrm{CH}_{4}$	Medium．${ }^{\text {a }}$ Triode	686	6.3	0.15	1.8	\％．	1.5	250	－8．5	－	－	10.5	7.75	2200	17	－	－
BCBEA！	Sharp Cul－oll Pent．	7 cm	6.3	0.3	6.5	1.3	002	200	180°	150	2.8	9.5	600 K	6200	－	－	－
BCES！	Rti Pent．	J100	6.3	0.3	6.5	1.9	0.03	200	180°	150	2.8	9.5	600 K	5200	－	－	－
BCBE	Semlremste Cul ofl Pent．	7日K	6.3	0.3	5	5	0.008	250	-8	150	23	9	720k	2000	－	－	－
6c67：		9ad	6.3	0.5	23	22	1	250	－8	－	－	9	7．9\％	2600	20	－	－
$3 \mathrm{Cl} \mathrm{S}_{6}$	Pwo．Amp．Pent．	989	$\underline{6} 5$	0.65	II	5	0.12	250	－ 3	\％50	7．23	31^{2}	150k	1.1 K	301	5500	28
Sewh	Friode	1240	63	0.13	4.1	17	0．2？	70	0	－	－	9	3.98	12．5）	¢	－	－
SCX	Medium. Iriods	SDX	6.3	0.75	22	6.38	28	151	150°	－	－	9.2	8．Jk	4800	20	－	－
	Sharp Cus－cfl Pent				9	4.3	0.06	200	66°	125	52	23	TOK	I0K	－	－	－
86	Shasp Cut－olt Tetrede	7EW	6．3	0.2	4.5	3	0.03	125	． 7	50	1.5	10	100 K	8000	－	－	\cdots
6DJ	Twin Triode	9A］	6．3	0.365	3.3	18	1.4	90	$-1,3$	－	－	15	－	12.5 K	33	\pm	－
BDKE	Sham Cut off Pon！．	7 CM	6.3	0.3	6.3	1.5	0.02	300	-6.5	150	3.8	12	－	9880	－	－	－
8054	High．Ttiodm	12 AO	E， 3	0.185	8.1	1.7	92	70	0	－	－	8	5．48k	12.5 K	68	－	－
SDTI	Shasp Cur．0lf Pen！	IEM	8.3	0.3	58	－	002	150	560°	100	21	1.1	1503	515	－	－	－
60w5	Beam Pric．Ampr	Sck	5.3	1.2	${ }^{5}$	9	0.5	2×3	－22．5	150	2	35	15\％	5500	－	－	－
BEASt		9AE	5.3	ก．45	3	33	1.7	338	－12	－	－	18	5 K	8500	50	－	－
	Starp Cutorn Pent				5	25	0.02	330	－ 9	3乐：	3	12	50\％	5400	－	－	－
8E88	High μ Trikste	808	6.3	0.75	28	36	4.4	300	－5	－	－	？	37k	2 N	700	－	－
	Starp Cut－ntl Pent．				II	4.2	0.1	330	－9	－	7	25	35\％	12．5k	－	－	\sim
EEM5	Power Pentode	7CV	63	1.2	17	9	065	135	0	117	14.5	42	ITR	14．6K	－	3 K	1.4
BEH7	Remole Cul－olf Pen！	910	63	0.3	9	3	0.075	2000	－2	90	4.5	12	500k	12.5 K	－	－	－
8E\％${ }^{\text {¢ }}$	Prode	936	6.3	0.45	2.8	1.7	1.8	125	－ 1	－	－	13，5	－	7500	40	－	－
	Penteruid Conv．				8.8	2.1	0.02	125	－1	125	4	12	170k	${ }^{6000}$	－	－	－
（E）］	Sherp Cut－olf Pent．	910	E3	ก．3	10	3	035	2000	-2.5	203	4.7	10	350 K	158	－	－	－
EERS	Tetiose	7\％	5.3	0.13	1.7	30	C． 38	200	－1．2	0	0	10	8K	10．5k	80	－	－

Type	Name	Base	FI．or Heater		Capacitances pF			$\frac{2 \pi}{2} \frac{2}{a} \frac{2}{n}$	$\text { 믕 } \frac{n}{4}$			$\frac{\circ}{\frac{\partial}{2}} \mathbb{E}$							
			v	Amp．	c_{10}	Cou，	C_{89}												
BESB	Dual Triode	gaE	6.3	0.365	3.8	1.7	1.9	130	－12	－	－	15	－	12.5 K	3	－	－		
BE07	Twin Triode	gIS	6.3	0.3	1.5	0.2	1.5	100	－1	－	－	0.5	80 K	1250	100	－	－		
GEUB	Triode	9JF	5.3	0.45	5.0	2.6	0.02	150			－	18	5K	${ }^{85000}$	80	－			
	Pentode				3.0	1.6	1.7	125	－1	125	4	12	80 K	6400	－	－	－		
${ }^{6}$ E28	Tipiple $\quad \frac{\text { Triode No．！}}{\text { Triodes No．} 283}$ Triode	9KA	6.3	0.65	2.6	$\frac{1.4}{1.2}$	1.5	330	－4	－	－	4.2	13．6K	4200	57	－	－		
$\overline{6 \times V 5}$	Shasp Cult－0f Tetrode	7Fa	63	0.2	4.5	3	0.33	125	－1	80	1.5	10	100 K	8000	－				
5605	Pwr．Pent．	gEU	6.3	1.2	18.0	7.0	0.9	110	－7．5	110	4	50	13K	8000		2 K	2.1		
sana	Triode	9AE	6.3	0.6	3.4 1.6 .8		2.6	125	－1			13.5	5K	8500	40				
	Pentode				8	2.4	0.36	125	－1	125	5.5	12	150 K	7500	－	－	－		
6GK5	High－山 Trioce	$7{ }^{\text {P }}$	6.3	0.18	5	3.5	0.52	135	\cdots	－		11.5	5403	15K	78	－			
88×8	Power Pentod？	96R	6.3	0.76	10	7.0	0.14	250	－7．3	250	5.5	48	3812	II． 3 K	－	5．2k	5.7		
66M6	Pentode	CM	6.3	0.4	If	24	0.036	125		125	3.4	14	230 K	138					
	High．μ Triode	90x	6.3	0.75	2.1	0.36	4.4	250	－2		－	2	37K	2700	100	－	－		
6 Nag	Shaip Cuf．－off Pearl．				11	8.2	0.1	200	－	150	5.5	25	60\％	I1．5K	－	－			
B486	Power Pentode	gPU	6.3	0.76	13	80	0.18	250	100^{*}	250	6.2	40	21 K	20 K		－			
914	Grounded．Gid Triade	781	6.3	0.4	7.5	3.9	0.12	150	100°	－		15	¢． 5 K K	12R	55	$-$	－		
816A：		IBF	6.3	0.45	2.2	0.4	1.6		${ }^{51} 50$	－	－	$\frac{8.5}{4.8}$	2.1 K	5300	Osc．peat voltage－38				
	Sharp Cut－off Pent mix	SAE	6.3	0.4	5.0	2.6	0.015	125	810^{-1}	110	3.5	9.8	203k	5000					
6KD8	Medium μ \％Triode				1.5	2.8	1.8	125	－	－	J． 5	13.5		7500	40	－	－		
6KE8	Medium－ Triode	9DC	\％． 3	0.4	2.4	20	1.3	125	68°	－		13	50 K	8800	40	－			
6KE8	Sharp Cutofir Pent．				5.0	3.4	0.015	$\underline{125}$	33^{3}	125	2.8	10	$\underline{125 k}$	12 K	－	－	－		
	Sharp Cutort Pent	9DX	63	0.75	13	8.8	0.075	200	82°	100	3.0	19.5	60K	20 K	－	－	－		
EKR日	Medium－- Triode				4.2	3.0	2.6	125	68＊	－	－	15	4400	10.6	45	－	－		
BKT8	Remote Cul olf Pent．	9PM	6.3	0.3	9.5	3	0.39	125	56^{*}	125	4.2	17	I	18 K		－	－		
		90P	63	0.6	32	1.6	3.0	250	－2			1.8	31.5 K	3200	100	－			
EKT8	Sharp Cut off Pent．				$\frac{7.5}{55}$	2.2	$0.0 \div 6$	125	－1	125	4.5	12	150 K	10 K	－	－	－		
BKZ8	Shap Cut－09 Pent．	$9 F 2$	6.3	0.45	5.5	3.8	0.01	125	－1	125	4	$\frac{12}{135}$	200 K	${ }^{1500}$	－	－	－		
日kz8	Medium $\mu \mu$ Triode				3.2	1.8	1.6	125	$\frac{-1}{30}$	125	35	13.5		${ }^{8500}$	46	\pm	－		
6ப8	Sharp Cut－off Pens？	96F	6.3	0.4	5.5	3.4	0.015	125	33°	125	3.5	12	125k	13\％		－			
6บ8	Medium μ Triode				2.4	2.8	1.8	125	68°	－	－	13	5 K	8000	50	－			
6 6\％8	$\frac{\text { Hiigh } \mu \text { Triode }}{\text { Shatr Cul－ut Pent }}$	90X	6.3	0.75	$\frac{2.6}{50}$	2.8	$\frac{38}{075}$	200	－2．0	\％	－	1.0	59k	1703	IM	－			
		9AE	6.3	0.6	3	2.2	22	230	D	100	？	11.5	$\frac{50 \mathrm{~K}}{5.8 \mathrm{~K}}$	6006	$\frac{-}{35}$	－	－		
ธิüü	Sharp Cuf．off Pent							33.	0	150	¢ 4.2	19	165 K	9000	－	－			
B74	Uhl Triode	Tak	5.3	0.225	2.6	0.25	1.7	80	150°	－	－－	18	1．1．65k	7000	13	－			
BT8A\＃	Triple Diode－llight μ Triode	9E	6.3	0.45	1.6	1	2.2	$\frac{100}{250}$	－1	－	－	0.8	${ }_{5}^{59 \mathrm{~K}}$	${ }_{1}^{1330}$	20	－			
	Medium－μ Triods	9AE	6.3	0.45	25	0.4	1.8	150	$\frac{-3}{56^{*}}$	－	－	${ }^{1}$	5 K	8500	40	－	－		
6ubat	Sharp Cut of Pent．				5	2.6	0.01	250	68^{8}	110	3.5	10	400 K	5200		－			
	Medium $-\mu$ Triode	sak	6.3	0.45	2.0	0.5	1.4	100	100＊			8.5	69 K	－	40	－	－		
6x日＠！	Sharp Cul－of Pent．				4.3	0.7	0.4	250	200°	15 C	1.6	7.7	750 K	－					
12AB5	Beam Pwr．Amp $\frac{A_{1} \text { Amp．}}{\text { AB，Amp }}$	9EU	12.6	0.2	8	8.5	0.7	250	$\frac{-12.5}{-25}$	$\frac{250}{250}$	$\frac{457}{513}$	$\frac{472}{797}$		4100	$\frac{45^{5}}{}$	max	4.5		
		292		0.225	8.3	8.2		250	$\frac{-15}{-12.5}$	250	5．13，	$\frac{79}{47}$	5012	$\frac{3750}{8100}$	$\frac{703}{45^{5}}$	$\frac{10 \times 8}{50}$	4.5		
12805	Beam Pwr．Amp．$\frac{A_{1} \text { Amp．}}{\text { AB } A_{1} \text { Amp．}{ }^{3}}$		12.6				0.35	－250	$\frac{-15}{-15}$	250	5；13	$\frac{48}{79}$	${ }_{\text {cok }}$	${ }^{47500}$	${ }_{79}{ }^{49}$	$10 \mathrm{~K}^{\circ}$	4．j		
12AT7	High－p Dual Triode ${ }^{10}$	9 A	$\frac{12.6}{5.3}$	$\frac{0.15}{07}$	$\frac{2.27}{22^{7}}$	$\frac{0.57}{}$	$\frac{1.59}{1.50}$	$\frac{100}{250}$	$\frac{2780^{\circ}}{2030}$	－		3.7	15 K	$\frac{8000}{550}$	50	－	－		
		9A	$\frac{126}{6.3}$	$\begin{array}{\|l\|} \hline 0.15 \\ \hline 0.3 \\ \hline \end{array}$	$\frac{1.6{ }^{\text {a }}}{1.5}$	0.5	$\frac{1.5}{}{ }^{5}$	$\underline{200}$	0	－	－	11.8	$\frac{10.9 \mathrm{~K}}{6.25 \mathrm{k}}$	5100	19.5	－	－		
12AU7A	Medium－μ Dual Triode ${ }^{10}$					0．358	1.58	250	－8，5	－	－	10.5	L．K	2200	17	－	－		
		8A	$\frac{6.3}{6}$	0.225	$\frac{3.5}{318}$	$0.5{ }^{5}$	1.0	100	120°	－	－	9	6.1 K	6100	37	－	＝		
12AVI					$3.1{ }^{18}$	0.8^{8}	1.98	150	55°	－	－	IB	4．8K	8500	4！	－	－		
12A 774	${ }_{\text {High }}$	${ }^{94}$	$\frac{12.6}{6.3}$	$\frac{0.15}{0.3}$	$\frac{1.5}{} 5^{5}$	0.44^{3}	1．7\％	250	－2	－		$L^{1} 2$	62．5K	1800	00	－	75		
	Dual Triode Class B				1.5°	0.380	1．76	303	－4	－	－Plate ressitar $=2$		－	－ 7750	${ }^{4}{ }^{5}$	$16 \mathrm{~K}{ }^{0}$	7．5．		
12AY7	Mesium－u Dual Trioder 1o Al Amp． Low Level Amp．	9a	$\frac{12.6}{6.3}$	$\begin{array}{\|l\|} \hline 0.15 \\ \hline 0.3 \\ \hline \end{array}$	1.3	0.6	1.3	150	$\frac{-4}{2700^{8}}$				－Grid resistor－0		0，meg V．E．－ 12.5				
	High－a Dual Triodelo	9A	$\frac{12.6}{6.3}$	0.2	3.1	$0.5{ }^{\prime}$	1.9	100	270°	－	－	3.7	$\begin{aligned} & 15 \mathrm{~K} \\ & \hline 10.9 \mathrm{~K} \\ & \hline \end{aligned}$	4000	60	V．-1.12.			
12Az7at					31^{19}	04^{8}	1.9	250	200°	－	－	10		5500	60	－			
128H7at	Medium．μ Dual Triode ${ }^{10}$	9A	$\frac{12.6}{6.3}$	0.3	$\frac{32^{\prime}}{32^{8}}$	$\frac{0.57}{0.4{ }^{\text {P }}}$	$\frac{2.6^{\circ}}{2.50^{\prime}}$	250	$\cdots 10.5$	－	－	18.5	5．3k	3100	16.5	－	－		
12B 77A＊	Shard Cut．off Pent．	98F	12.6	0,3	11.1	${ }^{3}$	0.055	250	68°	150	6	25	90k	12k	1200	－	－		
3595	Beam Pwi．Amp．	782	35	0.15	11	85	0.8	110	－7．5	110	3.7	45^{5}	－	3800	40^{3}	2.5 S	1.5		
5085	Beam Pext．Amp．	782	50	0.15	13	65	0.5	110	－7．5	170	4：8．5	50°	14 K	7500	195	2.5 K	1.9		
$30 \mathrm{FK5}$	Pwe．Pent	7 CV	50	0.1	17		0.65	110	62°	115	12	32	14 K	12.8 K		3 K	1.2		
5686	Beam Pawt．Pent．	96	6.3	0.35	6.4	8.5	0.11	250	$-[12.5$	250	$3{ }^{3}$	27^{7}	45K	3100	－	9 X	2.1		
5687	Meedium－μ Dval Triads ${ }^{10}$	9 H	12.6	045	${ }^{7}$	$0.5{ }^{5}$	${ }^{5}$	120	－2	－	－	36	1.7 K	IIX	18.5	－	－		
59			6.3	0.9	41	$0.5{ }^{1}$	4^{3}	250	－12．5	－	－	12.5	3 K	5500	16.5	－	－		
5722	Noise Generating Diode	SCB	5,3	1.5	－	2.2	－	200	－	－	－	35	－		－	－	－		
482 1587	High．μ Triode	$9 \times$	6.3	0.3	9.0	1.8	0.55	150	62°	－	－	26	18 K	24 K	43	－	－		
5879	Sharp Cut－oft Pent．	9 ${ }^{\text {a }}$ D	6.3	015	2.7	2.8	0.15	250	－3	100	0.4	1.8	2 meg．	1000	－	－	－		
6386	Medium μ ，Dual Triode ${ }^{\text {10 }}$	BCJ	6.3	035	$?$	1.1	1.2	100	200°	－	－	9.6	4．25K	4000	17	－	－		
6889	Dual Diode	6BT	6.3	0.2			x．peak	erse	le voltag	－360	Max．	plate	virent eac	Civade－	0 mA				
6973	Pxic．Pentude	9EU	63	0.45	6	6	0.8	440	-15	300	－	－	73K	4800	－	－－	－		
71898	Puit．Pentode	SCY	63	076	10.8	6.5	0.5	250	－7．3	250	5.5	48	40K	11．3K	－	－	－		
1258	Shap Cut－off	90A	12.6	0.195	7	24	0.4	330	－	125	3.8	12	1770 K	7800	－	－	－		
	Medium μ 隹	Soa	12.6	0．195	2	0.26	1.5	330	－3	－	－	15	4．7\％	${ }^{1508}$	2	－	－		
7586	Medium－Tciode	1280	6.3	0.135	1.2	1.6	2.2	75	${ }^{100^{\circ}}$	－	－	10.5	3000	11.5 K	35	－	－		
7587	Sharp Cut－of Tel．	12AS	6.3	015	6.5	1.4	0.01	125	68°	50	27	10	200 K	10．5K	－	－	－		
7835	High． $\mathrm{\mu}$ Trode	12 AQ	6.3	0.335	4.2	1.7	0.3	1130	0	－	－	？	6800	9400	62	－	－		
8055	Medium－4 Triode	1280	6.3	0.135	4.0	1.7	2.1	12	0	－	－	5.8	1.6 K	8000	12.5	－	－		

TABLE II-METAL RECEIVING TUBES
Characterisites given in this table apply to all subas hoving sype numbers shown, including mata! tubes, glass tubes with "G" suffix, and hantam tubas with "GT" suffix

[^41]${ }^{2}$ Grid bias $=2$ volts If separale oscillator excitaton is used.

"Also type 6SITY.

:Values are for single lube or section.
Values are for two tubes in push-puil.
, Plate-lo-plate value.

${ }^{8}$ Osc. grid leak - Scrm. res.

${ }^{2}$ Values for two units.
10 Peak al grid vollage.
${ }^{21}$ Peak af $\mathrm{G}-\mathrm{G}$ voltage.

4 Micromhos.
${ }^{3}$ Unless olherwiss nolad.
is G, voltage.
is Unils connected in parailel.

TADLE IV-CONTROL AND REGULATOR TUBES

Type	Name	Base	Calhode	F71. or Heater		Puak Anode Yaltage	Mar Anode mA	Minimum Supply Voltage	$\begin{gathered} \hline \text { Opar. } \\ \text { alling } \\ \text { Voltage } \end{gathered}$	$\begin{aligned} & \hline \hline \text { Opar. } \\ & \text { aling } \\ & \mathrm{mA} \\ & \hline \end{aligned}$	Gild Reslelap	Tube Voliage Orop
				Velts	Amp.							
CM	Voitage Rergutat	580	Cald	-	-	-	-	18	150	$5-30$	-	-
C0]a/Va7	Volloge Regutatas	8 M	Eald	-	-	-	-	106	$\overline{5}$	50.10	-	-
$\begin{aligned} & 812 \\ & 8804 \end{aligned}$	Votasa Requlator	580	Cold	-	-	-	-	133	10.	530	-	-
013/vese	Vollage Riepulator	4N	Cold	-	-	-	-	125	9	$5-40$	-	-
CLI	Voluge Regulator	580	Cold	-	-	-	-	115	75	5-30	-	-
0C3a/VRIDE	Voltage Regelator	$4{ }^{10}$	cald	-	-	-	-	135	105	5-40	-	-
OD8E/YR160	Voluge Regulator	4N	ज्ञाd	-	-	-	-	185	150	$5-10$	-	-
5951	Voltage iequlator	580	Cotd	-	-	115	-	125	87	1.53 .5	-	-
5602	Thyralimen - Fuse	F8. 78	Hit.	8.3	1.5	2001	1. 10 fues - 150 Amp., 80 arcle, balli-wive					50 Y
5898	Roliy Samion	JIM	His.	8.3	0.15	500^{1}						
5727	Cos thymitios	7111	Hil	$\underline{3}$	0.6	650	-	-	\sim	-	-	二
578	Relay or Tipres	4 CK	Cald	-	-							
502	Voltag Romulatios	218	cald	-	-	-	-	18	70	5/559	-	-
990]	Senis faymber	110	Hir.	6.3	21	289	12	-	110	100	35	-

TABLE V-RECTIFIERS - RECEIVING AND TRANSMITTINO
See Also Table IV-Controls and Ragulator Tubes

Typa	Name	Basa	Cathode	Fli. of Heater		Man AC Voltage Par Plato	DC Outper Curpan! mA	May. Inversa Pabh Voltaga	Parl Pirte Curranl mA	Type
				Volts	Amp.					
024-8	Full-Wava Rectitier	4月	Cald	-	-	300	15	1000	208	GAS
$\begin{aligned} & \text { 188-67/ } \\ & 188-67 \end{aligned}$	Hat-Wave Reclifies	3 C	FII.	1.25	0.2	-	1.0	33000	30	HV
1K9/118	Hall-Wave Rectfiet	35	Fil.	125	02	-	0.5	28000	50	RY
182	Holl-Wave Rectlifer	$9!$	FII.	0.625	D.3	-	0.5	7500	10	HV
272-A	Hall.Wova Rectlite		His.	25	1.75	6803	7.5	-	-	HY
2 Y	Hall-Wive rectior	4 A $^{\text {d }}$	Fl.	25	1.75	4000	50	-	-	HY
272/819	Hall.Wavs Reclifier	41	81.	25	15	319	9	-	-	HV

$500 C 4$	Hall-Wave Recllijer	580	Hir.	50	0.15	117	100	330	720	HV
$50 Y 68 \mathrm{~T}$	Full-Wave Rectilis	70	Hit.	50	0.15	125	85	-	-	HV
80	Full-Wave Rectifier	4 C	F1.	50	20	$350{ }^{\circ}$	125	1400	375	HV
80	Fail-Wave Rectifier	4.	Fils	5.0	2.0	500^{4}	135	1400	375	H
8	Foll-Mave Recilifer	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83.Y	Full-Whave Rectilier	4AD	Hir.	5.0	20	400	200	1100	-	HV
IITNTET	Rectifise-Tetrade	8AY	Htrs,	11)	0.09	117	75	350	450	सV
11728	Half-Wave Rectifier	4 CB	HB	117	0.04	117	9	300	-	WV
815	Half-Wave Rectifier	4 P	Fil.	25	2.0	2001	125	7500	500	My
836	Half-Wave Rectifier	4 P	His,	2.5	5.0	-	-	5000	1000	HV
CSEA-AX	Helf-Wave Rectilier	4 P	Fil.	2.5	5.0	3500	250	10000	1000	MV
E6E18	Half-Have Reclifier	4 P	rill.	5.0	5.0	-	-	\$500	1000	MV
865 Jr .	Hati-Wave Rectifies	48	Fil.	2.5	2.5	1250	2531	-	-	MV
372A/-72	Hall. Mave Rectifirs	4 AT	FiL	5.0	7.5	-	1250	10000	5000	MV

${ }^{1}$ Tapped for pilot lamps.
${ }^{2}$ Per pair wilt choke input.
${ }^{3}$ Capacitor input.
${ }^{4}$ Choket input.

TABLE VI-TRIODE TRANSMITTING TUBES

	Naximum Ratings						Cathade		Capaeitances				Typica! Operation							
Type		$\frac{9}{6}$					$\frac{90}{0}$		$\begin{aligned} & \mathbf{C l}_{10} \\ & \text { pF } \end{aligned}$	C_{p}	Cour pF	Base								
B86A ${ }^{\text {a }}$	1.5	300	30	16	25़़	32	6.3	0.45	2.2	1.6	0.4	$78 F$	C-:	150	-10	30	1.6	0.035	-	3.5
854	20	150	20	80	500	17	6.3	0.225	2.0	1.9	0.6	788	C.F.0	150	$\begin{gathered} -15 \\ 550^{*} \\ 2000^{4} \end{gathered}$	20	7.5	0.2	-	1.8
12AU7M	$2.76{ }^{8}$	353	12^{8}	3.55	54	18	6.3	0.3	1.5	1.5	0.5	98	C.T. 0	350	-100	24	7	-	-	50
6FA	5.0	350	25	80	54	18	6.5	0.15	1.8	1.6	1.3	BBE	C.T.0	300	-27	25	7,0	0.35	-	$5{ }^{5}$
5675	5	165	30	5	3000	20	6.3	0.135	23	1.7	009	Fig. 21	G-G.0	12)	-8	25	4	-	-	0.05
EM7GT	5.9	350	30^{6}	$5{ }^{1 / 5}$	10	35	6.3	0.8	-	-	-	88	C.T. 0	350	-100	60	10	-	-	28.5
2E40	6.5	500	25	-	500	36	6.8	0.75	2.1	1.3	0.05	Fg. 11	C.F. 0	250	-5	20	63	-	-	0075
5898	8.0	400	40	13	1000	27	6.0	0.33	2.5	1.75	0.07	Flg. 21	${ }_{\text {C.T }}$ C-	350	-33	25	13	2.	-	6,5
306	8.0	400	40	13	1000	2	6.0	0.33	2.5	1.75	0.07	Fig. 21	C.P	300	-45	30	12	2.0	-	5.5
2C/3	12	500	40	-	1250	18	6.3	0.9	2.9	1.7	0.05	Fg. 11	C.T.0	470	-	389	-	-	-	97
	25	2000	75										C.T	2000	-130	63	18	4	-	100
3624	17	1600	61	7	60	24	6.3	3.0	8.7	1.5	0.2	20	C.P.P	1600	-173	53	4	3.1	-	¢
	25	2000	75										$\mathrm{AB}_{2}{ }^{\text {² }}$	1250	-42	22/130	270	$3.8{ }^{1 / 2}$	21.4K	112
													C.T. 0	1000	- 50	100	2 V	31	-	75
1823	30	1000	100	25	60	20	6.3	2.5	5.7	6.7	0.9	36	C.P	750	-125	100	20	4.9	-	55
													B ${ }^{\text {P }}$	1000	-40	30/200	230^{9}	82^{9}	12\%	145

T,pe	Name	Base	Cathode	Fil. or Heatar		Max. AC Voltage Per Plate	$\begin{gathered} \text { D.C. } \\ \text { Output } \\ \text { Current } \\ \mathrm{mA} \end{gathered}$	Max. Inverse Peak Voltage	PeakPlatzCurrentmA	Type
				Volts	Amp.					
1824	Half-Wave Rectifies	Fg. 49	Fi,	5.0	3.0	-	60	20000	300	HV
				2.55	3.0	-	30	20000	150	
3828	Half. Wave Reclitier	4 P	Fil	2.5	5.1	-	250	10000	1020	GAS
5274	Full-Kave Rectifier	51	Htr.	5.0	2.25	550	800	1550	-	HV
5Alla	Full-Wave Reclifier	51	Fil,	5.0	4.5	3001	3501	1400	1075	HV
						4003	3251			
						$500{ }^{\circ}$	3254			
5月W4	Fufl-Wave Rectifies	57	Fil.	5.0	4.0	4551	250^{1}	1550	750	HV
						5504	250^{6}			
$\begin{aligned} & \text { 5R4GY } \\ & 5 R A G Y A \end{aligned}$	Fuld-Wave Rectifier	5 T	Fii.	5.0	20	SNO^{3501}	150^{1}	2800	650	HV
						S5, ${ }^{2}$	17:4			
514 G	Full-Wave Rectifiel	$5 T$	Fi.	5.0	3.0	Same as Type 523				HV
5U4GA	Full-Wave Pectifier	5 r	Fil,	5.0	3,0	3001	275:	1550	900	HV
						450	$2{ }^{\circ}$			
						5504	2504			
$\begin{aligned} & 5 U 4 \mathrm{CE} \\ & 5 \mathrm{AS4A} \end{aligned}$	Full-Wave Rectifier	57	Fil,	5.0	3.0	3001	300^{3}	1550	1000	HV
						$450{ }^{3}$	275^{3}			
						5504	$275{ }^{4}$			
5V3A	Full- Wawe rectifies	$5 Y$	Htr.	50	3.8	$\begin{aligned} & 8251 \\ & 500^{6} \end{aligned}$	350	1400	1200	HV
5Y46A	Full-Wave Rectifies	51	Htrs.	50	20	375	175	1405	525	HV
5Y3-E.GT	Full-Wave Reclifier	51	FIL	50	20	Same as Type 80				HV
513	Full-Wave Reclifier	4 C	Fil.	5.0	30	500	250	1800	-	EV
524	Full-Wave Reclifier	51	His.	5.0	2.5	400	125	1100	5	HV
BRY4	Full-Wave Rectifiei	585	Hit.	6.3	0.35	-	90	1250	250	HV
6AXSET	Full-Wave Reclitier	65	Hif.	6.3	1.2	450	125	1250	375	HV
BBW4	Full-Wave Recuilier	981	Hir.	6.3	0.9	\% 50	100	1275	350	HV
6BX4	Full-Wave Reclifier	3ंड	Hif.	6.3	0.5	-	90	1350	270	3V
68Y5G	Full-Wave Reclifier	6 CN	His.	6.3	1.6	3751	175	1400	525	HV
SLAT	Full-Wive Rectifier	3 M	H1\%.	6.3	1.0	3501	150	1000	430	HV
EDES	Kali-Meve Pectifier	¢CG	Ft.	6.3	1.6	-	175	5000	1100	HV
6 Y 4	Full-Wave Reclifief	9 M	Hir.	53	0.6	850	क	-	-	HV
6x//6063	Full-Wave Rectifier	7CF	Mir.	6.3	0.3	3251	70	1250	210	HV
- $\times 56 \mathrm{GT}$		65				453^{4}				
623	Half-Wave Rectifiet	46	Fil.	6.3	0.3	250	50	-	-	HV
12 M	Full-Wave Rectifier	585	H6,	12.6	0.3	650^{3}	70	1250	210	HV
252	Rectifier-Doubler	6 E	B6\%.	25	$\square 3$	$\underline{125}$	10	1250	210	HV
35W4	lisil-Wave Riectiler	5 \%	Pitr.	351	0.15	155	\%	330	800	HV
352665	Hall-Wave Rectilier	5AA	Htrs.	35	0.15	250	100	700	600	HV
35256	Hain-Wave Rectirisr	6 SAD	Flf.	351	0.15	125	60	-	-	HV
36AMJ	Hall-Wave Rectifer	580	9/f.	36	0,1	I7	75	385	530	MV

	Maxumum Ratings						Cathode Capacifances					Base	Typlcal Dperation							
Type							$\frac{y}{0}$	$\begin{aligned} & \text { 苍 } \\ & \frac{\ddot{2}}{E} \end{aligned}$	$\underset{p F}{\mathbf{c}_{\text {in }}}$	$c_{p r}$	$\begin{aligned} & C_{\text {our }} \\ & \text { pF } \end{aligned}$		$\begin{aligned} & \text { 흐 } \\ & \text { oun } \\ & \text { © } \\ & \text { © } \end{aligned}$	家荡	$\begin{array}{r} 8 \\ \text { 은 } \\ \hline 0 \end{array}$	氐	$\begin{aligned} & \text { 区 } \\ & \text { 믄 } \\ & \text { U } \\ & \text { U. } \end{aligned}$			
811.1	65	1500	175	50	60	160	6.3	4.0	5.9	5.6	0.7	36	C．T	3500	－70	173	80	2.1	－	200
													C．P	1250	－ 120	140	45	100	－	135
													G．f．B	1250	0	27／175	28	12	－	165
													${ }^{A} B_{1}$	1250	，	27，175	13	3.0	－	155
812－＾	65	1500	175	35	60	29	6.3	4.0	5.4	5.5	0.71	3 S	C．T	1500	－120	173	30	6.5	－	190
													C．P	1250	－115	180	35	2.6	－	130
													8^{8}	1500	－48	28／310	$270{ }^{\circ}$	5.0	13.2%	340
1007	100	3000	225	50	40	40	50	6.3	2.9	2.0	0.4	20	$\frac{C .7}{\text { C．}}$	3000	－200	165	51	18	－	400
													$\frac{\text { C．P }}{\text { B }}$	3000	－65	40：215	3350	5.08	318	650
$\begin{aligned} & 3-10022 \\ & 1007 \mathrm{~L} \end{aligned}$	100	3000	225	50	40	14	5.0	6.3	23	2.0	0.4	20	CT			－ 165	3	5.0	31.	400
													C．P	3000	－400	165	30	20	－	400
													G．M．A	3000	－500	60	20	7.0	－	98
													B^{8}	3000	－185	40／215	640°	$6.0{ }^{8}$	30K	850
36×1008515	100	1000	1251	50	2500	100	5.0	1.05	10	2.15	0.035	－	C．G．A	800	－20	80	30	6	－	27
	70	600	$100{ }^{14}$										C．P	600	－15	75	40	6	－	18
$2 \mathrm{C39}$	100	1000	60	40	500	100	5.3	1.1	6.5	1.95	0.03	－	C．1．C	500	－ 35	50	6	5.0	－	20
													C．T． 0	900	－40	90	30	－	－	40
													C．P	600	－150	100^{14}	50	－	－	－
A×9980／ 58E615	135	2500	200	40	150	25	6.3	5.4	5.8	5.5	0.1	Fig． 3	C．F	2500	－200	200	40	16	－	350
													C．P	2000	－225	127	40	16	－	204
													8^{7}	2503	－90	80／330	350°	19^{8}	15.68 K	560
													C．7	1650	－ 70	$\frac{165}{50.500}$	32	5	－	$\frac{205}{600}$
5728／160L	160	2750	275	－	－	170	6.3	4.0	－	－	－	36	G．G．61	2400	－2．0	90／500	－	100	－	600
810	175	2500	300	75	30	36	10	4.5	8.7	4.8	12	2 N	C．T	2500	－180	300	60	19	－	575
													C．P	2000	－350	250	70	35	－	380
													G．M．A	2250	－140	100	2.0	4	－	75
													87	2250	－80	70／450	$380{ }^{4}$	138	11．6K	725
8873	200	2200	250	－	500	150	6.3	3.2	19.5	7.0	0.08	FIg． 87	$A B_{1}$	2000	－	$22 / 500$	98^{2}	271	－	505
2507H	250	4000	350	40^{13}	80	37	5.0	10.5	4.6	2.9	0.5	2 N	C．T． 0	2000	－100	359	98	29	－	454
													C． 1.0	3000	－150	333	90	32	－	750
														2000	－160	250	60	22	－	335
													C．P	2500	－180	225	85	17	－	460
														3000	－200	200	38	14	－	435
													$\overline{A B}{ }^{\text {？}}$	1500	－	2201700	460°	46°	8．2K	630
258 TL	250	4000	350	3513	40	14	5.0	10.5	3.7	3.0	0.7	2 N		2000		350	45	22	－	455
													C－T．	3000	－350	335	45	29	－	750
														2000	－520	250	29	24	－	335
													C．P	2500	－520	225	20	16	－	800
														3000	－520	． 200	18	II	－	435
													$\mathrm{AB}_{2}{ }^{7}$	1500	－40	200，700	780^{3}	388	3．8K	580
PL． 6568	250	4000	300	120	30	85	5.0	14.5	7.6	37	0.1	E／f． 3	G．G．A	2500	－ 70	300	85	751	－	555
														3000	－95	3000	110	$8{ }^{8511}$	－	710
														3500	－110	285	90	85^{11}	－	805
														4000	-120	250	50	70^{19}	－	820
8875	300	2208	250	－	500	160	6.3	3.2	19.5	7.0	0.03	－	AB_{2}	2000	－	22／500	98°	278	－	505
364TH	300	3000	900										C．F．0	1500	－125	665	115	25	－	700
							5.0	25					C．F．0	2000	－200	600	125	39	－	900
				50^{11}	40	20			13.5	10.2	0.7	48C		1500	－200	420	55	18	－	500
				80	40	20			13.5	10.2	0.7	48 C	C．P	2000	－300	480	60	26	－	580
							10	12.5						2500	－350	400	60	29	－	800
													$\overline{A B A_{2}{ }^{7}}$	1500	－65	$1065{ }^{\circ}$	300^{3}	25^{1}	2.84 k	10000
																		33	－	700
													C．F．0	2000	－300	600	85	36	－	900
							5.0	25						2000	－500	250	30	18	－	430
													C．P	2000	－500	500	75	5 2	－	810
$304 T L$	300	3000	900	5013	40	12			12.1	8.6	0.8	ABC	c．p	2500	－525	200	18	II	－	425
														2500	－350	400	50	36	－	830
							10	12.5						1500	－118	270／572	236^{9}	0	2.54 k	256
														2500	－230	160，483	$\frac{4508}{890}$	0	${ }^{8.5 \mathrm{~K}}$	610
													$\mathrm{AB}_{2}{ }^{\text {］}}$	1500	－118	1180°	$490{ }^{\circ}$	$\frac{391}{23}$	2.75 K	1100
													CrT． 0	2250	－125	$\frac{405}{335}$	85	23	－	$\frac{780}{800}$
833＾			500	100		35	10	10	12.3	6.3	8.5	Fg． 41		2500	－300	335	75	30	－	635
	45019	400019			2015								C．P	3000	－280	335	70	26	－	800
													8^{3}	3000	－70	100／750	400°	22^{8}	9．5K	1550
8874	400	2200	250	－	500	160	6.3	3.2	19.5	7.0	0.03	－	$\overline{A B}$ ？	2000	－	2，500	98°	278	－	505
3.1002	400	3050	800	－	110	200	5	14.5	7.4	4.1	0.07	F9． 3	C．G．B	3000	0	100／333	120	32	－	655
PL．6580	400	400015	350	120	－	45	5.0	14.5	7.6	3.9	0.1	56X	G．G．A	4000	－ 310	350	92	10511	－	$\frac{1080}{600}$
8163	400	3000	400	$2{ }^{10^{23}}$	30	350	5.0	14.1	8.0	5.0	0.3	F\％． 3	C．G．B	$\frac{2500}{2500}$	－70	350 $72 / 400$	$\frac{95}{180}$	$\frac{85}{35}$	－	$\frac{600}{640}$
													C．C．E．B	3000	－	370	115	30	3 K	750
3.5002	500	4000	400	－	110	160	5	14.5	7.4	8.1	0.07	Fig． 3	C．T	35 co	－75	300	115	22	－	850
3．10002	1000	3000	800	－	110	200	7.5	21.3	17	6.9	0.12	Fg． 3	C．G． 8	3000	0	180／670	300	65	－	1360
8877	1500	4000	1000	－	250	200	5.0	10	82	10	0.1	．	$A B_{1}$	2500	－ 8.2	1000	－	57	－	1520
$\begin{aligned} & \hline \text { Cathode } \\ & \text { 1 KIY TO } \\ & A_{1}= \\ & A B_{1}= \\ & A B_{2}= \\ & B= \\ & \text { C.M }= \\ & \text { C.P }= \\ & \text { C.T }= \\ & \text { C.F.O = } \\ & \text { G.G.A }= \end{aligned}$		ohms． SERYICE I madulat push pull push－pu！ 5h－pull multiplie ate－modu legraph． plifiar－0s grid class	ABBR or． af mo af mod model ated to C amp	EIATIO ulator． ulator． tor． aphone．				$6 \cdot 0=$ $1 \cdot C=$ $M \cdot A=$ in trio tonces， id lsak eak valu lues an ax．sign	round rid iso rid－mo e．Valu te for 12 Mh esislor s． for tw value	d－grid ation ci dulated s，exce olth sec in ohms tubes in	sc． cuit amo． at inter ions in push．p	ectrode mush－pul pull．			${ }^{-1}$ Pazak 10 Plat ${ }^{11}$ Inctur 121000 ${ }^{13} \mathrm{Max}$ ． ${ }^{14}$ Max． ${ }^{15}$ Forc is Plate ${ }^{13} 1000$ ${ }^{13}$ No		grid vo 00 MHz los， 8 sc． osc． urfent in ing requ 800．MHz se． availa	asc dissi watts． mA． d． sc．	ת，and	

	Moximum Resungs					Caifoda Capacliamees					Basa	Typlat Operation										
Type		2\%				$\frac{5}{5}$	$\begin{aligned} & \mathbf{E} \\ & \frac{8}{8} \\ & \hline \end{aligned}$	$\underset{\sim}{\mathbf{C}_{\boldsymbol{F}}}$	C_{p}	$c_{\rho \prime} \mathbf{F}^{\prime}$			$\begin{array}{r} 8 \\ \frac{8}{2} \\ \frac{0}{2} \\ \hline 0 \end{array}$			$\begin{array}{r} \frac{8}{2} \\ \text { 률 } \\ \hline \end{array}$		$\begin{array}{r} \text { E } \\ \text { E } \\ 6 \\ \text { egu } \\ \text { wick } \end{array}$			$\begin{array}{r} \text { E } \\ \text { à } \\ \text { à } \\ \text { 名品 } \end{array}$	
888188	115	1000	4.5	300	400	63	21	14	0.005	0.015	Flg． 77	C．7． 0	950	3006	－	-30	170	1	10	3	－	80
												C．P	700	290	－	－55	130	10	10	3	－	45
												$A B_{1}{ }^{\circ}$	850	300	－	－15	80／200	0,20	35^{1}	0	7 K	80
						20.5	0.5					$A^{2} \square^{3}$	850	300	－	－ 15	80.35	0.25	46^{2}	0.3	3.96 K	140
813^{11}	125	2500	20	800	30	10	3	16.3	025	14	S8A	C．T． 0	1250	300	0	-75	180	35	12	IT	－	170
												C．1．0	2250	800	0	－168	220	40	15	4	－	－392
												AB_{1}	25×0	750	0	－95	25／195	27^{7}	0	0	－	285
												$\mathrm{AB}_{2}{ }^{\text {b }}$	2000	－750	0	－ 20	80／315	1．5／58	2308	01^{1}	16%	455
													2500	750	0	－99	35；960	12i55	$235{ }^{1}$	0.35	$17 \bar{k}$	550
$\begin{aligned} & 41261 \\ & 4021 \\ & 1155 \end{aligned}$	125	3000	20	600	120	5	6.3	108	0.07	1.1	58K	C－T－D	2000	350	－	－100	200	50	12	28	－	275
													30，00	350	－	－190	15	30	9	25	－	375
												$\mathrm{ABP}^{\text {a }}$	2500	350	－	－ 33	93／25	0；6	1781	1.0	22 k	1000
												$\mathrm{AB}_{1}{ }^{1}$	280	600	－	9	क $1 / 232$	0．3：85	120°	0	21312	－350
												${ }_{6} 5$	20 Cs	0	－	0	［0． $0 \cdot 5$	$34^{\text {a }}$	इ\％	1611	10.5 K	165
E27d									0.08	4.3	189	C	3500	50	50	－200	15）	5	6	1.5	－	375
$5-1251$	125	8100	2	750	$\overline{3}$	5	1.5	10.5	0.0	4	168	C	10×1	750	0	－1阿	160	2	3	－ 6	－	－115
413	125	2000	30	600	20	10	5	17.5	0.15	29	5	C－T	2003	530	85	－ 80	158	${ }_{4}^{45}$	12	2	－	210
3	125	N00	30	600	2	10	5	17.5	0.15	2	U	C．P	1500	800	100	-80	150	45	25	5	－	155
7094	125	2000	20	400	60	6.3	32	9.0	0.5	1.8	He． 82	C7	1500	803	－	－100	339	20	5	4	－	310
												C．P	1280	880	－	－13	279	8	5	5	－	200
												${ }^{\text {AB }}$	2000	400	－	－89	30：200	35	ब3	0	12\％	230
$\frac{4 \times 1500}{4 \times 150 G^{13}}$	150	2000	12	400	500	6	2.6	15.5	0.03	4.5	Fif． 15	C．T． 0	1250	250	－	－90	2000	20	10	0.8	－	195
												C．P	1050	250	－	－105	200	20	15	2	－	140
						25	675	27	0.035	4.5		$\mathrm{AB}_{2}{ }^{\text {a }}$	1250	330	－	－48	${ }^{6} 76{ }^{\prime}$	$0 / 55$	1003	0 O	5.6 K	425
8121	150	2200	8	800	500	13.5	3.3	16	0.13	0063	F1． 3	C－T． 0	1004	80	－	－ 80	3000	10	30	5	－	165
$\begin{aligned} & 4.2501 \\ & 5021 \\ & 8158 \end{aligned}$	2500	4000	35	600	110	5	14.5	12.1	0.12	4.5	50 K	CTED	2500	50	－	-150	30010	6	5	1.7	－	－ 597
												61.0	3x＋3	508	－	－100	ST5	6	10	2.6	－	800
												C．P	2300	800	－	－800	82	30	9	22	－	$3 / 5$
												C．P	3000	468	－	－ 310	225	30	9	32	－	510
												$\overline{A^{\prime} B_{2}}$	2031	दू	－	－78	510	0.20	$15]^{1}$	5.5	8 K	653
												88.8	2530	60	－	－100	55^{51}	0.313	7801	0	18.12	525
4×3815	2500	2000	12	400	175	6	2.1	185	0.01	4.7	Fl． 75	C．7．0	200	250	－	－97	250	2	27	28	－	110
												C．P	15.0	250	－	－100	200	25	17	21	－	250
												$A B_{1}{ }^{1}$	2000	350	－	－5	［20 ${ }^{\circ}$	30^{7}	100°	0	8.26 K	650
					150			16	0.03	14	FIS． 38	C．T－0	2 m 01	290	－	－08	230	2	8	25	－	$31 /$
axisa	250	2000	12	300		6	26					CP	$18: 4$	230	－	－118	8 \％	28	5	？	－	230
70351	250	2000	12	400		26.5	0.54					$A^{\text {A }}{ }^{4}{ }^{4}$	2000	350	－	－5］		$0 / 36$	10^{105}	01		630
4×1500	250	200	12	400		6.5	0．50					$\mathrm{AB}^{8}{ }^{\text {a }}$	2000	300	－	－ 9	160／4 ${ }^{1 / 2}$	0／35	$100{ }^{1}$	0	8.76 K	580
$\begin{aligned} & 46 x . \\ & 3004 \end{aligned}$	3000	2000	12	400	500	6	2.75	29.5	0.04	4.8	－		2000	250	－	－5	250	25	27	28	－	810
												C．P	1500	250	－	－ 0_{0}^{0}	200	25	17	2.1	－	250
												$A^{\prime} B_{1}{ }^{8}$	2000	050	－	－50	5011	$3{ }^{7}$	100^{8}	0	8.26 R	530
1188	400	4000	25	500	－	5	14.5	15.1	0.06	9.8	Fli． 86	C．T．E．P	8000	600	0	－${ }^{\text {cof }}$	3 ${ }^{3}$	29	δ	1.4	－	380
												－T．E．p	2500	603	0	－100	3，${ }^{\text {a }}$	40	7	1.6	－	603
												AB_{1}	2500	750	－	－10］	810350	1／35	0	8	－	510
4.4008	4008	4000	35	600	110	5	14.5	12.5	0.12	4.7	5日K	C．F．C．P	4080	3000	－	－i㐌	238	223	10	10	－	70
												GG	230	0	－	0	80／27017	550	1吅	3ु81	C．0K	35
												AB_{1}	$25 \times$	$7{ }^{\text {7 }}$	－	－150	［5／3！	$0 / 17$	0	D	－	－125
312	600	2700	8	200	500	13.5	1.3	15	0.13	0017	F\％${ }^{\text {d }}$	C．T．D	2000	200	－	－31	3헤	5	30	5	－	300
55004	500	4000	3	500	30	10	102	19	010	12	－	C－T	अप्0	500	\square	－290	83	65	35	12	－	${ }_{5}$
												C．I	3100	878	8	－310	2007	9	15	5	－	52
												${ }^{\text {A }}$ B ${ }_{1}$	30 col	750	6	－12	5	8	－	－	－	612
$\operatorname{licic}_{4-10004}$	1000	6000	75	1000	－	7.5	21	27.2	24	1.6	－	CT	3×20	509	－	－1：19	800	146	38	11	－	1830
												C－P	3000	500	－	－200	600	145	35	－12	－	1330
												ABr_{2}	8 8im	50	－	－ 50	3601200	0.35	－		$\frac{7 \%}{25}$	8000
												$\mathrm{CLS}^{\text {c }}$	3000	0	－	0		100^{5}	170°	［397	2.5 K	16\％
													Vu	825	－	－ 5	950／2000	－1／80	－	－	2.6	2150
SExi000A	1000	3000	12	100	400	6	12.5	35	005	12	－	A8，${ }^{\prime}$	2500	325	－	－59	［200\％ 20000	－4／00	－	－	3.15	${ }^{29280}$
													30.00	325	－	－ 55	W0071600	－4／50	－	\checkmark	3.65 K	8860
$\begin{aligned} & \text { B293! } \\ & 172 \end{aligned}$	1000	3000	30										2000	500	\＄5	－ 175	850	42	10	19	－	166
												C－Y	2500	500	35	－2000	880	40	10	$2!$	－	1860
													3000	500	－35	－200	gृ2］	82	10	25	－	1710
				600	－	6	B． 2	38	． 09	18	－		2000	500	5	－ 170	\％in／ 0^{100}	12／43	110°	－	2.65 K	190
												$A B_{1}$	2500	500	3	－ 810	$200 / 600$	11／40	115°	－	3.6 K	12 回
													3020	9	35	－115	220／800	11／39	115	－	8.55	1550

${ }^{1}$ Grid－rusister．
－Doalier to iss mite
${ }^{3}$ Oana fisbe，Values tar both secfions，in pasth．poll，Interetactrode caperibiass，bowevet，are lor each section．
－Triplea to $175 \mathrm{~m}_{\mathrm{m}} \mathrm{Hz}$
－Frimmonl dimited to intermittent operation
－Values are for furo tribes
；Maz．signal vilue．
IPent grid－to－grid wais
${ }^{1}$ Forced alr sooling required．

${ }^{31}$ Triplop to 200 MHz
${ }^{21}$ Is Ypial Operation al 17 J MH2
13 ± 1.5 volt．
${ }^{3}$ KEY TO CLESS－OF－SERVICE ABBREVIATIONS

AB_{1}－Class $\mathrm{A} \mathrm{Al}_{1}$

$\mathrm{B}-\mathrm{Ctass}-8$ push－poll al motulator．

C．P－Clan－C pale modutand lemephone．
CY－Chas－C telegraph，
C．T－0－Cans．C amplite－ace
CG－Groundeed－grid（girld and screen cannected lagether）
14 No Class 8 dita maliabla
${ }^{15}$ HK2578 200 MHz full roting
v^{2} Single tane．

Trpe	Matarisin	Use	$\begin{gathered} \text { Poalk } \\ \text { Maverse } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \hline \text { May. Forward } \\ & \text { Voireng at } \end{aligned}$	Moras． mat at mas．y	Max． Revares －．
1 F 31 A	G	General Purgoss	75	50	5.0	30
1735	G	Coneal Purpose	50	－	－	2000
2N52A	G	General Puppose	85	5	5.0	108
IMCO	G	Vidpo Dotector	25	50	5.0	40
2N67A	G	Conaral Puppar	100	1	4.0	5
IWEA	6	General Puidose	100	1.0	4.0	5
INSA	S	High．Speed	75	1.0	100	5
2N270	G	General Purposo	100	9	\sim	100
IN／33A	5	Signgi olode	125	T	100	25
\＄NE3	G	80 －Vall Yory Low ？	120	－	50.0	45
INESAA	5	Signal Dioda	225	1	400	05
INH14	5	Fast Logic／$/ \mathrm{FF}$ Del	75	，	75	025
201374	5	Roctitier	100	1.2	150	300
IMCell	5	Reclilies	50	1.1	1000	30
INCOM	5	Recturier	100	1.1	1000	30
121001	5	Rectilies	800	1.1	1000	30
2M（7） 9	5	Reciliter	50	1.0	3000	1500
000000	5	Dual Series Diose	［50	1.1	200	100
Mlenowave Mizer and UHF Dioden						
Type	Matorial ${ }^{\text {a }}$		Usa	Avaraga Freas．		Moin Plour
102\％	G			3060 MH2		568
			Mixer	1000 MHz		3108
Mābld	S	Mixer（ $(\mathrm{Ve}=4 \mathrm{c}$ ）				788

${ }^{1}$ A bat，plun aigh，or color dot usually denotes the calhade ent of crystal diodes．
Diade color code rings are grouped toward the cathode end．
${ }^{1} \mathrm{~S}$－Sillisom．G－Germanium．
＇Polarily la such that the base is the anode and the tip in the euthode，R－fyoes have oppasite polarity．
TABLE IX－SEAICONDUCTORS
SMALL－SIGNAL TYPES

No．	Type	Maximum Ratings				Charactoristics			Other Data				
		$\underset{\text { Mall }}{\substack{\text { Mat }}}$	$\begin{aligned} & \text { Diss } \\ & \text { (Watts) } \end{aligned}$	$\begin{gathered} V_{\text {cem }} \\ \left(\text { Volts }^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{l} \mathrm{E} \\ (\mathrm{cc}) \end{gathered}$	(More)	$\left(\frac{1 \mathrm{r}}{\mathrm{t}} \mathrm{mp} .\right)$	Noise Fig． （dB）	$\begin{gathered} \text { Use } \\ \text { (Typ.) } \end{gathered}$	$\begin{aligned} & \text { Caye } \\ & \text { Styla } \end{aligned}$	Base Conn．		Apalleation
20.05	PNF	G	2.15	－18	二	31	0.65 MHz	－	Gen Rurpose	10．1	7	8	Gen．Purpose
	FPN	5	$5^{3}{ }^{\circ}$	20	50 ma	20	${ }_{600} \mathrm{MHz}$	－	I？	10.18	1	M	n，Switciong
2 W 12	NPM	5	0.5	9	150 mA	10	Wemm	－	1	10.18	8	R	Switching
2 L 18 7 9	PNP	6	$0.085{ }^{\circ}$	－30	$-10 \mathrm{~mA}$	100	－	－	H89\％．	10．83	5	R	त Mixer
2613302	NPM	G	0.15	25	0.31	\％	－	－	Camputis	10.5	8	8	Osc，Amp．
2 N 130 F	MPN	6	0.15	25	0.33	60	－	$\stackrel{\sim}{\sim}$	Campofar	10．5	8	月	Dsc，Amp．
$2 \mathrm{NzO2}$	MPN	S	1.8	30	800 min	35	250 MHz	－	Gen．Purpose	10．18	B	M	vis Am区，OSE
2 N 2 O 25	NPN	5	0.29	25	100 mA	170	160 MHz	2.8	Gan．Purposa	－	1	GE	Cose，r1，i－1，al
2 N 33918	NPN	5	$0.2{ }^{\circ}$	25	100 mA	250	180 MHz	1.9	Audia	－	1	GE	Lom－nosis Presmps．
2N3399	NPN	5	0.31	25	100 mA	55	－	－	Gen Purpase	10．82	2	M	Audlo Amp．
2 W 3565	NPN	5	0.2	25	50 man	150	－	－	－	10．0．05	9	－	－
2133568	WPA	5	0.3	50	500 mA	1 c		－	－	70． 105	－	－	－
2 N 3638	PNP	5	0.3	－25	－ 500 ma	100	150 M M	－	－	10－105	－	－	Switcian
2 L 3550	MPN	5	0.12°	12	$\square_{\text {C ma }}$	20	900 MHz	1	त	－	1	BE	
2 N 3708	PNP	5	0.31	－8	$-200 \mathrm{man}$	¢	100 MHz	－	Ger，Patpait	10．98	2	＂	W Dis，hap．
2 N	NPF	5	5	3	800 ma	5	800 mhn	－	Can Perpest	10．38	1	m	噺 Amp，Cos
2 N 300 C	MPM	5	027	10	200 mA	4		－	Eer．Perpose	10．\％	2	－	Ftic Amph，Oxs
ह13505	HPM	C	0.15	25	300 ma	0	－	－	Comporter	P0．5	8	I	Das，Aamp．
20112	NPH	5	02］	30	200 ह1	5	250 Man	－	Gen．Pairposi	10．9	2	1	，immp．Osc
2 m 1214	NP产	5	03	家	20000	120	200 mmz	5	Andio．${ }^{\text {a }}$	－	2	M	－
$2 \mathrm{Mal28}$	PHP	5	0.3	－25	200 Na	120		1	ADPion	－	2	M	－
2 NT 2 S	NPN	5	0.28	15	－	18	－	－	－		－	－	5 Smbaling
2N000！	FP\％	5	0.31°	40	Ew mA	\％	$2904{ }^{\text {2 }}$	－	Emas．Parpusi	T05	2	H	Csc，左，1．1， 1
2 2NCIS	NPH	5	0.31°	80	2008	60	250 MHz	－	Fena．Parpose	70．82	2	1	Osc，$n, 1 / 4, n$
2 2 4957	PNP	5	3	30	30 ma	2	$1600 \mathrm{NH2}$	26	तlamp．	T0－12	9	1	त A Amp，Miz，Dos
2 W 4959	PNP	5	3	30	3 mmA	20	1500 MHz	3.2	${ }^{1} 12$ Amp．	10．72	9	0	If Amp．，Miz．Ose
$2 \mathrm{NS032}$	APN	5	$?$	10	20 mb	25	8000 mHz	3.6	त ${ }^{\text {anmp．}}$	70.72	8	M	Low－bise ${ }^{\text {a }}$ Amp．
2N509\％	PNP	5	0.310°	－50	－ 50 mA	8010	150 CM12	I	H ${ }^{\text {dapp．}}$	10－92	2	1	Luy－noiss तf Amp．
2 N 5089	PNP	5	0.310°	－25	－50 man	450	175 Mmz	2	Tt Amp，	90－82	2	M	Low－noisa तf Amg．
225109	NPN	5	$3.5{ }^{\circ}$	40	048	90	－	3		10．83	8	8	Whide band Amp．
2 T 5179	APX	8	0.2080°	12	50 ma	25	Fen MM？	8.5	त ${ }^{\text {chapg }}$	70．72	1	8	喵 Amp，Ox，
2W513］	NPN	5	0.5	18	12	120	2001 MHI	－	Gme．Purgme	T0－104	1	1	－1／t Ooc．，Amp
2 N 5228	PMP	5	0.310°	－15	50 mma	20	750 CWHz	－	तlanp．	10.82	18	\square	तो Amp．．M／2 Vidial
2 W 5829	PNP	5	2	37	39 ms	20	ISCOM MH^{2}	23	त 1 mp	16.72	9	1	त／Mmjo Mrx．Osc
（1021	NPM	5	05°	18	8100 ma	5		28	Audia	10．1010	7	8	Preamps Ind Drivar
0035	FPF	5	$0.18{ }^{\circ}$	35	50 ma	10	$1200 \mathrm{Cl}^{1} \mathrm{~L}$	3.3	त	T0．20］	9	E	
MEP5］	PNP	5	05	－8	－600 mA	8	150 cmil	－		10－5	8	\square	त年哏？
HEPI	HPN	§	0.6	30	500 Fat	85	800 mM	－	－	10.5	1	M	त Amp
HEPT5	NPFI	5	0.31	20	100 mA	10	750 mis	－	－	710.92	1	1	जalcr
EPsels	EPN	5	0.311°	15		2	2001017		Rming． 0 Er	10.88		1	g inmpar Der
PPSTas	NPN	5	0.31	18	100 ms	3	3001178		Com．Poupose	10．58	8	！	，ficsc，trin）．
MPS339	NPN	5	0.31	25	100 ma	55	－	－	Gen．Paiposa	10．52	8	\cdots	Audio Amp
MPS35S3	NPN	8	0.310°	12	－	20	200 mhz	－	Amp．Osc	10．58	2	0	－18 Amp，Das
MPSS693	NPM	5	0.310°	45	－	10	2009 Mz	4	त Amp．	10．82	2	1	
MPS369	NPN	5	0.310°	45	－	100	800 MHz	1	त Amp．	10．58	2	1	5 OmHz Amp．
MPS3\％02	PNP	5	0.31	－25	－200 mi	60	100 MHz	－	Een．Purpose	10．92	2	M	whi Osc．，Amp
	TipN	5	0.310°	20	600 ma	60	100 mHz	－	af AnR	10． 28	2	m	Avdlo Amp

TABLE IX－SEMICONDUETORS－Cominued
5MALL－5IGNAL TYPES－Continued

		Maximum Ratings				Characlorlatics			Other Data				
No．	Type	$\boldsymbol{M a s a t g}_{\text {ria\| }}$	Diss． （Watts）	$\begin{aligned} & V_{c m} \\ & \text { (Volts) } \end{aligned}$	$\begin{aligned} & \text { le } \\ & \text { (de) } \end{aligned}$	$\underset{\left(\min _{\text {in }}\right)}{ }$	$\begin{aligned} & f_{\mathrm{r}} \\ & \left(\mathrm{~T}_{\mathrm{yp}}\right) \end{aligned}$	Relse Fg． （ CB ）	$\begin{aligned} & U_{\mathrm{se}} \\ & (\mathrm{TyPA}) \end{aligned}$	$\begin{aligned} & \text { Case } \\ & \text { Style } \end{aligned}$	Basa Conn	$\begin{gathered} \text { Manu- } \\ \text { Tacturer } \end{gathered}$	Applieatom
MPSESII	NPN	S	3	25	100 mA	150	480 MHz	10	Audio．－${ }^{\text {d }}$	10.92	2	M	8t－rindi
MPS550	NPN	5	0.310°	10	6.00 mA	30	390 MHz	－	Amp	10.92	2	M	Complemenlay Amp
［PEs531	PAP	5	0310°	$\underline{10}$	－ 600 ma	60	280 MHz	－		10－92	2	M	Complementary Amp．
MPS553	NPH	5	0310°	25	－	25	760 MHz	－		10．92	2	T	unt Dse
MPS5569	APN	5	0.310°	20	－	20	300 MHz	I	HAmp．	T0．92	11	M	Whin Amp，Vidioo i．l
MPSA12	APN	5	0.310°	20	－	35	－	－	Axdro Amp	10．92	2	M	High－2 Pra－ima
MPSAS5	PNP	5	05	－50	－500 mí	50	5 SMHz	－	Audlo Ama．	20.92		M	Audio Amp．
TISA8	HPN	－	1.2°	40	500 mA	10	500 MHz	－	त	10－92	3	11	n ，Swilching
TISH	PNP	－	$0.85{ }^{\circ}$	－12	－80 mk	30	$300 \mathrm{MH}_{2}$	－	त	10．92	3	$\overline{11}$	n_{1} ，Switching
TIX 10	PNP		0.075°	-20	$-30 \mathrm{~mA}$	\％	530 mH ？	4	T	10．72	4	11	त，Preamg ，vhl whf

LARGE－SIGNAL TYPES

		Maximum Ratines				Charactoristiey			Other Dasa				
No．	Typa	$\underset{\substack{\text { Maser } \\ \text { rial }}}{ }$	OIss． （Watts）	$\begin{aligned} & \text { Vcto } \\ & \text { (Valtos) } \end{aligned}$	$\begin{gathered} \mathrm{Ic} \\ \{\mathrm{~d}\} \end{gathered}$	$\begin{gathered} h_{f l} \\ \left(u_{1} n_{n}\right) \end{gathered}$		Narse Fig． （dB）	$\begin{gathered} U_{\mathrm{se}} \\ \text { (Тур.) } \end{gathered}$	$\begin{aligned} & \text { Case } \\ & \text { Style } \end{aligned}$	Base Conn．	Manu． Preturan	Application
2NCI	PNP	$\overline{6}$	150	－ 00	－15 A	20	－	－	Gen．Puipese	T0．36	13	M	Switch．Amp．
2N1491	NPN	8	30°	30	100 mA	15	300 MHz	－	त Amp．	10－39	8	R	Whi Amp，Miz．
2N1970	PNP	6	170	－50	－15A	17	－	－	Gen．Purpose	10－36	13	M	Switch，Amp．
2 N 2102	NPM	5	$5 i$	E5	18	20		1	Gen Puiposa	50.5	1	R	81，तt Amps（Linesi）
2N2L5	PMiP	－	17\％	－5	－30 A	क्ष	［15 688	－	21	T0．30	13	M	31，je Amp．Smith．
212220	5 SP	5	5	－	18	19	－	E	－mp	T0－5	9	R	Low－ncise A ma
2 N 2331	MP\％	5	$8 \sqrt{5}$	6	13年	－	$200 \mathrm{FH2}^{2}$	－	त	10.33	8	8	
2128369	P97P	－	351	－59	－ 12.8	50		－	Gen．Potpose	T0．3	$\bar{\square}$	8	al， Sice $^{\text {amp．Am，Swilch．}}$
2 M 2876	NPN	5	17.51	60	1.5 A	－	290 ${ }^{\text {a }}$	－	त	10．61	12	R	vhl Class－C Amp．
2 N 3013	NPN	5	5	6	760 mA	50	－	－	－	10.5	8	8	Pirs．Switch
2N3055	FPM	5	115	60	15 A	$20-70$	－	－	Gen．Puipose	$10 \cdot 3$	11	R	Swich，8e8．，Amp
2 N 319	FPri	S	$4 i$	S0	500 mA	50	450 明 H_{2}	－	Amp．	10．5	8	\％	Swich，Pulse Amp．
2N3512	NPT：	－	4	35	500 mA	10	$25018{ }^{2}$	－	A0एँ？		7	1	Smic．
2 N 3558	Y？	5	7	40	14	$: 0$	500 Pros	－	त	10．39	8	$\underline{\square}$	Class A，B，C त Mulli，Amp．，Osc．
2N35 208	SPP	5	55	175	28	$11]$	S． $\mathrm{SH}_{\text {\％}}$	－	hit fer Pup	1．5．5	$\underline{\square}$	8	
2 N 3.33	NPP	5	73°	E	3 K	－	（00）Min：	－	तRmp．	$10-3$	2	8	ath Pur．Amp， 0 se
2N3T33	AP晨	S	23°	5	3 A	－		－	तf Amp．	10．55	12	8	ufil Pur．Amp，Osc
2×3772	NPM	S	150	69	218	15－80		－	PWr．Imp．	10.3	11	8	Prw．Ame
2N9865	NPN	5	51	3	08 A	－	800 MHz	－	त	10.39	8	R	Class A，B，C त Mull．，AmP．，Ose
2N3920	NPN	5	$7{ }^{\circ}$	18	500 mA	－	350 M M	－	त Amp ，	10－39	8	4	uht Pwi．Amp．，Oxc
2N3940	APN	S	$1{ }^{\circ}$	20	200 mA	15	700 corl	－	त 2 mg ．	10．39	8	M	ufin Pus．Ampe．Dic．
2 N i012	NP：${ }^{\text {a }}$	S	11.6°	40	15\％	－	52008 MHz	－	त Amp．	10.60	12	R	un Pwr．Amp．a Ore
$2 \mathrm{2NL037}$	Prip	5	\％	40	-16	5	20.9	－	Gen．Putiose	T0－5	8	R	Amp，Swiching
2N13\％	SP\％	5	Vi	64	3A	63	4M5：	－	Gan．Puipers	10－3	11	\％	
29423	NPN	5	35．	20	ग． $\mathrm{J}_{\text {ma }}$	－	5）5 $4.2 \mathrm{~S}:$	－	तams．	［6．35	8	$?$	U1／i Amp．
2N5016	NPM	5	35°	55	4．5\％	－	SOE）MH：	－	If Amp．	［6．6］	12	\％	uim Purf，तitamp．
2N5070	EPM	5	201	55	3.3 A	－	$3{ }^{3} 8.42$	－	Amp．	10．29	2	8	$30 \mathrm{mHz} \mathrm{Amp}$.
2 NSO 11	NP＊	5	701	65	33 A	－	76 mht	－	Amp．	T0．62	12	R	50 CHz
2N5470	NPN	5	$3.5 \dagger$	55	200 mA	－	26K2	\sim	whit Amp．	－	－	8	microwaye Dsc．，Amp．
$2 \mathrm{NS833}$	NPiN	5	7．5 ${ }^{\circ}$	35	14	5	－	－	त AmP	－	2	＋	4000 AHz ，तf Ama
2N5836	SPN	5	$15{ }^{\circ}$	35	178	5	－	－	त Amap ．	－	23	\％	400 MHz ， H 2a00．
2 N5697	APM	5	36°	35	38	5	－	－	ก सू\％p．	\sim	23	8	（0）Mryz if AmP
2NS60］	NPN	5	［5］	35	1月	5	－	－	त Ama	－	8	4	（0） 8 CH
$2 \mathrm{NS642}$	EIFY	S	\％${ }^{\circ}$	5	5%	5	－	\square	तА Amp	－	8	4	
$2 \mathrm{NS503}$	NPM	5	50°	35	5%	5	\cdots	－	त Amp．	－	23	＋19	800 Fithz त ${ }^{3} \mathrm{mmp}$
243913	SPN	5	3.54	1%	330 ma	－	S00） 8 Hz	－	Leks Amp．	10．39	8	R	
2 N 5911	APN	5	10.79	18	1.5 A	－	900 क्षH2	－	Uht Amp		－	B	432 BHz Amp
2 N 5915	NPN	5	10%	14	1.5 A	－	800 MHz	－	whl Amp．	－	－	8	432 MHz Amg
2 N 519	NPN	S	254	$3{ }^{3}$	4.5 A	－	300 M 12	－	01781 Amp	－	－	8	220 MHz Amp
2N592］	SPN	5	83！	50		－	$2{ }^{3} \mathrm{GHz}$	－	ulit Amp．	－	－	月	Bictowavo Dic．Amp．
2MS91	SPN	5	5	35	ह际	19		－	त AmF：	－	Z	8	\＃Mkr तhame
$2 \mathrm{NF9} \mathrm{\times 2}$	ल\％	5	20	35	\％\％	1	5 ST B H：	－	त ${ }^{\text {a }}$ \％	－	8	8	
$2 \mathrm{Nss94}$	APM	5	5	16	0．19	20	Sick：	－	सी $\frac{1}{}$ Amp．	－	2	暏	32 Kinz तो Amp
2N5SM5	NPN	5	15	16	0.8 A	20		－	cin ${ }^{\text {and }}$ ．	－	27	9	
2N5926	NPN	S	37.5	16	2.08	20	410 MHz	－	ulit Amp	－	3	\％	
2N5995	NPN	S	10.7	15	1.5 A	－	175 MHz	－	Wh？Arap．	－	23	R	vim त Amp．
2N5995	SPN	5	357	18	5.0 A	－	175 MHz	－	vin Amp．	－	23	R	vbl 1 Amp．
2×6136	NPN	5	60	18	8.04	20	$870 \mathrm{MHz}^{2}$	－			27	M	432 MHz H Amp
M1em	NPS：	5	874	0	14	36	9 M H2	－	Cen．Puipese	17．3	4	M	वf，त1 Avarg．U：5
MPS． 101	NPN	5	1.0°	30	I． 5.8	河	51 EMz	－	as Amp．	－	2	M	Auub hmp
MPS－U5！	PNP	S	$1 . .^{\circ}$	－30	－1．5．	T	5）MH：	－	Gen．Purpose	－	8	M	
FIELD－EFFECT TRANSISTORS													
No．			$\begin{aligned} & \text { Diss. } \\ & \text { (mW) } \end{aligned}$	V_{08}	Van	$\begin{gathered} \text { MIN } \\ - \text { MNOS } \\ \hline \end{gathered}$	${\underset{(p l}{ }}_{C_{\text {P }}}$	$\begin{gathered} \text { max. } \\ \text { (mad } \\ \text { (mA) } \end{gathered}$	$\begin{aligned} & \text { Top } \\ & \text { Froq, } \\ & \left(\begin{array}{lll} 2 H 2 \end{array}\right) \end{aligned}$	$\begin{aligned} & \text { Case } \\ & \text { Style } \end{aligned}$	Base Conn．	Manu－ lacturap	Apgolleation
2 N015			175	30	－6．0	4000	4	15	450	10．72	15	M	whijuhl त Amp．Mls．，Ose．
$2 \mathrm{NGL17}$			175	30	－30	4500	3.5	15	800	－	22	UC	vint uht Amp．
2 N 5 CO			310	－	10	1000	5	5	－	10.92	19	M	Gen．Purposa Audia

No.	Type	$\begin{aligned} & \text { D\|as. } \\ & \langle\mathrm{mW}) \end{aligned}$	Vos	Vas	$\min _{0}$	Ciss (pF)	$\begin{gathered} 9 \mathrm{Nax} \\ 1065 \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	Top Fieq. (mHz)	Case Styla	Cann.	ManuPacturap	Application
2W5161	P JFET	310	-	40	1500	5	9	-	T0-92	19	\cdots	Gen. Purpose Audio
$2 \mathrm{~N} 5 \times 5$	P JFET	310	-	80	1000	5	5	-	T0-92	19	M	Gen. Purpose Audio
2N5465	P FET	310	-	60	2000	5	16	-	T0.92	29	1	Gen. Purpose Amp.
215669	A JFET	310	25	1.0	1600	4.7	1	-	T0.92	,	M	Amp. Swíching
2N50\%	A JFET	310	25	2.0	2500	4.7	8	-	T0-8?	E	\%	Amp. Switching
3 3128	W IGFET	100	20	-	5000	5.8	-	200	10-72	14	R	al, กi, Amp., Hili., Osc.
3N187	MOS n-channel Degletion lypa	330	20	$-6+6$	7000	4	8.5	300	T0-72	16	R	-
3N200	MOS n-ctrannel Dapletion type	330	20	$-6+6$	10,000	8.5	+	500	T0.72	16	R	Wht it Amp
80500	N Dual-Gate fET	400	20	-8	10,000	55	18	250	70.72	16	R	ulti il Amp.
40501	N Dual.Gs/a FET	400	20	-8	10,000	55	18	250	50-72	16	R	vil Mixet
40602	$\begin{gathered} \mathrm{N} \text { Disal-Gale } \\ \mathrm{FET} \end{gathered}$	100	20	-8	10,000	5.5	18	250	50-72	16	R	whit Amp.
40603	$\begin{gathered} \text { N Dual-Gate } \\ \text { FEI } \end{gathered}$	400	20	-8	10,000	5.5	18	-	T0.72	26	R	If Amp.
40004	$\begin{gathered} \text { N Dưbl-Gate } \\ \text { FEI } \end{gathered}$	400	20	-8	10,000	5.5	18	-	T0.72	16	R	Hi Mix.
40673	$\begin{aligned} & \text { N Dual-Gale } \\ & \text { FEI } \end{aligned}$	330	20	-6	12.000	6	35	400	10.72	15	R	il Amp.
E300	NJFE?	250	-	1	9000	5.5	30	100	-	4	SI	vim Amp.
HEP801	NJFET	200	20	-	3000	-	9	-	70.72	11	M	al Amp.
HEP802	HJTET	200	25	-	2000	-	20	-	70.92	6	m	त Amp.
MMIT3823	N JFET	225	30	-30	3000	8.0	20	-	-	2	9	(t Amp., Mix
MPE102	N JFET	200	25	-2.5	20000	8.5	20	200	80.92	6	M	8f, तt Amp., Mix., Osc.
$\begin{aligned} & \hline \text { MPric37 } \\ & 2 \times 5457 \\ & \hline \end{aligned}$	N JFET	310	25	-25	1000	4.5	5	-	T0.92	6	M	Gen. Purpose Audio
$\begin{aligned} & \text { MPFID/ } \\ & \text { 2N5A58 } \end{aligned}$	N JFET	310	25	-25	1500	8.5	9	-	10.98	6	M	Gsn Purpose Audio
$\begin{aligned} & \text { MPFIOS] } \\ & 2 N 5459 \end{aligned}$	N Jfet	200	25	- 6.5	2000	4.5	16	100	T0-92	6	M	st, if Amp., Mix., Ose.
TMPFI06/ 2N543	N JFET	200	25	-25	2500	5	30	432	T0-92	6	M	81, if Amp. Mix., Osc.
$\begin{aligned} & \text { MFFIOY] } \\ & \text { 2N5488 } \end{aligned}$	N JFET	310	-	-25	1000	5	20	400	10-92	6	M	whf-uht if Amp.
MPE2\%	$\begin{gathered} \text { N Murl-Gate } \\ \text { MOS FET } \end{gathered}$	500	25	± 20	B000	4.5	18	105	-	24	M	is Anp.
MPFI2	$\begin{aligned} & \text { NDuI. Gafe } \\ & \text { MOS FET } \end{aligned}$	500	25	± 20	10,000	4.5	30	200	-	24	M	If Amp.
MPFI2	$\begin{aligned} & \text { N DasilGta } \\ & \text { NOS FEI } \end{aligned}$	500	25	± 20	8000	4.5	20	200	-	24	M	If Mix

- = Ambient Temp. ol $25^{\circ} \mathrm{C}$ (Mo heat sink) $\quad 1=$ Case Temp. of $25^{\circ} \mathrm{C}$ (with heat sink).

ECB (I)
(2)

(5) $\begin{aligned} & 3 \\ & 6 \\ & 0\end{aligned}$
(6)

(7)

CASE (9)

(IO)

(I2)

(14)

CASE (I5)

s,CASE (16)

(17)
(I8)

321
6505

(19)
(TAB)
(20)

 (2I)

(26)

The leads are marked C - collector, B - base, E-emitter, G - gale D - drain, and S - saurce

Some Abbreviations used in Text and Drawings

A - ampere
ac - altemating current
AD - analog-todigital
of - audio frequency
afe - automatic frequency control
afsk - audio frequency-shift keying
age - automatic gain control
alc - automatic load (or level) control
a-m - amplitude modulation
ani - automatic noise limiter
ARC - amateur radio club
AREC - Amaleur Radio Emergency Corps
ARPSC - Amateur Radio Public Service Corps
ATV - amateur television
ave - automatic volume control
bc - brosdcast
BCD - binary-coded decimal
bci - broadcast interference
bel - broadcast listenes
BFO - beat-frequency oscillator
BPL - Brass Pounders League
CB - Citizens band
CCIR - International Radio Consultative
Commitrec
cew - counterclock wise
c.d. - civil defense

CD - Communications Department (ARRL)
CMOS or COSMOS - complimentary. symmetry metal-oxide semiconductor
coax - coaxial cablo, connector
COR - carrier-operated relay
CP - Code Proficiency (award)
CR - cathode ray
CRT - cethode-ny tube
ct - center tap
CTCSS - continuous tone-controlled squelch system
cW - continuous wave (code), clockwise
D/A - digital-to-anslog
dB - decibed
de - direct current
DF - direction finder
DOC - Department of Communications (Canadian)
dpdi - double-pole double-throw
dpst - double-pole single-throw
dsb - double sideband
DTL - diode-transistor logic
DX - long distance
DXCC - DX Century Club
EC - Emergency Coordinator
ECO - electron-cou pled oscillatos
ECL - emitter-coupled logic
EME - earth-moon-carth
emf - electromotive force (voltage)
FAX - facsimile
FCC - Federal Communications Commission
FD - Field Day
FET - fieldeffect transistor
PF - flip-flop
fm - frequency modulation
FMT - frequency measuring test
fsk - frequency-shift keying
GDO - grid-dip ascillator
GHz - gigahertz
GMT - Greenwich Mean Time
gnd - ground
II - henry
hf - high frequency

HFO - heterodyne frequency oscillator
Hz - hertz
IARU - International Amateur Radio Union
IC-integrated circuit
ID - inside diameter
H-intermediate frequency
Inds - inch per second
IRC - International Reply Coupon
ITU - International Telecommunication Union
IW - Intruder Watch
JFET - junction field-effect transistor
k - kīo
kc - kilocycle
kHz - kilohertz
kW - kilowatt
LED - Ilght-emitting diode
If - low frequency
LMO - linear mastor oscillator
LO - local oscillator
kb - lower sideband
LSB - least-significant bit
LSD - least-signiffcant digit
LSI - large-scale integration
Ju§ - lowest usable frequency
mA - milliampere
MARS - Military Antilizte Radio Syatem
Mc - Megacycle
mf - medium frequency
MG - motor-generator
mH - millihenry
MHz - Megahertz
mic - microphone
mix - mixer
MO - master oscillator
MOSFET - metal-oxide semicanductor
field-effect transistor
MOX - manually-operated switching
ms - millisecond
m.s. - meteor scatter

MSB - most-significant bit
MSD - most-significant digit
MSI - medium-scale integration
muf - maximum usable frequency
MUX - multiplex
mV - millivoli
mW - miljjwall
nbfm - namow-band frequency
modulation
n.c. - no connection

NC - normally closed
NCS - net control station
NO - nomally open
npn - negative-positive-negative
NTS - National Traffic System (ARRL)
OBS - Official Bulletin Station
OD - outside diumeter
OO - Official Observer
op amp - operational amplifier
OPS - Official Phone Station
ORS - Official Relay Station
osc - oscillator
OVS - Official VHF Station
0 - ounce
PA - power amplifier
pc - printed of etched circuit board
PEP - peak envolope power
PEV - peak envelope voltage
pF - picofarad
PIV - peak-inverse voltage
pk - peak
pk-pk - peak-to-peak
PL - private line

PLL - phase-locked loop
pm - phase modulation
pnp - positive-negative-positive
pot - potentiometer
PRV - peak-reverse vollage
PSHR - Public Service Honor Roll
PTO - permeability-tuncd oscillator
PTT - push-to-talk
RACES - Radio Amateur Civil Emer-
gency Service
RCC - Rag Chewers Club
rivi - receiver
If - radio frequency
rfc - radio-frequency choke
RFI - redio-frequency interference
RM - Routc Manager
RM-(number) - FCC rulemaking
rms - root-mean-square
RO - Radio Officer (c.d.)
RST - readability-strength-tone
RTL - resistar-transistor logic
RTTY - radio teletype
s.a.e. - self-addressed envelope
s.a.s.e. - stamped s.a.e.

SCM - Section Communications Manager
SCR - sillicon-controlled rectifier
SEC - Section Emergency Coordinator
SET - simulated emergency test
S.M. - silver mica (capacitor)

SNR - signal-to-noise ratio
spdt - single-pole double-throw
spst - single -pale single-throw
SS - Sweepstakes (contest)
ssb - single sideband
SSTV - slow-scan TV
SWL - hort-wave listener
SWR - standing wave ratio
sync - synchronous. synchronizing
TCC - Transcontinental Corps
TD - transmitting distributor
TE - transequatorial (propagation)
tif - traffic
tpi - tums par inch
T-R - transmit-receive
TTL or $T^{2} \mathrm{~L}$ - tmansistor-trancistor logic
TTY - Teletype
TV - television
TV1 - television interferance
UJT - unijunction transistor
usb - upper sideband
uhf - ultra-high frequency
V-voll
VCO - voltage controlled ascillator
VCXO - voltage-controlled crystal
ascillator
VFO - vardable frequency oscillator
vhf - very high frequency
vif - very low frequency
VOM - volt-ohm-milliammeter
VOX - voice-operated break-in
VR - voltage regulator
VTVM - vacuum-tube voltmeter
VXO - variable crystal oscillator
W - watt
WAC - Worked All Continents
WAS - Worked All States
wbfm - wide-band fm
wpan - words per minute
ww - wire wound
wv - working voltage
xtal - crystal
μ - micro (10^{-6})

American Radio Relay League

Administrative Headquarters: Newington, Connecticut, U. S. A. 06111

19....

American Radio Relay League, Newington, Conn., U. S. A. 06111

Being genuinely interested in Amateur Radio, I hereby apply for membership* in the American Radio Relay League. I enclose remittance ($\$ 9.00$ in the U. S., $\$ 10.00$ in Canada, $\$ 10.50$ elsewhere, U. S. funds) in payment of dues foryear(s), including subscription to QST for the same period. Please begin QST with the issue. Amount enclosed:

The call of my station is
The class of my operator's license is
I belong to the following radio societies \qquad

Send Membership Certificate \square or Membership Card

Name

Adotress

city, Sulae, Zip code

A bona fide interest in amateur radio is the only essential requirement, but full voting membership is granted only to licensed radio amateurs of the United States and Canada. Therefore, if you have a license, please be sure to indicate it above.

[^42]A
"A" Battery 61
A-Frame Mast 619
A-1 Operator Club 661
Ac 31
Ac-Operated Power Supplies 105
Afsk 460
Agc 251-253
Agc, Audio-Derived 252
Agc Time Constant 252
$A-m$ 368
AMSAT 10
AREC 654
ARPSC 654
ARRL 9
ATV 458.461
Abbreviations for Cw Work 663
Abbreviations Used in Text and Drawings
page prior to Index
Absorption 558
Absorption Frequency Meter 519
Adapters, Fm Receiving 432
Admittance 46
Alpha (Transistors) 85
Alternating Current 16,31
Aluminum, Cutting \& liinishing 548
Amateur Frequency Allocations 11,12,13
Amateur Radio 7
Amateur Radio History 9
Amateur Radio Emergency Corps (AREC) 654
Amaleur Radio Public Scrvice
Corps (ARPSC) 654
Amateur Television 464
Amateur's Code, The 6
Amperes 15
Amplification 63
Amplification Factor 64
Amplifiers
Audio (Modulators) 377
Buffer 136
Cascade 68
Circuits 154
Common-Base 86
Common-Collector 86
Common-Emittcr 86
Class A 67
Class A1 67
Class A2 67
Class AB 68
Class ABI 69.203
Class AB2 69
Class B 68
Class C 69
Design (Vh) 200
Differential 93,101
Grounded-Grid 72,154
IC 93
Intermediate Frequency 249,256
Linear 68
Operational 93,101
Parallel 154
Power 67
Push-Pull 154
Rf 260,290
Speech 385
Stabilizing 161,201
Straight 136
Vollage 67
Amplitude Modulation 58,371,377
Amplitude Modulation and Double-SidebandPhone368
Angle of Radiation 559
Anode 61
Antennas:
160 Meter 603
Bandwidth 588
Beam 609
Big-Wheel 328
Collinear 623,632
Conductor Size 591
Construction, Hf :
An End-Fed Hertz 598
Broad-Band Dipole 599
Inverted-V 593
Multiple-Tuned Short Dipole 604
Optimum-Gain 15-10-Meter Beam 614
Short 20-Meter Yagi 613
Small Yagi for 40 Meters 619
Threc-Band Quad Antenna System 615
Construction. Vhf:
5-Over-5 for 50 MHz 628
6-Eleınent $50-\mathrm{MHz}$ Yagi 629
5 -Element $144-\mathrm{MHz}$ Yagi 630
13-Element Yagi for 144 MHz 631
11 -Element Yagis for 220 and 432 MHz 632
Helical Antenna for 432 MHz 634
Dipole 590
Dummy Load 522
End-Fed Hertz 598
Ficld Strength 588
Ground-Plane 601
Half-Wave 590,593
Halo (Vhf) 330
Helical 634
Helical-Whip 326
Helically-Wound 606
Impedance 588
Input Impedance 576
Inverted V 593
Isotropic 623
Limited-Space 604
Loading Coils, Mobile 323
Long-Wire 594
Mobile 322-331
Mobile (Vh) 328-331
Multiband 595
Parabolic 633
Parasitic 609
Quarter-Wavelength Vertical (Vh) 330
Random-Length 582
Remote-Resonating 327
Supports 619
"Trap" 596
Two-Meter $5 / 8 \lambda$ Vertical 329
Vertical 600
Yagi 62.3
Alternator Noise 320
Antinode 569
ARRL Operating Organization 658
Assembling a Station 639
Astable Multivibrasor 518
Attenuators, Receiver Front End 263,264
Atom 14
Audio-Frequency lmage 257
Audio-Frequency Oscillators 521
Audio Frequency-Shift Keying 460
Auroral Propagation 563
Autodyne Detectors 235
Automatic Gain Control (Agc) 251-253
Autopatch 440
Autotransformer 40
Average Power 389
Awands, ARRL 7.660
B
"B" Battery 61
BCD 98
Bci 262.484
BFO 235.243.25
Bowdoin 9
BPL 661
BWO 78
Back Emf 30
Backscatter 560
Backwave 352
Backward Wave Oscillator 78
Balanced-Emitter Transistor 84
Balanced Emitters 151
Balanced Modulator 379
Ballasting Emitters 151
Balun, Coax 611
Baluns 579,580,625
Baluns, Coil 580
Band-Pass Coupling 47
Band-Pass Filters 48,257,493
Band-Pass Tuner 271
Bands, Amateur 11,12,13
Bandsetting 242
Bandspread Capacitor 242
Bandspreading 242
Bandwidth 236,422
Bandwidth, Antenna 588
Base (Transistor) 83
Bazooka 579
Beam, 20-Meter Vertical 617
Beam, Rotary 611
Beam Tetrode 72
Beams, Quad 612
Beat Frequencies 58
Beat-Frequency Oscillator (BFO) 235,243
Beat Oscillator 251
Beats 57
Beta (Transistors) 84
Bias and Tube Protection 150
Bias, Cathode 73
Bias, Contact Potential 74
Bias Power Supplies 126
Bias Stabilization Transistor 88
Big-Wheel Antenna 328
Binary-Coded Decimal (BCD) 98
Bipolar Transistor Symbols 104
Blankers 253
Bleeder Resistor, Power Supply 114
Block-Grid Keying 355
Blocking Capacitance 52
Boolean Algebra 98
Brass Pounders League (BPL) 661
Break-In 641,649
Break-In Keying 357,358
Bridge Circuits 509
Bridge Rectifier 111
Bridged-T Filter 259
Characteristic Curves (Tube) 63
Charge 14
Chassis, Working with 545
Chebyshev Filter 49,141,493
Chirp 140.352
Choke-Coupled Modulation 372
Choke, Filament 155
Choke-Input Filters, Power Supply 116
Chokes, Color Code for Rf 555
Chokes, Filter 117
Chokes, Rf 165
Chokes, Swinging 116
Circuit 14
Circuit Board Fabrication 551
Circuit Loop 18
Circuits, Balanced 53
Circuits, Single-Ended 53
Circuits, Unbalanced 53
Circular Polarization 634
Class A Amplifiers 67
Class AI Amplifiers 67
Class A2 Amplifiers 67
Class AB Amplifiers 68
Class ABI Amplifiers 69
Class AB2 Amplifiers 69
Class B Amplifiers 68
Class C Amplifiers 69
Clipping. Speech 391
Closed Repeater 436
Clubs:
Club Affiliation, Radio 659
Club Locations (Info) 8
Club Training Aids 659
Coaxial Cable, Testing 575
Coaxial Line 572,573 572,573
Code, Learning the 11
Code Proficiency Award 661
Code, Teleprinter 459
Code Transmission 352
Codes, Color 553
Coefficient of Coupling 29,52,521
Coil, Primary 37
Coil, Secondary
551
551
Coil, Winding
Coil, Winding
27
27
Coils, Iron-Core
Coils, Iron-Core
141
141
Coils, Oscillator 165
Collector (Transistor) 83
Collinear Antenna 623.632
Color Codes 553
Color Television 501
Colpitts Osclllator 139
Comparator 104
Complementary Metal-Oxide Semiconductor 10
Component Ratings 165
Component Values S52
Compressor Circuit 390
Computer-Aided Filter Design (CAD) 141
Concentric Line 572
Condenser 16
Conductance 19
Conductivity 17
Conductors 14
Connectors, Assembling 550
Constant-Vollage Transformers 107
Construction Practices and Data Tables 543
Contact-Potential Bias 74
Continental (International Morse) Code 8
Control Grid 63
Controlled Carrier Modulation 373
Conversion Efficiency 246
Converter 243
Converter Receiving (HF) 274
Converter, Receiving (RTTY) 460

Converter Stage 243
Cooling 152
Core, Choosing 59
Corona-Discharge Noise 322
Coulomb 15
Countries List, ARRL $661-662$
Coupled Circuits 45
Coupled Coils 29,53
Coupler, Directional 636
Coupler, Economy 587
Coupling:
Band-Pass 47
Broadband 161
Capacitive 496
Capacitor 66
Coefficient of 521
Critical 47
Impedance 66
Inductive 46
Inductive Link 157
Interstage 147
Link 47
Resistance $.66,386$
Resonant Circuit 46
Transformer 66
Tuned- 158
To Wave Guides \& Cavity Resonators 57
Critical Coupling 47
Critical Frequency 559
Cross Modulation 261.502
Crystal 237
Discriminator 431
Filters 257,383
Microphone 385
Oscillators 137
Oscillators (Vh) 200
Piezoelectric 51
Tester 534
Current Amplification Factor 84
Current Density 17
Current, Electric 15
Cut-Off Frequency 49,86
D Region 559
DTL 99
DX Century Club Award 660
DX Operating Code 652
DX, Working 650
D'Arsonval Instrument 506
De-Emphasis 424
Decay Time, Keying 352
Decibel (dB) 40
Decibel Chart 40
Deflection, Horizontal 523
Deflection, Vertical 523
Degenerative Feedback 69
Delta Loops 612
Delta Match 592,625
Demodulator (RTTY) 461
Depletion Region 83
Detection and Detectors 58,235,237
Detectors:
Autodyne 235
Crystal
Regenerative 241
Superregenerative 241
Deviation, Frequency 420
Deviation Linearity 426
Devjation Meter 425
Devialion Meter, Heterodyne 541
Deviation Ratio 421
Dials, VFO 143
Dielectric 23
Didectric Constant
93,101
Differential Amplifiers
355
355
Differential Keying
Differential Keying
96
96
Digital-L
Color Code, Semiconductor 556
Detectors 237
Germanium 80
In Paralle! 113
In Series 113
Junction 80
Light Emitting (LADS) 144
Mixer 294 294
Noise Generator 535
PIN 83,139
Protection of 112
Semiconductor 29,79
Sulicon 80
Switching 139
Transformer 251
Transistor Logic (DTL) 99
Voltage-Variable Capacitor 81
Zener 80.121
Dip Meter 520
Dipole Antenna 590
Dipole Antenna, Feeding 592
Dipole, Broad-Band 599
Dipole, Folded 577,592
Dipolc, Open-Wire Folded 592
Direct Conversion Receiver 237
Direct Current 16
Direct Wave 558
Directional Coupler 636
Directly Heated Cathode 62
Director (Antenna) 609
Discriminator, Crystal 431
Discriminators (Fm) 429
Dissipation, Plate 149
Dissipationless Network 45
Distributed Capacitance 53
Distributed Inductance 53
Divisions, ARRI 10
Dominant Mode 56
Double-Conversion Superheterodyne Receiver 24
Double-Sideband Generators 374
Doubler 136 136
Down Channel, Fm 436
Drift 140
Drift Frequency 352
Drift Oscillators 76
Drill Sizes 545
Driver Stage 68,136
Driver Stages (Vhl) 203
Drivers 146
Driving Impedance 151
Ducting 563
Dummy Antennas 522
Duplex 436
Dулаmic Characteristic 64
Dynamic Microphose 385
Dynamic Regulation, Power Supply I14
Dynamotors 331 331659
ECL 99
EME 474
Eddy Currents 28
Effective Attenuation 45
Efficiency 22
Efficiency, Transformer 38
Efficiency, Plate 67
E Layer 558
Electret Microphones 386
Electric Fields 15
Electrical Bandspreading 242
Electrical Laws and Circuits 14
Electrode 61
Electrolytic Capacitor 24
Electromagnetic l'ields 14
Electromagnetic Waves 15
Electromotive Force 16
Electron 14
Electron-Coupled Oscillator 138
Electronic Clock 640
Electronic Keyers 362,365,366
Flectric Field Strength 1.5
Electrostatic Shield 16
Elliptic-Function Filter 493
Emergency Communication 656
Emergency Coordinator (EC) 659
Enuergency Equipment 319
Emf
Back Emf 25
Definition 17
induced 25
Emitter (Transistor) 83
Emitter-Coupled Logic (ECL) 99
End Effect 590
End-Fed Hertz Antenna 598
Energy 22
Equipotential 15
Equivalent Noise Resistance 236
Etched Circuit Boards 551
Exciting Voltage 67
Extra Class License 10
F
F Layes 559
$F 1$ and F2 Layers 559
FAX 471
FCDA 657
FET 90
Fm 420
Fm Adapter 433
Fm Amplifier (220) 432
Fm Bibliography 447
Fm Channel Frequencies 435
Fm Communications 433
Fm Touch-Tone Decoder 440
Fm Transmitters, Testing 425
Facsimile 471
Fading 560
Farad 23
Federal Civil Defense Administration (FCDA) 657
Feedback 69 .260
Field-Effect Transfer Symbols 104
Field-Effect Transistors (FET) 90
Field Intensity
Filtering, Power Supply114
Filters:
Active 103
Band-Pass 49,257
Band-Rejection263
Bridged-T 259
"Brute Force" Line 485
Capacitive Input 115
Choke Input 116
Crystal 257,383
Design Formulas
For Vhf Transmitters 50 499
Half-Lattice 258
High-Pass 49.141 .502
Low-PassMechanicalStrip-Line49.141.497
257,383500
T-Match 259
Fire Protection 643
Five-Band WAS Award 660
Five-Band DXCC A ward 660
Fixed Capacitor 24
Flat Frequency Response 69
Flat-Topped Curves 47
Flip-Flop (FF) 97.98
Flip-Flop Latch (FL) 97
Flux Density 15
Flux Lines 15
Folded Dipole 577,592,625
Forward Scatter 560
Free-Running Multivibrator 518
Free Space Pattern 589
Frequencies, Standard 540
Frequency 16
Frequency Checking (Fm Channels) 425
Frequency, Critical 559
Frequency, Cur-Off 49
Frequeлcy Deviation 420
Frequency, Lower Side 58
Frequency Marker Circuits 518
Fiequency Marker Generator 517
Frequency, Maximum Usable 559
Frequency Measurement 517-519
Frequency Meter, Absorption 519
Frequency Modulation 420
Construction:
Fm Transmitter for 2 Meters 447
Solid-State Rf Amplifier 450
Two-Meter Receiver 454
Exciters 424
Jargon 436
Methods 423
Reception of 426
Frequency Modulation and Repeaters 420
Frequency Multiplication 17
Frequency Multiplier 136,145,200
Frequency, Resonant 41
Frequency Response 386
Frequency Scaling 47
Frequency-Shift Keyer 460
Frequency-Spectrum Chart 556
Frequency Spotting 640
Frequency Stability (Oscillators) 76
Frequency Standards 518
Frequency, Upper Side 58
Front-io-Back Ratio 588
Full-Wave Bridge Rectifier 111
Full-Wave Rectifier 111
Fundamental Frequency 17
Fusing 106,642
G
Gain, Antenna 588
Gain Bandwidth 588
Gain Bandwidth Product 85
Gain Control 387
Gain, Rf Amplifier 290
Gamma Match 578,611,625
Ganged-Tuning Capacitors 243
Gates (IC) 97
Gauges, Standard Metal 548
General License 10
Generator 16
Generator Noise 320
Geophysical Alerts 540
Gradient 16
Grid 63
Grid Capacitor 75
Grid Current 63
Grid-Dip Osciliator (GDO) 529
Grid Excitation 76
Grid Leak 75
Grid-Leak Detectors 241
Grid Loading 163
Grid Modulation 373
Grid-Plate Oscillator 138
Grid Resistor 66
Grid Separation Circuit 72
Ground 16
Ground, Imperfect 589
Ground-Plane Antenna 601
Ground-Reflected Wave 558
Ground Waves 558
Grounded-Grid Amplifier 72.154
H
Hf Antennas 588
Hf Transmitting 136
HTL 99
Hz 17
Half-Wave Antenna 590
Half-Wave Rectifier 111
Halo Antenna (Vhf) 330
Halyards 421
"Hams" 7
Harmonic Suppression, TVI 491
Напmonics 17
Harmonics by Rectification 501
Hartley Oscillator 139
Hash Elimination, Vibrator Power Supply 332
Heat-Sink Design 152
Heat Sinks 86
Heat Sinks, Semiconductor 546
Heater Voltage 149
Height Gain 623
Heising Modulation 372
Helical Antennas 634
Helical Resonators 293
Hetically-Wound Antennas 606
Hemy 26
Hertz 17
Hertz Antenna, End-Fed 98
Heterodyne Detectors 235,239
Heteradyne Deviation Meter 541
Heterodyning
Hum, Filament 73
Hybrid Circuits 477
"Hypass" Capacitor 494
Hysteresis 28
I
IC 93
IC Amplifiers 93
ICAS Ratings 149
ICs. Digital 100
I-f 243
l-f Alignment 269
1-f Interference 502
I-f Transformers 251
ITV 505
Ignition-System Noise 319-322
lonized
257
257
Image-Audio-Frequency
183
183
Image-Parameter Filter
Image-Parameter Filter
244
244
Image Ratio
Image Ratio
244
244
Impedance (Z) 35.589
Antenna 588
Bridge, Rf 536
Characteristic 567,573
Coupling 66
Driving 151
Input 570
Matching 39.624
Matching Networks 53
Modulating 372
Ohm's Law for 36
Parallel 43
Ratio 38
Resistive 43
Surge 6 6
Transformation 44,471
Transmission Line 567
Tube Input 72
Tube Output 72
Voltmeter 514
Impulse Noise 253
Incident Powes 568
Indicators, Tuning 255
Indirectly Heated Cathode 62
Inductance 14.25
Inductance, Calculating 26
Inductance Charts 27
Inductance, Distributed 53
Inductance Nomograpla (Toroid) 60
Inductance, Series and Parallel 29
Inductive Reactance 33
Inductive Reactance (Formula) 33 33
Inductor, Toroidal 58
Infinite-Impedance Detector 239
Insertion Loss 45
instantaneous Value 17
Instrument Noise 321
Insulated-Gate 91
Insulators 16
Interdigital Converter for 1296 or 2304 MHz 315
Integrated Circuits (IC) 93
Integrated Circuits, Digital-Logic 96
Interference:
Broadcast Station 262
Filters 492
From TV Receivers 501
Telephone 505
I-f 444 444
Hi -Fi 502
Organ 505
P-A System 505
Telephone 505
TVI 485
Interference with other Services 484
Intermediate Frequency 243
Intermediate Frequency Amplifiers 256
International Prefixes 662
Inverse Distance Law 557
Inverted-V Antenna 593
Inverted V, Multi-Band 594
Inverters (IC) 97
Inverters, Dc to Ac 335
Ion, Positive/Negative 15
lonospheric Storms 560
Ionospheric Waves 558
Isotropic Antenna 623
J
d-K Flip-Flop 98
Joule 15
Key Clicks 352
Key, Code 12
Keyer, Electronic 362,365,366
Keyer, Frequency-Shift 460
Keying
Audio Frequency-Shift 460
Block-Grid 355
Break-In 357,358
Dirrerential 355
Monitoring 358,359
Oscillator 354
Pulling 353
Saturated-Diode 460
Shaped 352
Speeds 355
Testing 358
Kilo (k) 20
Kilowate 22
Kilowatt-Hour 23
Klystron 77
L
L Network 53
Ladder Network 45
L/C Constant 45
L/C Ratio 45
LEDs 144
LSI 98
Laminations, Core 28
Large-Scale Integration (LSI) 98
Leakare Flux 38
Length. Electrical 574
License Fee 10
License 8
The Radio Amateur's License Manual 11
Light-Emitting Diodes (LEDs) 144
Lightning Arrester 643
Lightning Protection 643
Limiters 428
Limiters, Noise 322
Limiting, Audio 253
Line Sampler 636
Line-Voltage Adjustment 107
Linear Amplifiers 68
Linear Baluns 579
Linear Sweep 523
Logic. Digital 96
Logic ICs 93
Long-Wire Antennas 594
Low. μ Tube 64
Low-C Circuit 45
Low Band, Fm 436
Low Pass Filter 48,141,497
Low-Pass Filter (TVI) 497
Lower Sideband 58
M
M-Derived Filter 183
Mho 19
MOS 99
MOSFET 90
MOX 398
Muf 559
Machine, Fm 436
Magnetic Storms 560
Magnetizing Current 38
Marine Operation 335
Mast, 40-Foot 619
Mast Antenna 619
Matching Network 53
Maxim, Hiram Percy 7
Maximally Flat Response 48
Maximum Available Power 45
Maximum Average Rectifier Current 80
Maximum Safe Inverse Voltage (PIV or PRV) 80
Maximum Usable Frequency (Muf) 559
Mechanical Bandspreading 242
Mechanical Filter 257,383
Medium- μ Tube 64
Medium-Scale Integration (MSI) 98
Mega (M) 20
Message Form 653
Message Handling 654
Metal, Cutting and Bending 548
Metal-Oxide Semiconductor (MOS) 99
Meteor Scatter 564
Meter, Field Strength 531
Metering 164
Metering Circuits 164
Metric Multiplier Prefixes 555
Micro (μ) 20
Microammeter 506
Microfarads ($\mu \mathrm{F}$) 23
Microhenry ($\mu \mathrm{H}$) 26
Micromho 19
Microphones 385
Microphones, Carbon 386
Microphones, Dynamic 386
Microphones, Electret 386
Microphones, Piezoelectric 386
Miller Effect 70
Milli (m) 20
Milliammeter 506
Millihenry (mH) 26
Milliwatt 22
Mix, Don 9
Mixer 243.246.294-296
Mixer, Balanced 248
Mixer Circuits 295
Mixer, Diode 294
Mixer Products 244
Mixer, Ssb 384
Mixer Stage 243
Mixer (Vhf) 246,294
Mobile and Portable/Emergency Equipment and Practices 319
Mobile Antennas 322-331
Mobile/Portable Construction
Power Supply for Transceivers 333
Band-Switching Field-Strength Meter 336
Postable Station for 14 and 7 MHz 337
The Mini-Miser's Dream Receiver 342
Solid-State Recejver for Portable Use 347
A Transmatch for QRP Rigs 350
Mobile Power Supplies 331
Mode, Dominant 56
Modulating Impedance 372
Modulating Index 421
Modulation 57
Amplitude 58
Balanced 379
Choke-Coupled 372
Collector 371
Controlled Carrier 373
Cross 261,502
Envelope 368
Fm 420
Grid 373
Heising 372
Percentage 369
Phase 420
Plate 371
Screen Grid 373
Modulator, Balanced 379
Modulator, General Purpose 377
Modulator, Phase 424
Modulator, Reactance 423
Monimatch 517
Monitor, Cw 359
Moon Bounce 564
Motor-Speed Control, Triac 544
Moving-Vane Instrument 506
Multi-Band Inverted V 594
Multi-Band Vertical Antenna 595
Multihop Propagation 560
Multipliers, Frequency 145
Multivibrator, Astable 518
Multivibrator, Free-Running 518
Mutual Conductance (Gm) 64
Mutual Inductance 29
N
N-Type Material 79
NTS 656
National Traffic System (NTS) 655,656
Negative Feedback 69
Nets 7,657
Network Operation 656
Networks, Impedance-Matching 48
Neutralizing 162
Neutron 14
Nixies 144
Noise
Alternator 320
Corona-Discharge 322
Elimination 319
Generator 320
Ignition-System 319-322
Impulse 253
Instrument 321
Shot-Effect 236
Spark Plug
Nonsynchronous Vibrator Power Supplies 332
Normalization 47
0
Official Bulletin Station (OBS) 659
Official Observer (OO) 659
Official Phone Station (OPS) 659
Official Relay Station (ORS) 659
Official Vhf Station (OVS) 659
Ohmmeter 508
Ohms 18
Ohm's Law 17.20
Ohm's Law (Impedance) 36
Ohin's Law (Reactance) 34
Old Timer's Club (OTC) 662
On-Card Regulators 124
Op Amps 101
Open Repeater, Fm 436
Open-Wire Folded Dipole 592 592
Operating a Station 646
Operating an Amateur Radio Station 654,655
Operating Angle 69
Operating Point 65
Operational Amplifiers 93,101
Organ Interference 488
Oscar, Project Inc. 458
Oscillation 70
Oscillators 75
Audio-Frequency 521
Beat
Beat 251 251
Beat Frequency (BFO) 235,243
Carrier 384
Circuits 137
Coils 141
Colpitts 139
Crystal-Controlled 136,137,200
Dynamic Instability 76
Electron-Coupled 138
Frequency Stability 76
Grid-Plate 138
Ground Point 76
Hartley 139
High- 76
High-Frequency 248
Keying 354
Permeability-Tuned (PTO) 144.242
Pierce 137
Self-Controlled 136
Tunable 297
Twin-T Audio 522
Variable-Frequency (VFO) 136,139,200
Vhf 200
Voltage-Controlled 143 143
Wide-range Audio 532
Oscilloscope
Oscilloscope Circuit 524
Oscilloscope, Using the 374,399,468
Overlay Transisto 84 84
Oxide-Coated Cathode 62
P
P-Type Material 79
P-A System Interference 488
PAM 658
PEP 153,370,389
PIN Diodes 83,139
PLL 143,431
Pm 420
PRAMs 100
PROMs 100
PRV 110
PSHR 662
PTO 144,242
Padding Capacitor 243
Page Printer 459
Parabolic Antennas 633
Parallel Circujts, Resonance 42
Parallel Feed 52
Parallel Resistance 20
Parasitic Oscillation, Low-Frequency 164
Parasitic Oscillation, Vhf 163
Parasitic Suppression (Vhf) 202
Parts, Finding 556
Pass-Band Filter 49
Peak Envelope Power (PEP) 153,370,389
Peak Power 389
Peak Reverse Voltage (PRV) 110
Pentodes 71
Permeability 27
Permeability-Tuned Oscillator (PTO) 144.242
Permittivity 15
Phase 31
Phase-Inverter Circuits 387
Phase-Locked Loop 143,431
Phase, Measuring 32
Phase Modulation 420
Phase Modulator 424
Phase-Splitter Circuits 387
Phone Activities Manager (PAM) 658
Phone Patching 476
Phone Patch Circuits 477
Phonetic Alphabet 652
Pi Network 49
Picofarads (pF) 23
Piezoelectric Crystals 51
Piezoelectric Effect 51
Piezoelectric Microphone 386
Pilot Lamp Data 555
Pinch Off 91
Pi Network 54,158
Pi-Network Coupling 147
Pi-L Output Tanks 159
Pi Output Tanks 159
Plate 61
Detectors 238
Dissipation 149
Efficiency 67
Modulation 371
Resistance 64
Resistor 66
Transformers 108
Voltage 150
Point-Contact Diode 79
Polarization 588
Polarization, Circular 634
Polarization, Radio Wave 557
"Poles" (Filter) 50
Positive 15
Positive Feedback 69
Potential 15
Power 22
Amplification Ratio 67
Amplifier 67
Average 389
Construction
9-15 Volt (2 amo .) Regulated 127
Universal Supply 130
$3000-$ Volt Power Supply 133
Nichel-Cadmuim Battery Charger 134
Dynamic Regulation 114
Economy 117
Filtering 114
Load Resistance 114
Mobile 331
Power Supplies, Mobile, Construction Power Supply for Transceivers 333
Outpu: Capacitor 116
Resonance 116
Ripple Frequency 114
Static Regulation 114
Transformerless 105
Vibrator 331
Voltage-Multiplying Circuits 118
Voltage Regulation 114,120
"Powerstat" 40
Pre-Emphasis 424
Predictions, lonospheric 561
Prefixes, International 662
Premixing, VFO 143
Prescaler 100
Preselector, Receiver 265
Primary Circuit 45
Primary Coil 37
Printed Circuit Boards 551
Printer, Page 459
Printer, Tape 459
Probe, Rf 515,535
Probe, Meter 511
Product Detectors 239
Propagation 557-564
Propagation, Vhf 562-564
Propagation Forecasis 540
Propagation, Modes of 55
Proton 14
Public Service 9,652
Public Service Communicarions 654
Public Service Honor Role (PSHR) 662
Pulleys 421
Pulling 140
Push-Pull Circuit 146
Push-Pull Multiplier 146 68
Push-Pull (Tubes)
Push-Pull (Tubes)
Push-to-Talk Switch 640,641
Q
QRP Equipment 347,350
Q Muttipliers 259
Q Section 576,626
Q Signals 647
Q, Tank 156 156
Q. Unloaded 42
OSL Bureaus 653
QSL Cards 653
QST 10
Quad Beams 612
Quieting (Fm) 428
R
Rf Chokes 165
RIT 399
RM 658
RST System 647
RTL 99
RTTY 458
Radiation 571
Radiation Angle 589
Radiation Resistance 591
Radio Amateur Civil Emergency Service (RACES) 9,654.657.658
Radio Frequencies 17
Radio Frequency Amplifiers (Receiving) 260
Radio Frequency Choke (Rfc) 52
Radiogram 654
Rag Chewers Club (RCC) 661
Random Access Memory (Digital ICs) 100
Ratings, Component 165
Ratio Detector 430
Ratio, Deviation 421
Ratio, Front-to-Back 588
Ratio, Image 244
Ratio, Power-Amplification 67
Reactance 32
Reactance Modulator 423
Resctance, Ohm's Law for 34
Reactance Table 34
Reactance Values 45
Reactances in Series and Parallel 35
Reactive Powcs 35
Read-Only Memory (Digital ICs) 100
Receiver
Characteristics 235
Communications Receiver with Digital Frequency Readout 274
Direct-Conversion Kilogram
for 20 and 40 Meters 337
Receiving Package for
NBS Ears 269
Solid State Receiver for Portable Use 347
Some Receiver Design Notes 260
Construction, Vhf
MOSFET Preamplifiers for 10,6 and2 Mctcrs298
Low-Noise Converters for
50 and 144 MHz 300
Oscar Up-Converter 312
Direct Conversion 237
Double-Balanced Mixer 304
Double-Conversion Superheterodyne 244
Preselector 265
Selection 271
Sensitivity, Improving 264
Stability 237
Superheterodyne 243
Superregenerative 297
Tracking 262
Tuning 242,26B
Fm 426
Improving Fm 446
Receiver Independent Tuning 399
Receiving Converter 460
Receiving Systems 235
Rectification 62
Rectifiers:
110
110
Circuit
Bridge 111
High-Vacuum 111,V19
Instruments 512
Ratings 111
Semiconductor 111.V24
Silicon Controlled 100
Reflected Power 568
Reflectometer 516
Reflector (Antenna) 609
Refraction 558
Regeneration 257
Regulators, Solid-State 123
Regulator Tubes, Gaseous 120,V19
Reinartz, John 8
Remote Base, Fm 436
Repeater Circuits 437
Repcaters, Fm 435
Reperforator 459 459
Resistance 14,18
Resistance Coupling 6,386
Resistance, Equivalent Noise 236
Resistance, Parallel and Series 20
Resistance, Plate 64
Resistance. Radiation 591
Resistors 17,19
Cathode 73
Color Code 553
Grid 66
Plate 66
Screen Dropping 74
Transistor Logic (RTL) 99
Al Radio Frequencies 522
Resonance Curve 42,236
Resonant Frequency 41
Resonance in Parallel Circuits 4
Resonance in Series Circuits 41
Resonances, Natural 53
Resonance, Power Supply 116
Resonant Line 54,571
Resonators, Cavity 56
Resonators, Helical 293
Ripple Frequency, Power Supply 114
Route Manager (RM) 658
S
Scam 467
Scfm 467
SCM 658
SCR 100
S Meters 255
S-Meter Circuits 256
SSTV 458,466
SWR 570
SWR Measurement 516
Safety 642
Satellites (Amateur) 474
Saturated-Diode Keying 460
Saturation Point 62
Scaler 426
Scatter (Propagation) 563
Schematic Diagram 14
Schmitt Trigger (ST) 97
Screen-Grid Modulation 373 373
Screen-Girid Tubes. 71
Screen Voltage 150
Secondary Circuil 45
Secundary Coil 37
Secondary Emission 71
Selective Fading 560
Selectivity 42.47,235
Seleclivity, Improving 256
Selcctivity, Rf 293
Semiconductor Bibliography 104
Definition 14
Devices 79,V24
Symbol List 235
Sensitivity 235
Series Circuits. Resonance in 41
Scries Resistance 20
Section Communjeations Manager (SCM) 658
Sharp-Cutoff Tubes 72
Shielding, TVI 492
Shields 16
Short-Ciscuit Current Transfer Ratio 86
Shorting Stick 642
Shot-Effect Noise 236
Shunt, Meter 507
Sideband, Lower 58
Sidebands 368
Sideband Transmitter, Testing 399
Sideband, Upper 58
Signal-Strength Indicators 255
Signal-to-Image Ratio 244
Signal-to-Noise Ratio 290
Silicon Controlled Rectifier 100
Simplex 436
Single Shot (SS) 97
Single Sideband Construction: Solid-State Transceiver for 160 Meters 414
Single Sideband. Filler Method 379,382
Single Sideband for the Radio Amateur 379
Single Sideband, Phasing Method 379
Single Sideband Phone Reception 268
Single-Sideband Transmission 379
Single-Signal Effect 256
Single-Signal Reception 257
Skin Effect 19
Skip Distance 559
Skip Zone 559
Skirt Selectivity 236
Sky Wave 558
Slow-Scan Television 466
Soldering 548
Solid-State Devices 79
Solar Phenomena 559
Space Charge 61
Space Communications 474
Space Wave 558
Spacing Wave 352
Spark Gaps 16
Spark Plug Noise 320
Specialized Communications Systems 458
Speech Amplifter 385
Speech Clipping 391
Speech Processing 391, 424
Speech Processor, Audio 394
Sporadic-E lonization 561
Spurious Response (Chart) 245
Squelch Circuits 267
Stability 235
Stability, Receiver 235.237
Stability. Rf Amplifiers 290
Staggered Tunins 47
Standard Frequencies and Time Signals 540
Standards, Slow Scan 467
Standing Waves 568
Start-Stop (RTTY) 459
Static Regulation, Power Supply 114
Station Assembly 639-645
Station Operating 646-663
Stop-Band filter 49
Strip-Line Filters 500
Subcarrier A•m 467
Subcarrier Fim 467
Sunspot Cycle
Symbols, Bipular Transistors 104,V26
Symbols, Ficld-Effect Transistors 104
Symbols, Logic 96
Symbols, Schematic
332
Synchronous Vibrator Power Supplies
T
T-Match 578,611
T-Notch Filter 259 259
TE Propagation 562
T-R Switch 357
TRF Receiver 237
TTL 99
TVI 485
TVI, Vhf 204
TW'I 78
Tank Circuit Design (Vht) 201
Tank Coils 165
Tank Q 156
Tape Printer 459
Tapped Coil 53
Technician License 10
Telefax Transceiver 472
Telephone Interference 488
Teleprinter Code 459
Television. Amateur 461
Television, Color 505
Television Interference 489
Television. Slow-Scan 466
Television, Uhf 504
Television, Vhr 489
Temperature Compensation 140
Tertiary Winding 251
Test Equipment and Measurements 506
Test Equipment Construction
Frequency Counter 527
Marker Generator for 100, 50. and 25 kHz 525
Absorption Frequency Meter for $1.6-300 \mathrm{MHz}$ 531
Tester for HET and Bipolar Transistors 533
Rf Impedance Bridge for Cuax Lines 536
Low-Power RF Wattmeter 539
Heterodyne Deviation Meter 541
Tetrode Transmitting Tubes V22
Thermal-Agilution Noise 236
Thermal Runaway 86,88
Thermionic Emission 61
Thermistors 89
Ther mucouple Meter 512
Thoriated Tungsten Cathode 62
Time Constant 29-31
Time Signals 54()
Tone Burst, Fm 439
Tools 543
Tonc Beep Keyer for Repeaters 444
Toroidal Inductors 88
"Touch-Tone" 440
Tower, Till-Over 620
Tracking, Receiver 262
Transadmittance 92
Transatlantics 8
Transceiver, Portable for 144 MHz 342
Transceiver. Telefax 472
Transceivers, Single Sideband 397
Transconductance 64
Transequatorial Propagation 562
Transformers 37.58
Construction 39
Coupling 66.387
Iron-Core 37
Constant-Voltage 107
Diode 251
Filament 108
I-f 251
I-f Interstage 251
Lead, Color Code for 554
Linear 576
Plate 108
Quarter-Wave 576
Rewinding 109
Triple-Tuned 251
Transient Problems, Diode 113
Transistors
Arrays (IC) 93.95.96
Balanced Emitter 84
Characteristic Curves 85.92
Characteristics 84
Cuoling 152
Current Sink 93
Field Effect (FET) 91
Low-Frequency Purasitics 164
Multipliers 146
Overlay 84
Parameters 86
Power Supplies 332-336
Ratings 151,V24
Testers 533.534
Unijunction 100
Transistor-Transistor Logic (TTL) 99
Transition Regiun 83
Transmatches 625
Transmatch Construction
For Balanced of Unbalanced Lines 583
For QRP Rigs 350
For 50 and 144 MHz 635
Simple Coupler for Balanced Lines 586
Variable Inductor 587
Transmission Lines 573,624
Transmission Lines, Losse 574
Transmitter Construction, Hf
The KIZIH Transceiver 166
Conduction-Cooled Two-Kiowatt Amplifier 186
Low-Power SSB/CW Transmitter for 80 or 20 Meters 409
QRP Ttansceives Amplifier 195
Two-Kilowatt Amplifier Using an 8877 190
Two-Kilowatt A mplifier for 144 MHz 222
Ulita Portable Cw Station for 40 Mcters 347
160-Mcter Anplifier 184
Solid-State Transceiver for 160 Meters 414
transmitter Construction. Vhf
500-Watt Fm and Cw Transmittes for 220 MHz 212
Varactor Tripler for 432 MHz 217
Grounded-Grid 5(1-MHz Amplifier 219
Kilowatl Amplifier for 144 Milz 222
Varactor Tripler for 432 MHz 218
A Tripler Amplifier for 432 MIIz 226
A Solid-State FM Transmitter for 146 MHz 447
Transmitter Distributer 459
Transmitter Power Output 153
Tsansmitting liflers 183
Transverse Electric Mode (TE) 55
Transverse Magnetic Mode (TM) 55
Transverter 199
Transverter Construction
$\mathrm{SO}-\mathrm{MHz}$
Traps, Harmonic 492
Traps, Parallel-Tuned 263 263
Traps, Series-Tuned 263
Traveling Wave Tube 78
Triacs 100
Trimmer Capacitor 242
Triode Transmitime Tubes V20
Triodes 63
Tispler 136
Tropospheric Bending 563
Tropospheric Propagation 561
Tropospheric Waves 558
Tube Element 61
Tube Ratings 149, VI
Tube, Uhf and Microwave 77
Tubes, Screen Grid 71
Tubing, Aluminum 618
Tune in the World with Ham Radio 8
Tune-Plate-Tune-Grid-Circuit 75
Tuned-Radio-Frequency Receiver (TRF) 237
Tuning Rate 242
Tuning, Receiver 242
Tums Ratio 37
Twin-T Audio Oscillator 522
Two Hundred Meters and Down 9
Two-Tone Test 402,527
Two-Wire, Half-Wave Antenna 592
U
UST 100
Uhf Circuits 54
Uhf Television 504
Unijunction Transistor 100
Units, Electrical 17
Up Channel, Fm 436
Upper Sideband 58
V
Var 35
VCO 143
VFO Circuits 139.141
Vhf and Uhr Antennas 623
Vhf and Uhf Receiving Techniques 290
Vhf and Uhf Transmitting 199
Vhf Parasituc Oscillation 163
Vhf Television 489
Vhf TVI 204
VOM 506
vox 398.477
VOX Transistorizod 403
VR Tubes V19.120
VTVM 510
Vacuum-Tube Principles 61
Vacuum-Tube Voltmeter (VTVM) 510
Vacuum Tubes and Semiconductora V
Varactor 81
Varactor Multiplier (Vh?) 200
Variable- μ Tubes 72
Variable Capacitor 24
Variable-Frequency Oscillators 136,139,200
"Variac" 40
Varicap 81
Vault, Fm 436
Velocity Factor 15
Vertical Angle of Maximum Radiation 588
Vertical Antennan 600
Vertical Deflection 523
Vertically Polarized 557
Vertical Heish 558
Vibrator Power Supplies 331
Voice Operating Procedure 649
Volt 15
Volt-Ampere Rating 109
Voli-Ampere-Reactive (Vas) 35
Voli-Ohm-Millammeter (VOM) 506
Voliage
Amplification Ratio 65
Amplifier 67
Breakdown 24
Controlled Oscillator (VCO) 143
Dividers 126
Doublers 118
Drop 21
Dropping 119
Exciting 67
Gain 66
Plate 150
Quadruplers 118
Regulation, Power Supply 114,122
Screen 150
Stabilization 81.120
Triplers 118
Voltage-Controlled Oscillator 143
Voltage Loop 569
Voltage Node 569
Voltage Regulation, Electronic 122
Voltmeter 507
Volume Compression 391
W
WWV 540
WWVH 540
WIAW 11,659
Walt 22
Watt-Hour 23
Wattmeter, Low-Power RF 539
Watt-Second 23
Wave Angle 559
Wave Envelope 374
Wave-Envelope Patterns 392,401
Wave I'ilters 183
Wave Front 557
Wave Guides 55
Wave Guide Dimensions 56
Wave Propagation 559
Wavelength 17
Wheatstone Bridge 509
Wheel and Tire Static 321
Whistle On, Fm 439
Wire, Colos Code for Hookup 555
Wire Table, Copper 556
Wiring 549,642
XYZ
X (Reactance) 32
Yagi Antenn 623
Yagis, Short and Long 627
Yagis, Stacking 627
Z (Impedance) 35
Zener Diodes 80.121
Zero-Bias Tubes 68

[^0]: Example: A $0.01-\mu \mathrm{F}$ capacitor to charged to 150 volis and then allowed to dischange through a 0.1 -megohm resistor. How tong will it tate the voltage to fall to 10 volts? In percentage, $10 / 150-6.7 \%$. From the chart, the factor corresponding to 6.2% in 2.7. The time consiant of the circuit is oqual to $R C=0.1 \times .01=.001$. The time is therefore $2.7 \times 0.001=.0027$ second. or 2.7 milliseconds.

[^1]: 1Q1. Q2, and Q3 designations used here are those assigned to cores made by Indiana General Corp., Keasbey. NJ 08832. Other manufactures of ferramic materials use different identifying codes.

[^2]: 3Indians General Corp, Electronics Div./ Fenctes, Keasbey, NJ 08832. Also, Ferroxcube Corp. of America, Saugerties, NY 12477 and Amidon Associates, 12083 Otsego St., N. Hollywood, CA Yib07.

[^3]: Example: An ff receiving pentode has a rated screen current of 2 milliamperes (0.002 amp) at normal operating conditions. The rated screen voltage is 100 volts, and the plate supply gives 250 volts. To put 100 volis on the screen, the drop across R must be equal to the difference between the platesupply voltage and the screen voltage; that is. 250-100-is0 volte. Then

[^4]: Typical silicon and germanium diodes of the present era. The larger units are designed to handle high current.

[^5]: Example:
 Required de output volts - 25
 Load current to be drawn - 500 mA (0.5 ampere)
 Input capacitor - $1000 \mu \mathrm{~F}$

[^6]: ${ }^{1}$ A package including the two power transformers and the two filter chokes is available from Hammond Manufacturing Company, Inc., 1051 Clinton Streat, Buffalo, NY 14240, for approximately $\mathbf{\$ 6 0}$. In Canada, the address is Hammond Mfg. Co., Ltd., 394 Edinburgh Rd., North Guelph, Ontario. Catalos avaliable.

[^7]: ${ }^{2}$ Hilk, "Single Band SSB Transceiver." Ham Radio, Nov., 1973.
 ${ }^{2}$ Lowe. "A 15 -Watt Output Solid-State Linear Amplifier for 3.5 to 30 MHz ." QST. Dec.. 1971.

[^8]: ${ }^{3}$ Schubert, "Lowpass Filters for Solid State Linears," Ham Kadio, March, 1974.

[^9]: 1 Brayley "Coaxial-Tank Arpplifier for 220 and 420 MHz " ${ }^{2}$ ST, May 1981. Also, VHF Manual. Chapler 10.

[^10]: ${ }^{1}$ Knadle, "A Strip-Line Kilowatt Amplifier for 432 MHz "" QST, in two parts: Part I, April, 1972, p. 49: Part II, May, 1972 , p. 59.
 ${ }^{2}$ Relcher. "Rt Matching Techniques, Design and Example," QST. October. 1972.

[^11]: 4Temprobes Tort Kil, by Tempia ${ }^{\circ}$, Hamilon Blvd.. South Plainfield, NJ 07080.

[^12]: 6McMullen, "The Line Sampler," QST, A pril 1972. Also in $F M$ and Repeoters for the Radio Amateur, Chapeer 10, and The Radio Amateur's VHF Manual, Chapter 14.

[^13]: Example: What fixed shunl capacilance will allowa capecitor with a range of 3 to 30 pl to tune 3.45 to 1.05 MHs?

 $$
 (4.05-3.43)+4.05=0.148
 $$

[^14]: ${ }^{1}$ Spectrum International. P. O. Box 87 , Topsfield, MA 01983. Also McCoy Electronicn Co., Mount Holly Springs, PA.

[^15]: ${ }^{1}$ Tilton "The DXer's Crystal Ball." Parts I through III, QST. June, August and September, 1975.

[^16]: Two versions of the preamplifier. The one in the box is for 2-meter use. Toroids are used in the six-meter version (right) and in the ten-meter preamplifier (not shown). Input is at the right on both units. The extra if choke and feedihrough capacitor on the right end of the Minibox are for decoupling a crystal-current metering circuit that is part of a $2304-\mathrm{MHz}$ mixer.

[^17]: †See appendix on nolse figure.
 $\ddagger_{\text {See appendix }}$ for mixer terminology.

[^18]: ${ }^{3}$ ºpreientation and calculation formst of thase terms is based on "low adde" LO injection. See the appendix for explenation.

[^19]: 'Fisk, "Double-Balanced Mixers," Ham Radio, March, 1968.
 ${ }^{2}$ Ress, "Broadband Double-balanced Modulator," Ham Radio, March, 1970.
 ${ }^{3}$ DeMaw and McCoy: "Learning to Work with Semiconductors," Part IV, QST, July, 1974.
 ${ }^{6}$ Sabin, "The Solid-State Receiver," QST, July. 1970.
 ${ }^{7}$ Hayward, "A Competition-Grade CW Receiver," QST. March and April 1974.

[^20]: 'Flsher, "Interdigital Bandpass Filters for Amateur VHF/UHF Applications," QST March, 1968.

[^21]: ${ }^{1}$ Components plus a circuit board for the audio filter may be obtained from MFJ Enterprises. P.O. Box 494. Miasissippi State, MS 39762

[^22]: ${ }^{2}$ As a service to those who wish to avail themselves, ready-made circuit boards may be obtained through James Garrett, WB4VVF, 126 W. Buchanon Ave., Orlando, FL 32809. All boards are glass epoxy and drilled. At the time of this printing, the Accu-Keyer board is $\$ 3.50$. The memory, readout. and readout-driver boards are $\$ 12$ as a set. The memory board, if ordered alone, is $\$ 6$.

[^23]: ${ }^{1}$ A glassepoxy board, pre-drilled, is available for $\$ 3.50$ from James M. Garrett, WB4VVF. 126 W. Buchanon, Orlando, FL 32809.

[^24]: 1 McCoy Dectronics Company, Me. Holly Springs, PA.

 2 Specinum Intemational, Topsfield, MA.
 3 E. S. Electronic Lahs, 31 Augustus, Excelsior Springs, MO.

[^25]: 1 Because the rectification and logarithmic operations performed upon the original speech signal are nonlinear, the frequency spectrums of the actual envelope and voice carrier signals are, strictly speaking, not exactly the same as those of the signals appearing at the output of the logarithmic amplifier. The main result of these operations is to introduce additional higher-frequency components not present in the original signal. It has been determined, however, that the logarithm of the rectified speech envelope is still primarily low-frequency in nature (mostly far below 100 Hz). This is sufficient to allow the processor to operate as originally described.

[^26]: ${ }^{2}$ One source for this item: Tri-tet, Inc., Box 14206, Phoenix. AZ 85031.

[^27]: ${ }^{1}$ Recommended for amateur libraries. Order from local radio store, or write RCA Electronic Components, Harrison, NJ 07029. Price: \$2.

[^28]: ${ }^{2}$ See parts list for ordering information.

[^29]: 5 DeMaw, "A Single-Conversion 2-Meter FM Receiver," QST, August, 1972.
 ${ }^{6}$ Hejhall, "Some 2 -Meter Solid-State RF Power-Amplifier Circuits." QST, May, 1972, p. 40.

[^30]: ${ }^{1}$ See OST Ham-Ads for suppliers of $88-\mathrm{mH}$ toroids.

[^31]: ${ }^{1}$ Available from Barry Electronicy, 512 Broadway, New York, NY 10012.
 ${ }^{2}$ Catalog SC2799P7 Fair Radio Sales, P. 0. Box 1105, Lima, OH 45802.

[^32]: 1 Electronic Industries Association. 2001 Eye Street, N.W., Washington, DC 20008. Attention: Director of Consumer Affairs.

[^33]: * These limits depend on the type of emission and class of license held, as well as on international agreements. See the latest edition of The Radio Amateur's License Manual for current status.

[^34]: Example: A capacitor with a 6-dot code has the following marking: Top row, left to right, black. yellow, vialet: bottom row, right to teft, brawn, silver, red. Since the first colot in the top row is black (significant figure zero) thls is the AWS code and the capacitor has mica dialectric. The significant figures are 4 and 7, the decimal multiptior 10 (brown, al right of second row). so the cepacitance is 470 ptr . The tolorance is $\pm 0 \%$. The final solor, the charactoristic, deals with temperature coefficlents and methodn of testing (we Tablo It-V).

 A capacilor with a 3 -dot code has the following colors, left to right: brown, black, red. The significant figures are 1. 0 (10) and the mulsiplier in 100 . The capacitance is therefore 100 pl :

 A capacitot with a b-dol code han the following markings: Top row, left to right, brown, black, black bottom row, fight to left, black, gold, blue. Since the first color in the top row is neither black nor silver, this is the PIA code. The xignificant figures are $1,0,0(100)$ and the decimal multiplior is I (black). The capacitance is therefore 100 pf . The gold dot shows that the tolerance in 45 年 and the blue dot indicates 600-volt rating.

[^35]: Fized composition resotors

[^36]: aStandard-Frequency Transmission figure in brackets is error in parts 10^{10} (Electronics Engineers' Handbook, McGraw Hill, pp. I-48).
 ${ }^{\text {b }}$ Standard time station. A 3 xsms include time, WX, and propagation on WWV/WWVH. A3 time xsms on CHU (English/Irench). WWV B has no A3; info in BCD format generated by reducing carrier by 10 dB (binary 0).

[^37]: 1 Avallable in single-lot quantity from Permag Corp. 88.06 Van Wyck Expy, Jamaica, NY 11418.
 ${ }^{2}$ Amidon Associates 12033 Otsego Street. North Hollywood, CA 91601.

 3 Toroid cores are also available from Ferroxcube Corp. of America, Saugerties, NY 12477.

[^38]: 1 Amidon Associates, 12033 Otsego Street, North Hollywood, CA 91601.

[^39]: These alzes ore extruded. All other sizes are drawn lubes.

[^40]:

[^41]: Cathode resistof-ohms.
 ${ }^{-}$Screen tied to plati.
 ${ }^{1}$ No connection to Pin No. 1 for 6L5G. 6OTG, 6RGT/G.
 6S7G. 6SA7GF/G and 6SF5-GT.

[^42]: *Membership is available only to individuals. Life Membership is gransted to Full Mernbers for $\$ 180$ ($\$ 200$ Cianada, $\$ 210$ clscwhere). Write the Secretary for details.
 Any member of the immediate family, living at the same address, may also become a League member, without QST, at the special rate of $\$ 2.00$ per year. Such family membership must run concurrently with that of the momber receiving QS'I.

